content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
import numpy as np
import os
import pickle
def seqrc(string):
"returns the reverse complement of a sequence"
dic_rc = constant_key_dict({'a':'t','c':'g','g':'c','t':'a','A':'T','C':'G','G':'C','T':'A'})
string_rc = "".join([dic_rc[c] for c in string][::-1])
return string_rc
def getFastaWeb(chrom,pos1,pos2):
"For mouse genome this impots from the infojax website the chr:pos1:pos2 genomic sequence"
import urllib.request, urllib.error, urllib.parse
site_name = "http://www.informatics.jax.org/seqfetch/tofasta.cgi?seq1=mousegenome%21%21"+str(chrom)+"%21"+str(pos1)+"%21"+str(pos2)+"%21%21&flank1=0"
html = str(urllib.request.urlopen(site_name).read())
sequence = "".join(html.split("\n")[1:-1])
return sequence
def getGeneWeb(gene_id):
"For mouse genome this impots from the infojax website a given gene its genomic sequence"
import urllib.request, urllib.error, urllib.parse
site_name = "http://useast.ensembl.org/Mus_musculus/Export/Output/Gene?db=core;flank3_display=0;flank5_display=0;g="+gene_id+";output=fasta;strand=feature;genomic=unmasked;_format=Text"
html = str(urllib.request.urlopen(site_name).read())
sequence = "".join(html.split("\r\n")[2:-1])
return sequence
class OTTable (dict):
""" run this as:
specTable = OTTable()
specTableMAP = specTable.computeOTTable(gen_seq,block)
specTable.Save(filename)
OR:
specTable = OTTable()
specTable.Load(filename)
specTableMAP = specTable.Map()
"""
def compute_pair_probes(gene_names,gene_seqs,folder_save="",blk=17,pb_len=30,map_rep=None,map_noGenes=None,maps_Genes=None,FPKM_cuttoff1=2,FPKM_cuttoff2=10,min_gc=0.30,max_gc=0.70,gene_cutoff1=3,gene_cutoff2=5):
"""This is intended to return to you pairs of probes for bTree
Require paramaters:
@gene_names : a list of names for the genes you require probes.
@gene_seqs : a list of sequences (A,C,G,T,N) for the genes you require probes. For exon junctions or masking use N.
@blk : word size of the maps
@pb_len : desired probe length
@map_noGenes : if dictionary: the OT map of FPKM excluding the genes interested in.
It is not necessary to exclude the genes or to use FPKM vs just sequences, but then use the cutoffs appropriately.
if None: ignore this test
if string: the path of a fasta file and compute the map on the spot using blk word size
@maps_Genes : if dictionary: the Index map for the gese interested in.
if None: ignore this test
if string: the path of a fasta file and compute the map on the spot using blk word size
@map_rep : if dictionary: the OT maps of higly abundant genes. No crosstalk with these genes will be accepted
if None: ignore this test
if string: the path of a fasta file and compute the map on the spot using blk word size
@FPKM_cuttoff1/FPKM_cuttoff2 : min/max cut for the map_noGenes
@gene_cutoff1/gene_cutoff2 : min/max cut for the maps_Genes
@pb_len : probe length
@min_gc/max_gc
Returns:
@pb_names_f : names of the probe in the form "<gene name>_pb:<location>_pb-pair:[<pair index>, <index in pair>]"
@pb_seqs_f : sequences of the probes
"""
### Check for variable pop:
if type(map_noGenes)==str:
print("Computing the map for transcriptome! Please wait!")
names_,seqs_ = fastaread(map_noGenes)
#construct specificity table (dictionary) for all the sequences of the transcripts in MOE.
specTable = OTTable()
print("Warning: FPKM might not be computed correctly!")
FPKM_ = [float(nm.split('_')[-3]) for nm in names_] #change this for generic FPKM
map_noGenes = specTable.computeOTTable(seqs_,blk,FPKM=FPKM_)
if type(maps_Genes)==str:
print("Computing the maps for genes!")
names_,seqs_ = fastaread(maps_Genes)
maps_Genes = computeIndexTable(seqs_,blk)
if type(map_rep)==str:
print("Computing the map for repetitive RNA!")
names_,seqs_ = fastaread(map_rep)
specTable = OTTable()
map_rep = specTable.computeOTTable(seqs_,blk)
###Construct the probe scoring function
pb_names_f,pb_seqs_f=[],[]
num_pairs_f = []
###Iterate through genes:
for current_gene in range(len(gene_seqs)):
gene_seq = gene_seqs[current_gene]
gene_name = gene_names[current_gene]
locations_recorded = []
location,pair_ind,pb_pair_ind=0,0,0
pb_names,pb_seqs=[],[]
num_pairs = 0
while True:
pb1,pb2 = gene_seq[location:location+pb_len],gene_seq[location+pb_len:location+2*pb_len]
#check where this probe is already in the set
pb1_verified = False
if locations_recorded.count(location): pb1_verified = True
noNs = pb1.count('N') + pb2.count('N') == 0
if noNs:
seq_cut = gc(pb1)>=min_gc and gc(pb2)>=min_gc and gc(pb1)<=max_gc and gc(pb2)<=max_gc
if seq_cut:
if map_rep is not None:
#Deal with cross-reactivity
#--To very abundant mRNA
score_rep1 = map_seq(pb1,map_rep,blk)
score_rep2 = map_seq(pb2,map_rep,blk)
rep_cut = score_rep1==0 and score_rep2==0
else:
rep_cut=True
if rep_cut:
if map_noGenes is not None:
#--To all RNA's except the olfrs (using FPKMcuttoff)
score_RNA1 = map_seq(pb1,map_noGenes,blk)
score_RNA2 = map_seq(pb2,map_noGenes,blk)
RNA_cut = min(score_RNA1,score_RNA2)<min(FPKM_cuttoff1,FPKM_cuttoff2) and max(score_RNA1,score_RNA2)<max(FPKM_cuttoff1,FPKM_cuttoff2)
else:
RNA_cut=True
if RNA_cut:
if maps_Genes is not None:
#--To all olfrs
#--To all olfrs
scores_Gene1 = map_seq(pb1,maps_Genes,blk)
scores_Gene1.pop(np.argmax([sc[1] for sc in scores_Gene1])) # pop the maximum
scores_Gene2 = map_seq(pb2,maps_Genes,blk)
scores_Gene2.pop(np.argmax([sc[1] for sc in scores_Gene2])) # pop the maximum
geneIdx_offGene1 = [score[0] for score in scores_Gene1 if score[1]>gene_cutoff1]
geneIdx_offGene2 = [score[0] for score in scores_Gene2 if score[1]>gene_cutoff2]
geneIdx_offGene1_ = [score[0] for score in scores_Gene2 if score[1]>gene_cutoff1]
geneIdx_offGene2_ = [score[0] for score in scores_Gene1 if score[1]>gene_cutoff2]
gene_int = min(len(np.intersect1d(geneIdx_offGene1,geneIdx_offGene2)),len(np.intersect1d(geneIdx_offGene1_,geneIdx_offGene2_)))
else:
gene_int=0
if gene_int==0:
# record poisitions:
## create name:
if pb1_verified:
pb_pair_ind+=1
pb_name = gene_name+"_pb:"+str(location+pb_len)+'_pb-pair:'+str([pair_ind,pb_pair_ind])
pb_names.append(pb_name)
pb_seqs.append(pb2)
locations_recorded.append(location+pb_len)
num_pairs+=1
else:
pair_ind+=1
pb_pair_ind=1
pb_name = gene_name+"_pb:"+str(location)+'_pb-pair:'+str([pair_ind,pb_pair_ind])
pb_names.append(pb_name)
pb_seqs.append(pb1)
locations_recorded.append(location)
pb_pair_ind+=1
pb_name = gene_name+"_pb:"+str(location+pb_len)+'_pb-pair:'+str([pair_ind,pb_pair_ind])
pb_names.append(pb_name)
pb_seqs.append(pb2)
locations_recorded.append(location+pb_len)
num_pairs+=1
gene_seq = gene_seq[:location]+"".join(['N' for k in range(pb_len)])+gene_seq[location+pb_len:]
location+=1
if location+2*pb_len>len(gene_seq):
break
print(gene_name+" (pairs: "+str(num_pairs)+") done!")
fastawrite(folder_save+os.sep+gene_name+'_probes.fasta',pb_names,pb_seqs)
pb_names_f.append(pb_names)
pb_seqs_f.append(pb_seqs)
num_pairs_f+=[num_pairs]
return pb_names_f,pb_seqs_f,num_pairs_f
def file_to_mat(file_,sep_str=',',d_type=None,skip_first=False):
"""
Converts .csv files to a list of its entries
Inputs:
file_ - the location of a .csv file
sep_str - the separator between data points
d_type - the datatype in the file
skip_first - an option to skip the first component (e.g. if there's a menu)
Returns:
lines - a list of the lines in the file, each of which itself a list of all entries in the line
"""
lines = [ln for ln in open(file_,'r')]
start_=(1 if skip_first==True else 0) #skip first line if option selected
lines = [refine_line(ln,d_type,skip_first) for ln in lines[start_:]]
return lines
def map_gene(pairs_nms_,pairs_sqs_,code,tails,pair_limit_per_bit=10):
""" Use as:
map_gene([['name_pb-pair:[1,1]','name_pb-pair:[1,2]','name_pb-pair:[1,3]'],['name_pb-pair:[2,1]','name_pb-pair:[2,2]']],
[['sq1','sq2','sq3'],['sq4','sq5']],[0,1,2],
['0000','1111','2222','3333','4444','5555'],pair_limit_per_bit=10)
"""
nms_gene,sqs_gene = [],[]
cts_icode = [0 for i in range(len(code))]
cts_vcode = [0 for i in range(len(code))]
for nms_,sqs_ in zip(pairs_nms_,pairs_sqs_):
nms_new,sqs_new = map_pair(nms_,sqs_,code,cts_icode,cts_vcode,tails,pair_limit_per_bit)
nms_gene.extend(nms_new)
sqs_gene.extend(sqs_new)
if min(cts_vcode)>=pair_limit_per_bit: break
return nms_gene,sqs_gene
| [
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
11748,
2298,
293,
198,
4299,
33756,
6015,
7,
8841,
2599,
198,
220,
220,
220,
366,
7783,
82,
262,
9575,
16829,
286,
257,
8379,
1,
198,
220,
220,
220,
288,
291,
62,
6015,
796,
6937,
62,
2539,
62,
11600,
15090,
6,
64,
10354,
6,
83,
41707,
66,
10354,
6,
70,
41707,
70,
10354,
6,
66,
41707,
83,
10354,
6,
64,
41707,
32,
10354,
6,
51,
41707,
34,
10354,
6,
38,
41707,
38,
10354,
6,
34,
41707,
51,
10354,
6,
32,
6,
30072,
198,
220,
220,
220,
4731,
62,
6015,
796,
366,
1911,
22179,
26933,
67,
291,
62,
6015,
58,
66,
60,
329,
269,
287,
4731,
7131,
3712,
12,
16,
12962,
198,
220,
220,
220,
1441,
4731,
62,
6015,
198,
4299,
651,
22968,
64,
13908,
7,
28663,
11,
1930,
16,
11,
1930,
17,
2599,
198,
220,
220,
220,
366,
1890,
10211,
19270,
428,
848,
1747,
422,
262,
7508,
73,
897,
3052,
262,
442,
81,
25,
1930,
16,
25,
1930,
17,
45752,
8379,
1,
198,
220,
220,
220,
1330,
2956,
297,
571,
13,
25927,
11,
2956,
297,
571,
13,
18224,
11,
2956,
297,
571,
13,
29572,
198,
220,
220,
220,
2524,
62,
3672,
796,
366,
4023,
1378,
2503,
13,
259,
18982,
873,
13,
73,
897,
13,
2398,
14,
41068,
69,
7569,
14,
1462,
7217,
64,
13,
37157,
30,
41068,
16,
28,
35888,
5235,
462,
4,
2481,
4,
2481,
1,
10,
2536,
7,
28663,
47762,
1,
4,
2481,
1,
10,
2536,
7,
1930,
16,
47762,
1,
4,
2481,
1,
10,
2536,
7,
1930,
17,
47762,
1,
4,
2481,
4,
2481,
5,
2704,
962,
16,
28,
15,
1,
198,
220,
220,
220,
27711,
796,
965,
7,
333,
297,
571,
13,
25927,
13,
6371,
9654,
7,
15654,
62,
3672,
737,
961,
28955,
198,
220,
220,
220,
8379,
796,
366,
1911,
22179,
7,
6494,
13,
35312,
7203,
59,
77,
4943,
58,
16,
21912,
16,
12962,
198,
220,
220,
220,
1441,
8379,
198,
4299,
651,
39358,
13908,
7,
70,
1734,
62,
312,
2599,
198,
220,
220,
220,
366,
1890,
10211,
19270,
428,
848,
1747,
422,
262,
7508,
73,
897,
3052,
257,
1813,
9779,
663,
45752,
8379,
1,
198,
220,
220,
220,
1330,
2956,
297,
571,
13,
25927,
11,
2956,
297,
571,
13,
18224,
11,
2956,
297,
571,
13,
29572,
198,
220,
220,
220,
2524,
62,
3672,
796,
366,
4023,
1378,
1904,
459,
13,
1072,
2022,
75,
13,
2398,
14,
10694,
62,
14664,
17576,
14,
43834,
14,
26410,
14,
39358,
30,
9945,
28,
7295,
26,
2704,
962,
18,
62,
13812,
28,
15,
26,
2704,
962,
20,
62,
13812,
28,
15,
26,
70,
2625,
10,
70,
1734,
62,
312,
10,
8172,
22915,
28,
7217,
64,
26,
2536,
392,
28,
30053,
26,
5235,
10179,
28,
403,
27932,
276,
26,
62,
18982,
28,
8206,
1,
198,
220,
220,
220,
27711,
796,
965,
7,
333,
297,
571,
13,
25927,
13,
6371,
9654,
7,
15654,
62,
3672,
737,
961,
28955,
198,
220,
220,
220,
8379,
796,
366,
1911,
22179,
7,
6494,
13,
35312,
7203,
59,
81,
59,
77,
4943,
58,
17,
21912,
16,
12962,
198,
220,
220,
220,
1441,
8379,
198,
4871,
21676,
10962,
357,
11600,
2599,
198,
220,
220,
220,
37227,
1057,
428,
355,
25,
198,
220,
220,
220,
1020,
10962,
796,
21676,
10962,
3419,
198,
220,
220,
220,
1020,
10962,
33767,
796,
1020,
10962,
13,
5589,
1133,
2394,
10962,
7,
5235,
62,
41068,
11,
9967,
8,
198,
220,
220,
220,
1020,
10962,
13,
16928,
7,
34345,
8,
628,
220,
220,
220,
6375,
25,
198,
220,
220,
220,
1020,
10962,
796,
21676,
10962,
3419,
198,
220,
220,
220,
1020,
10962,
13,
8912,
7,
34345,
8,
198,
220,
220,
220,
1020,
10962,
33767,
796,
1020,
10962,
13,
13912,
3419,
198,
220,
220,
220,
37227,
198,
198,
4299,
24061,
62,
24874,
62,
1676,
12636,
7,
70,
1734,
62,
14933,
11,
70,
1734,
62,
41068,
82,
11,
43551,
62,
21928,
2625,
1600,
2436,
74,
28,
1558,
11,
40842,
62,
11925,
28,
1270,
11,
8899,
62,
7856,
28,
14202,
11,
8899,
62,
3919,
13746,
274,
28,
14202,
11,
31803,
62,
13746,
274,
28,
14202,
11,
5837,
42,
44,
62,
8968,
1462,
487,
16,
28,
17,
11,
5837,
42,
44,
62,
8968,
1462,
487,
17,
28,
940,
11,
1084,
62,
36484,
28,
15,
13,
1270,
11,
9806,
62,
36484,
28,
15,
13,
2154,
11,
70,
1734,
62,
8968,
2364,
16,
28,
18,
11,
70,
1734,
62,
8968,
2364,
17,
28,
20,
2599,
198,
220,
220,
220,
37227,
1212,
318,
5292,
284,
1441,
284,
345,
14729,
286,
33124,
329,
275,
27660,
198,
220,
220,
220,
9394,
557,
5772,
8605,
25,
198,
220,
220,
220,
2488,
70,
1734,
62,
14933,
1058,
257,
1351,
286,
3891,
329,
262,
10812,
345,
2421,
33124,
13,
198,
220,
220,
220,
2488,
70,
1734,
62,
41068,
82,
1058,
257,
1351,
286,
16311,
357,
32,
11,
34,
11,
38,
11,
51,
11,
45,
8,
329,
262,
10812,
345,
2421,
33124,
13,
1114,
409,
261,
10891,
2733,
393,
9335,
278,
779,
399,
13,
198,
220,
220,
220,
2488,
2436,
74,
1058,
1573,
2546,
286,
262,
8739,
198,
220,
220,
220,
2488,
40842,
62,
11925,
1058,
10348,
12774,
4129,
198,
220,
220,
220,
2488,
8899,
62,
3919,
13746,
274,
1058,
611,
22155,
25,
262,
21676,
3975,
286,
31459,
42,
44,
23494,
262,
10812,
4609,
287,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
632,
318,
407,
3306,
284,
19607,
262,
10812,
393,
284,
779,
31459,
42,
44,
3691,
655,
16311,
11,
475,
788,
779,
262,
2005,
8210,
20431,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6045,
25,
8856,
428,
1332,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4731,
25,
262,
3108,
286,
257,
3049,
64,
2393,
290,
24061,
262,
3975,
319,
262,
4136,
1262,
698,
74,
1573,
2546,
198,
220,
220,
220,
2488,
31803,
62,
13746,
274,
1058,
611,
22155,
25,
262,
12901,
3975,
329,
262,
308,
2771,
4609,
287,
13,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6045,
25,
8856,
428,
1332,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4731,
25,
262,
3108,
286,
257,
3049,
64,
2393,
290,
24061,
262,
3975,
319,
262,
4136,
1262,
698,
74,
1573,
2546,
198,
220,
220,
220,
2488,
8899,
62,
7856,
1058,
611,
22155,
25,
262,
21676,
8739,
286,
1880,
306,
23263,
10812,
13,
1400,
269,
4951,
301,
971,
351,
777,
10812,
481,
307,
6292,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6045,
25,
8856,
428,
1332,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4731,
25,
262,
3108,
286,
257,
3049,
64,
2393,
290,
24061,
262,
3975,
319,
262,
4136,
1262,
698,
74,
1573,
2546,
198,
220,
220,
220,
2488,
5837,
42,
44,
62,
8968,
1462,
487,
16,
14,
5837,
42,
44,
62,
8968,
1462,
487,
17,
1058,
949,
14,
9806,
2005,
329,
262,
3975,
62,
3919,
13746,
274,
198,
220,
220,
220,
2488,
70,
1734,
62,
8968,
2364,
16,
14,
70,
1734,
62,
8968,
2364,
17,
1058,
949,
14,
9806,
2005,
329,
262,
8739,
62,
13746,
274,
198,
220,
220,
220,
2488,
40842,
62,
11925,
1058,
12774,
4129,
198,
220,
220,
220,
2488,
1084,
62,
36484,
14,
9806,
62,
36484,
198,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
2488,
40842,
62,
14933,
62,
69,
1058,
3891,
286,
262,
12774,
287,
262,
1296,
33490,
70,
1734,
1438,
29,
62,
40842,
25,
27,
24886,
29,
62,
40842,
12,
24874,
33250,
27,
24874,
6376,
22330,
1279,
9630,
287,
5166,
29,
30866,
198,
220,
220,
220,
2488,
40842,
62,
41068,
82,
62,
69,
1058,
16311,
286,
262,
33124,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
44386,
6822,
329,
7885,
1461,
25,
198,
220,
220,
220,
611,
2099,
7,
8899,
62,
3919,
13746,
274,
8,
855,
2536,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5377,
48074,
262,
3975,
329,
14687,
462,
0,
4222,
4043,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3891,
62,
11,
41068,
82,
62,
796,
3049,
533,
324,
7,
8899,
62,
3919,
13746,
274,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
41571,
40763,
3084,
357,
67,
14188,
8,
329,
477,
262,
16311,
286,
262,
29351,
287,
13070,
36,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1020,
10962,
796,
21676,
10962,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
20361,
25,
31459,
42,
44,
1244,
407,
307,
29231,
9380,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
31459,
42,
44,
62,
796,
685,
22468,
7,
21533,
13,
35312,
10786,
62,
11537,
58,
12,
18,
12962,
329,
28642,
287,
3891,
62,
60,
1303,
3803,
428,
329,
14276,
31459,
42,
44,
198,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
3919,
13746,
274,
796,
1020,
10962,
13,
5589,
1133,
2394,
10962,
7,
41068,
82,
62,
11,
2436,
74,
11,
5837,
42,
44,
28,
5837,
42,
44,
62,
8,
628,
220,
220,
220,
611,
2099,
7,
31803,
62,
13746,
274,
8,
855,
2536,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5377,
48074,
262,
8739,
329,
10812,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3891,
62,
11,
41068,
82,
62,
796,
3049,
533,
324,
7,
31803,
62,
13746,
274,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8739,
62,
13746,
274,
796,
24061,
15732,
10962,
7,
41068,
82,
62,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
611,
2099,
7,
8899,
62,
7856,
8,
855,
2536,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5377,
48074,
262,
3975,
329,
28585,
25897,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3891,
62,
11,
41068,
82,
62,
796,
3049,
533,
324,
7,
8899,
62,
7856,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1020,
10962,
796,
21676,
10962,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
7856,
796,
1020,
10962,
13,
5589,
1133,
2394,
10962,
7,
41068,
82,
62,
11,
2436,
74,
8,
198,
220,
220,
220,
44386,
42316,
262,
12774,
9689,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
279,
65,
62,
14933,
62,
69,
11,
40842,
62,
41068,
82,
62,
69,
41888,
4357,
21737,
198,
220,
220,
220,
997,
62,
79,
3468,
62,
69,
796,
17635,
198,
220,
220,
220,
44386,
29993,
378,
832,
10812,
25,
198,
220,
220,
220,
329,
1459,
62,
70,
1734,
287,
2837,
7,
11925,
7,
70,
1734,
62,
41068,
82,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
9779,
62,
41068,
796,
9779,
62,
41068,
82,
58,
14421,
62,
70,
1734,
60,
198,
220,
220,
220,
220,
220,
220,
220,
9779,
62,
3672,
796,
9779,
62,
14933,
58,
14421,
62,
70,
1734,
60,
628,
220,
220,
220,
220,
220,
220,
220,
7064,
62,
47398,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
4067,
11,
24874,
62,
521,
11,
40842,
62,
24874,
62,
521,
28,
15,
11,
15,
11,
15,
628,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
14933,
11,
40842,
62,
41068,
82,
41888,
4357,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
79,
3468,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
16,
11,
40842,
17,
796,
9779,
62,
41068,
58,
24886,
25,
24886,
10,
40842,
62,
11925,
4357,
70,
1734,
62,
41068,
58,
24886,
10,
40842,
62,
11925,
25,
24886,
10,
17,
9,
40842,
62,
11925,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9122,
810,
428,
12774,
318,
1541,
287,
262,
900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
16,
62,
47684,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7064,
62,
47398,
13,
9127,
7,
24886,
2599,
279,
65,
16,
62,
47684,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
645,
47503,
796,
279,
65,
16,
13,
9127,
10786,
45,
11537,
1343,
279,
65,
17,
13,
9127,
10786,
45,
11537,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
645,
47503,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33756,
62,
8968,
796,
308,
66,
7,
40842,
16,
8,
29,
28,
1084,
62,
36484,
290,
308,
66,
7,
40842,
17,
8,
29,
28,
1084,
62,
36484,
290,
308,
66,
7,
40842,
16,
8,
27,
28,
9806,
62,
36484,
290,
308,
66,
7,
40842,
17,
8,
27,
28,
9806,
62,
36484,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
33756,
62,
8968,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3975,
62,
7856,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
45776,
351,
3272,
12,
260,
21797,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
438,
2514,
845,
23263,
47227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4776,
62,
7856,
16,
796,
3975,
62,
41068,
7,
40842,
16,
11,
8899,
62,
7856,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4776,
62,
7856,
17,
796,
3975,
62,
41068,
7,
40842,
17,
11,
8899,
62,
7856,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1128,
62,
8968,
796,
4776,
62,
7856,
16,
855,
15,
290,
4776,
62,
7856,
17,
855,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1128,
62,
8968,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1128,
62,
8968,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3975,
62,
3919,
13746,
274,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
438,
2514,
477,
25897,
338,
2845,
262,
267,
1652,
3808,
357,
3500,
31459,
42,
44,
8968,
1462,
487,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4776,
62,
27204,
16,
796,
3975,
62,
41068,
7,
40842,
16,
11,
8899,
62,
3919,
13746,
274,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4776,
62,
27204,
17,
796,
3975,
62,
41068,
7,
40842,
17,
11,
8899,
62,
3919,
13746,
274,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25897,
62,
8968,
796,
949,
7,
26675,
62,
27204,
16,
11,
26675,
62,
27204,
17,
8,
27,
1084,
7,
5837,
42,
44,
62,
8968,
1462,
487,
16,
11,
5837,
42,
44,
62,
8968,
1462,
487,
17,
8,
290,
3509,
7,
26675,
62,
27204,
16,
11,
26675,
62,
27204,
17,
8,
27,
9806,
7,
5837,
42,
44,
62,
8968,
1462,
487,
16,
11,
5837,
42,
44,
62,
8968,
1462,
487,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25897,
62,
8968,
28,
17821,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
25897,
62,
8968,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
8739,
62,
13746,
274,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
438,
2514,
477,
267,
1652,
3808,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
438,
2514,
477,
267,
1652,
3808,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
62,
39358,
16,
796,
3975,
62,
41068,
7,
40842,
16,
11,
31803,
62,
13746,
274,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
62,
39358,
16,
13,
12924,
7,
37659,
13,
853,
9806,
26933,
1416,
58,
16,
60,
329,
629,
287,
8198,
62,
39358,
16,
60,
4008,
1303,
1461,
262,
5415,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
62,
39358,
17,
796,
3975,
62,
41068,
7,
40842,
17,
11,
31803,
62,
13746,
274,
11,
2436,
74,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8198,
62,
39358,
17,
13,
12924,
7,
37659,
13,
853,
9806,
26933,
1416,
58,
16,
60,
329,
629,
287,
8198,
62,
39358,
17,
60,
4008,
1303,
1461,
262,
5415,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
7390,
87,
62,
2364,
39358,
16,
796,
685,
26675,
58,
15,
60,
329,
4776,
287,
8198,
62,
39358,
16,
611,
4776,
58,
16,
60,
29,
70,
1734,
62,
8968,
2364,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
7390,
87,
62,
2364,
39358,
17,
796,
685,
26675,
58,
15,
60,
329,
4776,
287,
8198,
62,
39358,
17,
611,
4776,
58,
16,
60,
29,
70,
1734,
62,
8968,
2364,
17,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
7390,
87,
62,
2364,
39358,
16,
62,
796,
685,
26675,
58,
15,
60,
329,
4776,
287,
8198,
62,
39358,
17,
611,
4776,
58,
16,
60,
29,
70,
1734,
62,
8968,
2364,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
7390,
87,
62,
2364,
39358,
17,
62,
796,
685,
26675,
58,
15,
60,
329,
4776,
287,
8198,
62,
39358,
16,
611,
4776,
58,
16,
60,
29,
70,
1734,
62,
8968,
2364,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
62,
600,
796,
949,
7,
11925,
7,
37659,
13,
3849,
8831,
16,
67,
7,
70,
1734,
7390,
87,
62,
2364,
39358,
16,
11,
70,
1734,
7390,
87,
62,
2364,
39358,
17,
36911,
11925,
7,
37659,
13,
3849,
8831,
16,
67,
7,
70,
1734,
7390,
87,
62,
2364,
39358,
16,
62,
11,
70,
1734,
7390,
87,
62,
2364,
39358,
17,
62,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
62,
600,
28,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
9779,
62,
600,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1700,
745,
29593,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22492,
2251,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
279,
65,
16,
62,
47684,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
24874,
62,
521,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
3672,
796,
9779,
62,
3672,
10,
1,
62,
40842,
11097,
10,
2536,
7,
24886,
10,
40842,
62,
11925,
47762,
6,
62,
40842,
12,
24874,
32105,
10,
2536,
26933,
24874,
62,
521,
11,
40842,
62,
24874,
62,
521,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
14933,
13,
33295,
7,
40842,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
41068,
82,
13,
33295,
7,
40842,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7064,
62,
47398,
13,
33295,
7,
24886,
10,
40842,
62,
11925,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
79,
3468,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5166,
62,
521,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
24874,
62,
521,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
3672,
796,
9779,
62,
3672,
10,
1,
62,
40842,
11097,
10,
2536,
7,
24886,
47762,
6,
62,
40842,
12,
24874,
32105,
10,
2536,
26933,
24874,
62,
521,
11,
40842,
62,
24874,
62,
521,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
14933,
13,
33295,
7,
40842,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
41068,
82,
13,
33295,
7,
40842,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7064,
62,
47398,
13,
33295,
7,
24886,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
24874,
62,
521,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
3672,
796,
9779,
62,
3672,
10,
1,
62,
40842,
11097,
10,
2536,
7,
24886,
10,
40842,
62,
11925,
47762,
6,
62,
40842,
12,
24874,
32105,
10,
2536,
26933,
24874,
62,
521,
11,
40842,
62,
24874,
62,
521,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
14933,
13,
33295,
7,
40842,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
41068,
82,
13,
33295,
7,
40842,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7064,
62,
47398,
13,
33295,
7,
24886,
10,
40842,
62,
11925,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
79,
3468,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9779,
62,
41068,
796,
9779,
62,
41068,
58,
25,
24886,
48688,
1,
1911,
22179,
7,
17816,
45,
6,
329,
479,
287,
2837,
7,
40842,
62,
11925,
8,
12962,
10,
70,
1734,
62,
41068,
58,
24886,
10,
40842,
62,
11925,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4067,
47932,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4067,
10,
17,
9,
40842,
62,
11925,
29,
11925,
7,
70,
1734,
62,
41068,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
70,
1734,
62,
3672,
10,
1,
357,
79,
3468,
25,
43825,
2536,
7,
22510,
62,
79,
3468,
47762,
4943,
1760,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3049,
707,
6525,
7,
43551,
62,
21928,
10,
418,
13,
325,
79,
10,
70,
1734,
62,
3672,
10,
6,
62,
1676,
12636,
13,
7217,
64,
3256,
40842,
62,
14933,
11,
40842,
62,
41068,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
14933,
62,
69,
13,
33295,
7,
40842,
62,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
65,
62,
41068,
82,
62,
69,
13,
33295,
7,
40842,
62,
41068,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
79,
3468,
62,
69,
10,
41888,
22510,
62,
79,
3468,
60,
198,
220,
220,
220,
1441,
279,
65,
62,
14933,
62,
69,
11,
40842,
62,
41068,
82,
62,
69,
11,
22510,
62,
79,
3468,
62,
69,
198,
4299,
2393,
62,
1462,
62,
6759,
7,
7753,
62,
11,
325,
79,
62,
2536,
28,
3256,
3256,
67,
62,
4906,
28,
14202,
11,
48267,
62,
11085,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1482,
24040,
764,
40664,
3696,
284,
257,
1351,
286,
663,
12784,
198,
220,
220,
220,
23412,
82,
25,
198,
220,
220,
220,
2393,
62,
532,
262,
4067,
286,
257,
764,
40664,
2393,
198,
220,
220,
220,
41767,
62,
2536,
532,
262,
2880,
1352,
1022,
1366,
2173,
198,
220,
220,
220,
288,
62,
4906,
532,
262,
4818,
265,
2981,
287,
262,
2393,
198,
220,
220,
220,
14267,
62,
11085,
532,
281,
3038,
284,
14267,
262,
717,
7515,
357,
68,
13,
70,
13,
611,
612,
338,
257,
6859,
8,
198,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
3951,
532,
257,
1351,
286,
262,
3951,
287,
262,
2393,
11,
1123,
286,
543,
2346,
257,
1351,
286,
477,
12784,
287,
262,
1627,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3951,
796,
685,
18755,
329,
300,
77,
287,
1280,
7,
7753,
62,
4032,
81,
11537,
60,
198,
220,
220,
220,
923,
62,
16193,
16,
611,
14267,
62,
11085,
855,
17821,
2073,
657,
8,
1303,
48267,
717,
1627,
611,
3038,
6163,
198,
220,
220,
220,
3951,
796,
685,
5420,
500,
62,
1370,
7,
18755,
11,
67,
62,
4906,
11,
48267,
62,
11085,
8,
329,
300,
77,
287,
3951,
58,
9688,
62,
25,
11907,
198,
220,
220,
220,
1441,
3951,
198,
4299,
3975,
62,
70,
1734,
7,
79,
3468,
62,
77,
907,
62,
11,
79,
3468,
62,
31166,
82,
62,
11,
8189,
11,
26404,
11,
24874,
62,
32374,
62,
525,
62,
2545,
28,
940,
2599,
198,
220,
220,
220,
37227,
5765,
355,
25,
198,
220,
220,
220,
3975,
62,
70,
1734,
26933,
17816,
3672,
62,
40842,
12,
24874,
33250,
16,
11,
16,
60,
41707,
3672,
62,
40842,
12,
24874,
33250,
16,
11,
17,
60,
41707,
3672,
62,
40842,
12,
24874,
33250,
16,
11,
18,
49946,
4357,
17816,
3672,
62,
40842,
12,
24874,
33250,
17,
11,
16,
60,
41707,
3672,
62,
40842,
12,
24874,
33250,
17,
11,
17,
60,
20520,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
6,
31166,
16,
41707,
31166,
17,
41707,
31166,
18,
6,
4357,
17816,
31166,
19,
41707,
31166,
20,
20520,
38430,
15,
11,
16,
11,
17,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
2388,
41707,
26259,
41707,
1828,
1828,
41707,
24840,
41707,
2598,
2598,
41707,
2816,
2816,
6,
4357,
24874,
62,
32374,
62,
525,
62,
2545,
28,
940,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
299,
907,
62,
70,
1734,
11,
31166,
82,
62,
70,
1734,
796,
685,
4357,
21737,
198,
220,
220,
220,
269,
912,
62,
291,
1098,
796,
685,
15,
329,
1312,
287,
2837,
7,
11925,
7,
8189,
4008,
60,
198,
220,
220,
220,
269,
912,
62,
85,
8189,
796,
685,
15,
329,
1312,
287,
2837,
7,
11925,
7,
8189,
4008,
60,
198,
220,
220,
220,
329,
299,
907,
62,
11,
31166,
82,
62,
287,
19974,
7,
79,
3468,
62,
77,
907,
62,
11,
79,
3468,
62,
31166,
82,
62,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
299,
907,
62,
3605,
11,
31166,
82,
62,
3605,
796,
3975,
62,
24874,
7,
77,
907,
62,
11,
31166,
82,
62,
11,
8189,
11,
310,
82,
62,
291,
1098,
11,
310,
82,
62,
85,
8189,
11,
26404,
11,
24874,
62,
32374,
62,
525,
62,
2545,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
907,
62,
70,
1734,
13,
2302,
437,
7,
77,
907,
62,
3605,
8,
198,
220,
220,
220,
220,
220,
220,
220,
19862,
82,
62,
70,
1734,
13,
2302,
437,
7,
31166,
82,
62,
3605,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
949,
7,
310,
82,
62,
85,
8189,
8,
29,
28,
24874,
62,
32374,
62,
525,
62,
2545,
25,
2270,
198,
220,
220,
220,
1441,
299,
907,
62,
70,
1734,
11,
31166,
82,
62,
70,
1734,
198
] | 1.873525 | 5,764 |
# -*- coding: utf-8 -*-
"""Merge reader for SQLite storage files."""
from __future__ import unicode_literals
import os
import sqlite3
import zlib
from plaso.containers import errors
from plaso.containers import event_sources
from plaso.containers import events
from plaso.containers import reports
from plaso.containers import tasks
from plaso.lib import definitions
from plaso.storage import identifiers
from plaso.storage import interface
class SQLiteStorageMergeReader(interface.StorageFileMergeReader):
"""SQLite-based storage file reader for merging."""
_CONTAINER_TYPE_ANALYSIS_REPORT = reports.AnalysisReport.CONTAINER_TYPE
_CONTAINER_TYPE_EVENT = events.EventObject.CONTAINER_TYPE
_CONTAINER_TYPE_EVENT_DATA = events.EventData.CONTAINER_TYPE
_CONTAINER_TYPE_EVENT_SOURCE = event_sources.EventSource.CONTAINER_TYPE
_CONTAINER_TYPE_EVENT_TAG = events.EventTag.CONTAINER_TYPE
_CONTAINER_TYPE_EXTRACTION_ERROR = errors.ExtractionError.CONTAINER_TYPE
_CONTAINER_TYPE_TASK_COMPLETION = tasks.TaskCompletion.CONTAINER_TYPE
_CONTAINER_TYPE_TASK_START = tasks.TaskStart.CONTAINER_TYPE
# Some container types reference other container types, such as event
# referencing event_data. Container types in this tuple must be ordered after
# all the container types they reference.
_CONTAINER_TYPES = (
_CONTAINER_TYPE_EVENT_SOURCE,
_CONTAINER_TYPE_EVENT_DATA,
_CONTAINER_TYPE_EVENT,
_CONTAINER_TYPE_EVENT_TAG,
_CONTAINER_TYPE_EXTRACTION_ERROR,
_CONTAINER_TYPE_ANALYSIS_REPORT)
_ADD_CONTAINER_TYPE_METHODS = {
_CONTAINER_TYPE_ANALYSIS_REPORT: '_AddAnalysisReport',
_CONTAINER_TYPE_EVENT: '_AddEvent',
_CONTAINER_TYPE_EVENT_DATA: '_AddEventData',
_CONTAINER_TYPE_EVENT_SOURCE: '_AddEventSource',
_CONTAINER_TYPE_EVENT_TAG: '_AddEventTag',
_CONTAINER_TYPE_EXTRACTION_ERROR: '_AddError',
}
_TABLE_NAMES_QUERY = (
'SELECT name FROM sqlite_master WHERE type = "table"')
def __init__(self, storage_writer, path):
"""Initializes a storage merge reader.
Args:
storage_writer (StorageWriter): storage writer.
path (str): path to the input file.
Raises:
IOError: if the input file cannot be opened.
RuntimeError: if an add container method is missing.
"""
super(SQLiteStorageMergeReader, self).__init__(storage_writer)
self._active_container_type = None
self._active_cursor = None
self._add_active_container_method = None
self._add_container_type_methods = {}
self._compression_format = definitions.COMPRESSION_FORMAT_NONE
self._connection = None
self._container_types = None
self._cursor = None
self._event_data_identifier_mappings = {}
self._path = path
# Create a runtime lookup table for the add container type method. This
# prevents having to create a series of if-else checks for container types.
# The table is generated at runtime as there are no forward function
# declarations in Python.
for container_type, method_name in self._ADD_CONTAINER_TYPE_METHODS.items():
method = getattr(self, method_name, None)
if not method:
raise RuntimeError(
'Add method missing for container type: {0:s}'.format(
container_type))
self._add_container_type_methods[container_type] = method
def _AddAnalysisReport(self, analysis_report):
"""Adds an analysis report.
Args:
analysis_report (AnalysisReport): analysis report.
"""
self._storage_writer.AddAnalysisReport(analysis_report)
def _AddError(self, error):
"""Adds an error.
Args:
error (ExtractionError): error.
"""
self._storage_writer.AddError(error)
def _AddEvent(self, event):
"""Adds an event.
Args:
event (EventObject): event.
"""
if hasattr(event, 'event_data_row_identifier'):
event_data_identifier = identifiers.SQLTableIdentifier(
self._CONTAINER_TYPE_EVENT_DATA,
event.event_data_row_identifier)
lookup_key = event_data_identifier.CopyToString()
event_data_identifier = self._event_data_identifier_mappings[lookup_key]
event.SetEventDataIdentifier(event_data_identifier)
# TODO: add event identifier mappings for event tags.
self._storage_writer.AddEvent(event)
def _AddEventData(self, event_data):
"""Adds event data.
Args:
event_data (EventData): event data.
"""
identifier = event_data.GetIdentifier()
lookup_key = identifier.CopyToString()
self._storage_writer.AddEventData(event_data)
identifier = event_data.GetIdentifier()
self._event_data_identifier_mappings[lookup_key] = identifier
def _AddEventSource(self, event_source):
"""Adds an event source.
Args:
event_source (EventSource): event source.
"""
self._storage_writer.AddEventSource(event_source)
def _AddEventTag(self, event_tag):
"""Adds an event tag.
Args:
event_tag (EventTag): event tag.
"""
self._storage_writer.AddEventTag(event_tag)
def _Close(self):
"""Closes the task storage after reading."""
self._connection.close()
self._connection = None
self._cursor = None
def _GetContainerTypes(self):
"""Retrieves the container types to merge.
Container types not defined in _CONTAINER_TYPES are ignored and not merged.
Specific container types reference other container types, such
as event referencing event data. The names are ordered to ensure the
attribute containers are merged in the correct order.
Returns:
list[str]: names of the container types to merge.
"""
self._cursor.execute(self._TABLE_NAMES_QUERY)
table_names = [row[0] for row in self._cursor.fetchall()]
return [
table_name for table_name in self._CONTAINER_TYPES
if table_name in table_names]
def _Open(self):
"""Opens the task storage for reading."""
self._connection = sqlite3.connect(
self._path, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
self._cursor = self._connection.cursor()
def _ReadStorageMetadata(self):
"""Reads the task storage metadata."""
query = 'SELECT key, value FROM metadata'
self._cursor.execute(query)
metadata_values = {row[0]: row[1] for row in self._cursor.fetchall()}
self._compression_format = metadata_values['compression_format']
def _PrepareForNextContainerType(self):
"""Prepares for the next container type.
This method prepares the task storage for merging the next container type.
It set the active container type, its add method and active cursor
accordingly.
"""
self._active_container_type = self._container_types.pop(0)
self._add_active_container_method = self._add_container_type_methods.get(
self._active_container_type)
query = 'SELECT _identifier, _data FROM {0:s}'.format(
self._active_container_type)
self._cursor.execute(query)
self._active_cursor = self._cursor
def MergeAttributeContainers(
self, callback=None, maximum_number_of_containers=0):
"""Reads attribute containers from a task storage file into the writer.
Args:
callback (function[StorageWriter, AttributeContainer]): function to call
after each attribute container is deserialized.
maximum_number_of_containers (Optional[int]): maximum number of
containers to merge, where 0 represent no limit.
Returns:
bool: True if the entire task storage file has been merged.
Raises:
RuntimeError: if the add method for the active attribute container
type is missing.
OSError: if the task storage file cannot be deleted.
ValueError: if the maximum number of containers is a negative value.
"""
if maximum_number_of_containers < 0:
raise ValueError('Invalid maximum number of containers')
if not self._cursor:
self._Open()
self._ReadStorageMetadata()
self._container_types = self._GetContainerTypes()
number_of_containers = 0
while self._active_cursor or self._container_types:
if not self._active_cursor:
self._PrepareForNextContainerType()
if maximum_number_of_containers == 0:
rows = self._active_cursor.fetchall()
else:
number_of_rows = maximum_number_of_containers - number_of_containers
rows = self._active_cursor.fetchmany(size=number_of_rows)
if not rows:
self._active_cursor = None
continue
for row in rows:
identifier = identifiers.SQLTableIdentifier(
self._active_container_type, row[0])
if self._compression_format == definitions.COMPRESSION_FORMAT_ZLIB:
serialized_data = zlib.decompress(row[1])
else:
serialized_data = row[1]
attribute_container = self._DeserializeAttributeContainer(
self._active_container_type, serialized_data)
attribute_container.SetIdentifier(identifier)
if self._active_container_type == self._CONTAINER_TYPE_EVENT_TAG:
event_identifier = identifiers.SQLTableIdentifier(
self._CONTAINER_TYPE_EVENT,
attribute_container.event_row_identifier)
attribute_container.SetEventIdentifier(event_identifier)
del attribute_container.event_row_identifier
if callback:
callback(self._storage_writer, attribute_container)
self._add_active_container_method(attribute_container)
number_of_containers += 1
if (maximum_number_of_containers != 0 and
number_of_containers >= maximum_number_of_containers):
return False
self._Close()
os.remove(self._path)
return True
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
13102,
469,
9173,
329,
16363,
578,
6143,
3696,
526,
15931,
198,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
11748,
28686,
198,
11748,
44161,
578,
18,
198,
11748,
1976,
8019,
198,
198,
6738,
458,
292,
78,
13,
3642,
50221,
1330,
8563,
198,
6738,
458,
292,
78,
13,
3642,
50221,
1330,
1785,
62,
82,
2203,
198,
6738,
458,
292,
78,
13,
3642,
50221,
1330,
2995,
198,
6738,
458,
292,
78,
13,
3642,
50221,
1330,
3136,
198,
6738,
458,
292,
78,
13,
3642,
50221,
1330,
8861,
198,
6738,
458,
292,
78,
13,
8019,
1330,
17336,
198,
6738,
458,
292,
78,
13,
35350,
1330,
42814,
198,
6738,
458,
292,
78,
13,
35350,
1330,
7071,
628,
198,
4871,
16363,
578,
31425,
13102,
469,
33634,
7,
39994,
13,
31425,
8979,
13102,
469,
33634,
2599,
198,
220,
37227,
17861,
578,
12,
3106,
6143,
2393,
9173,
329,
35981,
526,
15931,
628,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
1565,
1847,
16309,
1797,
62,
2200,
15490,
796,
3136,
13,
32750,
19100,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
796,
2995,
13,
9237,
10267,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
26947,
796,
2995,
13,
9237,
6601,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
47690,
796,
1785,
62,
82,
2203,
13,
9237,
7416,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
42197,
796,
2995,
13,
9237,
24835,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
6369,
5446,
44710,
62,
24908,
796,
8563,
13,
11627,
7861,
12331,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
51,
1921,
42,
62,
41335,
24131,
796,
8861,
13,
25714,
5377,
24547,
13,
10943,
30339,
1137,
62,
25216,
198,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
51,
1921,
42,
62,
2257,
7227,
796,
8861,
13,
25714,
10434,
13,
10943,
30339,
1137,
62,
25216,
628,
220,
1303,
2773,
9290,
3858,
4941,
584,
9290,
3858,
11,
884,
355,
1785,
198,
220,
1303,
32578,
1785,
62,
7890,
13,
43101,
3858,
287,
428,
46545,
1276,
307,
6149,
706,
198,
220,
1303,
477,
262,
9290,
3858,
484,
4941,
13,
198,
220,
4808,
10943,
30339,
1137,
62,
9936,
47,
1546,
796,
357,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
47690,
11,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
26947,
11,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
11,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
42197,
11,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
6369,
5446,
44710,
62,
24908,
11,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
1565,
1847,
16309,
1797,
62,
2200,
15490,
8,
628,
220,
4808,
29266,
62,
10943,
30339,
1137,
62,
25216,
62,
49273,
50,
796,
1391,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
1565,
1847,
16309,
1797,
62,
2200,
15490,
25,
705,
62,
4550,
32750,
19100,
3256,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
25,
705,
62,
4550,
9237,
3256,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
26947,
25,
705,
62,
4550,
9237,
6601,
3256,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
47690,
25,
705,
62,
4550,
9237,
7416,
3256,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
42197,
25,
705,
62,
4550,
9237,
24835,
3256,
198,
220,
220,
220,
220,
220,
4808,
10943,
30339,
1137,
62,
25216,
62,
6369,
5446,
44710,
62,
24908,
25,
705,
62,
4550,
12331,
3256,
198,
220,
1782,
628,
220,
4808,
38148,
62,
45,
29559,
62,
10917,
19664,
796,
357,
198,
220,
220,
220,
220,
220,
705,
46506,
1438,
16034,
44161,
578,
62,
9866,
33411,
2099,
796,
366,
11487,
1,
11537,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
6143,
62,
16002,
11,
3108,
2599,
198,
220,
220,
220,
37227,
24243,
4340,
257,
6143,
20121,
9173,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
6143,
62,
16002,
357,
31425,
34379,
2599,
6143,
6260,
13,
198,
220,
220,
220,
220,
220,
3108,
357,
2536,
2599,
3108,
284,
262,
5128,
2393,
13,
628,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
220,
220,
24418,
12331,
25,
611,
262,
5128,
2393,
2314,
307,
4721,
13,
198,
220,
220,
220,
220,
220,
43160,
12331,
25,
611,
281,
751,
9290,
2446,
318,
4814,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2208,
7,
17861,
578,
31425,
13102,
469,
33634,
11,
2116,
737,
834,
15003,
834,
7,
35350,
62,
16002,
8,
198,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
796,
6045,
198,
220,
220,
220,
2116,
13557,
5275,
62,
66,
21471,
796,
6045,
198,
220,
220,
220,
2116,
13557,
2860,
62,
5275,
62,
34924,
62,
24396,
796,
6045,
198,
220,
220,
220,
2116,
13557,
2860,
62,
34924,
62,
4906,
62,
24396,
82,
796,
23884,
198,
220,
220,
220,
2116,
13557,
5589,
2234,
62,
18982,
796,
17336,
13,
9858,
32761,
2849,
62,
21389,
1404,
62,
45,
11651,
198,
220,
220,
220,
2116,
13557,
38659,
796,
6045,
198,
220,
220,
220,
2116,
13557,
34924,
62,
19199,
796,
6045,
198,
220,
220,
220,
2116,
13557,
66,
21471,
796,
6045,
198,
220,
220,
220,
2116,
13557,
15596,
62,
7890,
62,
738,
7483,
62,
76,
39242,
796,
23884,
198,
220,
220,
220,
2116,
13557,
6978,
796,
3108,
628,
220,
220,
220,
1303,
13610,
257,
19124,
35847,
3084,
329,
262,
751,
9290,
2099,
2446,
13,
770,
198,
220,
220,
220,
1303,
15174,
1719,
284,
2251,
257,
2168,
286,
611,
12,
17772,
8794,
329,
9290,
3858,
13,
198,
220,
220,
220,
1303,
383,
3084,
318,
7560,
379,
19124,
355,
612,
389,
645,
2651,
2163,
198,
220,
220,
220,
1303,
31713,
287,
11361,
13,
198,
220,
220,
220,
329,
9290,
62,
4906,
11,
2446,
62,
3672,
287,
2116,
13557,
29266,
62,
10943,
30339,
1137,
62,
25216,
62,
49273,
50,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
2446,
796,
651,
35226,
7,
944,
11,
2446,
62,
3672,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
611,
407,
2446,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
43160,
12331,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4550,
2446,
4814,
329,
9290,
2099,
25,
1391,
15,
25,
82,
92,
4458,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9290,
62,
4906,
4008,
628,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
34924,
62,
4906,
62,
24396,
82,
58,
34924,
62,
4906,
60,
796,
2446,
628,
220,
825,
4808,
4550,
32750,
19100,
7,
944,
11,
3781,
62,
13116,
2599,
198,
220,
220,
220,
37227,
46245,
281,
3781,
989,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
3781,
62,
13116,
357,
32750,
19100,
2599,
3781,
989,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
32750,
19100,
7,
20930,
62,
13116,
8,
628,
220,
825,
4808,
4550,
12331,
7,
944,
11,
4049,
2599,
198,
220,
220,
220,
37227,
46245,
281,
4049,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
4049,
357,
11627,
7861,
12331,
2599,
4049,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
12331,
7,
18224,
8,
628,
220,
825,
4808,
4550,
9237,
7,
944,
11,
1785,
2599,
198,
220,
220,
220,
37227,
46245,
281,
1785,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
1785,
357,
9237,
10267,
2599,
1785,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
468,
35226,
7,
15596,
11,
705,
15596,
62,
7890,
62,
808,
62,
738,
7483,
6,
2599,
198,
220,
220,
220,
220,
220,
1785,
62,
7890,
62,
738,
7483,
796,
42814,
13,
17861,
10962,
33234,
7483,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
26947,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1785,
13,
15596,
62,
7890,
62,
808,
62,
738,
7483,
8,
198,
220,
220,
220,
220,
220,
35847,
62,
2539,
796,
1785,
62,
7890,
62,
738,
7483,
13,
29881,
2514,
10100,
3419,
628,
220,
220,
220,
220,
220,
1785,
62,
7890,
62,
738,
7483,
796,
2116,
13557,
15596,
62,
7890,
62,
738,
7483,
62,
76,
39242,
58,
5460,
929,
62,
2539,
60,
198,
220,
220,
220,
220,
220,
1785,
13,
7248,
9237,
6601,
33234,
7483,
7,
15596,
62,
7890,
62,
738,
7483,
8,
628,
220,
220,
220,
1303,
16926,
46,
25,
751,
1785,
27421,
285,
39242,
329,
1785,
15940,
13,
628,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
9237,
7,
15596,
8,
628,
220,
825,
4808,
4550,
9237,
6601,
7,
944,
11,
1785,
62,
7890,
2599,
198,
220,
220,
220,
37227,
46245,
1785,
1366,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
1785,
62,
7890,
357,
9237,
6601,
2599,
1785,
1366,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27421,
796,
1785,
62,
7890,
13,
3855,
33234,
7483,
3419,
198,
220,
220,
220,
35847,
62,
2539,
796,
27421,
13,
29881,
2514,
10100,
3419,
628,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
9237,
6601,
7,
15596,
62,
7890,
8,
628,
220,
220,
220,
27421,
796,
1785,
62,
7890,
13,
3855,
33234,
7483,
3419,
198,
220,
220,
220,
2116,
13557,
15596,
62,
7890,
62,
738,
7483,
62,
76,
39242,
58,
5460,
929,
62,
2539,
60,
796,
27421,
628,
220,
825,
4808,
4550,
9237,
7416,
7,
944,
11,
1785,
62,
10459,
2599,
198,
220,
220,
220,
37227,
46245,
281,
1785,
2723,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
1785,
62,
10459,
357,
9237,
7416,
2599,
1785,
2723,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
9237,
7416,
7,
15596,
62,
10459,
8,
628,
220,
825,
4808,
4550,
9237,
24835,
7,
944,
11,
1785,
62,
12985,
2599,
198,
220,
220,
220,
37227,
46245,
281,
1785,
7621,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
1785,
62,
12985,
357,
9237,
24835,
2599,
1785,
7621,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
35350,
62,
16002,
13,
4550,
9237,
24835,
7,
15596,
62,
12985,
8,
628,
220,
825,
4808,
26125,
7,
944,
2599,
198,
220,
220,
220,
37227,
2601,
4629,
262,
4876,
6143,
706,
3555,
526,
15931,
198,
220,
220,
220,
2116,
13557,
38659,
13,
19836,
3419,
198,
220,
220,
220,
2116,
13557,
38659,
796,
6045,
198,
220,
220,
220,
2116,
13557,
66,
21471,
796,
6045,
628,
220,
825,
4808,
3855,
29869,
31431,
7,
944,
2599,
198,
220,
220,
220,
37227,
9781,
5034,
1158,
262,
9290,
3858,
284,
20121,
13,
628,
220,
220,
220,
43101,
3858,
407,
5447,
287,
4808,
10943,
30339,
1137,
62,
9936,
47,
1546,
389,
9514,
290,
407,
23791,
13,
628,
220,
220,
220,
17377,
9290,
3858,
4941,
584,
9290,
3858,
11,
884,
198,
220,
220,
220,
355,
1785,
32578,
1785,
1366,
13,
383,
3891,
389,
6149,
284,
4155,
262,
198,
220,
220,
220,
11688,
16472,
389,
23791,
287,
262,
3376,
1502,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
1351,
58,
2536,
5974,
3891,
286,
262,
9290,
3858,
284,
20121,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
66,
21471,
13,
41049,
7,
944,
13557,
38148,
62,
45,
29559,
62,
10917,
19664,
8,
198,
220,
220,
220,
3084,
62,
14933,
796,
685,
808,
58,
15,
60,
329,
5752,
287,
2116,
13557,
66,
21471,
13,
69,
7569,
439,
3419,
60,
628,
220,
220,
220,
1441,
685,
198,
220,
220,
220,
220,
220,
220,
220,
3084,
62,
3672,
329,
3084,
62,
3672,
287,
2116,
13557,
10943,
30339,
1137,
62,
9936,
47,
1546,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3084,
62,
3672,
287,
3084,
62,
14933,
60,
628,
220,
825,
4808,
11505,
7,
944,
2599,
198,
220,
220,
220,
37227,
18257,
641,
262,
4876,
6143,
329,
3555,
526,
15931,
198,
220,
220,
220,
2116,
13557,
38659,
796,
44161,
578,
18,
13,
8443,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6978,
11,
4886,
62,
19199,
28,
25410,
578,
18,
13,
27082,
5188,
62,
41374,
43,
9936,
47,
1546,
91,
25410,
578,
18,
13,
27082,
5188,
62,
25154,
45,
29559,
8,
198,
220,
220,
220,
2116,
13557,
66,
21471,
796,
2116,
13557,
38659,
13,
66,
21471,
3419,
628,
220,
825,
4808,
5569,
31425,
9171,
14706,
7,
944,
2599,
198,
220,
220,
220,
37227,
5569,
82,
262,
4876,
6143,
20150,
526,
15931,
198,
220,
220,
220,
12405,
796,
705,
46506,
1994,
11,
1988,
16034,
20150,
6,
198,
220,
220,
220,
2116,
13557,
66,
21471,
13,
41049,
7,
22766,
8,
628,
220,
220,
220,
20150,
62,
27160,
796,
1391,
808,
58,
15,
5974,
5752,
58,
16,
60,
329,
5752,
287,
2116,
13557,
66,
21471,
13,
69,
7569,
439,
3419,
92,
628,
220,
220,
220,
2116,
13557,
5589,
2234,
62,
18982,
796,
20150,
62,
27160,
17816,
5589,
2234,
62,
18982,
20520,
628,
220,
825,
4808,
37534,
533,
1890,
10019,
29869,
6030,
7,
944,
2599,
198,
220,
220,
220,
37227,
37534,
3565,
329,
262,
1306,
9290,
2099,
13,
628,
220,
220,
220,
770,
2446,
25978,
262,
4876,
6143,
329,
35981,
262,
1306,
9290,
2099,
13,
198,
220,
220,
220,
632,
900,
262,
4075,
9290,
2099,
11,
663,
751,
2446,
290,
4075,
23493,
198,
220,
220,
220,
16062,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
796,
2116,
13557,
34924,
62,
19199,
13,
12924,
7,
15,
8,
628,
220,
220,
220,
2116,
13557,
2860,
62,
5275,
62,
34924,
62,
24396,
796,
2116,
13557,
2860,
62,
34924,
62,
4906,
62,
24396,
82,
13,
1136,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
8,
628,
220,
220,
220,
12405,
796,
705,
46506,
4808,
738,
7483,
11,
4808,
7890,
16034,
1391,
15,
25,
82,
92,
4458,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
8,
198,
220,
220,
220,
2116,
13557,
66,
21471,
13,
41049,
7,
22766,
8,
628,
220,
220,
220,
2116,
13557,
5275,
62,
66,
21471,
796,
2116,
13557,
66,
21471,
628,
220,
825,
39407,
33682,
4264,
50221,
7,
198,
220,
220,
220,
220,
220,
2116,
11,
23838,
28,
14202,
11,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
28,
15,
2599,
198,
220,
220,
220,
37227,
5569,
82,
11688,
16472,
422,
257,
4876,
6143,
2393,
656,
262,
6260,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
23838,
357,
8818,
58,
31425,
34379,
11,
3460,
4163,
29869,
60,
2599,
2163,
284,
869,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
706,
1123,
11688,
9290,
318,
748,
48499,
1143,
13,
198,
220,
220,
220,
220,
220,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
357,
30719,
58,
600,
60,
2599,
5415,
1271,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16472,
284,
20121,
11,
810,
657,
2380,
645,
4179,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
20512,
25,
6407,
611,
262,
2104,
4876,
6143,
2393,
468,
587,
23791,
13,
628,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
220,
220,
43160,
12331,
25,
611,
262,
751,
2446,
329,
262,
4075,
11688,
9290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
318,
4814,
13,
198,
220,
220,
220,
220,
220,
440,
5188,
81,
1472,
25,
611,
262,
4876,
6143,
2393,
2314,
307,
13140,
13,
198,
220,
220,
220,
220,
220,
11052,
12331,
25,
611,
262,
5415,
1271,
286,
16472,
318,
257,
4633,
1988,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
1279,
657,
25,
198,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
44651,
5415,
1271,
286,
16472,
11537,
628,
220,
220,
220,
611,
407,
2116,
13557,
66,
21471,
25,
198,
220,
220,
220,
220,
220,
2116,
13557,
11505,
3419,
198,
220,
220,
220,
220,
220,
2116,
13557,
5569,
31425,
9171,
14706,
3419,
198,
220,
220,
220,
220,
220,
2116,
13557,
34924,
62,
19199,
796,
2116,
13557,
3855,
29869,
31431,
3419,
628,
220,
220,
220,
1271,
62,
1659,
62,
3642,
50221,
796,
657,
198,
220,
220,
220,
981,
2116,
13557,
5275,
62,
66,
21471,
393,
2116,
13557,
34924,
62,
19199,
25,
198,
220,
220,
220,
220,
220,
611,
407,
2116,
13557,
5275,
62,
66,
21471,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37534,
533,
1890,
10019,
29869,
6030,
3419,
628,
220,
220,
220,
220,
220,
611,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
15274,
796,
2116,
13557,
5275,
62,
66,
21471,
13,
69,
7569,
439,
3419,
198,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
1659,
62,
8516,
796,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
532,
1271,
62,
1659,
62,
3642,
50221,
198,
220,
220,
220,
220,
220,
220,
220,
15274,
796,
2116,
13557,
5275,
62,
66,
21471,
13,
69,
7569,
21834,
7,
7857,
28,
17618,
62,
1659,
62,
8516,
8,
628,
220,
220,
220,
220,
220,
611,
407,
15274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5275,
62,
66,
21471,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
329,
5752,
287,
15274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
27421,
796,
42814,
13,
17861,
10962,
33234,
7483,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
11,
5752,
58,
15,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
5589,
2234,
62,
18982,
6624,
17336,
13,
9858,
32761,
2849,
62,
21389,
1404,
62,
57,
40347,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
1143,
62,
7890,
796,
1976,
8019,
13,
12501,
3361,
601,
7,
808,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
1143,
62,
7890,
796,
5752,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
11688,
62,
34924,
796,
2116,
13557,
5960,
48499,
1096,
33682,
29869,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
5275,
62,
34924,
62,
4906,
11,
11389,
1143,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11688,
62,
34924,
13,
7248,
33234,
7483,
7,
738,
7483,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
5275,
62,
34924,
62,
4906,
6624,
2116,
13557,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
62,
42197,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1785,
62,
738,
7483,
796,
42814,
13,
17861,
10962,
33234,
7483,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
10943,
30339,
1137,
62,
25216,
62,
20114,
3525,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11688,
62,
34924,
13,
15596,
62,
808,
62,
738,
7483,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11688,
62,
34924,
13,
7248,
9237,
33234,
7483,
7,
15596,
62,
738,
7483,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
11688,
62,
34924,
13,
15596,
62,
808,
62,
738,
7483,
628,
220,
220,
220,
220,
220,
220,
220,
611,
23838,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23838,
7,
944,
13557,
35350,
62,
16002,
11,
11688,
62,
34924,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
2860,
62,
5275,
62,
34924,
62,
24396,
7,
42348,
62,
34924,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
1659,
62,
3642,
50221,
15853,
352,
628,
220,
220,
220,
220,
220,
611,
357,
47033,
62,
17618,
62,
1659,
62,
3642,
50221,
14512,
657,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1271,
62,
1659,
62,
3642,
50221,
18189,
5415,
62,
17618,
62,
1659,
62,
3642,
50221,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
2116,
13557,
26125,
3419,
628,
220,
220,
220,
28686,
13,
28956,
7,
944,
13557,
6978,
8,
628,
220,
220,
220,
1441,
6407,
198
] | 2.75864 | 3,530 |
import os
from pathlib import Path
import pytest
from robotidy.app import Robotidy
from robotidy.utils import decorate_diff_with_color, split_args_from_name_or_path, GlobalFormattingConfig
@pytest.fixture
| [
11748,
28686,
198,
6738,
3108,
8019,
1330,
10644,
198,
198,
11748,
12972,
9288,
198,
198,
6738,
9379,
19325,
13,
1324,
1330,
16071,
19325,
198,
6738,
9379,
19325,
13,
26791,
1330,
11705,
378,
62,
26069,
62,
4480,
62,
8043,
11,
6626,
62,
22046,
62,
6738,
62,
3672,
62,
273,
62,
6978,
11,
8060,
26227,
889,
16934,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628
] | 3.28125 | 64 |
# Generated by Django 3.2 on 2021-06-14 21:05
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
513,
13,
17,
319,
33448,
12,
3312,
12,
1415,
2310,
25,
2713,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.966667 | 30 |
f()
print("PASS") | [
198,
69,
3419,
198,
198,
4798,
7203,
47924,
4943
] | 2.111111 | 9 |
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Distribution adapters for (soft) round functions."""
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_compression.python.distributions import deep_factorized
from tensorflow_compression.python.distributions import helpers
from tensorflow_compression.python.distributions import uniform_noise
from tensorflow_compression.python.ops import soft_round_ops
__all__ = [
"MonotonicAdapter", "RoundAdapter", "NoisyRoundedNormal",
"NoisyRoundedDeepFactorized", "SoftRoundAdapter", "NoisySoftRoundedNormal",
"NoisySoftRoundedDeepFactorized"
]
class MonotonicAdapter(tfp.distributions.Distribution):
"""Adapt a continuous distribution via an ascending monotonic function.
This is described in Appendix E. in the paper
> "Universally Quantized Neural Compression"<br />
> Eirikur Agustsson & Lucas Theis<br />
> https://arxiv.org/abs/2006.09952
"""
invertible = True # Set to false if the transform is not invertible.
def __init__(self, base, name="MonotonicAdapter"):
"""Initializer.
Arguments:
base: A `tfp.distributions.Distribution` object representing a
continuous-valued random variable.
name: String. A name for this distribution.
"""
parameters = dict(locals())
self._base = base
super().__init__(
dtype=base.dtype,
reparameterization_type=base.reparameterization_type,
validate_args=base.validate_args,
allow_nan_stats=base.allow_nan_stats,
parameters=parameters,
name=name,
)
@property
def base(self):
"""The base distribution."""
return self._base
def transform(self, x):
"""The forward transform."""
raise NotImplementedError()
def inverse_transform(self, y):
"""The backward transform."""
# Let f(x) = self.transform(x)
# Then g(y) = self.inverse_transform(y) is defined as
# g(y) := inf_x { x : f(x) >= y }
# which is just the inverse of `f` if it is invertible.
raise NotImplementedError()
# pylint: disable=protected-access
# pylint: enable=protected-access
class RoundAdapter(MonotonicAdapter):
"""Continuous density function + round."""
invertible = False
class NoisyRoundAdapter(uniform_noise.UniformNoiseAdapter):
"""Uniform noise + round."""
def __init__(self, base, name="NoisyRoundAdapter"):
"""Initializer.
Arguments:
base: A `tfp.distributions.Distribution` object representing a
continuous-valued random variable.
name: String. A name for this distribution.
"""
super().__init__(RoundAdapter(base), name=name)
class NoisyRoundedDeepFactorized(NoisyRoundAdapter):
"""Rounded DeepFactorized + uniform noise."""
class NoisyRoundedNormal(NoisyRoundAdapter):
"""Rounded normal distribution + uniform noise."""
class SoftRoundAdapter(MonotonicAdapter):
"""Differentiable approximation to round."""
def __init__(self, base, alpha, name="SoftRoundAdapter"):
"""Initializer.
Arguments:
base: A `tfp.distributions.Distribution` object representing a
continuous-valued random variable.
alpha: Float or tf.Tensor. Controls smoothness of the approximation.
name: String. A name for this distribution.
"""
super().__init__(base=base, name=name)
self._alpha = alpha
class NoisySoftRoundAdapter(uniform_noise.UniformNoiseAdapter):
"""Uniform noise + differentiable approximation to round."""
def __init__(self, base, alpha, name="NoisySoftRoundAdapter"):
"""Initializer.
Arguments:
base: A `tfp.distributions.Distribution` object representing a
continuous-valued random variable.
alpha: Float or tf.Tensor. Controls smoothness of soft round.
name: String. A name for this distribution.
"""
super().__init__(SoftRoundAdapter(base, alpha), name=name)
class NoisySoftRoundedNormal(NoisySoftRoundAdapter):
"""Soft rounded normal distribution + uniform noise."""
class NoisySoftRoundedDeepFactorized(NoisySoftRoundAdapter):
"""Soft rounded deep factorized distribution + uniform noise."""
| [
2,
15069,
12131,
3012,
11419,
13,
1439,
6923,
33876,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
25609,
28,
198,
37811,
20344,
3890,
46363,
329,
357,
4215,
8,
2835,
5499,
526,
15931,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
11192,
273,
11125,
62,
1676,
65,
1799,
355,
256,
46428,
198,
198,
6738,
11192,
273,
11125,
62,
5589,
2234,
13,
29412,
13,
17080,
2455,
507,
1330,
2769,
62,
31412,
1143,
198,
6738,
11192,
273,
11125,
62,
5589,
2234,
13,
29412,
13,
17080,
2455,
507,
1330,
49385,
198,
6738,
11192,
273,
11125,
62,
5589,
2234,
13,
29412,
13,
17080,
2455,
507,
1330,
8187,
62,
3919,
786,
198,
6738,
11192,
273,
11125,
62,
5589,
2234,
13,
29412,
13,
2840,
1330,
2705,
62,
744,
62,
2840,
628,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
366,
9069,
313,
9229,
47307,
1600,
366,
22685,
47307,
1600,
366,
2949,
13560,
49,
6302,
26447,
1600,
198,
220,
220,
220,
366,
2949,
13560,
49,
6302,
29744,
41384,
1143,
1600,
366,
18380,
22685,
47307,
1600,
366,
2949,
13560,
18380,
49,
6302,
26447,
1600,
198,
220,
220,
220,
366,
2949,
13560,
18380,
49,
6302,
29744,
41384,
1143,
1,
198,
60,
628,
198,
4871,
2892,
313,
9229,
47307,
7,
27110,
79,
13,
17080,
2455,
507,
13,
20344,
3890,
2599,
198,
220,
37227,
48003,
257,
12948,
6082,
2884,
281,
41988,
937,
313,
9229,
2163,
13,
628,
220,
770,
318,
3417,
287,
30378,
412,
13,
287,
262,
3348,
198,
220,
1875,
366,
3118,
1191,
453,
16972,
1143,
47986,
3082,
2234,
1,
27,
1671,
11037,
198,
220,
1875,
412,
343,
1134,
333,
2449,
436,
16528,
1222,
15257,
383,
271,
27,
1671,
11037,
198,
220,
1875,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
13330,
13,
15,
2079,
4309,
628,
220,
37227,
628,
220,
287,
1851,
856,
796,
6407,
220,
1303,
5345,
284,
3991,
611,
262,
6121,
318,
407,
287,
1851,
856,
13,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
2779,
11,
1438,
2625,
9069,
313,
9229,
47307,
1,
2599,
198,
220,
220,
220,
37227,
24243,
7509,
13,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
2779,
25,
317,
4600,
27110,
79,
13,
17080,
2455,
507,
13,
20344,
3890,
63,
2134,
10200,
257,
198,
220,
220,
220,
220,
220,
220,
220,
12948,
12,
39728,
4738,
7885,
13,
198,
220,
220,
220,
220,
220,
1438,
25,
10903,
13,
317,
1438,
329,
428,
6082,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10007,
796,
8633,
7,
17946,
874,
28955,
198,
220,
220,
220,
2116,
13557,
8692,
796,
2779,
198,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
288,
4906,
28,
8692,
13,
67,
4906,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1128,
41158,
2357,
1634,
62,
4906,
28,
8692,
13,
260,
17143,
2357,
1634,
62,
4906,
11,
198,
220,
220,
220,
220,
220,
220,
220,
26571,
62,
22046,
28,
8692,
13,
12102,
378,
62,
22046,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1249,
62,
12647,
62,
34242,
28,
8692,
13,
12154,
62,
12647,
62,
34242,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10007,
28,
17143,
7307,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
28,
3672,
11,
198,
220,
220,
220,
1267,
628,
220,
2488,
26745,
198,
220,
825,
2779,
7,
944,
2599,
198,
220,
220,
220,
37227,
464,
2779,
6082,
526,
15931,
198,
220,
220,
220,
1441,
2116,
13557,
8692,
628,
220,
825,
6121,
7,
944,
11,
2124,
2599,
198,
220,
220,
220,
37227,
464,
2651,
6121,
526,
15931,
198,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
3419,
628,
220,
825,
34062,
62,
35636,
7,
944,
11,
331,
2599,
198,
220,
220,
220,
37227,
464,
19528,
6121,
526,
15931,
198,
220,
220,
220,
1303,
3914,
277,
7,
87,
8,
796,
2116,
13,
35636,
7,
87,
8,
198,
220,
220,
220,
1303,
3244,
308,
7,
88,
8,
796,
2116,
13,
259,
4399,
62,
35636,
7,
88,
8,
318,
5447,
355,
198,
220,
220,
220,
1303,
308,
7,
88,
8,
19039,
1167,
62,
87,
1391,
2124,
1058,
277,
7,
87,
8,
18189,
331,
1782,
198,
220,
220,
220,
1303,
543,
318,
655,
262,
34062,
286,
4600,
69,
63,
611,
340,
318,
287,
1851,
856,
13,
198,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
3419,
628,
220,
1303,
279,
2645,
600,
25,
15560,
28,
24326,
12,
15526,
198,
220,
1303,
279,
2645,
600,
25,
7139,
28,
24326,
12,
15526,
628,
198,
4871,
10485,
47307,
7,
9069,
313,
9229,
47307,
2599,
198,
220,
37227,
17875,
5623,
12109,
2163,
1343,
2835,
526,
15931,
628,
220,
287,
1851,
856,
796,
10352,
628,
198,
4871,
1400,
13560,
22685,
47307,
7,
403,
6933,
62,
3919,
786,
13,
3118,
6933,
2949,
786,
47307,
2599,
198,
220,
37227,
3118,
6933,
7838,
1343,
2835,
526,
15931,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
2779,
11,
1438,
2625,
2949,
13560,
22685,
47307,
1,
2599,
198,
220,
220,
220,
37227,
24243,
7509,
13,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
2779,
25,
317,
4600,
27110,
79,
13,
17080,
2455,
507,
13,
20344,
3890,
63,
2134,
10200,
257,
198,
220,
220,
220,
220,
220,
220,
220,
12948,
12,
39728,
4738,
7885,
13,
198,
220,
220,
220,
220,
220,
1438,
25,
10903,
13,
317,
1438,
329,
428,
6082,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
22685,
47307,
7,
8692,
828,
1438,
28,
3672,
8,
628,
198,
4871,
1400,
13560,
49,
6302,
29744,
41384,
1143,
7,
2949,
13560,
22685,
47307,
2599,
198,
220,
37227,
49,
6302,
10766,
41384,
1143,
1343,
8187,
7838,
526,
15931,
628,
198,
4871,
1400,
13560,
49,
6302,
26447,
7,
2949,
13560,
22685,
47307,
2599,
198,
220,
37227,
49,
6302,
3487,
6082,
1343,
8187,
7838,
526,
15931,
628,
198,
4871,
8297,
22685,
47307,
7,
9069,
313,
9229,
47307,
2599,
198,
220,
37227,
40341,
3379,
40874,
284,
2835,
526,
15931,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
2779,
11,
17130,
11,
1438,
2625,
18380,
22685,
47307,
1,
2599,
198,
220,
220,
220,
37227,
24243,
7509,
13,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
2779,
25,
317,
4600,
27110,
79,
13,
17080,
2455,
507,
13,
20344,
3890,
63,
2134,
10200,
257,
198,
220,
220,
220,
220,
220,
220,
220,
12948,
12,
39728,
4738,
7885,
13,
198,
220,
220,
220,
220,
220,
17130,
25,
48436,
393,
48700,
13,
51,
22854,
13,
36357,
7209,
1108,
286,
262,
40874,
13,
198,
220,
220,
220,
220,
220,
1438,
25,
10903,
13,
317,
1438,
329,
428,
6082,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
8692,
28,
8692,
11,
1438,
28,
3672,
8,
198,
220,
220,
220,
2116,
13557,
26591,
796,
17130,
628,
198,
4871,
1400,
13560,
18380,
22685,
47307,
7,
403,
6933,
62,
3919,
786,
13,
3118,
6933,
2949,
786,
47307,
2599,
198,
220,
37227,
3118,
6933,
7838,
1343,
1180,
3379,
40874,
284,
2835,
526,
15931,
628,
220,
825,
11593,
15003,
834,
7,
944,
11,
2779,
11,
17130,
11,
1438,
2625,
2949,
13560,
18380,
22685,
47307,
1,
2599,
198,
220,
220,
220,
37227,
24243,
7509,
13,
628,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
2779,
25,
317,
4600,
27110,
79,
13,
17080,
2455,
507,
13,
20344,
3890,
63,
2134,
10200,
257,
198,
220,
220,
220,
220,
220,
220,
220,
12948,
12,
39728,
4738,
7885,
13,
198,
220,
220,
220,
220,
220,
17130,
25,
48436,
393,
48700,
13,
51,
22854,
13,
36357,
7209,
1108,
286,
2705,
2835,
13,
198,
220,
220,
220,
220,
220,
1438,
25,
10903,
13,
317,
1438,
329,
428,
6082,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2208,
22446,
834,
15003,
834,
7,
18380,
22685,
47307,
7,
8692,
11,
17130,
828,
1438,
28,
3672,
8,
628,
198,
4871,
1400,
13560,
18380,
49,
6302,
26447,
7,
2949,
13560,
18380,
22685,
47307,
2599,
198,
220,
37227,
18380,
19273,
3487,
6082,
1343,
8187,
7838,
526,
15931,
628,
198,
4871,
1400,
13560,
18380,
49,
6302,
29744,
41384,
1143,
7,
2949,
13560,
18380,
22685,
47307,
2599,
198,
220,
37227,
18380,
19273,
2769,
5766,
1143,
6082,
1343,
8187,
7838,
526,
15931,
198
] | 3.151857 | 1,508 |
from django.views import generic
class JalQuerySetView(generic.ListView):
"""View mixin to render a JSON response for Select2."""
def render_to_response(self, context):
"""Return a JSON response in Select2 format."""
return 'hello !'
| [
198,
6738,
42625,
14208,
13,
33571,
1330,
14276,
628,
198,
4871,
28649,
20746,
7248,
7680,
7,
41357,
13,
8053,
7680,
2599,
198,
220,
220,
220,
37227,
7680,
5022,
259,
284,
8543,
257,
19449,
2882,
329,
9683,
17,
526,
15931,
628,
220,
220,
220,
825,
8543,
62,
1462,
62,
26209,
7,
944,
11,
4732,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
13615,
257,
19449,
2882,
287,
9683,
17,
5794,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
705,
31373,
5145,
6,
198
] | 3.011494 | 87 |
__author__ = 'Devesh Bajpai'
'''
https://codeforces.com/problemset/problem/1167/A
Solution: From the first occurrence of 8 in the given string s, we should have at least 10 characters. Say that 8 exists
on ith index. Then n - 1 - i + 1 = n - i would give the length of the longest string starting with 8. That should be
at least 11 characters. The extra ones (>11) can be deleted by the operations.
'''
if __name__ == "__main__":
t = int(raw_input())
for _ in xrange(0, t):
n = int(raw_input())
s = raw_input()
print solve(n, s)
| [
834,
9800,
834,
796,
705,
5005,
1158,
71,
347,
1228,
49712,
6,
198,
198,
7061,
6,
198,
5450,
1378,
19815,
891,
273,
728,
13,
785,
14,
1676,
22143,
316,
14,
45573,
14,
1157,
3134,
14,
32,
198,
198,
46344,
25,
3574,
262,
717,
19810,
286,
807,
287,
262,
1813,
4731,
264,
11,
356,
815,
423,
379,
1551,
838,
3435,
13,
13816,
326,
807,
7160,
198,
261,
340,
71,
6376,
13,
3244,
299,
532,
352,
532,
1312,
1343,
352,
796,
299,
532,
1312,
561,
1577,
262,
4129,
286,
262,
14069,
4731,
3599,
351,
807,
13,
1320,
815,
307,
198,
265,
1551,
1367,
3435,
13,
383,
3131,
3392,
45160,
1157,
8,
460,
307,
13140,
416,
262,
4560,
13,
198,
7061,
6,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
628,
220,
220,
220,
256,
796,
493,
7,
1831,
62,
15414,
28955,
628,
220,
220,
220,
329,
4808,
287,
2124,
9521,
7,
15,
11,
256,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
493,
7,
1831,
62,
15414,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
264,
796,
8246,
62,
15414,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
8494,
7,
77,
11,
264,
8,
198
] | 2.784314 | 204 |
# Copyright 2014 Hewlett-Packard Development Company, L.P.
#
# Author: Kiall Mac Innes <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
from sqlalchemy import MetaData, Table
from migrate.changeset.constraint import ForeignKeyConstraint
meta = MetaData()
| [
2,
15069,
1946,
30446,
15503,
12,
11869,
446,
7712,
5834,
11,
406,
13,
47,
13,
198,
2,
198,
2,
6434,
25,
21927,
439,
4100,
554,
2516,
1279,
4106,
439,
31,
71,
431,
13,
785,
29,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
739,
262,
13789,
13,
198,
6738,
44161,
282,
26599,
1330,
30277,
6601,
11,
8655,
198,
6738,
32492,
13,
36653,
316,
13,
1102,
2536,
2913,
1330,
8708,
9218,
3103,
2536,
2913,
198,
198,
28961,
796,
30277,
6601,
3419,
628,
198
] | 3.624413 | 213 |
# Generated by Django 4.0 on 2022-03-08 23:22
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
604,
13,
15,
319,
33160,
12,
3070,
12,
2919,
2242,
25,
1828,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.966667 | 30 |
from __future__ import print_function
import fileinput
import asyncio
asyncLib = asyncio.__file__
lineNum = 0
# This script is used to address an issue on Windows with asyncio in the Tornado web server.
# See links below for more information
# https://github.com/tornadoweb/tornado/issues/2608
# https://www.tornadoweb.org/en/stable/releases/v6.0.4.html#general-changes
# https://bugs.python.org/issue37373
with open(asyncLib, 'r+') as origLib:
lines = origLib.readlines()
for line in lines:
lineNum += 1
if line.startswith('import sys'):
print('Found 1.')
print(line, end='')
importLine = lineNum
elif line.startswith(' from .windows_events import'):
print('Found 2.')
print(line, end='')
asyncLine = lineNum
if importLine is not None and asyncLine is not None:
origLib = fileinput.input(asyncLib, inplace = True)
for n, line in enumerate(origLib, start=1):
if n == importLine:
print('import asyncio')
if n == asyncLine + 1:
print(' asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())')
print(line, end='') | [
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
2393,
15414,
198,
11748,
30351,
952,
198,
198,
292,
13361,
25835,
796,
30351,
952,
13,
834,
7753,
834,
198,
1370,
33111,
796,
657,
198,
198,
2,
770,
4226,
318,
973,
284,
2209,
281,
2071,
319,
3964,
351,
30351,
952,
287,
262,
48970,
3992,
4382,
13,
198,
2,
4091,
6117,
2174,
329,
517,
1321,
198,
2,
3740,
1378,
12567,
13,
785,
14,
45910,
4584,
1765,
14,
45910,
4533,
14,
37165,
14,
21719,
23,
198,
2,
3740,
1378,
2503,
13,
45910,
4584,
1765,
13,
2398,
14,
268,
14,
31284,
14,
260,
29329,
14,
85,
21,
13,
15,
13,
19,
13,
6494,
2,
24622,
12,
36653,
198,
2,
3740,
1378,
32965,
13,
29412,
13,
2398,
14,
21949,
2718,
34770,
198,
198,
4480,
1280,
7,
292,
13361,
25835,
11,
705,
81,
10,
11537,
355,
1796,
25835,
25,
198,
220,
220,
220,
3951,
796,
1796,
25835,
13,
961,
6615,
3419,
198,
220,
220,
220,
329,
1627,
287,
3951,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1627,
33111,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1627,
13,
9688,
2032,
342,
10786,
11748,
25064,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
21077,
352,
2637,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
1370,
11,
886,
28,
7061,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
13949,
796,
1627,
33111,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1627,
13,
9688,
2032,
342,
10786,
220,
220,
220,
422,
764,
28457,
62,
31534,
1330,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
21077,
362,
2637,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
1370,
11,
886,
28,
7061,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30351,
13949,
796,
1627,
33111,
198,
198,
361,
1330,
13949,
318,
407,
6045,
290,
30351,
13949,
318,
407,
6045,
25,
198,
220,
220,
220,
1796,
25835,
796,
2393,
15414,
13,
15414,
7,
292,
13361,
25835,
11,
287,
5372,
796,
6407,
8,
198,
220,
220,
220,
329,
299,
11,
1627,
287,
27056,
378,
7,
11612,
25835,
11,
923,
28,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
6624,
1330,
13949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
11748,
30351,
952,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
6624,
30351,
13949,
1343,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
220,
220,
220,
30351,
952,
13,
2617,
62,
15596,
62,
26268,
62,
30586,
7,
292,
13361,
952,
13,
11209,
17563,
273,
9237,
39516,
36727,
28955,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
1370,
11,
886,
28,
7061,
8,
220
] | 2.434959 | 492 |
from collections import Counter
| [
6738,
17268,
1330,
15034,
198,
220,
220,
220,
220
] | 4 | 9 |
import sys
import numpy
ensg_gene = open(sys.argv[1], 'r')
abun_file = open(sys.argv[2], 'r')
output_file = open(sys.argv[3],'w')
#set up ensg dict
ensg_dict = {}
gene_dict = {}
gene_list = []
for line in ensg_gene:
ensg, gene = line.strip().split()
ensg_dict[ ensg ] = gene
if gene not in gene_dict:
gene_dict[gene] = [ ensg, 0 ]
else:
gene_dict[gene][0] += ','+ensg
if gene not in gene_list:
gene_list.append(gene)
ensg_gene.close()
#add abundances to ensg_dict
abun_file.readline() #skip first line
for line in abun_file:
ensg = line.strip().split()[0].split('_')[0]
tpm = float(line.strip().split()[4])
if ensg in ensg_dict:
gene = ensg_dict[ ensg ]
gene_dict[gene][1] += tpm
abun_file.close()
#convert gene level tpm to log10(tpm+1)
for gene in gene_dict.keys():
gene_dict[gene].append( numpy.log10(gene_dict[gene][1] + 1) )
#print output file
output_file.write( '\t'.join( ['ensg', 'gene', 'tpm','log10tpm'] ) + '\n')
for gene in gene_list:
output_file.write( '\t'.join( [ gene_dict[gene][0], gene, str(gene_dict[gene][1]), str(gene_dict[gene][2]) ] )+ '\n')
output_file.close()
| [
11748,
25064,
198,
11748,
299,
32152,
198,
198,
641,
70,
62,
70,
1734,
796,
1280,
7,
17597,
13,
853,
85,
58,
16,
4357,
705,
81,
11537,
198,
397,
403,
62,
7753,
796,
1280,
7,
17597,
13,
853,
85,
58,
17,
4357,
705,
81,
11537,
198,
22915,
62,
7753,
796,
1280,
7,
17597,
13,
853,
85,
58,
18,
60,
4032,
86,
11537,
198,
198,
2,
2617,
510,
3140,
70,
8633,
198,
641,
70,
62,
11600,
796,
23884,
198,
70,
1734,
62,
11600,
796,
23884,
198,
70,
1734,
62,
4868,
796,
17635,
198,
1640,
1627,
287,
3140,
70,
62,
70,
1734,
25,
198,
220,
3140,
70,
11,
9779,
796,
1627,
13,
36311,
22446,
35312,
3419,
198,
220,
3140,
70,
62,
11600,
58,
3140,
70,
2361,
796,
9779,
198,
220,
611,
9779,
407,
287,
9779,
62,
11600,
25,
198,
220,
220,
220,
9779,
62,
11600,
58,
70,
1734,
60,
796,
685,
3140,
70,
11,
657,
2361,
198,
220,
2073,
25,
198,
220,
220,
220,
9779,
62,
11600,
58,
70,
1734,
7131,
15,
60,
15853,
705,
4032,
10,
641,
70,
198,
220,
611,
9779,
407,
287,
9779,
62,
4868,
25,
198,
220,
220,
220,
9779,
62,
4868,
13,
33295,
7,
70,
1734,
8,
198,
641,
70,
62,
70,
1734,
13,
19836,
3419,
198,
198,
2,
2860,
12467,
1817,
284,
3140,
70,
62,
11600,
198,
397,
403,
62,
7753,
13,
961,
1370,
3419,
1303,
48267,
717,
1627,
198,
1640,
1627,
287,
450,
403,
62,
7753,
25,
198,
220,
3140,
70,
796,
1627,
13,
36311,
22446,
35312,
3419,
58,
15,
4083,
35312,
10786,
62,
11537,
58,
15,
60,
198,
220,
256,
4426,
796,
12178,
7,
1370,
13,
36311,
22446,
35312,
3419,
58,
19,
12962,
198,
220,
611,
3140,
70,
287,
3140,
70,
62,
11600,
25,
198,
220,
220,
220,
9779,
796,
3140,
70,
62,
11600,
58,
3140,
70,
2361,
198,
220,
220,
220,
9779,
62,
11600,
58,
70,
1734,
7131,
16,
60,
15853,
256,
4426,
198,
397,
403,
62,
7753,
13,
19836,
3419,
198,
198,
2,
1102,
1851,
9779,
1241,
256,
4426,
284,
2604,
940,
7,
83,
4426,
10,
16,
8,
198,
1640,
9779,
287,
9779,
62,
11600,
13,
13083,
33529,
198,
220,
9779,
62,
11600,
58,
70,
1734,
4083,
33295,
7,
299,
32152,
13,
6404,
940,
7,
70,
1734,
62,
11600,
58,
70,
1734,
7131,
16,
60,
1343,
352,
8,
1267,
198,
198,
2,
4798,
5072,
2393,
198,
22915,
62,
7753,
13,
13564,
7,
705,
59,
83,
4458,
22179,
7,
37250,
641,
70,
3256,
705,
70,
1734,
3256,
705,
83,
4426,
41707,
6404,
940,
83,
4426,
20520,
1267,
1343,
705,
59,
77,
11537,
198,
1640,
9779,
287,
9779,
62,
4868,
25,
198,
220,
5072,
62,
7753,
13,
13564,
7,
705,
59,
83,
4458,
22179,
7,
685,
9779,
62,
11600,
58,
70,
1734,
7131,
15,
4357,
9779,
11,
965,
7,
70,
1734,
62,
11600,
58,
70,
1734,
7131,
16,
46570,
965,
7,
70,
1734,
62,
11600,
58,
70,
1734,
7131,
17,
12962,
2361,
1267,
10,
705,
59,
77,
11537,
198,
22915,
62,
7753,
13,
19836,
3419,
198
] | 2.255489 | 501 |
# coding: utf-8
# /*##########################################################################
# Copyright (C) 2021 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ############################################################################*/
"""Test silx.io.convert.write_to_h5"""
import h5py
import numpy
from silx.io import spech5
from silx.io.convert import write_to_h5
from silx.io.dictdump import h5todict
from silx.io import commonh5
from silx.io.spech5 import SpecH5
def test_with_commonh5(tmp_path):
"""Test write_to_h5 with commonh5 input"""
fobj = commonh5.File("filename.txt", mode="w")
group = fobj.create_group("group")
dataset = group.create_dataset("dataset", data=numpy.array(50))
group["soft_link"] = dataset # Create softlink
output_filepath = tmp_path / "output.h5"
write_to_h5(fobj, str(output_filepath))
assert h5todict(str(output_filepath)) == {
'group': {'dataset': numpy.array(50), 'soft_link': numpy.array(50)},
}
with h5py.File(output_filepath, mode="r") as h5file:
soft_link = h5file.get("/group/soft_link", getlink=True)
assert isinstance(soft_link, h5py.SoftLink)
assert soft_link.path == "/group/dataset"
def test_with_hdf5(tmp_path):
"""Test write_to_h5 with HDF5 file input"""
filepath = tmp_path / "base.h5"
with h5py.File(filepath, mode="w") as h5file:
h5file["group/dataset"] = 50
h5file["group/soft_link"] = h5py.SoftLink("/group/dataset")
h5file["group/external_link"] = h5py.ExternalLink("base.h5", "/group/dataset")
output_filepath = tmp_path / "output.h5"
write_to_h5(str(filepath), str(output_filepath))
assert h5todict(str(output_filepath)) == {
'group': {'dataset': 50, 'soft_link': 50},
}
with h5py.File(output_filepath, mode="r") as h5file:
soft_link = h5file.get("group/soft_link", getlink=True)
assert isinstance(soft_link, h5py.SoftLink)
assert soft_link.path == "/group/dataset"
def test_with_spech5(tmp_path):
"""Test write_to_h5 with SpecH5 input"""
filepath = tmp_path / "file.spec"
filepath.write_bytes(
bytes(
"""#F /tmp/sf.dat
#S 1 cmd
#L a b
1 2
""",
encoding='ascii')
)
output_filepath = tmp_path / "output.h5"
with spech5.SpecH5(str(filepath)) as spech5file:
write_to_h5(spech5file, str(output_filepath))
print(h5todict(str(output_filepath)))
assert_equal(h5todict(str(output_filepath)), {
'1.1': {
'instrument': {
'positioners': {},
'specfile': {
'file_header': ['#F /tmp/sf.dat'],
'scan_header': ['#S 1 cmd', '#L a b'],
},
},
'measurement': {
'a': [1.],
'b': [2.],
},
'start_time': '',
'title': 'cmd',
},
})
| [
2,
19617,
25,
3384,
69,
12,
23,
198,
2,
11900,
29113,
29113,
7804,
2235,
198,
2,
15069,
357,
34,
8,
33448,
3427,
16065,
354,
10599,
1313,
47532,
29118,
198,
2,
198,
2,
2448,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
16727,
257,
4866,
198,
2,
286,
428,
3788,
290,
3917,
10314,
3696,
357,
1169,
366,
25423,
12340,
284,
1730,
198,
2,
287,
262,
10442,
1231,
17504,
11,
1390,
1231,
17385,
262,
2489,
198,
2,
284,
779,
11,
4866,
11,
13096,
11,
20121,
11,
7715,
11,
14983,
11,
850,
43085,
11,
290,
14,
273,
3677,
198,
2,
9088,
286,
262,
10442,
11,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
198,
2,
30760,
284,
466,
523,
11,
2426,
284,
262,
1708,
3403,
25,
198,
2,
198,
2,
383,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
3017,
287,
198,
2,
477,
9088,
393,
8904,
16690,
286,
262,
10442,
13,
198,
2,
198,
2,
3336,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
7788,
32761,
6375,
198,
2,
8959,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
11,
198,
2,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
198,
2,
37195,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
9348,
43031,
19146,
7473,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
198,
2,
43031,
25382,
11,
7655,
2767,
16879,
3268,
3537,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
198,
2,
16289,
3963,
6375,
3268,
7102,
45,
24565,
13315,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
198,
2,
3336,
47466,
13,
198,
2,
198,
2,
1303,
29113,
29113,
7804,
21017,
16208,
198,
37811,
14402,
3313,
87,
13,
952,
13,
1102,
1851,
13,
13564,
62,
1462,
62,
71,
20,
37811,
628,
198,
11748,
289,
20,
9078,
198,
11748,
299,
32152,
198,
6738,
3313,
87,
13,
952,
1330,
693,
354,
20,
198,
198,
6738,
3313,
87,
13,
952,
13,
1102,
1851,
1330,
3551,
62,
1462,
62,
71,
20,
198,
6738,
3313,
87,
13,
952,
13,
11600,
39455,
1330,
289,
20,
83,
375,
713,
198,
6738,
3313,
87,
13,
952,
1330,
2219,
71,
20,
198,
6738,
3313,
87,
13,
952,
13,
4125,
354,
20,
1330,
18291,
39,
20,
628,
198,
4299,
1332,
62,
4480,
62,
11321,
71,
20,
7,
22065,
62,
6978,
2599,
198,
220,
220,
220,
37227,
14402,
3551,
62,
1462,
62,
71,
20,
351,
2219,
71,
20,
5128,
37811,
198,
220,
220,
220,
277,
26801,
796,
2219,
71,
20,
13,
8979,
7203,
34345,
13,
14116,
1600,
4235,
2625,
86,
4943,
198,
220,
220,
220,
1448,
796,
277,
26801,
13,
17953,
62,
8094,
7203,
8094,
4943,
198,
220,
220,
220,
27039,
796,
1448,
13,
17953,
62,
19608,
292,
316,
7203,
19608,
292,
316,
1600,
1366,
28,
77,
32152,
13,
18747,
7,
1120,
4008,
198,
220,
220,
220,
1448,
14692,
4215,
62,
8726,
8973,
796,
27039,
1303,
13610,
2705,
8726,
628,
220,
220,
220,
5072,
62,
7753,
6978,
796,
45218,
62,
6978,
1220,
366,
22915,
13,
71,
20,
1,
198,
220,
220,
220,
3551,
62,
1462,
62,
71,
20,
7,
69,
26801,
11,
965,
7,
22915,
62,
7753,
6978,
4008,
628,
220,
220,
220,
6818,
289,
20,
83,
375,
713,
7,
2536,
7,
22915,
62,
7753,
6978,
4008,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8094,
10354,
1391,
6,
19608,
292,
316,
10354,
299,
32152,
13,
18747,
7,
1120,
828,
705,
4215,
62,
8726,
10354,
299,
32152,
13,
18747,
7,
1120,
8,
5512,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
351,
289,
20,
9078,
13,
8979,
7,
22915,
62,
7753,
6978,
11,
4235,
2625,
81,
4943,
355,
289,
20,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2705,
62,
8726,
796,
289,
20,
7753,
13,
1136,
7203,
14,
8094,
14,
4215,
62,
8726,
1600,
651,
8726,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
318,
39098,
7,
4215,
62,
8726,
11,
289,
20,
9078,
13,
18380,
11280,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
2705,
62,
8726,
13,
6978,
6624,
12813,
8094,
14,
19608,
292,
316,
1,
628,
198,
4299,
1332,
62,
4480,
62,
71,
7568,
20,
7,
22065,
62,
6978,
2599,
198,
220,
220,
220,
37227,
14402,
3551,
62,
1462,
62,
71,
20,
351,
5572,
37,
20,
2393,
5128,
37811,
198,
220,
220,
220,
2393,
6978,
796,
45218,
62,
6978,
1220,
366,
8692,
13,
71,
20,
1,
198,
220,
220,
220,
351,
289,
20,
9078,
13,
8979,
7,
7753,
6978,
11,
4235,
2625,
86,
4943,
355,
289,
20,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
289,
20,
7753,
14692,
8094,
14,
19608,
292,
316,
8973,
796,
2026,
198,
220,
220,
220,
220,
220,
220,
220,
289,
20,
7753,
14692,
8094,
14,
4215,
62,
8726,
8973,
796,
289,
20,
9078,
13,
18380,
11280,
7203,
14,
8094,
14,
19608,
292,
316,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
289,
20,
7753,
14692,
8094,
14,
22615,
62,
8726,
8973,
796,
289,
20,
9078,
13,
41506,
11280,
7203,
8692,
13,
71,
20,
1600,
12813,
8094,
14,
19608,
292,
316,
4943,
628,
220,
220,
220,
5072,
62,
7753,
6978,
796,
45218,
62,
6978,
1220,
366,
22915,
13,
71,
20,
1,
198,
220,
220,
220,
3551,
62,
1462,
62,
71,
20,
7,
2536,
7,
7753,
6978,
828,
965,
7,
22915,
62,
7753,
6978,
4008,
198,
220,
220,
220,
6818,
289,
20,
83,
375,
713,
7,
2536,
7,
22915,
62,
7753,
6978,
4008,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8094,
10354,
1391,
6,
19608,
292,
316,
10354,
2026,
11,
705,
4215,
62,
8726,
10354,
2026,
5512,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
351,
289,
20,
9078,
13,
8979,
7,
22915,
62,
7753,
6978,
11,
4235,
2625,
81,
4943,
355,
289,
20,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2705,
62,
8726,
796,
289,
20,
7753,
13,
1136,
7203,
8094,
14,
4215,
62,
8726,
1600,
651,
8726,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
318,
39098,
7,
4215,
62,
8726,
11,
289,
20,
9078,
13,
18380,
11280,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
2705,
62,
8726,
13,
6978,
6624,
12813,
8094,
14,
19608,
292,
316,
1,
628,
198,
4299,
1332,
62,
4480,
62,
4125,
354,
20,
7,
22065,
62,
6978,
2599,
198,
220,
220,
220,
37227,
14402,
3551,
62,
1462,
62,
71,
20,
351,
18291,
39,
20,
5128,
37811,
198,
220,
220,
220,
2393,
6978,
796,
45218,
62,
6978,
1220,
366,
7753,
13,
16684,
1,
198,
220,
220,
220,
2393,
6978,
13,
13564,
62,
33661,
7,
198,
220,
220,
220,
220,
220,
220,
220,
9881,
7,
198,
37811,
2,
37,
1220,
22065,
14,
28202,
13,
19608,
198,
198,
2,
50,
352,
23991,
198,
2,
43,
257,
220,
275,
198,
16,
362,
198,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
21004,
11639,
292,
979,
72,
11537,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
5072,
62,
7753,
6978,
796,
45218,
62,
6978,
1220,
366,
22915,
13,
71,
20,
1,
198,
220,
220,
220,
351,
693,
354,
20,
13,
22882,
39,
20,
7,
2536,
7,
7753,
6978,
4008,
355,
693,
354,
20,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3551,
62,
1462,
62,
71,
20,
7,
4125,
354,
20,
7753,
11,
965,
7,
22915,
62,
7753,
6978,
4008,
198,
220,
220,
220,
3601,
7,
71,
20,
83,
375,
713,
7,
2536,
7,
22915,
62,
7753,
6978,
22305,
628,
220,
220,
220,
6818,
62,
40496,
7,
71,
20,
83,
375,
713,
7,
2536,
7,
22915,
62,
7753,
6978,
36911,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
16,
13,
16,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
259,
43872,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9150,
364,
10354,
1391,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16684,
7753,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7753,
62,
25677,
10354,
37250,
2,
37,
1220,
22065,
14,
28202,
13,
19608,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35836,
62,
25677,
10354,
37250,
2,
50,
352,
23991,
3256,
705,
2,
43,
257,
220,
275,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1326,
5015,
434,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
64,
10354,
685,
16,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
10354,
685,
17,
13,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9688,
62,
2435,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7839,
10354,
705,
28758,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
32092,
198
] | 2.462446 | 1,611 |
import pygame
import os
import time
import random
import requests
from rx import Observable, Observer
from rx.concurrency import ThreadPoolScheduler
from waffles_feels import waffles_feels
from waffles_commands import WafflesCMD
from waffles_pos import five_second_timer
print('0')
#Updates the actual displayed image based on waffle's reported emotional state.
#Helper method for retrieving images
_image_library = {}
#starting the display
print('0')
pygame.init()
screen = pygame.display.set_mode((400, 300))
done = False
clock = pygame.time.Clock()
CMD = WafflesCMD()
print('1')
#Creates an observable that publishes the same stream to multiple observers
emote_gen = Observable.create(waffles_feels).publish()
print('2')
#The display subscriber
disp = emote_gen.subscribe(UpdateDisplay)
print('3')
#The serial communication subscriber
pool_sch = ThreadPoolScheduler()
pos_gen = Observable.create(five_second_timer).subscribe_on(pool_sch)
emote_and_turn = Observable.merge(emote_gen, pos_gen)
print('q')
cmd = emote_and_turn.subscribe(CMD)
print('4')
emote_gen.connect()
emote_and_turn.connect()
print('5')
| [
11748,
12972,
6057,
198,
11748,
28686,
198,
11748,
640,
198,
11748,
4738,
198,
11748,
7007,
198,
6738,
374,
87,
1330,
19243,
540,
11,
27058,
198,
6738,
374,
87,
13,
1102,
34415,
1330,
14122,
27201,
50,
1740,
18173,
628,
198,
6738,
266,
48501,
62,
5036,
1424,
1330,
266,
48501,
62,
5036,
1424,
198,
6738,
266,
48501,
62,
9503,
1746,
1330,
370,
48501,
34,
12740,
198,
6738,
266,
48501,
62,
1930,
1330,
1936,
62,
12227,
62,
45016,
198,
198,
4798,
10786,
15,
11537,
198,
2,
4933,
19581,
262,
4036,
9066,
2939,
1912,
319,
266,
30697,
338,
2098,
7016,
1181,
13,
198,
197,
197,
198,
2,
47429,
2446,
329,
50122,
4263,
198,
62,
9060,
62,
32016,
796,
23884,
628,
198,
2,
38690,
262,
3359,
198,
4798,
10786,
15,
11537,
198,
9078,
6057,
13,
15003,
3419,
198,
9612,
796,
12972,
6057,
13,
13812,
13,
2617,
62,
14171,
19510,
7029,
11,
5867,
4008,
198,
28060,
796,
10352,
198,
15750,
796,
12972,
6057,
13,
2435,
13,
44758,
3419,
628,
198,
34,
12740,
796,
370,
48501,
34,
12740,
3419,
198,
4798,
10786,
16,
11537,
198,
2,
16719,
274,
281,
42550,
326,
34134,
262,
976,
4269,
284,
3294,
17984,
198,
368,
1258,
62,
5235,
796,
19243,
540,
13,
17953,
7,
86,
48501,
62,
5036,
1424,
737,
12984,
1836,
3419,
198,
4798,
10786,
17,
11537,
198,
2,
464,
3359,
32944,
628,
198,
6381,
79,
796,
795,
1258,
62,
5235,
13,
7266,
12522,
7,
10260,
23114,
8,
198,
4798,
10786,
18,
11537,
198,
2,
464,
11389,
6946,
32944,
198,
198,
7742,
62,
20601,
796,
14122,
27201,
50,
1740,
18173,
3419,
198,
1930,
62,
5235,
796,
19243,
540,
13,
17953,
7,
13261,
62,
12227,
62,
45016,
737,
7266,
12522,
62,
261,
7,
7742,
62,
20601,
8,
628,
198,
368,
1258,
62,
392,
62,
15344,
796,
19243,
540,
13,
647,
469,
7,
368,
1258,
62,
5235,
11,
1426,
62,
5235,
8,
198,
4798,
10786,
80,
11537,
198,
198,
28758,
796,
795,
1258,
62,
392,
62,
15344,
13,
7266,
12522,
7,
34,
12740,
8,
198,
4798,
10786,
19,
11537,
198,
368,
1258,
62,
5235,
13,
8443,
3419,
198,
368,
1258,
62,
392,
62,
15344,
13,
8443,
3419,
198,
4798,
10786,
20,
11537,
198
] | 3.125 | 360 |
##################################################################################
##########--this is an autogenerated python model definition for proDEX--#########
##--original file: Family_Assessment_v05_forprodex.dxi --##
##################################################################################
from .lib.proDEX import *
situ_social_activity_family = Node()
Relative_activity_Family = Node()
calls_last_7_days = Node()
visits_last_7_days = Node()
together_outside_last_7_days = Node()
Absolute_daily_activity_Family = Node()
feat_calls_count_family_relative = Atrib()
feat_calls_duration_family_relative = Atrib()
feat_visits_family_relative_past_week = Atrib()
feat_visits_family_relative = Atrib()
feat_outside_family_relative_past_week = Atrib()
feat_outside_family_relative = Atrib()
feat_calls_count_family_weekly_vs_goal = Atrib()
feat_visits_count_family_weekly_vs_goal = Atrib()
feat_outside_count_family_weekly_vs_goal = Atrib()
situ_social_activity_family.setName('situ_social_activity_family')
Relative_activity_Family.setName('Relative_activity_Family')
calls_last_7_days.setName('calls_last_7_days')
visits_last_7_days.setName('visits_last_7_days')
together_outside_last_7_days.setName('together_outside_last_7_days')
Absolute_daily_activity_Family.setName('Absolute_daily_activity_Family')
feat_calls_count_family_relative.setName('feat_calls_count_family_relative')
feat_calls_duration_family_relative.setName('feat_calls_duration_family_relative')
feat_visits_family_relative_past_week.setName('feat_visits_family_relative_past_week')
feat_visits_family_relative.setName('feat_visits_family_relative')
feat_outside_family_relative_past_week.setName('feat_outside_family_relative_past_week')
feat_outside_family_relative.setName('feat_outside_family_relative')
feat_calls_count_family_weekly_vs_goal.setName('feat_calls_count_family_weekly_vs_goal')
feat_visits_count_family_weekly_vs_goal.setName('feat_visits_count_family_weekly_vs_goal')
feat_outside_count_family_weekly_vs_goal.setName('feat_outside_count_family_weekly_vs_goal')
situ_social_activity_family.setValues(['very_low', 'low', 'medium', 'high', 'very_high'])
Relative_activity_Family.setValues(['high decrease', 'decrease', 'stable', 'increase', 'high increase'])
calls_last_7_days.setValues(['decrease', 'stable', 'increase'])
visits_last_7_days.setValues(['decrease', 'stable', 'increase'])
together_outside_last_7_days.setValues(['decrease', 'stable', 'increase'])
Absolute_daily_activity_Family.setValues(['very low', 'low', 'medium', 'high', 'very high'])
feat_calls_count_family_relative.setValues(['decrease', 'stable', 'increase'])
feat_calls_duration_family_relative.setValues(['decrease', 'stable', 'increase'])
feat_visits_family_relative_past_week.setValues(['decrease', 'stable', 'increase'])
feat_visits_family_relative.setValues(['decrease', 'stable', 'increase'])
feat_outside_family_relative_past_week.setValues(['decrease', 'stable', 'increase'])
feat_outside_family_relative.setValues(['decrease', 'stable', 'increase'])
feat_calls_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high'])
feat_visits_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high'])
feat_outside_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high'])
situ_social_activity_family.addChild(Relative_activity_Family)
Relative_activity_Family.setParent(situ_social_activity_family)
situ_social_activity_family.addChild(Absolute_daily_activity_Family)
Absolute_daily_activity_Family.setParent(situ_social_activity_family)
Relative_activity_Family.addChild(calls_last_7_days)
calls_last_7_days.setParent(Relative_activity_Family)
Relative_activity_Family.addChild(visits_last_7_days)
visits_last_7_days.setParent(Relative_activity_Family)
Relative_activity_Family.addChild(together_outside_last_7_days)
together_outside_last_7_days.setParent(Relative_activity_Family)
calls_last_7_days.addChild(feat_calls_count_family_relative)
feat_calls_count_family_relative.setParent(calls_last_7_days)
calls_last_7_days.addChild(feat_calls_duration_family_relative)
feat_calls_duration_family_relative.setParent(calls_last_7_days)
visits_last_7_days.addChild(feat_visits_family_relative_past_week)
feat_visits_family_relative_past_week.setParent(visits_last_7_days)
visits_last_7_days.addChild(feat_visits_family_relative)
feat_visits_family_relative.setParent(visits_last_7_days)
together_outside_last_7_days.addChild(feat_outside_family_relative_past_week)
feat_outside_family_relative_past_week.setParent(together_outside_last_7_days)
together_outside_last_7_days.addChild(feat_outside_family_relative)
feat_outside_family_relative.setParent(together_outside_last_7_days)
Absolute_daily_activity_Family.addChild(feat_calls_count_family_weekly_vs_goal)
feat_calls_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family)
Absolute_daily_activity_Family.addChild(feat_visits_count_family_weekly_vs_goal)
feat_visits_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family)
Absolute_daily_activity_Family.addChild(feat_outside_count_family_weekly_vs_goal)
feat_outside_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family)
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'very low'}, 'very_low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'low'}, 'very_low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'medium'}, 'low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'high'}, 'medium'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'very high'}, 'high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'very low'}, 'very_low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'low'}, 'low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'medium'}, 'medium'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'high'}, 'high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'very high'}, 'very_high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'very low'}, 'very_low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'low'}, 'low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'medium'}, 'medium'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'high'}, 'high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'very high'}, 'very_high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'very low'}, 'very_low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'low'}, 'low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'medium'}, 'medium'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'high'}, 'high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'very high'}, 'very_high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'very low'}, 'low'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'low'}, 'medium'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'medium'}, 'high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'high'}, 'very_high'])
situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'very high'}, 'very_high'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'high decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'high decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'high decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'high decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'high increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'decrease'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'stable'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'high increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'high increase'])
Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'high increase'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'decrease'}, 'decrease'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'stable'}, 'decrease'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'increase'}, 'stable'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'decrease'}, 'decrease'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'stable'}, 'stable'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'increase'}, 'increase'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'decrease'}, 'stable'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'stable'}, 'increase'])
calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'increase'}, 'increase'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'decrease'}, 'decrease'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'stable'}, 'stable'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'increase'}, 'increase'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'decrease'}, 'decrease'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'stable'}, 'stable'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'increase'}, 'increase'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'decrease'}, 'decrease'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'stable'}, 'stable'])
visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'increase'}, 'increase'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'decrease'}, 'decrease'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'stable'}, 'decrease'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'increase'}, 'stable'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'decrease'}, 'decrease'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'stable'}, 'stable'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'increase'}, 'increase'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'decrease'}, 'decrease'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'stable'}, 'stable'])
together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'increase'}, 'increase'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'very low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'low'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'medium'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'very high'])
Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high'])
| [
29113,
29113,
14468,
2235,
198,
7804,
2235,
438,
5661,
318,
281,
1960,
519,
877,
515,
21015,
2746,
6770,
329,
386,
35,
6369,
438,
7804,
2,
198,
2235,
438,
14986,
2393,
25,
7884,
62,
8021,
21687,
62,
85,
2713,
62,
1640,
1676,
67,
1069,
13,
67,
29992,
1377,
2235,
198,
29113,
29113,
14468,
2235,
198,
198,
6738,
764,
8019,
13,
1676,
35,
6369,
1330,
1635,
198,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
796,
19081,
3419,
198,
6892,
876,
62,
21797,
62,
24094,
796,
19081,
3419,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
796,
19081,
3419,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
796,
19081,
3419,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
796,
19081,
3419,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
796,
19081,
3419,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
796,
1629,
822,
3419,
198,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
796,
1629,
822,
3419,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
796,
1629,
822,
3419,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
796,
1629,
822,
3419,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
796,
1629,
822,
3419,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
796,
1629,
822,
3419,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
796,
1629,
822,
3419,
198,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
796,
1629,
822,
3419,
198,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
796,
1629,
822,
3419,
198,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2617,
5376,
10786,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
11537,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2617,
5376,
10786,
6892,
876,
62,
21797,
62,
24094,
11537,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2617,
5376,
10786,
66,
5691,
62,
12957,
62,
22,
62,
12545,
11537,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2617,
5376,
10786,
4703,
896,
62,
12957,
62,
22,
62,
12545,
11537,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2617,
5376,
10786,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
11537,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2617,
5376,
10786,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
11537,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
13,
2617,
5376,
10786,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
11537,
198,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
13,
2617,
5376,
10786,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
11537,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
5376,
10786,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
11537,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
13,
2617,
5376,
10786,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
11537,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
5376,
10786,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
11537,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
13,
2617,
5376,
10786,
27594,
62,
43435,
62,
17989,
62,
43762,
11537,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
5376,
10786,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
11537,
198,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
5376,
10786,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
11537,
198,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
5376,
10786,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
11537,
198,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2617,
40161,
7,
17816,
548,
62,
9319,
3256,
705,
9319,
3256,
705,
24132,
3256,
705,
8929,
3256,
705,
548,
62,
8929,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2617,
40161,
7,
17816,
8929,
10070,
3256,
705,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
3256,
705,
8929,
2620,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2617,
40161,
7,
17816,
548,
1877,
3256,
705,
9319,
3256,
705,
24132,
3256,
705,
8929,
3256,
705,
548,
1029,
6,
12962,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
13,
2617,
40161,
7,
17816,
12501,
260,
589,
3256,
705,
31284,
3256,
705,
24988,
589,
6,
12962,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
40161,
7,
17816,
9319,
3256,
705,
24132,
3256,
705,
8929,
6,
12962,
198,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
40161,
7,
17816,
9319,
3256,
705,
24132,
3256,
705,
8929,
6,
12962,
198,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
40161,
7,
17816,
9319,
3256,
705,
24132,
3256,
705,
8929,
6,
12962,
198,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
16424,
7,
6892,
876,
62,
21797,
62,
24094,
8,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2617,
24546,
7,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
8,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
16424,
7,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
8,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2617,
24546,
7,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
8,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
66,
5691,
62,
12957,
62,
22,
62,
12545,
8,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2617,
24546,
7,
6892,
876,
62,
21797,
62,
24094,
8,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
4703,
896,
62,
12957,
62,
22,
62,
12545,
8,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2617,
24546,
7,
6892,
876,
62,
21797,
62,
24094,
8,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
8,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2617,
24546,
7,
6892,
876,
62,
21797,
62,
24094,
8,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
8,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
13,
2617,
24546,
7,
66,
5691,
62,
12957,
62,
22,
62,
12545,
8,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
8,
198,
27594,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
13,
2617,
24546,
7,
66,
5691,
62,
12957,
62,
22,
62,
12545,
8,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
8,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
24546,
7,
4703,
896,
62,
12957,
62,
22,
62,
12545,
8,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
8,
198,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
13,
2617,
24546,
7,
4703,
896,
62,
12957,
62,
22,
62,
12545,
8,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
8,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
13,
2617,
24546,
7,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
8,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
16424,
7,
27594,
62,
43435,
62,
17989,
62,
43762,
8,
198,
27594,
62,
43435,
62,
17989,
62,
43762,
13,
2617,
24546,
7,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
8,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
8,
198,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
24546,
7,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
8,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
8,
198,
27594,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
24546,
7,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
8,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
16424,
7,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
8,
198,
27594,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
13,
2617,
24546,
7,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
8,
198,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
10070,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1877,
6,
5512,
705,
548,
62,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
10070,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
9319,
6,
5512,
705,
548,
62,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
10070,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
24132,
6,
5512,
705,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
10070,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
8929,
6,
5512,
705,
24132,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
10070,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1029,
6,
5512,
705,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
12501,
260,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1877,
6,
5512,
705,
548,
62,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
12501,
260,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
12501,
260,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
12501,
260,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
12501,
260,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1029,
6,
5512,
705,
548,
62,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
31284,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1877,
6,
5512,
705,
548,
62,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
31284,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
31284,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
31284,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
31284,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1029,
6,
5512,
705,
548,
62,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
24988,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1877,
6,
5512,
705,
548,
62,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
24988,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
24988,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
24988,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
24988,
589,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1029,
6,
5512,
705,
548,
62,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
2620,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1877,
6,
5512,
705,
9319,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
2620,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
9319,
6,
5512,
705,
24132,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
2620,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
24132,
6,
5512,
705,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
2620,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
8929,
6,
5512,
705,
548,
62,
8929,
6,
12962,
198,
82,
34272,
62,
14557,
62,
21797,
62,
17989,
13,
2860,
22203,
25166,
26933,
90,
6892,
876,
62,
21797,
62,
24094,
32105,
8929,
2620,
3256,
36532,
62,
29468,
62,
21797,
62,
24094,
32105,
548,
1029,
6,
5512,
705,
548,
62,
8929,
6,
12962,
198,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
8929,
10070,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
8929,
10070,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
8929,
10070,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
8929,
10070,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
8929,
2620,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
31284,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
8929,
2620,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
12501,
260,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
31284,
6,
5512,
705,
8929,
2620,
6,
12962,
198,
6892,
876,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
66,
5691,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
11864,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
3256,
1978,
62,
43435,
62,
12957,
62,
22,
62,
12545,
32105,
24988,
589,
6,
5512,
705,
8929,
2620,
6,
12962,
198,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
31284,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
31284,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
31284,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
31284,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
24988,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
31284,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
24988,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
24988,
589,
6,
12962,
198,
66,
5691,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
43762,
32105,
24988,
589,
3256,
2218,
62,
66,
5691,
62,
32257,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
4703,
896,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
4703,
896,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
4703,
896,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
12501,
260,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
31284,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
31284,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
12501,
260,
589,
6,
5512,
705,
12501,
260,
589,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
31284,
6,
5512,
705,
31284,
6,
12962,
198,
45525,
62,
43435,
62,
12957,
62,
22,
62,
12545,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
43435,
62,
17989,
62,
43762,
62,
30119,
62,
10464,
32105,
24988,
589,
3256,
2218,
62,
43435,
62,
17989,
62,
43762,
32105,
24988,
589,
6,
5512,
705,
24988,
589,
6,
12962,
198,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
548,
1877,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
548,
1877,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
548,
1877,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
548,
1877,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
548,
1029,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
9319,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
24132,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
548,
1029,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
9319,
6,
5512,
705,
8929,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
24132,
6,
5512,
705,
548,
1029,
6,
12962,
198,
24849,
3552,
62,
29468,
62,
21797,
62,
24094,
13,
2860,
22203,
25166,
26933,
90,
27594,
62,
66,
5691,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
4703,
896,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
3256,
2218,
62,
43435,
62,
9127,
62,
17989,
62,
45291,
62,
14259,
62,
35231,
32105,
8929,
6,
5512,
705,
548,
1029,
6,
12962,
628
] | 2.965936 | 7,486 |
if __name__ == "__main__":
s = MinStack()
s.add(5)
s.add(-3)
s.add(1)
s.add(6)
s.add(-1)
print(s.pop())
print(s.get_min())
s.add(-10)
s.pop()
| [
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
264,
796,
1855,
25896,
3419,
198,
220,
220,
220,
264,
13,
2860,
7,
20,
8,
198,
220,
220,
220,
264,
13,
2860,
32590,
18,
8,
198,
220,
220,
220,
264,
13,
2860,
7,
16,
8,
198,
220,
220,
220,
264,
13,
2860,
7,
21,
8,
198,
220,
220,
220,
264,
13,
2860,
32590,
16,
8,
198,
220,
220,
220,
3601,
7,
82,
13,
12924,
28955,
198,
220,
220,
220,
3601,
7,
82,
13,
1136,
62,
1084,
28955,
198,
220,
220,
220,
264,
13,
2860,
32590,
940,
8,
198,
220,
220,
220,
264,
13,
12924,
3419,
198
] | 1.646018 | 113 |
# --------------
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# path- variable storing file path
df = pd.read_csv(path)
df.columns[range(5)]
X = df.drop(['Price'], axis = 1)
y= df.Price
X_train,X_test,y_train,y_test = train_test_split(X , y , test_size = 0.3, random_state = 6)
corr = X_train.corr(method = 'pearson')
print(corr)
#Code starts here
# --------------
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from math import sqrt
regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
mse = (mean_squared_error(y_test, y_pred))
print(mse)
r2 = r2_score (y_test, y_pred)
# Code starts here
# --------------
from sklearn.linear_model import Lasso
# Code starts here
lasso = Lasso()
lasso.fit(X_train, y_train)
lasso_pred = lasso.predict(X_test)
r2_lasso = r2_score(y_test, y_pred)
print(r2_lasso)
# --------------
from sklearn.linear_model import Ridge
# Code starts here
ridge = Ridge()
ridge.fit(X_train, y_train)
ridge_pred = ridge.predict(X_test)
r2_ridge = r2_score(y_test , y_pred)
print(r2_ridge)
# Code ends here
# --------------
from sklearn.model_selection import cross_val_score
#Code starts here
score = cross_val_score(regressor, X_train, y_train, cv= 10)
mean_score = np.mean(score)
print(mean_score)
# --------------
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
#Code starts here
model = make_pipeline(PolynomialFeatures(2), LinearRegression())
model.fit(X_train , y_train)
y_pred = model.predict(X_test)
r2_poly = r2_score(y_test , y_pred)
print(r2_poly)
| [
2,
220,
26171,
198,
11748,
299,
32152,
355,
45941,
201,
198,
11748,
19798,
292,
355,
279,
67,
201,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
4512,
62,
9288,
62,
35312,
201,
198,
201,
198,
2,
3108,
12,
7885,
23069,
2393,
3108,
201,
198,
7568,
796,
279,
67,
13,
961,
62,
40664,
7,
6978,
8,
201,
198,
7568,
13,
28665,
82,
58,
9521,
7,
20,
15437,
201,
198,
55,
796,
47764,
13,
14781,
7,
17816,
18124,
6,
4357,
16488,
796,
352,
8,
201,
198,
88,
28,
47764,
13,
18124,
201,
198,
201,
198,
55,
62,
27432,
11,
55,
62,
9288,
11,
88,
62,
27432,
11,
88,
62,
9288,
796,
4512,
62,
9288,
62,
35312,
7,
55,
837,
331,
837,
1332,
62,
7857,
796,
657,
13,
18,
11,
4738,
62,
5219,
796,
718,
8,
201,
198,
10215,
81,
796,
1395,
62,
27432,
13,
10215,
81,
7,
24396,
796,
705,
431,
12613,
11537,
201,
198,
4798,
7,
10215,
81,
8,
201,
198,
2,
10669,
4940,
994,
628,
198,
2,
220,
26171,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
44800,
8081,
2234,
201,
198,
6738,
1341,
35720,
13,
4164,
10466,
1330,
1612,
62,
16485,
1144,
62,
18224,
11,
374,
17,
62,
26675,
201,
198,
6738,
10688,
1330,
19862,
17034,
201,
198,
201,
198,
2301,
44292,
796,
44800,
8081,
2234,
3419,
201,
198,
2301,
44292,
13,
11147,
7,
55,
62,
27432,
11,
331,
62,
27432,
8,
201,
198,
88,
62,
28764,
796,
842,
44292,
13,
79,
17407,
7,
55,
62,
9288,
8,
201,
198,
201,
198,
76,
325,
796,
357,
32604,
62,
16485,
1144,
62,
18224,
7,
88,
62,
9288,
11,
220,
331,
62,
28764,
4008,
201,
198,
4798,
7,
76,
325,
8,
201,
198,
81,
17,
796,
374,
17,
62,
26675,
357,
88,
62,
9288,
11,
331,
62,
28764,
8,
201,
198,
2,
6127,
4940,
994,
628,
198,
2,
220,
26171,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
406,
28372,
201,
198,
201,
198,
2,
6127,
4940,
994,
201,
198,
75,
28372,
796,
220,
406,
28372,
3419,
201,
198,
75,
28372,
13,
11147,
7,
55,
62,
27432,
11,
331,
62,
27432,
8,
201,
198,
75,
28372,
62,
28764,
796,
300,
28372,
13,
79,
17407,
7,
55,
62,
9288,
8,
201,
198,
81,
17,
62,
75,
28372,
796,
374,
17,
62,
26675,
7,
88,
62,
9288,
11,
331,
62,
28764,
8,
201,
198,
4798,
7,
81,
17,
62,
75,
28372,
8,
628,
198,
2,
220,
26171,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
1330,
20614,
201,
198,
201,
198,
2,
6127,
4940,
994,
201,
198,
12818,
796,
20614,
3419,
201,
198,
12818,
13,
11147,
7,
55,
62,
27432,
11,
331,
62,
27432,
8,
201,
198,
12818,
62,
28764,
796,
32525,
13,
79,
17407,
7,
55,
62,
9288,
8,
201,
198,
81,
17,
62,
12818,
796,
374,
17,
62,
26675,
7,
88,
62,
9288,
837,
331,
62,
28764,
8,
201,
198,
4798,
7,
81,
17,
62,
12818,
8,
201,
198,
201,
198,
201,
198,
2,
6127,
5645,
994,
628,
198,
2,
220,
26171,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
3272,
62,
2100,
62,
26675,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
26675,
796,
3272,
62,
2100,
62,
26675,
7,
2301,
44292,
11,
1395,
62,
27432,
11,
331,
62,
27432,
11,
220,
269,
85,
28,
838,
8,
201,
198,
32604,
62,
26675,
796,
45941,
13,
32604,
7,
26675,
8,
201,
198,
4798,
7,
32604,
62,
26675,
8,
628,
198,
2,
220,
26171,
198,
6738,
1341,
35720,
13,
3866,
36948,
1330,
12280,
26601,
498,
23595,
201,
198,
6738,
1341,
35720,
13,
79,
541,
4470,
1330,
787,
62,
79,
541,
4470,
201,
198,
201,
198,
2,
10669,
4940,
994,
201,
198,
19849,
796,
787,
62,
79,
541,
4470,
7,
34220,
26601,
498,
23595,
7,
17,
828,
44800,
8081,
2234,
28955,
201,
198,
19849,
13,
11147,
7,
55,
62,
27432,
837,
331,
62,
27432,
8,
201,
198,
88,
62,
28764,
796,
2746,
13,
79,
17407,
7,
55,
62,
9288,
8,
201,
198,
201,
198,
81,
17,
62,
35428,
796,
374,
17,
62,
26675,
7,
88,
62,
9288,
837,
331,
62,
28764,
8,
201,
198,
4798,
7,
81,
17,
62,
35428,
8,
628,
198
] | 2.521552 | 696 |
import numpy as np
import parl
from parl.utils import logger
from parl.utils import action_mapping # 将神经网络输出映射到对应的 实际动作取值范围 内
from parl.utils import ReplayMemory # 经验回放
from rlschool import make_env # 使用 RLSchool 创建飞行器环境
from parl.algorithms import DDPG
import paddle.fluid as fluid
import parl
from parl import layers
GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等
TAU = 0.001 # target_model 跟 model 同步参数 的 软更新参数
ACTOR_LR = 0.0002 # Actor网络更新的 learning rate
CRITIC_LR = 0.001 # Critic网络更新的 learning rate
MEMORY_SIZE = 1e6 # replay memory的大小,越大越占用内存
MEMORY_WARMUP_SIZE = 1e4 # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn
REWARD_SCALE = 0.01 # reward 的缩放因子
BATCH_SIZE = 256 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
TRAIN_TOTAL_STEPS = 1e6 # 总训练步数
TEST_EVERY_STEPS = 1e4 # 每个N步评估一下算法效果,每次评估5个episode求平均reward
# 评估 agent, 跑 5 个episode,总reward求平均
# 创建飞行器环境
env = make_env("Quadrotor", task="velocity_control", seed=0)
env.reset()
obs_dim = env.observation_space.shape[ 0 ]
act_dim = 5
# 使用parl框架搭建Agent:QuadrotorModel, DDPG, QuadrotorAgent三者嵌套
model = QuadrotorModel(act_dim)
algorithm = DDPG(
model, gamma=GAMMA, tau=TAU, actor_lr=ACTOR_LR, critic_lr=CRITIC_LR)
agent = QuadrotorAgent(algorithm, obs_dim, act_dim)
# 加载模型
# save_path = 'model_dir_3/steps_1000000.ckpt'
# agent.restore(save_path)
# parl库也为DDPG算法内置了ReplayMemory,可直接从 parl.utils 引入使用
rpm = ReplayMemory(int(MEMORY_SIZE), obs_dim, act_dim)
test_flag = 0
total_steps = 0
testing = 1
if (not testing):
while total_steps < TRAIN_TOTAL_STEPS:
train_reward, steps = run_episode(env, agent, rpm)
total_steps += steps
# logger.info('Steps: {} Reward: {}'.format(total_steps, train_reward))
if total_steps // TEST_EVERY_STEPS >= test_flag:
while total_steps // TEST_EVERY_STEPS >= test_flag:
test_flag += 1
evaluate_reward = evaluate(env, agent)
logger.info('Steps {}, Test reward: {}'.format(total_steps,
evaluate_reward))
# 保存模型
ckpt = 'model_dir_1/steps_{}.ckpt'.format(total_steps)
agent.save(ckpt)
else:
# 加载模型
save_path = 'steps_1000000.ckpt'
agent.restore(save_path)
evaluate_reward = evaluate(env, agent, render=True)
logger.info('Test reward: {}'.format(evaluate_reward)) | [
11748,
299,
32152,
355,
45941,
198,
11748,
1582,
75,
198,
6738,
1582,
75,
13,
26791,
1330,
49706,
198,
6738,
1582,
75,
13,
26791,
1330,
2223,
62,
76,
5912,
220,
1303,
10263,
108,
228,
15351,
163,
119,
237,
163,
121,
239,
163,
119,
250,
164,
122,
241,
49035,
118,
23626,
254,
22887,
226,
26344,
108,
43380,
117,
41753,
242,
21410,
10263,
106,
252,
165,
247,
227,
27950,
101,
43291,
20998,
244,
161,
222,
120,
164,
234,
225,
32368,
112,
10263,
228,
227,
198,
6738,
1582,
75,
13,
26791,
1330,
23635,
30871,
220,
1303,
13328,
119,
237,
165,
103,
234,
32368,
252,
162,
242,
122,
198,
6738,
374,
7278,
1251,
1330,
787,
62,
24330,
220,
1303,
220,
45635,
18796,
101,
371,
6561,
1251,
10263,
230,
249,
161,
119,
118,
45617,
252,
26193,
234,
161,
247,
101,
163,
236,
107,
161,
95,
225,
198,
6738,
1582,
75,
13,
282,
7727,
907,
1330,
360,
6322,
38,
628,
198,
198,
11748,
39517,
13,
35522,
312,
355,
11711,
198,
11748,
1582,
75,
198,
6738,
1582,
75,
1330,
11685,
628,
628,
628,
198,
38,
2390,
5673,
796,
657,
13,
2079,
220,
1303,
6721,
13328,
248,
226,
26193,
108,
49035,
237,
32368,
254,
36310,
171,
120,
234,
31660,
48958,
105,
20998,
244,
657,
13,
24,
10263,
230,
108,
657,
13,
17032,
220,
38834,
163,
255,
231,
198,
5603,
52,
796,
657,
13,
8298,
220,
1303,
2496,
62,
19849,
5525,
115,
253,
2746,
10263,
238,
234,
29826,
98,
20998,
224,
46763,
108,
13328,
248,
226,
5525,
121,
107,
162,
249,
112,
23877,
108,
20998,
224,
46763,
108,
198,
10659,
1581,
62,
35972,
796,
657,
13,
34215,
220,
1303,
27274,
163,
121,
239,
163,
119,
250,
162,
249,
112,
23877,
108,
21410,
4673,
2494,
198,
9419,
2043,
2149,
62,
35972,
796,
657,
13,
8298,
220,
1303,
10056,
291,
163,
121,
239,
163,
119,
250,
162,
249,
112,
23877,
108,
21410,
4673,
2494,
198,
44,
3620,
15513,
62,
33489,
796,
352,
68,
21,
220,
1303,
24788,
4088,
21410,
32014,
22887,
237,
171,
120,
234,
164,
114,
232,
32014,
164,
114,
232,
39355,
254,
18796,
101,
37863,
227,
27764,
246,
198,
44,
3620,
15513,
62,
16279,
44,
8577,
62,
33489,
796,
352,
68,
19,
220,
1303,
24788,
62,
31673,
16268,
229,
234,
165,
250,
222,
17358,
223,
165,
95,
226,
27764,
246,
31660,
12859,
249,
163,
119,
237,
165,
103,
234,
46763,
108,
162,
235,
106,
171,
120,
234,
37863,
235,
20015,
236,
34932,
234,
165,
251,
95,
39873,
31660,
10310,
103,
43501,
21410,
163,
119,
237,
165,
103,
234,
164,
106,
102,
25781,
43889,
119,
35720,
198,
2200,
39743,
62,
6173,
21358,
796,
657,
13,
486,
220,
1303,
6721,
13328,
248,
226,
163,
120,
102,
162,
242,
122,
32368,
254,
36310,
198,
33,
11417,
62,
33489,
796,
17759,
220,
1303,
10545,
107,
237,
162,
105,
94,
163,
119,
247,
25781,
2193,
21410,
46763,
108,
162,
235,
106,
46763,
108,
34932,
237,
171,
120,
234,
20015,
236,
260,
1759,
4088,
49694,
237,
17312,
118,
34932,
234,
39873,
31660,
33699,
117,
46763,
108,
162,
235,
106,
49035,
118,
30266,
98,
198,
51,
3861,
1268,
62,
51,
27510,
62,
30516,
3705,
796,
352,
68,
21,
220,
1303,
10545,
222,
119,
164,
106,
255,
163,
119,
225,
29826,
98,
46763,
108,
198,
51,
6465,
62,
36,
5959,
56,
62,
30516,
3705,
796,
352,
68,
19,
220,
1303,
10545,
107,
237,
10310,
103,
45,
29826,
98,
46237,
226,
27670,
108,
31660,
10310,
233,
163,
106,
245,
37345,
243,
46763,
230,
162,
252,
250,
171,
120,
234,
162,
107,
237,
162,
105,
94,
46237,
226,
27670,
108,
20,
10310,
103,
38668,
162,
109,
224,
33176,
111,
161,
251,
229,
260,
904,
628,
198,
198,
2,
5525,
107,
226,
27670,
108,
5797,
11,
5525,
115,
239,
642,
220,
10310,
103,
38668,
171,
120,
234,
45250,
119,
260,
904,
162,
109,
224,
33176,
111,
161,
251,
229,
628,
198,
2,
10263,
230,
249,
161,
119,
118,
45617,
252,
26193,
234,
161,
247,
101,
163,
236,
107,
161,
95,
225,
198,
24330,
796,
787,
62,
24330,
7203,
4507,
324,
10599,
273,
1600,
4876,
2625,
626,
11683,
62,
13716,
1600,
9403,
28,
15,
8,
198,
24330,
13,
42503,
3419,
198,
8158,
62,
27740,
796,
17365,
13,
672,
3168,
341,
62,
13200,
13,
43358,
58,
657,
2361,
198,
529,
62,
27740,
796,
642,
198,
198,
2,
220,
45635,
18796,
101,
1845,
75,
162,
94,
228,
162,
252,
35050,
238,
255,
161,
119,
118,
36772,
171,
120,
248,
4507,
324,
10599,
273,
17633,
11,
360,
6322,
38,
11,
20648,
10599,
273,
36772,
49011,
38519,
161,
113,
234,
25001,
245,
198,
19849,
796,
20648,
10599,
273,
17633,
7,
529,
62,
27740,
8,
198,
282,
42289,
796,
360,
6322,
38,
7,
198,
220,
220,
220,
2746,
11,
34236,
28,
38,
2390,
5673,
11,
256,
559,
28,
5603,
52,
11,
8674,
62,
14050,
28,
10659,
1581,
62,
35972,
11,
4014,
62,
14050,
28,
9419,
2043,
2149,
62,
35972,
8,
198,
25781,
796,
20648,
10599,
273,
36772,
7,
282,
42289,
11,
10201,
62,
27740,
11,
719,
62,
27740,
8,
198,
198,
2,
10263,
232,
254,
164,
121,
121,
162,
101,
94,
161,
252,
233,
198,
2,
3613,
62,
6978,
796,
705,
19849,
62,
15908,
62,
18,
14,
20214,
62,
16,
10535,
13,
694,
457,
6,
198,
2,
5797,
13,
2118,
382,
7,
21928,
62,
6978,
8,
198,
198,
2,
1582,
75,
41753,
241,
20046,
253,
10310,
118,
35,
6322,
38,
163,
106,
245,
37345,
243,
37863,
227,
163,
121,
106,
12859,
228,
3041,
1759,
30871,
171,
120,
234,
20998,
107,
33566,
112,
162,
236,
98,
20015,
236,
1582,
75,
13,
26791,
10263,
120,
243,
17739,
98,
45635,
18796,
101,
198,
48235,
796,
23635,
30871,
7,
600,
7,
44,
3620,
15513,
62,
33489,
828,
10201,
62,
27740,
11,
719,
62,
27740,
8,
198,
198,
9288,
62,
32109,
796,
657,
198,
23350,
62,
20214,
796,
657,
628,
198,
33407,
796,
352,
198,
198,
361,
357,
1662,
4856,
2599,
198,
220,
220,
220,
981,
2472,
62,
20214,
1279,
29125,
1268,
62,
51,
27510,
62,
30516,
3705,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
260,
904,
11,
4831,
796,
1057,
62,
38668,
7,
24330,
11,
5797,
11,
37542,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2472,
62,
20214,
15853,
4831,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
49706,
13,
10951,
10786,
8600,
82,
25,
23884,
32307,
25,
23884,
4458,
18982,
7,
23350,
62,
20214,
11,
4512,
62,
260,
904,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2472,
62,
20214,
3373,
43001,
62,
36,
5959,
56,
62,
30516,
3705,
18189,
1332,
62,
32109,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
2472,
62,
20214,
3373,
43001,
62,
36,
5959,
56,
62,
30516,
3705,
18189,
1332,
62,
32109,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
32109,
15853,
352,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13446,
62,
260,
904,
796,
13446,
7,
24330,
11,
5797,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
10786,
8600,
82,
1391,
5512,
6208,
6721,
25,
23884,
4458,
18982,
7,
23350,
62,
20214,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13446,
62,
260,
904,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
46479,
251,
27764,
246,
162,
101,
94,
161,
252,
233,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
74,
457,
796,
705,
19849,
62,
15908,
62,
16,
14,
20214,
23330,
27422,
694,
457,
4458,
18982,
7,
23350,
62,
20214,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
13,
21928,
7,
694,
457,
8,
198,
198,
17772,
25,
198,
220,
220,
220,
1303,
10263,
232,
254,
164,
121,
121,
162,
101,
94,
161,
252,
233,
198,
220,
220,
220,
3613,
62,
6978,
796,
705,
20214,
62,
16,
10535,
13,
694,
457,
6,
198,
220,
220,
220,
5797,
13,
2118,
382,
7,
21928,
62,
6978,
8,
628,
220,
220,
220,
13446,
62,
260,
904,
796,
13446,
7,
24330,
11,
5797,
11,
8543,
28,
17821,
8,
198,
220,
220,
220,
49706,
13,
10951,
10786,
14402,
6721,
25,
23884,
4458,
18982,
7,
49786,
62,
260,
904,
4008
] | 1.68042 | 1,430 |
# -*- coding: utf-8 -*-
import redis
import logging
try:
import simplejson as json
except ImportError:
import json
_logger = logging.getLogger(__name__)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
2266,
271,
198,
11748,
18931,
198,
28311,
25,
198,
220,
220,
220,
1330,
2829,
17752,
355,
33918,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
1330,
33918,
198,
198,
62,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
220,
220,
220,
220,
198
] | 2.584615 | 65 |
import os
import pickle
import numpy as np
from tqdm import tqdm
from argparse import ArgumentParser
import optuna
optuna.logging.set_verbosity ( optuna.logging.ERROR ) # silence Optuna during trials study
import warnings
warnings.filterwarnings ( "ignore", category = RuntimeWarning )
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing import MinMaxScaler
from imblearn.over_sampling import SMOTE
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.feature_selection import RFECV
from sklearn.metrics import roc_auc_score, confusion_matrix, roc_curve
from utils import custom_predictions, multiclass_predictions, plot_conf_matrices, plot_multi_prf_histos
LABELS = ["cHL", "GZL", "PMBCL"]
# +-------------------+
# | Options setup |
# +-------------------+
MODELS = [ "log-reg", "lin-svm", "gaus-proc", "rnd-frs", "grad-bdt" ]
parser = ArgumentParser ( description = "training script" )
parser . add_argument ( "-m" , "--model" , required = True , choices = MODELS )
parser . add_argument ( "-s" , "--split" , default = "50/30/20" )
parser . add_argument ( "-t" , "--threshold" , default = "rec90" )
args = parser . parse_args()
if len ( args.split.split("/") ) == 2:
test_size = 0.5 * float(args.split.split("/")[-1]) / 100
val_size = test_size
val_size /= ( 1 - test_size ) # w.r.t. new dataset size
elif len ( args.split.split("/") ) == 3:
test_size = float(args.split.split("/")[2]) / 100
val_size = float(args.split.split("/")[1]) / 100
val_size /= ( 1 - test_size ) # w.r.t. new dataset size
else:
raise ValueError (f"The splitting ratios should be passed as 'XX/YY/ZZ', where XX% is "
f"the percentage of data used for training, while YY% and ZZ% are "
f"the ones used for validation and testing respectively.")
if "rec" in args.threshold:
rec_score = float(args.threshold.split("rec")[-1]) / 100
prec_score = None
elif "prec" in args.threshold:
rec_score = None
prec_score = float(args.threshold.split("prec")[-1]) / 100
else:
raise ValueError (f"The rule for custom predictions should be passed as 'recXX' where "
f"XX% is the minimum recall score required, or as 'precYY' where YY% "
f"is the minimum precision score required.")
# +------------------+
# | Data loading |
# +------------------+
data_dir = "./data"
data_file = "db_mediastinalbulky_reduced.pkl"
file_path = os.path.join ( data_dir, data_file )
with open (file_path, "rb") as file:
data = pickle.load (file)
# +------------------------------+
# | Input/output preparation |
# +------------------------------+
cols = list ( data.columns )
X_cols = cols[2:]
y_cols = "lymphoma_type"
X = data.query("lymphoma_type != 2")[X_cols] . to_numpy()
y = data.query("lymphoma_type != 2")[y_cols] . to_numpy() . flatten()
y = ( y == 3 ) # PMBCL/cHL classification
X_gz = data.query("lymphoma_type == 2")[X_cols] . to_numpy()
y_gz = data.query("lymphoma_type == 2")[y_cols] . to_numpy() . flatten()
# +------------------------+
# | Sub-sample studies |
# +------------------------+
conf_matrices = [ list() , list() , list() ] # container for confusion matrices
recalls = [ list() , list() , list() ] # container for recalls
precisions = [ list() , list() , list() ] # container for precisions
roc_curves = [ list() , list() ] # container for ROC curve variables
## initial control values
optimized = False
append_to_roc = [ True , True ]
n_roc_points = [ -1 , -1 ]
for i in tqdm(range(250)):
# +--------------------------+
# | Train/test splitting |
# +--------------------------+
sss = StratifiedShuffleSplit ( n_splits = 1, test_size = test_size )
for idx_train, idx_test in sss . split ( X, y ):
X_train , y_train = X[idx_train] , y[idx_train]
X_test , y_test = X[idx_test] , y[idx_test]
# +------------------------+
# | Data preprocessing |
# +------------------------+
scaler_train = MinMaxScaler()
X_train = scaler_train.fit_transform (X_train)
scaler_test = MinMaxScaler()
X_test = scaler_test.fit_transform (X_test)
scaler_gz = MinMaxScaler()
X_gz = scaler_gz.fit_transform (X_gz)
# +------------------+
# | Optuna setup |
# +------------------+
# +------------------------------+
# | Hyperparams optimization |
# +------------------------------+
## LOGISTIC REGRESSION
if args.model == "log-reg":
best_model = LogisticRegression()
## LINEAR SVM
elif args.model == "lin-svm":
best_model = SVC ( kernel = "linear", probability = True )
## GAUSSIAN PROCESS
elif args.model == "gaus-proc":
best_model = GaussianProcessClassifier()
## RANDOM FOREST
elif args.model == "rnd-frs":
if not optimized:
study = optuna_study ( model_name = "rnd_forest_clf" ,
storage_dir = "./storage" ,
objective = objective ,
n_trials = 50 ,
direction = "maximize" ,
load_if_exists = False )
optimized = True
best_model = RandomForestClassifier ( n_estimators = study.best_params["n_estims"] ,
max_depth = study.best_params["max_depth"] )
## GRADIENT BDT
elif args.model == "grad-bdt":
if not optimized:
study = optuna_study ( model_name = "grad_bdt_clf" ,
storage_dir = "./storage" ,
objective = objective ,
n_trials = 50 ,
direction = "maximize" ,
load_if_exists = False )
optimized = True
best_model = GradientBoostingClassifier ( learning_rate = study.best_params["learn_rate"] ,
n_estimators = study.best_params["n_estims"] ,
max_depth = study.best_params["max_depth"] )
# +---------------------------+
# | Multiclass boundaries |
# +---------------------------+
# +-----------------------------------------+
# | Model performance on train/test set |
# +-----------------------------------------+
## train/val splitting
sss = StratifiedShuffleSplit ( n_splits = 1, test_size = val_size )
for idx_trn, idx_val in sss . split ( X_train, y_train ):
X_trn , y_trn = X_train[idx_trn] , y_train[idx_trn]
X_val , y_val = X_train[idx_val] , y_train[idx_val]
sm = SMOTE() # oversampling technique
X_trn_res, y_trn_res = sm.fit_resample ( X_trn , y_trn )
## combine the datasets
X_trn_comb = np.concatenate ( [ X_trn, X_gz ] )
y_trn_comb = np.concatenate ( [ np.where(y_trn, 3, 1), y_gz ] )
X_val_comb = np.concatenate ( [ X_val, X_gz ] )
y_val_comb = np.concatenate ( [ np.where(y_val, 3, 1), y_gz ] )
X_test_comb = np.concatenate ( [ X_test, X_gz ] )
y_test_comb = np.concatenate ( [ np.where(y_test, 3, 1), y_gz ] )
X_eval_comb = np.concatenate ( [ X_val, X_test, X_gz ] )
y_eval_comb = np.concatenate ( [ np.where(y_val, 3, 1) , np.where(y_test, 3, 1), y_gz ] )
## model training
best_model . fit (X_trn_res, y_trn_res)
## model predictions
y_scores_trn = best_model.predict_proba ( X_trn )
_, threshold = custom_predictions ( y_true = y_trn ,
y_scores = y_scores_trn ,
recall_score = rec_score ,
precision_score = prec_score )
y_scores_trn_comb = best_model.predict_proba ( X_trn_comb )
y_pred_trn = multiclass_predictions ( y_true = y_trn_comb ,
y_scores = y_scores_trn_comb ,
boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the true train-set
y_scores_val_comb = best_model.predict_proba ( X_val_comb )
y_pred_val = multiclass_predictions ( y_true = y_val_comb ,
y_scores = y_scores_val_comb ,
boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the val-set
y_scores_test_comb = best_model.predict_proba ( X_test_comb )
y_pred_test = multiclass_predictions ( y_true = y_test_comb ,
y_scores = y_scores_test_comb ,
boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the test-set
y_scores_eval_comb = best_model.predict_proba ( X_eval_comb )
y_pred_eval = multiclass_predictions ( y_true = y_eval_comb ,
y_scores = y_scores_eval_comb ,
boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the val-set + test-set
## model performances
conf_matrix_trn = confusion_matrix ( y_trn_comb, y_pred_trn )
recall_2 = conf_matrix_trn[2,2] / np.sum ( conf_matrix_trn[2,:] )
recall_1 = conf_matrix_trn[1,1] / np.sum ( conf_matrix_trn[1,:] )
precision_2 = conf_matrix_trn[2,2] / np.sum ( conf_matrix_trn[:,2] )
precision_1 = conf_matrix_trn[1,1] / np.sum ( conf_matrix_trn[:,1] )
conf_matrices[0] . append ( conf_matrix_trn ) # add to the relative container
recalls[0] . append ( [recall_2, recall_1] ) # add to the relative container
precisions[0] . append ( [precision_2, precision_1] ) # add to the relative container
conf_matrix_val = confusion_matrix ( y_val_comb, y_pred_val )
recall_2 = conf_matrix_val[2,2] / np.sum ( conf_matrix_val[2,:] )
recall_1 = conf_matrix_val[1,1] / np.sum ( conf_matrix_val[1,:] )
precision_2 = conf_matrix_val[2,2] / np.sum ( conf_matrix_val[:,2] )
precision_1 = conf_matrix_val[1,1] / np.sum ( conf_matrix_val[:,1] )
conf_matrices[1] . append ( conf_matrix_val ) # add to the relative container
recalls[1] . append ( [recall_2, recall_1] ) # add to the relative container
precisions[1] . append ( [precision_2, precision_1] ) # add to the relative container
conf_matrix_test = confusion_matrix ( y_test_comb, y_pred_test )
recall_2 = conf_matrix_test[2,2] / np.sum ( conf_matrix_test[2,:] )
recall_1 = conf_matrix_test[1,1] / np.sum ( conf_matrix_test[1,:] )
precision_2 = conf_matrix_test[2,2] / np.sum ( conf_matrix_test[:,2] )
precision_1 = conf_matrix_test[1,1] / np.sum ( conf_matrix_test[:,1] )
conf_matrices[2] . append ( conf_matrix_test ) # add to the relative container
recalls[2] . append ( [recall_2, recall_1] ) # add to the relative container
precisions[2] . append ( [precision_2, precision_1] ) # add to the relative container
auc_eval_2 = roc_auc_score ( (y_eval_comb == 3), y_scores_eval_comb[:,1] ) # one-vs-all AUC score (PMBCL class)
fpr_eval_2 , tpr_eval_2 , _ = roc_curve ( (y_eval_comb == 3), y_scores_eval_comb[:,1] ) # one-vs-all ROC curve (PMBCL class)
if (len(fpr_eval_2) == n_roc_points[0]): append_to_roc[0] = True
if append_to_roc[0]:
roc_curves[0] . append ( np.c_ [1 - fpr_eval_2, tpr_eval_2, auc_eval_2 * np.ones_like(fpr_eval_2)] ) # add to the relative container
append_to_roc[0] = False ; n_roc_points[0] = len(fpr_eval_2)
auc_eval_1 = roc_auc_score ( (y_eval_comb == 2), y_scores_eval_comb[:,1] ) # one-vs-all AUC score (GZL class)
fpr_eval_1 , tpr_eval_1 , _ = roc_curve ( (y_eval_comb == 2), y_scores_eval_comb[:,1] ) # one-vs-all ROC curve (GZL class)
if (len(fpr_eval_1) == n_roc_points[1]): append_to_roc[1] = True
if append_to_roc[1]:
roc_curves[1] . append ( np.c_ [1 - fpr_eval_1, tpr_eval_1, auc_eval_1 * np.ones_like(fpr_eval_1)] ) # add to the relative container
append_to_roc[1] = False ; n_roc_points[1] = len(fpr_eval_1)
# +----------------------+
# | Plots generation |
# +----------------------+
plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[0], axis = 0) . astype(np.int32) ,
labels = LABELS ,
show_matrix = "both" ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_train" )
plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[1], axis = 0) . astype(np.int32) ,
labels = LABELS ,
show_matrix = "both" ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_val" )
plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[2], axis = 0) . astype(np.int32) ,
labels = LABELS ,
show_matrix = "both" ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_test" )
plot_multi_prf_histos ( rec_scores = ( np.array(recalls[0])[:,0] , np.array(recalls[0])[:,1] ) ,
prec_scores = ( np.array(precisions[0])[:,0] , np.array(precisions[0])[:,1] ) ,
bins = 25 ,
title = f"Performance of multi-class {model_name()} (on train-set)" ,
cls_labels = (LABELS[2], LABELS[1]) ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_train_prf" )
plot_multi_prf_histos ( rec_scores = ( np.array(recalls[1])[:,0] , np.array(recalls[1])[:,1] ) ,
prec_scores = ( np.array(precisions[1])[:,0] , np.array(precisions[1])[:,1] ) ,
bins = 25 ,
title = f"Performance of multi-class {model_name()} (on val-set)" ,
cls_labels = (LABELS[2], LABELS[1]) ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_val_prf" )
plot_multi_prf_histos ( rec_scores = ( np.array(recalls[2])[:,0] , np.array(recalls[2])[:,1] ) ,
prec_scores = ( np.array(precisions[2])[:,0] , np.array(precisions[2])[:,1] ) ,
bins = 25 ,
title = f"Performance of multi-class {model_name()} (on test-set)" ,
cls_labels = (LABELS[2], LABELS[1]) ,
save_figure = True ,
fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_test_prf" )
# +-------------------+
# | Scores export |
# +-------------------+
roc_vars_lbl3 = np.c_ [ np.mean(roc_curves[0], axis = 0) , np.std(roc_curves[0], axis = 0)[:,2] ]
roc_vars_lbl2 = np.c_ [ np.mean(roc_curves[1], axis = 0) , np.std(roc_curves[1], axis = 0)[:,2] ]
score_dir = "scores"
score_name = f"{args.model}_{args.threshold}"
filename = f"{score_dir}/multi-clf/{score_name}.npz"
np . savez ( filename, roc_vars_lbl3 = roc_vars_lbl3, roc_vars_lbl2 = roc_vars_lbl2 )
print (f"Scores correctly exported to {filename}")
| [
11748,
28686,
198,
11748,
2298,
293,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
256,
80,
36020,
220,
220,
220,
220,
1330,
256,
80,
36020,
198,
6738,
1822,
29572,
1330,
45751,
46677,
198,
198,
11748,
2172,
9613,
198,
8738,
9613,
13,
6404,
2667,
13,
2617,
62,
19011,
16579,
357,
2172,
9613,
13,
6404,
2667,
13,
24908,
1267,
220,
220,
1303,
9550,
13123,
9613,
1141,
9867,
2050,
198,
198,
11748,
14601,
198,
40539,
654,
13,
24455,
40539,
654,
357,
366,
46430,
1600,
6536,
796,
43160,
20361,
1267,
198,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
220,
220,
1330,
29186,
1431,
2484,
18137,
41205,
198,
6738,
1341,
35720,
13,
3866,
36948,
220,
220,
220,
220,
1330,
1855,
11518,
3351,
36213,
198,
6738,
545,
903,
1501,
13,
2502,
62,
37687,
11347,
220,
220,
220,
1330,
9447,
23051,
198,
6738,
1341,
35720,
13,
29127,
62,
19849,
220,
220,
220,
220,
220,
1330,
5972,
2569,
8081,
2234,
198,
6738,
1341,
35720,
13,
82,
14761,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
311,
15922,
198,
6738,
1341,
35720,
13,
4908,
31562,
62,
14681,
220,
1330,
12822,
31562,
18709,
9487,
7483,
198,
6738,
1341,
35720,
13,
1072,
11306,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
14534,
34605,
9487,
7483,
11,
17701,
1153,
45686,
278,
9487,
7483,
198,
6738,
1341,
35720,
13,
30053,
62,
49283,
1330,
20445,
2943,
53,
198,
6738,
1341,
35720,
13,
4164,
10466,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
686,
66,
62,
14272,
62,
26675,
11,
10802,
62,
6759,
8609,
11,
686,
66,
62,
22019,
303,
198,
198,
6738,
3384,
4487,
1330,
2183,
62,
28764,
9278,
11,
47368,
31172,
62,
28764,
9278,
11,
7110,
62,
10414,
62,
6759,
45977,
11,
7110,
62,
41684,
62,
1050,
69,
62,
10034,
418,
198,
198,
48780,
37142,
796,
14631,
66,
6581,
1600,
366,
38,
57,
43,
1600,
366,
5868,
2749,
43,
8973,
198,
198,
2,
220,
220,
1343,
1783,
6329,
10,
198,
2,
220,
220,
930,
220,
220,
18634,
9058,
220,
220,
930,
198,
2,
220,
220,
1343,
1783,
6329,
10,
198,
198,
33365,
37142,
796,
685,
366,
6404,
12,
2301,
1600,
366,
2815,
12,
82,
14761,
1600,
366,
4908,
385,
12,
36942,
1600,
366,
81,
358,
12,
69,
3808,
1600,
366,
9744,
12,
17457,
83,
1,
2361,
198,
198,
48610,
796,
45751,
46677,
357,
6764,
796,
366,
34409,
4226,
1,
1267,
198,
48610,
764,
751,
62,
49140,
357,
27444,
76,
1,
837,
366,
438,
19849,
1,
220,
220,
220,
220,
837,
2672,
796,
6407,
837,
7747,
796,
19164,
37142,
1267,
198,
48610,
764,
751,
62,
49140,
357,
27444,
82,
1,
837,
366,
438,
35312,
1,
220,
220,
220,
220,
837,
4277,
220,
796,
366,
1120,
14,
1270,
14,
1238,
1,
1267,
198,
48610,
764,
751,
62,
49140,
357,
27444,
83,
1,
837,
366,
438,
400,
10126,
1,
837,
4277,
220,
796,
366,
8344,
3829,
1,
1267,
198,
22046,
796,
30751,
764,
21136,
62,
22046,
3419,
198,
198,
361,
18896,
357,
26498,
13,
35312,
13,
35312,
7203,
14,
4943,
1267,
6624,
362,
25,
198,
220,
1332,
62,
7857,
796,
657,
13,
20,
1635,
12178,
7,
22046,
13,
35312,
13,
35312,
7203,
14,
4943,
58,
12,
16,
12962,
1220,
1802,
198,
220,
1188,
62,
7857,
220,
796,
1332,
62,
7857,
198,
220,
1188,
62,
7857,
1220,
28,
357,
352,
532,
1332,
62,
7857,
1267,
220,
220,
1303,
266,
13,
81,
13,
83,
13,
649,
27039,
2546,
198,
417,
361,
18896,
357,
26498,
13,
35312,
13,
35312,
7203,
14,
4943,
1267,
6624,
513,
25,
198,
220,
1332,
62,
7857,
796,
12178,
7,
22046,
13,
35312,
13,
35312,
7203,
14,
4943,
58,
17,
12962,
1220,
1802,
198,
220,
1188,
62,
7857,
220,
796,
12178,
7,
22046,
13,
35312,
13,
35312,
7203,
14,
4943,
58,
16,
12962,
1220,
1802,
198,
220,
1188,
62,
7857,
1220,
28,
357,
352,
532,
1332,
62,
7857,
1267,
220,
220,
1303,
266,
13,
81,
13,
83,
13,
649,
27039,
2546,
198,
17772,
25,
198,
220,
5298,
11052,
12331,
357,
69,
1,
464,
26021,
22423,
815,
307,
3804,
355,
705,
8051,
14,
26314,
14,
30148,
3256,
810,
21044,
4,
318,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
1169,
5873,
286,
1366,
973,
329,
3047,
11,
981,
575,
56,
4,
290,
1168,
57,
4,
389,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
1169,
3392,
973,
329,
21201,
290,
4856,
8148,
19570,
198,
198,
361,
366,
8344,
1,
287,
26498,
13,
400,
10126,
25,
198,
220,
664,
62,
26675,
220,
796,
12178,
7,
22046,
13,
400,
10126,
13,
35312,
7203,
8344,
4943,
58,
12,
16,
12962,
1220,
1802,
198,
220,
3718,
62,
26675,
796,
6045,
198,
417,
361,
366,
3866,
66,
1,
287,
26498,
13,
400,
10126,
25,
198,
220,
664,
62,
26675,
220,
796,
6045,
198,
220,
3718,
62,
26675,
796,
12178,
7,
22046,
13,
400,
10126,
13,
35312,
7203,
3866,
66,
4943,
58,
12,
16,
12962,
1220,
1802,
198,
17772,
25,
198,
220,
5298,
11052,
12331,
357,
69,
1,
464,
3896,
329,
2183,
16277,
815,
307,
3804,
355,
705,
8344,
8051,
6,
810,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
8051,
4,
318,
262,
5288,
10014,
4776,
2672,
11,
393,
355,
705,
3866,
66,
26314,
6,
810,
575,
56,
4,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
271,
262,
5288,
15440,
4776,
2672,
19570,
198,
198,
2,
220,
220,
1343,
1783,
44785,
198,
2,
220,
220,
930,
220,
220,
6060,
11046,
220,
220,
930,
198,
2,
220,
220,
1343,
1783,
44785,
198,
198,
7890,
62,
15908,
220,
796,
366,
19571,
7890,
1,
198,
7890,
62,
7753,
796,
366,
9945,
62,
2379,
459,
1292,
15065,
2584,
62,
445,
19513,
13,
79,
41582,
1,
220,
198,
7753,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
357,
1366,
62,
15908,
11,
1366,
62,
7753,
1267,
198,
198,
4480,
1280,
357,
7753,
62,
6978,
11,
366,
26145,
4943,
355,
2393,
25,
198,
220,
1366,
796,
2298,
293,
13,
2220,
357,
7753,
8,
198,
198,
2,
220,
220,
1343,
1783,
26171,
10,
198,
2,
220,
220,
930,
220,
220,
23412,
14,
22915,
11824,
220,
220,
930,
198,
2,
220,
220,
1343,
1783,
26171,
10,
198,
198,
4033,
82,
796,
1351,
357,
1366,
13,
28665,
82,
1267,
198,
55,
62,
4033,
82,
796,
951,
82,
58,
17,
47715,
198,
88,
62,
4033,
82,
796,
366,
306,
23335,
6086,
62,
4906,
1,
198,
198,
55,
796,
1366,
13,
22766,
7203,
306,
23335,
6086,
62,
4906,
14512,
362,
4943,
58,
55,
62,
4033,
82,
60,
764,
284,
62,
77,
32152,
3419,
198,
88,
796,
1366,
13,
22766,
7203,
306,
23335,
6086,
62,
4906,
14512,
362,
4943,
58,
88,
62,
4033,
82,
60,
764,
284,
62,
77,
32152,
3419,
764,
27172,
268,
3419,
198,
88,
796,
357,
331,
6624,
513,
1267,
220,
220,
1303,
3122,
2749,
43,
14,
66,
6581,
17923,
198,
198,
55,
62,
34586,
796,
1366,
13,
22766,
7203,
306,
23335,
6086,
62,
4906,
6624,
362,
4943,
58,
55,
62,
4033,
82,
60,
764,
284,
62,
77,
32152,
3419,
198,
88,
62,
34586,
796,
1366,
13,
22766,
7203,
306,
23335,
6086,
62,
4906,
6624,
362,
4943,
58,
88,
62,
4033,
82,
60,
764,
284,
62,
77,
32152,
3419,
764,
27172,
268,
3419,
198,
198,
2,
220,
220,
1343,
22369,
10,
198,
2,
220,
220,
930,
220,
220,
3834,
12,
39873,
3640,
220,
220,
930,
198,
2,
220,
220,
1343,
22369,
10,
198,
198,
10414,
62,
6759,
45977,
796,
685,
1351,
3419,
837,
1351,
3419,
837,
1351,
3419,
2361,
220,
220,
1303,
9290,
329,
10802,
2603,
45977,
198,
8344,
5691,
220,
220,
220,
220,
220,
220,
796,
685,
1351,
3419,
837,
1351,
3419,
837,
1351,
3419,
2361,
220,
220,
1303,
9290,
329,
16865,
198,
3866,
66,
3279,
220,
220,
220,
796,
685,
1351,
3419,
837,
1351,
3419,
837,
1351,
3419,
2361,
220,
220,
1303,
9290,
329,
3718,
3279,
198,
12204,
62,
22019,
1158,
220,
220,
220,
796,
685,
1351,
3419,
837,
1351,
3419,
2361,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9290,
329,
371,
4503,
12133,
9633,
198,
198,
2235,
4238,
1630,
3815,
198,
40085,
1143,
796,
10352,
198,
33295,
62,
1462,
62,
12204,
796,
685,
6407,
837,
6407,
2361,
198,
77,
62,
12204,
62,
13033,
220,
796,
685,
532,
16,
220,
220,
837,
532,
16,
220,
220,
2361,
198,
198,
1640,
1312,
287,
256,
80,
36020,
7,
9521,
7,
9031,
8,
2599,
628,
220,
1303,
220,
220,
1343,
22369,
44785,
198,
220,
1303,
220,
220,
930,
220,
220,
16835,
14,
9288,
26021,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
22369,
44785,
628,
220,
264,
824,
796,
29186,
1431,
2484,
18137,
41205,
357,
299,
62,
22018,
896,
796,
352,
11,
1332,
62,
7857,
796,
1332,
62,
7857,
1267,
198,
220,
329,
4686,
87,
62,
27432,
11,
4686,
87,
62,
9288,
287,
264,
824,
764,
6626,
357,
1395,
11,
331,
15179,
198,
220,
220,
220,
1395,
62,
27432,
837,
331,
62,
27432,
796,
1395,
58,
312,
87,
62,
27432,
60,
837,
331,
58,
312,
87,
62,
27432,
60,
198,
220,
220,
220,
1395,
62,
9288,
220,
837,
331,
62,
9288,
220,
796,
1395,
58,
312,
87,
62,
9288,
60,
220,
837,
331,
58,
312,
87,
62,
9288,
60,
220,
628,
220,
1303,
220,
220,
1343,
22369,
10,
198,
220,
1303,
220,
220,
930,
220,
220,
6060,
662,
36948,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
22369,
10,
628,
220,
16578,
263,
62,
27432,
796,
1855,
11518,
3351,
36213,
3419,
198,
220,
1395,
62,
27432,
796,
16578,
263,
62,
27432,
13,
11147,
62,
35636,
357,
55,
62,
27432,
8,
628,
220,
16578,
263,
62,
9288,
796,
1855,
11518,
3351,
36213,
3419,
198,
220,
1395,
62,
9288,
796,
16578,
263,
62,
9288,
13,
11147,
62,
35636,
357,
55,
62,
9288,
8,
628,
220,
16578,
263,
62,
34586,
796,
1855,
11518,
3351,
36213,
3419,
198,
220,
1395,
62,
34586,
796,
16578,
263,
62,
34586,
13,
11147,
62,
35636,
357,
55,
62,
34586,
8,
628,
220,
1303,
220,
220,
1343,
1783,
44785,
198,
220,
1303,
220,
220,
930,
220,
220,
13123,
9613,
9058,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
1783,
44785,
628,
220,
1303,
220,
220,
1343,
1783,
26171,
10,
198,
220,
1303,
220,
220,
930,
220,
220,
15079,
37266,
23989,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
1783,
26171,
10,
628,
220,
22492,
41605,
8808,
2149,
4526,
10761,
47621,
198,
220,
611,
26498,
13,
19849,
6624,
366,
6404,
12,
2301,
1298,
198,
220,
220,
220,
1266,
62,
19849,
796,
5972,
2569,
8081,
2234,
3419,
628,
220,
22492,
48920,
1503,
311,
15996,
198,
220,
1288,
361,
26498,
13,
19849,
6624,
366,
2815,
12,
82,
14761,
1298,
198,
220,
220,
220,
1266,
62,
19849,
796,
311,
15922,
357,
9720,
796,
366,
29127,
1600,
12867,
796,
6407,
1267,
628,
220,
22492,
14545,
2937,
11584,
1565,
41755,
7597,
198,
220,
1288,
361,
26498,
13,
19849,
6624,
366,
4908,
385,
12,
36942,
1298,
198,
220,
220,
220,
1266,
62,
19849,
796,
12822,
31562,
18709,
9487,
7483,
3419,
628,
220,
22492,
46920,
2662,
7473,
6465,
198,
220,
1288,
361,
26498,
13,
19849,
6624,
366,
81,
358,
12,
69,
3808,
1298,
628,
220,
220,
220,
611,
407,
23392,
25,
198,
220,
220,
220,
220,
220,
2050,
796,
2172,
9613,
62,
44517,
357,
2746,
62,
3672,
220,
796,
366,
81,
358,
62,
29623,
62,
565,
69,
1,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6143,
62,
15908,
796,
366,
19571,
35350,
1,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9432,
796,
9432,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
28461,
874,
220,
796,
2026,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4571,
796,
366,
9806,
48439,
1,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
361,
62,
1069,
1023,
796,
10352,
1267,
198,
220,
220,
220,
220,
220,
23392,
796,
6407,
628,
220,
220,
220,
1266,
62,
19849,
796,
14534,
34605,
9487,
7483,
357,
299,
62,
395,
320,
2024,
796,
2050,
13,
13466,
62,
37266,
14692,
77,
62,
395,
12078,
8973,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
18053,
220,
220,
220,
796,
2050,
13,
13466,
62,
37266,
14692,
9806,
62,
18053,
8973,
1267,
628,
198,
220,
22492,
10863,
2885,
28495,
347,
24544,
198,
220,
1288,
361,
26498,
13,
19849,
6624,
366,
9744,
12,
17457,
83,
1298,
628,
220,
220,
220,
611,
407,
23392,
25,
198,
220,
220,
220,
220,
220,
2050,
796,
2172,
9613,
62,
44517,
357,
2746,
62,
3672,
220,
796,
366,
9744,
62,
17457,
83,
62,
565,
69,
1,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6143,
62,
15908,
796,
366,
19571,
35350,
1,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9432,
796,
9432,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
28461,
874,
220,
796,
2026,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4571,
796,
366,
9806,
48439,
1,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
361,
62,
1069,
1023,
796,
10352,
1267,
198,
220,
220,
220,
220,
220,
23392,
796,
6407,
628,
220,
220,
220,
1266,
62,
19849,
796,
17701,
1153,
45686,
278,
9487,
7483,
357,
4673,
62,
4873,
796,
2050,
13,
13466,
62,
37266,
14692,
35720,
62,
4873,
8973,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
395,
320,
2024,
220,
796,
2050,
13,
13466,
62,
37266,
14692,
77,
62,
395,
12078,
8973,
220,
220,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
18053,
220,
220,
220,
220,
796,
2050,
13,
13466,
62,
37266,
14692,
9806,
62,
18053,
8973,
220,
1267,
628,
220,
1303,
220,
220,
1343,
22369,
6329,
10,
198,
220,
1303,
220,
220,
930,
220,
220,
7854,
291,
31172,
13215,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
22369,
6329,
10,
628,
220,
1303,
220,
220,
1343,
3880,
982,
19529,
198,
220,
1303,
220,
220,
930,
220,
220,
9104,
2854,
319,
4512,
14,
9288,
900,
220,
220,
930,
198,
220,
1303,
220,
220,
1343,
3880,
982,
19529,
628,
220,
22492,
4512,
14,
2100,
26021,
198,
220,
264,
824,
796,
29186,
1431,
2484,
18137,
41205,
357,
299,
62,
22018,
896,
796,
352,
11,
1332,
62,
7857,
796,
1188,
62,
7857,
1267,
198,
220,
329,
4686,
87,
62,
2213,
77,
11,
4686,
87,
62,
2100,
287,
264,
824,
764,
6626,
357,
1395,
62,
27432,
11,
331,
62,
27432,
15179,
198,
220,
220,
220,
1395,
62,
2213,
77,
837,
331,
62,
2213,
77,
796,
1395,
62,
27432,
58,
312,
87,
62,
2213,
77,
60,
837,
331,
62,
27432,
58,
312,
87,
62,
2213,
77,
60,
198,
220,
220,
220,
1395,
62,
2100,
837,
331,
62,
2100,
796,
1395,
62,
27432,
58,
312,
87,
62,
2100,
60,
837,
331,
62,
27432,
58,
312,
87,
62,
2100,
60,
220,
628,
220,
895,
796,
9447,
23051,
3419,
220,
220,
1303,
10753,
321,
11347,
8173,
198,
220,
1395,
62,
2213,
77,
62,
411,
11,
331,
62,
2213,
77,
62,
411,
796,
895,
13,
11147,
62,
411,
1403,
357,
1395,
62,
2213,
77,
837,
331,
62,
2213,
77,
1267,
628,
220,
22492,
12082,
262,
40522,
198,
220,
1395,
62,
2213,
77,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
1395,
62,
2213,
77,
11,
1395,
62,
34586,
2361,
1267,
198,
220,
331,
62,
2213,
77,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
45941,
13,
3003,
7,
88,
62,
2213,
77,
11,
513,
11,
352,
828,
331,
62,
34586,
2361,
1267,
628,
220,
1395,
62,
2100,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
1395,
62,
2100,
11,
1395,
62,
34586,
2361,
1267,
198,
220,
331,
62,
2100,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
45941,
13,
3003,
7,
88,
62,
2100,
11,
513,
11,
352,
828,
331,
62,
34586,
2361,
1267,
628,
220,
1395,
62,
9288,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
1395,
62,
9288,
11,
1395,
62,
34586,
2361,
1267,
198,
220,
331,
62,
9288,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
45941,
13,
3003,
7,
88,
62,
9288,
11,
513,
11,
352,
828,
331,
62,
34586,
2361,
1267,
628,
220,
1395,
62,
18206,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
1395,
62,
2100,
11,
1395,
62,
9288,
11,
1395,
62,
34586,
2361,
1267,
198,
220,
331,
62,
18206,
62,
24011,
796,
45941,
13,
1102,
9246,
268,
378,
357,
685,
45941,
13,
3003,
7,
88,
62,
2100,
11,
513,
11,
352,
8,
837,
45941,
13,
3003,
7,
88,
62,
9288,
11,
513,
11,
352,
828,
331,
62,
34586,
2361,
1267,
628,
220,
22492,
2746,
3047,
198,
220,
1266,
62,
19849,
764,
4197,
357,
55,
62,
2213,
77,
62,
411,
11,
331,
62,
2213,
77,
62,
411,
8,
628,
220,
22492,
2746,
16277,
198,
220,
331,
62,
1416,
2850,
62,
2213,
77,
796,
1266,
62,
19849,
13,
79,
17407,
62,
1676,
7012,
357,
1395,
62,
2213,
77,
1267,
198,
220,
4808,
11,
11387,
796,
2183,
62,
28764,
9278,
357,
331,
62,
7942,
796,
331,
62,
2213,
77,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1416,
2850,
796,
331,
62,
1416,
2850,
62,
2213,
77,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10014,
62,
26675,
796,
664,
62,
26675,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15440,
62,
26675,
796,
3718,
62,
26675,
1267,
220,
220,
220,
628,
220,
331,
62,
1416,
2850,
62,
2213,
77,
62,
24011,
796,
1266,
62,
19849,
13,
79,
17407,
62,
1676,
7012,
357,
1395,
62,
2213,
77,
62,
24011,
1267,
198,
220,
331,
62,
28764,
62,
2213,
77,
796,
47368,
31172,
62,
28764,
9278,
357,
331,
62,
7942,
796,
331,
62,
2213,
77,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1416,
2850,
796,
331,
62,
1416,
2850,
62,
2213,
77,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13215,
796,
651,
62,
12501,
1166,
62,
7784,
3166,
357,
331,
62,
1416,
2850,
62,
2213,
77,
11,
11387,
11,
18896,
7,
88,
62,
34586,
8,
1220,
18896,
7,
88,
62,
2213,
77,
62,
24011,
8,
1267,
1267,
220,
220,
1303,
2747,
329,
262,
2081,
4512,
12,
2617,
628,
220,
331,
62,
1416,
2850,
62,
2100,
62,
24011,
796,
1266,
62,
19849,
13,
79,
17407,
62,
1676,
7012,
357,
1395,
62,
2100,
62,
24011,
1267,
198,
220,
331,
62,
28764,
62,
2100,
796,
47368,
31172,
62,
28764,
9278,
357,
331,
62,
7942,
796,
331,
62,
2100,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1416,
2850,
796,
331,
62,
1416,
2850,
62,
2100,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13215,
796,
651,
62,
12501,
1166,
62,
7784,
3166,
357,
331,
62,
1416,
2850,
62,
2213,
77,
11,
11387,
11,
18896,
7,
88,
62,
34586,
8,
1220,
18896,
7,
88,
62,
2213,
77,
62,
24011,
8,
1267,
1267,
220,
220,
1303,
2747,
329,
262,
1188,
12,
2617,
628,
220,
331,
62,
1416,
2850,
62,
9288,
62,
24011,
796,
1266,
62,
19849,
13,
79,
17407,
62,
1676,
7012,
357,
1395,
62,
9288,
62,
24011,
1267,
198,
220,
331,
62,
28764,
62,
9288,
796,
47368,
31172,
62,
28764,
9278,
357,
331,
62,
7942,
796,
331,
62,
9288,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1416,
2850,
796,
331,
62,
1416,
2850,
62,
9288,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13215,
796,
651,
62,
12501,
1166,
62,
7784,
3166,
357,
331,
62,
1416,
2850,
62,
2213,
77,
11,
11387,
11,
18896,
7,
88,
62,
34586,
8,
1220,
18896,
7,
88,
62,
2213,
77,
62,
24011,
8,
1267,
1267,
220,
220,
1303,
2747,
329,
262,
1332,
12,
2617,
628,
220,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
796,
1266,
62,
19849,
13,
79,
17407,
62,
1676,
7012,
357,
1395,
62,
18206,
62,
24011,
1267,
198,
220,
331,
62,
28764,
62,
18206,
796,
47368,
31172,
62,
28764,
9278,
357,
331,
62,
7942,
796,
331,
62,
18206,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
1416,
2850,
796,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13215,
796,
651,
62,
12501,
1166,
62,
7784,
3166,
357,
331,
62,
1416,
2850,
62,
2213,
77,
11,
11387,
11,
18896,
7,
88,
62,
34586,
8,
1220,
18896,
7,
88,
62,
2213,
77,
62,
24011,
8,
1267,
1267,
220,
220,
1303,
2747,
329,
262,
1188,
12,
2617,
1343,
1332,
12,
2617,
628,
220,
22492,
2746,
13289,
198,
220,
1013,
62,
6759,
8609,
62,
2213,
77,
796,
10802,
62,
6759,
8609,
357,
331,
62,
2213,
77,
62,
24011,
11,
331,
62,
28764,
62,
2213,
77,
1267,
198,
220,
10014,
62,
17,
796,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
17,
11,
47715,
1267,
198,
220,
10014,
62,
16,
796,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
16,
11,
47715,
1267,
198,
220,
15440,
62,
17,
796,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
45299,
17,
60,
1267,
198,
220,
15440,
62,
16,
796,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2213,
77,
58,
45299,
16,
60,
1267,
198,
220,
1013,
62,
6759,
45977,
58,
15,
60,
764,
24443,
357,
1013,
62,
6759,
8609,
62,
2213,
77,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
16865,
58,
15,
60,
220,
220,
220,
764,
24443,
357,
685,
8344,
439,
62,
17,
11,
10014,
62,
16,
60,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
3718,
3279,
58,
15,
60,
764,
24443,
357,
685,
3866,
16005,
62,
17,
11,
15440,
62,
16,
60,
1267,
220,
220,
1303,
751,
284,
262,
3585,
9290,
628,
220,
1013,
62,
6759,
8609,
62,
2100,
796,
10802,
62,
6759,
8609,
357,
331,
62,
2100,
62,
24011,
11,
331,
62,
28764,
62,
2100,
1267,
198,
220,
10014,
62,
17,
796,
1013,
62,
6759,
8609,
62,
2100,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2100,
58,
17,
11,
47715,
1267,
198,
220,
10014,
62,
16,
796,
1013,
62,
6759,
8609,
62,
2100,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2100,
58,
16,
11,
47715,
1267,
198,
220,
15440,
62,
17,
796,
1013,
62,
6759,
8609,
62,
2100,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2100,
58,
45299,
17,
60,
1267,
198,
220,
15440,
62,
16,
796,
1013,
62,
6759,
8609,
62,
2100,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
2100,
58,
45299,
16,
60,
1267,
198,
220,
1013,
62,
6759,
45977,
58,
16,
60,
764,
24443,
357,
1013,
62,
6759,
8609,
62,
2100,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
16865,
58,
16,
60,
220,
220,
220,
764,
24443,
357,
685,
8344,
439,
62,
17,
11,
10014,
62,
16,
60,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
3718,
3279,
58,
16,
60,
764,
24443,
357,
685,
3866,
16005,
62,
17,
11,
15440,
62,
16,
60,
1267,
220,
220,
1303,
751,
284,
262,
3585,
9290,
628,
220,
1013,
62,
6759,
8609,
62,
9288,
796,
10802,
62,
6759,
8609,
357,
331,
62,
9288,
62,
24011,
11,
331,
62,
28764,
62,
9288,
1267,
198,
220,
10014,
62,
17,
796,
1013,
62,
6759,
8609,
62,
9288,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
9288,
58,
17,
11,
47715,
1267,
198,
220,
10014,
62,
16,
796,
1013,
62,
6759,
8609,
62,
9288,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
9288,
58,
16,
11,
47715,
1267,
198,
220,
15440,
62,
17,
796,
1013,
62,
6759,
8609,
62,
9288,
58,
17,
11,
17,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
9288,
58,
45299,
17,
60,
1267,
198,
220,
15440,
62,
16,
796,
1013,
62,
6759,
8609,
62,
9288,
58,
16,
11,
16,
60,
1220,
45941,
13,
16345,
357,
1013,
62,
6759,
8609,
62,
9288,
58,
45299,
16,
60,
1267,
198,
220,
1013,
62,
6759,
45977,
58,
17,
60,
764,
24443,
357,
1013,
62,
6759,
8609,
62,
9288,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
16865,
58,
17,
60,
220,
220,
220,
764,
24443,
357,
685,
8344,
439,
62,
17,
11,
10014,
62,
16,
60,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
3718,
3279,
58,
17,
60,
764,
24443,
357,
685,
3866,
16005,
62,
17,
11,
15440,
62,
16,
60,
1267,
220,
220,
1303,
751,
284,
262,
3585,
9290,
628,
220,
257,
1229,
62,
18206,
62,
17,
796,
686,
66,
62,
14272,
62,
26675,
357,
357,
88,
62,
18206,
62,
24011,
6624,
513,
828,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
58,
45299,
16,
60,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
530,
12,
14259,
12,
439,
317,
9598,
4776,
357,
5868,
2749,
43,
1398,
8,
198,
220,
277,
1050,
62,
18206,
62,
17,
837,
256,
1050,
62,
18206,
62,
17,
837,
4808,
796,
686,
66,
62,
22019,
303,
357,
357,
88,
62,
18206,
62,
24011,
6624,
513,
828,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
58,
45299,
16,
60,
1267,
220,
220,
1303,
530,
12,
14259,
12,
439,
371,
4503,
12133,
357,
5868,
2749,
43,
1398,
8,
628,
220,
611,
357,
11925,
7,
69,
1050,
62,
18206,
62,
17,
8,
6624,
299,
62,
12204,
62,
13033,
58,
15,
60,
2599,
24443,
62,
1462,
62,
12204,
58,
15,
60,
796,
6407,
198,
220,
611,
24443,
62,
1462,
62,
12204,
58,
15,
5974,
198,
220,
220,
220,
686,
66,
62,
22019,
1158,
58,
15,
60,
764,
24443,
357,
45941,
13,
66,
62,
685,
16,
532,
277,
1050,
62,
18206,
62,
17,
11,
256,
1050,
62,
18206,
62,
17,
11,
257,
1229,
62,
18206,
62,
17,
1635,
45941,
13,
1952,
62,
2339,
7,
69,
1050,
62,
18206,
62,
17,
15437,
1267,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
220,
220,
24443,
62,
1462,
62,
12204,
58,
15,
60,
796,
10352,
2162,
299,
62,
12204,
62,
13033,
58,
15,
60,
796,
18896,
7,
69,
1050,
62,
18206,
62,
17,
8,
628,
220,
257,
1229,
62,
18206,
62,
16,
796,
686,
66,
62,
14272,
62,
26675,
357,
357,
88,
62,
18206,
62,
24011,
6624,
362,
828,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
58,
45299,
16,
60,
1267,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
530,
12,
14259,
12,
439,
317,
9598,
4776,
357,
38,
57,
43,
1398,
8,
198,
220,
277,
1050,
62,
18206,
62,
16,
837,
256,
1050,
62,
18206,
62,
16,
837,
4808,
796,
686,
66,
62,
22019,
303,
357,
357,
88,
62,
18206,
62,
24011,
6624,
362,
828,
331,
62,
1416,
2850,
62,
18206,
62,
24011,
58,
45299,
16,
60,
1267,
220,
220,
1303,
530,
12,
14259,
12,
439,
371,
4503,
12133,
357,
38,
57,
43,
1398,
8,
628,
220,
611,
357,
11925,
7,
69,
1050,
62,
18206,
62,
16,
8,
6624,
299,
62,
12204,
62,
13033,
58,
16,
60,
2599,
24443,
62,
1462,
62,
12204,
58,
16,
60,
796,
6407,
198,
220,
611,
24443,
62,
1462,
62,
12204,
58,
16,
5974,
198,
220,
220,
220,
686,
66,
62,
22019,
1158,
58,
16,
60,
764,
24443,
357,
45941,
13,
66,
62,
685,
16,
532,
277,
1050,
62,
18206,
62,
16,
11,
256,
1050,
62,
18206,
62,
16,
11,
257,
1229,
62,
18206,
62,
16,
1635,
45941,
13,
1952,
62,
2339,
7,
69,
1050,
62,
18206,
62,
16,
15437,
1267,
220,
220,
1303,
751,
284,
262,
3585,
9290,
198,
220,
220,
220,
24443,
62,
1462,
62,
12204,
58,
16,
60,
796,
10352,
2162,
299,
62,
12204,
62,
13033,
58,
16,
60,
796,
18896,
7,
69,
1050,
62,
18206,
62,
16,
8,
198,
198,
2,
220,
220,
1343,
19351,
44785,
198,
2,
220,
220,
930,
220,
220,
1345,
1747,
5270,
220,
220,
930,
198,
2,
220,
220,
1343,
19351,
44785,
198,
198,
29487,
62,
10414,
62,
6759,
45977,
357,
1013,
62,
6759,
8609,
796,
45941,
13,
32604,
7,
10414,
62,
6759,
45977,
58,
15,
4357,
16488,
796,
657,
8,
764,
6468,
2981,
7,
37659,
13,
600,
2624,
8,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
406,
6242,
37142,
220,
220,
220,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
6759,
8609,
796,
366,
16885,
1,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
27432,
1,
1267,
198,
198,
29487,
62,
10414,
62,
6759,
45977,
357,
1013,
62,
6759,
8609,
796,
45941,
13,
32604,
7,
10414,
62,
6759,
45977,
58,
16,
4357,
16488,
796,
657,
8,
764,
6468,
2981,
7,
37659,
13,
600,
2624,
8,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
406,
6242,
37142,
220,
220,
220,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
6759,
8609,
796,
366,
16885,
1,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
2100,
1,
1267,
198,
198,
29487,
62,
10414,
62,
6759,
45977,
357,
1013,
62,
6759,
8609,
796,
45941,
13,
32604,
7,
10414,
62,
6759,
45977,
58,
17,
4357,
16488,
796,
657,
8,
764,
6468,
2981,
7,
37659,
13,
600,
2624,
8,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
406,
6242,
37142,
220,
220,
220,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
62,
6759,
8609,
796,
366,
16885,
1,
837,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
220,
220,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
9288,
1,
1267,
198,
198,
29487,
62,
41684,
62,
1050,
69,
62,
10034,
418,
357,
664,
62,
1416,
2850,
220,
796,
357,
45941,
13,
18747,
7,
8344,
5691,
58,
15,
12962,
58,
45299,
15,
60,
220,
220,
220,
837,
45941,
13,
18747,
7,
8344,
5691,
58,
15,
12962,
58,
45299,
16,
60,
220,
220,
220,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3718,
62,
1416,
2850,
796,
357,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
15,
12962,
58,
45299,
15,
60,
837,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
15,
12962,
58,
45299,
16,
60,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41701,
796,
1679,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
277,
1,
32273,
286,
5021,
12,
4871,
1391,
19849,
62,
3672,
3419,
92,
357,
261,
4512,
12,
2617,
16725,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
62,
23912,
1424,
796,
357,
48780,
37142,
58,
17,
4357,
406,
6242,
37142,
58,
16,
12962,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
27432,
62,
1050,
69,
1,
1267,
198,
198,
29487,
62,
41684,
62,
1050,
69,
62,
10034,
418,
357,
664,
62,
1416,
2850,
220,
796,
357,
45941,
13,
18747,
7,
8344,
5691,
58,
16,
12962,
58,
45299,
15,
60,
220,
220,
220,
837,
45941,
13,
18747,
7,
8344,
5691,
58,
16,
12962,
58,
45299,
16,
60,
220,
220,
220,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3718,
62,
1416,
2850,
796,
357,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
16,
12962,
58,
45299,
15,
60,
837,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
16,
12962,
58,
45299,
16,
60,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41701,
796,
1679,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
277,
1,
32273,
286,
5021,
12,
4871,
1391,
19849,
62,
3672,
3419,
92,
357,
261,
1188,
12,
2617,
16725,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
62,
23912,
1424,
796,
357,
48780,
37142,
58,
17,
4357,
406,
6242,
37142,
58,
16,
12962,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
2100,
62,
1050,
69,
1,
1267,
198,
198,
29487,
62,
41684,
62,
1050,
69,
62,
10034,
418,
357,
664,
62,
1416,
2850,
220,
796,
357,
45941,
13,
18747,
7,
8344,
5691,
58,
17,
12962,
58,
45299,
15,
60,
220,
220,
220,
837,
45941,
13,
18747,
7,
8344,
5691,
58,
17,
12962,
58,
45299,
16,
60,
220,
220,
220,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3718,
62,
1416,
2850,
796,
357,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
17,
12962,
58,
45299,
15,
60,
837,
45941,
13,
18747,
7,
3866,
66,
3279,
58,
17,
12962,
58,
45299,
16,
60,
1267,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41701,
796,
1679,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
796,
277,
1,
32273,
286,
5021,
12,
4871,
1391,
19849,
62,
3672,
3419,
92,
357,
261,
1332,
12,
2617,
16725,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
537,
82,
62,
23912,
1424,
796,
357,
48780,
37142,
58,
17,
4357,
406,
6242,
37142,
58,
16,
12962,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
26875,
796,
6407,
837,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
3672,
796,
277,
1,
41684,
12,
565,
69,
14,
90,
22046,
13,
19849,
92,
14,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
92,
62,
9288,
62,
1050,
69,
1,
1267,
198,
198,
2,
220,
220,
1343,
1783,
6329,
10,
198,
2,
220,
220,
930,
220,
220,
44654,
10784,
220,
220,
930,
198,
2,
220,
220,
1343,
1783,
6329,
10,
198,
198,
12204,
62,
85,
945,
62,
75,
2436,
18,
796,
45941,
13,
66,
62,
685,
45941,
13,
32604,
7,
12204,
62,
22019,
1158,
58,
15,
4357,
16488,
796,
657,
8,
837,
45941,
13,
19282,
7,
12204,
62,
22019,
1158,
58,
15,
4357,
16488,
796,
657,
38381,
45299,
17,
60,
2361,
198,
12204,
62,
85,
945,
62,
75,
2436,
17,
796,
45941,
13,
66,
62,
685,
45941,
13,
32604,
7,
12204,
62,
22019,
1158,
58,
16,
4357,
16488,
796,
657,
8,
837,
45941,
13,
19282,
7,
12204,
62,
22019,
1158,
58,
16,
4357,
16488,
796,
657,
38381,
45299,
17,
60,
2361,
198,
198,
26675,
62,
15908,
220,
796,
366,
1416,
2850,
1,
198,
26675,
62,
3672,
796,
277,
1,
90,
22046,
13,
19849,
92,
23330,
22046,
13,
400,
10126,
36786,
198,
198,
34345,
796,
277,
1,
90,
26675,
62,
15908,
92,
14,
41684,
12,
565,
69,
14,
90,
26675,
62,
3672,
27422,
37659,
89,
1,
198,
37659,
764,
3613,
89,
357,
29472,
11,
686,
66,
62,
85,
945,
62,
75,
2436,
18,
796,
686,
66,
62,
85,
945,
62,
75,
2436,
18,
11,
686,
66,
62,
85,
945,
62,
75,
2436,
17,
796,
686,
66,
62,
85,
945,
62,
75,
2436,
17,
1267,
198,
4798,
357,
69,
1,
3351,
2850,
9380,
29050,
284,
1391,
34345,
92,
4943,
198
] | 2.137855 | 7,283 |
import dsz, dsz.cmd, dsz.control
import ops, ops.pprint
import ops.data
import traceback, sys
from optparse import OptionParser
if (__name__ == '__main__'):
usage = 'python windows\\eventloqs.py [Options]\n-m, --monitor \n Runs in monitor mode, defaults to false\n-i, --interval [timeinterval]\n Interval between eventlogquery commands to use when running in monitor mode\n-l, --log [logname]\n Restricts query/monitor to one log\n-c, --classic\n If present, only queries System/Security/Application logs\n-t, --target\n Remote target to query\n'
parser = OptionParser(usage=usage)
parser.add_option('-m', '--monitor', dest='monitor', action='store_true', default=False)
parser.add_option('-c', '--classic', dest='classic', action='store_true', default=False)
parser.add_option('-i', '--interval', dest='interval', type='int', action='store', default='300')
parser.add_option('-l', '--log', dest='logname', type='string', action='store', default='')
parser.add_option('-t', '--target', dest='target', type='string', action='store', default=None)
(options, args) = parser.parse_args(sys.argv)
if options.monitor:
monitorlogs(options.interval, options.classic, options.logname, options.target)
else:
logs = logquery(options.logname, options.target, options.classic)
printlogtable(logs) | [
198,
11748,
288,
82,
89,
11,
288,
82,
89,
13,
28758,
11,
288,
82,
89,
13,
13716,
198,
11748,
39628,
11,
39628,
13,
381,
22272,
198,
11748,
39628,
13,
7890,
198,
11748,
12854,
1891,
11,
25064,
198,
6738,
2172,
29572,
1330,
16018,
46677,
198,
361,
357,
834,
3672,
834,
6624,
705,
834,
12417,
834,
6,
2599,
198,
220,
220,
220,
8748,
796,
705,
29412,
9168,
6852,
15596,
5439,
48382,
13,
9078,
685,
29046,
60,
59,
77,
12,
76,
11,
1377,
41143,
3467,
77,
220,
220,
220,
44743,
287,
5671,
4235,
11,
26235,
284,
3991,
59,
77,
12,
72,
11,
1377,
3849,
2100,
685,
2435,
3849,
2100,
60,
59,
77,
220,
220,
220,
4225,
2100,
1022,
1785,
6404,
22766,
9729,
284,
779,
618,
2491,
287,
5671,
4235,
59,
77,
12,
75,
11,
1377,
6404,
685,
75,
2360,
480,
60,
59,
77,
220,
220,
220,
37163,
82,
12405,
14,
41143,
284,
530,
2604,
59,
77,
12,
66,
11,
1377,
49421,
59,
77,
220,
220,
220,
1002,
1944,
11,
691,
20743,
4482,
14,
24074,
14,
23416,
17259,
59,
77,
12,
83,
11,
1377,
16793,
59,
77,
220,
220,
220,
21520,
2496,
284,
12405,
59,
77,
6,
198,
220,
220,
220,
30751,
796,
16018,
46677,
7,
26060,
28,
26060,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
18076,
10786,
12,
76,
3256,
705,
438,
41143,
3256,
2244,
11639,
41143,
3256,
2223,
11639,
8095,
62,
7942,
3256,
4277,
28,
25101,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
18076,
10786,
12,
66,
3256,
705,
438,
49421,
3256,
2244,
11639,
49421,
3256,
2223,
11639,
8095,
62,
7942,
3256,
4277,
28,
25101,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
18076,
10786,
12,
72,
3256,
705,
438,
3849,
2100,
3256,
2244,
11639,
3849,
2100,
3256,
2099,
11639,
600,
3256,
2223,
11639,
8095,
3256,
4277,
11639,
6200,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
18076,
10786,
12,
75,
3256,
705,
438,
6404,
3256,
2244,
11639,
75,
2360,
480,
3256,
2099,
11639,
8841,
3256,
2223,
11639,
8095,
3256,
4277,
28,
7061,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
18076,
10786,
12,
83,
3256,
705,
438,
16793,
3256,
2244,
11639,
16793,
3256,
2099,
11639,
8841,
3256,
2223,
11639,
8095,
3256,
4277,
28,
14202,
8,
198,
220,
220,
220,
357,
25811,
11,
26498,
8,
796,
30751,
13,
29572,
62,
22046,
7,
17597,
13,
853,
85,
8,
198,
220,
220,
220,
611,
3689,
13,
41143,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5671,
6404,
82,
7,
25811,
13,
3849,
2100,
11,
3689,
13,
49421,
11,
3689,
13,
75,
2360,
480,
11,
3689,
13,
16793,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
17259,
796,
2604,
22766,
7,
25811,
13,
75,
2360,
480,
11,
3689,
13,
16793,
11,
3689,
13,
49421,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
6404,
11487,
7,
6404,
82,
8
] | 2.839583 | 480 |
version="0.2.1" | [
9641,
2625,
15,
13,
17,
13,
16,
1
] | 1.875 | 8 |
import logging
from django.core.management.base import BaseCommand
from django.utils.translation import ugettext_lazy as _
from oscar.apps.customer.alerts import utils
logger = logging.getLogger(__name__)
class Command(BaseCommand):
"""
Check stock records of products for availability and send out alerts
to customers that have registered for an alert.
"""
help = _("Check for products that are back in "
"stock and send out alerts")
def handle(self, **options):
"""
Check all products with active product alerts for
availability and send out email alerts when a product is
available to buy.
"""
utils.send_alerts()
| [
11748,
18931,
201,
198,
201,
198,
6738,
42625,
14208,
13,
7295,
13,
27604,
13,
8692,
1330,
7308,
21575,
201,
198,
6738,
42625,
14208,
13,
26791,
13,
41519,
1330,
334,
1136,
5239,
62,
75,
12582,
355,
4808,
201,
198,
201,
198,
6738,
267,
13034,
13,
18211,
13,
23144,
263,
13,
44598,
82,
1330,
3384,
4487,
201,
198,
201,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
201,
198,
201,
198,
201,
198,
4871,
9455,
7,
14881,
21575,
2599,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
6822,
4283,
4406,
286,
3186,
329,
11500,
290,
3758,
503,
21675,
201,
198,
220,
220,
220,
284,
4297,
326,
423,
6823,
329,
281,
7995,
13,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
1037,
796,
4808,
7203,
9787,
329,
3186,
326,
389,
736,
287,
366,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
13578,
290,
3758,
503,
21675,
4943,
201,
198,
201,
198,
220,
220,
220,
825,
5412,
7,
944,
11,
12429,
25811,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
220,
220,
220,
220,
6822,
477,
3186,
351,
4075,
1720,
21675,
329,
201,
198,
220,
220,
220,
220,
220,
220,
220,
11500,
290,
3758,
503,
3053,
21675,
618,
257,
1720,
318,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1695,
284,
2822,
13,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
220,
220,
220,
220,
3384,
4487,
13,
21280,
62,
44598,
82,
3419,
201,
198
] | 2.755639 | 266 |
from __future__ import print_function
from collections import OrderedDict
import os
import shutil
import subprocess
import tempfile
import textwrap
import unittest
import conda_smithy.lint_recipe as linter
if __name__ == '__main__':
unittest.main()
| [
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
11748,
850,
14681,
198,
11748,
20218,
7753,
198,
11748,
2420,
37150,
198,
11748,
555,
715,
395,
198,
198,
11748,
1779,
64,
62,
21453,
88,
13,
75,
600,
62,
29102,
431,
355,
300,
3849,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 3.185185 | 81 |
#!/usr/bin/env python
"""A script to split a fasta file into multiple smaller files.
Output files will be <original>.xx.fasta
"""
from __future__ import print_function
import argparse
import sys
import os
import re
from os.path import join as ospj
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--outdir', '-o', help="output directory")
parser.add_argument('--input_fasta', help="Input read fasta 1")
parser.add_argument('--prefix', help="output prefix")
parser.add_argument('n_seqs', type=int, help="Number of sequences per file, the last file will contain slightly less")
args = parser.parse_args()
main(args)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
37811,
32,
4226,
284,
6626,
257,
3049,
64,
2393,
656,
3294,
4833,
3696,
13,
198,
198,
26410,
3696,
481,
307,
1279,
14986,
28401,
5324,
13,
7217,
64,
198,
37811,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
1822,
29572,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
302,
198,
6738,
28686,
13,
6978,
1330,
4654,
355,
267,
2777,
73,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
11213,
28,
834,
15390,
834,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
448,
15908,
3256,
705,
12,
78,
3256,
1037,
2625,
22915,
8619,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
15414,
62,
7217,
64,
3256,
1037,
2625,
20560,
1100,
3049,
64,
352,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
40290,
3256,
1037,
2625,
22915,
21231,
4943,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
77,
62,
41068,
82,
3256,
2099,
28,
600,
11,
1037,
2625,
15057,
286,
16311,
583,
2393,
11,
262,
938,
2393,
481,
3994,
4622,
1342,
4943,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
1388,
7,
22046,
8,
198
] | 3.130045 | 223 |
# -*- coding: utf-8 -*-
import dataset,codecs, Names, sqlite3
"""
Under MIT-Licence, 2016 Perttu Rautaniemi
"""
def createtables():
"""
Opening the database and tables, create tables if they dont exist
"""
conn = sqlite3.connect('LuontonurkkaDB.db')
conn.execute('''CREATE TABLE `grid` (
`id` INTEGER NOT NULL,
`N` INTEGER NOT NULL,
`E` INTEGER NOT NULL,
`sqrname` VARCHAR,
PRIMARY KEY(id)
);''')
conn.execute('''CREATE TABLE `species` (
`id` INTEGER NOT NULL,
`namelatin` VARCHAR NOT NULL,
`namefin` VARCHAR,
`type` INTEGER NOT NULL,
`picture` VARCHAR,
`idEN` VARCHAR,
`idFI` VARCHAR,
PRIMARY KEY(id)
);''')
conn.execute('''CREATE TABLE "species_in_square" (
`id` INTEGER NOT NULL,
`sid` INTEGER NOT NULL,
`gid` INTEGER NOT NULL,
`freq` INTEGER,
PRIMARY KEY(id)
)''')
##
## Sql for indexes
##
conn.execute('''CREATE INDEX gridIndex
on grid (N, E);''')
conn.execute('''CREATE INDEX sqrID
on species_in_square (gid);''')
conn.close()
"""filling both species in square and square tables using id data from speciestable and gridcsv for"""
#createtables()
data_fillfromCSV() | [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
27039,
11,
19815,
721,
82,
11,
28531,
11,
44161,
578,
18,
198,
198,
37811,
198,
9203,
17168,
12,
26656,
594,
11,
1584,
350,
861,
28047,
371,
2306,
3216,
43967,
198,
37811,
628,
198,
4299,
1827,
316,
2977,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
25522,
262,
6831,
290,
8893,
11,
2251,
8893,
611,
484,
17666,
2152,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
48260,
796,
44161,
578,
18,
13,
8443,
10786,
25596,
756,
261,
333,
74,
4914,
11012,
13,
9945,
11537,
628,
220,
220,
220,
48260,
13,
41049,
7,
7061,
6,
43387,
6158,
43679,
4600,
25928,
63,
357,
198,
220,
220,
220,
220,
197,
63,
312,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
45,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
36,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
31166,
81,
3672,
63,
197,
53,
31315,
1503,
11,
198,
220,
220,
220,
220,
197,
4805,
3955,
13153,
35374,
7,
312,
8,
198,
220,
220,
220,
5619,
7061,
11537,
198,
220,
220,
220,
48260,
13,
41049,
7,
7061,
6,
43387,
6158,
43679,
4600,
35448,
63,
357,
198,
220,
220,
220,
220,
197,
63,
312,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
7402,
417,
10680,
63,
197,
53,
31315,
1503,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
3672,
15643,
63,
197,
53,
31315,
1503,
11,
198,
220,
220,
220,
220,
197,
63,
4906,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
34053,
63,
197,
53,
31315,
1503,
11,
198,
220,
220,
220,
220,
197,
63,
312,
1677,
63,
197,
53,
31315,
1503,
11,
198,
220,
220,
220,
220,
197,
63,
312,
11674,
63,
197,
53,
31315,
1503,
11,
198,
220,
220,
220,
220,
197,
4805,
3955,
13153,
35374,
7,
312,
8,
198,
220,
220,
220,
5619,
7061,
11537,
198,
220,
220,
220,
48260,
13,
41049,
7,
7061,
6,
43387,
6158,
43679,
366,
35448,
62,
259,
62,
23415,
1,
357,
198,
220,
220,
220,
220,
197,
63,
312,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
30255,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
70,
312,
63,
197,
12394,
7156,
1137,
5626,
15697,
11,
198,
220,
220,
220,
220,
197,
63,
19503,
80,
63,
197,
12394,
7156,
1137,
11,
198,
220,
220,
220,
220,
197,
4805,
3955,
13153,
35374,
7,
312,
8,
198,
220,
220,
220,
1267,
7061,
11537,
628,
220,
220,
220,
22492,
198,
220,
220,
220,
22492,
311,
13976,
329,
39199,
198,
220,
220,
220,
22492,
198,
220,
220,
220,
48260,
13,
41049,
7,
7061,
6,
43387,
6158,
24413,
6369,
10706,
15732,
198,
220,
220,
220,
319,
10706,
357,
45,
11,
412,
1776,
7061,
11537,
198,
220,
220,
220,
48260,
13,
41049,
7,
7061,
6,
43387,
6158,
24413,
6369,
19862,
81,
2389,
198,
220,
220,
220,
319,
4693,
62,
259,
62,
23415,
357,
70,
312,
1776,
7061,
11537,
198,
220,
220,
220,
48260,
13,
19836,
3419,
628,
198,
37811,
69,
4509,
1111,
4693,
287,
6616,
290,
6616,
8893,
1262,
4686,
1366,
422,
693,
979,
395,
540,
290,
10706,
40664,
329,
37811,
628,
628,
628,
198,
2,
20123,
316,
2977,
3419,
198,
7890,
62,
20797,
6738,
7902,
53,
3419
] | 2.131849 | 584 |
# -*- coding: utf-8 -*-
import math
import threading
import time
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
10688,
198,
11748,
4704,
278,
198,
11748,
640,
628,
628
] | 2.653846 | 26 |
from typing import Any, Tuple
from pesto.ws.core.match_apply import MatchApply, Json
| [
6738,
19720,
1330,
4377,
11,
309,
29291,
198,
198,
6738,
28064,
78,
13,
18504,
13,
7295,
13,
15699,
62,
39014,
1330,
13225,
44836,
11,
449,
1559,
628
] | 3.222222 | 27 |
# 2019-11-15 00:35:39(JST)
import operator as op
import sys
# import collections
# import math
# from string import ascii_lowercase, ascii_uppercase, digits
# from bisect import bisect_left as bi_l, bisect_right as bi_r
# import itertools
from functools import reduce
# from scipy.misc import comb # float
# import numpy as np
mod = 10 ** 9 + 7
if __name__ == "__main__":
main()
| [
2,
13130,
12,
1157,
12,
1314,
3571,
25,
2327,
25,
2670,
7,
41,
2257,
8,
201,
198,
11748,
10088,
355,
1034,
201,
198,
11748,
25064,
201,
198,
201,
198,
2,
1330,
17268,
201,
198,
2,
1330,
10688,
201,
198,
2,
422,
4731,
1330,
355,
979,
72,
62,
21037,
7442,
11,
355,
979,
72,
62,
7211,
2798,
589,
11,
19561,
201,
198,
2,
422,
47457,
478,
1330,
47457,
478,
62,
9464,
355,
3182,
62,
75,
11,
47457,
478,
62,
3506,
355,
3182,
62,
81,
201,
198,
2,
1330,
340,
861,
10141,
201,
198,
6738,
1257,
310,
10141,
1330,
4646,
201,
198,
201,
198,
2,
422,
629,
541,
88,
13,
44374,
1330,
1974,
1303,
12178,
201,
198,
2,
1330,
299,
32152,
355,
45941,
201,
198,
201,
198,
4666,
796,
838,
12429,
860,
1343,
767,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
] | 2.612903 | 155 |
from typing import Sequence, Union
| [
6738,
19720,
1330,
45835,
11,
4479,
198
] | 5 | 7 |
r"""
CLI
===
**DO NOT USE (WIP)**
This module contains the command line interface for gperc. Is this really needed? I am not sure.
But having something along the lines of CLI means that running orchestration jobs would be possible.
Add code to your github actions by loading data from one place, dispatch this for training and then
testing it out all via CLI.
I am using ``python-fire`` from google for this, `link <https://github.com/google/python-fire>`_, that
can convert any arbitrary python object to a CLI. Normally I would use this with a ``main`` function,
but since there has to be configuration in the CLI, I am using a class ``Main`` (yes, I know, weird).
The default CLI has the following structure:
.. code-block::
python3 -m gperc [BEHEVIOUR] [CONFIGS] [TASKS]
BEHEVIOUR:
-h, --help: Show this modal and exit.
main: Run the main orchestration
serve (WIP): serve using YoCo
CONFIGS:
main: configurations for the main orchestration.
train: python3 -m gperc main train -h
data: python3 -m gperc main data -h
arch: python3 -m gperc main arch -h
serve (WIP): configurations for the server mode.
port: python3 -m gperc serve -h
TASKS:
Tasks are specific to behaviour and can raise errors for incorrect configs
main: tasks for the main orchestration.
profile: python3 -m gperc main [CONFIGS] profile -h
start: python3 -m gperc main [CONFIGS] start -h
deploy: deploy model on NimbleBox.ai. python3 -m gperc main [CONFIGS] deploy -h
This is how something like loading a dataset and running a model would look like:
.. code-block:: bash
python3 -m gperc main --modality "image/class" \
data --dataset_name "cifar10" \
arch --mno [1024,128,1] --ced [3,32,10] \
train --epochs 10 --batch_size 32 --lr 0.001 \
start
In the first line we have invoked the ``gperc`` module with modality (read below), in the next three
lines we have specified the data, the architecture and the training parameters. It ends with the
``start`` command, which starts the training.
"""
from typing import List
import torch
from torch.profiler import profile, record_function, ProfilerActivity
from .models import Perceiver
from .configs import PerceiverConfig
| [
81,
37811,
198,
5097,
40,
198,
18604,
198,
198,
1174,
18227,
5626,
23210,
357,
54,
4061,
8,
1174,
198,
198,
1212,
8265,
4909,
262,
3141,
1627,
7071,
329,
308,
525,
66,
13,
1148,
428,
1107,
2622,
30,
314,
716,
407,
1654,
13,
198,
1537,
1719,
1223,
1863,
262,
3951,
286,
43749,
1724,
326,
2491,
17771,
12401,
3946,
561,
307,
1744,
13,
198,
4550,
2438,
284,
534,
33084,
4028,
416,
11046,
1366,
422,
530,
1295,
11,
27965,
428,
329,
3047,
290,
788,
198,
33407,
340,
503,
477,
2884,
43749,
13,
198,
198,
40,
716,
1262,
7559,
29412,
12,
6495,
15506,
422,
23645,
329,
428,
11,
4600,
8726,
1279,
5450,
1378,
12567,
13,
785,
14,
13297,
14,
29412,
12,
6495,
29,
63,
62,
11,
326,
198,
5171,
10385,
597,
14977,
21015,
2134,
284,
257,
43749,
13,
29282,
314,
561,
779,
428,
351,
257,
7559,
12417,
15506,
2163,
11,
198,
4360,
1201,
612,
468,
284,
307,
8398,
287,
262,
43749,
11,
314,
716,
1262,
257,
1398,
7559,
13383,
15506,
357,
8505,
11,
314,
760,
11,
7650,
737,
198,
198,
464,
4277,
43749,
468,
262,
1708,
4645,
25,
198,
198,
492,
2438,
12,
9967,
3712,
628,
220,
220,
220,
21015,
18,
532,
76,
308,
525,
66,
685,
12473,
13909,
12861,
11698,
60,
685,
10943,
16254,
50,
60,
685,
51,
1921,
27015,
60,
628,
220,
220,
220,
9348,
13909,
12861,
11698,
25,
628,
220,
220,
220,
220,
220,
220,
220,
532,
71,
11,
1377,
16794,
25,
5438,
428,
953,
282,
290,
8420,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1388,
25,
5660,
262,
1388,
17771,
12401,
198,
220,
220,
220,
220,
220,
220,
220,
4691,
357,
54,
4061,
2599,
4691,
1262,
25455,
7222,
628,
220,
220,
220,
25626,
50,
25,
628,
220,
220,
220,
220,
220,
220,
220,
1388,
25,
25412,
329,
262,
1388,
17771,
12401,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4512,
25,
21015,
18,
532,
76,
308,
525,
66,
1388,
4512,
532,
71,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
25,
21015,
18,
532,
76,
308,
525,
66,
1388,
1366,
532,
71,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3934,
25,
21015,
18,
532,
76,
308,
525,
66,
1388,
3934,
532,
71,
628,
220,
220,
220,
220,
220,
220,
220,
4691,
357,
54,
4061,
2599,
25412,
329,
262,
4382,
4235,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2493,
25,
21015,
18,
532,
76,
308,
525,
66,
4691,
532,
71,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
309,
1921,
27015,
25,
628,
220,
220,
220,
220,
220,
220,
220,
309,
6791,
389,
2176,
284,
9172,
290,
460,
5298,
8563,
329,
11491,
4566,
82,
628,
220,
220,
220,
220,
220,
220,
220,
1388,
25,
8861,
329,
262,
1388,
17771,
12401,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7034,
25,
21015,
18,
532,
76,
308,
525,
66,
1388,
685,
10943,
16254,
50,
60,
7034,
532,
71,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
25,
21015,
18,
532,
76,
308,
525,
66,
1388,
685,
10943,
16254,
50,
60,
923,
532,
71,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6061,
25,
6061,
2746,
319,
27168,
903,
14253,
13,
1872,
13,
21015,
18,
532,
76,
308,
525,
66,
1388,
685,
10943,
16254,
50,
60,
6061,
532,
71,
628,
198,
1212,
318,
703,
1223,
588,
11046,
257,
27039,
290,
2491,
257,
2746,
561,
804,
588,
25,
198,
198,
492,
2438,
12,
9967,
3712,
27334,
198,
220,
220,
220,
220,
198,
220,
220,
220,
21015,
18,
532,
76,
308,
525,
66,
1388,
1377,
4666,
1483,
366,
9060,
14,
4871,
1,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
1377,
19608,
292,
316,
62,
3672,
366,
66,
361,
283,
940,
1,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
3934,
1377,
76,
3919,
685,
35500,
11,
12762,
11,
16,
60,
1377,
771,
685,
18,
11,
2624,
11,
940,
60,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
1377,
538,
5374,
82,
838,
1377,
43501,
62,
7857,
3933,
1377,
14050,
657,
13,
8298,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
923,
198,
198,
818,
262,
717,
1627,
356,
423,
24399,
262,
7559,
70,
525,
66,
15506,
8265,
351,
953,
1483,
357,
961,
2174,
828,
287,
262,
1306,
1115,
198,
6615,
356,
423,
7368,
262,
1366,
11,
262,
10959,
290,
262,
3047,
10007,
13,
632,
5645,
351,
262,
198,
15506,
9688,
15506,
3141,
11,
543,
4940,
262,
3047,
13,
198,
37811,
628,
198,
6738,
19720,
1330,
7343,
198,
198,
11748,
28034,
198,
6738,
28034,
13,
5577,
5329,
1330,
7034,
11,
1700,
62,
8818,
11,
4415,
5329,
16516,
198,
198,
6738,
764,
27530,
1330,
2448,
39729,
198,
6738,
764,
11250,
82,
1330,
2448,
39729,
16934,
628,
198
] | 2.897436 | 819 |
"""Python module to request PMU data from a running ANDES
"""
import logging
import time
from .dime import Dime
from numpy import array, ndarray, zeros
from pypmu import Pmu
from pypmu.frame import ConfigFrame2, HeaderFrame
if __name__ == "__main__":
mini = MiniPMU(
name='TestPMU',
dime_address='ipc:///tmp/dime',
pmu_idx=[1],
pmu_port=1414)
mini.run()
| [
37811,
37906,
8265,
284,
2581,
3122,
52,
1366,
422,
257,
2491,
5357,
1546,
198,
37811,
198,
198,
11748,
18931,
198,
11748,
640,
198,
198,
6738,
764,
67,
524,
1330,
360,
524,
198,
6738,
299,
32152,
1330,
7177,
11,
299,
67,
18747,
11,
1976,
27498,
198,
198,
6738,
12972,
4426,
84,
1330,
350,
30300,
198,
6738,
12972,
4426,
84,
13,
14535,
1330,
17056,
19778,
17,
11,
48900,
19778,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
9927,
796,
12558,
5868,
52,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
11639,
14402,
5868,
52,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
37062,
62,
21975,
11639,
541,
66,
1378,
14,
22065,
14,
67,
524,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
9114,
84,
62,
312,
87,
41888,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
9114,
84,
62,
634,
28,
1415,
1415,
8,
198,
220,
220,
220,
9927,
13,
5143,
3419,
198
] | 2.415663 | 166 |
print("St-1")
print(2/0)
print("St-2")
| [
4798,
7203,
1273,
12,
16,
4943,
198,
4798,
7,
17,
14,
15,
8,
198,
4798,
7203,
1273,
12,
17,
4943,
198
] | 1.857143 | 21 |
import torch
from torch.utils.data import Dataset
import json
import os
from PIL import Image
from utils.trms_util import transform
class PascalVOCDataset(Dataset):
"""
A Dataset class to be used in a DataLoader to create batches.
"""
def __init__(self, data_folder, split="TEST", keep_difficult=False):
"""
Args:
data_folder: folder where data files are stored.
split: split, one of 'TRAIN' or 'TEST'.
keep_difficult: keep or discard objects that are condidered difficult to detect.
"""
self.split = split.upper()
assert self.split in {"TRAIN", "TEST"}
self.data_folder = data_folder
self.keep_difficult = keep_difficult
with open(os.path.join(data_folder, self.split + "_images.json"), "r") as j:
self.images = json.load(j)
with open(os.path.join(data_folder, self.split + "_objects.json"), "r") as j:
self.objects = json.load(j)
assert len(self.images) == len(self.objects)
def collate_fn(self, batch):
"""
Describes how to combine images with different number of objects by using lists.
Since each image may have a different number of objects, we need a collate function
(to bew passed to the DataLoader).
Args:
batch: an iterable of N sets from __getitem__()
Returns:
a tensor of images, lists of varying-size tensors of bounding boxes, labels, and difficulties.
"""
images = list()
boxes = list()
labels = list()
difficulties = list()
for b in batch:
images.append(b[0])
boxes.append(b[1])
labels.append(b[2])
difficulties.append(b[3])
images = torch.stack(images, dim=0)
return images, boxes, labels, difficulties | [
11748,
28034,
198,
6738,
28034,
13,
26791,
13,
7890,
1330,
16092,
292,
316,
198,
11748,
33918,
198,
11748,
28686,
198,
6738,
350,
4146,
1330,
7412,
198,
198,
6738,
3384,
4487,
13,
2213,
907,
62,
22602,
1330,
6121,
628,
198,
4871,
35163,
53,
4503,
27354,
292,
316,
7,
27354,
292,
316,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
16092,
292,
316,
1398,
284,
307,
973,
287,
257,
6060,
17401,
284,
2251,
37830,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
1366,
62,
43551,
11,
6626,
2625,
51,
6465,
1600,
1394,
62,
26069,
2249,
28,
25101,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
43551,
25,
9483,
810,
1366,
3696,
389,
8574,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6626,
25,
6626,
11,
530,
286,
705,
51,
3861,
1268,
6,
393,
705,
51,
6465,
4458,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1394,
62,
26069,
2249,
25,
1394,
393,
27537,
5563,
326,
389,
1779,
3089,
2408,
284,
4886,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
35312,
796,
6626,
13,
45828,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
6818,
2116,
13,
35312,
287,
19779,
51,
3861,
1268,
1600,
366,
51,
6465,
20662,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7890,
62,
43551,
796,
1366,
62,
43551,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
14894,
62,
26069,
2249,
796,
1394,
62,
26069,
2249,
628,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
7890,
62,
43551,
11,
2116,
13,
35312,
1343,
45434,
17566,
13,
17752,
12340,
366,
81,
4943,
355,
474,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
17566,
796,
33918,
13,
2220,
7,
73,
8,
628,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
7890,
62,
43551,
11,
2116,
13,
35312,
1343,
45434,
48205,
13,
17752,
12340,
366,
81,
4943,
355,
474,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
48205,
796,
33918,
13,
2220,
7,
73,
8,
628,
220,
220,
220,
220,
220,
220,
220,
6818,
18896,
7,
944,
13,
17566,
8,
6624,
18896,
7,
944,
13,
48205,
8,
628,
220,
220,
220,
825,
2927,
378,
62,
22184,
7,
944,
11,
15458,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
39373,
22090,
703,
284,
12082,
4263,
351,
1180,
1271,
286,
5563,
416,
1262,
8341,
13,
628,
198,
220,
220,
220,
220,
220,
220,
220,
4619,
1123,
2939,
743,
423,
257,
1180,
1271,
286,
5563,
11,
356,
761,
257,
2927,
378,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
357,
1462,
307,
86,
3804,
284,
262,
6060,
17401,
737,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15458,
25,
281,
11629,
540,
286,
399,
5621,
422,
11593,
1136,
9186,
834,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
11192,
273,
286,
4263,
11,
8341,
286,
15874,
12,
7857,
11192,
669,
286,
5421,
278,
10559,
11,
14722,
11,
290,
13156,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
10559,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
13156,
796,
1351,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
329,
275,
287,
15458,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4263,
13,
33295,
7,
65,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10559,
13,
33295,
7,
65,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
13,
33295,
7,
65,
58,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13156,
13,
33295,
7,
65,
58,
18,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
4263,
796,
28034,
13,
25558,
7,
17566,
11,
5391,
28,
15,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
4263,
11,
10559,
11,
14722,
11,
13156
] | 2.407979 | 777 |
#!/usr/bin/env python
from distutils.core import setup
from setuptools.command.test import test as TestCommand
setup(name='neukrill-net',
version='1.0',
description='Neukrill-net NDSB tools',
author='neuroglycerin',
author_email='[email protected]',
packages=['neukrill_net'],
tests_require=['pytest'],
install_requires=['scipy==0.14.0',
'numpy==1.9.1',
'six==1.8.0',
'pytest==2.6.4',
'Pillow==2.7.0',
'scikit-image==0.10.1',
'scikit-learn==0.15.2'],
cmdclass={'test': PyTest},
)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
1233,
26791,
13,
7295,
1330,
9058,
198,
6738,
900,
37623,
10141,
13,
21812,
13,
9288,
1330,
1332,
355,
6208,
21575,
198,
198,
40406,
7,
3672,
11639,
710,
2724,
20190,
12,
3262,
3256,
198,
220,
220,
220,
220,
220,
2196,
11639,
16,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
6764,
11639,
8199,
2724,
20190,
12,
3262,
399,
5258,
33,
4899,
3256,
198,
220,
220,
220,
220,
220,
1772,
11639,
710,
1434,
10853,
2189,
259,
3256,
198,
220,
220,
220,
220,
220,
1772,
62,
12888,
11639,
15763,
31,
15643,
10724,
19726,
9019,
13,
260,
3256,
198,
220,
220,
220,
220,
220,
10392,
28,
17816,
710,
2724,
20190,
62,
3262,
6,
4357,
198,
220,
220,
220,
220,
220,
5254,
62,
46115,
28,
17816,
9078,
9288,
6,
4357,
198,
220,
220,
220,
220,
220,
2721,
62,
47911,
28,
17816,
1416,
541,
88,
855,
15,
13,
1415,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
77,
32152,
855,
16,
13,
24,
13,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19412,
855,
16,
13,
23,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9078,
9288,
855,
17,
13,
21,
13,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
47,
359,
322,
855,
17,
13,
22,
13,
15,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36216,
15813,
12,
9060,
855,
15,
13,
940,
13,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36216,
15813,
12,
35720,
855,
15,
13,
1314,
13,
17,
6,
4357,
198,
220,
220,
220,
220,
220,
23991,
4871,
34758,
6,
9288,
10354,
9485,
14402,
5512,
198,
8,
198
] | 1.755844 | 385 |
from tensornetwork.contractors.custom_path_solvers import pathsolvers
from tensornetwork.contractors.custom_path_solvers import nconinterface
#pylint: disable=line-too-long
from tensornetwork.contractors.custom_path_solvers.pathsolvers import greedy_cost_solve, greedy_size_solve, full_solve_complete
#pylint: disable=line-too-long
from tensornetwork.contractors.custom_path_solvers.nconinterface import ncon_solver, ncon_to_adj, ord_to_ncon, ncon_cost_check
| [
6738,
11192,
1211,
316,
1818,
13,
28484,
669,
13,
23144,
62,
6978,
62,
34453,
690,
1330,
13532,
349,
690,
198,
6738,
11192,
1211,
316,
1818,
13,
28484,
669,
13,
23144,
62,
6978,
62,
34453,
690,
1330,
299,
1102,
39994,
198,
2,
79,
2645,
600,
25,
15560,
28,
1370,
12,
18820,
12,
6511,
198,
6738,
11192,
1211,
316,
1818,
13,
28484,
669,
13,
23144,
62,
6978,
62,
34453,
690,
13,
6978,
34453,
690,
1330,
31828,
62,
15805,
62,
82,
6442,
11,
31828,
62,
7857,
62,
82,
6442,
11,
1336,
62,
82,
6442,
62,
20751,
198,
2,
79,
2645,
600,
25,
15560,
28,
1370,
12,
18820,
12,
6511,
198,
6738,
11192,
1211,
316,
1818,
13,
28484,
669,
13,
23144,
62,
6978,
62,
34453,
690,
13,
77,
1102,
39994,
1330,
299,
1102,
62,
82,
14375,
11,
299,
1102,
62,
1462,
62,
41255,
11,
2760,
62,
1462,
62,
77,
1102,
11,
299,
1102,
62,
15805,
62,
9122,
198
] | 2.980519 | 154 |
#!/usr/bin/python2
import os
import yaml
| [
2,
48443,
14629,
14,
8800,
14,
29412,
17,
198,
198,
11748,
28686,
198,
11748,
331,
43695,
198
] | 2.470588 | 17 |
from .base import *
from .site import *
| [
6738,
764,
8692,
1330,
1635,
198,
6738,
764,
15654,
1330,
1635,
198
] | 3.333333 | 12 |
import numpy as np
from np_model_base import NNModelBase
import pandas as pd
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2020"
if __name__ == '__main__':
simple_example()
| [
11748,
299,
32152,
355,
45941,
198,
6738,
45941,
62,
19849,
62,
8692,
1330,
399,
45,
17633,
14881,
198,
11748,
19798,
292,
355,
279,
67,
198,
198,
834,
9800,
834,
796,
366,
38025,
6902,
912,
1,
198,
834,
9641,
834,
796,
366,
7902,
24137,
84,
11,
13863,
11,
8225,
12131,
1,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
2829,
62,
20688,
3419,
198
] | 2.929577 | 71 |
# Generated by Django 2.0.2 on 2018-02-27 10:01
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
362,
13,
15,
13,
17,
319,
2864,
12,
2999,
12,
1983,
838,
25,
486,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.84375 | 32 |
import os
import numpy as np
import cv2
import argparse
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from tensorflow.keras import Input
from model import u_net
from preprocessing.preprocess_utils import display
from experiments import lip_hair_color
def make_confusion_matrix(cf, categories,
group_names=None,
count=True,
percent=True,
color_bar=True,
xy_ticks=True,
xy_plot_labels=True,
sum_stats=True,
fig_size=None,
c_map='Blues',
title=None):
""" Code to generate text within each box and beautify confusion matrix.
:param cf: Confusion matrix.
:type cf: numpy array
:param categories: array of classes.
:type categories: numpy array
:param group_names: classes in the project.
:type group_names: numpy array
:param count: whether to display the count of each class.
:type count: boolean
:param percent: whether to display percentage for each class.
:type percent: boolean
:param color_bar: whether to display color bar for the heat map.
:type color_bar: boolean
:param xy_ticks: whether to display xy labels.
:type xy_ticks: boolean
:param xy_plot_labels: whether to display xy title.
:type xy_plot_labels: boolean
:param sum_stats: whether to display overall accuracy.
:type sum_stats: boolean
:param fig_size: size of the plot.
:type fig_size: tuple
:param c_map: color scheme to use.
:type c_map: str
:param title: Title of the plot.
:type title: str
"""
blanks = ['' for i in range(cf.size)]
if group_names and len(group_names) == cf.size:
group_labels = ["{}\n".format(value) for value in group_names]
else:
group_labels = blanks
if count:
group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()]
else:
group_counts = blanks
if percent:
row_size = np.size(cf, 0)
col_size = np.size(cf, 1)
group_percentages = []
for i in range(row_size):
for j in range(col_size):
group_percentages.append(cf[i][j] / cf[i].sum())
group_percentages = ["{0:.2%}".format(value)
for value in group_percentages]
else:
group_percentages = blanks
box_labels = [f"{v1}{v2}{v3}".strip()
for v1, v2, v3 in zip(group_labels,
group_counts,
group_percentages)]
box_labels = np.asarray(box_labels).reshape(cf.shape[0], cf.shape[1])
# CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS
if sum_stats:
# Accuracy is sum of diagonal divided by total observations
accuracy = np.trace(cf) / float(np.sum(cf))
stats_text = "\n\nAccuracy={0:0.2%}".format(accuracy)
else:
stats_text = ""
# SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS
if fig_size is None:
# Get default figure size if not set
fig_size = plt.rcParams.get('figure.figsize')
if not xy_ticks:
# Do not show categories if xyticks is False
categories = False
# MAKE THE HEAT MAP VISUALIZATION
plt.figure(figsize=fig_size)
sns.heatmap(cf, annot=box_labels, fmt="",
cmap=c_map, cbar=color_bar,
xticklabels=categories,
yticklabels=categories)
if xy_plot_labels:
plt.ylabel('True label')
plt.xlabel('Predicted label' + stats_text)
else:
plt.xlabel(stats_text)
if title:
plt.title(title)
def plot_confusion_matrix(predictions, masks, path):
""" Visualize confusion matrix.
:param predictions: predicted output of the model.
:type predictions: array
:param masks: true masks of the images.
:type masks: array
:param path: directory to store the output
:type path: str
"""
print('[INFO] Plotting confusion matrix...')
corr = confusion_matrix(masks.ravel(), predictions.ravel())
make_confusion_matrix(corr,
categories=['bg', 'skin', 'nose', 'eye_g', 'l_eye',
'r_eye', 'l_brow', 'r_brow', 'l_ear',
'r_ear', 'mouth', 'u_lip',
'l_lip', 'hair', 'hat', 'ear_r',
'neck_l', 'neck', 'cloth'],
count=True,
percent=False,
color_bar=False,
xy_ticks=True,
xy_plot_labels=True,
sum_stats=True,
fig_size=(20, 18),
c_map='coolwarm',
title='Confusion matrix')
# error correction - cropped heat map
b, t = plt.ylim() # discover the values for bottom and top
b += 0.5 # Add 0.5 to the bottom
t -= 0.5 # Subtract 0.5 from the top
plt.ylim(b, t) # update the ylim(bottom, top) values
plt.savefig(os.path.join(path, 'confusion_matrix.png'))
print('[ACTION] See results/visualization/confusion_matrix.png')
def plot_mask(prediction, mask, norm_image):
""" PLot segmentation mask for the given image.
:param prediction: predicted output of the model.
:type prediction: array
:param mask: true masks of the images.
:type mask: array
:param norm_image: original image.
:type norm_image: array
"""
image = (norm_image * 255.).astype(np.uint8)
im_base = np.zeros((256, 256, 3), dtype=np.uint8)
for idx, color in enumerate(color_list):
im_base[prediction == idx] = color
cv2.addWeighted(im_base, 0.8, image, 1, 0, im_base)
display([image, mask, im_base],
['Original image', 'True mask', 'Predicted mask'],
'predict')
def test(image, masks, action, color='red'):
""" Used to plot either confusion matrix or predicted mask or apply makeup.
:param image: original image.
:type image: bytearray
:param masks: true segmentation masks.
:type masks: array
:param action: user input specifying confusion matrix/mask
prediction/applying makeup.
:type action: str
:param color: if action is applying makeup, then color to apply.
Defaults to red.
:type color: str
"""
input_img = Input(shape=(256, 256, 3), name='img')
model = u_net.get_u_net(input_img, num_classes=19)
model.load_weights(os.path.join(MODEL_DIR, 'u_net.h5'))
print('[INFO] Predicting ...')
predictions = model.predict(image)
predictions = np.argmax(predictions, axis=-1)
table = {
'hair': 13,
'upper_lip': 11,
'lower_lip': 12
}
colors = {
'red': [212, 34, 34],
'purple': [128, 51, 125],
'pink': [247, 32, 125]
}
# Redirect to the function of specified action.
if action == 'confusion_matrix':
print('[INFO] Plotting confusion matrix ...')
plot_confusion_matrix(predictions, masks, VISUALIZATION_DIR)
elif action == 'mask':
print('[INFO] Plotting segmentation mask ...')
plot_mask(predictions[sample], masks[sample], image[sample])
elif action == 'hair_color':
print('[INFO] Applying hair color ...')
parts = [table['hair']]
changed = lip_hair_color.color_change(image[sample],
predictions[sample],
parts, colors[color])
display([image[sample], changed], 'hair')
elif action == "lip_color":
print('[INFO] Applying lip color ...')
parts = [table['upper_lip'], table['lower_lip']]
changed = lip_hair_color.color_change(image[sample],
predictions[sample],
parts, colors[color])
display([image[sample], changed], 'lip')
def main():
""" Define user arguments.
"""
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--visualize", type=str, required=True,
choices=("confusion_matrix", "mask",
"hair_color", "lip_color"),
help="type of model")
ap.add_argument("-c", "--color", type=str,
choices=("red", "pink", "purple"),
help="color to apply")
args = vars(ap.parse_args())
# print('[INFO] Getting test data...')
# test_data = get_test()
# imgs = []
# masks = []
# for img, label in test_data:
# for i in img:
# i = np.array(i, dtype='float32')
# imgs.append(i)
# for j in label:
# j = np.array(j, dtype='float32')
# masks.append(j)
# images = np.array(imgs)
# masks = np.array(masks)
# np.save('data/test_images.npy', images)
# np.save('data/test_mask.npy', masks)
# Load test images
images = np.load('data/test_images.npy')
masks = np.load('data/test_mask.npy')
test(images, masks, args["visualize"], args["color"])
if __name__ == '__main__':
VISUALIZATION_DIR = 'results/visualization/'
MODEL_DIR = 'results/models/'
color_list = [[0, 0, 0], [204, 0, 0], [255, 140, 26],
[204, 204, 0], [51, 51, 255], [204, 0, 204],
[0, 255, 255], [255, 204, 204], [102, 51, 0],
[255, 0, 0], [102, 204, 0], [255, 255, 0],
[0, 0, 153], [0, 0, 204], [255, 51, 153],
[0, 204, 204], [0, 51, 0], [255, 153, 51],
[0, 204, 0]]
sample = 4
main()
| [
11748,
28686,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
269,
85,
17,
198,
11748,
1822,
29572,
198,
6738,
1341,
35720,
13,
4164,
10466,
1330,
10802,
62,
6759,
8609,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
384,
397,
1211,
355,
3013,
82,
198,
6738,
11192,
273,
11125,
13,
6122,
292,
1330,
23412,
198,
6738,
2746,
1330,
334,
62,
3262,
198,
6738,
662,
36948,
13,
3866,
14681,
62,
26791,
1330,
3359,
198,
6738,
10256,
1330,
10645,
62,
27108,
62,
8043,
628,
198,
4299,
787,
62,
10414,
4241,
62,
6759,
8609,
7,
12993,
11,
9376,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
14933,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
954,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1411,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
5657,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
88,
62,
83,
3378,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
88,
62,
29487,
62,
23912,
1424,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2160,
62,
34242,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
7857,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
62,
8899,
11639,
3629,
947,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
28,
14202,
2599,
198,
220,
220,
220,
37227,
6127,
284,
7716,
2420,
1626,
1123,
3091,
290,
3566,
1958,
10802,
17593,
13,
628,
220,
220,
220,
1058,
17143,
30218,
25,
7326,
4241,
17593,
13,
198,
220,
220,
220,
1058,
4906,
30218,
25,
299,
32152,
7177,
198,
220,
220,
220,
1058,
17143,
9376,
25,
7177,
286,
6097,
13,
198,
220,
220,
220,
1058,
4906,
9376,
25,
299,
32152,
7177,
198,
220,
220,
220,
1058,
17143,
1448,
62,
14933,
25,
6097,
287,
262,
1628,
13,
198,
220,
220,
220,
1058,
4906,
1448,
62,
14933,
25,
299,
32152,
7177,
198,
220,
220,
220,
1058,
17143,
954,
25,
1771,
284,
3359,
262,
954,
286,
1123,
1398,
13,
198,
220,
220,
220,
1058,
4906,
954,
25,
25131,
198,
220,
220,
220,
1058,
17143,
1411,
25,
1771,
284,
3359,
5873,
329,
1123,
1398,
13,
198,
220,
220,
220,
1058,
4906,
1411,
25,
25131,
198,
220,
220,
220,
1058,
17143,
3124,
62,
5657,
25,
1771,
284,
3359,
3124,
2318,
329,
262,
4894,
3975,
13,
198,
220,
220,
220,
1058,
4906,
3124,
62,
5657,
25,
25131,
198,
220,
220,
220,
1058,
17143,
2124,
88,
62,
83,
3378,
25,
1771,
284,
3359,
2124,
88,
14722,
13,
198,
220,
220,
220,
1058,
4906,
2124,
88,
62,
83,
3378,
25,
25131,
198,
220,
220,
220,
1058,
17143,
2124,
88,
62,
29487,
62,
23912,
1424,
25,
1771,
284,
3359,
2124,
88,
3670,
13,
198,
220,
220,
220,
1058,
4906,
2124,
88,
62,
29487,
62,
23912,
1424,
25,
25131,
198,
220,
220,
220,
1058,
17143,
2160,
62,
34242,
25,
1771,
284,
3359,
4045,
9922,
13,
198,
220,
220,
220,
1058,
4906,
2160,
62,
34242,
25,
25131,
198,
220,
220,
220,
1058,
17143,
2336,
62,
7857,
25,
2546,
286,
262,
7110,
13,
198,
220,
220,
220,
1058,
4906,
2336,
62,
7857,
25,
46545,
198,
220,
220,
220,
1058,
17143,
269,
62,
8899,
25,
3124,
7791,
284,
779,
13,
198,
220,
220,
220,
1058,
4906,
269,
62,
8899,
25,
965,
198,
220,
220,
220,
1058,
17143,
3670,
25,
11851,
286,
262,
7110,
13,
198,
220,
220,
220,
1058,
4906,
3670,
25,
965,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
698,
2283,
796,
685,
7061,
329,
1312,
287,
2837,
7,
12993,
13,
7857,
15437,
628,
220,
220,
220,
611,
1448,
62,
14933,
290,
18896,
7,
8094,
62,
14933,
8,
6624,
30218,
13,
7857,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
23912,
1424,
796,
14631,
90,
32239,
77,
1911,
18982,
7,
8367,
8,
329,
1988,
287,
1448,
62,
14933,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
23912,
1424,
796,
698,
2283,
628,
220,
220,
220,
611,
954,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
9127,
82,
796,
14631,
90,
15,
25,
15,
13,
15,
69,
32239,
77,
1911,
18982,
7,
8367,
8,
329,
1988,
287,
30218,
13,
2704,
41769,
3419,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
9127,
82,
796,
698,
2283,
628,
220,
220,
220,
611,
1411,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5752,
62,
7857,
796,
45941,
13,
7857,
7,
12993,
11,
657,
8,
198,
220,
220,
220,
220,
220,
220,
220,
951,
62,
7857,
796,
45941,
13,
7857,
7,
12993,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
25067,
1095,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
808,
62,
7857,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
2837,
7,
4033,
62,
7857,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
25067,
1095,
13,
33295,
7,
12993,
58,
72,
7131,
73,
60,
1220,
30218,
58,
72,
4083,
16345,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
25067,
1095,
796,
14631,
90,
15,
25,
13,
17,
4,
92,
1911,
18982,
7,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1988,
287,
1448,
62,
25067,
1095,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
25067,
1095,
796,
698,
2283,
628,
220,
220,
220,
3091,
62,
23912,
1424,
796,
685,
69,
1,
90,
85,
16,
18477,
85,
17,
18477,
85,
18,
92,
1911,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
16,
11,
410,
17,
11,
410,
18,
287,
19974,
7,
8094,
62,
23912,
1424,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
9127,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
25067,
1095,
15437,
198,
220,
220,
220,
3091,
62,
23912,
1424,
796,
45941,
13,
292,
18747,
7,
3524,
62,
23912,
1424,
737,
3447,
1758,
7,
12993,
13,
43358,
58,
15,
4357,
30218,
13,
43358,
58,
16,
12962,
628,
220,
220,
220,
1303,
42714,
5390,
24700,
1137,
6158,
35683,
44,
13153,
15486,
8808,
19505,
1222,
40383,
7473,
35683,
44,
13153,
37889,
198,
220,
220,
220,
611,
2160,
62,
34242,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
33222,
318,
2160,
286,
40039,
9086,
416,
2472,
13050,
198,
220,
220,
220,
220,
220,
220,
220,
9922,
796,
45941,
13,
40546,
7,
12993,
8,
1220,
12178,
7,
37659,
13,
16345,
7,
12993,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
9756,
62,
5239,
796,
37082,
77,
59,
77,
17320,
23843,
34758,
15,
25,
15,
13,
17,
4,
92,
1911,
18982,
7,
4134,
23843,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
9756,
62,
5239,
796,
13538,
628,
220,
220,
220,
1303,
25823,
19697,
11335,
29463,
2390,
2767,
4877,
15859,
12532,
2751,
5390,
25401,
5923,
38,
5883,
15365,
198,
220,
220,
220,
611,
2336,
62,
7857,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
4277,
3785,
2546,
611,
407,
900,
198,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
7857,
796,
458,
83,
13,
6015,
10044,
4105,
13,
1136,
10786,
26875,
13,
5647,
7857,
11537,
628,
220,
220,
220,
611,
407,
2124,
88,
62,
83,
3378,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2141,
407,
905,
9376,
611,
2124,
20760,
3378,
318,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
9376,
796,
10352,
628,
220,
220,
220,
1303,
39134,
3336,
11179,
1404,
34645,
50035,
25620,
14887,
6234,
198,
220,
220,
220,
458,
83,
13,
26875,
7,
5647,
7857,
28,
5647,
62,
7857,
8,
198,
220,
220,
220,
3013,
82,
13,
25080,
8899,
7,
12993,
11,
24708,
28,
3524,
62,
23912,
1424,
11,
46996,
2625,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
8899,
28,
66,
62,
8899,
11,
269,
5657,
28,
8043,
62,
5657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
742,
624,
23912,
1424,
28,
66,
26129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
42298,
23912,
1424,
28,
66,
26129,
8,
628,
220,
220,
220,
611,
2124,
88,
62,
29487,
62,
23912,
1424,
25,
198,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
2645,
9608,
10786,
17821,
6167,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
87,
18242,
10786,
39156,
5722,
6167,
6,
1343,
9756,
62,
5239,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
87,
18242,
7,
34242,
62,
5239,
8,
628,
220,
220,
220,
611,
3670,
25,
198,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
7839,
7,
7839,
8,
628,
198,
4299,
7110,
62,
10414,
4241,
62,
6759,
8609,
7,
28764,
9278,
11,
20680,
11,
3108,
2599,
198,
220,
220,
220,
37227,
15612,
1096,
10802,
17593,
13,
628,
220,
220,
220,
1058,
17143,
16277,
25,
11001,
5072,
286,
262,
2746,
13,
198,
220,
220,
220,
1058,
4906,
16277,
25,
7177,
198,
220,
220,
220,
1058,
17143,
20680,
25,
2081,
20680,
286,
262,
4263,
13,
198,
220,
220,
220,
1058,
4906,
20680,
25,
7177,
198,
220,
220,
220,
1058,
17143,
3108,
25,
8619,
284,
3650,
262,
5072,
198,
220,
220,
220,
1058,
4906,
3108,
25,
965,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
10786,
58,
10778,
60,
28114,
889,
10802,
17593,
986,
11537,
198,
220,
220,
220,
1162,
81,
796,
10802,
62,
6759,
8609,
7,
5356,
591,
13,
25843,
22784,
16277,
13,
25843,
28955,
198,
220,
220,
220,
787,
62,
10414,
4241,
62,
6759,
8609,
7,
10215,
81,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9376,
28,
17816,
35904,
3256,
705,
20407,
3256,
705,
77,
577,
3256,
705,
25379,
62,
70,
3256,
705,
75,
62,
25379,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
81,
62,
25379,
3256,
705,
75,
62,
25367,
3256,
705,
81,
62,
25367,
3256,
705,
75,
62,
451,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
81,
62,
451,
3256,
705,
14775,
3256,
705,
84,
62,
40712,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
75,
62,
40712,
3256,
705,
27108,
3256,
705,
5183,
3256,
705,
451,
62,
81,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27235,
62,
75,
3256,
705,
27235,
3256,
705,
44905,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
954,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1411,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3124,
62,
5657,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
88,
62,
83,
3378,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
88,
62,
29487,
62,
23912,
1424,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2160,
62,
34242,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
62,
7857,
16193,
1238,
11,
1248,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
62,
8899,
11639,
24494,
31975,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
11639,
18546,
4241,
17593,
11537,
628,
220,
220,
220,
1303,
4049,
17137,
532,
48998,
4894,
3975,
198,
220,
220,
220,
275,
11,
256,
796,
458,
83,
13,
88,
2475,
3419,
220,
1303,
7073,
262,
3815,
329,
4220,
290,
1353,
198,
220,
220,
220,
275,
15853,
657,
13,
20,
220,
1303,
3060,
657,
13,
20,
284,
262,
4220,
198,
220,
220,
220,
256,
48185,
657,
13,
20,
220,
1303,
3834,
83,
974,
657,
13,
20,
422,
262,
1353,
198,
220,
220,
220,
458,
83,
13,
88,
2475,
7,
65,
11,
256,
8,
220,
1303,
4296,
262,
331,
2475,
7,
22487,
11,
1353,
8,
3815,
628,
220,
220,
220,
458,
83,
13,
21928,
5647,
7,
418,
13,
6978,
13,
22179,
7,
6978,
11,
705,
10414,
4241,
62,
6759,
8609,
13,
11134,
6,
4008,
198,
220,
220,
220,
3601,
10786,
58,
44710,
60,
4091,
2482,
14,
41464,
1634,
14,
10414,
4241,
62,
6759,
8609,
13,
11134,
11537,
628,
198,
4299,
7110,
62,
27932,
7,
28764,
2867,
11,
9335,
11,
2593,
62,
9060,
2599,
198,
220,
220,
220,
37227,
9297,
313,
10618,
341,
9335,
329,
262,
1813,
2939,
13,
628,
220,
220,
220,
1058,
17143,
17724,
25,
11001,
5072,
286,
262,
2746,
13,
198,
220,
220,
220,
1058,
4906,
17724,
25,
7177,
198,
220,
220,
220,
1058,
17143,
9335,
25,
2081,
20680,
286,
262,
4263,
13,
198,
220,
220,
220,
1058,
4906,
9335,
25,
7177,
198,
220,
220,
220,
1058,
17143,
2593,
62,
9060,
25,
2656,
2939,
13,
198,
220,
220,
220,
1058,
4906,
2593,
62,
9060,
25,
7177,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
2939,
796,
357,
27237,
62,
9060,
1635,
14280,
15729,
459,
2981,
7,
37659,
13,
28611,
23,
8,
198,
220,
220,
220,
545,
62,
8692,
796,
45941,
13,
9107,
418,
19510,
11645,
11,
17759,
11,
513,
828,
288,
4906,
28,
37659,
13,
28611,
23,
8,
198,
220,
220,
220,
329,
4686,
87,
11,
3124,
287,
27056,
378,
7,
8043,
62,
4868,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
545,
62,
8692,
58,
28764,
2867,
6624,
4686,
87,
60,
796,
3124,
198,
220,
220,
220,
269,
85,
17,
13,
2860,
25844,
276,
7,
320,
62,
8692,
11,
657,
13,
23,
11,
2939,
11,
352,
11,
657,
11,
545,
62,
8692,
8,
198,
220,
220,
220,
3359,
26933,
9060,
11,
9335,
11,
545,
62,
8692,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37250,
20556,
2939,
3256,
705,
17821,
9335,
3256,
705,
39156,
5722,
9335,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
79,
17407,
11537,
628,
198,
4299,
1332,
7,
9060,
11,
20680,
11,
2223,
11,
3124,
11639,
445,
6,
2599,
198,
220,
220,
220,
37227,
16718,
284,
7110,
2035,
10802,
17593,
393,
11001,
9335,
393,
4174,
16029,
13,
628,
220,
220,
220,
1058,
17143,
2939,
25,
2656,
2939,
13,
198,
220,
220,
220,
1058,
4906,
2939,
25,
416,
83,
451,
2433,
198,
220,
220,
220,
1058,
17143,
20680,
25,
2081,
10618,
341,
20680,
13,
198,
220,
220,
220,
1058,
4906,
20680,
25,
7177,
198,
220,
220,
220,
1058,
17143,
2223,
25,
2836,
5128,
31577,
10802,
17593,
14,
27932,
198,
220,
220,
220,
17724,
14,
1324,
3157,
16029,
13,
198,
220,
220,
220,
1058,
4906,
2223,
25,
965,
198,
220,
220,
220,
1058,
17143,
3124,
25,
611,
2223,
318,
11524,
16029,
11,
788,
3124,
284,
4174,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
2266,
13,
198,
220,
220,
220,
1058,
4906,
3124,
25,
965,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
5128,
62,
9600,
796,
23412,
7,
43358,
16193,
11645,
11,
17759,
11,
513,
828,
1438,
11639,
9600,
11537,
198,
220,
220,
220,
2746,
796,
334,
62,
3262,
13,
1136,
62,
84,
62,
3262,
7,
15414,
62,
9600,
11,
997,
62,
37724,
28,
1129,
8,
198,
220,
220,
220,
2746,
13,
2220,
62,
43775,
7,
418,
13,
6978,
13,
22179,
7,
33365,
3698,
62,
34720,
11,
705,
84,
62,
3262,
13,
71,
20,
6,
4008,
628,
220,
220,
220,
3601,
10786,
58,
10778,
60,
49461,
278,
2644,
11537,
198,
220,
220,
220,
16277,
796,
2746,
13,
79,
17407,
7,
9060,
8,
198,
220,
220,
220,
16277,
796,
45941,
13,
853,
9806,
7,
28764,
9278,
11,
16488,
10779,
16,
8,
628,
220,
220,
220,
3084,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
27108,
10354,
1511,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
45828,
62,
40712,
10354,
1367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
21037,
62,
40712,
10354,
1105,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
7577,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
445,
10354,
685,
21777,
11,
4974,
11,
4974,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
14225,
1154,
10354,
685,
12762,
11,
6885,
11,
13151,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
705,
79,
676,
10354,
685,
23753,
11,
3933,
11,
13151,
60,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
1303,
2297,
1060,
284,
262,
2163,
286,
7368,
2223,
13,
198,
220,
220,
220,
611,
2223,
6624,
705,
10414,
4241,
62,
6759,
8609,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
10778,
60,
28114,
889,
10802,
17593,
2644,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
7110,
62,
10414,
4241,
62,
6759,
8609,
7,
28764,
9278,
11,
20680,
11,
50035,
25620,
14887,
6234,
62,
34720,
8,
628,
220,
220,
220,
1288,
361,
2223,
6624,
705,
27932,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
10778,
60,
28114,
889,
10618,
341,
9335,
2644,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
7110,
62,
27932,
7,
28764,
9278,
58,
39873,
4357,
20680,
58,
39873,
4357,
2939,
58,
39873,
12962,
628,
220,
220,
220,
1288,
361,
2223,
6624,
705,
27108,
62,
8043,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
10778,
60,
2034,
3157,
4190,
3124,
2644,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
3354,
796,
685,
11487,
17816,
27108,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
3421,
796,
10645,
62,
27108,
62,
8043,
13,
8043,
62,
3803,
7,
9060,
58,
39873,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16277,
58,
39873,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3354,
11,
7577,
58,
8043,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
3359,
26933,
9060,
58,
39873,
4357,
3421,
4357,
705,
27108,
11537,
628,
220,
220,
220,
1288,
361,
2223,
6624,
366,
40712,
62,
8043,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
58,
10778,
60,
2034,
3157,
10645,
3124,
2644,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
3354,
796,
685,
11487,
17816,
45828,
62,
40712,
6,
4357,
3084,
17816,
21037,
62,
40712,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
3421,
796,
10645,
62,
27108,
62,
8043,
13,
8043,
62,
3803,
7,
9060,
58,
39873,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16277,
58,
39873,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3354,
11,
7577,
58,
8043,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
3359,
26933,
9060,
58,
39873,
4357,
3421,
4357,
705,
40712,
11537,
628,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
2896,
500,
2836,
7159,
13,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
2471,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
2471,
13,
2860,
62,
49140,
7203,
12,
85,
1600,
366,
438,
41464,
1096,
1600,
2099,
28,
2536,
11,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7747,
28,
7203,
10414,
4241,
62,
6759,
8609,
1600,
366,
27932,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
27108,
62,
8043,
1600,
366,
40712,
62,
8043,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
4906,
286,
2746,
4943,
198,
220,
220,
220,
2471,
13,
2860,
62,
49140,
7203,
12,
66,
1600,
366,
438,
8043,
1600,
2099,
28,
2536,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7747,
28,
7203,
445,
1600,
366,
79,
676,
1600,
366,
14225,
1154,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8043,
284,
4174,
4943,
198,
220,
220,
220,
26498,
796,
410,
945,
7,
499,
13,
29572,
62,
22046,
28955,
628,
220,
220,
220,
1303,
3601,
10786,
58,
10778,
60,
18067,
1332,
1366,
986,
11537,
198,
220,
220,
220,
1303,
1332,
62,
7890,
796,
651,
62,
9288,
3419,
198,
220,
220,
220,
1303,
545,
14542,
796,
17635,
198,
220,
220,
220,
1303,
20680,
796,
17635,
198,
220,
220,
220,
1303,
329,
33705,
11,
6167,
287,
1332,
62,
7890,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
1312,
287,
33705,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
796,
45941,
13,
18747,
7,
72,
11,
288,
4906,
11639,
22468,
2624,
11537,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
545,
14542,
13,
33295,
7,
72,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
474,
287,
6167,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
474,
796,
45941,
13,
18747,
7,
73,
11,
288,
4906,
11639,
22468,
2624,
11537,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
20680,
13,
33295,
7,
73,
8,
198,
220,
220,
220,
1303,
4263,
796,
45941,
13,
18747,
7,
9600,
82,
8,
198,
220,
220,
220,
1303,
20680,
796,
45941,
13,
18747,
7,
5356,
591,
8,
198,
220,
220,
220,
1303,
45941,
13,
21928,
10786,
7890,
14,
9288,
62,
17566,
13,
77,
9078,
3256,
4263,
8,
198,
220,
220,
220,
1303,
45941,
13,
21928,
10786,
7890,
14,
9288,
62,
27932,
13,
77,
9078,
3256,
20680,
8,
628,
220,
220,
220,
1303,
8778,
1332,
4263,
198,
220,
220,
220,
4263,
796,
45941,
13,
2220,
10786,
7890,
14,
9288,
62,
17566,
13,
77,
9078,
11537,
198,
220,
220,
220,
20680,
796,
45941,
13,
2220,
10786,
7890,
14,
9288,
62,
27932,
13,
77,
9078,
11537,
198,
220,
220,
220,
1332,
7,
17566,
11,
20680,
11,
26498,
14692,
41464,
1096,
33116,
26498,
14692,
8043,
8973,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
50035,
25620,
14887,
6234,
62,
34720,
796,
705,
43420,
14,
41464,
1634,
14,
6,
198,
220,
220,
220,
19164,
3698,
62,
34720,
796,
705,
43420,
14,
27530,
14,
6,
198,
220,
220,
220,
3124,
62,
4868,
796,
16410,
15,
11,
657,
11,
657,
4357,
685,
18638,
11,
657,
11,
657,
4357,
685,
13381,
11,
12713,
11,
2608,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
18638,
11,
26956,
11,
657,
4357,
685,
4349,
11,
6885,
11,
14280,
4357,
685,
18638,
11,
657,
11,
26956,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
11,
14280,
11,
14280,
4357,
685,
13381,
11,
26956,
11,
26956,
4357,
685,
15377,
11,
6885,
11,
657,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
13381,
11,
657,
11,
657,
4357,
685,
15377,
11,
26956,
11,
657,
4357,
685,
13381,
11,
14280,
11,
657,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
11,
657,
11,
24652,
4357,
685,
15,
11,
657,
11,
26956,
4357,
685,
13381,
11,
6885,
11,
24652,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
11,
26956,
11,
26956,
4357,
685,
15,
11,
6885,
11,
657,
4357,
685,
13381,
11,
24652,
11,
6885,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
15,
11,
26956,
11,
657,
11907,
198,
220,
220,
220,
6291,
796,
604,
198,
220,
220,
220,
1388,
3419,
198
] | 2.094695 | 4,731 |
import large_image_source_tiff as tiff
# from large_image.tilesource.base import GirderTileSource
from large_image_source_tiff import girder_source
from .tiff_reader import TiledTiffDirectory
tiff.TiledTiffDirectory = TiledTiffDirectory
| [
11748,
1588,
62,
9060,
62,
10459,
62,
83,
733,
355,
256,
733,
198,
2,
422,
1588,
62,
9060,
13,
83,
2915,
1668,
13,
8692,
1330,
23837,
1082,
35103,
7416,
198,
6738,
1588,
62,
9060,
62,
10459,
62,
83,
733,
1330,
37370,
1082,
62,
10459,
198,
198,
6738,
764,
83,
733,
62,
46862,
1330,
309,
3902,
51,
733,
43055,
198,
83,
733,
13,
51,
3902,
51,
733,
43055,
796,
309,
3902,
51,
733,
43055,
628,
198
] | 3.2 | 75 |
# Auto generated by generator.py. Delete this line if you make modification.
from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor
XPATH = {
'name' : "//div[@class='header_layer_2']/h1",
'price' : "//input[@name='price']/@value",
'category' : "//div[@class='thanh_dinh_huong']/a",
'description' : "",
'images' : "//img[@id='anh_chitiet_sanpham']/@src",
'canonical' : "",
'base_url' : "//base/@href",
'brand' : ""
}
name = 'songvu.net'
allowed_domains = ['songvu.net']
start_urls = ['http://songvu.net/ao-so-mi-nam-d37v3.html']
tracking_url = ''
sitemap_urls = ['']
sitemap_rules = [('', 'parse_item')]
sitemap_follow = []
rules = [
Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-id\d+\.html$']), 'parse_item'),
Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-d\d+(v3)?(p\d+)?\.html$']), 'parse'),
#Rule(LinkExtractor(), 'parse_item_and_links'),
]
| [
2,
11160,
7560,
416,
17301,
13,
9078,
13,
23520,
428,
1627,
611,
345,
787,
17613,
13,
198,
6738,
15881,
88,
13,
2777,
4157,
1330,
14330,
198,
6738,
15881,
88,
13,
2815,
365,
742,
974,
669,
1330,
7502,
11627,
40450,
198,
198,
27481,
12599,
796,
1391,
198,
220,
220,
220,
705,
3672,
6,
1058,
366,
1003,
7146,
58,
31,
4871,
11639,
25677,
62,
29289,
62,
17,
20520,
14,
71,
16,
1600,
198,
220,
220,
220,
705,
20888,
6,
1058,
366,
1003,
15414,
58,
31,
3672,
11639,
20888,
20520,
14,
31,
8367,
1600,
198,
220,
220,
220,
705,
22872,
6,
1058,
366,
1003,
7146,
58,
31,
4871,
11639,
14813,
71,
62,
25194,
71,
62,
13415,
506,
20520,
14,
64,
1600,
198,
220,
220,
220,
705,
11213,
6,
1058,
366,
1600,
198,
220,
220,
220,
705,
17566,
6,
1058,
366,
1003,
9600,
58,
31,
312,
11639,
272,
71,
62,
354,
270,
1155,
62,
12807,
746,
321,
20520,
14,
31,
10677,
1600,
198,
220,
220,
220,
705,
49883,
605,
6,
1058,
366,
1600,
198,
220,
220,
220,
705,
8692,
62,
6371,
6,
1058,
366,
1003,
8692,
14,
31,
33257,
1600,
198,
220,
220,
220,
705,
17938,
6,
1058,
13538,
198,
92,
198,
3672,
796,
705,
34050,
40939,
13,
3262,
6,
198,
40845,
62,
3438,
1299,
796,
37250,
34050,
40939,
13,
3262,
20520,
198,
9688,
62,
6371,
82,
796,
37250,
4023,
1378,
34050,
40939,
13,
3262,
14,
5488,
12,
568,
12,
11632,
12,
7402,
12,
67,
2718,
85,
18,
13,
6494,
20520,
198,
36280,
62,
6371,
796,
10148,
198,
82,
9186,
499,
62,
6371,
82,
796,
685,
7061,
60,
198,
82,
9186,
499,
62,
38785,
796,
685,
10786,
3256,
705,
29572,
62,
9186,
11537,
60,
198,
82,
9186,
499,
62,
27780,
796,
17635,
198,
38785,
796,
685,
198,
220,
220,
220,
14330,
7,
11280,
11627,
40450,
7,
12154,
28,
17816,
14,
58,
64,
12,
89,
32,
12,
57,
15,
12,
24,
12,
48688,
12,
312,
59,
67,
10,
17405,
6494,
3,
20520,
828,
705,
29572,
62,
9186,
33809,
198,
220,
220,
220,
14330,
7,
11280,
11627,
40450,
7,
12154,
28,
17816,
14,
58,
64,
12,
89,
32,
12,
57,
15,
12,
24,
12,
48688,
12,
67,
59,
67,
33747,
85,
18,
19427,
7,
79,
59,
67,
10,
19427,
17405,
6494,
3,
20520,
828,
705,
29572,
33809,
198,
220,
220,
220,
1303,
31929,
7,
11280,
11627,
40450,
22784,
705,
29572,
62,
9186,
62,
392,
62,
28751,
33809,
198,
60,
198
] | 2.24505 | 404 |
# Generated by Django 2.1.3 on 2019-01-08 04:17
from django.db import migrations
| [
2,
2980,
515,
416,
37770,
362,
13,
16,
13,
18,
319,
13130,
12,
486,
12,
2919,
8702,
25,
1558,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
628
] | 2.766667 | 30 |
import numpy as np
import time
import xgboost as xgb
from sklearn.model_selection import KFold
from regularization.score import myFeval
from sklearn.metrics import mean_squared_error
from regularization.data_process import data_process
s = time.time()
X_train, y_train, X_test, train_len, test_len = data_process()
print('加载数据及预处理消耗时间:', time.time()-s)
xgb_params = {"booster": 'gbtree',
'eta': 0.005,
'max_depth': 5,
'subsample': 0.7, # 随机采样训练样本
'colsample_bytree': 0.8,
'objective': 'reg:linear',
'eval_metric': 'rmse',
'silent': True,
'lambda': 1
}
folds = KFold(n_splits=5, shuffle=True, random_state=2018)
oof_xgb = np.zeros(train_len)
predictions_xgb = np.zeros(test_len)
for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train, y_train)):
print("fold n°{}".format(fold_ + 1))
trn_data = xgb.DMatrix(X_train[trn_idx], y_train[trn_idx])
val_data = xgb.DMatrix(X_train[val_idx], y_train[val_idx])
watchlist = [(trn_data, 'train'), (val_data, 'valid_data')]
clf = xgb.train(dtrain=trn_data, num_boost_round=20000, evals=watchlist, early_stopping_rounds=200,
verbose_eval=100, params=xgb_params, feval=myFeval)
oof_xgb[val_idx] = clf.predict(xgb.DMatrix(X_train[val_idx]), ntree_limit=clf.best_ntree_limit)
predictions_xgb += clf.predict(xgb.DMatrix(X_test), ntree_limit=clf.best_ntree_limit) / folds.n_splits
print("CV score: {:<8.8f}".format(mean_squared_error(oof_xgb, y_train.tolist())))
'''
--------------------------------------------
1. 初始参数 reg:linear 0.45434592
2. 增加L2正则 'lambda':2 0.45488106
3. 2+增加L1正则 'alpha': 1 0.45456481
4. 增加L1正则 'alpha': 1 0.45460193
5. 3+subsample改为0.6 0.45449627
6. 只改subsample 0.6 0.45448684
7. 只改subsample 0.8 0.45625735
8. 1+增加L1正则0.5 0.45431723
9. 1+增加L1正则0.3 0.45450940
10.1+增加L1正则0.7 0.45447847
11.1+增加L1正则0.6 0.45467713
12.1+增加L1正则0.55 0.45430484 ○
13.12+L2正则0.5 0.45467713
14.12+L2正则3 0.45431729
15.1+增加L2正则3 0.45484879
16.1+增加L2正则1 0.45434592
17.1+增加L2正则0.5 0.45469010
''' | [
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
11748,
2124,
70,
39521,
355,
2124,
22296,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
509,
37,
727,
198,
6738,
3218,
1634,
13,
26675,
1330,
616,
37,
18206,
198,
6738,
1341,
35720,
13,
4164,
10466,
1330,
1612,
62,
16485,
1144,
62,
18224,
198,
6738,
3218,
1634,
13,
7890,
62,
14681,
1330,
1366,
62,
14681,
198,
198,
82,
796,
640,
13,
2435,
3419,
198,
55,
62,
27432,
11,
331,
62,
27432,
11,
1395,
62,
9288,
11,
4512,
62,
11925,
11,
1332,
62,
11925,
796,
1366,
62,
14681,
3419,
198,
4798,
10786,
27950,
254,
164,
121,
121,
46763,
108,
162,
235,
106,
20998,
232,
165,
95,
226,
13783,
226,
49426,
228,
162,
114,
230,
32003,
245,
33768,
114,
29785,
112,
171,
120,
248,
3256,
640,
13,
2435,
3419,
12,
82,
8,
198,
198,
87,
22296,
62,
37266,
796,
19779,
2127,
6197,
1298,
705,
70,
18347,
631,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
17167,
10354,
657,
13,
22544,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9806,
62,
18053,
10354,
642,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
39873,
10354,
657,
13,
22,
11,
1303,
16268,
248,
237,
17312,
118,
34932,
229,
43718,
115,
164,
106,
255,
163,
119,
225,
43718,
115,
17312,
105,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4033,
39873,
62,
1525,
21048,
10354,
657,
13,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15252,
425,
10354,
705,
2301,
25,
29127,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18206,
62,
4164,
1173,
10354,
705,
26224,
325,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18217,
298,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
50033,
10354,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
69,
10119,
796,
509,
37,
727,
7,
77,
62,
22018,
896,
28,
20,
11,
36273,
28,
17821,
11,
4738,
62,
5219,
28,
7908,
8,
198,
37711,
62,
87,
22296,
796,
45941,
13,
9107,
418,
7,
27432,
62,
11925,
8,
198,
28764,
9278,
62,
87,
22296,
796,
45941,
13,
9107,
418,
7,
9288,
62,
11925,
8,
198,
198,
1640,
5591,
62,
11,
357,
2213,
77,
62,
312,
87,
11,
1188,
62,
312,
87,
8,
287,
27056,
378,
7,
69,
10119,
13,
35312,
7,
55,
62,
27432,
11,
331,
62,
27432,
8,
2599,
198,
220,
220,
220,
3601,
7203,
11379,
299,
7200,
90,
92,
1911,
18982,
7,
11379,
62,
1343,
352,
4008,
198,
220,
220,
220,
491,
77,
62,
7890,
796,
2124,
22296,
13,
35,
46912,
7,
55,
62,
27432,
58,
2213,
77,
62,
312,
87,
4357,
331,
62,
27432,
58,
2213,
77,
62,
312,
87,
12962,
198,
220,
220,
220,
1188,
62,
7890,
796,
2124,
22296,
13,
35,
46912,
7,
55,
62,
27432,
58,
2100,
62,
312,
87,
4357,
331,
62,
27432,
58,
2100,
62,
312,
87,
12962,
628,
220,
220,
220,
2342,
4868,
796,
47527,
2213,
77,
62,
7890,
11,
705,
27432,
33809,
357,
2100,
62,
7890,
11,
705,
12102,
62,
7890,
11537,
60,
198,
220,
220,
220,
537,
69,
796,
2124,
22296,
13,
27432,
7,
67,
27432,
28,
2213,
77,
62,
7890,
11,
997,
62,
39521,
62,
744,
28,
2167,
405,
11,
819,
874,
28,
8340,
4868,
11,
1903,
62,
301,
33307,
62,
744,
82,
28,
2167,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15942,
577,
62,
18206,
28,
3064,
11,
42287,
28,
87,
22296,
62,
37266,
11,
730,
2100,
28,
1820,
37,
18206,
8,
198,
220,
220,
220,
267,
1659,
62,
87,
22296,
58,
2100,
62,
312,
87,
60,
796,
537,
69,
13,
79,
17407,
7,
87,
22296,
13,
35,
46912,
7,
55,
62,
27432,
58,
2100,
62,
312,
87,
46570,
299,
21048,
62,
32374,
28,
565,
69,
13,
13466,
62,
429,
631,
62,
32374,
8,
198,
220,
220,
220,
16277,
62,
87,
22296,
15853,
537,
69,
13,
79,
17407,
7,
87,
22296,
13,
35,
46912,
7,
55,
62,
9288,
828,
299,
21048,
62,
32374,
28,
565,
69,
13,
13466,
62,
429,
631,
62,
32374,
8,
1220,
38744,
13,
77,
62,
22018,
896,
198,
198,
4798,
7203,
33538,
4776,
25,
46110,
27,
23,
13,
23,
69,
92,
1911,
18982,
7,
32604,
62,
16485,
1144,
62,
18224,
7,
37711,
62,
87,
22296,
11,
331,
62,
27432,
13,
83,
349,
396,
3419,
22305,
628,
198,
198,
7061,
6,
198,
20368,
10541,
198,
16,
13,
10263,
230,
251,
34650,
233,
20998,
224,
46763,
108,
220,
842,
25,
29127,
220,
220,
220,
220,
657,
13,
2231,
3559,
2231,
5892,
198,
17,
13,
10263,
95,
252,
27950,
254,
43,
17,
29826,
96,
26344,
247,
705,
50033,
10354,
17,
220,
220,
220,
657,
13,
2231,
33646,
15801,
198,
18,
13,
362,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
705,
26591,
10354,
352,
220,
657,
13,
2231,
2231,
2414,
6659,
198,
19,
13,
10263,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
705,
26591,
10354,
352,
220,
220,
220,
657,
13,
2231,
3510,
486,
6052,
198,
20,
13,
513,
10,
7266,
39873,
162,
242,
117,
10310,
118,
15,
13,
21,
220,
220,
220,
220,
220,
657,
13,
2231,
2598,
4846,
1983,
198,
21,
13,
10263,
237,
103,
162,
242,
117,
7266,
39873,
657,
13,
21,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
31115,
41580,
198,
22,
13,
10263,
237,
103,
162,
242,
117,
7266,
39873,
657,
13,
23,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
26704,
22,
2327,
198,
23,
13,
352,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
15,
13,
20,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
3559,
1558,
1954,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
24,
13,
352,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
15,
13,
18,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
17885,
46899,
198,
940,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
15,
13,
22,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
2598,
3695,
2857,
198,
1157,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
15,
13,
21,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
24669,
50055,
198,
1065,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
16,
29826,
96,
26344,
247,
15,
13,
2816,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
31794,
34137,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24966,
233,
198,
1485,
13,
1065,
10,
43,
17,
29826,
96,
26344,
247,
15,
13,
20,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
24669,
50055,
198,
1415,
13,
1065,
10,
43,
17,
29826,
96,
26344,
247,
18,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
3559,
1558,
1959,
198,
1314,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
17,
29826,
96,
26344,
247,
18,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
2780,
2780,
3720,
198,
1433,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
17,
29826,
96,
26344,
247,
16,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2231,
3559,
2231,
5892,
198,
1558,
13,
16,
10,
161,
95,
252,
27950,
254,
43,
17,
29826,
96,
26344,
247,
15,
13,
20,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
34229,
3388,
20943,
628,
628,
198,
7061,
6
] | 1.690583 | 1,338 |
from django.test import TestCase
from apps.datablock.models import DataBlock
from apps.fleet.models import Fleet
from apps.physicaldevice.models import Device
from apps.stream.models import StreamId, StreamVariable
from ..test_util import TestMixin
from .utils import *
from .utils import _get_real_slug
| [
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
198,
198,
6738,
6725,
13,
19608,
397,
5354,
13,
27530,
1330,
6060,
12235,
198,
6738,
6725,
13,
33559,
13,
27530,
1330,
20001,
198,
6738,
6725,
13,
42854,
25202,
13,
27530,
1330,
16232,
198,
6738,
6725,
13,
5532,
13,
27530,
1330,
13860,
7390,
11,
13860,
43015,
198,
198,
6738,
11485,
9288,
62,
22602,
1330,
6208,
35608,
259,
198,
6738,
764,
26791,
1330,
1635,
198,
6738,
764,
26791,
1330,
4808,
1136,
62,
5305,
62,
6649,
1018,
628
] | 3.698795 | 83 |
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
TEST_APP_URL = os.environ['TEST_APP_URL']
| [
2,
15069,
1584,
3012,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
28686,
198,
198,
51,
6465,
62,
24805,
62,
21886,
796,
28686,
13,
268,
2268,
17816,
51,
6465,
62,
24805,
62,
21886,
20520,
628
] | 3.605714 | 175 |
import nengo
model = nengo.Network()
with model:
a = nengo.Ensemble(n_neurons=100, dimensions=2, radius=1)
stim = nengo.Node([0,0])
nengo.Connection(stim, a) | [
11748,
299,
1516,
78,
198,
198,
19849,
796,
299,
1516,
78,
13,
26245,
3419,
198,
4480,
2746,
25,
198,
220,
220,
220,
257,
796,
299,
1516,
78,
13,
4834,
15140,
7,
77,
62,
710,
333,
684,
28,
3064,
11,
15225,
28,
17,
11,
16874,
28,
16,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
7132,
796,
299,
1516,
78,
13,
19667,
26933,
15,
11,
15,
12962,
198,
220,
220,
220,
220,
198,
220,
220,
220,
299,
1516,
78,
13,
32048,
7,
42003,
11,
257,
8
] | 2.068966 | 87 |
# 時系列予測の問題に季節項を導入する
# 時系列データは、目的変数を観測値の要素の和に分解するのが定石
# Own Library
import mcmc_tools
import analysis_data as ad
import seaborn as sns
import matplotlib.pyplot as plt
if __name__ == '__main__':
spm = SPM('data-ss2.txt', '../model/model12-2')
spm.describe()
spm.observe_ts()
stan_data = spm.create_data()
mcmc_sample = spm.fit(stan_data)
# 全体の観測および予測分布
spm.create_figure(mcmc_sample, 'y_mean_pred')
# 要素ごとに分けて観測および予測分布
spm.create_figure(mcmc_sample, 'mu_pred')
spm.create_figure(mcmc_sample, 'season_pred')
| [
2,
10545,
25081,
163,
111,
119,
26344,
245,
12859,
230,
162,
116,
105,
15474,
243,
237,
165,
94,
234,
28618,
27764,
96,
163,
107,
222,
165,
254,
227,
31758,
22887,
236,
17739,
98,
33623,
25748,
198,
2,
10545,
25081,
163,
111,
119,
26344,
245,
21959,
6312,
23376,
31676,
23513,
33566,
106,
21410,
13783,
231,
46763,
108,
31758,
17358,
111,
162,
116,
105,
161,
222,
97,
5641,
17358,
223,
163,
112,
254,
15474,
240,
234,
28618,
26344,
228,
164,
100,
96,
33623,
25748,
5641,
35585,
22522,
248,
163,
253,
111,
198,
198,
2,
11744,
10074,
198,
11748,
285,
11215,
66,
62,
31391,
198,
11748,
3781,
62,
7890,
355,
512,
198,
198,
11748,
384,
397,
1211,
355,
3013,
82,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
599,
76,
796,
311,
5868,
10786,
7890,
12,
824,
17,
13,
14116,
3256,
705,
40720,
19849,
14,
19849,
1065,
12,
17,
11537,
198,
220,
220,
220,
599,
76,
13,
20147,
4892,
3419,
628,
220,
220,
220,
599,
76,
13,
672,
2655,
303,
62,
912,
3419,
628,
220,
220,
220,
336,
272,
62,
7890,
796,
599,
76,
13,
17953,
62,
7890,
3419,
628,
220,
220,
220,
285,
11215,
66,
62,
39873,
796,
599,
76,
13,
11147,
7,
14192,
62,
7890,
8,
628,
220,
220,
220,
1303,
10263,
227,
101,
19526,
241,
5641,
17358,
111,
162,
116,
105,
2515,
232,
1792,
230,
2515,
111,
12859,
230,
162,
116,
105,
26344,
228,
30585,
225,
198,
220,
220,
220,
599,
76,
13,
17953,
62,
26875,
7,
76,
11215,
66,
62,
39873,
11,
705,
88,
62,
32604,
62,
28764,
11537,
628,
220,
220,
220,
1303,
5525,
99,
223,
163,
112,
254,
2515,
242,
30201,
28618,
26344,
228,
2515,
239,
28134,
17358,
111,
162,
116,
105,
2515,
232,
1792,
230,
2515,
111,
12859,
230,
162,
116,
105,
26344,
228,
30585,
225,
198,
220,
220,
220,
599,
76,
13,
17953,
62,
26875,
7,
76,
11215,
66,
62,
39873,
11,
705,
30300,
62,
28764,
11537,
198,
220,
220,
220,
599,
76,
13,
17953,
62,
26875,
7,
76,
11215,
66,
62,
39873,
11,
705,
6230,
62,
28764,
11537,
198
] | 1.520548 | 365 |
################################################################################
#
# MRC FGU Computational Genomics Group
#
# $Id$
#
# Copyright (C) 2009 Andreas Heger
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#################################################################################
'''
ScopTester.py -
======================================================
:Author: Andreas Heger
:Release: $Id$
:Date: |today|
:Tags: Python
Code
----
'''
import sys
import re
import string
import os
import time
from Pairsdb import *
import alignlib
import pairsdblib
from MessagePairsdb import MessagePairsdb
from TableDomainsScopTest import TableDomainsScopTest
from TablePairsdbNeighbours import TablePairsdbNeighbours
from Pairsdb import *
import Tools
#-------------------------------------------
# Class: ScopTest
# Superclasses: Message
# Subclasses:
# Function: update ScopTest-database
#
# Author: Andreas Heger
#-------------------------------------------
##--------------------------------------------------------------------------------------
##--------------------------------------------------------------------------------------
##--------------------------------------------------------------------------------------
class ScopTesterFullProfiles( ScopTesterProfiles ):
"""use full length profiles.
beware of multidomain-proteins, use iterative multiple alignment
method.
"""
##--------------------------------------------------------------------------------------
class Alignator:
"""
aligns two sequences and returns result.
"""
##--------------------------------------------------------------------------------------
##--------------------------------------------------------------------------------------
def CheckResult( self,
result,
info1 = None,
info2 = None):
"""check if result is ok. The function below returns everything.
return tuple of strings as result.
"""
if (result.getLength() > 0):
row_ali, col_ali = alignlib.writeAlignataCompressed( result )
return map(str, (result.getScore(),
result.getLength(),
result.getNumGaps(),
alignlib.calculatePercentSimilarity( result ),
result.getRowFrom(), result.getRowTo(), row_ali,
result.getColFrom(), result.getColTo(), col_ali ) )
else:
return ("0",) * 12
##--------------------------------------------------------------------------------------
class AlignatorIterative(Alignator):
"""
aligns two sequences iteratively, checks if alignment regions are overlapping with
domain regions and returns result only for those overlapping. This is useful if you have
several domains in a sequence, but you need only compare to one.
"""
##--------------------------------------------------------------------------------------
def Align( self, a1, a2, result ):
"""align repetetively. Take highest scoring alignment, that overlaps with domains
and put it in result. Note: performIterativeAlignment does not work, as it is linear.
It requires domains to be in the same order.
Result is empty, fragments are saved in object.
"""
fragmentor = alignlib.makeFragmentorRepetitive( self.mAlignator, self.mMinScore )
## align iteratively and convert fragments to Alignata-objects
val = fragmentor.Fragment( a1, a2, result)
self.mFragments = map( lambda x: alignlib.AlignataPtr(x), val)
for fragment in self.mFragments:
fragment.thisown = 1
## alignlib.performIterativeAlignmentNonConst( result,
## a1, a2,
## self.mAlignator,
## self.mMinScore )
##--------------------------------------------------------------------------------------
def CheckResult( self,
result,
info1, info2):
"""check if result is ok. Check for each fragment, if it overlaps
with the domains to be tested and dump if ok. This simulates
psiblast.
"""
row_from, row_to = map(string.atoi, info1[1:3])
col_from, col_to = map(string.atoi, info2[1:3])
## check for overlap
for fragment in self.mFragments:
# print alignlib.writeAlignataTable( fragment, 8, 1)
xcol_from = Tools.MapRight(fragment, row_from )
xcol_to = Tools.MapLeft(fragment, row_to )
overlap = min(col_to, xcol_to) - max(col_from, xcol_from)
# print self.mMinOverlap, overlap, xcol_from, xcol_to, col_from, col_to
if overlap > self.mMinOverlap:
return map(str, (fragment.getScore(),
fragment.getLength(),
fragment.getNumGaps(),
alignlib.calculatePercentSimilarity( fragment ),
fragment.getRowFrom(), fragment.getRowTo(),
fragment.getColFrom(), fragment.getColTo(),
overlap, xcol_from, xcol_to,
(xcol_to - xcol_from) - (col_to - col_from)) )
return ("0",) * 12
##--------------------------------------------------------------------------------------
if __name__ == '__main__':
dbhandle = Pairsdb()
if not dbhandle.Connect():
print "Connection failed"
sys.exit(1)
a = alignlib.makeFullDP( -10.0, -2.0 )
alignator = Alignator( a )
x = ScopTesterSequences( dbhandle, alignator )
x.Process()
if param_alignator == 0:
a = alignlib.makeFullDP( param_gop, param_gep)
alignator = Alignator( a )
if param_entities == 0:
tester = ScopTesterSequences( dbhandle, alignator )
tester.mLogLevel = param_loglevel
matches = a.CalculateMatches()
| [
29113,
29113,
14468,
198,
2,
198,
2,
220,
220,
337,
7397,
25503,
52,
22476,
864,
5215,
31994,
4912,
198,
2,
198,
2,
220,
220,
720,
7390,
3,
198,
2,
198,
2,
220,
220,
15069,
357,
34,
8,
3717,
33728,
679,
1362,
198,
2,
198,
2,
220,
220,
770,
1430,
318,
1479,
3788,
26,
345,
460,
17678,
4163,
340,
290,
14,
273,
198,
2,
220,
220,
13096,
340,
739,
262,
2846,
286,
262,
22961,
3611,
5094,
13789,
198,
2,
220,
220,
355,
3199,
416,
262,
3232,
10442,
5693,
26,
2035,
2196,
362,
198,
2,
220,
220,
286,
262,
13789,
11,
393,
357,
265,
534,
3038,
8,
597,
1568,
2196,
13,
198,
2,
198,
2,
220,
220,
770,
1430,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
198,
2,
220,
220,
475,
42881,
15529,
34764,
56,
26,
1231,
772,
262,
17142,
18215,
286,
198,
2,
220,
220,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
220,
4091,
262,
198,
2,
220,
220,
22961,
3611,
5094,
13789,
329,
517,
3307,
13,
198,
2,
198,
2,
220,
220,
921,
815,
423,
2722,
257,
4866,
286,
262,
22961,
3611,
5094,
13789,
198,
2,
220,
220,
1863,
351,
428,
1430,
26,
611,
407,
11,
3551,
284,
262,
3232,
10442,
198,
2,
220,
220,
5693,
11,
3457,
1539,
7863,
10857,
8474,
532,
26264,
25508,
11,
6182,
11,
8779,
220,
7816,
16243,
12,
12952,
22,
11,
4916,
13,
198,
29113,
29113,
14468,
2,
198,
7061,
6,
198,
3351,
404,
51,
7834,
13,
9078,
532,
220,
198,
10052,
4770,
50155,
198,
198,
25,
13838,
25,
33728,
679,
1362,
198,
25,
26362,
25,
720,
7390,
3,
198,
25,
10430,
25,
930,
40838,
91,
198,
25,
36142,
25,
11361,
198,
198,
10669,
198,
650,
198,
198,
7061,
6,
198,
11748,
25064,
198,
11748,
302,
198,
11748,
4731,
198,
11748,
28686,
198,
11748,
640,
220,
198,
198,
6738,
350,
3468,
9945,
1330,
1635,
198,
198,
11748,
10548,
8019,
198,
11748,
14729,
67,
2436,
571,
198,
198,
6738,
16000,
47,
3468,
9945,
1330,
16000,
47,
3468,
9945,
198,
6738,
8655,
24510,
1299,
3351,
404,
14402,
1330,
8655,
24510,
1299,
3351,
404,
14402,
198,
6738,
8655,
47,
3468,
9945,
46445,
65,
4662,
1330,
8655,
47,
3468,
9945,
46445,
65,
4662,
198,
6738,
350,
3468,
9945,
1330,
1635,
198,
11748,
20003,
198,
198,
2,
3880,
32284,
198,
2,
5016,
25,
197,
220,
220,
220,
220,
220,
220,
1446,
404,
14402,
198,
2,
3115,
37724,
25,
220,
16000,
198,
2,
3834,
37724,
25,
220,
220,
220,
220,
198,
2,
15553,
25,
220,
220,
220,
220,
220,
4296,
1446,
404,
14402,
12,
48806,
198,
2,
198,
2,
6434,
25,
197,
220,
220,
220,
220,
220,
220,
33728,
679,
1362,
198,
2,
3880,
32284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2235,
10097,
19351,
438,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
2235,
10097,
19351,
438,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
198,
2235,
10097,
19351,
438,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
4871,
1446,
404,
51,
7834,
13295,
15404,
2915,
7,
1446,
404,
51,
7834,
15404,
2915,
15179,
198,
220,
220,
220,
37227,
1904,
1336,
4129,
16545,
13,
198,
220,
220,
220,
40600,
286,
1963,
312,
296,
391,
12,
1676,
660,
1040,
11,
779,
11629,
876,
3294,
19114,
198,
220,
220,
220,
2446,
13,
198,
220,
220,
220,
37227,
198,
198,
2235,
10097,
19351,
438,
198,
4871,
978,
570,
1352,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10548,
82,
734,
16311,
290,
5860,
1255,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
22492,
10097,
19351,
438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
22492,
10097,
19351,
438,
198,
220,
220,
220,
825,
6822,
23004,
7,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
16,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
17,
796,
6045,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
9122,
611,
1255,
318,
12876,
13,
383,
2163,
2174,
5860,
2279,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
46545,
286,
13042,
355,
1255,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
611,
357,
20274,
13,
1136,
24539,
3419,
1875,
657,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5752,
62,
7344,
11,
951,
62,
7344,
796,
10548,
8019,
13,
13564,
2348,
570,
1045,
7293,
2790,
7,
1255,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
3975,
7,
2536,
11,
357,
20274,
13,
1136,
26595,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
1136,
24539,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
1136,
33111,
38,
1686,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10548,
8019,
13,
9948,
3129,
378,
31905,
18925,
414,
7,
1255,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
1136,
25166,
4863,
22784,
1255,
13,
1136,
25166,
2514,
22784,
5752,
62,
7344,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
1136,
5216,
4863,
22784,
1255,
13,
1136,
5216,
2514,
22784,
951,
62,
7344,
1267,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5855,
15,
1600,
8,
1635,
1105,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2235,
10097,
19351,
438,
198,
4871,
978,
570,
1352,
29993,
876,
7,
2348,
570,
1352,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10548,
82,
734,
16311,
11629,
9404,
11,
8794,
611,
19114,
7652,
389,
32997,
351,
198,
220,
220,
220,
7386,
7652,
290,
5860,
1255,
691,
329,
883,
32997,
13,
770,
318,
4465,
611,
345,
423,
198,
220,
220,
220,
1811,
18209,
287,
257,
8379,
11,
475,
345,
761,
691,
8996,
284,
530,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
22492,
10097,
19351,
438,
198,
220,
220,
220,
825,
978,
570,
7,
2116,
11,
257,
16,
11,
257,
17,
11,
1255,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
31494,
46152,
316,
2280,
13,
7214,
4511,
9689,
19114,
11,
326,
12893,
1686,
351,
18209,
198,
220,
220,
220,
220,
220,
220,
220,
290,
1234,
340,
287,
1255,
13,
5740,
25,
1620,
29993,
876,
2348,
16747,
857,
407,
670,
11,
355,
340,
318,
14174,
13,
198,
220,
220,
220,
220,
220,
220,
220,
632,
4433,
18209,
284,
307,
287,
262,
976,
1502,
13,
628,
220,
220,
220,
220,
220,
220,
220,
25414,
318,
6565,
11,
21441,
389,
7448,
287,
2134,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
24225,
273,
796,
10548,
8019,
13,
15883,
42974,
434,
273,
6207,
17295,
7,
2116,
13,
76,
2348,
570,
1352,
11,
2116,
13,
76,
9452,
26595,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
22492,
10548,
11629,
9404,
290,
10385,
21441,
284,
978,
570,
1045,
12,
48205,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
796,
24225,
273,
13,
42974,
434,
7,
257,
16,
11,
257,
17,
11,
1255,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
76,
42974,
902,
796,
3975,
7,
37456,
2124,
25,
10548,
8019,
13,
2348,
570,
1045,
46745,
7,
87,
828,
1188,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
24225,
287,
2116,
13,
76,
42974,
902,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
13,
5661,
593,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
10548,
8019,
13,
525,
687,
29993,
876,
2348,
16747,
15419,
34184,
7,
1255,
11,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
16,
11,
257,
17,
11,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
76,
2348,
570,
1352,
11,
198,
2235,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
76,
9452,
26595,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
22492,
10097,
19351,
438,
198,
220,
220,
220,
825,
6822,
23004,
7,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
16,
11,
7508,
17,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
9122,
611,
1255,
318,
12876,
13,
6822,
329,
1123,
24225,
11,
611,
340,
12893,
1686,
198,
220,
220,
220,
220,
220,
220,
220,
351,
262,
18209,
284,
307,
6789,
290,
10285,
611,
12876,
13,
770,
985,
15968,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
10506,
459,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
5752,
62,
6738,
11,
5752,
62,
1462,
796,
3975,
7,
8841,
13,
5549,
72,
11,
7508,
16,
58,
16,
25,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
951,
62,
6738,
11,
951,
62,
1462,
796,
3975,
7,
8841,
13,
5549,
72,
11,
7508,
17,
58,
16,
25,
18,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
22492,
2198,
329,
21721,
198,
220,
220,
220,
220,
220,
220,
220,
329,
24225,
287,
2116,
13,
76,
42974,
902,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
10548,
8019,
13,
13564,
2348,
570,
1045,
10962,
7,
24225,
11,
807,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
4033,
62,
6738,
796,
20003,
13,
13912,
11028,
7,
8310,
363,
434,
11,
5752,
62,
6738,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
4033,
62,
1462,
220,
220,
796,
20003,
13,
13912,
18819,
7,
8310,
363,
434,
11,
5752,
62,
1462,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21721,
796,
949,
7,
4033,
62,
1462,
11,
2124,
4033,
62,
1462,
8,
532,
3509,
7,
4033,
62,
6738,
11,
2124,
4033,
62,
6738,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
2116,
13,
76,
9452,
5886,
37796,
11,
21721,
11,
2124,
4033,
62,
6738,
11,
2124,
4033,
62,
1462,
11,
951,
62,
6738,
11,
951,
62,
1462,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21721,
1875,
2116,
13,
76,
9452,
5886,
37796,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
3975,
7,
2536,
11,
357,
8310,
363,
434,
13,
1136,
26595,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
13,
1136,
24539,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
13,
1136,
33111,
38,
1686,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10548,
8019,
13,
9948,
3129,
378,
31905,
18925,
414,
7,
24225,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
13,
1136,
25166,
4863,
22784,
24225,
13,
1136,
25166,
2514,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24225,
13,
1136,
5216,
4863,
22784,
24225,
13,
1136,
5216,
2514,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21721,
11,
2124,
4033,
62,
6738,
11,
2124,
4033,
62,
1462,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
87,
4033,
62,
1462,
532,
2124,
4033,
62,
6738,
8,
532,
357,
4033,
62,
1462,
532,
951,
62,
6738,
4008,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
5855,
15,
1600,
8,
1635,
1105,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
2235,
10097,
19351,
438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
628,
220,
220,
220,
20613,
28144,
796,
350,
3468,
9945,
3419,
198,
220,
220,
220,
611,
407,
20613,
28144,
13,
13313,
33529,
198,
197,
4798,
366,
32048,
4054,
1,
198,
197,
17597,
13,
37023,
7,
16,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
257,
796,
10548,
8019,
13,
15883,
13295,
6322,
7,
532,
940,
13,
15,
11,
532,
17,
13,
15,
1267,
198,
220,
220,
220,
10548,
1352,
796,
978,
570,
1352,
7,
257,
1267,
628,
220,
220,
220,
2124,
796,
1446,
404,
51,
7834,
44015,
3007,
7,
20613,
28144,
11,
10548,
1352,
1267,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2124,
13,
18709,
3419,
628,
220,
220,
220,
611,
5772,
62,
31494,
1352,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
796,
10548,
8019,
13,
15883,
13295,
6322,
7,
5772,
62,
70,
404,
11,
5772,
62,
469,
79,
8,
628,
220,
220,
220,
220,
220,
220,
220,
10548,
1352,
796,
978,
570,
1352,
7,
257,
1267,
198,
220,
220,
220,
611,
5772,
62,
298,
871,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
256,
7834,
796,
1446,
404,
51,
7834,
44015,
3007,
7,
20613,
28144,
11,
10548,
1352,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
256,
7834,
13,
76,
11187,
4971,
796,
5772,
62,
75,
2467,
626,
628,
220,
220,
220,
220,
220,
220,
220,
7466,
796,
257,
13,
9771,
3129,
378,
19044,
2052,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
220,
628,
628
] | 2.462457 | 2,930 |
import webracer
import nose.plugins.attrib
from . import utils
from .apps import kitchen_sink_app
utils.app_runner_setup(__name__, kitchen_sink_app.app, 8056)
base_config = dict(host='localhost', port=8056)
@nose.plugins.attrib.attr('client')
| [
11748,
356,
1671,
11736,
198,
11748,
9686,
13,
37390,
13,
1078,
822,
198,
6738,
764,
1330,
3384,
4487,
198,
6738,
764,
18211,
1330,
9592,
62,
82,
676,
62,
1324,
198,
198,
26791,
13,
1324,
62,
16737,
62,
40406,
7,
834,
3672,
834,
11,
9592,
62,
82,
676,
62,
1324,
13,
1324,
11,
807,
2713,
21,
8,
198,
198,
8692,
62,
11250,
796,
8633,
7,
4774,
11639,
36750,
3256,
2493,
28,
1795,
3980,
8,
198,
198,
31,
77,
577,
13,
37390,
13,
1078,
822,
13,
35226,
10786,
16366,
11537,
198
] | 2.764045 | 89 |
from django.db import models
from lectures.models import Day
# Create your models here.
| [
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
25917,
13,
27530,
1330,
3596,
198,
198,
2,
13610,
534,
4981,
994,
13,
628
] | 3.913043 | 23 |
from tests.test_helper import *
from datetime import date
from braintree.dispute import Dispute
| [
6738,
5254,
13,
9288,
62,
2978,
525,
1330,
1635,
198,
6738,
4818,
8079,
1330,
3128,
198,
6738,
865,
2913,
631,
13,
6381,
79,
1133,
1330,
36060,
1133,
198
] | 3.428571 | 28 |
"Step 3: Stepping Up to OOP"
'Adding Persistence'
# Notice how we still fetch, update, and
# reassign to keys to update the shelve.
import shelve
db = shelve.open('class-shelve')
sue = db['sue']
sue.giveRaise(.25)
db['sue'] = sue
tom = db['tom']
tom.giveRaise(.20)
db['tom'] = tom
db.close()
'''
class instances allow us to combine both data and behavior for our
stored items. In a sense, instance attributes and class methods take the place of records
and processing programs in more traditional schemes.
'''
| [
1,
8600,
513,
25,
2441,
2105,
3205,
284,
440,
3185,
1,
198,
6,
32901,
9467,
13274,
6,
198,
2,
17641,
703,
356,
991,
21207,
11,
4296,
11,
290,
220,
198,
2,
12719,
570,
284,
8251,
284,
4296,
262,
7497,
303,
13,
198,
198,
11748,
7497,
303,
220,
198,
9945,
796,
7497,
303,
13,
9654,
10786,
4871,
12,
82,
2978,
303,
11537,
220,
628,
198,
82,
518,
796,
20613,
17816,
82,
518,
20520,
198,
82,
518,
13,
26535,
21762,
786,
7,
13,
1495,
8,
198,
9945,
17816,
82,
518,
20520,
796,
20889,
628,
198,
39532,
796,
20613,
17816,
39532,
20520,
198,
39532,
13,
26535,
21762,
786,
7,
13,
1238,
8,
198,
9945,
17816,
39532,
20520,
796,
16667,
198,
9945,
13,
19836,
3419,
628,
198,
7061,
6,
198,
4871,
10245,
1249,
514,
284,
12082,
1111,
1366,
290,
4069,
329,
674,
198,
301,
1850,
3709,
13,
554,
257,
2565,
11,
4554,
12608,
290,
1398,
5050,
1011,
262,
1295,
286,
4406,
198,
392,
7587,
4056,
287,
517,
4569,
16546,
13,
198,
7061,
6,
198
] | 3.058824 | 170 |
#!/usr/bin/python
#
# Exemplary script to read the annotations generated by the web application
# in this repo.
#
# @author: Luis Carlos Garcia-Peraza Herrera ([email protected]).
# @date : 20 Jan 2021.
import argparse
import json
import cv2
import numpy as np
import os
# My imports
import wat.common
def parse_cmdline_params():
"""
@brief Parse command line parameters to get input and output file names.
@param[in] argv Array of command line arguments.
@return input and output file names if they were specified.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--dir', required=True, help='Path to the output directory.')
parser.add_argument('--gt-suffix', default='_seg', required=False,
help='Suffix of the segmentation-like annotations.')
args = parser.parse_args()
return args
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
2,
220,
198,
2,
1475,
18856,
560,
4226,
284,
1100,
262,
37647,
7560,
416,
262,
3992,
3586,
198,
2,
287,
428,
29924,
13,
198,
2,
198,
2,
2488,
9800,
25,
20894,
17409,
18555,
12,
5990,
7056,
46508,
357,
2290,
2304,
7063,
418,
13,
70,
746,
31,
14816,
13,
785,
737,
198,
2,
2488,
4475,
220,
1058,
1160,
2365,
33448,
13,
198,
198,
11748,
1822,
29572,
198,
11748,
33918,
198,
11748,
269,
85,
17,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
198,
2,
2011,
17944,
198,
11748,
4383,
13,
11321,
198,
198,
4299,
21136,
62,
28758,
1370,
62,
37266,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
65,
3796,
2547,
325,
3141,
1627,
10007,
284,
651,
5128,
290,
5072,
2393,
3891,
13,
198,
220,
220,
220,
2488,
17143,
58,
259,
60,
1822,
85,
15690,
286,
3141,
1627,
7159,
13,
220,
220,
198,
220,
220,
220,
2488,
7783,
5128,
290,
5072,
2393,
3891,
611,
484,
547,
7368,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
15908,
3256,
2672,
28,
17821,
11,
1037,
11639,
15235,
284,
262,
5072,
8619,
2637,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
13655,
12,
37333,
844,
3256,
4277,
11639,
62,
325,
70,
3256,
2672,
28,
25101,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
50,
1648,
844,
286,
262,
10618,
341,
12,
2339,
37647,
2637,
8,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
1441,
26498,
628,
628,
220,
220,
220,
220,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.967213 | 305 |
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module to enforce authentication on endpoints.method.
Usage:
-----
# configuration of an endpoints method with enforced user auth check only.
@loaner_endpoints.authed_method(
chrome_message.ChromeRequest,
chrome_message.ChromeResponse,
name='heartbeat',
path='heartbeat',
http_method='GET',
user_auth_only=True)
def do_something(self, request):
...
The above method will execute if the current user is authenticated properly.
# configuration of an endpoints method with enforced permission.
@loaner_endpoints.authed_method(
chrome_message.ChromeRequest,
chrome_message.ChromeResponse,
name='heartbeat',
path='heartbeat',
http_method='GET',
permission='view')
def do_something(self, request):
...
The above method will only execute if the current user's role has the permission
"view".
Note:
-----
Please see permission module for more information on how the check_auth()
decorator works.
"""
import endpoints
from loaner.web_app.backend.auth import permissions
class Error(Exception):
"""Default error class for this module."""
class AuthCheckNotPresent(Error):
"""Raised when auth_method was called without auth check."""
def authed_method(*args, **kwargs):
"""Configures an endpoint method and enforces permissions."""
def auth_method_decorator(auth_function):
"""Decorator for auth_method."""
kwarg_auth = None
kwarg_permission = None
for key in kwargs:
if key is 'permission':
kwarg_permission = kwargs.pop('permission')
auth_function = permissions.check_auth(
permission=kwarg_permission)(auth_function)
break
elif key is 'user_auth_only':
kwarg_auth = kwargs.pop('user_auth_only')
auth_function = permissions.check_auth(
user_auth_only=kwarg_auth)(auth_function)
break
if not kwarg_auth and not kwarg_permission:
raise AuthCheckNotPresent(
'No permission or user_auth_only was passed. Authentication on this '
'method cannot run.')
# Always apply the standard `endpoints.method` decorator.
return endpoints.method(*args, **kwargs)(auth_function)
return auth_method_decorator
| [
2,
15069,
2864,
3012,
3457,
13,
1439,
6923,
33876,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
12,
1797,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
37811,
26796,
284,
4605,
18239,
319,
886,
13033,
13,
24396,
13,
198,
198,
28350,
25,
198,
30934,
198,
1303,
8398,
286,
281,
886,
13033,
2446,
351,
20326,
2836,
6284,
2198,
691,
13,
198,
31,
5439,
272,
263,
62,
437,
13033,
13,
2306,
704,
62,
24396,
7,
198,
220,
220,
220,
32030,
62,
20500,
13,
1925,
5998,
18453,
11,
198,
220,
220,
220,
32030,
62,
20500,
13,
1925,
5998,
31077,
11,
198,
220,
220,
220,
1438,
11639,
11499,
12945,
3256,
198,
220,
220,
220,
3108,
11639,
11499,
12945,
3256,
198,
220,
220,
220,
2638,
62,
24396,
11639,
18851,
3256,
198,
220,
220,
220,
2836,
62,
18439,
62,
8807,
28,
17821,
8,
198,
4299,
466,
62,
18927,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
2644,
198,
198,
464,
2029,
2446,
481,
12260,
611,
262,
1459,
2836,
318,
44529,
6105,
13,
628,
1303,
8398,
286,
281,
886,
13033,
2446,
351,
20326,
7170,
13,
198,
31,
5439,
272,
263,
62,
437,
13033,
13,
2306,
704,
62,
24396,
7,
198,
220,
220,
220,
32030,
62,
20500,
13,
1925,
5998,
18453,
11,
198,
220,
220,
220,
32030,
62,
20500,
13,
1925,
5998,
31077,
11,
198,
220,
220,
220,
1438,
11639,
11499,
12945,
3256,
198,
220,
220,
220,
3108,
11639,
11499,
12945,
3256,
198,
220,
220,
220,
2638,
62,
24396,
11639,
18851,
3256,
198,
220,
220,
220,
7170,
11639,
1177,
11537,
198,
4299,
466,
62,
18927,
7,
944,
11,
2581,
2599,
198,
220,
220,
220,
2644,
198,
198,
464,
2029,
2446,
481,
691,
12260,
611,
262,
1459,
2836,
338,
2597,
468,
262,
7170,
198,
1,
1177,
1911,
198,
198,
6425,
25,
198,
30934,
198,
5492,
766,
7170,
8265,
329,
517,
1321,
319,
703,
262,
2198,
62,
18439,
3419,
198,
12501,
273,
1352,
2499,
13,
198,
37811,
198,
198,
11748,
886,
13033,
198,
198,
6738,
8063,
263,
13,
12384,
62,
1324,
13,
1891,
437,
13,
18439,
1330,
21627,
628,
198,
4871,
13047,
7,
16922,
2599,
198,
220,
37227,
19463,
4049,
1398,
329,
428,
8265,
526,
15931,
628,
198,
4871,
26828,
9787,
3673,
34695,
7,
12331,
2599,
198,
220,
37227,
21762,
1417,
618,
6284,
62,
24396,
373,
1444,
1231,
6284,
2198,
526,
15931,
628,
198,
4299,
1960,
704,
62,
24396,
46491,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
37227,
16934,
942,
281,
36123,
2446,
290,
551,
27087,
21627,
526,
15931,
628,
220,
825,
6284,
62,
24396,
62,
12501,
273,
1352,
7,
18439,
62,
8818,
2599,
198,
220,
220,
220,
37227,
10707,
273,
1352,
329,
6284,
62,
24396,
526,
15931,
198,
220,
220,
220,
479,
86,
853,
62,
18439,
796,
6045,
198,
220,
220,
220,
479,
86,
853,
62,
525,
3411,
796,
6045,
198,
220,
220,
220,
329,
1994,
287,
479,
86,
22046,
25,
198,
220,
220,
220,
220,
220,
611,
1994,
318,
705,
525,
3411,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
853,
62,
525,
3411,
796,
479,
86,
22046,
13,
12924,
10786,
525,
3411,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
8818,
796,
21627,
13,
9122,
62,
18439,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7170,
28,
46265,
853,
62,
525,
3411,
5769,
18439,
62,
8818,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
1288,
361,
1994,
318,
705,
7220,
62,
18439,
62,
8807,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
479,
86,
853,
62,
18439,
796,
479,
86,
22046,
13,
12924,
10786,
7220,
62,
18439,
62,
8807,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
6284,
62,
8818,
796,
21627,
13,
9122,
62,
18439,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
18439,
62,
8807,
28,
46265,
853,
62,
18439,
5769,
18439,
62,
8818,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
611,
407,
479,
86,
853,
62,
18439,
290,
407,
479,
86,
853,
62,
525,
3411,
25,
198,
220,
220,
220,
220,
220,
5298,
26828,
9787,
3673,
34695,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2949,
7170,
393,
2836,
62,
18439,
62,
8807,
373,
3804,
13,
48191,
319,
428,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
24396,
2314,
1057,
2637,
8,
198,
220,
220,
220,
1303,
16622,
4174,
262,
3210,
4600,
437,
13033,
13,
24396,
63,
11705,
1352,
13,
198,
220,
220,
220,
1441,
886,
13033,
13,
24396,
46491,
22046,
11,
12429,
46265,
22046,
5769,
18439,
62,
8818,
8,
628,
220,
1441,
6284,
62,
24396,
62,
12501,
273,
1352,
198
] | 3.079121 | 910 |
import FWCore.ParameterSet.Config as cms
from DQMServices.Core.DQMEDHarvester import DQMEDHarvester
from DQM.SiPixelPhase1Common.HistogramManager_cfi import *
import DQM.SiPixelPhase1Common.TriggerEventFlag_cfi as trigger
SiPixelPhase1RecHitsNRecHits = DefaultHistoTrack.clone(
name = "rechits",
title = "RecHits",
range_min = 0, range_max = 30, range_nbins = 30,
xlabel = "rechits",
dimensions = 0,
specs = VPSet(
StandardSpecificationTrend_Num,
Specification().groupBy("PXBarrel/Event")
.reduce("COUNT")
.groupBy("PXBarrel")
.save(nbins=100, xmin=0, xmax=5000),
Specification().groupBy("PXForward/Event")
.reduce("COUNT")
.groupBy("PXForward")
.save(nbins=100, xmin=0, xmax=5000),
Specification().groupBy("PXAll/Event")
.reduce("COUNT")
.groupBy("PXAll")
.save(nbins=100, xmin=0, xmax=5000)
)
)
SiPixelPhase1RecHitsClustX = DefaultHistoTrack.clone(
name = "clustersize_x",
title = "Cluster Size X (OnTrack)",
range_min = 0, range_max = 50, range_nbins = 50,
xlabel = "size[pixels]",
dimensions = 1,
specs = VPSet(
StandardSpecification2DProfile
)
)
SiPixelPhase1RecHitsClustY = SiPixelPhase1RecHitsClustX.clone(
name = "clustersize_y",
title = "Cluster Size Y (OnTrack)",
xlabel = "size[pixels]"
)
SiPixelPhase1RecHitsErrorX = DefaultHistoTrack.clone(
enabled=False,
name = "rechiterror_x",
title = "RecHit Error in X-direction",
range_min = 0, range_max = 0.02, range_nbins = 100,
xlabel = "X error",
dimensions = 1,
specs = VPSet(
StandardSpecification2DProfile
)
)
SiPixelPhase1RecHitsErrorY = SiPixelPhase1RecHitsErrorX.clone(
enabled=False,
name = "rechiterror_y",
title = "RecHit Error in Y-direction",
xlabel = "Y error"
)
SiPixelPhase1RecHitsPosition = DefaultHistoTrack.clone(
enabled = False,
name = "rechit_pos",
title = "Position of RecHits on Module",
range_min = -1, range_max = 1, range_nbins = 100,
range_y_min = -4, range_y_max = 4, range_y_nbins = 100,
xlabel = "x offset",
ylabel = "y offset",
dimensions = 2,
specs = VPSet(
Specification(PerModule).groupBy("PXBarrel/PXLayer/DetId").save(),
Specification(PerModule).groupBy("PXForward/PXDisk/DetId").save(),
)
)
SiPixelPhase1RecHitsProb = DefaultHistoTrack.clone(
name = "clusterprob",
title = "Cluster Probability",
xlabel = "log_10(Pr)",
range_min = -10, range_max = 1, range_nbins = 50,
dimensions = 1,
specs = VPSet(
Specification().groupBy("PXBarrel/PXLayer").saveAll(),
Specification().groupBy("PXForward/PXDisk").saveAll(),
StandardSpecification2DProfile,
Specification().groupBy("PXBarrel/LumiBlock")
.reduce("MEAN")
.groupBy("PXBarrel", "EXTEND_X")
.save(),
Specification().groupBy("PXForward/LumiBlock")
.reduce("MEAN")
.groupBy("PXForward", "EXTEND_X")
.save(),
Specification(PerLayer1D).groupBy("PXBarrel/Shell/PXLayer").save(),
Specification(PerLayer1D).groupBy("PXForward/HalfCylinder/PXRing/PXDisk").save()
)
)
SiPixelPhase1RecHitsConf = cms.VPSet(
SiPixelPhase1RecHitsNRecHits,
SiPixelPhase1RecHitsClustX,
SiPixelPhase1RecHitsClustY,
SiPixelPhase1RecHitsErrorX,
SiPixelPhase1RecHitsErrorY,
SiPixelPhase1RecHitsPosition,
SiPixelPhase1RecHitsProb,
)
from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer
SiPixelPhase1RecHitsAnalyzer = DQMEDAnalyzer('SiPixelPhase1RecHits',
src = cms.InputTag("generalTracks"),
histograms = SiPixelPhase1RecHitsConf,
geometry = SiPixelPhase1Geometry,
onlyValidHits = cms.bool(False),
triggerflags = trigger.SiPixelPhase1Triggers
)
SiPixelPhase1RecHitsHarvester = DQMEDHarvester("SiPixelPhase1Harvester",
histograms = SiPixelPhase1RecHitsConf,
geometry = SiPixelPhase1Geometry
)
| [
11748,
48849,
14055,
13,
36301,
7248,
13,
16934,
355,
269,
907,
198,
6738,
360,
48,
5653,
712,
1063,
13,
14055,
13,
35,
48,
30733,
13587,
1158,
353,
1330,
360,
48,
30733,
13587,
1158,
353,
198,
6738,
360,
48,
44,
13,
42801,
40809,
35645,
16,
17227,
13,
13749,
21857,
13511,
62,
66,
12463,
1330,
1635,
198,
11748,
360,
48,
44,
13,
42801,
40809,
35645,
16,
17227,
13,
48344,
9237,
34227,
62,
66,
12463,
355,
7616,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
45,
6690,
39,
896,
796,
15161,
13749,
78,
24802,
13,
21018,
7,
198,
220,
1438,
796,
366,
260,
354,
896,
1600,
198,
220,
3670,
796,
366,
6690,
39,
896,
1600,
198,
220,
2837,
62,
1084,
796,
657,
11,
2837,
62,
9806,
796,
1542,
11,
2837,
62,
46803,
1040,
796,
1542,
11,
198,
220,
2124,
18242,
796,
366,
260,
354,
896,
1600,
198,
220,
15225,
796,
657,
11,
198,
220,
25274,
796,
569,
3705,
316,
7,
198,
220,
220,
220,
198,
220,
220,
8997,
22882,
2649,
45461,
62,
33111,
11,
198,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
10374,
2411,
14,
9237,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
445,
7234,
7203,
34,
28270,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
8094,
3886,
7203,
47,
55,
10374,
2411,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
21928,
7,
46803,
1040,
28,
3064,
11,
2124,
1084,
28,
15,
11,
2124,
9806,
28,
27641,
828,
628,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
39746,
14,
9237,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
445,
7234,
7203,
34,
28270,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
8094,
3886,
7203,
47,
55,
39746,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
21928,
7,
46803,
1040,
28,
3064,
11,
2124,
1084,
28,
15,
11,
2124,
9806,
28,
27641,
828,
628,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
3237,
14,
9237,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
445,
7234,
7203,
34,
28270,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
8094,
3886,
7203,
47,
55,
3237,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
21928,
7,
46803,
1040,
28,
3064,
11,
2124,
1084,
28,
15,
11,
2124,
9806,
28,
27641,
8,
628,
220,
1267,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
2601,
436,
55,
796,
15161,
13749,
78,
24802,
13,
21018,
7,
198,
220,
1438,
796,
366,
565,
13654,
1096,
62,
87,
1600,
198,
220,
3670,
796,
366,
2601,
5819,
12849,
1395,
357,
2202,
24802,
42501,
198,
220,
2837,
62,
1084,
796,
657,
11,
2837,
62,
9806,
796,
2026,
11,
2837,
62,
46803,
1040,
796,
2026,
11,
198,
220,
2124,
18242,
796,
366,
7857,
58,
79,
14810,
60,
1600,
198,
220,
15225,
796,
352,
11,
198,
220,
25274,
796,
569,
3705,
316,
7,
198,
220,
220,
220,
8997,
22882,
2649,
17,
35,
37046,
198,
220,
1267,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
2601,
436,
56,
796,
15638,
40809,
35645,
16,
6690,
39,
896,
2601,
436,
55,
13,
21018,
7,
198,
220,
1438,
796,
366,
565,
13654,
1096,
62,
88,
1600,
198,
220,
3670,
796,
366,
2601,
5819,
12849,
575,
357,
2202,
24802,
42501,
198,
220,
2124,
18242,
796,
366,
7857,
58,
79,
14810,
30866,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
12331,
55,
796,
15161,
13749,
78,
24802,
13,
21018,
7,
198,
220,
9343,
28,
25101,
11,
198,
220,
1438,
796,
366,
260,
354,
2676,
1472,
62,
87,
1600,
198,
220,
3670,
796,
366,
6690,
17889,
13047,
287,
1395,
12,
37295,
1600,
198,
220,
2837,
62,
1084,
796,
657,
11,
2837,
62,
9806,
796,
657,
13,
2999,
11,
2837,
62,
46803,
1040,
796,
1802,
11,
198,
220,
2124,
18242,
796,
366,
55,
4049,
1600,
198,
220,
15225,
796,
352,
11,
198,
220,
25274,
796,
569,
3705,
316,
7,
198,
220,
220,
220,
8997,
22882,
2649,
17,
35,
37046,
198,
220,
1267,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
12331,
56,
796,
15638,
40809,
35645,
16,
6690,
39,
896,
12331,
55,
13,
21018,
7,
198,
220,
9343,
28,
25101,
11,
198,
220,
1438,
796,
366,
260,
354,
2676,
1472,
62,
88,
1600,
198,
220,
3670,
796,
366,
6690,
17889,
13047,
287,
575,
12,
37295,
1600,
198,
220,
2124,
18242,
796,
366,
56,
4049,
1,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
26545,
796,
15161,
13749,
78,
24802,
13,
21018,
7,
198,
220,
9343,
796,
10352,
11,
198,
220,
1438,
796,
366,
260,
354,
270,
62,
1930,
1600,
198,
220,
3670,
796,
366,
26545,
286,
3311,
39,
896,
319,
19937,
1600,
198,
220,
2837,
62,
1084,
220,
220,
796,
532,
16,
11,
2837,
62,
9806,
220,
220,
796,
352,
11,
2837,
62,
46803,
1040,
220,
220,
796,
1802,
11,
198,
220,
2837,
62,
88,
62,
1084,
796,
532,
19,
11,
2837,
62,
88,
62,
9806,
796,
604,
11,
2837,
62,
88,
62,
46803,
1040,
796,
1802,
11,
198,
220,
2124,
18242,
796,
366,
87,
11677,
1600,
198,
220,
331,
18242,
796,
366,
88,
11677,
1600,
198,
220,
15225,
796,
362,
11,
198,
220,
25274,
796,
569,
3705,
316,
7,
198,
220,
220,
220,
18291,
2649,
7,
5990,
26796,
737,
8094,
3886,
7203,
47,
55,
10374,
2411,
14,
47,
32457,
2794,
14,
11242,
7390,
11074,
21928,
22784,
198,
220,
220,
220,
18291,
2649,
7,
5990,
26796,
737,
8094,
3886,
7203,
47,
55,
39746,
14,
47,
55,
40961,
14,
11242,
7390,
11074,
21928,
22784,
198,
220,
1267,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
2964,
65,
796,
15161,
13749,
78,
24802,
13,
21018,
7,
198,
220,
1438,
796,
366,
565,
5819,
1676,
65,
1600,
198,
220,
3670,
796,
366,
2601,
5819,
30873,
1799,
1600,
198,
220,
2124,
18242,
796,
366,
6404,
62,
940,
7,
6836,
42501,
198,
220,
2837,
62,
1084,
796,
532,
940,
11,
2837,
62,
9806,
796,
352,
11,
2837,
62,
46803,
1040,
796,
2026,
11,
198,
220,
15225,
796,
352,
11,
198,
220,
25274,
796,
569,
3705,
316,
7,
628,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
10374,
2411,
14,
47,
32457,
2794,
11074,
21928,
3237,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
39746,
14,
47,
55,
40961,
11074,
21928,
3237,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
8997,
22882,
2649,
17,
35,
37046,
11,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
10374,
2411,
14,
43,
12994,
12235,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
445,
7234,
7203,
11682,
1565,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
8094,
3886,
7203,
47,
55,
10374,
2411,
1600,
366,
13918,
10619,
62,
55,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
21928,
22784,
628,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
22446,
8094,
3886,
7203,
47,
55,
39746,
14,
43,
12994,
12235,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
445,
7234,
7203,
11682,
1565,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
8094,
3886,
7203,
47,
55,
39746,
1600,
366,
13918,
10619,
62,
55,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
21928,
22784,
628,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
7,
5990,
49925,
16,
35,
737,
8094,
3886,
7203,
47,
55,
10374,
2411,
14,
23248,
14,
47,
32457,
2794,
11074,
21928,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
18291,
2649,
7,
5990,
49925,
16,
35,
737,
8094,
3886,
7203,
47,
55,
39746,
14,
31305,
34,
2645,
5540,
14,
47,
55,
39687,
14,
47,
55,
40961,
11074,
21928,
3419,
198,
220,
1267,
198,
8,
628,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
18546,
796,
269,
907,
13,
53,
3705,
316,
7,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
45,
6690,
39,
896,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
2601,
436,
55,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
2601,
436,
56,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
12331,
55,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
12331,
56,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
26545,
11,
198,
220,
15638,
40809,
35645,
16,
6690,
39,
896,
2964,
65,
11,
198,
8,
198,
198,
6738,
360,
48,
5653,
712,
1063,
13,
14055,
13,
35,
48,
30733,
37702,
9107,
1330,
360,
48,
30733,
37702,
9107,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
37702,
9107,
796,
360,
48,
30733,
37702,
9107,
10786,
42801,
40809,
35645,
16,
6690,
39,
896,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
12351,
796,
269,
907,
13,
20560,
24835,
7203,
24622,
2898,
4595,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
1554,
26836,
796,
15638,
40809,
35645,
16,
6690,
39,
896,
18546,
11,
198,
220,
220,
220,
220,
220,
220,
220,
22939,
796,
15638,
40809,
35645,
16,
10082,
15748,
11,
198,
220,
220,
220,
220,
220,
220,
220,
691,
47139,
39,
896,
796,
269,
907,
13,
30388,
7,
25101,
828,
198,
220,
220,
220,
220,
220,
220,
220,
7616,
33152,
796,
7616,
13,
42801,
40809,
35645,
16,
2898,
328,
5355,
198,
8,
198,
198,
42801,
40809,
35645,
16,
6690,
39,
896,
13587,
1158,
353,
796,
360,
48,
30733,
13587,
1158,
353,
7203,
42801,
40809,
35645,
16,
13587,
1158,
353,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1554,
26836,
796,
15638,
40809,
35645,
16,
6690,
39,
896,
18546,
11,
198,
220,
220,
220,
220,
220,
220,
220,
22939,
796,
15638,
40809,
35645,
16,
10082,
15748,
198,
8,
198
] | 2.24492 | 1,821 |
import os, requests
from progressbar import progressbar
from caltechdata_api import get_metadata, caltechdata_edit
def get_datacite_dates(prefix):
"""Get sumbitted date for DataCite DOIs with specific prefix"""
doi_dates = {}
doi_urls = {}
url = (
"https://api.datacite.org/dois?query=prefix:"
+ prefix
+ "&page[cursor]=1&page[size]=500"
)
next_link = url
meta = requests.get(next_link).json()["meta"]
for j in progressbar(range(meta["totalPages"])):
r = requests.get(next_link)
data = r.json()
for doi in data["data"]:
date = doi["attributes"]["registered"].split("T")[0]
doi_dates[doi["id"]] = date
doi_urls[doi["id"]] = doi["attributes"]["url"]
if "next" in data["links"]:
next_link = data["links"]["next"]
else:
next_link = None
return doi_dates, doi_urls
token = os.environ["TINDTOK"]
doi_dates, doi_urls = get_datacite_dates("10.14291")
for doi in doi_urls:
if "data.caltech.edu" in doi_urls[doi]:
caltech_id = doi_urls[doi].split("/")[-1]
if caltech_id not in ["252", "253", "254", "255"]:
metadata = get_metadata(caltech_id, emails=True)
print(caltech_id)
# print(metadata['dates'])
for date in metadata["dates"]:
if date["dateType"] == "Issued":
print(date["date"], doi_dates[doi])
date["date"] = doi_dates[doi]
response = caltechdata_edit(token, caltech_id, metadata, production=True)
print(response)
| [
11748,
28686,
11,
7007,
198,
6738,
4371,
5657,
1330,
4371,
5657,
198,
6738,
2386,
13670,
7890,
62,
15042,
1330,
651,
62,
38993,
11,
2386,
13670,
7890,
62,
19312,
628,
198,
4299,
651,
62,
19608,
330,
578,
62,
19581,
7,
40290,
2599,
198,
220,
220,
220,
37227,
3855,
2160,
65,
2175,
3128,
329,
6060,
34,
578,
8410,
3792,
351,
2176,
21231,
37811,
198,
220,
220,
220,
23899,
62,
19581,
796,
23884,
198,
220,
220,
220,
23899,
62,
6371,
82,
796,
23884,
198,
220,
220,
220,
19016,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5450,
1378,
15042,
13,
19608,
330,
578,
13,
2398,
14,
4598,
271,
30,
22766,
28,
40290,
11097,
198,
220,
220,
220,
220,
220,
220,
220,
1343,
21231,
198,
220,
220,
220,
220,
220,
220,
220,
1343,
366,
5,
7700,
58,
66,
21471,
22241,
16,
5,
7700,
58,
7857,
22241,
4059,
1,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1306,
62,
8726,
796,
19016,
198,
220,
220,
220,
13634,
796,
7007,
13,
1136,
7,
19545,
62,
8726,
737,
17752,
3419,
14692,
28961,
8973,
198,
220,
220,
220,
329,
474,
287,
4371,
5657,
7,
9521,
7,
28961,
14692,
23350,
47798,
8973,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
374,
796,
7007,
13,
1136,
7,
19545,
62,
8726,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
374,
13,
17752,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
23899,
287,
1366,
14692,
7890,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
796,
23899,
14692,
1078,
7657,
1,
7131,
1,
33736,
1,
4083,
35312,
7203,
51,
4943,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23899,
62,
19581,
58,
34023,
14692,
312,
8973,
60,
796,
3128,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23899,
62,
6371,
82,
58,
34023,
14692,
312,
8973,
60,
796,
23899,
14692,
1078,
7657,
1,
7131,
1,
6371,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
611,
366,
19545,
1,
287,
1366,
14692,
28751,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1306,
62,
8726,
796,
1366,
14692,
28751,
1,
7131,
1,
19545,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1306,
62,
8726,
796,
6045,
198,
220,
220,
220,
1441,
23899,
62,
19581,
11,
23899,
62,
6371,
82,
628,
198,
30001,
796,
28686,
13,
268,
2268,
14692,
51,
12115,
10468,
42,
8973,
198,
198,
34023,
62,
19581,
11,
23899,
62,
6371,
82,
796,
651,
62,
19608,
330,
578,
62,
19581,
7203,
940,
13,
1415,
33551,
4943,
198,
1640,
23899,
287,
23899,
62,
6371,
82,
25,
198,
220,
220,
220,
611,
366,
7890,
13,
9948,
13670,
13,
15532,
1,
287,
23899,
62,
6371,
82,
58,
34023,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
2386,
13670,
62,
312,
796,
23899,
62,
6371,
82,
58,
34023,
4083,
35312,
7203,
14,
4943,
58,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2386,
13670,
62,
312,
407,
287,
14631,
22800,
1600,
366,
28592,
1600,
366,
24970,
1600,
366,
13381,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20150,
796,
651,
62,
38993,
7,
9948,
13670,
62,
312,
11,
7237,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
9948,
13670,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3601,
7,
38993,
17816,
19581,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3128,
287,
20150,
14692,
19581,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3128,
14692,
4475,
6030,
8973,
6624,
366,
27738,
1739,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
4475,
14692,
4475,
33116,
23899,
62,
19581,
58,
34023,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
14692,
4475,
8973,
796,
23899,
62,
19581,
58,
34023,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
2386,
13670,
7890,
62,
19312,
7,
30001,
11,
2386,
13670,
62,
312,
11,
20150,
11,
3227,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
26209,
8,
198
] | 2.122876 | 765 |
import json
from app import Category
| [
11748,
33918,
198,
6738,
598,
1330,
21743,
628
] | 4.75 | 8 |
"""Transformation between two frames.
"""
from compas.geometry import Frame
from compas.geometry import Point
from compas.geometry import Transformation
F1 = Frame.worldXY()
F2 = Frame([1.5, 1, 0], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
P = Point(2, 2, 2) # local point in F1
# transformation between 2 frames F1, F2
T = Transformation.from_frame_to_frame(F1, F2)
# Transform geometry (=point P) into another coordinate frame
print(P.transformed(T))
| [
37811,
8291,
1161,
1022,
734,
13431,
13,
198,
37811,
198,
6738,
552,
292,
13,
469,
15748,
1330,
25184,
198,
6738,
552,
292,
13,
469,
15748,
1330,
6252,
198,
6738,
552,
292,
13,
469,
15748,
1330,
49127,
198,
198,
37,
16,
796,
25184,
13,
6894,
34278,
3419,
198,
37,
17,
796,
25184,
26933,
16,
13,
20,
11,
352,
11,
657,
4357,
685,
15,
13,
3104,
11,
657,
13,
3104,
11,
657,
13,
1983,
4357,
25915,
15,
13,
3134,
11,
657,
13,
4790,
11,
532,
15,
13,
1314,
12962,
198,
47,
796,
6252,
7,
17,
11,
362,
11,
362,
8,
220,
1303,
1957,
966,
287,
376,
16,
198,
198,
2,
13389,
1022,
362,
13431,
376,
16,
11,
376,
17,
198,
51,
796,
49127,
13,
6738,
62,
14535,
62,
1462,
62,
14535,
7,
37,
16,
11,
376,
17,
8,
198,
198,
2,
26981,
22939,
46121,
4122,
350,
8,
656,
1194,
20435,
5739,
198,
4798,
7,
47,
13,
7645,
12214,
7,
51,
4008,
198
] | 2.85625 | 160 |
import os
| [
11748,
28686,
628,
628,
628
] | 3 | 5 |
import torch
from torch import nn
from torchvision import transforms
from .faster_rcnn import FasterRCNN
from ..builder import DETECTORS
from PIL import Image
import numpy as np
@DETECTORS.register_module()
| [
11748,
28034,
198,
6738,
28034,
1330,
299,
77,
198,
6738,
28034,
10178,
1330,
31408,
198,
198,
6738,
764,
69,
1603,
62,
6015,
20471,
1330,
38996,
7397,
6144,
198,
6738,
11485,
38272,
1330,
38267,
9782,
20673,
198,
6738,
350,
4146,
1330,
7412,
198,
11748,
299,
32152,
355,
45941,
198,
31,
35,
2767,
9782,
20673,
13,
30238,
62,
21412,
3419,
198
] | 3.525424 | 59 |
from django.conf.urls import url
from . import views
from django.conf import settings
from django.conf.urls.static import static
urlpatterns=[
url('^$',views.login_page,name = 'come'),
url(r'^new/profile$', views.profile, name='profile'),
url(r'^user/', views.user, name='user'),
url(r'^search/', views.search_results, name='search_results'),
url(r'^new/article$', views.new_article, name='new-article'),
url(r'^home/', views.home, name='home'),
url(r'^comment/', views.comment, name='comment'),
]
if settings.DEBUG:
urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
| [
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
1330,
19016,
198,
6738,
764,
1330,
5009,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
13,
12708,
1330,
9037,
628,
198,
6371,
33279,
82,
41888,
198,
220,
220,
220,
198,
220,
220,
220,
19016,
10786,
61,
3,
3256,
33571,
13,
38235,
62,
7700,
11,
3672,
796,
705,
2958,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
3605,
14,
13317,
3,
3256,
5009,
13,
13317,
11,
1438,
11639,
13317,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
7220,
14,
3256,
5009,
13,
7220,
11,
1438,
11639,
7220,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
12947,
14,
3256,
5009,
13,
12947,
62,
43420,
11,
1438,
11639,
12947,
62,
43420,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
3605,
14,
20205,
3,
3256,
5009,
13,
3605,
62,
20205,
11,
1438,
11639,
3605,
12,
20205,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
11195,
14,
3256,
5009,
13,
11195,
11,
1438,
11639,
11195,
33809,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
23893,
14,
3256,
5009,
13,
23893,
11,
1438,
11639,
23893,
33809,
198,
220,
220,
220,
198,
220,
220,
220,
198,
60,
198,
361,
6460,
13,
30531,
25,
198,
220,
220,
220,
19016,
33279,
82,
47932,
9037,
7,
33692,
13,
30733,
3539,
62,
21886,
11,
3188,
62,
15763,
796,
6460,
13,
30733,
3539,
62,
13252,
2394,
8,
198
] | 2.627049 | 244 |
# Import ROS2 libraries
import rclpy
from rclpy.node import Node
from rclpy.action import ActionClient, ActionServer, GoalResponse, CancelResponse
from rclpy.qos import QoSProfile
from rclpy.callback_groups import ReentrantCallbackGroup
from rclpy.executors import MultiThreadedExecutor
# Import message files
from geometry_msgs.msg import PoseStamped
from nav_msgs.msg import OccupancyGrid as OccG
from nav_msgs.msg import Odometry
from nav2_msgs.action import NavigateToPose
from tf2_msgs.msg import TFMessage
from autonomous_exploration_msgs.msg import ExplorationTargets, ExplorationTarget, PosData
from autonomous_exploration_msgs.action import AutonomousExplorationAction
# Import other libraries
import numpy as np
import time
###################################################################################################
if __name__ == '__main__':
main() | [
2,
17267,
48263,
17,
12782,
198,
11748,
374,
565,
9078,
198,
6738,
374,
565,
9078,
13,
17440,
1330,
19081,
198,
6738,
374,
565,
9078,
13,
2673,
1330,
7561,
11792,
11,
7561,
10697,
11,
25376,
31077,
11,
27910,
31077,
198,
6738,
374,
565,
9078,
13,
80,
418,
1330,
1195,
34049,
37046,
198,
6738,
374,
565,
9078,
13,
47423,
62,
24432,
1330,
797,
298,
5250,
47258,
13247,
198,
6738,
374,
565,
9078,
13,
18558,
315,
669,
1330,
15237,
16818,
276,
23002,
38409,
198,
198,
2,
17267,
3275,
3696,
198,
6738,
22939,
62,
907,
14542,
13,
19662,
1330,
37557,
1273,
13322,
198,
6738,
6812,
62,
907,
14542,
13,
19662,
1330,
15227,
3883,
41339,
355,
10775,
38,
198,
6738,
6812,
62,
907,
14542,
13,
19662,
1330,
10529,
15748,
198,
6738,
6812,
17,
62,
907,
14542,
13,
2673,
1330,
13244,
10055,
2514,
47,
577,
198,
6738,
48700,
17,
62,
907,
14542,
13,
19662,
1330,
24958,
12837,
198,
6738,
18284,
62,
20676,
6944,
62,
907,
14542,
13,
19662,
1330,
36806,
51,
853,
1039,
11,
36806,
21745,
11,
18574,
6601,
198,
6738,
18284,
62,
20676,
6944,
62,
907,
14542,
13,
2673,
1330,
5231,
38175,
18438,
6944,
12502,
198,
198,
2,
17267,
584,
12782,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
29113,
29113,
29113,
21017,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419
] | 3.837719 | 228 |
from abc import ABC, abstractmethod
from enum import Enum
from typing import Optional, Union, Iterable, NoReturn
try: # Assume we're a sub-module in a package.
from utils import arguments as arg
from base.abstract.tree_item import TreeInterface
from loggers.extended_logger_interface import ExtendedLoggerInterface
except ImportError: # Apparently no higher-level package has been imported, fall back to a local import.
from ..utils import arguments as arg
from ..base.abstract.tree_item import TreeInterface
from .extended_logger_interface import ExtendedLoggerInterface
Logger = Union[ExtendedLoggerInterface, arg.DefaultArgument]
| [
6738,
450,
66,
1330,
9738,
11,
12531,
24396,
198,
6738,
33829,
1330,
2039,
388,
198,
6738,
19720,
1330,
32233,
11,
4479,
11,
40806,
540,
11,
1400,
13615,
198,
198,
28311,
25,
220,
1303,
2195,
2454,
356,
821,
257,
850,
12,
21412,
287,
257,
5301,
13,
198,
220,
220,
220,
422,
3384,
4487,
1330,
7159,
355,
1822,
198,
220,
220,
220,
422,
2779,
13,
397,
8709,
13,
21048,
62,
9186,
1330,
12200,
39317,
198,
220,
220,
220,
422,
2604,
5355,
13,
2302,
1631,
62,
6404,
1362,
62,
39994,
1330,
24204,
11187,
1362,
39317,
198,
16341,
17267,
12331,
25,
220,
1303,
18626,
645,
2440,
12,
5715,
5301,
468,
587,
17392,
11,
2121,
736,
284,
257,
1957,
1330,
13,
198,
220,
220,
220,
422,
11485,
26791,
1330,
7159,
355,
1822,
198,
220,
220,
220,
422,
11485,
8692,
13,
397,
8709,
13,
21048,
62,
9186,
1330,
12200,
39317,
198,
220,
220,
220,
422,
764,
2302,
1631,
62,
6404,
1362,
62,
39994,
1330,
24204,
11187,
1362,
39317,
198,
198,
11187,
1362,
796,
4479,
58,
11627,
1631,
11187,
1362,
39317,
11,
1822,
13,
19463,
28100,
1713,
60,
628,
198
] | 3.622951 | 183 |
import sys
import math
BASE=20
Sym2Base={}
Base2Sym={}
l, h = [int(i) for i in input().split()]
for i in range(h):
numeral=input()
for j in range(BASE):
idx=l*j
STR=numeral[idx:idx+l]
if j in Base2Sym:
Base2Sym[j]+=[STR]
else:
Base2Sym[j]=[STR]
for key,value in Base2Sym.items():
Sym2Base[''.join(value)]=key
########################################
N1_sym=[]
N2_sym=[]
s1 = int(int(input())/h)
for i in range(s1):
N1_sym.append(''.join([input() for i in range(h)]))
s2 = int(int(input())/h)
for i in range(s2):
N2_sym.append(''.join([input() for i in range(h)]))
#########################################
N1=0
N2=0
for i in N1_sym:
N1=N1*20+Sym2Base[i]
for i in N2_sym:
N2=N2*20+Sym2Base[i]
#########################################
operation = input()
if operation=='+':
result=N1+N2
elif operation=='*':
result=N1*N2
elif operation=='-':
result=N1-N2
elif operation=='/':
result=N1/N2
result_Base=[]
if result==0:
result_Base.append(0)
while not(result/BASE==0):
result_Base.append(result % BASE)
result=int(result/BASE)
result_Base.reverse()
for i in result_Base:
for j in Base2Sym[i]:
print(j)
| [
11748,
25064,
198,
11748,
10688,
198,
198,
33,
11159,
28,
1238,
198,
43094,
17,
14881,
34758,
92,
198,
14881,
17,
43094,
34758,
92,
198,
198,
75,
11,
289,
796,
685,
600,
7,
72,
8,
329,
1312,
287,
5128,
22446,
35312,
3419,
60,
198,
1640,
1312,
287,
2837,
7,
71,
2599,
198,
220,
220,
220,
997,
1691,
28,
15414,
3419,
198,
220,
220,
220,
329,
474,
287,
2837,
7,
33,
11159,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
28,
75,
9,
73,
198,
220,
220,
220,
220,
220,
220,
220,
19269,
28,
22510,
1691,
58,
312,
87,
25,
312,
87,
10,
75,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
474,
287,
7308,
17,
43094,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7308,
17,
43094,
58,
73,
48688,
41888,
18601,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7308,
17,
43094,
58,
73,
22241,
58,
18601,
60,
198,
198,
1640,
1994,
11,
8367,
287,
7308,
17,
43094,
13,
23814,
33529,
198,
220,
220,
220,
15845,
17,
14881,
17816,
4458,
22179,
7,
8367,
15437,
28,
2539,
198,
198,
29113,
7804,
198,
198,
45,
16,
62,
37047,
28,
21737,
198,
45,
17,
62,
37047,
28,
21737,
198,
82,
16,
796,
493,
7,
600,
7,
15414,
3419,
20679,
71,
8,
198,
1640,
1312,
287,
2837,
7,
82,
16,
2599,
198,
220,
220,
220,
399,
16,
62,
37047,
13,
33295,
10786,
4458,
22179,
26933,
15414,
3419,
329,
1312,
287,
2837,
7,
71,
15437,
4008,
198,
82,
17,
796,
493,
7,
600,
7,
15414,
3419,
20679,
71,
8,
198,
1640,
1312,
287,
2837,
7,
82,
17,
2599,
198,
220,
220,
220,
399,
17,
62,
37047,
13,
33295,
10786,
4458,
22179,
26933,
15414,
3419,
329,
1312,
287,
2837,
7,
71,
15437,
4008,
198,
198,
29113,
7804,
2,
198,
198,
45,
16,
28,
15,
198,
45,
17,
28,
15,
198,
1640,
1312,
287,
399,
16,
62,
37047,
25,
198,
220,
220,
220,
399,
16,
28,
45,
16,
9,
1238,
10,
43094,
17,
14881,
58,
72,
60,
198,
1640,
1312,
287,
399,
17,
62,
37047,
25,
198,
220,
220,
220,
399,
17,
28,
45,
17,
9,
1238,
10,
43094,
17,
14881,
58,
72,
60,
198,
198,
29113,
7804,
2,
198,
198,
27184,
796,
5128,
3419,
198,
361,
4905,
855,
6,
10,
10354,
198,
220,
220,
220,
1255,
28,
45,
16,
10,
45,
17,
198,
417,
361,
4905,
855,
6,
9,
10354,
198,
220,
220,
220,
1255,
28,
45,
16,
9,
45,
17,
198,
417,
361,
4905,
855,
29001,
10354,
198,
220,
220,
220,
1255,
28,
45,
16,
12,
45,
17,
198,
417,
361,
4905,
855,
26488,
10354,
198,
220,
220,
220,
1255,
28,
45,
16,
14,
45,
17,
198,
198,
20274,
62,
14881,
28,
21737,
198,
361,
1255,
855,
15,
25,
198,
220,
220,
220,
1255,
62,
14881,
13,
33295,
7,
15,
8,
198,
198,
4514,
407,
7,
20274,
14,
33,
11159,
855,
15,
2599,
198,
220,
220,
220,
1255,
62,
14881,
13,
33295,
7,
20274,
4064,
49688,
8,
198,
220,
220,
220,
1255,
28,
600,
7,
20274,
14,
33,
11159,
8,
198,
198,
20274,
62,
14881,
13,
50188,
3419,
198,
1640,
1312,
287,
1255,
62,
14881,
25,
198,
220,
220,
220,
329,
474,
287,
7308,
17,
43094,
58,
72,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
73,
8,
198,
220,
220,
220,
220,
198
] | 2.149047 | 577 |
import os
import shutil
import zipfile
import urllib
import xml.etree.ElementTree as ET
import numpy as np
import csv
import pandas
# from google.colab import drive
# from google.colab import files
# %matplotlib inline
# # automatically reload modules when they have changed
# %reload_ext autoreload
# %autoreload 2
# # import keras
import keras
# import keras_retinanet
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# import miscellaneous modules
import matplotlib.pyplot as plt
import cv2
import os
import numpy as np
import time
# set tf backend to allow memory to grow, instead of claiming everything
import tensorflow as tf
import json
import os
import pickle as pkl
import Save_solar
import shutil
solar_detection(images_path = './keras-retinanet/7fc8992d8a_012288112DOPENPIPELINE_Orthomosaic_export_FriNov22014645.383588.jpg')
Save_solar.save_json('./list_bb.json')
| [
11748,
28686,
198,
11748,
4423,
346,
198,
11748,
19974,
7753,
198,
11748,
2956,
297,
571,
198,
11748,
35555,
13,
316,
631,
13,
20180,
27660,
355,
12152,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
269,
21370,
198,
11748,
19798,
292,
198,
2,
422,
23645,
13,
4033,
397,
1330,
3708,
198,
2,
422,
23645,
13,
4033,
397,
1330,
3696,
198,
198,
2,
4064,
6759,
29487,
8019,
26098,
198,
198,
2,
1303,
6338,
18126,
13103,
618,
484,
423,
3421,
198,
2,
4064,
260,
2220,
62,
2302,
1960,
382,
2220,
198,
2,
4064,
2306,
382,
2220,
362,
198,
2,
1303,
1330,
41927,
292,
198,
11748,
41927,
292,
198,
198,
2,
1330,
41927,
292,
62,
1186,
259,
272,
316,
198,
6738,
41927,
292,
62,
1186,
259,
272,
316,
1330,
4981,
198,
6738,
41927,
292,
62,
1186,
259,
272,
316,
13,
26791,
13,
9060,
1330,
1100,
62,
9060,
62,
65,
2164,
11,
662,
14681,
62,
9060,
11,
47558,
62,
9060,
198,
6738,
41927,
292,
62,
1186,
259,
272,
316,
13,
26791,
13,
41464,
1634,
1330,
3197,
62,
3524,
11,
3197,
62,
6888,
1159,
198,
6738,
41927,
292,
62,
1186,
259,
272,
316,
13,
26791,
13,
4033,
669,
1330,
6167,
62,
8043,
198,
198,
2,
1330,
2984,
25673,
13103,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
269,
85,
17,
198,
11748,
28686,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
2,
900,
48700,
30203,
284,
1249,
4088,
284,
1663,
11,
2427,
286,
8512,
2279,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
2298,
293,
355,
279,
41582,
198,
11748,
12793,
62,
82,
6192,
198,
11748,
4423,
346,
198,
82,
6192,
62,
15255,
3213,
7,
17566,
62,
6978,
796,
705,
19571,
6122,
292,
12,
1186,
259,
272,
316,
14,
22,
16072,
23,
41561,
67,
23,
64,
62,
486,
1828,
3459,
14686,
35,
3185,
1677,
47,
4061,
3698,
8881,
62,
5574,
400,
296,
8546,
291,
62,
39344,
62,
30214,
20795,
17,
1264,
3510,
2231,
13,
2548,
2327,
3459,
13,
9479,
11537,
198,
16928,
62,
82,
6192,
13,
21928,
62,
17752,
7,
4458,
14,
4868,
62,
11848,
13,
17752,
11537,
628,
220,
220,
220
] | 3.002778 | 360 |
"""Clean Code in Python - Chapter 6: Descriptors
> A Pythonic Implementation
"""
class HistoryTracedAttribute:
"""Trace the values of this attribute into another one given by the name at
``trace_attribute_name``.
"""
def _needs_to_track_change(self, instance, value) -> bool:
"""Determine if the value change needs to be traced or not.
Rules for adding a value to the trace:
* If the value is not previously set (it's the first one).
* If the new value is != than the current one.
"""
try:
current_value = instance.__dict__[self._name]
except KeyError:
return True
return value != current_value
class Traveller:
"""A person visiting several cities.
We wish to track the path of the traveller, as he or she is visiting each
new city.
>>> alice = Traveller("Alice", "Barcelona")
>>> alice.current_city = "Paris"
>>> alice.current_city = "Brussels"
>>> alice.current_city = "Amsterdam"
>>> alice.cities_visited
['Barcelona', 'Paris', 'Brussels', 'Amsterdam']
>>> alice.current_city
'Amsterdam'
>>> alice.current_city = "Amsterdam"
>>> alice.cities_visited
['Barcelona', 'Paris', 'Brussels', 'Amsterdam']
>>> bob = Traveller("Bob", "Rotterdam")
>>> bob.current_city = "Amsterdam"
>>> bob.current_city
'Amsterdam'
>>> bob.cities_visited
['Rotterdam', 'Amsterdam']
"""
current_city = HistoryTracedAttribute("cities_visited")
| [
37811,
32657,
6127,
287,
11361,
532,
7006,
718,
25,
2935,
6519,
669,
198,
198,
29,
317,
11361,
291,
46333,
198,
198,
37811,
628,
198,
4871,
7443,
2898,
2286,
33682,
25,
198,
220,
220,
220,
37227,
2898,
558,
262,
3815,
286,
428,
11688,
656,
1194,
530,
1813,
416,
262,
1438,
379,
198,
220,
220,
220,
7559,
40546,
62,
42348,
62,
3672,
15506,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
4808,
50032,
62,
1462,
62,
11659,
62,
3803,
7,
944,
11,
4554,
11,
1988,
8,
4613,
20512,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
35,
2357,
3810,
611,
262,
1988,
1487,
2476,
284,
307,
23246,
393,
407,
13,
628,
220,
220,
220,
220,
220,
220,
220,
14252,
329,
4375,
257,
1988,
284,
262,
12854,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1002,
262,
1988,
318,
407,
4271,
900,
357,
270,
338,
262,
717,
530,
737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1635,
1002,
262,
649,
1988,
318,
14512,
621,
262,
1459,
530,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1459,
62,
8367,
796,
4554,
13,
834,
11600,
834,
58,
944,
13557,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
7383,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1988,
14512,
1459,
62,
8367,
628,
198,
4871,
43662,
6051,
25,
198,
220,
220,
220,
37227,
32,
1048,
10013,
1811,
4736,
13,
628,
220,
220,
220,
775,
4601,
284,
2610,
262,
3108,
286,
262,
49130,
11,
355,
339,
393,
673,
318,
10013,
1123,
198,
220,
220,
220,
649,
1748,
13,
628,
220,
220,
220,
13163,
435,
501,
796,
43662,
6051,
7203,
44484,
1600,
366,
10374,
14308,
4943,
198,
220,
220,
220,
13163,
435,
501,
13,
14421,
62,
19205,
796,
366,
40313,
1,
198,
220,
220,
220,
13163,
435,
501,
13,
14421,
62,
19205,
796,
366,
9414,
385,
14002,
1,
198,
220,
220,
220,
13163,
435,
501,
13,
14421,
62,
19205,
796,
366,
5840,
22506,
1,
628,
220,
220,
220,
13163,
435,
501,
13,
66,
871,
62,
4703,
863,
198,
220,
220,
220,
37250,
10374,
14308,
3256,
705,
40313,
3256,
705,
9414,
385,
14002,
3256,
705,
5840,
22506,
20520,
628,
220,
220,
220,
13163,
435,
501,
13,
14421,
62,
19205,
198,
220,
220,
220,
705,
5840,
22506,
6,
628,
220,
220,
220,
13163,
435,
501,
13,
14421,
62,
19205,
796,
366,
5840,
22506,
1,
198,
220,
220,
220,
13163,
435,
501,
13,
66,
871,
62,
4703,
863,
198,
220,
220,
220,
37250,
10374,
14308,
3256,
705,
40313,
3256,
705,
9414,
385,
14002,
3256,
705,
5840,
22506,
20520,
628,
220,
220,
220,
13163,
29202,
796,
43662,
6051,
7203,
18861,
1600,
366,
24864,
353,
11043,
4943,
198,
220,
220,
220,
13163,
29202,
13,
14421,
62,
19205,
796,
366,
5840,
22506,
1,
198,
220,
220,
220,
13163,
29202,
13,
14421,
62,
19205,
198,
220,
220,
220,
705,
5840,
22506,
6,
198,
220,
220,
220,
13163,
29202,
13,
66,
871,
62,
4703,
863,
198,
220,
220,
220,
37250,
24864,
353,
11043,
3256,
705,
5840,
22506,
20520,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
1459,
62,
19205,
796,
7443,
2898,
2286,
33682,
7203,
66,
871,
62,
4703,
863,
4943,
198
] | 2.660312 | 577 |
"""Retrieve data from PyPI."""
from distutils.version import LooseVersion
from logging import getLogger
import xmlrpclib
from flask.ext.celery import single_instance
from pypi_portal.extensions import celery, db, redis
from pypi_portal.models.pypi import Package
from pypi_portal.models.redis import POLL_SIMPLE_THROTTLE
LOG = getLogger(__name__)
THROTTLE = 1 * 60 * 60
@celery.task(bind=True, soft_time_limit=120)
@single_instance
def update_package_list():
"""Get a list of all packages from PyPI through their XMLRPC API.
This task returns something in case the user schedules it from a view. The view can wait up to a certain amount of
time for this task to finish, and if nothing times out, it can tell the user if it found any new packages.
Since views can schedule this task, we don't want some rude person hammering PyPI or our application with repeated
requests. This task is limited to one run per 1 hour at most.
Returns:
List of new packages found. Returns None if task is rate-limited.
"""
# Rate limit.
lock = redis.lock(POLL_SIMPLE_THROTTLE, timeout=int(THROTTLE))
have_lock = lock.acquire(blocking=False)
if not have_lock:
LOG.warning('poll_simple() task has already executed in the past 4 hours. Rate limiting.')
return None
# Query API.
client = xmlrpclib.ServerProxy('https://pypi.python.org/pypi')
results = client.search(dict(summary=''))
if not results:
LOG.error('Reply from API had no results.')
return list()
LOG.debug('Sorting results.')
results.sort(key=lambda x: (x['name'], LooseVersion(x['version'])))
filtered = (r for r in results if r['version'][0].isdigit())
packages = {r['name']: dict(summary=r['summary'], version=r['version'], id=0) for r in filtered}
LOG.debug('Pruning unchanged packages.')
for row in db.session.query(Package.id, Package.name, Package.summary, Package.latest_version):
if packages.get(row[1]) == dict(summary=row[2], version=row[3], id=0):
packages.pop(row[1])
elif row[1] in packages:
packages[row[1]]['id'] = row[0]
new_package_names = {n for n, d in packages.items() if not d['id']}
# Merge into database.
LOG.debug('Found {} new packages in PyPI, updating {} total.'.format(len(new_package_names), len(packages)))
with db.session.begin_nested():
for name, data in packages.items():
db.session.merge(Package(id=data['id'], name=name, summary=data['summary'], latest_version=data['version']))
db.session.commit()
return list(new_package_names)
| [
37811,
9781,
30227,
1366,
422,
9485,
11901,
526,
15931,
198,
198,
6738,
1233,
26791,
13,
9641,
1330,
6706,
577,
14815,
198,
6738,
18931,
1330,
651,
11187,
1362,
198,
11748,
35555,
81,
79,
565,
571,
198,
198,
6738,
42903,
13,
2302,
13,
7015,
88,
1330,
2060,
62,
39098,
198,
198,
6738,
279,
4464,
72,
62,
634,
282,
13,
2302,
5736,
1330,
18725,
1924,
11,
20613,
11,
2266,
271,
198,
6738,
279,
4464,
72,
62,
634,
282,
13,
27530,
13,
79,
4464,
72,
1330,
15717,
198,
6738,
279,
4464,
72,
62,
634,
282,
13,
27530,
13,
445,
271,
1330,
19922,
3069,
62,
48913,
16437,
62,
4221,
49,
29089,
2538,
198,
198,
25294,
796,
651,
11187,
1362,
7,
834,
3672,
834,
8,
198,
4221,
49,
29089,
2538,
796,
352,
1635,
3126,
1635,
3126,
628,
198,
31,
7015,
88,
13,
35943,
7,
21653,
28,
17821,
11,
2705,
62,
2435,
62,
32374,
28,
10232,
8,
198,
31,
29762,
62,
39098,
198,
4299,
4296,
62,
26495,
62,
4868,
33529,
198,
220,
220,
220,
37227,
3855,
257,
1351,
286,
477,
10392,
422,
9485,
11901,
832,
511,
23735,
49,
5662,
7824,
13,
628,
220,
220,
220,
770,
4876,
5860,
1223,
287,
1339,
262,
2836,
24025,
340,
422,
257,
1570,
13,
383,
1570,
460,
4043,
510,
284,
257,
1728,
2033,
286,
198,
220,
220,
220,
640,
329,
428,
4876,
284,
5461,
11,
290,
611,
2147,
1661,
503,
11,
340,
460,
1560,
262,
2836,
611,
340,
1043,
597,
649,
10392,
13,
628,
220,
220,
220,
4619,
5009,
460,
7269,
428,
4876,
11,
356,
836,
470,
765,
617,
22066,
1048,
15554,
278,
9485,
11901,
393,
674,
3586,
351,
5100,
198,
220,
220,
220,
7007,
13,
770,
4876,
318,
3614,
284,
530,
1057,
583,
352,
1711,
379,
749,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
7343,
286,
649,
10392,
1043,
13,
16409,
6045,
611,
4876,
318,
2494,
12,
10698,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
14806,
4179,
13,
198,
220,
220,
220,
5793,
796,
2266,
271,
13,
5354,
7,
16402,
3069,
62,
48913,
16437,
62,
4221,
49,
29089,
2538,
11,
26827,
28,
600,
7,
4221,
49,
29089,
2538,
4008,
198,
220,
220,
220,
423,
62,
5354,
796,
5793,
13,
330,
29782,
7,
41938,
28,
25101,
8,
198,
220,
220,
220,
611,
407,
423,
62,
5354,
25,
198,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
43917,
10786,
30393,
62,
36439,
3419,
4876,
468,
1541,
10945,
287,
262,
1613,
604,
2250,
13,
14806,
15637,
2637,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
628,
220,
220,
220,
1303,
43301,
7824,
13,
198,
220,
220,
220,
5456,
796,
35555,
81,
79,
565,
571,
13,
10697,
44148,
10786,
5450,
1378,
79,
4464,
72,
13,
29412,
13,
2398,
14,
79,
4464,
72,
11537,
198,
220,
220,
220,
2482,
796,
5456,
13,
12947,
7,
11600,
7,
49736,
28,
7061,
4008,
198,
220,
220,
220,
611,
407,
2482,
25,
198,
220,
220,
220,
220,
220,
220,
220,
41605,
13,
18224,
10786,
36875,
422,
7824,
550,
645,
2482,
2637,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1351,
3419,
628,
220,
220,
220,
41605,
13,
24442,
10786,
50,
24707,
2482,
2637,
8,
198,
220,
220,
220,
2482,
13,
30619,
7,
2539,
28,
50033,
2124,
25,
357,
87,
17816,
3672,
6,
4357,
6706,
577,
14815,
7,
87,
17816,
9641,
20520,
22305,
198,
220,
220,
220,
29083,
796,
357,
81,
329,
374,
287,
2482,
611,
374,
17816,
9641,
6,
7131,
15,
4083,
9409,
328,
270,
28955,
198,
220,
220,
220,
10392,
796,
1391,
81,
17816,
3672,
6,
5974,
8633,
7,
49736,
28,
81,
17816,
49736,
6,
4357,
2196,
28,
81,
17816,
9641,
6,
4357,
4686,
28,
15,
8,
329,
374,
287,
29083,
92,
628,
220,
220,
220,
41605,
13,
24442,
10786,
47,
5143,
278,
21588,
10392,
2637,
8,
198,
220,
220,
220,
329,
5752,
287,
20613,
13,
29891,
13,
22766,
7,
27813,
13,
312,
11,
15717,
13,
3672,
11,
15717,
13,
49736,
11,
15717,
13,
42861,
62,
9641,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
10392,
13,
1136,
7,
808,
58,
16,
12962,
6624,
8633,
7,
49736,
28,
808,
58,
17,
4357,
2196,
28,
808,
58,
18,
4357,
4686,
28,
15,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10392,
13,
12924,
7,
808,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
5752,
58,
16,
60,
287,
10392,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10392,
58,
808,
58,
16,
60,
7131,
6,
312,
20520,
796,
5752,
58,
15,
60,
198,
220,
220,
220,
649,
62,
26495,
62,
14933,
796,
1391,
77,
329,
299,
11,
288,
287,
10392,
13,
23814,
3419,
611,
407,
288,
17816,
312,
20520,
92,
628,
220,
220,
220,
1303,
39407,
656,
6831,
13,
198,
220,
220,
220,
41605,
13,
24442,
10786,
21077,
23884,
649,
10392,
287,
9485,
11901,
11,
19698,
23884,
2472,
2637,
13,
18982,
7,
11925,
7,
3605,
62,
26495,
62,
14933,
828,
18896,
7,
43789,
22305,
198,
220,
220,
220,
351,
20613,
13,
29891,
13,
27471,
62,
77,
7287,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1438,
11,
1366,
287,
10392,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20613,
13,
29891,
13,
647,
469,
7,
27813,
7,
312,
28,
7890,
17816,
312,
6,
4357,
1438,
28,
3672,
11,
10638,
28,
7890,
17816,
49736,
6,
4357,
3452,
62,
9641,
28,
7890,
17816,
9641,
20520,
4008,
198,
220,
220,
220,
20613,
13,
29891,
13,
41509,
3419,
198,
220,
220,
220,
1441,
1351,
7,
3605,
62,
26495,
62,
14933,
8,
198
] | 2.794243 | 938 |
# Project Quex (http://quex.sourceforge.net); License: MIT;
# (C) 2005-2020 Frank-Rene Schaefer;
#_______________________________________________________________________________
import quex.output.core.state.core as state_coder
import quex.output.core.state.entry as entry
import quex.output.core.mega_state.core as mega_state_coder
from quex.blackboard import Lng
from collections import defaultdict
from copy import copy
def do(TheAnalyzer):
"""Generate source code for a given state machine 'SM'.
"""
Lng.register_analyzer(TheAnalyzer)
assert id(Lng.analyzer) == id(TheAnalyzer)
# (*) Init State must be first!
txt = []
state_coder.do(txt, TheAnalyzer.state_db[TheAnalyzer.init_state_index], TheAnalyzer)
# (*) Second: The drop-out catcher, since it is referenced the most.
# (Is implemented entirely by 'entry')
code_drop_out_catcher(txt, TheAnalyzer)
# (*) Code the Mega States (implementing multiple states in one)
for state in TheAnalyzer.mega_state_list:
mega_state_coder.do(txt, state, TheAnalyzer)
# (*) All other (normal) states (sorted by their frequency of appearance)
for state in remaining_non_mega_state_iterable(TheAnalyzer):
state_coder.do(txt, state, TheAnalyzer)
Lng.unregister_analyzer()
return txt
def get_frequency_db(StateDB, RemainderStateIndexList):
"""Sort the list in a away, so that states that are used more
often appear earlier. This happens in the hope of more
cache locality.
"""
# Count number of transitions to a state: frequency_db
frequency_db = defaultdict(int)
for state in (StateDB[i] for i in RemainderStateIndexList):
assert state.transition_map is not None
for interval, target_index in state.transition_map:
frequency_db[target_index] += 1
return frequency_db
| [
2,
4935,
4670,
87,
357,
4023,
1378,
421,
1069,
13,
10459,
30293,
13,
3262,
1776,
13789,
25,
17168,
26,
198,
2,
357,
34,
8,
5075,
12,
42334,
5278,
12,
49,
1734,
35756,
41027,
26,
220,
198,
2,
27193,
2602,
37405,
198,
11748,
627,
1069,
13,
22915,
13,
7295,
13,
5219,
13,
7295,
220,
220,
220,
220,
220,
355,
220,
220,
220,
220,
1181,
62,
66,
12342,
198,
11748,
627,
1069,
13,
22915,
13,
7295,
13,
5219,
13,
13000,
220,
220,
220,
220,
355,
220,
220,
220,
220,
5726,
198,
11748,
627,
1069,
13,
22915,
13,
7295,
13,
13731,
62,
5219,
13,
7295,
355,
220,
220,
220,
220,
23465,
62,
5219,
62,
66,
12342,
198,
6738,
220,
220,
627,
1069,
13,
13424,
3526,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1330,
406,
782,
198,
198,
6738,
220,
220,
17268,
1330,
4277,
11600,
628,
198,
6738,
220,
220,
4866,
220,
220,
220,
220,
220,
220,
220,
1330,
4866,
198,
198,
4299,
466,
7,
464,
37702,
9107,
2599,
198,
220,
220,
220,
37227,
8645,
378,
2723,
2438,
329,
257,
1813,
1181,
4572,
705,
12310,
4458,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
406,
782,
13,
30238,
62,
38200,
9107,
7,
464,
37702,
9107,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6818,
4686,
7,
43,
782,
13,
38200,
9107,
8,
6624,
4686,
7,
464,
37702,
9107,
8,
628,
220,
220,
220,
1303,
20789,
8,
44707,
1812,
1276,
307,
717,
0,
198,
220,
220,
220,
256,
742,
796,
17635,
198,
220,
220,
220,
1181,
62,
66,
12342,
13,
4598,
7,
14116,
11,
383,
37702,
9107,
13,
5219,
62,
9945,
58,
464,
37702,
9107,
13,
15003,
62,
5219,
62,
9630,
4357,
383,
37702,
9107,
8,
628,
220,
220,
220,
1303,
20789,
8,
5498,
25,
383,
4268,
12,
448,
32408,
11,
1201,
340,
318,
20717,
262,
749,
13,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
357,
3792,
9177,
5000,
416,
705,
13000,
11537,
198,
220,
220,
220,
2438,
62,
14781,
62,
448,
62,
9246,
2044,
7,
14116,
11,
383,
37702,
9107,
8,
628,
220,
220,
220,
1303,
20789,
8,
6127,
262,
13421,
1829,
357,
320,
26908,
278,
3294,
2585,
287,
530,
8,
198,
220,
220,
220,
329,
1181,
287,
383,
37702,
9107,
13,
13731,
62,
5219,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
23465,
62,
5219,
62,
66,
12342,
13,
4598,
7,
14116,
11,
1181,
11,
383,
37702,
9107,
8,
628,
220,
220,
220,
1303,
20789,
8,
1439,
584,
357,
11265,
8,
2585,
357,
82,
9741,
416,
511,
8373,
286,
5585,
8,
198,
220,
220,
220,
329,
1181,
287,
5637,
62,
13159,
62,
13731,
62,
5219,
62,
2676,
540,
7,
464,
37702,
9107,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
66,
12342,
13,
4598,
7,
14116,
11,
1181,
11,
383,
37702,
9107,
8,
220,
628,
220,
220,
220,
406,
782,
13,
403,
30238,
62,
38200,
9107,
3419,
198,
220,
220,
220,
1441,
256,
742,
198,
198,
4299,
651,
62,
35324,
62,
9945,
7,
9012,
11012,
11,
42606,
1082,
9012,
15732,
8053,
2599,
198,
220,
220,
220,
37227,
42758,
262,
1351,
287,
257,
1497,
11,
523,
326,
2585,
326,
389,
973,
517,
198,
220,
220,
220,
220,
220,
220,
1690,
1656,
2961,
13,
770,
4325,
287,
262,
2911,
286,
517,
220,
198,
220,
220,
220,
220,
220,
220,
12940,
48036,
13,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
2764,
1271,
286,
27188,
284,
257,
1181,
25,
8373,
62,
9945,
198,
220,
220,
220,
8373,
62,
9945,
796,
4277,
11600,
7,
600,
8,
198,
220,
220,
220,
329,
1181,
287,
357,
9012,
11012,
58,
72,
60,
329,
1312,
287,
42606,
1082,
9012,
15732,
8053,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
1181,
13,
7645,
653,
62,
8899,
318,
407,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
329,
16654,
11,
2496,
62,
9630,
287,
1181,
13,
7645,
653,
62,
8899,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8373,
62,
9945,
58,
16793,
62,
9630,
60,
15853,
352,
198,
220,
220,
220,
1441,
8373,
62,
9945,
628
] | 2.765805 | 696 |
# python-3
# coding: utf-8
'''
Script Name: BuildConsolidatedFeaturesFile.py
Created date : Sunday, 27th March
Author : Sreejith Menon
Description :
buildFeatureFl(input file,output file)
Reads from a csv file (taken as a parameter) containing a list of image GIDs.
Extracts the below features from the IBEIS dataset:
1. nid
2. names
3. species_texts
4. sex_texts
5. age_months_est
6. exemplar_flags
7. quality_texts
Outputs 3 files in the same directory as the outFL directory
File 1 : Map of all images and their annotation IDs (csv)
File 2 : Annotation ID's and their features (csv)
File 3 : Image GID, annotation ID's and their features (csv)
File 4 : Image GID, annotation ID's and their features (json)
'''
from __future__ import print_function
import GetPropertiesAPI as GP
import importlib, json, re, sys, csv, time, math
# importlib.reload(GP) # un-comment if there are any changes made to API
import pandas as pd
# import DataStructsHelperAPI as DS
from math import floor
# importlib.reload(GP)
from multiprocessing import Process
import DataStructsHelperAPI as DS
# Original Microsoft Tagging API output is a R list,
# This method parses the data into python readable form and dumps the output into a JSON.
'''
Logic for reading data from the consolidatedHITResults file - changed
The input for the below method will be a csv file/list with all the image GID's for which the features have to be extracted.
'''
# these APIs require encoded annot_uuid_list
ggr_eco_ftr_api_map = {'age': "/api/annot/age/months/json",
'sex': "/api/annot/sex/text/json",
'bbox': "/api/annot/bbox/json",
'nid': "/api/annot/name/rowid/json",
'exemplar': "/api/annot/exemplar/json",
'species': "/api/annot/species/json",
'quality': "/api/annot/quality/text/json",
'view_point': "/api/annot/yaw/text/json"
}
# these APIs takes in an encoded gid list
ggr_otr_ftr_api_map = {'contributor': "/api/image/note",
'lat': "/api/image/lat",
'long': "/api/image/lon",
'datetime': "/api/image/unixtime",
'width': "/api/image/width",
'height': "/api/image/height",
'orientation': "/api/image/orientation"
}
if __name__ == "__main__":
gids = list(map(str, list(range(1, 1862))))
buildFeatureFl(gids, "../data/Flickr_IBEIS_Giraffe_Ftrs.csv", False)
# __main__()
# gidAidMapFl = "../data/full_gid_aid_map.json"
# getAdditionalAnnotFeatures(gidAidMapFl,'bbox',"../data/gid_bbox.json")
# buildBeautyFtrFl("../data/beautyFeatures_GZC_R.csv",['GID','pleasure','arousal','dominance','y'],"../data/beautyFeatures_GZC")
# DS.combineJson("../data/beautyFeatures_GZC.json","../data/imgs_exif_data_full.json","../data/GZC_exifs_beauty_full.json")
# p1 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_1.json",1,5000))
# p2 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_2.json",5001,10000))
# p3 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_3.json",10001,15000))
# p4 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_4.json",15001,20000))
# p5 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_5.json",20001,25000))
# p6 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_6.json",25001,30000))
# p7 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_7.json",30001,35000))
# p8 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_8.json",35001,37433))
# p9 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_1",1,5000))
# p10 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_2",5001,10000))
# p11 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_3",10001,15000))
# p12 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_4",15001,20000))
# p13 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_5",20001,25000))
# p14 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_6",25001,30000))
# p15 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_7",30001,35000))
# p16 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_8",35001,37433))
# p1 = Process(target=test, args=(0, 400, "/tmp/test1.json"))
# p2 = Process(target=test, args=(400, 800, "/tmp/test2.json"))
# p3 = Process(target=test, args=(800, 1200, "/tmp/test3.json"))
# p4 = Process(target=test, args=(1200, 1600, "/tmp/test4.json"))
# p5 = Process(target=test, args=(1600, 2000, "/tmp/test5.json"))
# p6 = Process(target=test, args=(2000, 2400, "/tmp/test6.json"))
# p7 = Process(target=test, args=(2400, 2800, "/tmp/test7.json"))
# p8 = Process(target=test, args=(2800, 3200, "/tmp/test8.json"))
# p9 = Process(target=test, args=(3200, 3600, "/tmp/test9.json"))
# p10 = Process(target=test, args=(3600, 4033, "/tmp/test10.json"))
# p1.start()
# p2.start()
# p3.start()
# p4.start()
# p5.start()
# p6.start()
# p7.start()
# p8.start()
# p9.start()
# p10.start()
# # p11.start()
# # p12.start()
# # p13.start()
# # p14.start()
# # p15.start()
# # p16.start()
| [
2,
21015,
12,
18,
198,
2,
19617,
25,
3384,
69,
12,
23,
198,
7061,
6,
198,
7391,
6530,
25,
10934,
9444,
10180,
515,
23595,
8979,
13,
9078,
198,
198,
41972,
3128,
1058,
3502,
11,
2681,
400,
2805,
198,
198,
13838,
1058,
311,
631,
73,
342,
6065,
261,
198,
198,
11828,
1058,
220,
198,
11249,
38816,
7414,
7,
15414,
2393,
11,
22915,
2393,
8,
198,
5569,
82,
422,
257,
269,
21370,
2393,
357,
83,
1685,
355,
257,
11507,
8,
7268,
257,
1351,
286,
2939,
402,
47954,
13,
220,
198,
198,
11627,
974,
82,
262,
2174,
3033,
422,
262,
314,
12473,
1797,
27039,
25,
198,
16,
13,
299,
312,
198,
17,
13,
3891,
198,
18,
13,
4693,
62,
5239,
82,
198,
19,
13,
1714,
62,
5239,
82,
198,
20,
13,
2479,
62,
41537,
62,
395,
198,
21,
13,
21433,
283,
62,
33152,
198,
22,
13,
3081,
62,
5239,
82,
198,
198,
26410,
82,
513,
3696,
287,
262,
976,
8619,
355,
262,
503,
3697,
8619,
198,
8979,
352,
1058,
9347,
286,
477,
4263,
290,
511,
23025,
32373,
357,
40664,
8,
198,
8979,
362,
1058,
1052,
38983,
4522,
338,
290,
511,
3033,
357,
40664,
8,
198,
8979,
513,
1058,
7412,
402,
2389,
11,
23025,
4522,
338,
290,
511,
3033,
357,
40664,
8,
198,
8979,
604,
1058,
7412,
402,
2389,
11,
23025,
4522,
338,
290,
511,
3033,
357,
17752,
8,
198,
7061,
6,
198,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
3497,
2964,
18200,
17614,
355,
14714,
198,
11748,
1330,
8019,
11,
33918,
11,
302,
11,
25064,
11,
269,
21370,
11,
640,
11,
10688,
198,
2,
1330,
8019,
13,
260,
2220,
7,
16960,
8,
1303,
555,
12,
23893,
611,
612,
389,
597,
2458,
925,
284,
7824,
198,
11748,
19798,
292,
355,
279,
67,
198,
2,
1330,
6060,
44909,
82,
47429,
17614,
355,
17400,
198,
6738,
10688,
1330,
4314,
198,
2,
1330,
8019,
13,
260,
2220,
7,
16960,
8,
198,
6738,
18540,
305,
919,
278,
1330,
10854,
198,
11748,
6060,
44909,
82,
47429,
17614,
355,
17400,
628,
628,
628,
198,
2,
13745,
5413,
309,
16406,
7824,
5072,
318,
257,
371,
1351,
11,
198,
2,
770,
2446,
13544,
274,
262,
1366,
656,
21015,
31744,
1296,
290,
45514,
262,
5072,
656,
257,
19449,
13,
628,
198,
198,
7061,
6,
198,
11187,
291,
329,
3555,
1366,
422,
262,
27890,
39,
2043,
25468,
2393,
532,
3421,
198,
464,
5128,
329,
262,
2174,
2446,
481,
307,
257,
269,
21370,
2393,
14,
4868,
351,
477,
262,
2939,
402,
2389,
338,
329,
543,
262,
3033,
423,
284,
307,
21242,
13,
198,
7061,
6,
628,
198,
198,
2,
777,
23113,
2421,
30240,
24708,
62,
12303,
312,
62,
4868,
198,
1130,
81,
62,
47704,
62,
701,
81,
62,
15042,
62,
8899,
796,
1391,
6,
496,
10354,
12813,
15042,
14,
34574,
14,
496,
14,
41537,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8044,
10354,
12813,
15042,
14,
34574,
14,
8044,
14,
5239,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
10354,
12813,
15042,
14,
34574,
14,
65,
3524,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
77,
312,
10354,
12813,
15042,
14,
34574,
14,
3672,
14,
808,
312,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1069,
18856,
283,
10354,
12813,
15042,
14,
34574,
14,
1069,
18856,
283,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35448,
10354,
12813,
15042,
14,
34574,
14,
35448,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13237,
10354,
12813,
15042,
14,
34574,
14,
13237,
14,
5239,
14,
17752,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1177,
62,
4122,
10354,
12813,
15042,
14,
34574,
14,
88,
707,
14,
5239,
14,
17752,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
198,
2,
777,
23113,
2753,
287,
281,
30240,
308,
312,
1351,
198,
1130,
81,
62,
313,
81,
62,
701,
81,
62,
15042,
62,
8899,
796,
1391,
6,
3642,
2455,
273,
10354,
12813,
15042,
14,
9060,
14,
11295,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15460,
10354,
12813,
15042,
14,
9060,
14,
15460,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6511,
10354,
12813,
15042,
14,
9060,
14,
14995,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19608,
8079,
10354,
12813,
15042,
14,
9060,
14,
403,
6346,
524,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10394,
10354,
12813,
15042,
14,
9060,
14,
10394,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
17015,
10354,
12813,
15042,
14,
9060,
14,
17015,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13989,
341,
10354,
12813,
15042,
14,
9060,
14,
13989,
341,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
308,
2340,
796,
1351,
7,
8899,
7,
2536,
11,
1351,
7,
9521,
7,
16,
11,
49658,
35514,
198,
220,
220,
220,
1382,
38816,
7414,
7,
70,
2340,
11,
366,
40720,
7890,
14,
47250,
62,
9865,
36,
1797,
62,
38,
343,
21223,
62,
37,
2213,
82,
13,
40664,
1600,
10352,
8,
198,
2,
11593,
12417,
834,
3419,
198,
2,
308,
312,
44245,
13912,
7414,
796,
366,
40720,
7890,
14,
12853,
62,
70,
312,
62,
1698,
62,
8899,
13,
17752,
1,
198,
2,
651,
17699,
2025,
1662,
23595,
7,
70,
312,
44245,
13912,
7414,
4032,
65,
3524,
40264,
40720,
7890,
14,
70,
312,
62,
65,
3524,
13,
17752,
4943,
198,
198,
2,
1382,
38413,
88,
37,
2213,
7414,
7203,
40720,
7890,
14,
40544,
88,
23595,
62,
38,
57,
34,
62,
49,
13,
40664,
1600,
17816,
38,
2389,
41707,
1154,
5015,
41707,
283,
516,
282,
41707,
3438,
14149,
41707,
88,
6,
17241,
40720,
7890,
14,
40544,
88,
23595,
62,
38,
57,
34,
4943,
198,
198,
2,
17400,
13,
24011,
500,
41,
1559,
7203,
40720,
7890,
14,
40544,
88,
23595,
62,
38,
57,
34,
13,
17752,
2430,
40720,
7890,
14,
9600,
82,
62,
1069,
361,
62,
7890,
62,
12853,
13,
17752,
2430,
40720,
7890,
14,
38,
57,
34,
62,
1069,
361,
82,
62,
40544,
88,
62,
12853,
13,
17752,
4943,
198,
2,
279,
16,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
16,
13,
17752,
1600,
16,
11,
27641,
4008,
198,
2,
279,
17,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
17,
13,
17752,
1600,
4059,
16,
11,
49388,
4008,
198,
2,
279,
18,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
18,
13,
17752,
1600,
3064,
486,
11,
1314,
830,
4008,
198,
2,
279,
19,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
19,
13,
17752,
1600,
1314,
8298,
11,
2167,
405,
4008,
198,
2,
279,
20,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
20,
13,
17752,
1600,
2167,
486,
11,
1495,
830,
4008,
198,
2,
279,
21,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
21,
13,
17752,
1600,
1495,
8298,
11,
18,
2388,
4008,
198,
2,
279,
22,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
22,
13,
17752,
1600,
6200,
486,
11,
2327,
830,
4008,
198,
2,
279,
23,
796,
10854,
7,
16793,
28,
11249,
62,
1069,
361,
62,
701,
3808,
62,
2704,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
12303,
312,
62,
4868,
13,
19608,
1600,
366,
1130,
81,
62,
1069,
361,
62,
2302,
974,
62,
23,
13,
17752,
1600,
2327,
8298,
11,
31020,
2091,
4008,
198,
198,
2,
279,
24,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
16,
1600,
16,
11,
27641,
4008,
198,
2,
279,
940,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
17,
1600,
4059,
16,
11,
49388,
4008,
198,
2,
279,
1157,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
18,
1600,
3064,
486,
11,
1314,
830,
4008,
198,
2,
279,
1065,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
19,
1600,
1314,
8298,
11,
2167,
405,
4008,
198,
2,
279,
1485,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
20,
1600,
2167,
486,
11,
1495,
830,
4008,
198,
2,
279,
1415,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
21,
1600,
1495,
8298,
11,
18,
2388,
4008,
198,
2,
279,
1314,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
22,
1600,
6200,
486,
11,
2327,
830,
4008,
198,
2,
279,
1433,
796,
10854,
7,
16793,
28,
11249,
62,
30053,
62,
7753,
62,
1130,
81,
11,
26498,
28,
7203,
12303,
312,
62,
70,
312,
62,
8899,
13,
17752,
1600,
366,
1130,
81,
62,
701,
81,
62,
2302,
974,
62,
23,
1600,
2327,
8298,
11,
31020,
2091,
4008,
198,
198,
2,
279,
16,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
15,
11,
7337,
11,
12813,
22065,
14,
9288,
16,
13,
17752,
48774,
198,
2,
279,
17,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
7029,
11,
10460,
11,
12813,
22065,
14,
9288,
17,
13,
17752,
48774,
198,
2,
279,
18,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
7410,
11,
24938,
11,
12813,
22065,
14,
9288,
18,
13,
17752,
48774,
198,
2,
279,
19,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
27550,
11,
26143,
11,
12813,
22065,
14,
9288,
19,
13,
17752,
48774,
198,
2,
279,
20,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
36150,
11,
4751,
11,
12813,
22065,
14,
9288,
20,
13,
17752,
48774,
198,
2,
279,
21,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
11024,
11,
48548,
11,
12813,
22065,
14,
9288,
21,
13,
17752,
48774,
198,
2,
279,
22,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
1731,
405,
11,
2579,
405,
11,
12813,
22065,
14,
9288,
22,
13,
17752,
48774,
198,
2,
279,
23,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
2078,
405,
11,
513,
2167,
11,
12813,
22065,
14,
9288,
23,
13,
17752,
48774,
198,
2,
279,
24,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
18,
2167,
11,
4570,
405,
11,
12813,
22065,
14,
9288,
24,
13,
17752,
48774,
198,
2,
279,
940,
796,
10854,
7,
16793,
28,
9288,
11,
26498,
16193,
2623,
405,
11,
2319,
2091,
11,
12813,
22065,
14,
9288,
940,
13,
17752,
48774,
198,
198,
2,
279,
16,
13,
9688,
3419,
198,
2,
279,
17,
13,
9688,
3419,
198,
2,
279,
18,
13,
9688,
3419,
198,
2,
279,
19,
13,
9688,
3419,
198,
2,
279,
20,
13,
9688,
3419,
198,
2,
279,
21,
13,
9688,
3419,
198,
2,
279,
22,
13,
9688,
3419,
198,
2,
279,
23,
13,
9688,
3419,
198,
2,
279,
24,
13,
9688,
3419,
198,
2,
279,
940,
13,
9688,
3419,
198,
2,
1303,
279,
1157,
13,
9688,
3419,
198,
2,
1303,
279,
1065,
13,
9688,
3419,
198,
2,
1303,
279,
1485,
13,
9688,
3419,
198,
2,
1303,
279,
1415,
13,
9688,
3419,
198,
2,
1303,
279,
1314,
13,
9688,
3419,
198,
2,
1303,
279,
1433,
13,
9688,
3419,
198
] | 2.275402 | 2,549 |
# TODO
import subprocess
import sys
import os
import re
from glob import glob
try:
from PySide2.QtWidgets import *
from PySide2.QtGui import *
from PySide2.QtCore import *
except:
from PySide.QtGui import *
from PySide.QtCore import * | [
2,
16926,
46,
220,
198,
198,
11748,
850,
14681,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
302,
198,
6738,
15095,
1330,
15095,
198,
198,
28311,
25,
198,
220,
220,
220,
422,
9485,
24819,
17,
13,
48,
83,
54,
312,
11407,
1330,
1635,
198,
220,
220,
220,
422,
9485,
24819,
17,
13,
48,
83,
8205,
72,
220,
220,
220,
220,
1330,
1635,
198,
220,
220,
220,
422,
9485,
24819,
17,
13,
48,
83,
14055,
220,
220,
220,
1330,
1635,
198,
16341,
25,
198,
220,
220,
220,
422,
9485,
24819,
13,
48,
83,
8205,
72,
220,
1330,
1635,
198,
220,
220,
220,
422,
9485,
24819,
13,
48,
83,
14055,
1330,
1635
] | 2.409091 | 110 |
# /usr/bin/env python3.6
# -*- mode: python -*-
# =============================================================================
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2021, Qualcomm Innovation Center, Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# @@-COPYRIGHT-END-@@
# =============================================================================
""" AdaRound Nightly Tests """
import pytest
import json
import unittest
import logging
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.mobilenet import MobileNet
from packaging import version
from aimet_common.utils import AimetLogger
from aimet_common.defs import QuantScheme
from aimet_tensorflow.examples.test_models import keras_model
from aimet_tensorflow.quantsim import QuantizationSimModel
from aimet_tensorflow.adaround.adaround_weight import Adaround, AdaroundParameters
tf.compat.v1.disable_eager_execution()
class AdaroundAcceptanceTests(unittest.TestCase):
"""
AdaRound test cases
"""
@pytest.mark.cuda
def test_adaround_mobilenet_only_weights(self):
""" test end to end adaround with only weight quantized """
def dummy_forward_pass(session: tf.compat.v1.Session):
""" Dummy forward pass """
input_data = np.random.rand(1, 224, 224, 3)
input_tensor = session.graph.get_tensor_by_name('input_1:0')
output_tensor = session.graph.get_tensor_by_name('conv_preds/BiasAdd:0')
output = session.run(output_tensor, feed_dict={input_tensor: input_data})
return output
AimetLogger.set_level_for_all_areas(logging.DEBUG)
tf.compat.v1.reset_default_graph()
_ = MobileNet(weights=None, input_shape=(224, 224, 3))
init = tf.compat.v1.global_variables_initializer()
dataset_size = 128
batch_size = 64
possible_batches = dataset_size // batch_size
input_data = np.random.rand(dataset_size, 224, 224, 3)
dataset = tf.data.Dataset.from_tensor_slices(input_data)
dataset = dataset.batch(batch_size=batch_size)
session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
session.run(init)
params = AdaroundParameters(data_set=dataset, num_batches=possible_batches, default_num_iterations=1,
default_reg_param=0.01, default_beta_range=(20, 2), default_warm_start=0.2)
starting_op_names = ['input_1']
if version.parse(tf.version.VERSION) >= version.parse("2.00"):
output_op_names = ['predictions/Softmax']
else:
output_op_names = ['act_softmax/Softmax']
adarounded_session = Adaround.apply_adaround(session, starting_op_names, output_op_names, params, path='./',
filename_prefix='mobilenet', default_param_bw=4,
default_quant_scheme=QuantScheme.post_training_tf_enhanced)
orig_output = dummy_forward_pass(session)
adarounded_output = dummy_forward_pass(adarounded_session)
self.assertEqual(orig_output.shape, adarounded_output.shape)
# Test exported encodings JSON file
with open('./mobilenet.encodings') as json_file:
encoding_data = json.load(json_file)
print(encoding_data)
self.assertTrue(isinstance(encoding_data["conv1/Conv2D/ReadVariableOp:0"], list))
session.close()
adarounded_session.close()
# Delete encodings JSON file
if os.path.exists("./mobilenet.encodings"):
os.remove("./mobilenet.encodings")
def test_adaround_resnet18_followed_by_quantsim(self):
""" test end to end adaround with weight 4 bits and output activations 8 bits quantized """
def dummy_forward_pass(session: tf.compat.v1.Session, _):
""" Dummy forward pass """
input_data = np.random.rand(32, 16, 16, 3)
input_tensor = session.graph.get_tensor_by_name('conv2d_input:0')
output_tensor = session.graph.get_tensor_by_name('keras_model/Softmax:0')
output = session.run(output_tensor, feed_dict={input_tensor: input_data})
return output
np.random.seed(1)
AimetLogger.set_level_for_all_areas(logging.DEBUG)
tf.compat.v1.reset_default_graph()
_ = keras_model()
init = tf.compat.v1.global_variables_initializer()
dataset_size = 32
batch_size = 16
possible_batches = dataset_size // batch_size
input_data = np.random.rand(dataset_size, 16, 16, 3)
dataset = tf.data.Dataset.from_tensor_slices(input_data)
dataset = dataset.batch(batch_size=batch_size)
session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
session.run(init)
params = AdaroundParameters(data_set=dataset, num_batches=possible_batches, default_num_iterations=10)
starting_op_names = ['conv2d_input']
output_op_names = ['keras_model/Softmax']
# W4A8
param_bw = 4
output_bw = 8
quant_scheme = QuantScheme.post_training_tf_enhanced
adarounded_session = Adaround.apply_adaround(session, starting_op_names, output_op_names, params, path='./',
filename_prefix='dummy', default_param_bw=param_bw,
default_quant_scheme=quant_scheme, default_config_file=None)
# Read exported param encodings JSON file
with open('./dummy.encodings') as json_file:
encoding_data = json.load(json_file)
encoding = encoding_data["conv2d/Conv2D/ReadVariableOp:0"][0]
before_min, before_max, before_delta, before_offset = encoding.get('min'), encoding.get('max'), \
encoding.get('scale'), encoding.get('offset')
print(before_min, before_max, before_delta, before_offset)
# Create QuantSim using adarounded_model, set and freeze parameter encodings and then invoke compute_encodings
sim = QuantizationSimModel(adarounded_session, starting_op_names, output_op_names, quant_scheme,
default_output_bw=output_bw, default_param_bw=param_bw, use_cuda=False)
sim.set_and_freeze_param_encodings(encoding_path='./dummy.encodings')
sim.compute_encodings(dummy_forward_pass, None)
quantizer = sim.quantizer_config('conv2d/Conv2D/ReadVariableOp_quantized')
encoding = quantizer.get_encoding()
after_min, after_max, after_delta, after_offset = encoding.min, encoding.max, encoding.delta, encoding.offset
print(after_min, after_max, after_delta, after_offset)
self.assertEqual(before_min, after_min)
self.assertEqual(before_max, after_max)
self.assertAlmostEqual(before_delta, after_delta, places=4)
self.assertEqual(before_offset, after_offset)
session.close()
adarounded_session.close()
# Delete encodings file
if os.path.exists("./dummy.encodings"):
os.remove("./dummy.encodings")
| [
2,
1220,
14629,
14,
8800,
14,
24330,
21015,
18,
13,
21,
198,
2,
532,
9,
12,
4235,
25,
21015,
532,
9,
12,
198,
2,
38093,
25609,
198,
2,
220,
25248,
12,
34,
3185,
38162,
9947,
12,
2257,
7227,
12,
12404,
198,
2,
198,
2,
220,
15069,
357,
66,
8,
33448,
11,
32903,
27724,
3337,
11,
3457,
13,
1439,
2489,
10395,
13,
198,
2,
198,
2,
220,
2297,
396,
3890,
290,
779,
287,
2723,
290,
13934,
5107,
11,
351,
393,
1231,
198,
2,
220,
17613,
11,
389,
10431,
2810,
326,
262,
1708,
3403,
389,
1138,
25,
198,
2,
198,
2,
220,
352,
13,
2297,
396,
2455,
507,
286,
2723,
2438,
1276,
12377,
262,
2029,
6634,
4003,
11,
198,
2,
220,
220,
220,
220,
428,
1351,
286,
3403,
290,
262,
1708,
37592,
13,
198,
2,
198,
2,
220,
362,
13,
2297,
396,
2455,
507,
287,
13934,
1296,
1276,
22919,
262,
2029,
6634,
4003,
11,
198,
2,
220,
220,
220,
220,
428,
1351,
286,
3403,
290,
262,
1708,
37592,
287,
262,
10314,
198,
2,
220,
220,
220,
220,
290,
14,
273,
584,
5696,
2810,
351,
262,
6082,
13,
198,
2,
198,
2,
220,
513,
13,
16126,
262,
1438,
286,
262,
6634,
15762,
4249,
262,
3891,
286,
663,
20420,
198,
2,
220,
220,
220,
220,
743,
307,
973,
284,
11438,
393,
7719,
3186,
10944,
422,
428,
3788,
198,
2,
220,
220,
220,
220,
1231,
2176,
3161,
3194,
7170,
13,
198,
2,
198,
2,
220,
12680,
47466,
3180,
36592,
2389,
1961,
11050,
3336,
27975,
38162,
9947,
367,
15173,
4877,
5357,
27342,
9865,
3843,
20673,
366,
1921,
3180,
1,
198,
2,
220,
5357,
15529,
7788,
32761,
6375,
8959,
49094,
34764,
11015,
11,
47783,
2751,
11,
21728,
5626,
40880,
5390,
11,
3336,
198,
2,
220,
8959,
49094,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
5357,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
198,
2,
220,
15986,
13954,
48778,
1961,
13,
3268,
8005,
49261,
50163,
3336,
27975,
38162,
9947,
49707,
14418,
6375,
27342,
9865,
3843,
20673,
9348,
198,
2,
220,
43031,
19146,
7473,
15529,
42242,
11,
3268,
17931,
23988,
11,
19387,
25256,
1847,
11,
38846,
11,
7788,
3620,
6489,
13153,
11,
6375,
198,
2,
220,
7102,
5188,
10917,
3525,
12576,
29506,
25552,
357,
1268,
39149,
2751,
11,
21728,
5626,
40880,
5390,
11,
41755,
11335,
10979,
3963,
198,
2,
220,
28932,
2257,
2043,
37780,
21090,
50,
6375,
49254,
26,
406,
18420,
3963,
23210,
11,
42865,
11,
6375,
4810,
19238,
29722,
26,
6375,
43949,
44180,
198,
2,
220,
23255,
49,
8577,
24131,
8,
29630,
36,
5959,
7257,
2937,
1961,
5357,
6177,
15529,
3336,
15513,
3963,
43031,
25382,
11,
7655,
2767,
16879,
3268,
198,
2,
220,
27342,
10659,
11,
19269,
18379,
43031,
25382,
11,
6375,
309,
9863,
357,
1268,
39149,
2751,
399,
7156,
43,
3528,
18310,
6375,
25401,
54,
24352,
8,
198,
2,
220,
5923,
1797,
2751,
3268,
15529,
34882,
16289,
3963,
3336,
23210,
3963,
12680,
47466,
11,
45886,
16876,
5984,
29817,
1961,
3963,
3336,
198,
2,
220,
28069,
11584,
25382,
3963,
13558,
3398,
29506,
11879,
13,
198,
2,
198,
2,
220,
30628,
55,
12,
34156,
12,
33234,
7483,
25,
347,
10305,
12,
18,
12,
2601,
682,
198,
2,
198,
2,
220,
25248,
12,
34,
3185,
38162,
9947,
12,
10619,
12,
12404,
198,
2,
38093,
25609,
198,
198,
37811,
47395,
22685,
5265,
306,
30307,
37227,
198,
198,
11748,
12972,
9288,
198,
11748,
33918,
198,
11748,
555,
715,
395,
198,
11748,
18931,
198,
11748,
28686,
198,
418,
13,
268,
2268,
17816,
10234,
62,
8697,
47,
62,
23678,
62,
25294,
62,
2538,
18697,
20520,
796,
705,
17,
6,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
6738,
11192,
273,
11125,
13,
6122,
292,
13,
1324,
677,
602,
13,
76,
25898,
268,
316,
1330,
12173,
7934,
198,
6738,
16846,
1330,
2196,
198,
6738,
4031,
316,
62,
11321,
13,
26791,
1330,
36223,
316,
11187,
1362,
198,
6738,
4031,
316,
62,
11321,
13,
4299,
82,
1330,
16972,
27054,
1326,
198,
6738,
4031,
316,
62,
83,
22854,
11125,
13,
1069,
12629,
13,
9288,
62,
27530,
1330,
41927,
292,
62,
19849,
198,
6738,
4031,
316,
62,
83,
22854,
11125,
13,
421,
1187,
320,
1330,
16972,
1634,
8890,
17633,
198,
6738,
4031,
316,
62,
83,
22854,
11125,
13,
324,
14145,
13,
324,
14145,
62,
6551,
1330,
1215,
14145,
11,
1215,
14145,
48944,
198,
198,
27110,
13,
5589,
265,
13,
85,
16,
13,
40223,
62,
68,
3536,
62,
18558,
1009,
3419,
628,
198,
4871,
1215,
14145,
38855,
590,
51,
3558,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
47395,
22685,
1332,
2663,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
9078,
9288,
13,
4102,
13,
66,
15339,
198,
220,
220,
220,
825,
1332,
62,
324,
14145,
62,
76,
25898,
268,
316,
62,
8807,
62,
43775,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1332,
886,
284,
886,
512,
14145,
351,
691,
3463,
5554,
1143,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
825,
31548,
62,
11813,
62,
6603,
7,
29891,
25,
48700,
13,
5589,
265,
13,
85,
16,
13,
36044,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
360,
13513,
2651,
1208,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7890,
796,
45941,
13,
25120,
13,
25192,
7,
16,
11,
26063,
11,
26063,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
83,
22854,
796,
6246,
13,
34960,
13,
1136,
62,
83,
22854,
62,
1525,
62,
3672,
10786,
15414,
62,
16,
25,
15,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
83,
22854,
796,
6246,
13,
34960,
13,
1136,
62,
83,
22854,
62,
1525,
62,
3672,
10786,
42946,
62,
28764,
82,
14,
33,
4448,
4550,
25,
15,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
6246,
13,
5143,
7,
22915,
62,
83,
22854,
11,
3745,
62,
11600,
34758,
15414,
62,
83,
22854,
25,
5128,
62,
7890,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5072,
628,
220,
220,
220,
220,
220,
220,
220,
36223,
316,
11187,
1362,
13,
2617,
62,
5715,
62,
1640,
62,
439,
62,
533,
292,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
48700,
13,
5589,
265,
13,
85,
16,
13,
42503,
62,
12286,
62,
34960,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
12173,
7934,
7,
43775,
28,
14202,
11,
5128,
62,
43358,
16193,
24137,
11,
26063,
11,
513,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2315,
796,
48700,
13,
5589,
265,
13,
85,
16,
13,
20541,
62,
25641,
2977,
62,
36733,
7509,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
27039,
62,
7857,
796,
13108,
198,
220,
220,
220,
220,
220,
220,
220,
15458,
62,
7857,
796,
5598,
198,
220,
220,
220,
220,
220,
220,
220,
1744,
62,
8664,
2052,
796,
27039,
62,
7857,
3373,
15458,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7890,
796,
45941,
13,
25120,
13,
25192,
7,
19608,
292,
316,
62,
7857,
11,
26063,
11,
26063,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
796,
48700,
13,
7890,
13,
27354,
292,
316,
13,
6738,
62,
83,
22854,
62,
82,
677,
274,
7,
15414,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
796,
27039,
13,
43501,
7,
43501,
62,
7857,
28,
43501,
62,
7857,
8,
628,
220,
220,
220,
220,
220,
220,
220,
6246,
796,
48700,
13,
5589,
265,
13,
85,
16,
13,
36044,
7,
34960,
28,
27110,
13,
5589,
265,
13,
85,
16,
13,
1136,
62,
12286,
62,
34960,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
13,
5143,
7,
15003,
8,
628,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
1215,
14145,
48944,
7,
7890,
62,
2617,
28,
19608,
292,
316,
11,
997,
62,
8664,
2052,
28,
79,
4733,
62,
8664,
2052,
11,
4277,
62,
22510,
62,
2676,
602,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
2301,
62,
17143,
28,
15,
13,
486,
11,
4277,
62,
31361,
62,
9521,
16193,
1238,
11,
362,
828,
4277,
62,
31975,
62,
9688,
28,
15,
13,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3599,
62,
404,
62,
14933,
796,
37250,
15414,
62,
16,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2196,
13,
29572,
7,
27110,
13,
9641,
13,
43717,
8,
18189,
2196,
13,
29572,
7203,
17,
13,
405,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
404,
62,
14933,
796,
37250,
28764,
9278,
14,
18380,
9806,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
404,
62,
14933,
796,
37250,
529,
62,
4215,
9806,
14,
18380,
9806,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
512,
283,
6302,
62,
29891,
796,
1215,
14145,
13,
39014,
62,
324,
14145,
7,
29891,
11,
220,
3599,
62,
404,
62,
14933,
11,
5072,
62,
404,
62,
14933,
11,
42287,
11,
3108,
28,
4458,
14,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
62,
40290,
11639,
76,
25898,
268,
316,
3256,
4277,
62,
17143,
62,
65,
86,
28,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
40972,
62,
15952,
1326,
28,
24915,
27054,
1326,
13,
7353,
62,
34409,
62,
27110,
62,
16550,
2903,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1796,
62,
22915,
796,
31548,
62,
11813,
62,
6603,
7,
29891,
8,
198,
220,
220,
220,
220,
220,
220,
220,
512,
283,
6302,
62,
22915,
796,
31548,
62,
11813,
62,
6603,
7,
324,
283,
6302,
62,
29891,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
11612,
62,
22915,
13,
43358,
11,
512,
283,
6302,
62,
22915,
13,
43358,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6208,
29050,
2207,
375,
654,
19449,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
4458,
14,
76,
25898,
268,
316,
13,
12685,
375,
654,
11537,
355,
33918,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21004,
62,
7890,
796,
33918,
13,
2220,
7,
17752,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
12685,
7656,
62,
7890,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
17821,
7,
271,
39098,
7,
12685,
7656,
62,
7890,
14692,
42946,
16,
14,
3103,
85,
17,
35,
14,
5569,
43015,
18257,
25,
15,
33116,
1351,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
6246,
13,
19836,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
512,
283,
6302,
62,
29891,
13,
19836,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
23520,
2207,
375,
654,
19449,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
611,
28686,
13,
6978,
13,
1069,
1023,
7,
1911,
14,
76,
25898,
268,
316,
13,
12685,
375,
654,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28956,
7,
1911,
14,
76,
25898,
268,
316,
13,
12685,
375,
654,
4943,
628,
220,
220,
220,
825,
1332,
62,
324,
14145,
62,
411,
3262,
1507,
62,
27780,
276,
62,
1525,
62,
421,
1187,
320,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1332,
886,
284,
886,
512,
14145,
351,
3463,
604,
10340,
290,
5072,
1753,
602,
807,
10340,
5554,
1143,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
825,
31548,
62,
11813,
62,
6603,
7,
29891,
25,
48700,
13,
5589,
265,
13,
85,
16,
13,
36044,
11,
4808,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
360,
13513,
2651,
1208,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7890,
796,
45941,
13,
25120,
13,
25192,
7,
2624,
11,
1467,
11,
1467,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
83,
22854,
796,
6246,
13,
34960,
13,
1136,
62,
83,
22854,
62,
1525,
62,
3672,
10786,
42946,
17,
67,
62,
15414,
25,
15,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
83,
22854,
796,
6246,
13,
34960,
13,
1136,
62,
83,
22854,
62,
1525,
62,
3672,
10786,
6122,
292,
62,
19849,
14,
18380,
9806,
25,
15,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
796,
6246,
13,
5143,
7,
22915,
62,
83,
22854,
11,
3745,
62,
11600,
34758,
15414,
62,
83,
22854,
25,
5128,
62,
7890,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5072,
628,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
25120,
13,
28826,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
36223,
316,
11187,
1362,
13,
2617,
62,
5715,
62,
1640,
62,
439,
62,
533,
292,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
48700,
13,
5589,
265,
13,
85,
16,
13,
42503,
62,
12286,
62,
34960,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
41927,
292,
62,
19849,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2315,
796,
48700,
13,
5589,
265,
13,
85,
16,
13,
20541,
62,
25641,
2977,
62,
36733,
7509,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
62,
7857,
796,
3933,
198,
220,
220,
220,
220,
220,
220,
220,
15458,
62,
7857,
796,
1467,
198,
220,
220,
220,
220,
220,
220,
220,
1744,
62,
8664,
2052,
796,
27039,
62,
7857,
3373,
15458,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
7890,
796,
45941,
13,
25120,
13,
25192,
7,
19608,
292,
316,
62,
7857,
11,
1467,
11,
1467,
11,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
796,
48700,
13,
7890,
13,
27354,
292,
316,
13,
6738,
62,
83,
22854,
62,
82,
677,
274,
7,
15414,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27039,
796,
27039,
13,
43501,
7,
43501,
62,
7857,
28,
43501,
62,
7857,
8,
628,
220,
220,
220,
220,
220,
220,
220,
6246,
796,
48700,
13,
5589,
265,
13,
85,
16,
13,
36044,
7,
34960,
28,
27110,
13,
5589,
265,
13,
85,
16,
13,
1136,
62,
12286,
62,
34960,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
13,
5143,
7,
15003,
8,
628,
220,
220,
220,
220,
220,
220,
220,
42287,
796,
1215,
14145,
48944,
7,
7890,
62,
2617,
28,
19608,
292,
316,
11,
997,
62,
8664,
2052,
28,
79,
4733,
62,
8664,
2052,
11,
4277,
62,
22510,
62,
2676,
602,
28,
940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3599,
62,
404,
62,
14933,
796,
37250,
42946,
17,
67,
62,
15414,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
404,
62,
14933,
796,
37250,
6122,
292,
62,
19849,
14,
18380,
9806,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
370,
19,
32,
23,
198,
220,
220,
220,
220,
220,
220,
220,
5772,
62,
65,
86,
796,
604,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
65,
86,
796,
807,
198,
220,
220,
220,
220,
220,
220,
220,
5554,
62,
15952,
1326,
796,
16972,
27054,
1326,
13,
7353,
62,
34409,
62,
27110,
62,
16550,
2903,
628,
220,
220,
220,
220,
220,
220,
220,
512,
283,
6302,
62,
29891,
796,
1215,
14145,
13,
39014,
62,
324,
14145,
7,
29891,
11,
3599,
62,
404,
62,
14933,
11,
5072,
62,
404,
62,
14933,
11,
42287,
11,
3108,
28,
4458,
14,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29472,
62,
40290,
11639,
67,
13513,
3256,
4277,
62,
17143,
62,
65,
86,
28,
17143,
62,
65,
86,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
40972,
62,
15952,
1326,
28,
40972,
62,
15952,
1326,
11,
4277,
62,
11250,
62,
7753,
28,
14202,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4149,
29050,
5772,
2207,
375,
654,
19449,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
4458,
14,
67,
13513,
13,
12685,
375,
654,
11537,
355,
33918,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21004,
62,
7890,
796,
33918,
13,
2220,
7,
17752,
62,
7753,
8,
628,
220,
220,
220,
220,
220,
220,
220,
21004,
796,
21004,
62,
7890,
14692,
42946,
17,
67,
14,
3103,
85,
17,
35,
14,
5569,
43015,
18257,
25,
15,
1,
7131,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
878,
62,
1084,
11,
878,
62,
9806,
11,
878,
62,
67,
12514,
11,
878,
62,
28968,
796,
21004,
13,
1136,
10786,
1084,
33809,
21004,
13,
1136,
10786,
9806,
33809,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21004,
13,
1136,
10786,
9888,
33809,
21004,
13,
1136,
10786,
28968,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
19052,
62,
1084,
11,
878,
62,
9806,
11,
878,
62,
67,
12514,
11,
878,
62,
28968,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
13610,
16972,
8890,
1262,
512,
283,
6302,
62,
19849,
11,
900,
290,
16611,
11507,
2207,
375,
654,
290,
788,
26342,
24061,
62,
12685,
375,
654,
198,
220,
220,
220,
220,
220,
220,
220,
985,
796,
16972,
1634,
8890,
17633,
7,
324,
283,
6302,
62,
29891,
11,
3599,
62,
404,
62,
14933,
11,
5072,
62,
404,
62,
14933,
11,
5554,
62,
15952,
1326,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
22915,
62,
65,
86,
28,
22915,
62,
65,
86,
11,
4277,
62,
17143,
62,
65,
86,
28,
17143,
62,
65,
86,
11,
779,
62,
66,
15339,
28,
25101,
8,
628,
220,
220,
220,
220,
220,
220,
220,
985,
13,
2617,
62,
392,
62,
5787,
2736,
62,
17143,
62,
12685,
375,
654,
7,
12685,
7656,
62,
6978,
28,
4458,
14,
67,
13513,
13,
12685,
375,
654,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
985,
13,
5589,
1133,
62,
12685,
375,
654,
7,
67,
13513,
62,
11813,
62,
6603,
11,
6045,
8,
628,
220,
220,
220,
220,
220,
220,
220,
5554,
7509,
796,
985,
13,
40972,
7509,
62,
11250,
10786,
42946,
17,
67,
14,
3103,
85,
17,
35,
14,
5569,
43015,
18257,
62,
40972,
1143,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
21004,
796,
5554,
7509,
13,
1136,
62,
12685,
7656,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
706,
62,
1084,
11,
706,
62,
9806,
11,
706,
62,
67,
12514,
11,
706,
62,
28968,
796,
21004,
13,
1084,
11,
21004,
13,
9806,
11,
21004,
13,
67,
12514,
11,
21004,
13,
28968,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
8499,
62,
1084,
11,
706,
62,
9806,
11,
706,
62,
67,
12514,
11,
706,
62,
28968,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
19052,
62,
1084,
11,
706,
62,
1084,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
19052,
62,
9806,
11,
706,
62,
9806,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
23379,
36,
13255,
7,
19052,
62,
67,
12514,
11,
706,
62,
67,
12514,
11,
4113,
28,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
30493,
36,
13255,
7,
19052,
62,
28968,
11,
706,
62,
28968,
8,
628,
220,
220,
220,
220,
220,
220,
220,
6246,
13,
19836,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
512,
283,
6302,
62,
29891,
13,
19836,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
23520,
2207,
375,
654,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
611,
28686,
13,
6978,
13,
1069,
1023,
7,
1911,
14,
67,
13513,
13,
12685,
375,
654,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28956,
7,
1911,
14,
67,
13513,
13,
12685,
375,
654,
4943,
198
] | 2.415177 | 3,637 |
import unittest
import logging
logging.basicConfig(level=logging.CRITICAL)
from aoc2019 import Amplifier
| [
11748,
555,
715,
395,
201,
198,
11748,
18931,
201,
198,
6404,
2667,
13,
35487,
16934,
7,
5715,
28,
6404,
2667,
13,
9419,
2043,
20151,
8,
201,
198,
6738,
257,
420,
23344,
1330,
44074,
7483,
201
] | 3.085714 | 35 |
import time
from selenium import webdriver
import json
from crawlpack.helpers import id_gen, connect
chrome_options = webdriver.ChromeOptions()
chrome_options.add_experimental_option( "prefs",{'profile.managed_default_content_settings.javascript': 2})
driver = webdriver.Chrome(chrome_options=chrome_options)
conn, cur = connect()
for count in range(1,89):
try:
url = "file:///home/Desktop/crawler%20scripts/scripts/uber_eats/page_source"+str(count)+".html"
driver.get(url)
raw_title = driver.find_element_by_xpath('//*[@id="app-content"]/div/div/div[1]/div/div[1]/div[2]/div/div[2]/div/div/h1').text
try:
split_title = raw_title.split('-')
rest_name = split_title[0].strip()
location = split_title[1].strip()
except:
rest_name = raw_title
location = "Bangalore"
dedupe_id = id_gen(rest_name,location)
items = driver.find_elements_by_css_selector('#app-content>div>div>div:nth-child(1)>div>div:nth-child(1)>div:nth-child(2)>div>div:nth-child(3)>div:nth-child(2)>div:nth-child(1)>div>div:nth-child(2)>div>div>div>div:nth-child(1)>div:nth-child(1)')
prices = driver.find_elements_by_css_selector('#app-content>div>div>div:nth-child(1)>div>div:nth-child(1)>div:nth-child(2)>div>div:nth-child(3)>div:nth-child(2)>div:nth-child(1)>div>div:nth-child(2)>div>div>div>div:nth-child(1)>div:nth-child(3)>span:nth-child(1)')
items_final = {}
num_items = len(items)
for i in range(0,num_items):
item_price = prices[i].text.replace("INR","")
item_name = items[i].text
items_final[item_name] = item_price
items_json = json.dumps(items_final)
cur.execute("""INSERT INTO uber_eats2 (name,location,items) VALUES (%s,%s,%s)""",(rest_name,location,items_json))
conn.commit()
print("Crawled {0}/88 Restaurant: {1} Items: {2}".format(count,rest_name,str(len(items_final))))
except:
print("error ",url)
| [
11748,
640,
198,
6738,
384,
11925,
1505,
1330,
3992,
26230,
198,
11748,
33918,
198,
6738,
27318,
8002,
13,
16794,
364,
1330,
4686,
62,
5235,
11,
2018,
628,
198,
198,
46659,
62,
25811,
796,
3992,
26230,
13,
1925,
5998,
29046,
3419,
198,
46659,
62,
25811,
13,
2860,
62,
23100,
9134,
62,
18076,
7,
366,
3866,
9501,
1600,
90,
6,
13317,
13,
39935,
62,
12286,
62,
11299,
62,
33692,
13,
37495,
10354,
362,
30072,
198,
26230,
796,
3992,
26230,
13,
1925,
5998,
7,
46659,
62,
25811,
28,
46659,
62,
25811,
8,
198,
37043,
11,
1090,
796,
2018,
3419,
198,
1640,
954,
287,
2837,
7,
16,
11,
4531,
2599,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
19016,
796,
366,
7753,
1378,
14,
11195,
14,
36881,
14,
66,
39464,
4,
1238,
46521,
14,
46521,
14,
18478,
62,
68,
1381,
14,
7700,
62,
10459,
1,
10,
2536,
7,
9127,
47762,
1911,
6494,
1,
198,
220,
220,
220,
220,
220,
220,
220,
4639,
13,
1136,
7,
6371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
7839,
796,
4639,
13,
19796,
62,
30854,
62,
1525,
62,
87,
6978,
10786,
1003,
9,
58,
31,
312,
2625,
1324,
12,
11299,
8973,
14,
7146,
14,
7146,
14,
7146,
58,
16,
60,
14,
7146,
14,
7146,
58,
16,
60,
14,
7146,
58,
17,
60,
14,
7146,
14,
7146,
58,
17,
60,
14,
7146,
14,
7146,
14,
71,
16,
27691,
5239,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6626,
62,
7839,
796,
8246,
62,
7839,
13,
35312,
10786,
12,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1334,
62,
3672,
796,
6626,
62,
7839,
58,
15,
4083,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4067,
796,
6626,
62,
7839,
58,
16,
4083,
36311,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1334,
62,
3672,
796,
8246,
62,
7839,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4067,
796,
366,
43984,
40612,
1,
198,
220,
220,
220,
220,
220,
220,
220,
4648,
48722,
62,
312,
796,
4686,
62,
5235,
7,
2118,
62,
3672,
11,
24886,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3709,
796,
4639,
13,
19796,
62,
68,
3639,
62,
1525,
62,
25471,
62,
19738,
273,
10786,
2,
1324,
12,
11299,
29,
7146,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
18,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
29,
7146,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
4536,
796,
4639,
13,
19796,
62,
68,
3639,
62,
1525,
62,
25471,
62,
19738,
273,
10786,
2,
1324,
12,
11299,
29,
7146,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
18,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
17,
8,
29,
7146,
29,
7146,
29,
7146,
29,
7146,
25,
77,
400,
12,
9410,
7,
16,
8,
29,
7146,
25,
77,
400,
12,
9410,
7,
18,
8,
29,
12626,
25,
77,
400,
12,
9410,
7,
16,
8,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
3709,
62,
20311,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
23814,
796,
18896,
7,
23814,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
22510,
62,
23814,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2378,
62,
20888,
796,
4536,
58,
72,
4083,
5239,
13,
33491,
7203,
1268,
49,
2430,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2378,
62,
3672,
796,
3709,
58,
72,
4083,
5239,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3709,
62,
20311,
58,
9186,
62,
3672,
60,
796,
2378,
62,
20888,
198,
220,
220,
220,
220,
220,
220,
220,
3709,
62,
17752,
796,
33918,
13,
67,
8142,
7,
23814,
62,
20311,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1090,
13,
41049,
7203,
15931,
20913,
17395,
39319,
48110,
62,
68,
1381,
17,
357,
3672,
11,
24886,
11,
23814,
8,
26173,
35409,
37633,
82,
11,
4,
82,
11,
4,
82,
8,
15931,
1600,
7,
2118,
62,
3672,
11,
24886,
11,
23814,
62,
17752,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
48260,
13,
41509,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
34,
49263,
1391,
15,
92,
14,
3459,
26078,
25,
1391,
16,
92,
17230,
25,
1391,
17,
92,
1911,
18982,
7,
9127,
11,
2118,
62,
3672,
11,
2536,
7,
11925,
7,
23814,
62,
20311,
35514,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
18224,
33172,
6371,
8,
198
] | 2.143617 | 940 |
from .DepthNet import DepthNet
from .MotionNet import MotionNet
| [
6738,
764,
48791,
7934,
1330,
36350,
7934,
198,
6738,
764,
45740,
7934,
1330,
20843,
7934,
198
] | 4 | 16 |
from django.test import TestCase
from .models import Image, Profile
# Create your tests here.
| [
6738,
42625,
14208,
13,
9288,
1330,
6208,
20448,
198,
6738,
764,
27530,
1330,
7412,
11,
13118,
198,
198,
2,
13610,
534,
5254,
994,
13,
198
] | 3.8 | 25 |
#
# PySNMP MIB module NBS-SIGLANE-MIB (http://snmplabs.com/pysmi)
# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NBS-SIGLANE-MIB
# Produced by pysmi-0.3.4 at Mon Apr 29 20:07:45 2019
# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4
# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15)
#
Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString")
NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues")
ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint")
InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex")
NbsCmmcChannelBand, = mibBuilder.importSymbols("NBS-CMMCENUM-MIB", "NbsCmmcChannelBand")
NbsTcMicroAmp, NbsTcMHz, NbsTcTemperature, NbsTcMilliDb, nbs = mibBuilder.importSymbols("NBS-MIB", "NbsTcMicroAmp", "NbsTcMHz", "NbsTcTemperature", "NbsTcMilliDb", "nbs")
NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance")
MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Unsigned32, ModuleIdentity, ObjectIdentity, Bits, Gauge32, iso, TimeTicks, IpAddress, Integer32, MibIdentifier, NotificationType, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Unsigned32", "ModuleIdentity", "ObjectIdentity", "Bits", "Gauge32", "iso", "TimeTicks", "IpAddress", "Integer32", "MibIdentifier", "NotificationType", "Counter32")
DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention")
nbsSigLaneMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 629, 236))
if mibBuilder.loadTexts: nbsSigLaneMib.setLastUpdated('201503120000Z')
if mibBuilder.loadTexts: nbsSigLaneMib.setOrganization('NBS')
nbsSigLanePortGrp = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 10))
if mibBuilder.loadTexts: nbsSigLanePortGrp.setStatus('current')
nbsSigLaneLaneGrp = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 20))
if mibBuilder.loadTexts: nbsSigLaneLaneGrp.setStatus('current')
nbsSigLaneTraps = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 100))
if mibBuilder.loadTexts: nbsSigLaneTraps.setStatus('current')
nbsSigLaneTraps0 = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 100, 0))
if mibBuilder.loadTexts: nbsSigLaneTraps0.setStatus('current')
nbsSigLanePortTable = MibTable((1, 3, 6, 1, 4, 1, 629, 236, 10, 1), )
if mibBuilder.loadTexts: nbsSigLanePortTable.setStatus('current')
nbsSigLanePortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1), ).setIndexNames((0, "NBS-SIGLANE-MIB", "nbsSigLanePortIfIndex"))
if mibBuilder.loadTexts: nbsSigLanePortEntry.setStatus('current')
nbsSigLanePortIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 1), InterfaceIndex()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLanePortIfIndex.setStatus('current')
nbsSigLanePortFacility = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("fiber", 2), ("lambda", 3)))).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLanePortFacility.setStatus('current')
nbsSigLanePortLanes = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 20), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLanePortLanes.setStatus('current')
nbsSigLaneLaneTable = MibTable((1, 3, 6, 1, 4, 1, 629, 236, 20, 1), )
if mibBuilder.loadTexts: nbsSigLaneLaneTable.setStatus('current')
nbsSigLaneLaneEntry = MibTableRow((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1), ).setIndexNames((0, "NBS-SIGLANE-MIB", "nbsSigLaneLaneIfIndex"), (0, "NBS-SIGLANE-MIB", "nbsSigLaneLaneIndex"))
if mibBuilder.loadTexts: nbsSigLaneLaneEntry.setStatus('current')
nbsSigLaneLaneIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 1), InterfaceIndex()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneIfIndex.setStatus('current')
nbsSigLaneLaneIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 2), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneIndex.setStatus('current')
nbsSigLaneLaneFrequency = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 10), NbsTcMHz()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneFrequency.setStatus('current')
nbsSigLaneLaneWavelengthX = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 11), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(4, 8))).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneWavelengthX.setStatus('current')
nbsSigLaneLaneChannelBand = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 12), NbsCmmcChannelBand()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneChannelBand.setStatus('current')
nbsSigLaneLaneChannelNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 13), Integer32()).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneChannelNumber.setStatus('current')
nbsSigLaneLaneTxPowerLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneTxPowerLevel.setStatus('current')
nbsSigLaneLaneTxPower = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 21), NbsTcMilliDb().clone(-2147483648)).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneTxPower.setStatus('current')
nbsSigLaneLaneRxPowerLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 30), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneRxPowerLevel.setStatus('current')
nbsSigLaneLaneRxPower = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 31), NbsTcMilliDb().clone(-2147483648)).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneRxPower.setStatus('current')
nbsSigLaneLaneBiasAmpsLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 40), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneBiasAmpsLevel.setStatus('current')
nbsSigLaneLaneBiasAmps = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 41), NbsTcMicroAmp().clone(-1)).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneBiasAmps.setStatus('current')
nbsSigLaneLaneLaserTempLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 50), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneLaserTempLevel.setStatus('current')
nbsSigLaneLaneLaserTemp = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 51), NbsTcTemperature().clone(-2147483648)).setMaxAccess("readonly")
if mibBuilder.loadTexts: nbsSigLaneLaneLaserTemp.setStatus('current')
mibBuilder.exportSymbols("NBS-SIGLANE-MIB", nbsSigLanePortEntry=nbsSigLanePortEntry, nbsSigLaneLaneLaserTempLevel=nbsSigLaneLaneLaserTempLevel, nbsSigLanePortTable=nbsSigLanePortTable, nbsSigLaneLaneEntry=nbsSigLaneLaneEntry, nbsSigLaneTraps0=nbsSigLaneTraps0, nbsSigLaneMib=nbsSigLaneMib, PYSNMP_MODULE_ID=nbsSigLaneMib, nbsSigLaneLaneIfIndex=nbsSigLaneLaneIfIndex, nbsSigLaneLaneTable=nbsSigLaneLaneTable, nbsSigLaneLaneLaserTemp=nbsSigLaneLaneLaserTemp, nbsSigLaneLaneIndex=nbsSigLaneLaneIndex, nbsSigLaneLaneBiasAmps=nbsSigLaneLaneBiasAmps, nbsSigLanePortFacility=nbsSigLanePortFacility, nbsSigLaneLaneChannelBand=nbsSigLaneLaneChannelBand, nbsSigLaneLaneTxPowerLevel=nbsSigLaneLaneTxPowerLevel, nbsSigLanePortGrp=nbsSigLanePortGrp, nbsSigLaneLaneTxPower=nbsSigLaneLaneTxPower, nbsSigLanePortLanes=nbsSigLanePortLanes, nbsSigLaneLaneWavelengthX=nbsSigLaneLaneWavelengthX, nbsSigLaneLaneBiasAmpsLevel=nbsSigLaneLaneBiasAmpsLevel, nbsSigLanePortIfIndex=nbsSigLanePortIfIndex, nbsSigLaneLaneGrp=nbsSigLaneLaneGrp, nbsSigLaneLaneRxPowerLevel=nbsSigLaneLaneRxPowerLevel, nbsSigLaneTraps=nbsSigLaneTraps, nbsSigLaneLaneRxPower=nbsSigLaneLaneRxPower, nbsSigLaneLaneFrequency=nbsSigLaneLaneFrequency, nbsSigLaneLaneChannelNumber=nbsSigLaneLaneChannelNumber)
| [
2,
198,
2,
9485,
15571,
7378,
337,
9865,
8265,
399,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
357,
4023,
1378,
16184,
76,
489,
8937,
13,
785,
14,
79,
893,
11632,
8,
198,
2,
7054,
45,
13,
16,
2723,
2393,
1378,
14,
14490,
14,
67,
615,
47562,
19,
14,
13603,
14,
76,
571,
82,
13,
16184,
76,
489,
8937,
13,
785,
14,
292,
77,
16,
14,
45,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
198,
2,
21522,
771,
416,
279,
893,
11632,
12,
15,
13,
18,
13,
19,
379,
2892,
2758,
2808,
1160,
25,
2998,
25,
2231,
13130,
198,
2,
1550,
2583,
42274,
54,
15567,
19,
12,
44,
12,
1415,
2425,
3859,
21450,
2196,
1248,
13,
20,
13,
15,
416,
2836,
288,
615,
47562,
19,
198,
2,
8554,
11361,
2196,
513,
13,
22,
13,
18,
357,
12286,
11,
1526,
2681,
13130,
11,
7769,
25,
1954,
25,
1314,
8,
220,
198,
2,
198,
46541,
11,
9515,
33234,
7483,
11,
2556,
316,
10100,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
1600,
366,
46541,
1600,
366,
10267,
33234,
7483,
1600,
366,
12349,
316,
10100,
4943,
198,
45,
2434,
40161,
11,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
12,
1677,
5883,
1137,
6234,
1600,
366,
45,
2434,
40161,
4943,
198,
11395,
17257,
3103,
2536,
2913,
11,
1482,
2536,
6003,
9492,
5458,
11,
1482,
2536,
6003,
38176,
11,
11052,
10699,
3103,
2536,
2913,
11,
14206,
11395,
3103,
2536,
2913,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
1921,
45,
16,
12,
2200,
20032,
12529,
1600,
366,
11395,
17257,
3103,
2536,
2913,
1600,
366,
3103,
2536,
6003,
9492,
5458,
1600,
366,
3103,
2536,
6003,
38176,
1600,
366,
11395,
10699,
3103,
2536,
2913,
1600,
366,
28008,
11395,
3103,
2536,
2913,
4943,
198,
39317,
15732,
11,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
5064,
12,
8895,
33,
1600,
366,
39317,
15732,
4943,
198,
45,
1443,
34,
3020,
66,
29239,
31407,
11,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
45,
4462,
12,
24187,
9655,
1677,
5883,
12,
8895,
33,
1600,
366,
45,
1443,
34,
3020,
66,
29239,
31407,
4943,
198,
45,
1443,
51,
66,
13031,
32,
3149,
11,
399,
1443,
51,
66,
25983,
11,
399,
1443,
51,
66,
42492,
11,
399,
1443,
51,
66,
22603,
72,
43832,
11,
299,
1443,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
45,
4462,
12,
8895,
33,
1600,
366,
45,
1443,
51,
66,
13031,
32,
3149,
1600,
366,
45,
1443,
51,
66,
25983,
1600,
366,
45,
1443,
51,
66,
42492,
1600,
366,
45,
1443,
51,
66,
22603,
72,
43832,
1600,
366,
77,
1443,
4943,
198,
3673,
2649,
13247,
11,
19937,
38143,
3610,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
10943,
37,
1600,
366,
3673,
2649,
13247,
1600,
366,
26796,
38143,
3610,
4943,
198,
44,
571,
3351,
282,
283,
11,
337,
571,
10962,
11,
337,
571,
10962,
25166,
11,
337,
571,
10962,
39470,
11,
15034,
2414,
11,
791,
32696,
2624,
11,
19937,
7390,
26858,
11,
9515,
7390,
26858,
11,
44733,
11,
35094,
469,
2624,
11,
47279,
11,
3862,
51,
3378,
11,
314,
79,
20231,
11,
34142,
2624,
11,
337,
571,
33234,
7483,
11,
42808,
6030,
11,
15034,
2624,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
50,
8895,
1600,
366,
44,
571,
3351,
282,
283,
1600,
366,
44,
571,
10962,
1600,
366,
44,
571,
10962,
25166,
1600,
366,
44,
571,
10962,
39470,
1600,
366,
31694,
2414,
1600,
366,
3118,
32696,
2624,
1600,
366,
26796,
7390,
26858,
1600,
366,
10267,
7390,
26858,
1600,
366,
33,
896,
1600,
366,
38,
559,
469,
2624,
1600,
366,
26786,
1600,
366,
7575,
51,
3378,
1600,
366,
40,
79,
20231,
1600,
366,
46541,
2624,
1600,
366,
44,
571,
33234,
7483,
1600,
366,
3673,
2649,
6030,
1600,
366,
31694,
2624,
4943,
198,
23114,
10100,
11,
8255,
723,
3103,
4018,
796,
285,
571,
32875,
13,
11748,
13940,
2022,
10220,
7203,
15571,
7378,
85,
17,
12,
4825,
1600,
366,
23114,
10100,
1600,
366,
8206,
723,
3103,
4018,
4943,
198,
77,
1443,
50,
328,
43,
1531,
44,
571,
796,
19937,
7390,
26858,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
4008,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
44,
571,
13,
2617,
5956,
17354,
10786,
1264,
1120,
27970,
2388,
57,
11537,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
44,
571,
13,
2617,
26121,
1634,
10786,
45,
4462,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
8642,
79,
796,
9515,
7390,
26858,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
4008,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
8642,
79,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
8642,
79,
796,
9515,
7390,
26858,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
4008,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
8642,
79,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
15721,
862,
796,
9515,
7390,
26858,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1802,
4008,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
15721,
862,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
15721,
862,
15,
796,
9515,
7390,
26858,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1802,
11,
657,
4008,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
15721,
862,
15,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
10962,
796,
337,
571,
10962,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
11,
352,
828,
1267,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
10962,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
30150,
796,
337,
571,
10962,
25166,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
11,
352,
11,
352,
828,
6739,
2617,
15732,
36690,
19510,
15,
11,
366,
45,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
1600,
366,
77,
1443,
50,
328,
43,
1531,
13924,
1532,
15732,
48774,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
30150,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
1532,
15732,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
11,
352,
11,
352,
11,
352,
828,
26491,
15732,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
1532,
15732,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
47522,
879,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
11,
352,
11,
352,
11,
838,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
847,
1600,
352,
828,
5855,
69,
1856,
1600,
362,
828,
5855,
50033,
1600,
513,
22305,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
47522,
879,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
13924,
43,
7305,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
838,
11,
352,
11,
352,
11,
1160,
828,
34142,
2624,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
13924,
43,
7305,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
10962,
796,
337,
571,
10962,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
828,
1267,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
10962,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
30150,
796,
337,
571,
10962,
25166,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
828,
6739,
2617,
15732,
36690,
19510,
15,
11,
366,
45,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
1600,
366,
77,
1443,
50,
328,
43,
1531,
43,
1531,
1532,
15732,
12340,
357,
15,
11,
366,
45,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
1600,
366,
77,
1443,
50,
328,
43,
1531,
43,
1531,
15732,
48774,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
30150,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
1532,
15732,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
352,
828,
26491,
15732,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
1532,
15732,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
15732,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
362,
828,
34142,
2624,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
15732,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
37,
28707,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
838,
828,
399,
1443,
51,
66,
25983,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
37,
28707,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33484,
26623,
55,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
1367,
828,
16531,
10100,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
11395,
10699,
3103,
2536,
2913,
7,
19,
11,
807,
4008,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33484,
26623,
55,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
31407,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
1105,
828,
399,
1443,
34,
3020,
66,
29239,
31407,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
31407,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
15057,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
1511,
828,
34142,
2624,
3419,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
15057,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
4971,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
1160,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
1662,
48181,
1600,
352,
828,
5855,
9319,
2348,
1670,
1600,
362,
828,
5855,
9319,
20361,
1600,
513,
828,
5855,
482,
1600,
604,
828,
5855,
8929,
20361,
1600,
642,
828,
5855,
8929,
2348,
1670,
1600,
718,
4008,
737,
21018,
10786,
482,
11537,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
4971,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
2310,
828,
399,
1443,
51,
66,
22603,
72,
43832,
22446,
21018,
32590,
17,
20198,
2780,
26780,
23,
29720,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
4971,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
1542,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
1662,
48181,
1600,
352,
828,
5855,
9319,
2348,
1670,
1600,
362,
828,
5855,
9319,
20361,
1600,
513,
828,
5855,
482,
1600,
604,
828,
5855,
8929,
20361,
1600,
642,
828,
5855,
8929,
2348,
1670,
1600,
718,
4008,
737,
21018,
10786,
482,
11537,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
4971,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
3261,
828,
399,
1443,
51,
66,
22603,
72,
43832,
22446,
21018,
32590,
17,
20198,
2780,
26780,
23,
29720,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
4971,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
2319,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
1662,
48181,
1600,
352,
828,
5855,
9319,
2348,
1670,
1600,
362,
828,
5855,
9319,
20361,
1600,
513,
828,
5855,
482,
1600,
604,
828,
5855,
8929,
20361,
1600,
642,
828,
5855,
8929,
2348,
1670,
1600,
718,
4008,
737,
21018,
10786,
482,
11537,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
4971,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
6073,
828,
399,
1443,
51,
66,
13031,
32,
3149,
22446,
21018,
32590,
16,
29720,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
4971,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
2026,
828,
34142,
2624,
22446,
7266,
4906,
7,
7266,
4906,
22882,
28,
3103,
2536,
6003,
38176,
7,
28008,
11395,
3103,
2536,
2913,
7,
16,
11,
362,
11,
513,
11,
604,
11,
642,
11,
718,
4008,
737,
21018,
7,
13190,
40161,
28,
45,
2434,
40161,
7,
7203,
1662,
48181,
1600,
352,
828,
5855,
9319,
2348,
1670,
1600,
362,
828,
5855,
9319,
20361,
1600,
513,
828,
5855,
482,
1600,
604,
828,
5855,
8929,
20361,
1600,
642,
828,
5855,
8929,
2348,
1670,
1600,
718,
4008,
737,
21018,
10786,
482,
11537,
737,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
4971,
13,
2617,
19580,
10786,
14421,
11537,
198,
77,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
796,
337,
571,
10962,
39470,
19510,
16,
11,
513,
11,
718,
11,
352,
11,
604,
11,
352,
11,
718,
1959,
11,
34044,
11,
1160,
11,
352,
11,
352,
11,
6885,
828,
399,
1443,
51,
66,
42492,
22446,
21018,
32590,
17,
20198,
2780,
26780,
23,
29720,
2617,
11518,
15457,
7203,
961,
8807,
4943,
198,
361,
285,
571,
32875,
13,
2220,
8206,
82,
25,
299,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
13,
2617,
19580,
10786,
14421,
11537,
198,
76,
571,
32875,
13,
39344,
13940,
2022,
10220,
7203,
45,
4462,
12,
50,
3528,
25697,
36,
12,
8895,
33,
1600,
299,
1443,
50,
328,
43,
1531,
13924,
30150,
28,
77,
1443,
50,
328,
43,
1531,
13924,
30150,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
4971,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
4971,
11,
299,
1443,
50,
328,
43,
1531,
13924,
10962,
28,
77,
1443,
50,
328,
43,
1531,
13924,
10962,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
30150,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
30150,
11,
299,
1443,
50,
328,
43,
1531,
15721,
862,
15,
28,
77,
1443,
50,
328,
43,
1531,
15721,
862,
15,
11,
299,
1443,
50,
328,
43,
1531,
44,
571,
28,
77,
1443,
50,
328,
43,
1531,
44,
571,
11,
350,
56,
15571,
7378,
62,
33365,
24212,
62,
2389,
28,
77,
1443,
50,
328,
43,
1531,
44,
571,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
1532,
15732,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
1532,
15732,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
10962,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
10962,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
43,
6005,
30782,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
15732,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
15732,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
11,
299,
1443,
50,
328,
43,
1531,
13924,
47522,
879,
28,
77,
1443,
50,
328,
43,
1531,
13924,
47522,
879,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
31407,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
31407,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
4971,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
4971,
11,
299,
1443,
50,
328,
43,
1531,
13924,
8642,
79,
28,
77,
1443,
50,
328,
43,
1531,
13924,
8642,
79,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
46047,
13434,
11,
299,
1443,
50,
328,
43,
1531,
13924,
43,
7305,
28,
77,
1443,
50,
328,
43,
1531,
13924,
43,
7305,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33484,
26623,
55,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33484,
26623,
55,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
4971,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
33,
4448,
5840,
862,
4971,
11,
299,
1443,
50,
328,
43,
1531,
13924,
1532,
15732,
28,
77,
1443,
50,
328,
43,
1531,
13924,
1532,
15732,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
8642,
79,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
8642,
79,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
4971,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
4971,
11,
299,
1443,
50,
328,
43,
1531,
15721,
862,
28,
77,
1443,
50,
328,
43,
1531,
15721,
862,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
49,
87,
13434,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
37,
28707,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
37,
28707,
11,
299,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
15057,
28,
77,
1443,
50,
328,
43,
1531,
43,
1531,
29239,
15057,
8,
198
] | 2.409369 | 3,757 |
from django.contrib import admin
from .models import CarMake, CarModel
# Register your models here.
#admin.site.register(CarMake)
#admin.site.register(CarModel)
# CarModelInline class
# CarModelAdmin class
# CarMakeAdmin class with CarModelInline
# Register models here
admin.site.register(CarModel)
admin.site.register(CarMake, CarMakeAdmin)
| [
6738,
42625,
14208,
13,
3642,
822,
1330,
13169,
198,
6738,
764,
27530,
1330,
1879,
12050,
11,
1879,
17633,
628,
198,
2,
17296,
534,
4981,
994,
13,
198,
2,
28482,
13,
15654,
13,
30238,
7,
9914,
12050,
8,
198,
2,
28482,
13,
15654,
13,
30238,
7,
9914,
17633,
8,
198,
2,
1879,
17633,
818,
1370,
1398,
198,
2,
1879,
17633,
46787,
1398,
198,
2,
1879,
12050,
46787,
1398,
351,
1879,
17633,
818,
1370,
198,
220,
220,
220,
220,
198,
198,
2,
17296,
4981,
994,
198,
28482,
13,
15654,
13,
30238,
7,
9914,
17633,
8,
198,
28482,
13,
15654,
13,
30238,
7,
9914,
12050,
11,
1879,
12050,
46787,
8,
198
] | 3.25 | 108 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='ConvNeXt',
in_chans=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.2,
layer_scale_init_value=1.0,
out_indices=[0, 1, 2, 3],
),
decode_head=dict(
type='UPerHead',
in_channels=[128, 256, 512, 1024],
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=512,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=384,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))
| [
2,
15069,
357,
66,
8,
30277,
19193,
82,
11,
3457,
13,
290,
29116,
13,
198,
198,
2,
1439,
2489,
10395,
13,
198,
198,
2,
770,
2723,
2438,
318,
11971,
739,
262,
5964,
1043,
287,
262,
198,
2,
38559,
24290,
2393,
287,
262,
6808,
8619,
286,
428,
2723,
5509,
13,
628,
198,
27237,
62,
37581,
796,
8633,
7,
4906,
11639,
28985,
15766,
3256,
4433,
62,
9744,
28,
17821,
8,
198,
19849,
796,
8633,
7,
198,
220,
220,
220,
2099,
11639,
27195,
12342,
10707,
12342,
3256,
198,
220,
220,
220,
2181,
13363,
28,
14202,
11,
198,
220,
220,
220,
32774,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
11639,
3103,
85,
8199,
55,
83,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
287,
62,
354,
504,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
21593,
41888,
18,
11,
513,
11,
860,
11,
513,
4357,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
82,
41888,
4846,
11,
17817,
11,
40400,
11,
46720,
4357,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4268,
62,
6978,
62,
4873,
28,
15,
13,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
7679,
62,
9888,
62,
15003,
62,
8367,
28,
16,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
503,
62,
521,
1063,
41888,
15,
11,
352,
11,
362,
11,
513,
4357,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
36899,
62,
2256,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
11639,
52,
5990,
13847,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
287,
62,
354,
8961,
41888,
12762,
11,
17759,
11,
22243,
11,
28119,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
287,
62,
9630,
41888,
15,
11,
352,
11,
362,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
5933,
62,
1416,
2040,
16193,
16,
11,
362,
11,
513,
11,
718,
828,
198,
220,
220,
220,
220,
220,
220,
220,
9619,
28,
25836,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4268,
448,
62,
10366,
952,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
1129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2593,
62,
37581,
28,
27237,
62,
37581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10548,
62,
20772,
364,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
62,
12501,
1098,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
11639,
21544,
14539,
28338,
43,
793,
3256,
779,
62,
82,
17225,
1868,
28,
25101,
11,
2994,
62,
6551,
28,
16,
13,
15,
36911,
198,
220,
220,
220,
37419,
62,
2256,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2099,
11639,
4851,
45,
13847,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
287,
62,
354,
8961,
28,
22842,
11,
198,
220,
220,
220,
220,
220,
220,
220,
287,
62,
9630,
28,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
9619,
28,
11645,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
1102,
14259,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1673,
265,
62,
15414,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4268,
448,
62,
10366,
952,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
28,
1129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2593,
62,
37581,
28,
27237,
62,
37581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10548,
62,
20772,
364,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
62,
12501,
1098,
28,
11600,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
11639,
21544,
14539,
28338,
43,
793,
3256,
779,
62,
82,
17225,
1868,
28,
25101,
11,
2994,
62,
6551,
28,
15,
13,
19,
36911,
198,
220,
220,
220,
1303,
2746,
3047,
290,
4856,
6460,
198,
220,
220,
220,
4512,
62,
37581,
28,
11600,
22784,
198,
220,
220,
220,
1332,
62,
37581,
28,
11600,
7,
14171,
11639,
1929,
2305,
6,
4008,
198
] | 2.023088 | 693 |
# ==================================================================================================
# Copyright 2011 Twitter, Inc.
# --------------------------------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this work except in compliance with the License.
# You may obtain a copy of the License in the LICENSE file, or at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==================================================================================================
import pytest
from twitter.common.quantity import Time, Amount
from twitter.common.quantity.parse_simple import parse_time, InvalidTime
| [
2,
38093,
10052,
28,
198,
2,
15069,
2813,
3009,
11,
3457,
13,
198,
2,
16529,
3880,
438,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
670,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
287,
262,
38559,
24290,
2393,
11,
393,
379,
25,
198,
2,
198,
2,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
38093,
10052,
28,
198,
198,
11748,
12972,
9288,
198,
6738,
17044,
13,
11321,
13,
40972,
414,
1330,
3862,
11,
26308,
198,
6738,
17044,
13,
11321,
13,
40972,
414,
13,
29572,
62,
36439,
1330,
21136,
62,
2435,
11,
17665,
7575,
198
] | 5.083333 | 204 |
__author__ = "Tauseef Hilal Tantary"
__title__ = "iCODE-BOT"
__version__ = 1.0
| [
834,
9800,
834,
796,
366,
51,
682,
891,
24410,
282,
44116,
560,
1,
198,
834,
7839,
834,
796,
366,
72,
34,
16820,
12,
33,
2394,
1,
198,
834,
9641,
834,
796,
352,
13,
15,
198
] | 2.257143 | 35 |
# coding=utf-8
# *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import pulumi
import pulumi.runtime
from .. import utilities, tables
class DatabaseInstance(pulumi.CustomResource):
"""
Creates a new Google SQL Database Instance. For more information, see the [official documentation](https://cloud.google.com/sql/),
or the [JSON API](https://cloud.google.com/sql/docs/admin-api/v1beta4/instances).
~> **NOTE on `google_sql_database_instance`:** - Second-generation instances include a
default 'root'@'%' user with no password. This user will be deleted by Terraform on
instance creation. You should use `google_sql_user` to define a custom user with
a restricted host and strong password.
"""
def __init__(__self__, __name__, __opts__=None, database_version=None, master_instance_name=None, name=None, project=None, region=None, replica_configuration=None, settings=None):
"""Create a DatabaseInstance resource with the given unique name, props, and options."""
if not __name__:
raise TypeError('Missing resource name argument (for URN creation)')
if not isinstance(__name__, str):
raise TypeError('Expected resource name to be a string')
if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions):
raise TypeError('Expected resource options to be a ResourceOptions instance')
__props__ = dict()
__props__['database_version'] = database_version
__props__['master_instance_name'] = master_instance_name
__props__['name'] = name
__props__['project'] = project
__props__['region'] = region
__props__['replica_configuration'] = replica_configuration
if not settings:
raise TypeError('Missing required property settings')
__props__['settings'] = settings
__props__['connection_name'] = None
__props__['first_ip_address'] = None
__props__['ip_addresses'] = None
__props__['self_link'] = None
__props__['server_ca_cert'] = None
__props__['service_account_email_address'] = None
super(DatabaseInstance, __self__).__init__(
'gcp:sql/databaseInstance:DatabaseInstance',
__name__,
__props__,
__opts__)
| [
2,
19617,
28,
40477,
12,
23,
198,
2,
17202,
39410,
25,
428,
2393,
373,
7560,
416,
262,
21624,
12994,
24118,
687,
10290,
357,
27110,
5235,
8,
16984,
13,
17202,
198,
2,
17202,
2141,
407,
4370,
416,
1021,
4556,
345,
821,
1728,
345,
760,
644,
345,
389,
1804,
0,
17202,
198,
198,
11748,
17472,
12994,
198,
11748,
17472,
12994,
13,
43282,
198,
6738,
11485,
1330,
20081,
11,
8893,
198,
198,
4871,
24047,
33384,
7,
79,
377,
12994,
13,
15022,
26198,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
257,
649,
3012,
16363,
24047,
2262,
590,
13,
1114,
517,
1321,
11,
766,
262,
685,
16841,
10314,
16151,
5450,
1378,
17721,
13,
13297,
13,
785,
14,
25410,
14,
828,
198,
220,
220,
220,
393,
262,
685,
40386,
7824,
16151,
5450,
1378,
17721,
13,
13297,
13,
785,
14,
25410,
14,
31628,
14,
28482,
12,
15042,
14,
85,
16,
31361,
19,
14,
8625,
1817,
737,
198,
220,
220,
220,
220,
198,
220,
220,
220,
5299,
29,
12429,
16580,
319,
4600,
13297,
62,
25410,
62,
48806,
62,
39098,
63,
25,
1174,
532,
5498,
12,
20158,
10245,
2291,
257,
198,
220,
220,
220,
4277,
705,
15763,
6,
31,
6,
4,
6,
2836,
351,
645,
9206,
13,
770,
2836,
481,
307,
13140,
416,
24118,
687,
319,
198,
220,
220,
220,
4554,
6282,
13,
921,
815,
779,
4600,
13297,
62,
25410,
62,
7220,
63,
284,
8160,
257,
2183,
2836,
351,
198,
220,
220,
220,
257,
10770,
2583,
290,
1913,
9206,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
834,
944,
834,
11,
11593,
3672,
834,
11,
11593,
404,
912,
834,
28,
14202,
11,
6831,
62,
9641,
28,
14202,
11,
4958,
62,
39098,
62,
3672,
28,
14202,
11,
1438,
28,
14202,
11,
1628,
28,
14202,
11,
3814,
28,
14202,
11,
30069,
62,
11250,
3924,
28,
14202,
11,
6460,
28,
14202,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16447,
257,
24047,
33384,
8271,
351,
262,
1813,
3748,
1438,
11,
25744,
11,
290,
3689,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
11593,
3672,
834,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
43730,
8271,
1438,
4578,
357,
1640,
37902,
45,
6282,
8,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
39098,
7,
834,
3672,
834,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
3109,
7254,
8271,
1438,
284,
307,
257,
4731,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
11593,
404,
912,
834,
290,
407,
318,
39098,
7,
834,
404,
912,
834,
11,
17472,
12994,
13,
26198,
29046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
3109,
7254,
8271,
3689,
284,
307,
257,
20857,
29046,
4554,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
796,
8633,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
48806,
62,
9641,
20520,
796,
6831,
62,
9641,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
9866,
62,
39098,
62,
3672,
20520,
796,
4958,
62,
39098,
62,
3672,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
3672,
20520,
796,
1438,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
16302,
20520,
796,
1628,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
36996,
20520,
796,
3814,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
35666,
3970,
62,
11250,
3924,
20520,
796,
30069,
62,
11250,
3924,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
6460,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
43730,
2672,
3119,
6460,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
33692,
20520,
796,
6460,
628,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
38659,
62,
3672,
20520,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
11085,
62,
541,
62,
21975,
20520,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
541,
62,
2860,
16746,
20520,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
944,
62,
8726,
20520,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
15388,
62,
6888,
62,
22583,
20520,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
17816,
15271,
62,
23317,
62,
12888,
62,
21975,
20520,
796,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
38105,
33384,
11,
11593,
944,
834,
737,
834,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
70,
13155,
25,
25410,
14,
48806,
33384,
25,
38105,
33384,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11593,
3672,
834,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11593,
1676,
862,
834,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11593,
404,
912,
834,
8,
628,
198
] | 2.742373 | 885 |
from django.db import models
from django.contrib.auth.models import AbstractUser
from django.contrib.auth import get_user_model
# Create your models here.
class UserProfile(AbstractUser):
"""
自定义的用户Model
拓展字段gender, nick_name, mobile, qq
"""
GENDER_CHOICES = (
('male', "男"),
('female', "女"),
('secret', "保密")
)
nick_name = models.CharField(max_length=40, blank=True, verbose_name="昵称")
# 头像url
avatar = models.CharField(verbose_name="头像", blank=True, null=True, max_length=256)
gender = models.CharField(max_length=6, choices=GENDER_CHOICES, default="secret",
verbose_name="性别")
# email可以随便填,但是手机号需要唯一: 后续可加入校验验证码
mobile = models.CharField(max_length=11, verbose_name="手机号", unique=True)
qq = models.CharField(max_length=12, verbose_name="QQ号", blank=True, null=True)
# 公司有时候会用到钉钉/微信发送消息,需要记录用户相关ID
dingding = models.CharField(max_length=40, verbose_name="钉钉ID", blank=True, null=True)
wechat = models.CharField(max_length=40, verbose_name="微信ID", blank=True, null=True)
# 能否访问本系统,默认是不可以访问本系统
# 注意第一个管理员用户,可以去数据库调整can_view的值为1
can_view = models.BooleanField(verbose_name="能访问", default=False, blank=True)
is_deleted = models.BooleanField(verbose_name="删除", default=False, blank=True)
# 注意:get_user_model()方法可以获取到本系统使用的是哪个用户Model
# 默认的用户Model是:django.contrib.auth.models.User
# 在settings.py中配置:AUTH_USER_MODEL可以修改成指定的用户Model
# AUTH_USER_MODEL = "account.UserProfile"
User = get_user_model()
# 注意这句是要放在class UserProfile后面的
class MessageScope(models.Model):
"""
消息范围
"""
scope = models.SlugField(verbose_name="范围", max_length=10)
name = models.CharField(verbose_name="范围名称", max_length=10, blank=True)
class Message(models.Model):
"""
用户消息Model
"""
user = models.ForeignKey(to=User, verbose_name='用户', on_delete=models.CASCADE)
sender = models.CharField(max_length=15, verbose_name="发送者", default='system', blank=True)
# 消息类型,想用type,但是还是用scope,type和types是mysql的预保留字
scope = models.ForeignKey(to=MessageScope, verbose_name="消息范围", blank=True,
on_delete=models.CASCADE)
title = models.CharField(max_length=100, verbose_name="消息标题")
content = models.CharField(max_length=512, verbose_name="消息内容", blank=True)
link = models.CharField(max_length=128, verbose_name="链接", blank=True, null=True)
unread = models.BooleanField(verbose_name="未读", blank=True, default=True)
time_added = models.DateTimeField(auto_now_add=True, verbose_name="添加时间")
is_deleted = models.BooleanField(verbose_name="删除", default=False, blank=True)
| [
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
27741,
12982,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
651,
62,
7220,
62,
19849,
198,
198,
2,
13610,
534,
4981,
994,
13,
628,
198,
4871,
11787,
37046,
7,
23839,
12982,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5525,
229,
103,
22522,
248,
20046,
231,
21410,
18796,
101,
22755,
115,
17633,
198,
220,
220,
220,
10545,
233,
241,
161,
109,
243,
27764,
245,
162,
106,
113,
8388,
11,
14428,
62,
3672,
11,
5175,
11,
10662,
80,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
402,
10619,
1137,
62,
44899,
34444,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
22606,
3256,
366,
18796,
115,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
24724,
3256,
366,
42637,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
19203,
21078,
3256,
366,
46479,
251,
43380,
228,
4943,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
14428,
62,
3672,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1821,
11,
9178,
28,
17821,
11,
15942,
577,
62,
3672,
2625,
23626,
113,
163,
100,
108,
4943,
198,
220,
220,
220,
1303,
36469,
112,
161,
225,
237,
6371,
198,
220,
220,
220,
30919,
796,
4981,
13,
12441,
15878,
7,
19011,
577,
62,
3672,
2625,
13783,
112,
161,
225,
237,
1600,
9178,
28,
17821,
11,
9242,
28,
17821,
11,
3509,
62,
13664,
28,
11645,
8,
198,
220,
220,
220,
5279,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
21,
11,
7747,
28,
38,
10619,
1137,
62,
44899,
34444,
11,
4277,
2625,
21078,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15942,
577,
62,
3672,
2625,
45250,
100,
26344,
104,
4943,
198,
220,
220,
220,
1303,
3053,
20998,
107,
20015,
98,
49694,
237,
160,
122,
123,
161,
94,
104,
171,
120,
234,
19526,
228,
42468,
33699,
233,
17312,
118,
20998,
115,
165,
250,
222,
17358,
223,
161,
242,
107,
31660,
25,
10263,
238,
236,
163,
119,
255,
20998,
107,
27950,
254,
17739,
98,
43718,
94,
165,
103,
234,
165,
103,
234,
46237,
223,
163,
254,
223,
198,
220,
220,
220,
5175,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1157,
11,
15942,
577,
62,
3672,
2625,
33699,
233,
17312,
118,
20998,
115,
1600,
3748,
28,
17821,
8,
198,
220,
220,
220,
10662,
80,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1065,
11,
15942,
577,
62,
3672,
2625,
48,
48,
20998,
115,
1600,
9178,
28,
17821,
11,
9242,
28,
17821,
8,
198,
220,
220,
220,
1303,
10263,
227,
105,
20998,
116,
17312,
231,
33768,
114,
161,
222,
247,
27670,
248,
18796,
101,
26344,
108,
165,
240,
231,
165,
240,
231,
14,
36181,
106,
46479,
94,
20998,
239,
34460,
223,
162,
114,
230,
162,
223,
107,
171,
120,
234,
165,
250,
222,
17358,
223,
164,
106,
108,
37605,
243,
18796,
101,
22755,
115,
33566,
116,
17739,
111,
2389,
198,
220,
220,
220,
44852,
12083,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1821,
11,
15942,
577,
62,
3672,
2625,
165,
240,
231,
165,
240,
231,
2389,
1600,
9178,
28,
17821,
11,
9242,
28,
17821,
8,
198,
220,
220,
220,
356,
17006,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1821,
11,
15942,
577,
62,
3672,
2625,
36181,
106,
46479,
94,
2389,
1600,
9178,
28,
17821,
11,
9242,
28,
17821,
8,
198,
220,
220,
220,
1303,
5525,
225,
121,
28938,
99,
164,
106,
123,
29785,
106,
17312,
105,
163,
111,
119,
163,
119,
253,
171,
120,
234,
165,
119,
246,
164,
106,
97,
42468,
38834,
20998,
107,
20015,
98,
164,
106,
123,
29785,
106,
17312,
105,
163,
111,
119,
163,
119,
253,
198,
220,
220,
220,
1303,
10545,
111,
101,
35707,
237,
163,
105,
105,
31660,
10310,
103,
163,
106,
94,
49426,
228,
37772,
246,
18796,
101,
22755,
115,
171,
120,
234,
20998,
107,
20015,
98,
43889,
119,
46763,
108,
162,
235,
106,
41753,
241,
164,
108,
225,
46763,
112,
5171,
62,
1177,
21410,
161,
222,
120,
10310,
118,
16,
198,
220,
220,
220,
460,
62,
1177,
796,
4981,
13,
46120,
13087,
15878,
7,
19011,
577,
62,
3672,
2625,
47797,
121,
164,
106,
123,
29785,
106,
1600,
4277,
28,
25101,
11,
9178,
28,
17821,
8,
198,
220,
220,
220,
318,
62,
2934,
33342,
796,
4981,
13,
46120,
13087,
15878,
7,
19011,
577,
62,
3672,
2625,
26344,
254,
165,
247,
97,
1600,
4277,
28,
25101,
11,
9178,
28,
17821,
8,
628,
198,
2,
10545,
111,
101,
35707,
237,
171,
120,
248,
1136,
62,
7220,
62,
19849,
3419,
43095,
37345,
243,
20998,
107,
20015,
98,
164,
236,
115,
20998,
244,
26344,
108,
17312,
105,
163,
111,
119,
163,
119,
253,
45635,
18796,
101,
21410,
42468,
161,
241,
103,
10310,
103,
18796,
101,
22755,
115,
17633,
198,
2,
16268,
119,
246,
164,
106,
97,
21410,
18796,
101,
22755,
115,
17633,
42468,
171,
120,
248,
28241,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
13,
12982,
198,
2,
10263,
250,
101,
33692,
13,
9078,
40792,
165,
227,
235,
163,
121,
106,
171,
120,
248,
32,
24318,
62,
29904,
62,
33365,
3698,
20998,
107,
20015,
98,
46479,
106,
162,
242,
117,
22755,
238,
162,
234,
229,
22522,
248,
21410,
18796,
101,
22755,
115,
17633,
198,
2,
37195,
62,
29904,
62,
33365,
3698,
796,
366,
23317,
13,
12982,
37046,
1,
198,
12982,
796,
651,
62,
7220,
62,
19849,
3419,
198,
2,
10545,
111,
101,
35707,
237,
32573,
247,
20998,
98,
42468,
17358,
223,
162,
242,
122,
28839,
101,
4871,
11787,
37046,
28938,
236,
165,
251,
95,
21410,
628,
198,
4871,
16000,
43642,
7,
27530,
13,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
10545,
114,
230,
162,
223,
107,
164,
234,
225,
32368,
112,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8354,
796,
4981,
13,
11122,
1018,
15878,
7,
19011,
577,
62,
3672,
2625,
164,
234,
225,
32368,
112,
1600,
3509,
62,
13664,
28,
940,
8,
198,
220,
220,
220,
1438,
796,
4981,
13,
12441,
15878,
7,
19011,
577,
62,
3672,
2625,
164,
234,
225,
32368,
112,
28938,
235,
163,
100,
108,
1600,
3509,
62,
13664,
28,
940,
11,
9178,
28,
17821,
8,
628,
198,
4871,
16000,
7,
27530,
13,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13328,
242,
101,
22755,
115,
162,
114,
230,
162,
223,
107,
17633,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2836,
796,
4981,
13,
33616,
9218,
7,
1462,
28,
12982,
11,
15942,
577,
62,
3672,
11639,
18796,
101,
22755,
115,
3256,
319,
62,
33678,
28,
27530,
13,
34,
42643,
19266,
8,
198,
220,
220,
220,
29788,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
1314,
11,
15942,
577,
62,
3672,
2625,
20998,
239,
34460,
223,
38519,
1600,
4277,
11639,
10057,
3256,
9178,
28,
17821,
8,
198,
220,
220,
220,
1303,
10545,
114,
230,
162,
223,
107,
163,
109,
119,
161,
252,
233,
171,
120,
234,
46349,
111,
18796,
101,
4906,
171,
120,
234,
19526,
228,
42468,
32573,
246,
42468,
18796,
101,
29982,
171,
120,
234,
4906,
161,
240,
234,
19199,
42468,
28744,
13976,
21410,
165,
95,
226,
46479,
251,
45911,
247,
27764,
245,
198,
220,
220,
220,
8354,
796,
4981,
13,
33616,
9218,
7,
1462,
28,
12837,
43642,
11,
15942,
577,
62,
3672,
2625,
162,
114,
230,
162,
223,
107,
164,
234,
225,
32368,
112,
1600,
9178,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
319,
62,
33678,
28,
27530,
13,
34,
42643,
19266,
8,
198,
220,
220,
220,
3670,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
3064,
11,
15942,
577,
62,
3672,
2625,
162,
114,
230,
162,
223,
107,
43718,
229,
165,
95,
246,
4943,
198,
220,
220,
220,
2695,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
25836,
11,
15942,
577,
62,
3672,
2625,
162,
114,
230,
162,
223,
107,
37863,
227,
22522,
117,
1600,
9178,
28,
17821,
8,
198,
220,
220,
220,
2792,
796,
4981,
13,
12441,
15878,
7,
9806,
62,
13664,
28,
12762,
11,
15942,
577,
62,
3672,
2625,
165,
241,
122,
162,
236,
98,
1600,
9178,
28,
17821,
11,
9242,
28,
17821,
8,
198,
220,
220,
220,
555,
961,
796,
4981,
13,
46120,
13087,
15878,
7,
19011,
577,
62,
3672,
2625,
17312,
103,
46237,
119,
1600,
9178,
28,
17821,
11,
4277,
28,
17821,
8,
198,
220,
220,
220,
640,
62,
29373,
796,
4981,
13,
10430,
7575,
15878,
7,
23736,
62,
2197,
62,
2860,
28,
17821,
11,
15942,
577,
62,
3672,
2625,
162,
115,
119,
27950,
254,
33768,
114,
29785,
112,
4943,
198,
220,
220,
220,
318,
62,
2934,
33342,
796,
4981,
13,
46120,
13087,
15878,
7,
19011,
577,
62,
3672,
2625,
26344,
254,
165,
247,
97,
1600,
4277,
28,
25101,
11,
9178,
28,
17821,
8,
198
] | 1.763926 | 1,508 |
# Generated by Django 3.2.3 on 2021-06-09 13:27
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
513,
13,
17,
13,
18,
319,
33448,
12,
3312,
12,
2931,
1511,
25,
1983,
201,
198,
201,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
201,
198,
201,
198
] | 2.567568 | 37 |
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# hyper parameters
TIME_STEP = 10
INPUT_SIZE = 1
LR = 0.02
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32)
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
loss_func = nn.MSELoss()
h_state = None
plt.figure(1, figsize=(12, 5))
plt.ion()
for step in range(100):
start, end = step * np.pi, (step + 1) * np.pi
# use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,
endpoint=False)
x_np = np.sin(steps)
y_np = np.cos(steps)
x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
prediction, h_state = rnn(x, h_state)
h_state = h_state.data
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw();
plt.pause(0.05)
plt.ioff()
plt.show() | [
11748,
28034,
201,
198,
6738,
28034,
1330,
299,
77,
201,
198,
11748,
299,
32152,
355,
45941,
201,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
201,
198,
201,
198,
201,
198,
2,
8718,
10007,
201,
198,
34694,
62,
42135,
796,
838,
201,
198,
1268,
30076,
62,
33489,
796,
352,
201,
198,
35972,
796,
657,
13,
2999,
201,
198,
201,
198,
20214,
796,
45941,
13,
21602,
10223,
7,
15,
11,
45941,
13,
14415,
1635,
362,
11,
1802,
11,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
201,
198,
87,
62,
37659,
796,
45941,
13,
31369,
7,
20214,
8,
201,
198,
88,
62,
37659,
796,
45941,
13,
6966,
7,
20214,
8,
201,
198,
489,
83,
13,
29487,
7,
20214,
11,
331,
62,
37659,
11,
705,
81,
12,
3256,
6167,
11639,
16793,
357,
6966,
8,
11537,
201,
198,
489,
83,
13,
29487,
7,
20214,
11,
2124,
62,
37659,
11,
705,
65,
12,
3256,
6167,
11639,
15414,
357,
31369,
8,
11537,
201,
198,
489,
83,
13,
1455,
437,
7,
17946,
11639,
13466,
11537,
201,
198,
489,
83,
13,
12860,
3419,
201,
198,
201,
198,
201,
198,
81,
20471,
796,
371,
6144,
3419,
201,
198,
4798,
7,
81,
20471,
8,
201,
198,
201,
198,
40085,
7509,
796,
28034,
13,
40085,
13,
23159,
7,
81,
20471,
13,
17143,
7307,
22784,
300,
81,
28,
35972,
8,
201,
198,
22462,
62,
20786,
796,
299,
77,
13,
5653,
3698,
793,
3419,
201,
198,
201,
198,
71,
62,
5219,
796,
6045,
201,
198,
201,
198,
489,
83,
13,
26875,
7,
16,
11,
2336,
7857,
16193,
1065,
11,
642,
4008,
201,
198,
489,
83,
13,
295,
3419,
201,
198,
201,
198,
1640,
2239,
287,
2837,
7,
3064,
2599,
201,
198,
220,
220,
220,
923,
11,
886,
796,
2239,
1635,
45941,
13,
14415,
11,
357,
9662,
1343,
352,
8,
1635,
45941,
13,
14415,
201,
198,
220,
220,
220,
1303,
779,
7813,
26334,
8615,
201,
198,
220,
220,
220,
4831,
796,
45941,
13,
21602,
10223,
7,
9688,
11,
886,
11,
20460,
62,
42135,
11,
288,
4906,
28,
37659,
13,
22468,
2624,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36123,
28,
25101,
8,
201,
198,
220,
220,
220,
2124,
62,
37659,
796,
45941,
13,
31369,
7,
20214,
8,
201,
198,
220,
220,
220,
331,
62,
37659,
796,
45941,
13,
6966,
7,
20214,
8,
201,
198,
201,
198,
220,
220,
220,
2124,
796,
28034,
13,
6738,
62,
77,
32152,
7,
87,
62,
37659,
58,
37659,
13,
3605,
22704,
11,
1058,
11,
45941,
13,
3605,
22704,
12962,
201,
198,
220,
220,
220,
331,
796,
28034,
13,
6738,
62,
77,
32152,
7,
88,
62,
37659,
58,
37659,
13,
3605,
22704,
11,
1058,
11,
45941,
13,
3605,
22704,
12962,
201,
198,
201,
198,
220,
220,
220,
17724,
11,
289,
62,
5219,
796,
374,
20471,
7,
87,
11,
289,
62,
5219,
8,
201,
198,
220,
220,
220,
289,
62,
5219,
796,
289,
62,
5219,
13,
7890,
201,
198,
201,
198,
220,
220,
220,
2994,
796,
2994,
62,
20786,
7,
28764,
2867,
11,
331,
8,
201,
198,
220,
220,
220,
6436,
7509,
13,
22570,
62,
9744,
3419,
201,
198,
220,
220,
220,
2994,
13,
1891,
904,
3419,
201,
198,
220,
220,
220,
6436,
7509,
13,
9662,
3419,
201,
198,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
20214,
11,
331,
62,
37659,
13,
2704,
41769,
22784,
705,
81,
12,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
20214,
11,
17724,
13,
7890,
13,
77,
32152,
22446,
2704,
41769,
22784,
705,
65,
12,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
19334,
9783,
201,
198,
220,
220,
220,
458,
83,
13,
32125,
7,
15,
13,
2713,
8,
201,
198,
201,
198,
489,
83,
13,
952,
487,
3419,
201,
198,
489,
83,
13,
12860,
3419
] | 2.040562 | 641 |
import os
import re
import collections
NOTES_DIR = '/home/dave/nonlinearfunction/gatsby-garden/_notes'
md_files = [fname for fname in os.listdir(NOTES_DIR) if fname.endswith('.md')]
existing_notes = [fname[:-3] for fname in md_files]
refs = collections.defaultdict(int)
linked_notes = set()
for filename in md_files:
with open(os.path.join(NOTES_DIR, filename), 'r') as f:
md_str = f.read()
wikilinks = re.findall(r'\[\[([^\]]+)\]\]', md_str)
wikilinks = set([s.split('|')[0] for s in wikilinks])
for s in wikilinks:
refs[s] += 1
# print(f"File: {filename} wikilinks: {wikilinks}")
linked_notes = linked_notes.union(wikilinks)
new_notes = linked_notes - set(existing_notes)
trivial_notes = set()
for s in new_notes:
if refs[s] > 1:
print(f'creating {s} with {refs[s]} refs')
with open(os.path.join(NOTES_DIR, s + '.md'), 'w') as f:
f.write('')
else:
trivial_notes.add(s)
for filename in md_files:
with open(os.path.join(NOTES_DIR, filename), 'r') as f:
md_str = f.read()
for s in trivial_notes:
new_md_str = re.sub(r'\[\[' + s + r'(\|([^\]]+))?\]\]',
lambda m: m.group(2) if m.group(2) else s,
md_str)
if new_md_str != md_str:
print(f"{filename}: removed trivial link '{s}'")
md_str = new_md_str
with open(os.path.join(NOTES_DIR, filename), 'w') as f:
f.write(md_str)
| [
11748,
28686,
198,
11748,
302,
198,
11748,
17268,
198,
198,
11929,
1546,
62,
34720,
796,
31051,
11195,
14,
67,
1015,
14,
13159,
29127,
8818,
14,
70,
1381,
1525,
12,
70,
5872,
47835,
17815,
6,
198,
198,
9132,
62,
16624,
796,
685,
69,
3672,
329,
277,
3672,
287,
28686,
13,
4868,
15908,
7,
11929,
1546,
62,
34720,
8,
611,
277,
3672,
13,
437,
2032,
342,
7,
4458,
9132,
11537,
60,
198,
198,
25687,
62,
17815,
796,
685,
69,
3672,
58,
21912,
18,
60,
329,
277,
3672,
287,
45243,
62,
16624,
60,
198,
5420,
82,
796,
17268,
13,
12286,
11600,
7,
600,
8,
198,
25614,
62,
17815,
796,
900,
3419,
198,
198,
1640,
29472,
287,
45243,
62,
16624,
25,
198,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
11929,
1546,
62,
34720,
11,
29472,
828,
705,
81,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
45243,
62,
2536,
796,
277,
13,
961,
3419,
198,
220,
220,
220,
47145,
346,
2973,
796,
302,
13,
19796,
439,
7,
81,
6,
59,
58,
59,
58,
26933,
61,
59,
11907,
10,
19415,
60,
59,
60,
3256,
45243,
62,
2536,
8,
198,
220,
220,
220,
47145,
346,
2973,
796,
900,
26933,
82,
13,
35312,
10786,
91,
11537,
58,
15,
60,
329,
264,
287,
47145,
346,
2973,
12962,
198,
220,
220,
220,
329,
264,
287,
47145,
346,
2973,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1006,
82,
58,
82,
60,
15853,
352,
198,
220,
220,
220,
1303,
3601,
7,
69,
1,
8979,
25,
1391,
34345,
92,
47145,
346,
2973,
25,
1391,
20763,
346,
2973,
92,
4943,
198,
220,
220,
220,
6692,
62,
17815,
796,
6692,
62,
17815,
13,
24592,
7,
20763,
346,
2973,
8,
198,
198,
3605,
62,
17815,
796,
6692,
62,
17815,
532,
900,
7,
25687,
62,
17815,
8,
198,
83,
15104,
498,
62,
17815,
796,
900,
3419,
198,
1640,
264,
287,
649,
62,
17815,
25,
198,
220,
220,
220,
611,
1006,
82,
58,
82,
60,
1875,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
6,
20123,
278,
1391,
82,
92,
351,
1391,
5420,
82,
58,
82,
48999,
1006,
82,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
11929,
1546,
62,
34720,
11,
264,
1343,
45302,
9132,
33809,
705,
86,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
7061,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
20861,
62,
17815,
13,
2860,
7,
82,
8,
198,
198,
1640,
29472,
287,
45243,
62,
16624,
25,
198,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
11929,
1546,
62,
34720,
11,
29472,
828,
705,
81,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
45243,
62,
2536,
796,
277,
13,
961,
3419,
198,
220,
220,
220,
329,
264,
287,
20861,
62,
17815,
25,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
9132,
62,
2536,
796,
302,
13,
7266,
7,
81,
6,
59,
58,
59,
17816,
1343,
264,
1343,
374,
6,
38016,
91,
26933,
61,
59,
11907,
10,
4008,
30,
59,
60,
59,
60,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37456,
285,
25,
285,
13,
8094,
7,
17,
8,
611,
285,
13,
8094,
7,
17,
8,
2073,
264,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45243,
62,
2536,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
649,
62,
9132,
62,
2536,
14512,
45243,
62,
2536,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
1,
90,
34345,
38362,
4615,
20861,
2792,
705,
90,
82,
92,
6,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
45243,
62,
2536,
796,
649,
62,
9132,
62,
2536,
198,
220,
220,
220,
351,
1280,
7,
418,
13,
6978,
13,
22179,
7,
11929,
1546,
62,
34720,
11,
29472,
828,
705,
86,
11537,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
9132,
62,
2536,
8,
198
] | 2.04426 | 723 |
import pytesseract
import numpy as np
import cv2
| [
11748,
12972,
83,
408,
263,
529,
198,
11748,
299,
32152,
355,
45941,
220,
198,
11748,
269,
85,
17,
220,
628,
628,
628
] | 2.545455 | 22 |
from . import special
from . import old_special
from .mode_indices import rmax_to_lmax, lmax_to_rmax, mode_indices
from .vsh_functions import (Emn, vsh_mode, get_zn, VSH, vsh_normalization_values,
get_zn_far, VSH_far, vsh_normalization_values_far)
from .vsh_translation import vsh_translation
from .vsh_rotation import vsh_rotation_matrix, rotate_expansion_coefficients
from .expansion import expand_E, expand_E_far, expand_H, expand_H_far
from .decomposition import (near_field_point_matching, far_field_point_matching,
integral_project_fields_onto, integral_project_fields,
integral_project_source, integral_project_source)
from .cluster_coefficients import cluster_coefficients
| [
6738,
764,
1330,
2041,
198,
6738,
764,
1330,
1468,
62,
20887,
198,
198,
6738,
764,
14171,
62,
521,
1063,
1330,
374,
9806,
62,
1462,
62,
75,
9806,
11,
300,
9806,
62,
1462,
62,
81,
9806,
11,
4235,
62,
521,
1063,
198,
6738,
764,
85,
1477,
62,
12543,
2733,
1330,
357,
10161,
77,
11,
410,
1477,
62,
14171,
11,
651,
62,
47347,
11,
569,
9693,
11,
410,
1477,
62,
11265,
1634,
62,
27160,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
651,
62,
47347,
62,
16370,
11,
569,
9693,
62,
16370,
11,
410,
1477,
62,
11265,
1634,
62,
27160,
62,
16370,
8,
198,
6738,
764,
85,
1477,
62,
41519,
1330,
410,
1477,
62,
41519,
220,
198,
6738,
764,
85,
1477,
62,
10599,
341,
1330,
410,
1477,
62,
10599,
341,
62,
6759,
8609,
11,
23064,
62,
11201,
5487,
62,
1073,
41945,
198,
6738,
764,
11201,
5487,
1330,
4292,
62,
36,
11,
4292,
62,
36,
62,
16370,
11,
4292,
62,
39,
11,
4292,
62,
39,
62,
16370,
198,
6738,
764,
12501,
296,
9150,
1330,
357,
40093,
62,
3245,
62,
4122,
62,
15699,
278,
11,
1290,
62,
3245,
62,
4122,
62,
15699,
278,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19287,
62,
16302,
62,
25747,
62,
5957,
11,
19287,
62,
16302,
62,
25747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19287,
62,
16302,
62,
10459,
11,
19287,
62,
16302,
62,
10459,
8,
198,
6738,
764,
565,
5819,
62,
1073,
41945,
1330,
13946,
62,
1073,
41945,
198
] | 2.488673 | 309 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 14 10:10:32 2021
@author: [email protected] [email protected] [email protected]
"""
import spacy
import os
import json
from typing import List, Tuple, Optional
from thinc.api import Model
from spacy.pipeline import Lemmatizer
from spacy.tokens import Token
from spacy.language import Language
from spacy.lang.ca import Catalan
@spacy.registry.callbacks("before_callback")
@spacy.registry.misc("ca_lookups_loader")
@Catalan.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={"model": None, "mode": "rule", "overwrite": False},
default_score_weights={"lemma_acc": 1.0},
)
class CatalanLemmatizer(Lemmatizer):
"""
Copied from French Lemmatizer
Catalan language lemmatizer applies the default rule based lemmatization
procedure with some modifications for better Catalan language support.
The parts of speech 'ADV', 'PRON', 'DET', 'ADP' and 'AUX' are added to use
the rule-based lemmatization. As a last resort, the lemmatizer checks in
the lookup table.
"""
@classmethod
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
41972,
319,
3300,
2758,
1478,
838,
25,
940,
25,
2624,
33448,
198,
198,
31,
9800,
25,
1097,
33280,
13,
14892,
4359,
14870,
16,
31,
65,
1416,
13,
274,
355,
959,
13,
70,
315,
44448,
31,
65,
1416,
13,
274,
1097,
1326,
13,
283,
434,
5733,
31,
65,
1416,
13,
274,
198,
37811,
198,
198,
11748,
599,
1590,
198,
11748,
28686,
198,
11748,
33918,
198,
6738,
19720,
1330,
7343,
11,
309,
29291,
11,
32233,
198,
6738,
294,
1939,
13,
15042,
1330,
9104,
198,
6738,
599,
1590,
13,
79,
541,
4470,
1330,
20607,
6759,
7509,
198,
6738,
599,
1590,
13,
83,
482,
641,
1330,
29130,
198,
6738,
599,
1590,
13,
16129,
1330,
15417,
198,
6738,
599,
1590,
13,
17204,
13,
6888,
1330,
31066,
628,
198,
31,
2777,
1590,
13,
2301,
4592,
13,
13345,
10146,
7203,
19052,
62,
47423,
4943,
628,
198,
31,
2777,
1590,
13,
2301,
4592,
13,
44374,
7203,
6888,
62,
5460,
4739,
62,
29356,
4943,
628,
198,
31,
39075,
272,
13,
69,
9548,
7,
198,
220,
220,
220,
366,
293,
3020,
265,
7509,
1600,
198,
220,
220,
220,
46974,
28,
14692,
30001,
13,
10671,
2611,
33116,
198,
220,
220,
220,
4277,
62,
11250,
28,
4895,
19849,
1298,
6045,
11,
366,
14171,
1298,
366,
25135,
1600,
366,
2502,
13564,
1298,
10352,
5512,
198,
220,
220,
220,
4277,
62,
26675,
62,
43775,
28,
4895,
10671,
2611,
62,
4134,
1298,
352,
13,
15,
5512,
198,
8,
628,
198,
4871,
31066,
43,
368,
6759,
7509,
7,
43,
368,
6759,
7509,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6955,
798,
422,
4141,
20607,
6759,
7509,
198,
220,
220,
220,
31066,
3303,
443,
3020,
265,
7509,
8991,
262,
4277,
3896,
1912,
443,
3020,
265,
1634,
198,
220,
220,
220,
8771,
351,
617,
19008,
329,
1365,
31066,
3303,
1104,
13,
628,
220,
220,
220,
383,
3354,
286,
4046,
705,
2885,
53,
3256,
705,
4805,
1340,
3256,
705,
35,
2767,
3256,
705,
2885,
47,
6,
290,
705,
26830,
55,
6,
389,
2087,
284,
779,
198,
220,
220,
220,
262,
3896,
12,
3106,
443,
3020,
265,
1634,
13,
1081,
257,
938,
12600,
11,
262,
443,
3020,
265,
7509,
8794,
287,
198,
220,
220,
220,
262,
35847,
3084,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
4871,
24396,
628
] | 2.825436 | 401 |
from typing import Any
| [
6738,
19720,
1330,
4377,
628,
198
] | 4.166667 | 6 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Energized Blu
import urllib.request
import datetime
import os
import time
File = 'energized/blu'
List = []
# Thanks to all maintainers of hosts lists.
Sources = [
'https://raw.githubusercontent.com/AdroitAdorKhan/Energized/master/EnergizedHosts/EnergizedHosts',
'https://raw.githubusercontent.com/StevenBlack/hosts/master/alternates/fakenews-gambling/hosts',
'http://someonewhocares.org/hosts/zero/',
'https://hblock.molinero.xyz/hosts',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Mirror/MoaAB/MoaAB.active.txt',
'https://raw.githubusercontent.com/hoshsadiq/adblock-nocoin-list/master/hosts.txt',
'https://raw.githubusercontent.com/Yhonay/antipopads/master/hosts',
'https://raw.githubusercontent.com/notracking/hosts-blocklists/master/hostnames.txt',
'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.2o7Net/hosts',
'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Dead/hosts',
'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Risk/hosts',
'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Spam/hosts',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/ZeusTracker.txt',
'https://raw.githubusercontent.com/StevenBlack/hosts/master/data/StevenBlack/hosts',
'https://zerodot1.gitlab.io/CoinBlockerLists/hosts_browser',
'https://zerodot1.gitlab.io/CoinBlockerLists/hosts',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/Spam404.txt',
'https://raw.githubusercontent.com/CHEF-KOCH/NSABlocklist/master/HOSTS',
'https://raw.githubusercontent.com/azet12/KADhosts/master/KADhosts.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/AdguardMobileSpyware.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/AdguardTracking.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasylistAdserver.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasyPrivacySpecific.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasyPrivacyTracking.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEAds.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEMalvertising.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEMalware.txt',
'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/Wally3K_Blacklist.txt'
]
for Link in Sources:
try:
print('[+] Retrieving list from: {}'.format(Link))
r = urllib.request.urlopen(Link)
Host = r.readlines()
Host = [x.decode('UTF-8') for x in Host]
Host = [x.strip() for x in Host]
Host = [z for z in Host if z != '' and z[0] != '#']
Host = [h.split()[1] for h in Host if h.split()[0] in ['0.0.0.0', '127.0.0.1']]
Host = [x for x in Host if x not in ['localhost', 'localhost.localdomain', 'locals']]
print('[+] Found {} domains to block.'.format(str(len(Host))))
r.close()
List += Host
except:
print('[-] ERROR: I can\'t retrieve the list from: {}'.format(Link))
print('[+] Removing duplicates and sorting...')
List = sorted(list(set(List)))
print('[+] Applying whitelist...')
r = urllib.request.urlopen('https://raw.githubusercontent.com/AdroitAdorKhan/Energized/master/EnergizedHosts/EnergizedWhites')
Whitelist = r.readlines()
Whitelist = [x.decode('utf-8') for x in Whitelist]
Whitelist = [x.strip() for x in Whitelist]
Whitelist = [z for z in Whitelist if z != '' and z[0] != '#']
r.close()
for i in range(0, len(Whitelist)):
try:
List.remove(Whitelist[i])
except:
pass
print('[+] Total domains count {}.'.format(str(len(List))))
if not os.path.exists(os.path.dirname(File)):
os.makedirs(os.path.dirname(File))
with open(File, 'w') as f:
print('[+] Writing to file...')
f.write('''# Energized - ad.porn.malware blocking.\n# A merged collection of hosts from reputable sources.\n# https://ador.chorompotro.com\n\n# Energized Blu - Lightweight Energized Protection.\n# Version: ''' + time.strftime("%y.%m.%j", time.gmtime()) + '''\n# Project Git: https://github.com/EnergizedProtection/EnergizedBlu\n# RAW Source: https://raw.githubusercontent.com/EnergizedProtection/EnergizedBlu/master/energized/blu\n# Last updated: {}'''.format(datetime.datetime.now().strftime('%a, %d %b %y %X')))
f.write('''\n# Total Domains: {}\n\n'''.format(str(len(List))))
f.write('''\n# -================-Maintainer-================-\n# Nayem Ador - https://adroitadorkhan.github.io\n# -============================================-\n\n''')
f.write('''\n127.0.0.1 localhost\n127.0.0.1 localhost.localdomain\n127.0.0.1 local\n255.255.255.255 broadcasthost\n::1 localhost\n::1 ip6-localhost\n::1 ip6-loopback\nfe80::1%lo0 localhost\nff00::0 ip6-localnet\nff00::0 ip6-mcastprefix\nff02::1 ip6-allnodes\nff02::2 ip6-allrouters\nff02::3 ip6-allhosts\n0.0.0.0 0.0.0.0\n\n\n# -====================-Features-====================-\n# # Lightweight Energized Protection Ever! #\n#\n# - Based on Hosts file, all the bad stuff blocked with 0.0.0.0 \n# - Compatible with all devices, regardless of OS. \n# - Strictly blocks all advertisements, malwares, spams, statistics, trackers on both web browsing and applications. \n# - YouTube, Spotify, UC and Shareit Ads Blocking. \n# - Reduces page loading time. \n# - Reduces data consumptions. Saves data expenses. \n# - Increases privacy. \n# - No extra abracadabra!\n#\n# -==================================================-\n\n\n''')
f.write('\n'.join('0.0.0.0 ' + url for url in List))
print('[+] Done!')
| [
2,
48443,
14629,
14,
8800,
14,
29412,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
2,
412,
25649,
1143,
12391,
220,
198,
198,
11748,
2956,
297,
571,
13,
25927,
198,
11748,
4818,
8079,
198,
11748,
28686,
198,
11748,
640,
198,
198,
8979,
796,
705,
877,
70,
1143,
14,
65,
2290,
6,
198,
8053,
796,
17635,
198,
2,
6930,
284,
477,
5529,
364,
286,
11453,
8341,
13,
198,
21188,
796,
685,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
2782,
7775,
2782,
273,
42,
7637,
14,
36,
25649,
1143,
14,
9866,
14,
36,
25649,
1143,
17932,
82,
14,
36,
25649,
1143,
17932,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
28292,
9915,
14,
4774,
82,
14,
9866,
14,
33645,
689,
14,
69,
1685,
15515,
12,
70,
15366,
14,
4774,
82,
3256,
198,
197,
6,
4023,
1378,
11246,
44181,
71,
420,
3565,
13,
2398,
14,
4774,
82,
14,
22570,
14,
3256,
198,
197,
6,
5450,
1378,
71,
9967,
13,
76,
24910,
3529,
13,
5431,
89,
14,
4774,
82,
3256,
198,
220,
705,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
27453,
1472,
14,
44,
12162,
6242,
14,
44,
12162,
6242,
13,
5275,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
71,
3768,
82,
48687,
14,
324,
9967,
12,
77,
25634,
259,
12,
4868,
14,
9866,
14,
4774,
82,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
56,
24130,
323,
14,
415,
42800,
5643,
14,
9866,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
1662,
81,
5430,
14,
4774,
82,
12,
9967,
20713,
14,
9866,
14,
4774,
14933,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
37,
671,
28478,
14,
4774,
82,
13,
2302,
8847,
14,
9866,
14,
2860,
13,
17,
78,
22,
7934,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
37,
671,
28478,
14,
4774,
82,
13,
2302,
8847,
14,
9866,
14,
2860,
13,
20489,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
37,
671,
28478,
14,
4774,
82,
13,
2302,
8847,
14,
9866,
14,
2860,
13,
49,
1984,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
37,
671,
28478,
14,
4774,
82,
13,
2302,
8847,
14,
9866,
14,
2860,
13,
4561,
321,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
57,
27650,
35694,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
28292,
9915,
14,
4774,
82,
14,
9866,
14,
7890,
14,
28292,
9915,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
9107,
375,
313,
16,
13,
18300,
23912,
13,
952,
14,
24387,
12235,
263,
43,
1023,
14,
4774,
82,
62,
40259,
3256,
198,
220,
705,
5450,
1378,
9107,
375,
313,
16,
13,
18300,
23912,
13,
952,
14,
24387,
12235,
263,
43,
1023,
14,
4774,
82,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
4561,
321,
26429,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
3398,
25425,
12,
22328,
3398,
14,
47549,
12235,
4868,
14,
9866,
14,
39,
10892,
50,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
1031,
316,
1065,
14,
42,
2885,
4774,
82,
14,
9866,
14,
42,
2885,
4774,
82,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
2782,
14864,
17066,
4561,
88,
1574,
13,
14116,
3256,
198,
220,
705,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
2782,
14864,
2898,
5430,
13,
14116,
3256,
220,
198,
220,
705,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
36,
292,
2645,
396,
2782,
15388,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
28406,
48948,
32419,
13,
14116,
3256,
198,
220,
705,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
28406,
48948,
2898,
5430,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
7279,
8443,
11682,
2782,
82,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
7279,
8443,
44,
3620,
282,
31809,
13,
14116,
3256,
198,
220,
705,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
7279,
8443,
44,
3620,
282,
1574,
13,
14116,
3256,
198,
197,
6,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
33637,
14,
9866,
14,
3103,
332,
353,
14,
17932,
82,
14,
54,
453,
18,
42,
62,
9915,
4868,
13,
14116,
6,
198,
60,
198,
198,
1640,
7502,
287,
26406,
25,
198,
197,
28311,
25,
198,
197,
197,
4798,
10786,
58,
10,
60,
4990,
37418,
1351,
422,
25,
23884,
4458,
18982,
7,
11280,
4008,
198,
197,
197,
81,
796,
2956,
297,
571,
13,
25927,
13,
6371,
9654,
7,
11280,
8,
198,
197,
197,
17932,
796,
374,
13,
961,
6615,
3419,
198,
197,
197,
17932,
796,
685,
87,
13,
12501,
1098,
10786,
48504,
12,
23,
11537,
329,
2124,
287,
14504,
60,
198,
197,
197,
17932,
796,
685,
87,
13,
36311,
3419,
329,
2124,
287,
14504,
60,
198,
197,
197,
17932,
796,
685,
89,
329,
1976,
287,
14504,
611,
1976,
14512,
10148,
290,
1976,
58,
15,
60,
14512,
705,
2,
20520,
198,
197,
197,
17932,
796,
685,
71,
13,
35312,
3419,
58,
16,
60,
329,
289,
287,
14504,
611,
289,
13,
35312,
3419,
58,
15,
60,
287,
37250,
15,
13,
15,
13,
15,
13,
15,
3256,
705,
16799,
13,
15,
13,
15,
13,
16,
6,
11907,
198,
197,
197,
17932,
796,
685,
87,
329,
2124,
287,
14504,
611,
2124,
407,
287,
37250,
36750,
3256,
705,
36750,
13,
17946,
1940,
296,
391,
3256,
705,
17946,
874,
6,
11907,
198,
197,
197,
4798,
10786,
58,
10,
60,
4062,
23884,
18209,
284,
2512,
2637,
13,
18982,
7,
2536,
7,
11925,
7,
17932,
35514,
198,
197,
197,
81,
13,
19836,
3419,
198,
197,
197,
8053,
15853,
14504,
198,
197,
16341,
25,
198,
197,
197,
4798,
10786,
58,
12,
60,
33854,
25,
314,
460,
43054,
83,
19818,
262,
1351,
422,
25,
23884,
4458,
18982,
7,
11280,
4008,
198,
198,
4798,
10786,
58,
10,
60,
3982,
5165,
14184,
16856,
290,
29407,
986,
11537,
198,
8053,
796,
23243,
7,
4868,
7,
2617,
7,
8053,
22305,
198,
4798,
10786,
58,
10,
60,
2034,
3157,
20542,
46331,
986,
11537,
198,
81,
796,
2956,
297,
571,
13,
25927,
13,
6371,
9654,
10786,
5450,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
2782,
7775,
2782,
273,
42,
7637,
14,
36,
25649,
1143,
14,
9866,
14,
36,
25649,
1143,
17932,
82,
14,
36,
25649,
1143,
1199,
2737,
11537,
198,
43617,
46331,
796,
374,
13,
961,
6615,
3419,
198,
43617,
46331,
796,
685,
87,
13,
12501,
1098,
10786,
40477,
12,
23,
11537,
329,
2124,
287,
13183,
46331,
60,
198,
43617,
46331,
796,
685,
87,
13,
36311,
3419,
329,
2124,
287,
13183,
46331,
60,
198,
43617,
46331,
796,
685,
89,
329,
1976,
287,
13183,
46331,
611,
1976,
14512,
10148,
290,
1976,
58,
15,
60,
14512,
705,
2,
20520,
198,
81,
13,
19836,
3419,
198,
198,
1640,
1312,
287,
2837,
7,
15,
11,
18896,
7,
43617,
46331,
8,
2599,
198,
197,
28311,
25,
198,
197,
197,
8053,
13,
28956,
7,
43617,
46331,
58,
72,
12962,
198,
197,
16341,
25,
198,
197,
197,
6603,
198,
198,
4798,
10786,
58,
10,
60,
7472,
18209,
954,
23884,
2637,
13,
18982,
7,
2536,
7,
11925,
7,
8053,
35514,
198,
198,
361,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
418,
13,
6978,
13,
15908,
3672,
7,
8979,
8,
2599,
198,
197,
418,
13,
76,
4335,
17062,
7,
418,
13,
6978,
13,
15908,
3672,
7,
8979,
4008,
198,
198,
4480,
1280,
7,
8979,
11,
705,
86,
11537,
355,
277,
25,
198,
197,
4798,
10786,
58,
10,
60,
22183,
284,
2393,
986,
11537,
198,
197,
69,
13,
13564,
7,
7061,
6,
2,
412,
25649,
1143,
532,
512,
13,
79,
1211,
13,
7617,
1574,
12013,
13,
59,
77,
2,
317,
23791,
4947,
286,
11453,
422,
40300,
4237,
13,
59,
77,
2,
3740,
1378,
7079,
13,
354,
273,
3361,
313,
305,
13,
785,
59,
77,
59,
77,
2,
412,
25649,
1143,
12391,
532,
4401,
6551,
412,
25649,
1143,
9985,
13,
59,
77,
2,
10628,
25,
705,
7061,
1343,
640,
13,
2536,
31387,
7203,
4,
88,
13,
4,
76,
13,
4,
73,
1600,
640,
13,
39870,
2435,
28955,
1343,
705,
7061,
59,
77,
2,
4935,
15151,
25,
3740,
1378,
12567,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
38676,
59,
77,
2,
33782,
8090,
25,
3740,
1378,
1831,
13,
12567,
43667,
13,
785,
14,
36,
25649,
1143,
19703,
3213,
14,
36,
25649,
1143,
38676,
14,
9866,
14,
877,
70,
1143,
14,
65,
2290,
59,
77,
2,
4586,
6153,
25,
23884,
7061,
4458,
18982,
7,
19608,
8079,
13,
19608,
8079,
13,
2197,
22446,
2536,
31387,
10786,
4,
64,
11,
4064,
67,
4064,
65,
4064,
88,
4064,
55,
6,
22305,
198,
197,
69,
13,
13564,
7,
7061,
6,
59,
77,
2,
7472,
9666,
1299,
25,
23884,
59,
77,
59,
77,
7061,
4458,
18982,
7,
2536,
7,
11925,
7,
8053,
35514,
198,
197,
69,
13,
13564,
7,
7061,
6,
59,
77,
2,
532,
4770,
12,
44,
2913,
10613,
12,
4770,
12,
59,
77,
2,
38808,
368,
1215,
273,
532,
3740,
1378,
324,
7775,
324,
967,
7637,
13,
12567,
13,
952,
59,
77,
2,
532,
10052,
25609,
12,
59,
77,
59,
77,
7061,
11537,
198,
197,
69,
13,
13564,
7,
7061,
6,
59,
77,
16799,
13,
15,
13,
15,
13,
16,
1957,
4774,
59,
77,
16799,
13,
15,
13,
15,
13,
16,
1957,
4774,
13,
17946,
1940,
296,
391,
59,
77,
16799,
13,
15,
13,
15,
13,
16,
1957,
59,
77,
13381,
13,
13381,
13,
13381,
13,
13381,
3154,
34004,
400,
455,
59,
77,
3712,
16,
1957,
4774,
59,
77,
3712,
16,
20966,
21,
12,
36750,
59,
77,
3712,
16,
20966,
21,
12,
26268,
1891,
59,
77,
5036,
1795,
3712,
16,
4,
5439,
15,
1957,
4774,
59,
77,
487,
405,
3712,
15,
20966,
21,
12,
12001,
3262,
59,
77,
487,
405,
3712,
15,
20966,
21,
12,
76,
2701,
40290,
59,
77,
487,
2999,
3712,
16,
20966,
21,
12,
439,
77,
4147,
59,
77,
487,
2999,
3712,
17,
20966,
21,
12,
439,
472,
1010,
59,
77,
487,
2999,
3712,
18,
20966,
21,
12,
439,
4774,
82,
59,
77,
15,
13,
15,
13,
15,
13,
15,
657,
13,
15,
13,
15,
13,
15,
59,
77,
59,
77,
59,
77,
2,
532,
4770,
1421,
12,
23595,
12,
4770,
1421,
12,
59,
77,
2,
220,
220,
220,
1303,
4401,
6551,
412,
25649,
1143,
9985,
10776,
0,
1303,
59,
77,
2,
59,
77,
2,
532,
13403,
319,
14504,
82,
2393,
11,
477,
262,
2089,
3404,
10226,
351,
657,
13,
15,
13,
15,
13,
15,
3467,
77,
2,
532,
3082,
16873,
351,
477,
4410,
11,
7692,
286,
7294,
13,
3467,
77,
2,
532,
520,
2012,
306,
7021,
477,
25210,
11,
6428,
86,
3565,
11,
599,
4105,
11,
7869,
11,
2610,
364,
319,
1111,
3992,
23182,
290,
5479,
13,
3467,
77,
2,
532,
7444,
11,
26778,
11,
14417,
290,
8734,
270,
47442,
1086,
8629,
13,
3467,
77,
2,
532,
2297,
26873,
2443,
11046,
640,
13,
3467,
77,
2,
532,
2297,
26873,
1366,
2784,
8544,
13,
311,
3080,
1366,
9307,
13,
3467,
77,
2,
532,
23920,
6782,
13,
3467,
77,
2,
532,
1400,
3131,
450,
11510,
324,
397,
430,
0,
59,
77,
2,
59,
77,
2,
532,
10052,
4770,
855,
12,
59,
77,
59,
77,
59,
77,
7061,
11537,
198,
197,
69,
13,
13564,
10786,
59,
77,
4458,
22179,
10786,
15,
13,
15,
13,
15,
13,
15,
705,
1343,
19016,
329,
19016,
287,
7343,
4008,
198,
197,
4798,
10786,
58,
10,
60,
24429,
0,
11537,
198
] | 2.681468 | 2,207 |
import json
import requests
from settings import *
if __name__ == "__main__":
post_rain_notice()
| [
11748,
33918,
198,
11748,
7007,
198,
6738,
6460,
1330,
1635,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1281,
62,
3201,
62,
42138,
3419,
198
] | 3.028571 | 35 |
from collections import deque
from abc import ABC, abstractmethod
from multiprocessing import Queue as MQueue
from multiprocessing import Process
from redrawing.components.stage import Stage
class Queue(ABC):
'''!
Generic queue for communication between stages.
'''
@abstractmethod
def get(self):
'''!
Returns the first element of the queue.
Returns:
@returns the first element of the queue
'''
...
@abstractmethod
def insert(self, value):
'''!
Insert a value in the end of the queue.
Parameters:
@param value - the value
'''
...
@abstractmethod
def empty(self):
'''!
See if the queue is empty.
Returns:
@returns True if empty
'''
...
@abstractmethod
def full(self):
'''!
See if the queue if full
Returns:
@returns True if full
'''
...
class SimpleQueue(Queue):
'''!
A simple queue. Must not be used for multiprocessing
Uses collections.deque for implement the queue
'''
def get(self):
'''!
Returns the first element of the queue.
Returns:
@returns the first element of the queue
'''
return self.queue.popleft()
def insert(self, value):
'''!
Insert a value in the end of the queue.
Parameters:
@param value - the value
'''
self.queue.append(value)
def empty(self):
'''!
See if the queue is empty.
Returns:
@returns True if empty
'''
if len(self.queue) > 0:
return False
return True
def full(self):
'''!
See if the queue if full
Returns:
@returns True if full
'''
if len(self.queue) >= self.max_size:
return True
return False
class ProcessQueue(Queue):
'''!
Queue for using in multiprocessing.
For single process pipeline, SimpleQueue is better
Uses multiprocessing.queue for implement the queue
'''
def get(self):
'''!
Returns the first element of the queue.
Returns:
@returns the first element of the queue
'''
return self.queue.get()
def insert(self, value):
'''!
Insert a value in the end of the queue.
Parameters:
@param value - the value
'''
self.queue.put(value)
def empty(self):
'''!
See if the queue is empty.
Returns:
@returns True if empty
'''
return self.queue.empty()
def full(self):
'''!
See if the queue if full
Returns:
@returns True if full
'''
return self.queue.full()
class Pipeline(ABC):
'''!
Generic pipeline of stages
'''
def insert_stage(self, stage):
'''!
Inserts a new stage to the pipeline
Parameters:
@param state - the stage
@todo Alterar para o tipo correto de exceção
'''
if not isinstance(stage, Stage):
raise Exception("Stages must be of Stage class")
if stage in self.substages:
return
self.stages.append(stage)
self.substages_configs[stage] = []
@abstractmethod
def create_connection(self, stage_out, id_out, stage_in, id_in, max_size):
'''!
Create a connection between stages
Parameters:
@param stage_out - Stage where the data will come from
@param id_out - ID of the output communication channel
@param stage_in - Stage from where the data will go
@param id_in - ID of the input communication channel
@param max_size - Maximum channel queue size
'''
queue = None
if stage_in.has_input_queue(id_in):
queue = stage_in.input_queue[id_in]
else:
queue = self.create_queue(max_size)
stage_in._setInputQueue(queue, id_in)
stage_out._setOutputQueue(queue, id_out)
@abstractmethod
def run(self):
'''!
Runs the pipeline until error/exception
'''
...
class SingleProcess_Pipeline(Pipeline):
'''!
Pipeline of stages to be runned on a single process
'''
def start(self):
'''!
Starts the stages
Is automatically called by the run and runOnce method
'''
for stage in self.stages:
for substage in self.substages_configs[stage]:
substage["substage"].setup()
stage.setup()
self.started = True
def run(self):
'''!
Runs the pipeline until error/exception
'''
if not self.started:
self.start()
while True:
self.runOnce()
def runOnce(self):
'''!
Runs all the stages once
'''
if not self.started:
self.start()
for stage in self.stages:
for substage in self.substages_configs[stage]:
if substage["run_before"] == True:
substage["substage"].run(stage._context)
stage.run()
for substage in self.substages_configs[stage]:
if substage["run_before"] == False:
substage["substage"].run(stage._context)
class MultiProcess_Pipeline(Pipeline):
'''!
Pipeline of stages runned parallely on multiple process
'''
def _run_stage(self, stage):
'''!
Starts and runs a stage
Parameters:
@param stage - stage to be runned
'''
for substage in self.substages_configs[stage]:
substage["substage"].setup()
stage.setup()
while True:
for substage in self.substages_configs[stage]:
if substage["run_before"] == True:
substage["substage"].run(stage._context)
stage.run()
for substage in self.substages_configs[stage]:
if substage["run_before"] == False:
substage["substage"].run(stage._context)
def run(self):
'''!
Run the stages on multiple process.
Locks the code until the stages end
'''
process = []
for stage in self.stages:
p = Process(target=self._run_stage, args=(stage,))
p.start()
process.append(p)
while 1:
try:
pass
except KeyboardInterrupt:
break
print("TERMINANDO")
for p in process:
p.terminate()
p.join(1)
p.close()
| [
6738,
17268,
1330,
390,
4188,
198,
6738,
450,
66,
1330,
9738,
11,
12531,
24396,
198,
6738,
18540,
305,
919,
278,
1330,
4670,
518,
355,
337,
34991,
198,
6738,
18540,
305,
919,
278,
1330,
10854,
198,
198,
6738,
2266,
1831,
278,
13,
5589,
3906,
13,
14247,
1330,
15371,
198,
198,
4871,
4670,
518,
7,
24694,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
42044,
16834,
329,
6946,
1022,
9539,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
651,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
717,
5002,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
262,
717,
5002,
286,
262,
16834,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
2644,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
7550,
7,
944,
11,
1988,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35835,
257,
1988,
287,
262,
886,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
1988,
532,
262,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2644,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
6565,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
318,
6565,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
6565,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2644,
628,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
1336,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
611,
1336,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
1336,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2644,
198,
198,
4871,
17427,
34991,
7,
34991,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
317,
2829,
16834,
13,
12039,
407,
307,
973,
329,
18540,
305,
919,
278,
628,
220,
220,
220,
220,
220,
220,
220,
36965,
17268,
13,
2934,
4188,
329,
3494,
262,
16834,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
651,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
717,
5002,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
262,
717,
5002,
286,
262,
16834,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
36560,
13,
79,
643,
701,
3419,
628,
220,
220,
220,
825,
7550,
7,
944,
11,
1988,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35835,
257,
1988,
287,
262,
886,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
1988,
532,
262,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36560,
13,
33295,
7,
8367,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
6565,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
318,
6565,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
6565,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
944,
13,
36560,
8,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
628,
220,
220,
220,
825,
1336,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
611,
1336,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
1336,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
944,
13,
36560,
8,
18189,
2116,
13,
9806,
62,
7857,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
198,
4871,
10854,
34991,
7,
34991,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
4670,
518,
329,
1262,
287,
18540,
305,
919,
278,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1114,
2060,
1429,
11523,
11,
17427,
34991,
318,
1365,
198,
220,
220,
220,
220,
220,
220,
220,
36965,
18540,
305,
919,
278,
13,
36560,
329,
3494,
262,
16834,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
825,
651,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
717,
5002,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
262,
717,
5002,
286,
262,
16834,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
36560,
13,
1136,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
7550,
7,
944,
11,
1988,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35835,
257,
1988,
287,
262,
886,
286,
262,
16834,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
1988,
532,
262,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36560,
13,
1996,
7,
8367,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
6565,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
318,
6565,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
6565,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
36560,
13,
28920,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
1336,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4091,
611,
262,
16834,
611,
1336,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
7783,
82,
6407,
611,
1336,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
36560,
13,
12853,
3419,
198,
198,
4871,
37709,
7,
24694,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
42044,
11523,
286,
9539,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
7550,
62,
14247,
7,
944,
11,
3800,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35835,
82,
257,
649,
3800,
284,
262,
11523,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
1181,
532,
262,
3800,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
83,
24313,
32770,
283,
31215,
267,
8171,
78,
1162,
1186,
78,
390,
43748,
16175,
28749,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
39098,
7,
14247,
11,
15371,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7203,
1273,
1095,
1276,
307,
286,
15371,
1398,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3800,
287,
2116,
13,
7266,
301,
1095,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
301,
1095,
13,
33295,
7,
14247,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
60,
796,
17635,
628,
220,
220,
220,
2488,
397,
8709,
24396,
628,
220,
220,
220,
825,
2251,
62,
38659,
7,
944,
11,
3800,
62,
448,
11,
4686,
62,
448,
11,
3800,
62,
259,
11,
4686,
62,
259,
11,
3509,
62,
7857,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13610,
257,
4637,
1022,
9539,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
3800,
62,
448,
532,
15371,
810,
262,
1366,
481,
1282,
422,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
4686,
62,
448,
532,
4522,
286,
262,
5072,
6946,
6518,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
3800,
62,
259,
532,
15371,
422,
810,
262,
1366,
481,
467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
4686,
62,
259,
532,
4522,
286,
262,
5128,
6946,
6518,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
3509,
62,
7857,
532,
22246,
6518,
16834,
2546,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
16834,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3800,
62,
259,
13,
10134,
62,
15414,
62,
36560,
7,
312,
62,
259,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16834,
796,
3800,
62,
259,
13,
15414,
62,
36560,
58,
312,
62,
259,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16834,
796,
2116,
13,
17953,
62,
36560,
7,
9806,
62,
7857,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3800,
62,
259,
13557,
2617,
20560,
34991,
7,
36560,
11,
4686,
62,
259,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3800,
62,
448,
13557,
2617,
26410,
34991,
7,
36560,
11,
4686,
62,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
1057,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44743,
262,
11523,
1566,
4049,
14,
1069,
4516,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2644,
198,
220,
220,
198,
198,
4871,
14206,
18709,
62,
47,
541,
4470,
7,
47,
541,
4470,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
37709,
286,
9539,
284,
307,
1057,
2817,
319,
257,
2060,
1429,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
825,
923,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50181,
262,
9539,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1148,
6338,
1444,
416,
262,
1057,
290,
1057,
7454,
2446,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
329,
3800,
287,
2116,
13,
301,
1095,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
40406,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3800,
13,
40406,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46981,
796,
6407,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
1057,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44743,
262,
11523,
1566,
4049,
14,
1069,
4516,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2116,
13,
46981,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9688,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5143,
7454,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
825,
1057,
7454,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44743,
477,
262,
9539,
1752,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2116,
13,
46981,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9688,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
329,
3800,
287,
2116,
13,
301,
1095,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3293,
496,
14692,
5143,
62,
19052,
8973,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
5143,
7,
14247,
13557,
22866,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3800,
13,
5143,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3293,
496,
14692,
5143,
62,
19052,
8973,
6624,
10352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
5143,
7,
14247,
13557,
22866,
8,
628,
198,
4871,
15237,
18709,
62,
47,
541,
4470,
7,
47,
541,
4470,
2599,
198,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
37709,
286,
9539,
1057,
2817,
9315,
306,
319,
3294,
1429,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
628,
220,
220,
220,
825,
4808,
5143,
62,
14247,
7,
944,
11,
3800,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50181,
290,
4539,
257,
3800,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
17143,
3800,
532,
3800,
284,
307,
1057,
2817,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
40406,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
3800,
13,
40406,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3293,
496,
14692,
5143,
62,
19052,
8973,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
5143,
7,
14247,
13557,
22866,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3800,
13,
5143,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
3293,
496,
287,
2116,
13,
7266,
301,
1095,
62,
11250,
82,
58,
14247,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3293,
496,
14692,
5143,
62,
19052,
8973,
6624,
10352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3293,
496,
14692,
7266,
14247,
1,
4083,
5143,
7,
14247,
13557,
22866,
8,
628,
220,
220,
220,
825,
1057,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5660,
262,
9539,
319,
3294,
1429,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
406,
3320,
262,
2438,
1566,
262,
9539,
886,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
1429,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
329,
3800,
287,
2116,
13,
301,
1095,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
796,
10854,
7,
16793,
28,
944,
13557,
5143,
62,
14247,
11,
26498,
16193,
14247,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
13,
9688,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1429,
13,
33295,
7,
79,
8,
628,
220,
220,
220,
220,
220,
220,
220,
981,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
31973,
9492,
3622,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
5781,
23678,
6981,
46,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
329,
279,
287,
1429,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
13,
23705,
378,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
13,
22179,
7,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
13,
19836,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220
] | 1.974973 | 3,676 |
"""
Contains Python "bindings" to molecule object and Python functions
utilizing molecule object key functionalities
The intent is to provide a Pythonic interface to mo utilities and, thus,
enable easy/consistent use of mo from within python programs.
Testing:
$ python <path-to-location>/pymo.py
"""
import os
import subprocess as sp
import shlex
import shutil
import sys
import argparse
import logging
import unittest
from tempfile import NamedTemporaryFile, mkdtemp
log = logging.getLogger('lilly.' + __name__)
log.addHandler(logging.NullHandler())
build_dir = 'Linux'
try:
build_dir = os.environ['BUILD_DIR']
except EnvironmentError:
pass
home_dir = os.environ['LILLYMOL_HOME']
root_dir = home_dir + '/bin/' + build_dir
# dictionary of commands that will be turned into functions
# function_name: [script_name, debug_message, default_params_dict]
mo_tool_map = {
'dicer': [root_dir + '/dicer',
'Recursively cuts molecules based on queries',
{}],
'fileconv': [root_dir + '/fileconv',
'file/molecule conversion utilities',
{}],
'iwdescr': [root_dir + '/iwdescr',
'compute physicochemical descriptors using iwdescr',
{'-l': ''}],
'make_these_molecules': [root_dir + '/make_these_molecules',
'Makes molecules from isotopically labelled '
'reagents according to make file, not '
'combinatorial join',
{}],
'preferred_smiles': [root_dir + '/preferred_smiles',
'',
{}],
'alogp': [root_dir + '/abraham',
'',
{'-l': '',
'-F': home_dir + '/contrib/data/queries/abraham/Abraham',
'-P': home_dir + '/contrib/data/queries/abraham/Alpha2H',
'-g': 'all' }]
}
def __function_generator(fct_name,
script_name,
debug_msg,
default_params_dict,
expect_zero=True):
"""
A generator for functions which runs one of LillyMol scripts with a
predefined set of parameters.
:param str fct_name: the function name of the newly generated function
:param script_name: your LillyMol script path (from mo_tool above)
:param debug_msg: quick message about what the script does (from mo_tool above)
:param default_params_dict: default parameters
:param expect_zero: whether to expect zero as a return value from the script
:return: a function which you can call to run the script
:rtype: callable
"""
funct.__name__ = fct_name
funct.__doc__ = debug_msg
return funct
for name, params in list(mo_tool_map.items()):
nparams = len(params)
if not (3 <= nparams <= 5):
raise IndexError('mo_tool_map: "{}" has {:d} parameter(s) but should '
'have 3-5'.format(name, nparams))
locals()[name] = __function_generator(name, *params)
def make_these_molecules(rgnt_list, make_these_file, reaction_file_list, outfile=None, params_dict={}, debug=True,
loggero=None):
"""
Alternative to trxn, used in MMP code for generating new mols from MMP's, trxn version would be alternative:
For connecting one bond (two components, single cut fragments):
trxn.sh -S - -r oneConnection.rxn partOne.smi partTwo.smi
For connecting two bonds (three component, two cut fragments):
trxn.sh -S -rxn -S - -r twoConnection.rxn partThree.smi partOne.smi partTwo.smi
BUT, if we have a long list of different contexts (partOne) and don't want exhaustive enumeration, specify rxn's:
make_these_molecules.sh -R oneConnection.rxn -M m2Make.txt -S - partOne.smi partTwo.smi
In this case, you can put all context fragments SMILES (context1a, context 1b, ...) in one reagent file, and
all fragments SMILES (frag1, frag2, ...) in the second reagent file. If you have something like (context1a frag1\n
context1a frag2\ncontext1b frag3\n...) in your m2Make.txt file, you will create the molecules you wanted
"""
log.debug("Generating virtual compounds using rxn and reagents supplied plus specified combinations file")
# prep reagents file string
rgnt_string = " ".join(rgnt_list)
log.debug("These are the reagent files...." + str(rgnt_string))
# prep params string
params_string = " "
for k, v in list(params_dict.items()):
params_string += k + " " + v + " "
params_string = params_string[:-1]
# set outfile
# improved a bit to handle files with '.' in main name, other than in the extension
if outfile:
if outfile[-4:] == ".smi" or outfile[-4:] == ".txt":
params_string += " -S " + os.path.splitext(outfile)[0]
else:
params_string += " -S " + outfile
reaction_file = ""
for rxn_file in reaction_file_list: # todo: if single string, this is split in characters
reaction_file += ' -R ' + rxn_file
cmd_line = (mo_tool_map['make_these_molecules'][0] + reaction_file +
' -M ' + make_these_file + " " + params_string + " " +
rgnt_string)
log.debug("Executing: %s" % cmd_line)
#if debug:
#print(cmd_line)
my_proc = sp.Popen(shlex.split(cmd_line), stdout=None, stderr=sp.PIPE,
shell=False)
for line in my_proc.stderr.readlines():
log.debug(line.rstrip())
exit_status = my_proc.wait()
log.debug("Done generating compounds")
return exit_status
#####################################################
class _TestPymo(unittest.TestCase):
"""Test class for pymo module
Example usage:
python pymo.py (to execute all tests)
python pymo.py -c (for verbose console logging)
python pymo.py -f mylog.log (for logging to file mylog.log)
python pymo.py -c -f mylog.log (for both)
python pymo.py _Test_pymo.test_fetch_smiles # (to execute only the specified test)
coverage run pymo.py (to run test code coverage analysis)
coverage report pymo.py (to view the result of the test code coverage analysis)
"""
def setUp(self):
"""setup test data location, unittest config and logger"""
# location of test data
self.test_data_location = root_dir + '/contrib/script/py/mmp/testdata/'
# temp output file and dir
self.temp_inp_file = NamedTemporaryFile(encoding='utf-8', mode='wt', suffix='.smi', delete=False)
self.temp_out_file = NamedTemporaryFile(encoding='utf-8', mode='wt', delete=False)
self.temp_out_dir = mkdtemp()
test_smiles = {
# basic test set - all the below id's and structures are CHEMBL
'3105327': 'Cc1ccc2c(ccn2c3nc(cs3)c4cc(ccc4F)C(F)(F)F)c1',
'1526778': 'CC(=O)c1c(C)n(c(C)c1C(=O)C)c2nc(c(C)s2)c3ccc(C)c(C)c3',
'1494678': 'CC(=O)c1c(C)n(c(C)c1C(=O)C)c2nc(c(C)s2)c3ccccc3',
'472166': 'OC(CCn1ccnc1)(c2ccccc2)c3ccccc3',
'69798': 'Cc1nccn1CCC(O)(c2ccccc2)c3ccccc3',
'367346': 'Cc1sc(N)nc1c2cccc(Cl)c2',
'366881': 'Cc1sc(N)nc1c2ccc(Cl)c(Cl)c2',
'1477460': 'COc1ccc(cc1)c2nc(sc2C)n3c(C)c(C(=O)C)c(C(=O)C)c3C',
'1441050': 'COc1ccc(cc1OC)c2nc(sc2C)n3c(C)c(C(=O)C)c(C(=O)C)c3C'
}
# write test data to temp file 01
for smi_id, smi in test_smiles.items():
string = smi+' '+smi_id+'\n'
self.temp_inp_file.write(string)
self.temp_inp_file.close()
def tearDown(self):
"""cleanup test data and settings"""
# Clean up the directory
# os.removedirs(self.temp_out_dir)
shutil.rmtree(self.temp_out_dir)
if __name__ == "__main__":
# optional command line flags
parser = argparse.ArgumentParser()
parser.add_argument('-l', '--log_file',
help='Name of file to place debug log info in')
parser.add_argument('-c', '--console',
help='Switch on console logging',
default=False,
action='store_true')
args = parser.parse_args()
#print(args)
logger_file = args.log_file
console_on = args.console
pymotest_logger = logging.getLogger("pymo.testlogger")
pymotest_logger.setLevel(logging.DEBUG)
log_formatter = logging.Formatter("%(asctime)s [%(funcName)-12.12s] "
"[%(levelname)-5.5s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S")
if console_on:
print("Switched on console")
h1 = logging.StreamHandler(stream=sys.stdout)
h1.setLevel(logging.DEBUG)
h1.setFormatter(log_formatter)
pymotest_logger.addHandler(h1)
else:
print("console off")
if logger_file is not None:
print(("Switched on logging to file: {}".format(logger_file)))
fileHandler = logging.FileHandler(filename=logger_file)
fileHandler.setFormatter(log_formatter)
fileHandler.setLevel(logging.DEBUG)
pymotest_logger.addHandler(fileHandler)
else:
print("file logging off")
if console_on is False and logger_file is None:
pymotest_logger.setLevel(logging.CRITICAL)
unittest.main()
| [
37811,
198,
4264,
1299,
11361,
366,
21653,
654,
1,
284,
27756,
2134,
290,
11361,
5499,
198,
22602,
2890,
27756,
2134,
1994,
10345,
871,
198,
464,
6824,
318,
284,
2148,
257,
11361,
291,
7071,
284,
6941,
20081,
290,
11,
4145,
11,
198,
21633,
2562,
14,
5936,
7609,
779,
286,
6941,
422,
1626,
21015,
4056,
13,
198,
198,
44154,
25,
198,
3,
21015,
1279,
6978,
12,
1462,
12,
24886,
29,
14,
79,
4948,
78,
13,
9078,
198,
37811,
198,
198,
11748,
28686,
198,
11748,
850,
14681,
355,
599,
198,
11748,
427,
2588,
198,
11748,
4423,
346,
198,
11748,
25064,
198,
11748,
1822,
29572,
198,
11748,
18931,
198,
11748,
555,
715,
395,
198,
6738,
20218,
7753,
1330,
34441,
12966,
5551,
8979,
11,
33480,
67,
29510,
198,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
10786,
75,
6548,
2637,
1343,
11593,
3672,
834,
8,
198,
6404,
13,
2860,
25060,
7,
6404,
2667,
13,
35067,
25060,
28955,
198,
198,
11249,
62,
15908,
796,
705,
19314,
6,
198,
198,
28311,
25,
198,
220,
220,
220,
220,
220,
1382,
62,
15908,
796,
28686,
13,
268,
2268,
17816,
19499,
26761,
62,
34720,
20520,
198,
16341,
9344,
12331,
25,
198,
220,
220,
220,
220,
1208,
198,
198,
11195,
62,
15908,
796,
28686,
13,
268,
2268,
17816,
43,
8267,
56,
44,
3535,
62,
39069,
20520,
198,
15763,
62,
15908,
796,
1363,
62,
15908,
1343,
31051,
8800,
14,
6,
1343,
1382,
62,
15908,
198,
198,
2,
22155,
286,
9729,
326,
481,
307,
2900,
656,
5499,
198,
2,
2163,
62,
3672,
25,
685,
12048,
62,
3672,
11,
14257,
62,
20500,
11,
4277,
62,
37266,
62,
11600,
60,
198,
5908,
62,
25981,
62,
8899,
796,
1391,
198,
220,
220,
220,
705,
67,
16647,
10354,
685,
15763,
62,
15908,
1343,
31051,
67,
16647,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
6690,
1834,
2280,
6630,
17745,
1912,
319,
20743,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23884,
4357,
198,
220,
220,
220,
705,
7753,
42946,
10354,
685,
15763,
62,
15908,
1343,
31051,
7753,
42946,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7753,
14,
76,
2305,
23172,
11315,
20081,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23884,
4357,
198,
220,
220,
220,
705,
14246,
20147,
81,
10354,
685,
15763,
62,
15908,
1343,
31051,
14246,
20147,
81,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5589,
1133,
22270,
32864,
12145,
669,
1262,
1312,
16993,
3798,
81,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
29001,
75,
10354,
10148,
92,
4357,
198,
220,
220,
220,
705,
15883,
62,
27218,
62,
76,
2305,
13930,
10354,
685,
15763,
62,
15908,
1343,
31051,
15883,
62,
27218,
62,
76,
2305,
13930,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
44,
1124,
17745,
422,
31624,
404,
1146,
30538,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
260,
49638,
1864,
284,
787,
2393,
11,
407,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
785,
8800,
21592,
4654,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23884,
4357,
198,
220,
220,
220,
705,
3866,
18186,
62,
5796,
2915,
10354,
685,
15763,
62,
15908,
1343,
31051,
3866,
18186,
62,
5796,
2915,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23884,
4357,
198,
220,
220,
220,
705,
11794,
79,
10354,
685,
15763,
62,
15908,
1343,
31051,
397,
13220,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
29001,
75,
10354,
705,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12,
37,
10354,
1363,
62,
15908,
1343,
31051,
3642,
822,
14,
7890,
14,
421,
10640,
14,
397,
13220,
14,
4826,
13220,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12,
47,
10354,
1363,
62,
15908,
1343,
31051,
3642,
822,
14,
7890,
14,
421,
10640,
14,
397,
13220,
14,
38077,
17,
39,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12,
70,
10354,
705,
439,
6,
1782,
60,
198,
92,
198,
198,
4299,
11593,
8818,
62,
8612,
1352,
7,
69,
310,
62,
3672,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4226,
62,
3672,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14257,
62,
19662,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
37266,
62,
11600,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
22570,
28,
17821,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
17301,
329,
5499,
543,
4539,
530,
286,
35134,
44,
349,
14750,
351,
257,
198,
220,
220,
220,
2747,
18156,
900,
286,
10007,
13,
628,
220,
220,
220,
1058,
17143,
965,
277,
310,
62,
3672,
25,
262,
2163,
1438,
286,
262,
8308,
7560,
2163,
198,
220,
220,
220,
1058,
17143,
4226,
62,
3672,
25,
534,
35134,
44,
349,
4226,
3108,
357,
6738,
6941,
62,
25981,
2029,
8,
198,
220,
220,
220,
1058,
17143,
14257,
62,
19662,
25,
2068,
3275,
546,
644,
262,
4226,
857,
357,
6738,
6941,
62,
25981,
2029,
8,
198,
220,
220,
220,
1058,
17143,
4277,
62,
37266,
62,
11600,
25,
4277,
10007,
198,
220,
220,
220,
1058,
17143,
1607,
62,
22570,
25,
1771,
284,
1607,
6632,
355,
257,
1441,
1988,
422,
262,
4226,
198,
220,
220,
220,
1058,
7783,
25,
257,
2163,
543,
345,
460,
869,
284,
1057,
262,
4226,
198,
220,
220,
220,
1058,
81,
4906,
25,
869,
540,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1257,
310,
13,
834,
3672,
834,
796,
277,
310,
62,
3672,
198,
220,
220,
220,
1257,
310,
13,
834,
15390,
834,
796,
14257,
62,
19662,
628,
220,
220,
220,
1441,
1257,
310,
628,
198,
1640,
1438,
11,
42287,
287,
1351,
7,
5908,
62,
25981,
62,
8899,
13,
23814,
3419,
2599,
198,
220,
220,
220,
299,
37266,
796,
18896,
7,
37266,
8,
628,
220,
220,
220,
611,
407,
357,
18,
19841,
299,
37266,
19841,
642,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
12901,
12331,
10786,
5908,
62,
25981,
62,
8899,
25,
45144,
36786,
468,
46110,
67,
92,
11507,
7,
82,
8,
475,
815,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
14150,
513,
12,
20,
4458,
18982,
7,
3672,
11,
299,
37266,
4008,
628,
220,
220,
220,
17205,
3419,
58,
3672,
60,
796,
11593,
8818,
62,
8612,
1352,
7,
3672,
11,
1635,
37266,
8,
628,
198,
4299,
787,
62,
27218,
62,
76,
2305,
13930,
7,
41345,
429,
62,
4868,
11,
787,
62,
27218,
62,
7753,
11,
6317,
62,
7753,
62,
4868,
11,
503,
7753,
28,
14202,
11,
42287,
62,
11600,
34758,
5512,
14257,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
78,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27182,
284,
491,
87,
77,
11,
973,
287,
337,
7378,
2438,
329,
15453,
649,
285,
10220,
422,
337,
7378,
338,
11,
491,
87,
77,
2196,
561,
307,
5559,
25,
198,
220,
220,
220,
1114,
14320,
530,
6314,
357,
11545,
6805,
11,
2060,
2005,
21441,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
491,
87,
77,
13,
1477,
220,
532,
50,
532,
532,
81,
530,
32048,
13,
40914,
77,
636,
3198,
13,
5796,
72,
636,
7571,
13,
5796,
72,
198,
220,
220,
220,
1114,
14320,
734,
13100,
357,
15542,
7515,
11,
734,
2005,
21441,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
491,
87,
77,
13,
1477,
220,
532,
50,
532,
40914,
77,
532,
50,
532,
532,
81,
734,
32048,
13,
40914,
77,
636,
12510,
13,
5796,
72,
220,
636,
3198,
13,
5796,
72,
636,
7571,
13,
5796,
72,
198,
220,
220,
220,
21728,
11,
611,
356,
423,
257,
890,
1351,
286,
1180,
26307,
357,
3911,
3198,
8,
290,
836,
470,
765,
36049,
27056,
341,
11,
11986,
374,
87,
77,
338,
25,
198,
220,
220,
220,
220,
220,
220,
220,
787,
62,
27218,
62,
76,
2305,
13930,
13,
1477,
532,
49,
530,
32048,
13,
40914,
77,
532,
44,
285,
17,
12050,
13,
14116,
532,
50,
532,
636,
3198,
13,
5796,
72,
636,
7571,
13,
5796,
72,
198,
220,
220,
220,
554,
428,
1339,
11,
345,
460,
1234,
477,
4732,
21441,
9447,
4146,
1546,
357,
22866,
16,
64,
11,
4732,
352,
65,
11,
2644,
8,
220,
287,
530,
302,
25781,
2393,
11,
290,
198,
220,
220,
220,
477,
21441,
9447,
4146,
1546,
357,
8310,
363,
16,
11,
7956,
17,
11,
2644,
8,
287,
262,
1218,
302,
25781,
2393,
13,
220,
1002,
345,
423,
1223,
588,
357,
22866,
16,
64,
7956,
16,
59,
77,
198,
220,
220,
220,
4732,
16,
64,
7956,
17,
59,
77,
22866,
16,
65,
7956,
18,
59,
77,
23029,
287,
534,
285,
17,
12050,
13,
14116,
2393,
11,
345,
481,
2251,
262,
17745,
345,
2227,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2604,
13,
24442,
7203,
8645,
803,
7166,
16439,
1262,
374,
87,
77,
290,
302,
49638,
14275,
5556,
7368,
17790,
2393,
4943,
628,
220,
220,
220,
1303,
3143,
302,
49638,
2393,
4731,
198,
220,
220,
220,
48670,
429,
62,
8841,
796,
366,
27071,
22179,
7,
41345,
429,
62,
4868,
8,
628,
220,
220,
220,
2604,
13,
24442,
7203,
4711,
389,
262,
302,
25781,
3696,
1106,
1,
1343,
965,
7,
41345,
429,
62,
8841,
4008,
628,
220,
220,
220,
1303,
3143,
42287,
4731,
198,
220,
220,
220,
42287,
62,
8841,
796,
366,
366,
198,
220,
220,
220,
329,
479,
11,
410,
287,
1351,
7,
37266,
62,
11600,
13,
23814,
3419,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
42287,
62,
8841,
15853,
479,
1343,
366,
366,
1343,
410,
1343,
366,
366,
198,
220,
220,
220,
42287,
62,
8841,
796,
42287,
62,
8841,
58,
21912,
16,
60,
628,
220,
220,
220,
1303,
900,
503,
7753,
198,
220,
220,
220,
1303,
6596,
257,
1643,
284,
5412,
3696,
351,
705,
2637,
287,
1388,
1438,
11,
584,
621,
287,
262,
7552,
198,
220,
220,
220,
611,
503,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
503,
7753,
58,
12,
19,
47715,
6624,
27071,
5796,
72,
1,
393,
503,
7753,
58,
12,
19,
47715,
6624,
27071,
14116,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
62,
8841,
15853,
366,
532,
50,
366,
1343,
28686,
13,
6978,
13,
22018,
578,
742,
7,
448,
7753,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42287,
62,
8841,
15853,
366,
532,
50,
366,
1343,
503,
7753,
628,
220,
220,
220,
6317,
62,
7753,
796,
13538,
198,
220,
220,
220,
329,
374,
87,
77,
62,
7753,
287,
6317,
62,
7753,
62,
4868,
25,
220,
1303,
284,
4598,
25,
611,
2060,
4731,
11,
428,
318,
6626,
287,
3435,
198,
220,
220,
220,
220,
220,
220,
220,
6317,
62,
7753,
15853,
705,
532,
49,
705,
1343,
374,
87,
77,
62,
7753,
628,
220,
220,
220,
23991,
62,
1370,
796,
357,
5908,
62,
25981,
62,
8899,
17816,
15883,
62,
27218,
62,
76,
2305,
13930,
6,
7131,
15,
60,
1343,
6317,
62,
7753,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
532,
44,
705,
1343,
787,
62,
27218,
62,
7753,
1343,
366,
366,
1343,
42287,
62,
8841,
1343,
366,
366,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
48670,
429,
62,
8841,
8,
628,
220,
220,
220,
2604,
13,
24442,
7203,
23002,
15129,
25,
4064,
82,
1,
4064,
23991,
62,
1370,
8,
198,
220,
220,
220,
1303,
361,
14257,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4798,
7,
28758,
62,
1370,
8,
628,
220,
220,
220,
616,
62,
36942,
796,
599,
13,
47,
9654,
7,
1477,
2588,
13,
35312,
7,
28758,
62,
1370,
828,
14367,
448,
28,
14202,
11,
336,
1082,
81,
28,
2777,
13,
47,
4061,
36,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7582,
28,
25101,
8,
628,
220,
220,
220,
329,
1627,
287,
616,
62,
36942,
13,
301,
1082,
81,
13,
961,
6615,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7,
1370,
13,
81,
36311,
28955,
628,
220,
220,
220,
8420,
62,
13376,
796,
616,
62,
36942,
13,
17077,
3419,
628,
220,
220,
220,
2604,
13,
24442,
7203,
45677,
15453,
16439,
4943,
628,
220,
220,
220,
1441,
8420,
62,
13376,
628,
198,
29113,
14468,
4242,
2,
198,
4871,
4808,
14402,
47,
4948,
78,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
14402,
1398,
329,
279,
4948,
78,
8265,
628,
220,
220,
220,
17934,
8748,
25,
628,
220,
220,
220,
220,
21015,
279,
4948,
78,
13,
9078,
357,
1462,
12260,
477,
5254,
8,
628,
220,
220,
220,
220,
21015,
279,
4948,
78,
13,
9078,
532,
66,
357,
1640,
15942,
577,
8624,
18931,
8,
198,
220,
220,
220,
220,
21015,
279,
4948,
78,
13,
9078,
532,
69,
616,
6404,
13,
6404,
357,
1640,
18931,
284,
2393,
616,
6404,
13,
6404,
8,
198,
220,
220,
220,
220,
21015,
279,
4948,
78,
13,
9078,
532,
66,
532,
69,
616,
6404,
13,
6404,
357,
1640,
1111,
8,
628,
220,
220,
220,
220,
21015,
279,
4948,
78,
13,
9078,
4808,
14402,
62,
79,
4948,
78,
13,
9288,
62,
69,
7569,
62,
5796,
2915,
1303,
357,
1462,
12260,
691,
262,
7368,
1332,
8,
628,
220,
220,
220,
220,
5197,
1057,
279,
4948,
78,
13,
9078,
357,
1462,
1057,
1332,
2438,
5197,
3781,
8,
198,
220,
220,
220,
220,
5197,
989,
279,
4948,
78,
13,
9078,
357,
1462,
1570,
262,
1255,
286,
262,
1332,
2438,
5197,
3781,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
900,
4933,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
40406,
1332,
1366,
4067,
11,
555,
715,
395,
4566,
290,
49706,
37811,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4067,
286,
1332,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9288,
62,
7890,
62,
24886,
796,
6808,
62,
15908,
1343,
31051,
3642,
822,
14,
12048,
14,
9078,
14,
3020,
79,
14,
9288,
7890,
14,
6,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
20218,
5072,
2393,
290,
26672,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29510,
62,
259,
79,
62,
7753,
796,
34441,
12966,
5551,
8979,
7,
12685,
7656,
11639,
40477,
12,
23,
3256,
4235,
11639,
46569,
3256,
35488,
28,
4458,
5796,
72,
3256,
12233,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29510,
62,
448,
62,
7753,
796,
34441,
12966,
5551,
8979,
7,
12685,
7656,
11639,
40477,
12,
23,
3256,
4235,
11639,
46569,
3256,
12233,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29510,
62,
448,
62,
15908,
796,
33480,
67,
29510,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
5796,
2915,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4096,
1332,
900,
532,
477,
262,
2174,
4686,
338,
290,
8573,
389,
5870,
3620,
9148,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
26717,
4310,
1983,
10354,
705,
34,
66,
16,
535,
66,
17,
66,
7,
535,
77,
17,
66,
18,
10782,
7,
6359,
18,
8,
66,
19,
535,
7,
535,
66,
19,
37,
8,
34,
7,
37,
5769,
37,
8,
37,
8,
66,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1314,
2075,
39761,
10354,
705,
4093,
7,
28,
46,
8,
66,
16,
66,
7,
34,
8,
77,
7,
66,
7,
34,
8,
66,
16,
34,
7,
28,
46,
8,
34,
8,
66,
17,
10782,
7,
66,
7,
34,
8,
82,
17,
8,
66,
18,
535,
66,
7,
34,
8,
66,
7,
34,
8,
66,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1415,
5824,
30924,
10354,
705,
4093,
7,
28,
46,
8,
66,
16,
66,
7,
34,
8,
77,
7,
66,
7,
34,
8,
66,
16,
34,
7,
28,
46,
8,
34,
8,
66,
17,
10782,
7,
66,
7,
34,
8,
82,
17,
8,
66,
18,
535,
535,
66,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2857,
20666,
21,
10354,
705,
4503,
7,
4093,
77,
16,
535,
10782,
16,
5769,
66,
17,
535,
535,
66,
17,
8,
66,
18,
535,
535,
66,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3388,
43240,
10354,
705,
34,
66,
16,
77,
535,
77,
16,
46361,
7,
46,
5769,
66,
17,
535,
535,
66,
17,
8,
66,
18,
535,
535,
66,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27824,
30557,
10354,
705,
34,
66,
16,
1416,
7,
45,
8,
10782,
16,
66,
17,
535,
535,
7,
2601,
8,
66,
17,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2623,
3104,
6659,
10354,
705,
34,
66,
16,
1416,
7,
45,
8,
10782,
16,
66,
17,
535,
66,
7,
2601,
8,
66,
7,
2601,
8,
66,
17,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1415,
3324,
34716,
10354,
705,
8220,
66,
16,
535,
66,
7,
535,
16,
8,
66,
17,
10782,
7,
1416,
17,
34,
8,
77,
18,
66,
7,
34,
8,
66,
7,
34,
7,
28,
46,
8,
34,
8,
66,
7,
34,
7,
28,
46,
8,
34,
8,
66,
18,
34,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18444,
940,
1120,
10354,
705,
8220,
66,
16,
535,
66,
7,
535,
16,
4503,
8,
66,
17,
10782,
7,
1416,
17,
34,
8,
77,
18,
66,
7,
34,
8,
66,
7,
34,
7,
28,
46,
8,
34,
8,
66,
7,
34,
7,
28,
46,
8,
34,
8,
66,
18,
34,
6,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3551,
1332,
1366,
284,
20218,
2393,
5534,
198,
220,
220,
220,
220,
220,
220,
220,
329,
895,
72,
62,
312,
11,
895,
72,
287,
1332,
62,
5796,
2915,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4731,
796,
895,
72,
10,
6,
705,
10,
5796,
72,
62,
312,
10,
6,
59,
77,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29510,
62,
259,
79,
62,
7753,
13,
13564,
7,
8841,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29510,
62,
259,
79,
62,
7753,
13,
19836,
3419,
628,
220,
220,
220,
825,
11626,
8048,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
27773,
929,
1332,
1366,
290,
6460,
37811,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5985,
510,
262,
8619,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
28686,
13,
2787,
2668,
17062,
7,
944,
13,
29510,
62,
448,
62,
15908,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4423,
346,
13,
81,
16762,
631,
7,
944,
13,
29510,
62,
448,
62,
15908,
8,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
628,
220,
220,
220,
1303,
11902,
3141,
1627,
9701,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
12,
75,
3256,
705,
438,
6404,
62,
7753,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
5376,
286,
2393,
284,
1295,
14257,
2604,
7508,
287,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
12,
66,
3256,
705,
438,
41947,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
38978,
319,
8624,
18931,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
11639,
8095,
62,
7942,
11537,
628,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
220,
220,
220,
1303,
4798,
7,
22046,
8,
198,
220,
220,
220,
49706,
62,
7753,
796,
26498,
13,
6404,
62,
7753,
198,
220,
220,
220,
8624,
62,
261,
796,
26498,
13,
41947,
628,
220,
220,
220,
279,
4948,
313,
395,
62,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7203,
79,
4948,
78,
13,
9288,
6404,
1362,
4943,
198,
220,
220,
220,
279,
4948,
313,
395,
62,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
628,
220,
220,
220,
2604,
62,
687,
1436,
796,
18931,
13,
8479,
1436,
7203,
4,
7,
292,
310,
524,
8,
82,
685,
4,
7,
20786,
5376,
13219,
1065,
13,
1065,
82,
60,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12878,
4,
7,
5715,
3672,
13219,
20,
13,
20,
82,
60,
4064,
7,
20500,
8,
82,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
69,
16762,
2625,
4,
56,
12,
4,
76,
12,
4,
67,
4064,
39,
25,
4,
44,
25,
4,
50,
4943,
628,
220,
220,
220,
611,
8624,
62,
261,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
10462,
10981,
319,
8624,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
289,
16,
796,
18931,
13,
12124,
25060,
7,
5532,
28,
17597,
13,
19282,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
16,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
16,
13,
2617,
8479,
1436,
7,
6404,
62,
687,
1436,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
4948,
313,
395,
62,
6404,
1362,
13,
2860,
25060,
7,
71,
16,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
41947,
572,
4943,
628,
220,
220,
220,
611,
49706,
62,
7753,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
7203,
10462,
10981,
319,
18931,
284,
2393,
25,
23884,
1911,
18982,
7,
6404,
1362,
62,
7753,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
25060,
796,
18931,
13,
8979,
25060,
7,
34345,
28,
6404,
1362,
62,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
25060,
13,
2617,
8479,
1436,
7,
6404,
62,
687,
1436,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
25060,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
4948,
313,
395,
62,
6404,
1362,
13,
2860,
25060,
7,
7753,
25060,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
7753,
18931,
572,
4943,
628,
220,
220,
220,
611,
8624,
62,
261,
318,
10352,
290,
49706,
62,
7753,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
279,
4948,
313,
395,
62,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
9419,
2043,
20151,
8,
628,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.219023 | 4,237 |
import pandas as pd
# import pytz
import unittest
from records_mover.records.pandas import prep_df_for_csv_output
from records_mover.records.schema import RecordsSchema
from records_mover.records import DelimitedRecordsFormat, ProcessingInstructions
| [
11748,
19798,
292,
355,
279,
67,
198,
2,
1330,
12972,
22877,
198,
11748,
555,
715,
395,
198,
6738,
4406,
62,
76,
2502,
13,
8344,
3669,
13,
79,
392,
292,
1330,
3143,
62,
7568,
62,
1640,
62,
40664,
62,
22915,
198,
6738,
4406,
62,
76,
2502,
13,
8344,
3669,
13,
15952,
2611,
1330,
13407,
27054,
2611,
198,
6738,
4406,
62,
76,
2502,
13,
8344,
3669,
1330,
4216,
320,
863,
6690,
3669,
26227,
11,
28403,
43993,
507,
628
] | 3.302632 | 76 |
import numpy as np
from tensorflow.python.keras.utils import Sequence, to_categorical
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
class TemporalOrderExp6aSequence(Sequence):
"""
From Hochreiter&Schmidhuber(1997):
The goal is to classify sequences. Elements and targets are represented locally
(input vectors with only one non-zero bit). The sequence starts with an E, ends
with a B (the "trigger symbol") and otherwise consists of randomly chosen symbols
from the set {a, b, c, d} except for two elements at positions t1 and t2 that are
either X or Y . The sequence length is randomly chosen between 100 and 110, t1 is
randomly chosen between 10 and 20, and t2 is randomly chosen between 50 and 60.
There are 4 sequence classes Q, R, S, U which depend on the temporal order of X and Y.
The rules are:
X, X -> Q,
X, Y -> R,
Y , X -> S,
Y , Y -> U.
"""
# encoding/decoding single instance version
# encoding/decoding batch versions
def __len__(self):
""" Let's assume 1000 sequences as the size of data. """
return int(1000. / self.batch_size)
class DifficultyLevel:
""" On HARD, settings are identical to the original settings from the '97 paper."""
EASY, NORMAL, MODERATE, HARD, NIGHTMARE = range(5)
@staticmethod
| [
11748,
299,
32152,
355,
45941,
198,
6738,
11192,
273,
11125,
13,
29412,
13,
6122,
292,
13,
26791,
1330,
45835,
11,
284,
62,
66,
2397,
12409,
198,
6738,
11192,
273,
11125,
13,
29412,
13,
6122,
292,
13,
3866,
36948,
13,
43167,
1330,
14841,
62,
3107,
3007,
628,
198,
198,
4871,
5825,
35738,
18743,
16870,
21,
64,
44015,
594,
7,
44015,
594,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3574,
367,
5374,
260,
2676,
5,
14874,
13602,
13415,
527,
7,
21498,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
383,
3061,
318,
284,
36509,
16311,
13,
26632,
290,
6670,
389,
7997,
15726,
198,
220,
220,
220,
220,
220,
220,
220,
357,
15414,
30104,
351,
691,
530,
1729,
12,
22570,
1643,
737,
383,
8379,
4940,
351,
281,
412,
11,
5645,
198,
220,
220,
220,
220,
220,
220,
220,
351,
257,
347,
357,
1169,
366,
46284,
6194,
4943,
290,
4306,
10874,
286,
15456,
7147,
14354,
198,
220,
220,
220,
220,
220,
220,
220,
422,
262,
900,
1391,
64,
11,
275,
11,
269,
11,
288,
92,
2845,
329,
734,
4847,
379,
6116,
256,
16,
290,
256,
17,
326,
389,
198,
220,
220,
220,
220,
220,
220,
220,
2035,
1395,
393,
575,
764,
383,
8379,
4129,
318,
15456,
7147,
1022,
1802,
290,
9796,
11,
256,
16,
318,
198,
220,
220,
220,
220,
220,
220,
220,
15456,
7147,
1022,
838,
290,
1160,
11,
290,
256,
17,
318,
15456,
7147,
1022,
2026,
290,
3126,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1318,
389,
604,
8379,
6097,
1195,
11,
371,
11,
311,
11,
471,
543,
4745,
319,
262,
21964,
1502,
286,
1395,
290,
575,
13,
198,
220,
220,
220,
220,
220,
220,
220,
383,
3173,
389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
11,
1395,
4613,
1195,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
11,
575,
4613,
371,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
837,
1395,
4613,
311,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
575,
837,
575,
4613,
471,
13,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
21004,
14,
12501,
7656,
2060,
4554,
2196,
628,
220,
220,
220,
1303,
21004,
14,
12501,
7656,
15458,
6300,
628,
220,
220,
220,
825,
11593,
11925,
834,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3914,
338,
7048,
8576,
16311,
355,
262,
2546,
286,
1366,
13,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
493,
7,
12825,
13,
1220,
2116,
13,
43501,
62,
7857,
8,
628,
220,
220,
220,
1398,
27419,
4971,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
1550,
367,
9795,
11,
6460,
389,
10411,
284,
262,
2656,
6460,
422,
262,
705,
5607,
3348,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
412,
26483,
11,
25273,
42126,
11,
19164,
1137,
6158,
11,
367,
9795,
11,
37707,
44,
12203,
796,
2837,
7,
20,
8,
628,
220,
220,
220,
2488,
12708,
24396,
198
] | 2.812992 | 508 |
#pilaniamte version 0.4.1
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageEnhance, ImageColor, ImageFont, ImageSequence
import cv2
import numpy
from time import sleep
import os, math
#functions that draw stuff on
#translation functions
#transparency functions
#UNTESTED
#transform
#color change functions
#image filter functions
#blend
#clear image functions
#save frame image
#turn frame into png
#shortcut save functions (ie a function that translates every frame and also saves frame) | [
2,
79,
38239,
1789,
660,
2196,
657,
13,
19,
13,
16,
198,
6738,
350,
4146,
1330,
7412,
11,
7412,
25302,
11,
7412,
41472,
11,
7412,
22417,
11,
7412,
35476,
590,
11,
7412,
10258,
11,
7412,
23252,
11,
7412,
44015,
594,
198,
11748,
269,
85,
17,
198,
11748,
299,
32152,
198,
6738,
640,
1330,
3993,
198,
11748,
28686,
11,
10688,
628,
220,
1303,
12543,
2733,
326,
3197,
3404,
319,
628,
220,
1303,
41519,
5499,
628,
220,
1303,
7645,
11944,
5499,
628,
220,
1303,
4944,
51,
6465,
1961,
628,
220,
1303,
35636,
628,
220,
1303,
8043,
1487,
5499,
628,
220,
1303,
9060,
8106,
5499,
628,
220,
1303,
2436,
437,
628,
220,
1303,
20063,
2939,
5499,
628,
220,
1303,
21928,
5739,
2939,
198,
220,
220,
198,
220,
1303,
15344,
5739,
656,
279,
782,
628,
220,
1303,
19509,
8968,
3613,
5499,
357,
494,
257,
2163,
326,
23677,
790,
5739,
290,
635,
16031,
5739,
8
] | 3.593333 | 150 |
import numpy as np
from pygsl import statistics as gsl_stat
from scipy import stats as sp_stat
import ineqpy as ineq
from ineqpy import _statistics as ineq_stat
# Generate random data
x, w = ineq.utils.generate_data_to_test((60,90))
# Replicating weights
x_rep, w_rep = ineq.utils.repeat_data_from_weighted(x, w)
svy = ineq.api.Survey
print(
"""
==========
Quickstart
==========
We generate random weighted data to show how ineqpy works. The variables
simulate being:
x : Income
w : Weights
```python
>>> x, w = ineq.utils.generate_data_to_test((60,90))
```
To test with classical statistics we generate:
x_rep : Income values replicated w times each one.
w_rep : Ones column.
```python
>>> x_rep, w_rep = ineq.utils.repeat_data_from_weighted(x, w)
```
Additional information:
np : numpy package
sp : scipy package
pd : pandas package
gsl_stat : GNU Scientific Library written in C.
ineq : IneqPy
"""
)
print(
"""
Examples and comparision with other packages
============================================
STATISTICS
==========
MEAN
----
"""
)
print('```python')
print('>>> np.mean(x_rep)'.ljust(24), '=', np.mean(x_rep))
print('>>> ineq.mean(x, w)'.ljust(24), '=', ineq.mean(x, w))
print('>>> gsl_stat.wmean(w, x)'.ljust(24), '=', gsl_stat.wmean(w, x))
print('```')
# %timeit ineq.mean(None, x, w)
# %timeit gsl_stat.wmean(w, x)
# %timeit ineq_stat.mean(x, w)
print(
"""
VARIANCE
--------
"""
)
np_var = np.var(x_rep)
inq_var = ineq.var(x, w)
wvar_1 = ineq_stat.wvar(x, w, 1) # population variance
wvar_2 = ineq_stat.wvar(x, w, 2) # sample frequency variance
gsl_wvar = gsl_stat.wvariance(w, x)
wvar_3 = ineq_stat.wvar(x, w, 3) # sample reliability variance
print('```python')
print('>>> np.var(x_rep)'.ljust(32), '=', np_var)
print('>>> ineq.var(x, w)'.ljust(32), '=', inq_var)
print('>>> ineq_stat.wvar(x, w, kind=1)'.ljust(32), '=', wvar_1)
print('>>> ineq_stat.wvar(x, w, kind=2)'.ljust(32), '=', wvar_2)
print('>>> gsl_stat.wvariance(w, x)'.ljust(32), '=', gsl_wvar)
print('>>> ineq_stat.wvar(x, w, kind=3)'.ljust(32), '=', wvar_3)
print('```')
print(
"""
COVARIANCE
----------
"""
)
np_cov = np.cov(x_rep, x_rep)
ineq_wcov1 = ineq_stat.wcov(x, x, w, 1)
ineq_wcov2 = ineq_stat.wcov(x, x, w, 2)
ineq_wcov3 = ineq_stat.wcov(x, x, w, 3)
print('```python')
print('>>> np.cov(x_rep, x_rep)'.ljust(35), '= ', np_cov)
print('>>> ineq_stat.wcov(x, x, w, kind=1)'.ljust(35), '= ', ineq_wcov1)
print('>>> ineq_stat.wcov(x, x, w, kind=2)'.ljust(35), '= ', ineq_wcov2)
print('>>> ineq_stat.wcov(x, x, w, kind=3)'.ljust(35), '= ', ineq_wcov3)
print('```')
print(
"""
SKEWNESS
--------
"""
)
gsl_wskew = gsl_stat.wskew(w, x)
sp_skew = sp_stat.skew(x_rep)
ineq_skew = ineq.skew(x, w)
print('```python')
print('>>> gsl_stat.wskew(w, x)'.ljust(24), '= ', gsl_wskew)
print('>>> sp_stat.skew(x_rep)'.ljust(24), '= ', sp_skew)
print('>>> ineq.skew(x, w)'.ljust(24), '= ', ineq_skew)
print('```')
# %timeit gsl_stat.wskew(w, x)
# %timeit sp_stat.skew(x_rep)
# %timeit ineq.skew(None, x, w)
print(
"""
KURTOSIS
--------
"""
)
sp_kurt = sp_stat.kurtosis(x_rep)
gsl_wkurt = gsl_stat.wkurtosis(w, x)
ineq_kurt = ineq.kurt(x, w) - 3
print('```python')
print('>>> sp_stat.kurtosis(x_rep)'.ljust(28), '= ', sp_kurt)
print('>>> gsl_stat.wkurtosis(w, x)'.ljust(28), '= ', gsl_wkurt)
print('>>> ineq.kurt(x, w) - 3'.ljust(28), '= ', ineq_kurt)
print('```')
# %timeit sp_stat.kurtosis(x_rep)
# %timeit gsl_stat.wkurtosis(w, x)
# %timeit ineq.kurt(None, x, w) - 3
print(
"""
PERCENTILES
-----------
"""
)
q = 50
ineq_perc_50 = ineq_stat.percentile(x, w, q)
np_perc_50 = np.percentile(x_rep, q)
print('```python')
print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_50)
print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_50)
q = 25
ineq_perc_25 = ineq_stat.percentile(x, w, q)
np_perc_25 = np.percentile(x_rep, q)
print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_25)
print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_25)
q = 75
ineq_perc_75 = ineq_stat.percentile(x, w, q)
np_perc_75 = np.percentile(x_rep, q)
print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_75)
print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_75)
q = 10
ineq_perc_10 = ineq_stat.percentile(x, w, q)
np_perc_10 = np.percentile(x_rep, q)
print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_10)
print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_10)
q = 90
ineq_perc_90 = ineq_stat.percentile(x, w, q)
np_perc_90 = np.percentile(x_rep, q)
print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_90)
print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_90)
print('```')
print(
"""
Another way to use this is through the API module as shown below:
API MODULE
==========
"""
)
data = np.c_[x, w]
columns = list('xw')
df = svy(data=data, columns=columns, weights='w')
print('```python')
print(">>> data = svy(data=data, columns=columns, weights='w')")
print(">>> data.head()")
print(df.head())
print('')
print('>>> data.weights =', df.weights)
print('```')
print('')
main_var = 'x'
# df.mean(main_var)
# df.var(main_var)
# df.skew(main_var)
# df.kurt(main_var)
# df.gini(main_var)
# df.atkinson(main_var)
# df.theil(main_var)
# df.percentile(main_var)
print('```python')
print('>>> df.mean(main_var)'.ljust(27), '=', df.mean(main_var))
print('>>> df.percentile(main_var)'.ljust(27), '=', df.percentile(main_var))
print('>>> df.var(main_var)'.ljust(27), '=', df.var(main_var))
print('>>> df.skew(main_var)'.ljust(27), '=', df.skew(main_var))
print('>>> df.kurt(main_var)'.ljust(27), '=', df.kurt(main_var))
print('>>> df.gini(main_var)'.ljust(27), '=', df.gini(main_var))
print('>>> df.atkinson(main_var)'.ljust(27), '=', df.atkinson(main_var))
print('>>> df.theil(main_var)'.ljust(27), '=', df.theil(main_var))
print('```') | [
11748,
299,
32152,
355,
45941,
198,
6738,
12972,
70,
6649,
1330,
7869,
355,
308,
6649,
62,
14269,
198,
6738,
629,
541,
88,
1330,
9756,
355,
599,
62,
14269,
198,
198,
11748,
287,
27363,
9078,
355,
287,
27363,
198,
6738,
287,
27363,
9078,
1330,
4808,
14269,
3969,
355,
287,
27363,
62,
14269,
198,
198,
2,
2980,
378,
4738,
1366,
198,
87,
11,
266,
796,
287,
27363,
13,
26791,
13,
8612,
378,
62,
7890,
62,
1462,
62,
9288,
19510,
1899,
11,
3829,
4008,
198,
2,
18407,
12364,
19590,
198,
87,
62,
7856,
11,
266,
62,
7856,
796,
287,
27363,
13,
26791,
13,
44754,
62,
7890,
62,
6738,
62,
6551,
276,
7,
87,
11,
266,
8,
198,
82,
7670,
796,
287,
27363,
13,
15042,
13,
14214,
3304,
198,
198,
4798,
7,
198,
37811,
198,
2559,
855,
198,
21063,
9688,
198,
2559,
855,
198,
198,
1135,
7716,
4738,
26356,
1366,
284,
905,
703,
287,
27363,
9078,
2499,
13,
383,
9633,
220,
198,
14323,
5039,
852,
25,
628,
220,
220,
220,
2124,
1058,
19003,
198,
220,
220,
220,
266,
1058,
775,
2337,
198,
198,
15506,
63,
29412,
198,
33409,
2124,
11,
266,
796,
287,
27363,
13,
26791,
13,
8612,
378,
62,
7890,
62,
1462,
62,
9288,
19510,
1899,
11,
3829,
4008,
198,
15506,
63,
198,
198,
2514,
1332,
351,
15993,
7869,
356,
7716,
25,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2124,
62,
7856,
1058,
19003,
3815,
35108,
266,
1661,
1123,
530,
13,
198,
220,
220,
220,
266,
62,
7856,
1058,
32606,
5721,
13,
198,
198,
15506,
63,
29412,
198,
33409,
2124,
62,
7856,
11,
266,
62,
7856,
796,
287,
27363,
13,
26791,
13,
44754,
62,
7890,
62,
6738,
62,
6551,
276,
7,
87,
11,
266,
8,
198,
15506,
63,
198,
198,
17699,
1321,
25,
628,
220,
220,
220,
45941,
1058,
299,
32152,
5301,
198,
220,
220,
220,
599,
1058,
629,
541,
88,
5301,
198,
220,
220,
220,
279,
67,
1058,
19798,
292,
5301,
198,
220,
220,
220,
308,
6649,
62,
14269,
1058,
22961,
22060,
10074,
3194,
287,
327,
13,
198,
220,
220,
220,
287,
27363,
1058,
554,
27363,
20519,
198,
37811,
198,
8,
628,
198,
4798,
7,
198,
37811,
198,
27730,
290,
4616,
1166,
351,
584,
10392,
198,
10052,
25609,
198,
198,
35744,
8808,
19505,
198,
2559,
855,
198,
198,
11682,
1565,
198,
650,
198,
198,
37811,
198,
8,
198,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
45941,
13,
32604,
7,
87,
62,
7856,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
3256,
45941,
13,
32604,
7,
87,
62,
7856,
4008,
198,
4798,
10786,
33409,
287,
27363,
13,
32604,
7,
87,
11,
266,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
3256,
287,
27363,
13,
32604,
7,
87,
11,
266,
4008,
198,
4798,
10786,
33409,
308,
6649,
62,
14269,
13,
86,
32604,
7,
86,
11,
2124,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
3256,
308,
6649,
62,
14269,
13,
86,
32604,
7,
86,
11,
2124,
4008,
198,
4798,
10786,
15506,
63,
11537,
198,
198,
2,
4064,
2435,
270,
287,
27363,
13,
32604,
7,
14202,
11,
2124,
11,
266,
8,
198,
2,
4064,
2435,
270,
308,
6649,
62,
14269,
13,
86,
32604,
7,
86,
11,
2124,
8,
198,
2,
4064,
2435,
270,
287,
27363,
62,
14269,
13,
32604,
7,
87,
11,
266,
8,
198,
198,
4798,
7,
198,
37811,
198,
198,
53,
1503,
16868,
5222,
198,
982,
198,
198,
37811,
198,
8,
198,
198,
37659,
62,
7785,
796,
45941,
13,
7785,
7,
87,
62,
7856,
8,
198,
259,
80,
62,
7785,
796,
287,
27363,
13,
7785,
7,
87,
11,
266,
8,
198,
86,
7785,
62,
16,
796,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
352,
8,
220,
1303,
3265,
24198,
198,
86,
7785,
62,
17,
796,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
362,
8,
220,
1303,
6291,
8373,
24198,
198,
70,
6649,
62,
86,
7785,
796,
308,
6649,
62,
14269,
13,
86,
25641,
590,
7,
86,
11,
2124,
8,
198,
86,
7785,
62,
18,
796,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
513,
8,
220,
1303,
6291,
17843,
24198,
198,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
45941,
13,
7785,
7,
87,
62,
7856,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
45941,
62,
7785,
8,
198,
4798,
10786,
33409,
287,
27363,
13,
7785,
7,
87,
11,
266,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
287,
80,
62,
7785,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
1611,
28,
16,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
266,
7785,
62,
16,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
1611,
28,
17,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
266,
7785,
62,
17,
8,
198,
4798,
10786,
33409,
308,
6649,
62,
14269,
13,
86,
25641,
590,
7,
86,
11,
2124,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
308,
6649,
62,
86,
7785,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
7785,
7,
87,
11,
266,
11,
1611,
28,
18,
8,
4458,
75,
3137,
7,
2624,
828,
705,
28,
3256,
266,
7785,
62,
18,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
198,
4798,
7,
198,
37811,
198,
198,
8220,
53,
1503,
16868,
5222,
198,
35937,
198,
198,
37811,
198,
8,
198,
198,
37659,
62,
66,
709,
796,
45941,
13,
66,
709,
7,
87,
62,
7856,
11,
2124,
62,
7856,
8,
198,
500,
80,
62,
86,
66,
709,
16,
796,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
352,
8,
198,
500,
80,
62,
86,
66,
709,
17,
796,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
362,
8,
198,
500,
80,
62,
86,
66,
709,
18,
796,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
513,
8,
198,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
45941,
13,
66,
709,
7,
87,
62,
7856,
11,
2124,
62,
7856,
8,
4458,
75,
3137,
7,
2327,
828,
705,
28,
46083,
45941,
62,
66,
709,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
1611,
28,
16,
8,
4458,
75,
3137,
7,
2327,
828,
705,
28,
46083,
287,
27363,
62,
86,
66,
709,
16,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
1611,
28,
17,
8,
4458,
75,
3137,
7,
2327,
828,
705,
28,
46083,
287,
27363,
62,
86,
66,
709,
17,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
86,
66,
709,
7,
87,
11,
2124,
11,
266,
11,
1611,
28,
18,
8,
4458,
75,
3137,
7,
2327,
828,
705,
28,
46083,
287,
27363,
62,
86,
66,
709,
18,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
4798,
7,
198,
37811,
198,
198,
18831,
6217,
31097,
198,
982,
198,
198,
37811,
198,
8,
198,
198,
70,
6649,
62,
18504,
365,
86,
796,
308,
6649,
62,
14269,
13,
18504,
365,
86,
7,
86,
11,
2124,
8,
198,
2777,
62,
82,
365,
86,
796,
220,
599,
62,
14269,
13,
82,
365,
86,
7,
87,
62,
7856,
8,
198,
500,
80,
62,
82,
365,
86,
796,
220,
287,
27363,
13,
82,
365,
86,
7,
87,
11,
266,
8,
198,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
308,
6649,
62,
14269,
13,
18504,
365,
86,
7,
86,
11,
2124,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
46083,
308,
6649,
62,
18504,
365,
86,
8,
198,
4798,
10786,
33409,
599,
62,
14269,
13,
82,
365,
86,
7,
87,
62,
7856,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
46083,
599,
62,
82,
365,
86,
8,
198,
4798,
10786,
33409,
287,
27363,
13,
82,
365,
86,
7,
87,
11,
266,
8,
4458,
75,
3137,
7,
1731,
828,
705,
28,
46083,
287,
27363,
62,
82,
365,
86,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
198,
2,
4064,
2435,
270,
308,
6649,
62,
14269,
13,
18504,
365,
86,
7,
86,
11,
2124,
8,
198,
2,
4064,
2435,
270,
599,
62,
14269,
13,
82,
365,
86,
7,
87,
62,
7856,
8,
198,
2,
4064,
2435,
270,
287,
27363,
13,
82,
365,
86,
7,
14202,
11,
2124,
11,
266,
8,
198,
198,
4798,
7,
198,
37811,
198,
198,
42,
4261,
51,
2640,
1797,
198,
982,
198,
198,
37811,
198,
8,
198,
198,
2777,
62,
74,
3325,
796,
599,
62,
14269,
13,
74,
3325,
5958,
7,
87,
62,
7856,
8,
198,
70,
6649,
62,
43021,
3325,
796,
308,
6649,
62,
14269,
13,
43021,
3325,
5958,
7,
86,
11,
2124,
8,
198,
500,
80,
62,
74,
3325,
796,
287,
27363,
13,
74,
3325,
7,
87,
11,
266,
8,
532,
513,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
599,
62,
14269,
13,
74,
3325,
5958,
7,
87,
62,
7856,
8,
4458,
75,
3137,
7,
2078,
828,
705,
28,
46083,
599,
62,
74,
3325,
8,
198,
4798,
10786,
33409,
308,
6649,
62,
14269,
13,
43021,
3325,
5958,
7,
86,
11,
2124,
8,
4458,
75,
3137,
7,
2078,
828,
705,
28,
46083,
308,
6649,
62,
43021,
3325,
8,
198,
4798,
10786,
33409,
287,
27363,
13,
74,
3325,
7,
87,
11,
266,
8,
532,
513,
4458,
75,
3137,
7,
2078,
828,
705,
28,
46083,
287,
27363,
62,
74,
3325,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
2,
4064,
2435,
270,
599,
62,
14269,
13,
74,
3325,
5958,
7,
87,
62,
7856,
8,
198,
2,
4064,
2435,
270,
308,
6649,
62,
14269,
13,
43021,
3325,
5958,
7,
86,
11,
2124,
8,
198,
2,
4064,
2435,
270,
287,
27363,
13,
74,
3325,
7,
14202,
11,
2124,
11,
266,
8,
532,
513,
198,
198,
4798,
7,
198,
37811,
198,
18973,
43960,
4146,
1546,
198,
32284,
198,
198,
37811,
198,
8,
198,
80,
796,
2026,
198,
500,
80,
62,
525,
66,
62,
1120,
796,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
10662,
8,
198,
37659,
62,
525,
66,
62,
1120,
796,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
10662,
8,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
287,
27363,
62,
525,
66,
62,
1120,
8,
198,
4798,
10786,
33409,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
45941,
62,
525,
66,
62,
1120,
8,
198,
198,
80,
796,
1679,
198,
500,
80,
62,
525,
66,
62,
1495,
796,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
10662,
8,
198,
37659,
62,
525,
66,
62,
1495,
796,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
10662,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
287,
27363,
62,
525,
66,
62,
1495,
8,
198,
4798,
10786,
33409,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
45941,
62,
525,
66,
62,
1495,
8,
198,
198,
80,
796,
5441,
198,
500,
80,
62,
525,
66,
62,
2425,
796,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
10662,
8,
198,
37659,
62,
525,
66,
62,
2425,
796,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
10662,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
287,
27363,
62,
525,
66,
62,
2425,
8,
198,
4798,
10786,
33409,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
45941,
62,
525,
66,
62,
2425,
8,
198,
198,
80,
796,
838,
198,
500,
80,
62,
525,
66,
62,
940,
796,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
10662,
8,
198,
37659,
62,
525,
66,
62,
940,
796,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
10662,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
287,
27363,
62,
525,
66,
62,
940,
8,
198,
4798,
10786,
33409,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
45941,
62,
525,
66,
62,
940,
8,
198,
198,
80,
796,
4101,
198,
500,
80,
62,
525,
66,
62,
3829,
796,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
10662,
8,
198,
37659,
62,
525,
66,
62,
3829,
796,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
10662,
8,
198,
4798,
10786,
33409,
287,
27363,
62,
14269,
13,
25067,
576,
7,
87,
11,
266,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
287,
27363,
62,
525,
66,
62,
3829,
8,
198,
4798,
10786,
33409,
45941,
13,
25067,
576,
7,
87,
62,
7856,
11,
4064,
82,
8,
4458,
75,
3137,
7,
2682,
8,
4064,
10662,
11,
705,
28,
46083,
45941,
62,
525,
66,
62,
3829,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
198,
4798,
7,
198,
37811,
198,
6610,
835,
284,
779,
428,
318,
832,
262,
7824,
8265,
355,
3402,
2174,
25,
198,
198,
17614,
33893,
198,
2559,
855,
198,
198,
37811,
198,
8,
198,
198,
7890,
796,
45941,
13,
66,
62,
58,
87,
11,
266,
60,
198,
28665,
82,
796,
1351,
10786,
87,
86,
11537,
198,
198,
7568,
796,
264,
7670,
7,
7890,
28,
7890,
11,
15180,
28,
28665,
82,
11,
19590,
11639,
86,
11537,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
7203,
33409,
1366,
796,
264,
7670,
7,
7890,
28,
7890,
11,
15180,
28,
28665,
82,
11,
19590,
11639,
86,
11537,
4943,
198,
4798,
7203,
33409,
1366,
13,
2256,
3419,
4943,
198,
4798,
7,
7568,
13,
2256,
28955,
198,
4798,
7,
7061,
8,
198,
4798,
10786,
33409,
1366,
13,
43775,
796,
3256,
47764,
13,
43775,
8,
198,
4798,
10786,
15506,
63,
11537,
198,
4798,
7,
7061,
8,
198,
12417,
62,
7785,
796,
705,
87,
6,
198,
2,
47764,
13,
32604,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
7785,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
82,
365,
86,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
74,
3325,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
1655,
72,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
265,
26030,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
1169,
346,
7,
12417,
62,
7785,
8,
198,
2,
47764,
13,
25067,
576,
7,
12417,
62,
7785,
8,
198,
198,
4798,
10786,
15506,
63,
29412,
11537,
198,
4798,
10786,
33409,
47764,
13,
32604,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
32604,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
25067,
576,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
25067,
576,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
7785,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
7785,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
82,
365,
86,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
82,
365,
86,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
74,
3325,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
74,
3325,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
1655,
72,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
1655,
72,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
265,
26030,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
265,
26030,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
33409,
47764,
13,
1169,
346,
7,
12417,
62,
7785,
8,
4458,
75,
3137,
7,
1983,
828,
705,
28,
3256,
47764,
13,
1169,
346,
7,
12417,
62,
7785,
4008,
198,
4798,
10786,
15506,
63,
11537
] | 2.126029 | 2,793 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.