Improve model card with pipeline tag, library name, and links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +14 -6
README.md CHANGED
@@ -1,14 +1,16 @@
1
  ---
2
- license: mit
3
- language:
4
- - en
5
  base_model:
6
  - Qwen/Qwen2.5-Coder-7B-Instruct
 
 
 
 
 
7
  ---
8
 
9
  ## Introduction
10
 
11
- We present a fine-tuned model for formal verification tasks. It is fine-tuned in five formal specification languages (Cog, Dafny, Lean4, ACSL, and TLA) on six formal-verification-related tasks:
12
 
13
  - **Requirement Analysis**: given requirements and description of the verification or modeling goals, decomposing the goal into detailed verification steps
14
 
@@ -66,7 +68,8 @@ model = AutoModelForCausalLM.from_pretrained(
66
  )
67
  tokenizer = AutoTokenizer.from_pretrained(model_name)
68
 
69
- messages = [{"role": "user", "content": f"{instruct}\n{input_text}"}]
 
70
 
71
  text = tokenizer.apply_chat_template(
72
  messages, tokenize=False, add_generation_prompt=True
@@ -119,7 +122,8 @@ llm = LLM(
119
  )
120
 
121
  # Prepare chat messages
122
- chat_message = [{"role": "user", "content": f"{instruct}\n{input_text}"}]
 
123
 
124
  # Inference
125
  responses = llm.chat(chat_message, greed_sampling, use_tqdm=True)
@@ -140,3 +144,7 @@ print(responses[0].outputs[0].text)
140
  }
141
 
142
  ```
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-Coder-7B-Instruct
4
+ language:
5
+ - en
6
+ license: mit
7
+ pipeline_tag: text-generation
8
+ library_name: transformers
9
  ---
10
 
11
  ## Introduction
12
 
13
+ This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct for formal verification tasks, as presented in [From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs](https://hf.co/papers/2501.16207). It's fine-tuned in five formal specification languages (Coq, Dafny, Lean4, ACSL, and TLA) on six formal-verification-related tasks:
14
 
15
  - **Requirement Analysis**: given requirements and description of the verification or modeling goals, decomposing the goal into detailed verification steps
16
 
 
68
  )
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
 
71
+ messages = [{"role": "user", "content": f"{instruct}
72
+ {input_text}"}]
73
 
74
  text = tokenizer.apply_chat_template(
75
  messages, tokenize=False, add_generation_prompt=True
 
122
  )
123
 
124
  # Prepare chat messages
125
+ chat_message = [{"role": "user", "content": f"{instruct}
126
+ {input_text}"}]
127
 
128
  # Inference
129
  responses = llm.chat(chat_message, greed_sampling, use_tqdm=True)
 
144
  }
145
 
146
  ```
147
+
148
+ Code: [https://github.com/fmbench/fmbench](https://github.com/fmbench/fmbench)
149
+
150
+ Project Page: https://huggingface.co/fm-universe