|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from fused_norm_gate import FusedRMSNormSwishGate |
|
|
|
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
|
|
from timm.models.layers import DropPath |
|
|
|
compute_ARank = False |
|
|
|
from .configuration_mmMamba_embedding import mmMambaEmbeddingConfig |
|
|
|
from .configuration_mmMamba import mmMambaConfig |
|
|
|
try: |
|
from flash_attn import flash_attn_with_kvcache |
|
except ImportError: |
|
flash_attn_with_kvcache = None |
|
|
|
try: |
|
from flash_attn.layers.rotary import RotaryEmbedding |
|
except ImportError: |
|
RotaryEmbedding = None |
|
|
|
import torch.nn.functional as F |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "mmMambaEmbeddingConfig" |
|
|
|
flash_attn_func, flash_attn_varlen_func = None, None |
|
pad_input, index_first_axis, unpad_input = None, None, None |
|
def _import_flash_attn(): |
|
global flash_attn_func, flash_attn_varlen_func |
|
global pad_input, index_first_axis, unpad_input |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input |
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
except ImportError: |
|
raise ImportError("flash_attn is not installed.") |
|
|
|
_import_flash_attn() |
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
|
|
num_heads, head_dim = kv.shape[-2:] |
|
assert layer_idx in inference_params.key_value_memory_dict |
|
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx] |
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
sequence_start = inference_params.seqlen_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
assert batch_end <= kv_cache.shape[0] |
|
assert sequence_end <= kv_cache.shape[1] |
|
assert kv_cache is not None |
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
return kv_cache[batch_start:batch_end, :sequence_end, ...] |
|
|
|
|
|
|
|
class mmMambaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
mmMambaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class mmMambaRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos().to(dtype) |
|
self.sin_cached = emb.sin().to(dtype) |
|
|
|
|
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class mmMambaLinearScalingRotaryEmbedding(mmMambaRotaryEmbedding): |
|
"""mmMambaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class mmMambaDynamicNTKScalingRotaryEmbedding(mmMambaRotaryEmbedding): |
|
"""mmMambaRotaryEmbedding extended with Dynamic NTK scaling. |
|
Credits to the Reddit users /u/bloc97 and /u/emozilla. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
class mmMambaMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) |
|
|
|
return down_proj |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
def repeat_kv2(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :].expand(batch, num_key_value_heads, n_rep, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, head_dim) |
|
|
|
class MHA_LM(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: mmMambaEmbeddingConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
self.rotary_emb_dim = self.head_dim |
|
self.softmax_scale = None |
|
self.causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.wqkv = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=False, |
|
) |
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed" |
|
self.rotary_emb = RotaryEmbedding( |
|
self.head_dim, |
|
base=self.config.rope_theta, |
|
interleaved=False, |
|
device=self.wo.weight.device, |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _update_kv_cache(self, kv, inference_params): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" |
|
return _update_kv_cache(kv, inference_params, self.layer_idx) |
|
|
|
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): |
|
""" |
|
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. |
|
q: (batch_size, seqlen_q, nheads, head_dim) |
|
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) |
|
""" |
|
assert inference_params is not None and inference_params.seqlen_offset > 0 |
|
if self.rotary_emb_dim > 0: |
|
self.rotary_emb._update_cos_sin_cache( |
|
inference_params.max_seqlen, device=q.device, dtype=q.dtype |
|
) |
|
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached |
|
else: |
|
rotary_cos, rotary_sin = None, None |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
assert flash_attn_with_kvcache is not None, "flash_attn must be installed" |
|
context = flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
rotary_cos=rotary_cos, |
|
rotary_sin=rotary_sin, |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, |
|
) |
|
return context |
|
|
|
def _update_kvcache_attention(self, q, kv, inference_params): |
|
"""Write kv to inference_params, then do attention""" |
|
if ( |
|
inference_params.seqlen_offset == 0 |
|
or flash_attn_with_kvcache is None |
|
): |
|
|
|
kv = self._update_kv_cache(kv, inference_params) |
|
k, v = kv.unbind(dim=-3) |
|
|
|
|
|
attn_output = flash_attn_func( |
|
q, k, v, 0.0, softmax_scale=None, causal=self.causal |
|
) |
|
return attn_output |
|
else: |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
return flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict: |
|
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache( |
|
hidden_states.shape[0], inference_params.max_seqlen, dtype=hidden_states.dtype |
|
) |
|
seqlen_offset = ( |
|
0 |
|
if inference_params is None |
|
else ( |
|
inference_params.lengths_per_sample |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None |
|
|
|
qkv = self.wqkv(hidden_states) |
|
qkv = rearrange( |
|
qkv, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
q = qkv[..., : self.num_key_value_groups, :] |
|
q = rearrange(q, "b q h gs d -> b q (h gs) d") |
|
kv = qkv[..., self.num_key_value_groups:, :].transpose(2,3) |
|
|
|
|
|
|
|
if ( |
|
inference_params is None |
|
or inference_params.seqlen_offset == 0 |
|
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) |
|
): |
|
if self.rotary_emb_dim > 0: |
|
q, kv = self.rotary_emb( |
|
q, kv, seqlen_offset=seqlen_offset[:bsz,...], max_seqlen=rotary_max_seqlen |
|
) |
|
if inference_params is None: |
|
k, v = kv.unbind(dim=-3) |
|
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads) |
|
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads) |
|
context = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=None |
|
).transpose(1, 2) |
|
else: |
|
context = self._update_kvcache_attention(q, kv, inference_params) |
|
else: |
|
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) |
|
context = rearrange(context, "... h d -> ... (h d)") |
|
out = self.wo(context) |
|
return out |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): |
|
dtype = self.wo.weight.dtype if dtype is None else dtype |
|
device = self.wo.weight.device |
|
kv_cache = torch.empty( |
|
batch_size, max_seqlen, 2, self.num_key_value_heads, self.head_dim, dtype=dtype, device=device, |
|
) |
|
return kv_cache, None |
|
|
|
class Mamba2_LM(nn.Module): |
|
""" |
|
LoLCATs attention implementation initialized from a |
|
`LlamaAttention` or `MistralAttention` object (base_attn) |
|
|
|
Most of the arguments are directly tied to argparse args |
|
- For now we don't support padding. |
|
""" |
|
def __init__(self, config: mmMambaConfig, layer_idx: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.layer_idx = layer_idx |
|
self.bias = False |
|
self.chunk_size = 128 |
|
conv_bias = True |
|
self.conv_bias = conv_bias |
|
self.d_conv = 2 |
|
self.activation="silu" |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.wvkqgdt = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads + self.num_heads) * self.head_dim + self.num_heads, |
|
bias=self.bias |
|
) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.device = self.wvkqgdt.weight.device |
|
self.dtype = self.wvkqgdt.weight.dtype |
|
|
|
conv_dim = self.num_heads * self.head_dim + 2 * self.num_key_value_heads * self.head_dim |
|
|
|
self.conv1d = nn.Conv1d( |
|
in_channels=conv_dim, |
|
out_channels=conv_dim, |
|
bias=self.conv_bias, |
|
kernel_size=self.d_conv, |
|
groups=conv_dim, |
|
padding=self.d_conv - 1, |
|
device=self.device, |
|
dtype=self.dtype |
|
) |
|
with torch.no_grad(): |
|
self.conv1d.weight.zero_() |
|
self.conv1d.weight[:, 0, 1] = 1 |
|
self.conv1d.bias.zero_() |
|
|
|
|
|
if self.activation == "identity": |
|
self.act = nn.Identity() |
|
elif self.activation in ["silu", "swish"]: |
|
self.act = nn.SiLU() |
|
else: |
|
raise ValueError(f"Unknown activation {self.activation}") |
|
|
|
self.g_norm_swish_gate = FusedRMSNormSwishGate(hidden_size=self.head_dim, elementwise_affine=elementwise_affine, eps=norm_eps).to(self.dtype).to(self.device) |
|
|
|
dt = torch.exp( |
|
torch.rand(self.num_heads, dtype=self.dtype, device=self.device) * (math.log(0.1) - math.log(0.001)) |
|
+ math.log(0.001) |
|
) |
|
dt = torch.clamp(dt, min=0.001) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
self.dt_bias = nn.Parameter(inv_dt) |
|
self.dt_bias._no_weight_decay = True |
|
|
|
A_log_bias = torch.zeros(self.num_heads, dtype=self.dtype, device=self.device) |
|
self.A_log_bias = nn.Parameter(A_log_bias) |
|
self.A_log_bias._no_weight_decay = True |
|
|
|
def forward(self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = True, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
hidden_states = hidden_states.to(self.dtype) |
|
vkqgdt = self.wvkqgdt(hidden_states) |
|
vkq, g, dt = torch.split( |
|
vkqgdt, |
|
[ |
|
(2*self.num_key_value_heads+self.num_heads) * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
self.num_heads, |
|
], |
|
dim=2, |
|
) |
|
batch, seqlen, _ = hidden_states.shape |
|
conv_state, ssm_state = None, None |
|
if inference_params is not None: |
|
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch) |
|
conv_state = conv_state[:batch, ...] |
|
ssm_state = ssm_state[:batch, ...] |
|
|
|
if use_cache and inference_params.seqlen_offset==0: |
|
vkq, new_conv_states = causal_conv1d_fn( |
|
vkq.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
initial_states=None, |
|
return_final_states=True, |
|
activation=None if self.activation == "identity" else self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads) |
|
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2) |
|
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2) |
|
|
|
A = -torch.exp(self.A_log_bias.float()) |
|
|
|
y, new_ssm_states = mamba_chunk_scan_combined( |
|
x = v, |
|
|
|
dt=dt, |
|
dt_softplus=True, |
|
A=A, |
|
B=k, |
|
C=q, |
|
chunk_size=self.chunk_size, |
|
dt_bias=self.dt_bias, |
|
initial_states=None, |
|
return_final_states=True, |
|
) |
|
|
|
conv_state.copy_(new_conv_states) |
|
ssm_state.copy_(new_ssm_states) |
|
|
|
elif use_cache and inference_params.seqlen_offset>0: |
|
|
|
vkq = causal_conv1d_update( |
|
vkq.transpose(1, 2).squeeze(-1), |
|
conv_state, |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) -> b h n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) -> b h n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) -> b h n", h=self.num_heads) |
|
k = repeat_kv2(k, self.num_key_value_groups) |
|
v = repeat_kv2(v, self.num_key_value_groups) |
|
|
|
dt = dt.transpose(1, 2).squeeze(-1) |
|
dt = dt[:, :, None].expand(-1, -1, self.head_dim) |
|
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) |
|
A = -torch.exp(self.A_log_bias.float()) |
|
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.head_dim).to(dtype=torch.float32) |
|
D = torch.zeros((self.num_heads, self.head_dim), dtype=A.dtype, device=A.device) |
|
|
|
y = selective_state_update( |
|
ssm_state, |
|
v, |
|
dt, |
|
A=A, |
|
B=k, |
|
C=q, |
|
D=D, |
|
dt_bias=dt_bias, |
|
dt_softplus=True, |
|
) |
|
|
|
else: |
|
vkq = causal_conv1d_fn( |
|
vkq.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
initial_states=None, |
|
return_final_states=False, |
|
activation=None if self.activation == "identity" else self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads) |
|
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2) |
|
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2) |
|
|
|
A = -torch.exp(self.A_log_bias.float()) |
|
|
|
y = mamba_chunk_scan_combined( |
|
x = v, |
|
dt=dt, |
|
dt_softplus=True, |
|
A=A, |
|
B=k, |
|
C=q, |
|
chunk_size=self.chunk_size, |
|
dt_bias=self.dt_bias, |
|
initial_states=None, |
|
return_final_states=False, |
|
) |
|
|
|
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads) |
|
y_true = self.g_norm_swish_gate(y, g) |
|
y_true = y_true.view(batch, seqlen, self.hidden_size) |
|
y_true = self.o_proj(y_true) |
|
|
|
return y_true |
|
|
|
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False): |
|
device = self.conv1d.weight.device |
|
dtype = self.conv1d.weight.dtype |
|
assert self.layer_idx is not None |
|
if self.layer_idx not in inference_params.key_value_memory_dict: |
|
batch_shape = (batch_size,) |
|
conv_state = torch.zeros( |
|
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype |
|
) |
|
ssm_state = torch.zeros( |
|
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype |
|
) |
|
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state) |
|
else: |
|
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx] |
|
|
|
if initialize_states: |
|
conv_state.zero_() |
|
ssm_state.zero_() |
|
return conv_state, ssm_state |
|
|
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
device = self.conv1d.weight.device |
|
dtype = self.conv1d.weight.dtype |
|
conv_state = torch.zeros( |
|
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype |
|
) |
|
|
|
ssm_state = torch.zeros( |
|
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype |
|
) |
|
return conv_state, ssm_state |
|
|
|
|
|
mmMamba_ATTENTION_CLASSES = { |
|
'mha': MHA_LM, |
|
"mamba2":Mamba2_LM |
|
} |
|
|
|
|
|
class mmMambaDecoderLayer(nn.Module): |
|
def __init__(self, config: mmMambaEmbeddingConfig, layer_idx: int, drop_path_rate=0.0): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
|
|
self.attention = mmMamba_ATTENTION_CLASSES[config.layers_block_type[layer_idx]](config=config, layer_idx=layer_idx) |
|
|
|
self.feed_forward = mmMambaMLP(config) |
|
self.attention_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.ffn_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*) |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.attention_norm(hidden_states) |
|
|
|
|
|
hidden_states = self.attention( |
|
hidden_states=hidden_states, |
|
inference_params=inference_params, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
hidden_states = residual + self.drop_path1(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ffn_norm(hidden_states) |
|
hidden_states = self.feed_forward(hidden_states) |
|
|
|
hidden_states = residual + self.drop_path2(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
return self.attention.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) |
|
|
|
|
|
class VisionEmbeddings(nn.Module): |
|
def __init__(self, config: mmMambaEmbeddingConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter( |
|
torch.randn(1, 1, self.embed_dim), |
|
) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=self.config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) |
|
|
|
self.post_init() |
|
|
|
def post_init(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
torch.nn.init.normal_(m.weight, mean=0.0, std=0.02) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
if isinstance(m, nn.Linear): |
|
torch.nn.init.normal_(m.weight, mean=0.0, std=0.02) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def _get_pos_embed(self, pos_embed, H, W): |
|
target_dtype = pos_embed.dtype |
|
pos_embed = pos_embed.float().reshape( |
|
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2) |
|
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\ |
|
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype) |
|
return pos_embed |
|
|
|
def forward(self, pixel_values: torch.FloatTensor, |
|
use_cls_token=False, |
|
) -> torch.Tensor: |
|
target_dtype = self.patch_embedding.weight.dtype |
|
pixel_values = pixel_values.to(target_dtype) |
|
patch_embeds = self.patch_embedding(pixel_values) |
|
batch_size, _, height, width = patch_embeds.shape |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
if use_cls_token: |
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
assert not self.config.use_2d_sincos_pos_embed, '2D SinCos pos embed is not supported with use_cls_token' |
|
position_embedding = torch.cat([ |
|
self.position_embedding[:, :1, :], |
|
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width) |
|
], dim=1) |
|
embeddings = embeddings + position_embedding |
|
else: |
|
position_embedding = self._get_pos_embed(self.position_embedding[:, 1:, :], height, width).to(target_dtype) |
|
embeddings = patch_embeds + position_embedding |
|
|
|
return embeddings |
|
|
|
|
|
class mmMambaEmbedding(PreTrainedModel): |
|
config_class = mmMambaEmbeddingConfig |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: mmMambaEmbeddingConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.hidden_size = self.config.hidden_size |
|
self.gradient_checkpointing = True |
|
|
|
self.vision_embeddings = VisionEmbeddings(config) |
|
self.llm_text_embeddings = nn.Embedding(self.config.llm_vocab_size, self.config.llm_hidden_size) |
|
self.special_token_maps = config.special_token_maps |
|
if len(self.special_token_maps) > 0: |
|
self.special_text_embeddings = nn.Embedding(len(config.special_token_maps), self.config.llm_hidden_size) |
|
|
|
assert self.config.use_ls is False, 'LS is not supported in mmMamba' |
|
if hasattr(config, 'drop_path_rate'): |
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] |
|
else: |
|
dpr = [0.0] * config.num_hidden_layers |
|
self.encoder = nn.ModuleList([ |
|
mmMambaDecoderLayer(config, idx, dpr[idx]) for idx in range(config.num_hidden_layers) |
|
]) |
|
|
|
if self.config.use_pixel_shuffle_proj: |
|
self.pixel_shuffle_proj = nn.Sequential( |
|
nn.Linear(int(config.hidden_size / (config.downsample_ratio * config.downsample_ratio)), config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size) |
|
) |
|
|
|
self.num_img_tokens = (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
def set_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
for layer in self.encoder: |
|
layer.gradient_checkpointing = True |
|
|
|
def resize_pos_embeddings(self, old_size, new_size, patch_size): |
|
pos_emb = self.vision_embeddings.position_embedding |
|
_, num_positions, embed_dim = pos_emb.shape |
|
cls_emb = pos_emb[:, :1, :] |
|
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2) |
|
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False) |
|
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) |
|
pos_emb = torch.cat([cls_emb, pos_emb], dim=1) |
|
self.vision_embeddings.position_embedding = nn.Parameter(pos_emb) |
|
self.vision_embeddings.image_size = new_size |
|
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size)) |
|
|
|
def replace_img_tokens(self, input_ids, hidden_states, vision_hidden_states): |
|
img_context_token_mask = (input_ids == self.config.img_context_token_id) |
|
hidden_states[img_context_token_mask] = hidden_states[img_context_token_mask] * 0.0 + vision_hidden_states.flatten(0, 1) |
|
|
|
return hidden_states |
|
|
|
def get_ignore_mask(self, input_ids): |
|
ignore_ids = torch.tensor( |
|
[self.special_token_maps[token] for token in [IMG_START_TOKEN, IMG_END_TOKEN]], |
|
device=input_ids.device) |
|
ignore_mask = torch.isin(input_ids, ignore_ids) |
|
|
|
return ignore_mask |
|
|
|
def get_text_mask(self, input_ids): |
|
txt_mask = (input_ids != self.config.img_context_token_id) |
|
|
|
return txt_mask |
|
|
|
def get_input_embeddings(self, input_ids): |
|
special_mask = input_ids > self.llm_text_embeddings.weight.shape[0] - 1 |
|
llm_embeddings = self.llm_text_embeddings(input_ids * (~special_mask).to(input_ids)) |
|
|
|
if len(self.special_token_maps) > 0: |
|
special_embeddings = self.special_text_embeddings((input_ids - self.llm_text_embeddings.weight.shape[0]) * special_mask.to(input_ids)) |
|
special_mask = special_mask.unsqueeze(-1) |
|
text_embeddings = llm_embeddings * (~special_mask).to(llm_embeddings) + \ |
|
special_embeddings * special_mask.to(llm_embeddings) |
|
else: |
|
text_embeddings = llm_embeddings |
|
|
|
return text_embeddings |
|
|
|
def get_txt_embeddings(self, input_ids): |
|
B, L = input_ids.shape |
|
txt_mask = (input_ids != self.config.img_context_token_id) |
|
txt_embeddings = self.llm_text_embeddings(input_ids[txt_mask]) |
|
txt_embeddings = txt_embeddings.reshape(-1, txt_embeddings.shape[-1]) |
|
|
|
return txt_embeddings |
|
|
|
def get_txt_feature(self, input_ids, feature): |
|
B, L, C = feature.shape |
|
txt_mask = (input_ids != self.config.img_context_token_id) |
|
txt_feature = feature[txt_mask].reshape(-1, C) |
|
|
|
return txt_feature |
|
|
|
def get_img_feature(self, input_ids, feature): |
|
B, L, C = feature.shape |
|
img_mask = (input_ids == self.config.img_context_token_id) |
|
img_feature = feature[img_mask].reshape(-1, C) |
|
|
|
return img_feature |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post': |
|
x = x.view(x.shape[0]//self.num_img_tokens, self.num_img_tokens, -1) |
|
|
|
n, l, c = x.size() |
|
h = w = int(l ** 0.5) |
|
|
|
x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
x = x.permute(0, 2, 1, 3).reshape(n, int(l * scale_factor * scale_factor), int(c / (scale_factor * scale_factor))).contiguous() |
|
|
|
if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post': |
|
x = x.view(int(x.shape[0]*self.num_img_tokens*(self.config.downsample_ratio**2)), -1) |
|
return x |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
inference_params = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_cache: Optional[bool] = True, |
|
): |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if pixel_values is not None: |
|
if len(pixel_values.shape) == 4: |
|
if self.gradient_checkpointing and self.training: |
|
vision_hidden_states = torch.utils.checkpoint.checkpoint(self.vision_embeddings, pixel_values) |
|
else: |
|
vision_hidden_states = self.vision_embeddings(pixel_values) |
|
|
|
if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'pre': |
|
vision_hidden_states = self.pixel_shuffle(vision_hidden_states, scale_factor=self.config.downsample_ratio) |
|
if self.gradient_checkpointing and self.training: |
|
vision_hidden_states = torch.utils.checkpoint.checkpoint(self.pixel_shuffle_proj, vision_hidden_states) |
|
else: |
|
vision_hidden_states = self.pixel_shuffle_proj(vision_hidden_states) |
|
|
|
hidden_states = self.get_input_embeddings(input_ids) |
|
hidden_states = self.replace_img_tokens(input_ids, hidden_states, vision_hidden_states) |
|
else: |
|
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}') |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
|
|
for layer_idx, layer_module in enumerate(self.encoder): |
|
if self.gradient_checkpointing and self.training: |
|
assert use_cache is None, 'Gradient checkpointing is not compatible with cache' |
|
outputs = torch.utils.checkpoint.checkpoint(layer_module, |
|
hidden_states, |
|
inference_params, |
|
None, False, False, |
|
) |
|
hidden_states = outputs[0] |
|
else: |
|
outputs = layer_module( |
|
hidden_states=hidden_states, |
|
inference_params=inference_params, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = outputs[0] |
|
|
|
|
|
img_feature = self.get_img_feature(input_ids, hidden_states) |
|
|
|
if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post': |
|
img_feature = self.pixel_shuffle(img_feature, scale_factor=self.config.downsample_ratio) |
|
img_feature = self.pixel_shuffle_proj(img_feature) |
|
|
|
return img_feature, hidden_states |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
return { |
|
layer.layer_idx: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) |
|
for layer in self.encoder |
|
} |
|
|