segformer-b0-harimehta-foc-feb21

This model is a fine-tuned version of nvidia/mit-b0 on the hari000/foc-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0202
  • Mean Iou: 0.2651
  • Mean Accuracy: 0.5301
  • Overall Accuracy: 0.5301
  • Accuracy Cask: nan
  • Accuracy Foc: 0.5301
  • Iou Cask: 0.0
  • Iou Foc: 0.5301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Cask Accuracy Foc Iou Cask Iou Foc
0.5516 0.625 20 0.5585 0.0794 0.1588 0.1588 nan 0.1588 0.0 0.1588
0.4061 1.25 40 0.3763 0.0441 0.0882 0.0882 nan 0.0882 0.0 0.0882
0.3363 1.875 60 0.2669 0.0023 0.0046 0.0046 nan 0.0046 0.0 0.0046
0.2396 2.5 80 0.2026 0.0010 0.0021 0.0021 nan 0.0021 0.0 0.0021
0.1909 3.125 100 0.1579 0.0002 0.0004 0.0004 nan 0.0004 0.0 0.0004
0.1587 3.75 120 0.1315 0.0002 0.0003 0.0003 nan 0.0003 0.0 0.0003
0.136 4.375 140 0.1181 0.0001 0.0001 0.0001 nan 0.0001 0.0 0.0001
0.1239 5.0 160 0.0908 0.0 0.0 0.0 nan 0.0 0.0 0.0
0.0973 5.625 180 0.0839 0.0352 0.0704 0.0704 nan 0.0704 0.0 0.0704
0.093 6.25 200 0.0745 0.0366 0.0732 0.0732 nan 0.0732 0.0 0.0732
0.0757 6.875 220 0.0672 0.0013 0.0025 0.0025 nan 0.0025 0.0 0.0025
0.0634 7.5 240 0.0628 0.0281 0.0562 0.0562 nan 0.0562 0.0 0.0562
0.0762 8.125 260 0.0573 0.0337 0.0673 0.0673 nan 0.0673 0.0 0.0673
0.0512 8.75 280 0.0545 0.0317 0.0634 0.0634 nan 0.0634 0.0 0.0634
0.0542 9.375 300 0.0535 0.0727 0.1454 0.1454 nan 0.1454 0.0 0.1454
0.0489 10.0 320 0.0496 0.0583 0.1166 0.1166 nan 0.1166 0.0 0.1166
0.0361 10.625 340 0.0441 0.0586 0.1173 0.1173 nan 0.1173 0.0 0.1173
0.0366 11.25 360 0.0417 0.0551 0.1102 0.1102 nan 0.1102 0.0 0.1102
0.05 11.875 380 0.0416 0.0692 0.1383 0.1383 nan 0.1383 0.0 0.1383
0.04 12.5 400 0.0393 0.0748 0.1495 0.1495 nan 0.1495 0.0 0.1495
0.0321 13.125 420 0.0369 0.1059 0.2118 0.2118 nan 0.2118 0.0 0.2118
0.0355 13.75 440 0.0365 0.0923 0.1846 0.1846 nan 0.1846 0.0 0.1846
0.0296 14.375 460 0.0374 0.1721 0.3443 0.3443 nan 0.3443 0.0 0.3443
0.0395 15.0 480 0.0338 0.0990 0.1980 0.1980 nan 0.1980 0.0 0.1980
0.0294 15.625 500 0.0322 0.1325 0.2650 0.2650 nan 0.2650 0.0 0.2650
0.034 16.25 520 0.0327 0.1611 0.3223 0.3223 nan 0.3223 0.0 0.3223
0.0339 16.875 540 0.0311 0.1840 0.3680 0.3680 nan 0.3680 0.0 0.3680
0.0365 17.5 560 0.0310 0.2204 0.4408 0.4408 nan 0.4408 0.0 0.4408
0.0185 18.125 580 0.0289 0.1810 0.3620 0.3620 nan 0.3620 0.0 0.3620
0.0382 18.75 600 0.0296 0.1902 0.3804 0.3804 nan 0.3804 0.0 0.3804
0.0213 19.375 620 0.0285 0.1498 0.2997 0.2997 nan 0.2997 0.0 0.2997
0.0225 20.0 640 0.0280 0.1862 0.3724 0.3724 nan 0.3724 0.0 0.3724
0.0212 20.625 660 0.0271 0.1821 0.3642 0.3642 nan 0.3642 0.0 0.3642
0.0292 21.25 680 0.0270 0.1965 0.3929 0.3929 nan 0.3929 0.0 0.3929
0.0253 21.875 700 0.0262 0.2048 0.4095 0.4095 nan 0.4095 0.0 0.4095
0.0274 22.5 720 0.0251 0.2201 0.4401 0.4401 nan 0.4401 0.0 0.4401
0.0259 23.125 740 0.0254 0.2410 0.4820 0.4820 nan 0.4820 0.0 0.4820
0.0211 23.75 760 0.0253 0.2554 0.5109 0.5109 nan 0.5109 0.0 0.5109
0.0172 24.375 780 0.0244 0.2268 0.4535 0.4535 nan 0.4535 0.0 0.4535
0.0229 25.0 800 0.0250 0.2352 0.4705 0.4705 nan 0.4705 0.0 0.4705
0.0189 25.625 820 0.0238 0.1980 0.3959 0.3959 nan 0.3959 0.0 0.3959
0.0263 26.25 840 0.0240 0.1846 0.3693 0.3693 nan 0.3693 0.0 0.3693
0.0155 26.875 860 0.0237 0.2297 0.4594 0.4594 nan 0.4594 0.0 0.4594
0.0229 27.5 880 0.0228 0.2472 0.4945 0.4945 nan 0.4945 0.0 0.4945
0.0205 28.125 900 0.0232 0.2453 0.4906 0.4906 nan 0.4906 0.0 0.4906
0.0193 28.75 920 0.0229 0.2524 0.5048 0.5048 nan 0.5048 0.0 0.5048
0.0222 29.375 940 0.0224 0.2806 0.5613 0.5613 nan 0.5613 0.0 0.5613
0.0231 30.0 960 0.0222 0.2717 0.5434 0.5434 nan 0.5434 0.0 0.5434
0.0224 30.625 980 0.0220 0.2446 0.4892 0.4892 nan 0.4892 0.0 0.4892
0.0269 31.25 1000 0.0220 0.2588 0.5176 0.5176 nan 0.5176 0.0 0.5176
0.0229 31.875 1020 0.0227 0.2735 0.5469 0.5469 nan 0.5469 0.0 0.5469
0.0211 32.5 1040 0.0218 0.2326 0.4652 0.4652 nan 0.4652 0.0 0.4652
0.0212 33.125 1060 0.0215 0.2690 0.5381 0.5381 nan 0.5381 0.0 0.5381
0.0197 33.75 1080 0.0213 0.2471 0.4943 0.4943 nan 0.4943 0.0 0.4943
0.0206 34.375 1100 0.0212 0.2534 0.5068 0.5068 nan 0.5068 0.0 0.5068
0.0216 35.0 1120 0.0214 0.2622 0.5245 0.5245 nan 0.5245 0.0 0.5245
0.0176 35.625 1140 0.0209 0.2574 0.5148 0.5148 nan 0.5148 0.0 0.5148
0.0158 36.25 1160 0.0209 0.2531 0.5062 0.5062 nan 0.5062 0.0 0.5062
0.0154 36.875 1180 0.0209 0.2457 0.4914 0.4914 nan 0.4914 0.0 0.4914
0.0117 37.5 1200 0.0207 0.2501 0.5003 0.5003 nan 0.5003 0.0 0.5003
0.0131 38.125 1220 0.0206 0.2701 0.5401 0.5401 nan 0.5401 0.0 0.5401
0.0216 38.75 1240 0.0207 0.2723 0.5446 0.5446 nan 0.5446 0.0 0.5446
0.0162 39.375 1260 0.0206 0.2534 0.5067 0.5067 nan 0.5067 0.0 0.5067
0.0237 40.0 1280 0.0206 0.2787 0.5573 0.5573 nan 0.5573 0.0 0.5573
0.0187 40.625 1300 0.0203 0.2649 0.5298 0.5298 nan 0.5298 0.0 0.5298
0.0136 41.25 1320 0.0203 0.2633 0.5266 0.5266 nan 0.5266 0.0 0.5266
0.015 41.875 1340 0.0204 0.2603 0.5207 0.5207 nan 0.5207 0.0 0.5207
0.0218 42.5 1360 0.0204 0.2685 0.5370 0.5370 nan 0.5370 0.0 0.5370
0.0236 43.125 1380 0.0201 0.2735 0.5471 0.5471 nan 0.5471 0.0 0.5471
0.0181 43.75 1400 0.0203 0.2609 0.5217 0.5217 nan 0.5217 0.0 0.5217
0.0103 44.375 1420 0.0201 0.2730 0.5460 0.5460 nan 0.5460 0.0 0.5460
0.0125 45.0 1440 0.0202 0.2651 0.5301 0.5301 nan 0.5301 0.0 0.5301

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hari000/segformer-b0-harimehta-foc-feb21

Base model

nvidia/mit-b0
Finetuned
(395)
this model