all_tasks_combined_8b_sft_more_epochs
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the identity and the data_mc_filtered datasets. It achieves the following results on the evaluation set:
- Loss: 0.8986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4512 | 0.3714 | 200 | 0.5138 |
0.5062 | 0.7428 | 400 | 0.5233 |
0.3444 | 1.1133 | 600 | 0.4961 |
0.3574 | 1.4847 | 800 | 0.4851 |
0.2927 | 1.8561 | 1000 | 0.4776 |
0.2063 | 2.2266 | 1200 | 0.5153 |
0.1942 | 2.5980 | 1400 | 0.5041 |
0.1876 | 2.9694 | 1600 | 0.4744 |
0.1046 | 3.3398 | 1800 | 0.5740 |
0.0851 | 3.7112 | 2000 | 0.5829 |
0.0381 | 4.0817 | 2200 | 0.7345 |
0.0402 | 4.4531 | 2400 | 0.6936 |
0.0295 | 4.8245 | 2600 | 0.7317 |
0.0105 | 5.1950 | 2800 | 0.8839 |
0.0082 | 5.5664 | 3000 | 0.8951 |
0.0092 | 5.9378 | 3200 | 0.8989 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for hlillemark/all_tasks_combined_8b_sft_more_epochs
Base model
meta-llama/Meta-Llama-3-8B-Instruct