File size: 45,435 Bytes
6cf7380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8153b
6cf7380
 
 
 
 
 
 
3b8153b
6cf7380
3b8153b
 
 
 
6cf7380
 
 
3b8153b
6cf7380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8153b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cf7380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975bc02
6cf7380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975bc02
 
 
6cf7380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
# Copyright (c) The mmMamba team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from transformers.activations import ACT2FN

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from fused_norm_gate import FusedRMSNormSwishGate

from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update

from timm.models.layers import DropPath

compute_ARank = False # [ARank] Set this to True to compute attention rank

from .configuration_mmMamba_embedding import mmMambaEmbeddingConfig

from .configuration_mmMamba import mmMambaConfig

try:
    from flash_attn import flash_attn_with_kvcache
except ImportError:
    flash_attn_with_kvcache = None

try:
    from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
    RotaryEmbedding = None

import torch.nn.functional as F

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "mmMambaEmbeddingConfig"

flash_attn_func, flash_attn_varlen_func = None, None
pad_input, index_first_axis, unpad_input = None, None, None
def _import_flash_attn():
    global flash_attn_func, flash_attn_varlen_func
    global pad_input, index_first_axis, unpad_input
    try:
        from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
        from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
        flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
        pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
    except ImportError:
        raise ImportError("flash_attn is not installed.")

_import_flash_attn()

def _update_kv_cache(kv, inference_params, layer_idx):
    """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
    # Pre-allocate memory for key-values for inference.
    num_heads, head_dim = kv.shape[-2:]
    assert layer_idx in inference_params.key_value_memory_dict
    kv_cache, _ = inference_params.key_value_memory_dict[layer_idx]
    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]
    sequence_start = inference_params.seqlen_offset
    sequence_end = sequence_start + kv.shape[1]
    assert batch_end <= kv_cache.shape[0]
    assert sequence_end <= kv_cache.shape[1]
    assert kv_cache is not None
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
    return kv_cache[batch_start:batch_end, :sequence_end, ...]


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->mmMamba
class mmMambaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        mmMambaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->mmMamba
class mmMambaRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.cos_cached = emb.cos().to(dtype)
        self.sin_cached = emb.sin().to(dtype)
        #self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        #self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->mmMamba
class mmMambaLinearScalingRotaryEmbedding(mmMambaRotaryEmbedding):
    """mmMambaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->mmMamba
class mmMambaDynamicNTKScalingRotaryEmbedding(mmMambaRotaryEmbedding):
    """mmMambaRotaryEmbedding extended with Dynamic NTK scaling.
    Credits to the Reddit users /u/bloc97 and /u/emozilla.
    """

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


# Copied from transformers.model.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


class mmMambaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))

        return down_proj


# Copied from transformers.model.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

def repeat_kv2(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None,  :].expand(batch, num_key_value_heads, n_rep, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, head_dim)

class MHA_LM(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: mmMambaEmbeddingConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.is_causal = True
        self.rotary_emb_dim = self.head_dim
        self.softmax_scale = None
        self.causal = True
        
        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        self.wqkv = nn.Linear(
            self.hidden_size,
            (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
            bias=False,
        )

        self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed"
        self.rotary_emb = RotaryEmbedding(
            self.head_dim,
            base=self.config.rope_theta,
            interleaved=False,
            device=self.wo.weight.device, 
        )

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def _update_kv_cache(self, kv, inference_params):
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
        return _update_kv_cache(kv, inference_params, self.layer_idx)

    def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
        """
        Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
        q: (batch_size, seqlen_q, nheads, head_dim)
        kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
        """
        assert inference_params is not None and inference_params.seqlen_offset > 0
        if self.rotary_emb_dim > 0:
            self.rotary_emb._update_cos_sin_cache(
                inference_params.max_seqlen, device=q.device, dtype=q.dtype
            )
            rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
        else:
            rotary_cos, rotary_sin = None, None
        batch = q.shape[0]
        kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
        kv_cache = kv_cache[:batch]
        cache_seqlens = (
            inference_params.lengths_per_sample[:batch]
            if inference_params.lengths_per_sample is not None
            else inference_params.seqlen_offset
        )
        assert flash_attn_with_kvcache is not None, "flash_attn must be installed"
        context = flash_attn_with_kvcache(
            q,
            kv_cache[:, :, 0],
            kv_cache[:, :, 1],
            kv[:, :, 0],
            kv[:, :, 1],
            rotary_cos=rotary_cos,
            rotary_sin=rotary_sin,
            cache_seqlens=cache_seqlens,
            softmax_scale=self.softmax_scale,
            causal=self.causal,
            rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
        )
        return context 

    def _update_kvcache_attention(self, q, kv, inference_params):
        """Write kv to inference_params, then do attention"""
        if (
            inference_params.seqlen_offset == 0
            or flash_attn_with_kvcache is None
        ):
            # TODO: this only uses seqlen_offset and not lengths_per_sample.
            kv = self._update_kv_cache(kv, inference_params)
            k, v = kv.unbind(dim=-3)
            #k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads)
            #v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads)
            attn_output = flash_attn_func(
                q, k, v, 0.0, softmax_scale=None, causal=self.causal
            )
            return attn_output
        else:
            batch = q.shape[0]
            kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
            kv_cache = kv_cache[:batch]
            cache_seqlens = (
                inference_params.lengths_per_sample[:batch]
                if inference_params.lengths_per_sample is not None
                else inference_params.seqlen_offset
            )
            return flash_attn_with_kvcache(
                q,
                kv_cache[:, :, 0],
                kv_cache[:, :, 1],
                kv[:, :, 0],
                kv[:, :, 1],
                cache_seqlens=cache_seqlens,
                softmax_scale=self.softmax_scale,
                causal=self.causal,
            )
            
    def forward(
        self,
        hidden_states: torch.Tensor,
        inference_params = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,#------------------------------------------------------------------------
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict:
            inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache(
                hidden_states.shape[0], inference_params.max_seqlen, dtype=hidden_states.dtype
            )
        seqlen_offset = (
            0
            if inference_params is None
            else (
                inference_params.lengths_per_sample
                if inference_params.lengths_per_sample is not None
                else inference_params.seqlen_offset
            )
        )

        bsz, q_len, _ = hidden_states.size()
        rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None

        qkv = self.wqkv(hidden_states)
        qkv = rearrange(
            qkv,
            "b q (h gs d) -> b q h gs d",
            gs=2 + self.num_key_value_groups,
            d=self.head_dim,
        )

        q = qkv[..., : self.num_key_value_groups, :]
        q = rearrange(q, "b q h gs d -> b q (h gs) d")
        kv = qkv[..., self.num_key_value_groups:, :].transpose(2,3)
        #kv = rearrange(kv, "b q h gs d -> b q (h gs) d")
        #kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
        
        if (
            inference_params is None
            or inference_params.seqlen_offset == 0
            or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
        ):
            if self.rotary_emb_dim > 0:
                q, kv = self.rotary_emb(
                    q, kv, seqlen_offset=seqlen_offset[:bsz,...], max_seqlen=rotary_max_seqlen
                )
            if inference_params is None:
                k, v = kv.unbind(dim=-3)
                k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads)
                v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads)
                context = F.scaled_dot_product_attention(
                    q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=None
                ).transpose(1, 2)
            else:
                context = self._update_kvcache_attention(q, kv, inference_params)
        else:
            context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
        context = rearrange(context, "... h d -> ... (h d)")
        out = self.wo(context)
        return out
    
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
        dtype = self.wo.weight.dtype if dtype is None else dtype
        device = self.wo.weight.device
        kv_cache = torch.empty(
            batch_size, max_seqlen, 2, self.num_key_value_heads, self.head_dim, dtype=dtype, device=device,
        )
        return kv_cache, None

class Mamba2_LM(nn.Module):
    """
    LoLCATs attention implementation initialized from a 
    `LlamaAttention` or `MistralAttention` object (base_attn)

    Most of the arguments are directly tied to argparse args
    - For now we don't support padding.
    """
    def __init__(self, config: mmMambaConfig, layer_idx: Optional[int] = None,
                 elementwise_affine: Optional[bool] = True,
                 norm_eps: float = 1e-5,
                 ):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.layer_idx = layer_idx
        self.bias = False
        self.chunk_size = 128
        conv_bias = True
        self.conv_bias = conv_bias
        self.d_conv = 2
        self.activation="silu"
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        self.wvkqgdt = nn.Linear(
            self.hidden_size,
            (self.num_heads + 2 * self.num_key_value_heads + self.num_heads) * self.head_dim + self.num_heads,
            bias=self.bias
        )
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.device = self.wvkqgdt.weight.device
        self.dtype = self.wvkqgdt.weight.dtype

        conv_dim = self.num_heads * self.head_dim + 2 * self.num_key_value_heads * self.head_dim
            
        self.conv1d = nn.Conv1d(
            in_channels=conv_dim,
            out_channels=conv_dim,
            bias=self.conv_bias,
            kernel_size=self.d_conv,
            groups=conv_dim,
            padding=self.d_conv - 1,
            device=self.device, 
            dtype=self.dtype
        )
        with torch.no_grad():
            self.conv1d.weight.zero_()  
            self.conv1d.weight[:, 0, 1] = 1 
            self.conv1d.bias.zero_()  

        # Activation after conv
        if self.activation == "identity":
            self.act = nn.Identity()
        elif self.activation in ["silu", "swish"]:
            self.act = nn.SiLU()
        else:
            raise ValueError(f"Unknown activation {self.activation}")
        
        self.g_norm_swish_gate = FusedRMSNormSwishGate(hidden_size=self.head_dim, elementwise_affine=elementwise_affine, eps=norm_eps).to(self.dtype).to(self.device)

        dt = torch.exp(
            torch.rand(self.num_heads, dtype=self.dtype, device=self.device) * (math.log(0.1) - math.log(0.001))
            + math.log(0.001)
        )
        dt = torch.clamp(dt, min=0.001)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        self.dt_bias = nn.Parameter(inv_dt)
        self.dt_bias._no_weight_decay = True
        
        A_log_bias = torch.zeros(self.num_heads, dtype=self.dtype, device=self.device)
        self.A_log_bias = nn.Parameter(A_log_bias)
        self.A_log_bias._no_weight_decay = True

    def forward(self,
                hidden_states: torch.Tensor,
                inference_params = None,
                output_attentions: bool = False,
                use_cache: bool = True,
                **kwargs,
               ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        hidden_states = hidden_states.to(self.dtype)
        vkqgdt = self.wvkqgdt(hidden_states)
        vkq, g, dt = torch.split(
                vkqgdt,
                [
                    (2*self.num_key_value_heads+self.num_heads) * self.head_dim,
                    self.num_heads * self.head_dim,
                    self.num_heads,
                ],
                dim=2,
            )
        batch, seqlen, _ = hidden_states.shape
        conv_state, ssm_state = None, None
        if inference_params is not None:
            conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
        conv_state = conv_state[:batch, ...]
        ssm_state = ssm_state[:batch, ...]
        
        if use_cache and inference_params.seqlen_offset==0:
            vkq, new_conv_states = causal_conv1d_fn(
                vkq.transpose(1, 2),
                rearrange(self.conv1d.weight, "d 1 w -> d w"),
                self.conv1d.bias,
                initial_states=None,
                return_final_states=True,
                activation=None if self.activation == "identity" else self.activation,
            )

            v, k, q = torch.split(
                vkq,
                [
                    self.num_key_value_heads * self.head_dim,
                    self.num_key_value_heads * self.head_dim,
                    self.num_heads * self.head_dim,
                ],
                dim=1,
            )

            v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads)
            k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads)
            q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads)
            k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2)
            v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2)
                
            A = -torch.exp(self.A_log_bias.float())

            y, new_ssm_states = mamba_chunk_scan_combined(
                x = v,
                #x = v / F.softplus(A_log).to(v.dtype).unsqueeze(-1),
                dt=dt,
                dt_softplus=True,
                A=A,
                B=k,
                C=q,
                chunk_size=self.chunk_size,
                dt_bias=self.dt_bias,
                initial_states=None, # currently not supported by mamba_ssm.utils.generation
                return_final_states=True,
            )

            conv_state.copy_(new_conv_states)
            ssm_state.copy_(new_ssm_states)

        elif use_cache and inference_params.seqlen_offset>0:
            
            vkq = causal_conv1d_update(
                vkq.transpose(1, 2).squeeze(-1),
                conv_state,
                self.conv1d.weight.squeeze(1),
                self.conv1d.bias,
                self.activation,
            )

            v, k, q = torch.split(
                vkq,
                [
                    self.num_key_value_heads * self.head_dim,
                    self.num_key_value_heads * self.head_dim,
                    self.num_heads * self.head_dim,
                ],
                dim=1,
            )

            v = rearrange(v, "b (h n) -> b h n", h=self.num_key_value_heads)
            k = rearrange(k, "b (h n) -> b h n", h=self.num_key_value_heads)
            q = rearrange(q, "b (h n) -> b h n", h=self.num_heads)
            k = repeat_kv2(k, self.num_key_value_groups)
            v = repeat_kv2(v, self.num_key_value_groups)

            dt = dt.transpose(1, 2).squeeze(-1)
            dt = dt[:, :, None].expand(-1, -1, self.head_dim)
            dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
            A = -torch.exp(self.A_log_bias.float())
            A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.head_dim).to(dtype=torch.float32)
            D = torch.zeros((self.num_heads, self.head_dim), dtype=A.dtype, device=A.device)

            y = selective_state_update(
                ssm_state,
                v,
                dt,
                A=A,
                B=k,
                C=q,
                D=D,
                dt_bias=dt_bias,
                dt_softplus=True,
            )
            
        else:
            vkq = causal_conv1d_fn(
                vkq.transpose(1, 2),
                rearrange(self.conv1d.weight, "d 1 w -> d w"),
                self.conv1d.bias,
                initial_states=None,
                return_final_states=False,
                activation=None if self.activation == "identity" else self.activation,
            )

            v, k, q = torch.split(
                vkq,
                [
                    self.num_key_value_heads * self.head_dim,
                    self.num_key_value_heads * self.head_dim,
                    self.num_heads * self.head_dim,
                ],
                dim=1,
            )

            v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads)
            k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads)
            q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads)
            k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2)
            v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2)
                
            A = -torch.exp(self.A_log_bias.float())

            y = mamba_chunk_scan_combined(
                x = v,
                dt=dt,
                dt_softplus=True,
                A=A,
                B=k,
                C=q,
                chunk_size=self.chunk_size,
                dt_bias=self.dt_bias,
                initial_states=None, # currently not supported by mamba_ssm.utils.generation
                return_final_states=False,
            )
        
        g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
        y_true = self.g_norm_swish_gate(y, g)
        y_true = y_true.view(batch, seqlen, self.hidden_size)
        y_true = self.o_proj(y_true)

        return y_true
        
    def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
        device = self.conv1d.weight.device
        dtype = self.conv1d.weight.dtype
        assert self.layer_idx is not None
        if self.layer_idx not in inference_params.key_value_memory_dict:
            batch_shape = (batch_size,)
            conv_state = torch.zeros(
                batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype
            )
            ssm_state = torch.zeros(
                batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype
            )
            inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
        else:
            conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
            # TODO: What if batch size changes between generation, and we reuse the same states?
            if initialize_states:
                conv_state.zero_()
                ssm_state.zero_()
        return conv_state, ssm_state

            
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        device = self.conv1d.weight.device
        dtype = self.conv1d.weight.dtype
        conv_state = torch.zeros(
            batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype
        )

        ssm_state = torch.zeros(
            batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype
        )
        return conv_state, ssm_state
    

mmMamba_ATTENTION_CLASSES = {
    'mha': MHA_LM,
    "mamba2":Mamba2_LM
}

# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
class mmMambaDecoderLayer(nn.Module):
    def __init__(self, config: mmMambaEmbeddingConfig, layer_idx: int, drop_path_rate=0.0):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.config = config
        self.layer_idx = layer_idx
        
        self.attention = mmMamba_ATTENTION_CLASSES[config.layers_block_type[layer_idx]](config=config, layer_idx=layer_idx)

        self.feed_forward = mmMambaMLP(config)
        self.attention_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.ffn_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
        self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(
        self,
        hidden_states: torch.Tensor,
        inference_params = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*)
        """
        residual = hidden_states

        hidden_states = self.attention_norm(hidden_states)

        # Self Attention
        hidden_states = self.attention(
            hidden_states=hidden_states,
            inference_params=inference_params,
            output_attentions=output_attentions,
            use_cache=use_cache,
            **kwargs,
        )
        hidden_states = residual + self.drop_path1(hidden_states)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ffn_norm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)

        hidden_states = residual + self.drop_path2(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)
        
        return outputs
    
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.attention.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)


class VisionEmbeddings(nn.Module):
    def __init__(self, config: mmMambaEmbeddingConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(
            torch.randn(1, 1, self.embed_dim),
        )

        self.patch_embedding = nn.Conv2d(
            in_channels=self.config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1

        self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
        
        self.post_init()
    
    def post_init(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                torch.nn.init.normal_(m.weight, mean=0.0, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            if isinstance(m, nn.Linear):
                torch.nn.init.normal_(m.weight, mean=0.0, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def _get_pos_embed(self, pos_embed, H, W):
        target_dtype = pos_embed.dtype
        pos_embed = pos_embed.float().reshape(
            1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
        pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False).\
            reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
        return pos_embed

    def forward(self, pixel_values: torch.FloatTensor, 
                use_cls_token=False,
                ) -> torch.Tensor:
        target_dtype = self.patch_embedding.weight.dtype
        pixel_values = pixel_values.to(target_dtype)
        patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
        batch_size, _, height, width = patch_embeds.shape
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
        if use_cls_token:
            class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
            embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
            assert not self.config.use_2d_sincos_pos_embed, '2D SinCos pos embed is not supported with use_cls_token'
            position_embedding = torch.cat([
                self.position_embedding[:, :1, :],
                self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
            ], dim=1)
            embeddings = embeddings + position_embedding
        else:
            position_embedding = self._get_pos_embed(self.position_embedding[:, 1:, :], height, width).to(target_dtype)
            embeddings = patch_embeds + position_embedding

        return embeddings


class mmMambaEmbedding(PreTrainedModel):
    config_class = mmMambaEmbeddingConfig
    _supports_flash_attn_2 = True

    def __init__(self, config: mmMambaEmbeddingConfig):
        super().__init__(config)
        self.config = config
        self.hidden_size = self.config.hidden_size
        self.gradient_checkpointing = True

        self.vision_embeddings = VisionEmbeddings(config)
        self.llm_text_embeddings = nn.Embedding(self.config.llm_vocab_size, self.config.llm_hidden_size)
        self.special_token_maps = config.special_token_maps
        if len(self.special_token_maps) > 0:
            self.special_text_embeddings = nn.Embedding(len(config.special_token_maps), self.config.llm_hidden_size)

        assert self.config.use_ls is False, 'LS is not supported in mmMamba'
        if hasattr(config, 'drop_path_rate'):
            dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
        else:
            dpr = [0.0] * config.num_hidden_layers
        self.encoder = nn.ModuleList([
            mmMambaDecoderLayer(config, idx, dpr[idx]) for idx in range(config.num_hidden_layers)
        ])
        
        if self.config.use_pixel_shuffle_proj:
            self.pixel_shuffle_proj = nn.Sequential(
                nn.Linear(int(config.hidden_size / (config.downsample_ratio * config.downsample_ratio)), config.hidden_size),
                nn.GELU(),
                nn.Linear(config.hidden_size, config.hidden_size)
            )
        
        self.num_img_tokens = (self.config.image_size // self.config.patch_size) ** 2
        
    def set_gradient_checkpointing(self):
        self.gradient_checkpointing = True
        for layer in self.encoder:
            layer.gradient_checkpointing = True

    def resize_pos_embeddings(self, old_size, new_size, patch_size):
        pos_emb = self.vision_embeddings.position_embedding
        _, num_positions, embed_dim = pos_emb.shape
        cls_emb = pos_emb[:, :1, :]
        pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
        pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
        pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
        pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
        self.vision_embeddings.position_embedding = nn.Parameter(pos_emb)
        self.vision_embeddings.image_size = new_size
        logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
    
    def replace_img_tokens(self, input_ids, hidden_states, vision_hidden_states):
        img_context_token_mask = (input_ids == self.config.img_context_token_id)
        hidden_states[img_context_token_mask] = hidden_states[img_context_token_mask] * 0.0 + vision_hidden_states.flatten(0, 1)

        return hidden_states
    
    def get_ignore_mask(self, input_ids):
        ignore_ids = torch.tensor(
            [self.special_token_maps[token] for token in [IMG_START_TOKEN, IMG_END_TOKEN]], 
            device=input_ids.device)
        ignore_mask = torch.isin(input_ids, ignore_ids)

        return ignore_mask
    
    def get_text_mask(self, input_ids):
        txt_mask = (input_ids != self.config.img_context_token_id)

        return txt_mask
    
    def get_input_embeddings(self, input_ids):
        special_mask = input_ids > self.llm_text_embeddings.weight.shape[0] - 1
        llm_embeddings = self.llm_text_embeddings(input_ids * (~special_mask).to(input_ids))

        if len(self.special_token_maps) > 0:
            special_embeddings = self.special_text_embeddings((input_ids - self.llm_text_embeddings.weight.shape[0]) * special_mask.to(input_ids))
            special_mask = special_mask.unsqueeze(-1)
            text_embeddings = llm_embeddings * (~special_mask).to(llm_embeddings) + \
                                special_embeddings * special_mask.to(llm_embeddings)
        else:
            text_embeddings = llm_embeddings

        return text_embeddings
    
    def get_txt_embeddings(self, input_ids):
        B, L = input_ids.shape
        txt_mask = (input_ids != self.config.img_context_token_id)
        txt_embeddings = self.llm_text_embeddings(input_ids[txt_mask])
        txt_embeddings = txt_embeddings.reshape(-1, txt_embeddings.shape[-1])

        return txt_embeddings
    
    def get_txt_feature(self, input_ids, feature):
        B, L, C = feature.shape
        txt_mask = (input_ids != self.config.img_context_token_id)
        txt_feature = feature[txt_mask].reshape(-1, C)

        return txt_feature
    
    def get_img_feature(self, input_ids, feature):
        B, L, C = feature.shape
        img_mask = (input_ids == self.config.img_context_token_id)
        img_feature = feature[img_mask].reshape(-1, C)

        return img_feature
    
    def pixel_shuffle(self, x, scale_factor=0.5):
        if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
            x = x.view(x.shape[0]//self.num_img_tokens, self.num_img_tokens, -1)

        n, l, c = x.size()
        h = w = int(l ** 0.5)
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.reshape(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        x = x.permute(0, 2, 1, 3).reshape(n, int(l * scale_factor * scale_factor), int(c / (scale_factor * scale_factor))).contiguous()
        
        if getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
            x = x.view(int(x.shape[0]*self.num_img_tokens*(self.config.downsample_ratio**2)), -1)
        return x

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        inference_params = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_cache: Optional[bool] = True,
    ):
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        if pixel_values is not None:
            if len(pixel_values.shape) == 4:
                if self.gradient_checkpointing and self.training:
                    vision_hidden_states = torch.utils.checkpoint.checkpoint(self.vision_embeddings, pixel_values)
                else:
                    vision_hidden_states = self.vision_embeddings(pixel_values)

                if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'pre':
                    vision_hidden_states = self.pixel_shuffle(vision_hidden_states, scale_factor=self.config.downsample_ratio)
                    if self.gradient_checkpointing and self.training:
                        vision_hidden_states = torch.utils.checkpoint.checkpoint(self.pixel_shuffle_proj, vision_hidden_states)
                    else:
                        vision_hidden_states = self.pixel_shuffle_proj(vision_hidden_states)

                hidden_states = self.get_input_embeddings(input_ids)
                hidden_states = self.replace_img_tokens(input_ids, hidden_states, vision_hidden_states)
            else:
                raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
        else:
            hidden_states = self.get_input_embeddings(input_ids)

        for layer_idx, layer_module in enumerate(self.encoder):
            if self.gradient_checkpointing and self.training:
                assert use_cache is None, 'Gradient checkpointing is not compatible with cache'
                outputs = torch.utils.checkpoint.checkpoint(layer_module, 
                                                            hidden_states,
                                                            inference_params,
                                                            None, False, False,
                                                            )
                hidden_states = outputs[0]
            else:
                outputs = layer_module(
                    hidden_states=hidden_states,
                    inference_params=inference_params,
                    use_cache=use_cache,
                )
                hidden_states = outputs[0]


        img_feature = self.get_img_feature(input_ids, hidden_states)
        
        if self.config.use_pixel_shuffle_proj and getattr(self.config, 'pixel_shuffle_loc', 'pre') == 'post':
            img_feature = self.pixel_shuffle(img_feature, scale_factor=self.config.downsample_ratio)
            img_feature = self.pixel_shuffle_proj(img_feature)
        
        return img_feature, hidden_states
            
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return {
            layer.layer_idx: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
            for layer in self.encoder
        }