content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import numpy as np import os import pickle def seqrc(string): "returns the reverse complement of a sequence" dic_rc = constant_key_dict({'a':'t','c':'g','g':'c','t':'a','A':'T','C':'G','G':'C','T':'A'}) string_rc = "".join([dic_rc[c] for c in string][::-1]) return string_rc def getFastaWeb(chrom,pos1,pos2): "For mouse genome this impots from the infojax website the chr:pos1:pos2 genomic sequence" import urllib.request, urllib.error, urllib.parse site_name = "http://www.informatics.jax.org/seqfetch/tofasta.cgi?seq1=mousegenome%21%21"+str(chrom)+"%21"+str(pos1)+"%21"+str(pos2)+"%21%21&flank1=0" html = str(urllib.request.urlopen(site_name).read()) sequence = "".join(html.split("\n")[1:-1]) return sequence def getGeneWeb(gene_id): "For mouse genome this impots from the infojax website a given gene its genomic sequence" import urllib.request, urllib.error, urllib.parse site_name = "http://useast.ensembl.org/Mus_musculus/Export/Output/Gene?db=core;flank3_display=0;flank5_display=0;g="+gene_id+";output=fasta;strand=feature;genomic=unmasked;_format=Text" html = str(urllib.request.urlopen(site_name).read()) sequence = "".join(html.split("\r\n")[2:-1]) return sequence class OTTable (dict): """ run this as: specTable = OTTable() specTableMAP = specTable.computeOTTable(gen_seq,block) specTable.Save(filename) OR: specTable = OTTable() specTable.Load(filename) specTableMAP = specTable.Map() """ def compute_pair_probes(gene_names,gene_seqs,folder_save="",blk=17,pb_len=30,map_rep=None,map_noGenes=None,maps_Genes=None,FPKM_cuttoff1=2,FPKM_cuttoff2=10,min_gc=0.30,max_gc=0.70,gene_cutoff1=3,gene_cutoff2=5): """This is intended to return to you pairs of probes for bTree Require paramaters: @gene_names : a list of names for the genes you require probes. @gene_seqs : a list of sequences (A,C,G,T,N) for the genes you require probes. For exon junctions or masking use N. @blk : word size of the maps @pb_len : desired probe length @map_noGenes : if dictionary: the OT map of FPKM excluding the genes interested in. It is not necessary to exclude the genes or to use FPKM vs just sequences, but then use the cutoffs appropriately. if None: ignore this test if string: the path of a fasta file and compute the map on the spot using blk word size @maps_Genes : if dictionary: the Index map for the gese interested in. if None: ignore this test if string: the path of a fasta file and compute the map on the spot using blk word size @map_rep : if dictionary: the OT maps of higly abundant genes. No crosstalk with these genes will be accepted if None: ignore this test if string: the path of a fasta file and compute the map on the spot using blk word size @FPKM_cuttoff1/FPKM_cuttoff2 : min/max cut for the map_noGenes @gene_cutoff1/gene_cutoff2 : min/max cut for the maps_Genes @pb_len : probe length @min_gc/max_gc Returns: @pb_names_f : names of the probe in the form "<gene name>_pb:<location>_pb-pair:[<pair index>, <index in pair>]" @pb_seqs_f : sequences of the probes """ ### Check for variable pop: if type(map_noGenes)==str: print("Computing the map for transcriptome! Please wait!") names_,seqs_ = fastaread(map_noGenes) #construct specificity table (dictionary) for all the sequences of the transcripts in MOE. specTable = OTTable() print("Warning: FPKM might not be computed correctly!") FPKM_ = [float(nm.split('_')[-3]) for nm in names_] #change this for generic FPKM map_noGenes = specTable.computeOTTable(seqs_,blk,FPKM=FPKM_) if type(maps_Genes)==str: print("Computing the maps for genes!") names_,seqs_ = fastaread(maps_Genes) maps_Genes = computeIndexTable(seqs_,blk) if type(map_rep)==str: print("Computing the map for repetitive RNA!") names_,seqs_ = fastaread(map_rep) specTable = OTTable() map_rep = specTable.computeOTTable(seqs_,blk) ###Construct the probe scoring function pb_names_f,pb_seqs_f=[],[] num_pairs_f = [] ###Iterate through genes: for current_gene in range(len(gene_seqs)): gene_seq = gene_seqs[current_gene] gene_name = gene_names[current_gene] locations_recorded = [] location,pair_ind,pb_pair_ind=0,0,0 pb_names,pb_seqs=[],[] num_pairs = 0 while True: pb1,pb2 = gene_seq[location:location+pb_len],gene_seq[location+pb_len:location+2*pb_len] #check where this probe is already in the set pb1_verified = False if locations_recorded.count(location): pb1_verified = True noNs = pb1.count('N') + pb2.count('N') == 0 if noNs: seq_cut = gc(pb1)>=min_gc and gc(pb2)>=min_gc and gc(pb1)<=max_gc and gc(pb2)<=max_gc if seq_cut: if map_rep is not None: #Deal with cross-reactivity #--To very abundant mRNA score_rep1 = map_seq(pb1,map_rep,blk) score_rep2 = map_seq(pb2,map_rep,blk) rep_cut = score_rep1==0 and score_rep2==0 else: rep_cut=True if rep_cut: if map_noGenes is not None: #--To all RNA's except the olfrs (using FPKMcuttoff) score_RNA1 = map_seq(pb1,map_noGenes,blk) score_RNA2 = map_seq(pb2,map_noGenes,blk) RNA_cut = min(score_RNA1,score_RNA2)<min(FPKM_cuttoff1,FPKM_cuttoff2) and max(score_RNA1,score_RNA2)<max(FPKM_cuttoff1,FPKM_cuttoff2) else: RNA_cut=True if RNA_cut: if maps_Genes is not None: #--To all olfrs #--To all olfrs scores_Gene1 = map_seq(pb1,maps_Genes,blk) scores_Gene1.pop(np.argmax([sc[1] for sc in scores_Gene1])) # pop the maximum scores_Gene2 = map_seq(pb2,maps_Genes,blk) scores_Gene2.pop(np.argmax([sc[1] for sc in scores_Gene2])) # pop the maximum geneIdx_offGene1 = [score[0] for score in scores_Gene1 if score[1]>gene_cutoff1] geneIdx_offGene2 = [score[0] for score in scores_Gene2 if score[1]>gene_cutoff2] geneIdx_offGene1_ = [score[0] for score in scores_Gene2 if score[1]>gene_cutoff1] geneIdx_offGene2_ = [score[0] for score in scores_Gene1 if score[1]>gene_cutoff2] gene_int = min(len(np.intersect1d(geneIdx_offGene1,geneIdx_offGene2)),len(np.intersect1d(geneIdx_offGene1_,geneIdx_offGene2_))) else: gene_int=0 if gene_int==0: # record poisitions: ## create name: if pb1_verified: pb_pair_ind+=1 pb_name = gene_name+"_pb:"+str(location+pb_len)+'_pb-pair:'+str([pair_ind,pb_pair_ind]) pb_names.append(pb_name) pb_seqs.append(pb2) locations_recorded.append(location+pb_len) num_pairs+=1 else: pair_ind+=1 pb_pair_ind=1 pb_name = gene_name+"_pb:"+str(location)+'_pb-pair:'+str([pair_ind,pb_pair_ind]) pb_names.append(pb_name) pb_seqs.append(pb1) locations_recorded.append(location) pb_pair_ind+=1 pb_name = gene_name+"_pb:"+str(location+pb_len)+'_pb-pair:'+str([pair_ind,pb_pair_ind]) pb_names.append(pb_name) pb_seqs.append(pb2) locations_recorded.append(location+pb_len) num_pairs+=1 gene_seq = gene_seq[:location]+"".join(['N' for k in range(pb_len)])+gene_seq[location+pb_len:] location+=1 if location+2*pb_len>len(gene_seq): break print(gene_name+" (pairs: "+str(num_pairs)+") done!") fastawrite(folder_save+os.sep+gene_name+'_probes.fasta',pb_names,pb_seqs) pb_names_f.append(pb_names) pb_seqs_f.append(pb_seqs) num_pairs_f+=[num_pairs] return pb_names_f,pb_seqs_f,num_pairs_f def file_to_mat(file_,sep_str=',',d_type=None,skip_first=False): """ Converts .csv files to a list of its entries Inputs: file_ - the location of a .csv file sep_str - the separator between data points d_type - the datatype in the file skip_first - an option to skip the first component (e.g. if there's a menu) Returns: lines - a list of the lines in the file, each of which itself a list of all entries in the line """ lines = [ln for ln in open(file_,'r')] start_=(1 if skip_first==True else 0) #skip first line if option selected lines = [refine_line(ln,d_type,skip_first) for ln in lines[start_:]] return lines def map_gene(pairs_nms_,pairs_sqs_,code,tails,pair_limit_per_bit=10): """ Use as: map_gene([['name_pb-pair:[1,1]','name_pb-pair:[1,2]','name_pb-pair:[1,3]'],['name_pb-pair:[2,1]','name_pb-pair:[2,2]']], [['sq1','sq2','sq3'],['sq4','sq5']],[0,1,2], ['0000','1111','2222','3333','4444','5555'],pair_limit_per_bit=10) """ nms_gene,sqs_gene = [],[] cts_icode = [0 for i in range(len(code))] cts_vcode = [0 for i in range(len(code))] for nms_,sqs_ in zip(pairs_nms_,pairs_sqs_): nms_new,sqs_new = map_pair(nms_,sqs_,code,cts_icode,cts_vcode,tails,pair_limit_per_bit) nms_gene.extend(nms_new) sqs_gene.extend(sqs_new) if min(cts_vcode)>=pair_limit_per_bit: break return nms_gene,sqs_gene
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 4299, 33756, 6015, 7, 8841, 2599, 198, 220, 220, 220, 366, 7783, 82, 262, 9575, 16829, 286, 257, 8379, 1, 198, 220, 220, 220, 288, 291, 62, 6015, 796, 6937, 62, 2539, 62, 11600, 15090, 6, 64, 10354, 6, 83, 41707, 66, 10354, 6, 70, 41707, 70, 10354, 6, 66, 41707, 83, 10354, 6, 64, 41707, 32, 10354, 6, 51, 41707, 34, 10354, 6, 38, 41707, 38, 10354, 6, 34, 41707, 51, 10354, 6, 32, 6, 30072, 198, 220, 220, 220, 4731, 62, 6015, 796, 366, 1911, 22179, 26933, 67, 291, 62, 6015, 58, 66, 60, 329, 269, 287, 4731, 7131, 3712, 12, 16, 12962, 198, 220, 220, 220, 1441, 4731, 62, 6015, 198, 4299, 651, 22968, 64, 13908, 7, 28663, 11, 1930, 16, 11, 1930, 17, 2599, 198, 220, 220, 220, 366, 1890, 10211, 19270, 428, 848, 1747, 422, 262, 7508, 73, 897, 3052, 262, 442, 81, 25, 1930, 16, 25, 1930, 17, 45752, 8379, 1, 198, 220, 220, 220, 1330, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 18224, 11, 2956, 297, 571, 13, 29572, 198, 220, 220, 220, 2524, 62, 3672, 796, 366, 4023, 1378, 2503, 13, 259, 18982, 873, 13, 73, 897, 13, 2398, 14, 41068, 69, 7569, 14, 1462, 7217, 64, 13, 37157, 30, 41068, 16, 28, 35888, 5235, 462, 4, 2481, 4, 2481, 1, 10, 2536, 7, 28663, 47762, 1, 4, 2481, 1, 10, 2536, 7, 1930, 16, 47762, 1, 4, 2481, 1, 10, 2536, 7, 1930, 17, 47762, 1, 4, 2481, 4, 2481, 5, 2704, 962, 16, 28, 15, 1, 198, 220, 220, 220, 27711, 796, 965, 7, 333, 297, 571, 13, 25927, 13, 6371, 9654, 7, 15654, 62, 3672, 737, 961, 28955, 198, 220, 220, 220, 8379, 796, 366, 1911, 22179, 7, 6494, 13, 35312, 7203, 59, 77, 4943, 58, 16, 21912, 16, 12962, 198, 220, 220, 220, 1441, 8379, 198, 4299, 651, 39358, 13908, 7, 70, 1734, 62, 312, 2599, 198, 220, 220, 220, 366, 1890, 10211, 19270, 428, 848, 1747, 422, 262, 7508, 73, 897, 3052, 257, 1813, 9779, 663, 45752, 8379, 1, 198, 220, 220, 220, 1330, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 18224, 11, 2956, 297, 571, 13, 29572, 198, 220, 220, 220, 2524, 62, 3672, 796, 366, 4023, 1378, 1904, 459, 13, 1072, 2022, 75, 13, 2398, 14, 10694, 62, 14664, 17576, 14, 43834, 14, 26410, 14, 39358, 30, 9945, 28, 7295, 26, 2704, 962, 18, 62, 13812, 28, 15, 26, 2704, 962, 20, 62, 13812, 28, 15, 26, 70, 2625, 10, 70, 1734, 62, 312, 10, 8172, 22915, 28, 7217, 64, 26, 2536, 392, 28, 30053, 26, 5235, 10179, 28, 403, 27932, 276, 26, 62, 18982, 28, 8206, 1, 198, 220, 220, 220, 27711, 796, 965, 7, 333, 297, 571, 13, 25927, 13, 6371, 9654, 7, 15654, 62, 3672, 737, 961, 28955, 198, 220, 220, 220, 8379, 796, 366, 1911, 22179, 7, 6494, 13, 35312, 7203, 59, 81, 59, 77, 4943, 58, 17, 21912, 16, 12962, 198, 220, 220, 220, 1441, 8379, 198, 4871, 21676, 10962, 357, 11600, 2599, 198, 220, 220, 220, 37227, 1057, 428, 355, 25, 198, 220, 220, 220, 1020, 10962, 796, 21676, 10962, 3419, 198, 220, 220, 220, 1020, 10962, 33767, 796, 1020, 10962, 13, 5589, 1133, 2394, 10962, 7, 5235, 62, 41068, 11, 9967, 8, 198, 220, 220, 220, 1020, 10962, 13, 16928, 7, 34345, 8, 628, 220, 220, 220, 6375, 25, 198, 220, 220, 220, 1020, 10962, 796, 21676, 10962, 3419, 198, 220, 220, 220, 1020, 10962, 13, 8912, 7, 34345, 8, 198, 220, 220, 220, 1020, 10962, 33767, 796, 1020, 10962, 13, 13912, 3419, 198, 220, 220, 220, 37227, 198, 198, 4299, 24061, 62, 24874, 62, 1676, 12636, 7, 70, 1734, 62, 14933, 11, 70, 1734, 62, 41068, 82, 11, 43551, 62, 21928, 2625, 1600, 2436, 74, 28, 1558, 11, 40842, 62, 11925, 28, 1270, 11, 8899, 62, 7856, 28, 14202, 11, 8899, 62, 3919, 13746, 274, 28, 14202, 11, 31803, 62, 13746, 274, 28, 14202, 11, 5837, 42, 44, 62, 8968, 1462, 487, 16, 28, 17, 11, 5837, 42, 44, 62, 8968, 1462, 487, 17, 28, 940, 11, 1084, 62, 36484, 28, 15, 13, 1270, 11, 9806, 62, 36484, 28, 15, 13, 2154, 11, 70, 1734, 62, 8968, 2364, 16, 28, 18, 11, 70, 1734, 62, 8968, 2364, 17, 28, 20, 2599, 198, 220, 220, 220, 37227, 1212, 318, 5292, 284, 1441, 284, 345, 14729, 286, 33124, 329, 275, 27660, 198, 220, 220, 220, 9394, 557, 5772, 8605, 25, 198, 220, 220, 220, 2488, 70, 1734, 62, 14933, 1058, 257, 1351, 286, 3891, 329, 262, 10812, 345, 2421, 33124, 13, 198, 220, 220, 220, 2488, 70, 1734, 62, 41068, 82, 1058, 257, 1351, 286, 16311, 357, 32, 11, 34, 11, 38, 11, 51, 11, 45, 8, 329, 262, 10812, 345, 2421, 33124, 13, 1114, 409, 261, 10891, 2733, 393, 9335, 278, 779, 399, 13, 198, 220, 220, 220, 2488, 2436, 74, 1058, 1573, 2546, 286, 262, 8739, 198, 220, 220, 220, 2488, 40842, 62, 11925, 1058, 10348, 12774, 4129, 198, 220, 220, 220, 2488, 8899, 62, 3919, 13746, 274, 1058, 611, 22155, 25, 262, 21676, 3975, 286, 31459, 42, 44, 23494, 262, 10812, 4609, 287, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 318, 407, 3306, 284, 19607, 262, 10812, 393, 284, 779, 31459, 42, 44, 3691, 655, 16311, 11, 475, 788, 779, 262, 2005, 8210, 20431, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6045, 25, 8856, 428, 1332, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4731, 25, 262, 3108, 286, 257, 3049, 64, 2393, 290, 24061, 262, 3975, 319, 262, 4136, 1262, 698, 74, 1573, 2546, 198, 220, 220, 220, 2488, 31803, 62, 13746, 274, 1058, 611, 22155, 25, 262, 12901, 3975, 329, 262, 308, 2771, 4609, 287, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6045, 25, 8856, 428, 1332, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4731, 25, 262, 3108, 286, 257, 3049, 64, 2393, 290, 24061, 262, 3975, 319, 262, 4136, 1262, 698, 74, 1573, 2546, 198, 220, 220, 220, 2488, 8899, 62, 7856, 1058, 611, 22155, 25, 262, 21676, 8739, 286, 1880, 306, 23263, 10812, 13, 1400, 269, 4951, 301, 971, 351, 777, 10812, 481, 307, 6292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6045, 25, 8856, 428, 1332, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4731, 25, 262, 3108, 286, 257, 3049, 64, 2393, 290, 24061, 262, 3975, 319, 262, 4136, 1262, 698, 74, 1573, 2546, 198, 220, 220, 220, 2488, 5837, 42, 44, 62, 8968, 1462, 487, 16, 14, 5837, 42, 44, 62, 8968, 1462, 487, 17, 1058, 949, 14, 9806, 2005, 329, 262, 3975, 62, 3919, 13746, 274, 198, 220, 220, 220, 2488, 70, 1734, 62, 8968, 2364, 16, 14, 70, 1734, 62, 8968, 2364, 17, 1058, 949, 14, 9806, 2005, 329, 262, 8739, 62, 13746, 274, 198, 220, 220, 220, 2488, 40842, 62, 11925, 1058, 12774, 4129, 198, 220, 220, 220, 2488, 1084, 62, 36484, 14, 9806, 62, 36484, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 2488, 40842, 62, 14933, 62, 69, 1058, 3891, 286, 262, 12774, 287, 262, 1296, 33490, 70, 1734, 1438, 29, 62, 40842, 25, 27, 24886, 29, 62, 40842, 12, 24874, 33250, 27, 24874, 6376, 22330, 1279, 9630, 287, 5166, 29, 30866, 198, 220, 220, 220, 2488, 40842, 62, 41068, 82, 62, 69, 1058, 16311, 286, 262, 33124, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44386, 6822, 329, 7885, 1461, 25, 198, 220, 220, 220, 611, 2099, 7, 8899, 62, 3919, 13746, 274, 8, 855, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5377, 48074, 262, 3975, 329, 14687, 462, 0, 4222, 4043, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 62, 11, 41068, 82, 62, 796, 3049, 533, 324, 7, 8899, 62, 3919, 13746, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41571, 40763, 3084, 357, 67, 14188, 8, 329, 477, 262, 16311, 286, 262, 29351, 287, 13070, 36, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1020, 10962, 796, 21676, 10962, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20361, 25, 31459, 42, 44, 1244, 407, 307, 29231, 9380, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31459, 42, 44, 62, 796, 685, 22468, 7, 21533, 13, 35312, 10786, 62, 11537, 58, 12, 18, 12962, 329, 28642, 287, 3891, 62, 60, 1303, 3803, 428, 329, 14276, 31459, 42, 44, 198, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 3919, 13746, 274, 796, 1020, 10962, 13, 5589, 1133, 2394, 10962, 7, 41068, 82, 62, 11, 2436, 74, 11, 5837, 42, 44, 28, 5837, 42, 44, 62, 8, 628, 220, 220, 220, 611, 2099, 7, 31803, 62, 13746, 274, 8, 855, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5377, 48074, 262, 8739, 329, 10812, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 62, 11, 41068, 82, 62, 796, 3049, 533, 324, 7, 31803, 62, 13746, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8739, 62, 13746, 274, 796, 24061, 15732, 10962, 7, 41068, 82, 62, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2099, 7, 8899, 62, 7856, 8, 855, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5377, 48074, 262, 3975, 329, 28585, 25897, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 62, 11, 41068, 82, 62, 796, 3049, 533, 324, 7, 8899, 62, 7856, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1020, 10962, 796, 21676, 10962, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 7856, 796, 1020, 10962, 13, 5589, 1133, 2394, 10962, 7, 41068, 82, 62, 11, 2436, 74, 8, 198, 220, 220, 220, 44386, 42316, 262, 12774, 9689, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 279, 65, 62, 14933, 62, 69, 11, 40842, 62, 41068, 82, 62, 69, 41888, 4357, 21737, 198, 220, 220, 220, 997, 62, 79, 3468, 62, 69, 796, 17635, 198, 220, 220, 220, 44386, 29993, 378, 832, 10812, 25, 198, 220, 220, 220, 329, 1459, 62, 70, 1734, 287, 2837, 7, 11925, 7, 70, 1734, 62, 41068, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 41068, 796, 9779, 62, 41068, 82, 58, 14421, 62, 70, 1734, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 3672, 796, 9779, 62, 14933, 58, 14421, 62, 70, 1734, 60, 628, 220, 220, 220, 220, 220, 220, 220, 7064, 62, 47398, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 4067, 11, 24874, 62, 521, 11, 40842, 62, 24874, 62, 521, 28, 15, 11, 15, 11, 15, 628, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 14933, 11, 40842, 62, 41068, 82, 41888, 4357, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 79, 3468, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 16, 11, 40842, 17, 796, 9779, 62, 41068, 58, 24886, 25, 24886, 10, 40842, 62, 11925, 4357, 70, 1734, 62, 41068, 58, 24886, 10, 40842, 62, 11925, 25, 24886, 10, 17, 9, 40842, 62, 11925, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9122, 810, 428, 12774, 318, 1541, 287, 262, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 16, 62, 47684, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7064, 62, 47398, 13, 9127, 7, 24886, 2599, 279, 65, 16, 62, 47684, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 47503, 796, 279, 65, 16, 13, 9127, 10786, 45, 11537, 1343, 279, 65, 17, 13, 9127, 10786, 45, 11537, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 645, 47503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 8968, 796, 308, 66, 7, 40842, 16, 8, 29, 28, 1084, 62, 36484, 290, 308, 66, 7, 40842, 17, 8, 29, 28, 1084, 62, 36484, 290, 308, 66, 7, 40842, 16, 8, 27, 28, 9806, 62, 36484, 290, 308, 66, 7, 40842, 17, 8, 27, 28, 9806, 62, 36484, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 33756, 62, 8968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3975, 62, 7856, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45776, 351, 3272, 12, 260, 21797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 438, 2514, 845, 23263, 47227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 7856, 16, 796, 3975, 62, 41068, 7, 40842, 16, 11, 8899, 62, 7856, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 7856, 17, 796, 3975, 62, 41068, 7, 40842, 17, 11, 8899, 62, 7856, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1128, 62, 8968, 796, 4776, 62, 7856, 16, 855, 15, 290, 4776, 62, 7856, 17, 855, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1128, 62, 8968, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1128, 62, 8968, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3975, 62, 3919, 13746, 274, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 438, 2514, 477, 25897, 338, 2845, 262, 267, 1652, 3808, 357, 3500, 31459, 42, 44, 8968, 1462, 487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 27204, 16, 796, 3975, 62, 41068, 7, 40842, 16, 11, 8899, 62, 3919, 13746, 274, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 27204, 17, 796, 3975, 62, 41068, 7, 40842, 17, 11, 8899, 62, 3919, 13746, 274, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25897, 62, 8968, 796, 949, 7, 26675, 62, 27204, 16, 11, 26675, 62, 27204, 17, 8, 27, 1084, 7, 5837, 42, 44, 62, 8968, 1462, 487, 16, 11, 5837, 42, 44, 62, 8968, 1462, 487, 17, 8, 290, 3509, 7, 26675, 62, 27204, 16, 11, 26675, 62, 27204, 17, 8, 27, 9806, 7, 5837, 42, 44, 62, 8968, 1462, 487, 16, 11, 5837, 42, 44, 62, 8968, 1462, 487, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25897, 62, 8968, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 25897, 62, 8968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8739, 62, 13746, 274, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 438, 2514, 477, 267, 1652, 3808, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 438, 2514, 477, 267, 1652, 3808, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 62, 39358, 16, 796, 3975, 62, 41068, 7, 40842, 16, 11, 31803, 62, 13746, 274, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 62, 39358, 16, 13, 12924, 7, 37659, 13, 853, 9806, 26933, 1416, 58, 16, 60, 329, 629, 287, 8198, 62, 39358, 16, 60, 4008, 1303, 1461, 262, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 62, 39358, 17, 796, 3975, 62, 41068, 7, 40842, 17, 11, 31803, 62, 13746, 274, 11, 2436, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 62, 39358, 17, 13, 12924, 7, 37659, 13, 853, 9806, 26933, 1416, 58, 16, 60, 329, 629, 287, 8198, 62, 39358, 17, 60, 4008, 1303, 1461, 262, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 7390, 87, 62, 2364, 39358, 16, 796, 685, 26675, 58, 15, 60, 329, 4776, 287, 8198, 62, 39358, 16, 611, 4776, 58, 16, 60, 29, 70, 1734, 62, 8968, 2364, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 7390, 87, 62, 2364, 39358, 17, 796, 685, 26675, 58, 15, 60, 329, 4776, 287, 8198, 62, 39358, 17, 611, 4776, 58, 16, 60, 29, 70, 1734, 62, 8968, 2364, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 7390, 87, 62, 2364, 39358, 16, 62, 796, 685, 26675, 58, 15, 60, 329, 4776, 287, 8198, 62, 39358, 17, 611, 4776, 58, 16, 60, 29, 70, 1734, 62, 8968, 2364, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 7390, 87, 62, 2364, 39358, 17, 62, 796, 685, 26675, 58, 15, 60, 329, 4776, 287, 8198, 62, 39358, 16, 611, 4776, 58, 16, 60, 29, 70, 1734, 62, 8968, 2364, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 600, 796, 949, 7, 11925, 7, 37659, 13, 3849, 8831, 16, 67, 7, 70, 1734, 7390, 87, 62, 2364, 39358, 16, 11, 70, 1734, 7390, 87, 62, 2364, 39358, 17, 36911, 11925, 7, 37659, 13, 3849, 8831, 16, 67, 7, 70, 1734, 7390, 87, 62, 2364, 39358, 16, 62, 11, 70, 1734, 7390, 87, 62, 2364, 39358, 17, 62, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 600, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 62, 600, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1700, 745, 29593, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 2251, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 65, 16, 62, 47684, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 24874, 62, 521, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 3672, 796, 9779, 62, 3672, 10, 1, 62, 40842, 11097, 10, 2536, 7, 24886, 10, 40842, 62, 11925, 47762, 6, 62, 40842, 12, 24874, 32105, 10, 2536, 26933, 24874, 62, 521, 11, 40842, 62, 24874, 62, 521, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 14933, 13, 33295, 7, 40842, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 41068, 82, 13, 33295, 7, 40842, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7064, 62, 47398, 13, 33295, 7, 24886, 10, 40842, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 79, 3468, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5166, 62, 521, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 24874, 62, 521, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 3672, 796, 9779, 62, 3672, 10, 1, 62, 40842, 11097, 10, 2536, 7, 24886, 47762, 6, 62, 40842, 12, 24874, 32105, 10, 2536, 26933, 24874, 62, 521, 11, 40842, 62, 24874, 62, 521, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 14933, 13, 33295, 7, 40842, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 41068, 82, 13, 33295, 7, 40842, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7064, 62, 47398, 13, 33295, 7, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 24874, 62, 521, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 3672, 796, 9779, 62, 3672, 10, 1, 62, 40842, 11097, 10, 2536, 7, 24886, 10, 40842, 62, 11925, 47762, 6, 62, 40842, 12, 24874, 32105, 10, 2536, 26933, 24874, 62, 521, 11, 40842, 62, 24874, 62, 521, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 14933, 13, 33295, 7, 40842, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 41068, 82, 13, 33295, 7, 40842, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7064, 62, 47398, 13, 33295, 7, 24886, 10, 40842, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 79, 3468, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 41068, 796, 9779, 62, 41068, 58, 25, 24886, 48688, 1, 1911, 22179, 7, 17816, 45, 6, 329, 479, 287, 2837, 7, 40842, 62, 11925, 8, 12962, 10, 70, 1734, 62, 41068, 58, 24886, 10, 40842, 62, 11925, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4067, 10, 17, 9, 40842, 62, 11925, 29, 11925, 7, 70, 1734, 62, 41068, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 70, 1734, 62, 3672, 10, 1, 357, 79, 3468, 25, 43825, 2536, 7, 22510, 62, 79, 3468, 47762, 4943, 1760, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3049, 707, 6525, 7, 43551, 62, 21928, 10, 418, 13, 325, 79, 10, 70, 1734, 62, 3672, 10, 6, 62, 1676, 12636, 13, 7217, 64, 3256, 40842, 62, 14933, 11, 40842, 62, 41068, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 14933, 62, 69, 13, 33295, 7, 40842, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 65, 62, 41068, 82, 62, 69, 13, 33295, 7, 40842, 62, 41068, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 79, 3468, 62, 69, 10, 41888, 22510, 62, 79, 3468, 60, 198, 220, 220, 220, 1441, 279, 65, 62, 14933, 62, 69, 11, 40842, 62, 41068, 82, 62, 69, 11, 22510, 62, 79, 3468, 62, 69, 198, 4299, 2393, 62, 1462, 62, 6759, 7, 7753, 62, 11, 325, 79, 62, 2536, 28, 3256, 3256, 67, 62, 4906, 28, 14202, 11, 48267, 62, 11085, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 764, 40664, 3696, 284, 257, 1351, 286, 663, 12784, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 2393, 62, 532, 262, 4067, 286, 257, 764, 40664, 2393, 198, 220, 220, 220, 41767, 62, 2536, 532, 262, 2880, 1352, 1022, 1366, 2173, 198, 220, 220, 220, 288, 62, 4906, 532, 262, 4818, 265, 2981, 287, 262, 2393, 198, 220, 220, 220, 14267, 62, 11085, 532, 281, 3038, 284, 14267, 262, 717, 7515, 357, 68, 13, 70, 13, 611, 612, 338, 257, 6859, 8, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 3951, 532, 257, 1351, 286, 262, 3951, 287, 262, 2393, 11, 1123, 286, 543, 2346, 257, 1351, 286, 477, 12784, 287, 262, 1627, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 685, 18755, 329, 300, 77, 287, 1280, 7, 7753, 62, 4032, 81, 11537, 60, 198, 220, 220, 220, 923, 62, 16193, 16, 611, 14267, 62, 11085, 855, 17821, 2073, 657, 8, 1303, 48267, 717, 1627, 611, 3038, 6163, 198, 220, 220, 220, 3951, 796, 685, 5420, 500, 62, 1370, 7, 18755, 11, 67, 62, 4906, 11, 48267, 62, 11085, 8, 329, 300, 77, 287, 3951, 58, 9688, 62, 25, 11907, 198, 220, 220, 220, 1441, 3951, 198, 4299, 3975, 62, 70, 1734, 7, 79, 3468, 62, 77, 907, 62, 11, 79, 3468, 62, 31166, 82, 62, 11, 8189, 11, 26404, 11, 24874, 62, 32374, 62, 525, 62, 2545, 28, 940, 2599, 198, 220, 220, 220, 37227, 5765, 355, 25, 198, 220, 220, 220, 3975, 62, 70, 1734, 26933, 17816, 3672, 62, 40842, 12, 24874, 33250, 16, 11, 16, 60, 41707, 3672, 62, 40842, 12, 24874, 33250, 16, 11, 17, 60, 41707, 3672, 62, 40842, 12, 24874, 33250, 16, 11, 18, 49946, 4357, 17816, 3672, 62, 40842, 12, 24874, 33250, 17, 11, 16, 60, 41707, 3672, 62, 40842, 12, 24874, 33250, 17, 11, 17, 60, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 6, 31166, 16, 41707, 31166, 17, 41707, 31166, 18, 6, 4357, 17816, 31166, 19, 41707, 31166, 20, 20520, 38430, 15, 11, 16, 11, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 2388, 41707, 26259, 41707, 1828, 1828, 41707, 24840, 41707, 2598, 2598, 41707, 2816, 2816, 6, 4357, 24874, 62, 32374, 62, 525, 62, 2545, 28, 940, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 907, 62, 70, 1734, 11, 31166, 82, 62, 70, 1734, 796, 685, 4357, 21737, 198, 220, 220, 220, 269, 912, 62, 291, 1098, 796, 685, 15, 329, 1312, 287, 2837, 7, 11925, 7, 8189, 4008, 60, 198, 220, 220, 220, 269, 912, 62, 85, 8189, 796, 685, 15, 329, 1312, 287, 2837, 7, 11925, 7, 8189, 4008, 60, 198, 220, 220, 220, 329, 299, 907, 62, 11, 31166, 82, 62, 287, 19974, 7, 79, 3468, 62, 77, 907, 62, 11, 79, 3468, 62, 31166, 82, 62, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 907, 62, 3605, 11, 31166, 82, 62, 3605, 796, 3975, 62, 24874, 7, 77, 907, 62, 11, 31166, 82, 62, 11, 8189, 11, 310, 82, 62, 291, 1098, 11, 310, 82, 62, 85, 8189, 11, 26404, 11, 24874, 62, 32374, 62, 525, 62, 2545, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 907, 62, 70, 1734, 13, 2302, 437, 7, 77, 907, 62, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19862, 82, 62, 70, 1734, 13, 2302, 437, 7, 31166, 82, 62, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 949, 7, 310, 82, 62, 85, 8189, 8, 29, 28, 24874, 62, 32374, 62, 525, 62, 2545, 25, 2270, 198, 220, 220, 220, 1441, 299, 907, 62, 70, 1734, 11, 31166, 82, 62, 70, 1734, 198 ]
1.873525
5,764
# -*- coding: utf-8 -*- """Merge reader for SQLite storage files.""" from __future__ import unicode_literals import os import sqlite3 import zlib from plaso.containers import errors from plaso.containers import event_sources from plaso.containers import events from plaso.containers import reports from plaso.containers import tasks from plaso.lib import definitions from plaso.storage import identifiers from plaso.storage import interface class SQLiteStorageMergeReader(interface.StorageFileMergeReader): """SQLite-based storage file reader for merging.""" _CONTAINER_TYPE_ANALYSIS_REPORT = reports.AnalysisReport.CONTAINER_TYPE _CONTAINER_TYPE_EVENT = events.EventObject.CONTAINER_TYPE _CONTAINER_TYPE_EVENT_DATA = events.EventData.CONTAINER_TYPE _CONTAINER_TYPE_EVENT_SOURCE = event_sources.EventSource.CONTAINER_TYPE _CONTAINER_TYPE_EVENT_TAG = events.EventTag.CONTAINER_TYPE _CONTAINER_TYPE_EXTRACTION_ERROR = errors.ExtractionError.CONTAINER_TYPE _CONTAINER_TYPE_TASK_COMPLETION = tasks.TaskCompletion.CONTAINER_TYPE _CONTAINER_TYPE_TASK_START = tasks.TaskStart.CONTAINER_TYPE # Some container types reference other container types, such as event # referencing event_data. Container types in this tuple must be ordered after # all the container types they reference. _CONTAINER_TYPES = ( _CONTAINER_TYPE_EVENT_SOURCE, _CONTAINER_TYPE_EVENT_DATA, _CONTAINER_TYPE_EVENT, _CONTAINER_TYPE_EVENT_TAG, _CONTAINER_TYPE_EXTRACTION_ERROR, _CONTAINER_TYPE_ANALYSIS_REPORT) _ADD_CONTAINER_TYPE_METHODS = { _CONTAINER_TYPE_ANALYSIS_REPORT: '_AddAnalysisReport', _CONTAINER_TYPE_EVENT: '_AddEvent', _CONTAINER_TYPE_EVENT_DATA: '_AddEventData', _CONTAINER_TYPE_EVENT_SOURCE: '_AddEventSource', _CONTAINER_TYPE_EVENT_TAG: '_AddEventTag', _CONTAINER_TYPE_EXTRACTION_ERROR: '_AddError', } _TABLE_NAMES_QUERY = ( 'SELECT name FROM sqlite_master WHERE type = "table"') def __init__(self, storage_writer, path): """Initializes a storage merge reader. Args: storage_writer (StorageWriter): storage writer. path (str): path to the input file. Raises: IOError: if the input file cannot be opened. RuntimeError: if an add container method is missing. """ super(SQLiteStorageMergeReader, self).__init__(storage_writer) self._active_container_type = None self._active_cursor = None self._add_active_container_method = None self._add_container_type_methods = {} self._compression_format = definitions.COMPRESSION_FORMAT_NONE self._connection = None self._container_types = None self._cursor = None self._event_data_identifier_mappings = {} self._path = path # Create a runtime lookup table for the add container type method. This # prevents having to create a series of if-else checks for container types. # The table is generated at runtime as there are no forward function # declarations in Python. for container_type, method_name in self._ADD_CONTAINER_TYPE_METHODS.items(): method = getattr(self, method_name, None) if not method: raise RuntimeError( 'Add method missing for container type: {0:s}'.format( container_type)) self._add_container_type_methods[container_type] = method def _AddAnalysisReport(self, analysis_report): """Adds an analysis report. Args: analysis_report (AnalysisReport): analysis report. """ self._storage_writer.AddAnalysisReport(analysis_report) def _AddError(self, error): """Adds an error. Args: error (ExtractionError): error. """ self._storage_writer.AddError(error) def _AddEvent(self, event): """Adds an event. Args: event (EventObject): event. """ if hasattr(event, 'event_data_row_identifier'): event_data_identifier = identifiers.SQLTableIdentifier( self._CONTAINER_TYPE_EVENT_DATA, event.event_data_row_identifier) lookup_key = event_data_identifier.CopyToString() event_data_identifier = self._event_data_identifier_mappings[lookup_key] event.SetEventDataIdentifier(event_data_identifier) # TODO: add event identifier mappings for event tags. self._storage_writer.AddEvent(event) def _AddEventData(self, event_data): """Adds event data. Args: event_data (EventData): event data. """ identifier = event_data.GetIdentifier() lookup_key = identifier.CopyToString() self._storage_writer.AddEventData(event_data) identifier = event_data.GetIdentifier() self._event_data_identifier_mappings[lookup_key] = identifier def _AddEventSource(self, event_source): """Adds an event source. Args: event_source (EventSource): event source. """ self._storage_writer.AddEventSource(event_source) def _AddEventTag(self, event_tag): """Adds an event tag. Args: event_tag (EventTag): event tag. """ self._storage_writer.AddEventTag(event_tag) def _Close(self): """Closes the task storage after reading.""" self._connection.close() self._connection = None self._cursor = None def _GetContainerTypes(self): """Retrieves the container types to merge. Container types not defined in _CONTAINER_TYPES are ignored and not merged. Specific container types reference other container types, such as event referencing event data. The names are ordered to ensure the attribute containers are merged in the correct order. Returns: list[str]: names of the container types to merge. """ self._cursor.execute(self._TABLE_NAMES_QUERY) table_names = [row[0] for row in self._cursor.fetchall()] return [ table_name for table_name in self._CONTAINER_TYPES if table_name in table_names] def _Open(self): """Opens the task storage for reading.""" self._connection = sqlite3.connect( self._path, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) self._cursor = self._connection.cursor() def _ReadStorageMetadata(self): """Reads the task storage metadata.""" query = 'SELECT key, value FROM metadata' self._cursor.execute(query) metadata_values = {row[0]: row[1] for row in self._cursor.fetchall()} self._compression_format = metadata_values['compression_format'] def _PrepareForNextContainerType(self): """Prepares for the next container type. This method prepares the task storage for merging the next container type. It set the active container type, its add method and active cursor accordingly. """ self._active_container_type = self._container_types.pop(0) self._add_active_container_method = self._add_container_type_methods.get( self._active_container_type) query = 'SELECT _identifier, _data FROM {0:s}'.format( self._active_container_type) self._cursor.execute(query) self._active_cursor = self._cursor def MergeAttributeContainers( self, callback=None, maximum_number_of_containers=0): """Reads attribute containers from a task storage file into the writer. Args: callback (function[StorageWriter, AttributeContainer]): function to call after each attribute container is deserialized. maximum_number_of_containers (Optional[int]): maximum number of containers to merge, where 0 represent no limit. Returns: bool: True if the entire task storage file has been merged. Raises: RuntimeError: if the add method for the active attribute container type is missing. OSError: if the task storage file cannot be deleted. ValueError: if the maximum number of containers is a negative value. """ if maximum_number_of_containers < 0: raise ValueError('Invalid maximum number of containers') if not self._cursor: self._Open() self._ReadStorageMetadata() self._container_types = self._GetContainerTypes() number_of_containers = 0 while self._active_cursor or self._container_types: if not self._active_cursor: self._PrepareForNextContainerType() if maximum_number_of_containers == 0: rows = self._active_cursor.fetchall() else: number_of_rows = maximum_number_of_containers - number_of_containers rows = self._active_cursor.fetchmany(size=number_of_rows) if not rows: self._active_cursor = None continue for row in rows: identifier = identifiers.SQLTableIdentifier( self._active_container_type, row[0]) if self._compression_format == definitions.COMPRESSION_FORMAT_ZLIB: serialized_data = zlib.decompress(row[1]) else: serialized_data = row[1] attribute_container = self._DeserializeAttributeContainer( self._active_container_type, serialized_data) attribute_container.SetIdentifier(identifier) if self._active_container_type == self._CONTAINER_TYPE_EVENT_TAG: event_identifier = identifiers.SQLTableIdentifier( self._CONTAINER_TYPE_EVENT, attribute_container.event_row_identifier) attribute_container.SetEventIdentifier(event_identifier) del attribute_container.event_row_identifier if callback: callback(self._storage_writer, attribute_container) self._add_active_container_method(attribute_container) number_of_containers += 1 if (maximum_number_of_containers != 0 and number_of_containers >= maximum_number_of_containers): return False self._Close() os.remove(self._path) return True
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 13102, 469, 9173, 329, 16363, 578, 6143, 3696, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 11748, 44161, 578, 18, 198, 11748, 1976, 8019, 198, 198, 6738, 458, 292, 78, 13, 3642, 50221, 1330, 8563, 198, 6738, 458, 292, 78, 13, 3642, 50221, 1330, 1785, 62, 82, 2203, 198, 6738, 458, 292, 78, 13, 3642, 50221, 1330, 2995, 198, 6738, 458, 292, 78, 13, 3642, 50221, 1330, 3136, 198, 6738, 458, 292, 78, 13, 3642, 50221, 1330, 8861, 198, 6738, 458, 292, 78, 13, 8019, 1330, 17336, 198, 6738, 458, 292, 78, 13, 35350, 1330, 42814, 198, 6738, 458, 292, 78, 13, 35350, 1330, 7071, 628, 198, 4871, 16363, 578, 31425, 13102, 469, 33634, 7, 39994, 13, 31425, 8979, 13102, 469, 33634, 2599, 198, 220, 37227, 17861, 578, 12, 3106, 6143, 2393, 9173, 329, 35981, 526, 15931, 628, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 1565, 1847, 16309, 1797, 62, 2200, 15490, 796, 3136, 13, 32750, 19100, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 796, 2995, 13, 9237, 10267, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 26947, 796, 2995, 13, 9237, 6601, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 47690, 796, 1785, 62, 82, 2203, 13, 9237, 7416, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 42197, 796, 2995, 13, 9237, 24835, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 6369, 5446, 44710, 62, 24908, 796, 8563, 13, 11627, 7861, 12331, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 51, 1921, 42, 62, 41335, 24131, 796, 8861, 13, 25714, 5377, 24547, 13, 10943, 30339, 1137, 62, 25216, 198, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 51, 1921, 42, 62, 2257, 7227, 796, 8861, 13, 25714, 10434, 13, 10943, 30339, 1137, 62, 25216, 628, 220, 1303, 2773, 9290, 3858, 4941, 584, 9290, 3858, 11, 884, 355, 1785, 198, 220, 1303, 32578, 1785, 62, 7890, 13, 43101, 3858, 287, 428, 46545, 1276, 307, 6149, 706, 198, 220, 1303, 477, 262, 9290, 3858, 484, 4941, 13, 198, 220, 4808, 10943, 30339, 1137, 62, 9936, 47, 1546, 796, 357, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 47690, 11, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 26947, 11, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 11, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 42197, 11, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 6369, 5446, 44710, 62, 24908, 11, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 1565, 1847, 16309, 1797, 62, 2200, 15490, 8, 628, 220, 4808, 29266, 62, 10943, 30339, 1137, 62, 25216, 62, 49273, 50, 796, 1391, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 1565, 1847, 16309, 1797, 62, 2200, 15490, 25, 705, 62, 4550, 32750, 19100, 3256, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 25, 705, 62, 4550, 9237, 3256, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 26947, 25, 705, 62, 4550, 9237, 6601, 3256, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 47690, 25, 705, 62, 4550, 9237, 7416, 3256, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 42197, 25, 705, 62, 4550, 9237, 24835, 3256, 198, 220, 220, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 25216, 62, 6369, 5446, 44710, 62, 24908, 25, 705, 62, 4550, 12331, 3256, 198, 220, 1782, 628, 220, 4808, 38148, 62, 45, 29559, 62, 10917, 19664, 796, 357, 198, 220, 220, 220, 220, 220, 705, 46506, 1438, 16034, 44161, 578, 62, 9866, 33411, 2099, 796, 366, 11487, 1, 11537, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 6143, 62, 16002, 11, 3108, 2599, 198, 220, 220, 220, 37227, 24243, 4340, 257, 6143, 20121, 9173, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 6143, 62, 16002, 357, 31425, 34379, 2599, 6143, 6260, 13, 198, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 3108, 284, 262, 5128, 2393, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 24418, 12331, 25, 611, 262, 5128, 2393, 2314, 307, 4721, 13, 198, 220, 220, 220, 220, 220, 43160, 12331, 25, 611, 281, 751, 9290, 2446, 318, 4814, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 7, 17861, 578, 31425, 13102, 469, 33634, 11, 2116, 737, 834, 15003, 834, 7, 35350, 62, 16002, 8, 198, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 796, 6045, 198, 220, 220, 220, 2116, 13557, 5275, 62, 66, 21471, 796, 6045, 198, 220, 220, 220, 2116, 13557, 2860, 62, 5275, 62, 34924, 62, 24396, 796, 6045, 198, 220, 220, 220, 2116, 13557, 2860, 62, 34924, 62, 4906, 62, 24396, 82, 796, 23884, 198, 220, 220, 220, 2116, 13557, 5589, 2234, 62, 18982, 796, 17336, 13, 9858, 32761, 2849, 62, 21389, 1404, 62, 45, 11651, 198, 220, 220, 220, 2116, 13557, 38659, 796, 6045, 198, 220, 220, 220, 2116, 13557, 34924, 62, 19199, 796, 6045, 198, 220, 220, 220, 2116, 13557, 66, 21471, 796, 6045, 198, 220, 220, 220, 2116, 13557, 15596, 62, 7890, 62, 738, 7483, 62, 76, 39242, 796, 23884, 198, 220, 220, 220, 2116, 13557, 6978, 796, 3108, 628, 220, 220, 220, 1303, 13610, 257, 19124, 35847, 3084, 329, 262, 751, 9290, 2099, 2446, 13, 770, 198, 220, 220, 220, 1303, 15174, 1719, 284, 2251, 257, 2168, 286, 611, 12, 17772, 8794, 329, 9290, 3858, 13, 198, 220, 220, 220, 1303, 383, 3084, 318, 7560, 379, 19124, 355, 612, 389, 645, 2651, 2163, 198, 220, 220, 220, 1303, 31713, 287, 11361, 13, 198, 220, 220, 220, 329, 9290, 62, 4906, 11, 2446, 62, 3672, 287, 2116, 13557, 29266, 62, 10943, 30339, 1137, 62, 25216, 62, 49273, 50, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 2446, 796, 651, 35226, 7, 944, 11, 2446, 62, 3672, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 611, 407, 2446, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4550, 2446, 4814, 329, 9290, 2099, 25, 1391, 15, 25, 82, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9290, 62, 4906, 4008, 628, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 34924, 62, 4906, 62, 24396, 82, 58, 34924, 62, 4906, 60, 796, 2446, 628, 220, 825, 4808, 4550, 32750, 19100, 7, 944, 11, 3781, 62, 13116, 2599, 198, 220, 220, 220, 37227, 46245, 281, 3781, 989, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 3781, 62, 13116, 357, 32750, 19100, 2599, 3781, 989, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 32750, 19100, 7, 20930, 62, 13116, 8, 628, 220, 825, 4808, 4550, 12331, 7, 944, 11, 4049, 2599, 198, 220, 220, 220, 37227, 46245, 281, 4049, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 4049, 357, 11627, 7861, 12331, 2599, 4049, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 12331, 7, 18224, 8, 628, 220, 825, 4808, 4550, 9237, 7, 944, 11, 1785, 2599, 198, 220, 220, 220, 37227, 46245, 281, 1785, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1785, 357, 9237, 10267, 2599, 1785, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 468, 35226, 7, 15596, 11, 705, 15596, 62, 7890, 62, 808, 62, 738, 7483, 6, 2599, 198, 220, 220, 220, 220, 220, 1785, 62, 7890, 62, 738, 7483, 796, 42814, 13, 17861, 10962, 33234, 7483, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 26947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 13, 15596, 62, 7890, 62, 808, 62, 738, 7483, 8, 198, 220, 220, 220, 220, 220, 35847, 62, 2539, 796, 1785, 62, 7890, 62, 738, 7483, 13, 29881, 2514, 10100, 3419, 628, 220, 220, 220, 220, 220, 1785, 62, 7890, 62, 738, 7483, 796, 2116, 13557, 15596, 62, 7890, 62, 738, 7483, 62, 76, 39242, 58, 5460, 929, 62, 2539, 60, 198, 220, 220, 220, 220, 220, 1785, 13, 7248, 9237, 6601, 33234, 7483, 7, 15596, 62, 7890, 62, 738, 7483, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 751, 1785, 27421, 285, 39242, 329, 1785, 15940, 13, 628, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 9237, 7, 15596, 8, 628, 220, 825, 4808, 4550, 9237, 6601, 7, 944, 11, 1785, 62, 7890, 2599, 198, 220, 220, 220, 37227, 46245, 1785, 1366, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1785, 62, 7890, 357, 9237, 6601, 2599, 1785, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27421, 796, 1785, 62, 7890, 13, 3855, 33234, 7483, 3419, 198, 220, 220, 220, 35847, 62, 2539, 796, 27421, 13, 29881, 2514, 10100, 3419, 628, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 9237, 6601, 7, 15596, 62, 7890, 8, 628, 220, 220, 220, 27421, 796, 1785, 62, 7890, 13, 3855, 33234, 7483, 3419, 198, 220, 220, 220, 2116, 13557, 15596, 62, 7890, 62, 738, 7483, 62, 76, 39242, 58, 5460, 929, 62, 2539, 60, 796, 27421, 628, 220, 825, 4808, 4550, 9237, 7416, 7, 944, 11, 1785, 62, 10459, 2599, 198, 220, 220, 220, 37227, 46245, 281, 1785, 2723, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1785, 62, 10459, 357, 9237, 7416, 2599, 1785, 2723, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 9237, 7416, 7, 15596, 62, 10459, 8, 628, 220, 825, 4808, 4550, 9237, 24835, 7, 944, 11, 1785, 62, 12985, 2599, 198, 220, 220, 220, 37227, 46245, 281, 1785, 7621, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1785, 62, 12985, 357, 9237, 24835, 2599, 1785, 7621, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 35350, 62, 16002, 13, 4550, 9237, 24835, 7, 15596, 62, 12985, 8, 628, 220, 825, 4808, 26125, 7, 944, 2599, 198, 220, 220, 220, 37227, 2601, 4629, 262, 4876, 6143, 706, 3555, 526, 15931, 198, 220, 220, 220, 2116, 13557, 38659, 13, 19836, 3419, 198, 220, 220, 220, 2116, 13557, 38659, 796, 6045, 198, 220, 220, 220, 2116, 13557, 66, 21471, 796, 6045, 628, 220, 825, 4808, 3855, 29869, 31431, 7, 944, 2599, 198, 220, 220, 220, 37227, 9781, 5034, 1158, 262, 9290, 3858, 284, 20121, 13, 628, 220, 220, 220, 43101, 3858, 407, 5447, 287, 4808, 10943, 30339, 1137, 62, 9936, 47, 1546, 389, 9514, 290, 407, 23791, 13, 628, 220, 220, 220, 17377, 9290, 3858, 4941, 584, 9290, 3858, 11, 884, 198, 220, 220, 220, 355, 1785, 32578, 1785, 1366, 13, 383, 3891, 389, 6149, 284, 4155, 262, 198, 220, 220, 220, 11688, 16472, 389, 23791, 287, 262, 3376, 1502, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 1351, 58, 2536, 5974, 3891, 286, 262, 9290, 3858, 284, 20121, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 66, 21471, 13, 41049, 7, 944, 13557, 38148, 62, 45, 29559, 62, 10917, 19664, 8, 198, 220, 220, 220, 3084, 62, 14933, 796, 685, 808, 58, 15, 60, 329, 5752, 287, 2116, 13557, 66, 21471, 13, 69, 7569, 439, 3419, 60, 628, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 3672, 329, 3084, 62, 3672, 287, 2116, 13557, 10943, 30339, 1137, 62, 9936, 47, 1546, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3084, 62, 3672, 287, 3084, 62, 14933, 60, 628, 220, 825, 4808, 11505, 7, 944, 2599, 198, 220, 220, 220, 37227, 18257, 641, 262, 4876, 6143, 329, 3555, 526, 15931, 198, 220, 220, 220, 2116, 13557, 38659, 796, 44161, 578, 18, 13, 8443, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6978, 11, 4886, 62, 19199, 28, 25410, 578, 18, 13, 27082, 5188, 62, 41374, 43, 9936, 47, 1546, 91, 25410, 578, 18, 13, 27082, 5188, 62, 25154, 45, 29559, 8, 198, 220, 220, 220, 2116, 13557, 66, 21471, 796, 2116, 13557, 38659, 13, 66, 21471, 3419, 628, 220, 825, 4808, 5569, 31425, 9171, 14706, 7, 944, 2599, 198, 220, 220, 220, 37227, 5569, 82, 262, 4876, 6143, 20150, 526, 15931, 198, 220, 220, 220, 12405, 796, 705, 46506, 1994, 11, 1988, 16034, 20150, 6, 198, 220, 220, 220, 2116, 13557, 66, 21471, 13, 41049, 7, 22766, 8, 628, 220, 220, 220, 20150, 62, 27160, 796, 1391, 808, 58, 15, 5974, 5752, 58, 16, 60, 329, 5752, 287, 2116, 13557, 66, 21471, 13, 69, 7569, 439, 3419, 92, 628, 220, 220, 220, 2116, 13557, 5589, 2234, 62, 18982, 796, 20150, 62, 27160, 17816, 5589, 2234, 62, 18982, 20520, 628, 220, 825, 4808, 37534, 533, 1890, 10019, 29869, 6030, 7, 944, 2599, 198, 220, 220, 220, 37227, 37534, 3565, 329, 262, 1306, 9290, 2099, 13, 628, 220, 220, 220, 770, 2446, 25978, 262, 4876, 6143, 329, 35981, 262, 1306, 9290, 2099, 13, 198, 220, 220, 220, 632, 900, 262, 4075, 9290, 2099, 11, 663, 751, 2446, 290, 4075, 23493, 198, 220, 220, 220, 16062, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 796, 2116, 13557, 34924, 62, 19199, 13, 12924, 7, 15, 8, 628, 220, 220, 220, 2116, 13557, 2860, 62, 5275, 62, 34924, 62, 24396, 796, 2116, 13557, 2860, 62, 34924, 62, 4906, 62, 24396, 82, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 8, 628, 220, 220, 220, 12405, 796, 705, 46506, 4808, 738, 7483, 11, 4808, 7890, 16034, 1391, 15, 25, 82, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 8, 198, 220, 220, 220, 2116, 13557, 66, 21471, 13, 41049, 7, 22766, 8, 628, 220, 220, 220, 2116, 13557, 5275, 62, 66, 21471, 796, 2116, 13557, 66, 21471, 628, 220, 825, 39407, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 2116, 11, 23838, 28, 14202, 11, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 28, 15, 2599, 198, 220, 220, 220, 37227, 5569, 82, 11688, 16472, 422, 257, 4876, 6143, 2393, 656, 262, 6260, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 23838, 357, 8818, 58, 31425, 34379, 11, 3460, 4163, 29869, 60, 2599, 2163, 284, 869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 706, 1123, 11688, 9290, 318, 748, 48499, 1143, 13, 198, 220, 220, 220, 220, 220, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 357, 30719, 58, 600, 60, 2599, 5415, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16472, 284, 20121, 11, 810, 657, 2380, 645, 4179, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 20512, 25, 6407, 611, 262, 2104, 4876, 6143, 2393, 468, 587, 23791, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 43160, 12331, 25, 611, 262, 751, 2446, 329, 262, 4075, 11688, 9290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 318, 4814, 13, 198, 220, 220, 220, 220, 220, 440, 5188, 81, 1472, 25, 611, 262, 4876, 6143, 2393, 2314, 307, 13140, 13, 198, 220, 220, 220, 220, 220, 11052, 12331, 25, 611, 262, 5415, 1271, 286, 16472, 318, 257, 4633, 1988, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 5415, 1271, 286, 16472, 11537, 628, 220, 220, 220, 611, 407, 2116, 13557, 66, 21471, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 11505, 3419, 198, 220, 220, 220, 220, 220, 2116, 13557, 5569, 31425, 9171, 14706, 3419, 198, 220, 220, 220, 220, 220, 2116, 13557, 34924, 62, 19199, 796, 2116, 13557, 3855, 29869, 31431, 3419, 628, 220, 220, 220, 1271, 62, 1659, 62, 3642, 50221, 796, 657, 198, 220, 220, 220, 981, 2116, 13557, 5275, 62, 66, 21471, 393, 2116, 13557, 34924, 62, 19199, 25, 198, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 5275, 62, 66, 21471, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37534, 533, 1890, 10019, 29869, 6030, 3419, 628, 220, 220, 220, 220, 220, 611, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 796, 2116, 13557, 5275, 62, 66, 21471, 13, 69, 7569, 439, 3419, 198, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 8516, 796, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 532, 1271, 62, 1659, 62, 3642, 50221, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 796, 2116, 13557, 5275, 62, 66, 21471, 13, 69, 7569, 21834, 7, 7857, 28, 17618, 62, 1659, 62, 8516, 8, 628, 220, 220, 220, 220, 220, 611, 407, 15274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 66, 21471, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 329, 5752, 287, 15274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27421, 796, 42814, 13, 17861, 10962, 33234, 7483, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 11, 5752, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 5589, 2234, 62, 18982, 6624, 17336, 13, 9858, 32761, 2849, 62, 21389, 1404, 62, 57, 40347, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 1143, 62, 7890, 796, 1976, 8019, 13, 12501, 3361, 601, 7, 808, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 1143, 62, 7890, 796, 5752, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 34924, 796, 2116, 13557, 5960, 48499, 1096, 33682, 29869, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 34924, 62, 4906, 11, 11389, 1143, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 34924, 13, 7248, 33234, 7483, 7, 738, 7483, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 5275, 62, 34924, 62, 4906, 6624, 2116, 13557, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 62, 42197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 738, 7483, 796, 42814, 13, 17861, 10962, 33234, 7483, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10943, 30339, 1137, 62, 25216, 62, 20114, 3525, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 34924, 13, 15596, 62, 808, 62, 738, 7483, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 34924, 13, 7248, 9237, 33234, 7483, 7, 15596, 62, 738, 7483, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 11688, 62, 34924, 13, 15596, 62, 808, 62, 738, 7483, 628, 220, 220, 220, 220, 220, 220, 220, 611, 23838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23838, 7, 944, 13557, 35350, 62, 16002, 11, 11688, 62, 34924, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 5275, 62, 34924, 62, 24396, 7, 42348, 62, 34924, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 3642, 50221, 15853, 352, 628, 220, 220, 220, 220, 220, 611, 357, 47033, 62, 17618, 62, 1659, 62, 3642, 50221, 14512, 657, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 3642, 50221, 18189, 5415, 62, 17618, 62, 1659, 62, 3642, 50221, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 2116, 13557, 26125, 3419, 628, 220, 220, 220, 28686, 13, 28956, 7, 944, 13557, 6978, 8, 628, 220, 220, 220, 1441, 6407, 198 ]
2.75864
3,530
import os from pathlib import Path import pytest from robotidy.app import Robotidy from robotidy.utils import decorate_diff_with_color, split_args_from_name_or_path, GlobalFormattingConfig @pytest.fixture
[ 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 9379, 19325, 13, 1324, 1330, 16071, 19325, 198, 6738, 9379, 19325, 13, 26791, 1330, 11705, 378, 62, 26069, 62, 4480, 62, 8043, 11, 6626, 62, 22046, 62, 6738, 62, 3672, 62, 273, 62, 6978, 11, 8060, 26227, 889, 16934, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628 ]
3.28125
64
# Generated by Django 3.2 on 2021-06-14 21:05 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 319, 33448, 12, 3312, 12, 1415, 2310, 25, 2713, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
f() print("PASS")
[ 198, 69, 3419, 198, 198, 4798, 7203, 47924, 4943 ]
2.111111
9
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distribution adapters for (soft) round functions.""" import tensorflow as tf import tensorflow_probability as tfp from tensorflow_compression.python.distributions import deep_factorized from tensorflow_compression.python.distributions import helpers from tensorflow_compression.python.distributions import uniform_noise from tensorflow_compression.python.ops import soft_round_ops __all__ = [ "MonotonicAdapter", "RoundAdapter", "NoisyRoundedNormal", "NoisyRoundedDeepFactorized", "SoftRoundAdapter", "NoisySoftRoundedNormal", "NoisySoftRoundedDeepFactorized" ] class MonotonicAdapter(tfp.distributions.Distribution): """Adapt a continuous distribution via an ascending monotonic function. This is described in Appendix E. in the paper > "Universally Quantized Neural Compression"<br /> > Eirikur Agustsson & Lucas Theis<br /> > https://arxiv.org/abs/2006.09952 """ invertible = True # Set to false if the transform is not invertible. def __init__(self, base, name="MonotonicAdapter"): """Initializer. Arguments: base: A `tfp.distributions.Distribution` object representing a continuous-valued random variable. name: String. A name for this distribution. """ parameters = dict(locals()) self._base = base super().__init__( dtype=base.dtype, reparameterization_type=base.reparameterization_type, validate_args=base.validate_args, allow_nan_stats=base.allow_nan_stats, parameters=parameters, name=name, ) @property def base(self): """The base distribution.""" return self._base def transform(self, x): """The forward transform.""" raise NotImplementedError() def inverse_transform(self, y): """The backward transform.""" # Let f(x) = self.transform(x) # Then g(y) = self.inverse_transform(y) is defined as # g(y) := inf_x { x : f(x) >= y } # which is just the inverse of `f` if it is invertible. raise NotImplementedError() # pylint: disable=protected-access # pylint: enable=protected-access class RoundAdapter(MonotonicAdapter): """Continuous density function + round.""" invertible = False class NoisyRoundAdapter(uniform_noise.UniformNoiseAdapter): """Uniform noise + round.""" def __init__(self, base, name="NoisyRoundAdapter"): """Initializer. Arguments: base: A `tfp.distributions.Distribution` object representing a continuous-valued random variable. name: String. A name for this distribution. """ super().__init__(RoundAdapter(base), name=name) class NoisyRoundedDeepFactorized(NoisyRoundAdapter): """Rounded DeepFactorized + uniform noise.""" class NoisyRoundedNormal(NoisyRoundAdapter): """Rounded normal distribution + uniform noise.""" class SoftRoundAdapter(MonotonicAdapter): """Differentiable approximation to round.""" def __init__(self, base, alpha, name="SoftRoundAdapter"): """Initializer. Arguments: base: A `tfp.distributions.Distribution` object representing a continuous-valued random variable. alpha: Float or tf.Tensor. Controls smoothness of the approximation. name: String. A name for this distribution. """ super().__init__(base=base, name=name) self._alpha = alpha class NoisySoftRoundAdapter(uniform_noise.UniformNoiseAdapter): """Uniform noise + differentiable approximation to round.""" def __init__(self, base, alpha, name="NoisySoftRoundAdapter"): """Initializer. Arguments: base: A `tfp.distributions.Distribution` object representing a continuous-valued random variable. alpha: Float or tf.Tensor. Controls smoothness of soft round. name: String. A name for this distribution. """ super().__init__(SoftRoundAdapter(base, alpha), name=name) class NoisySoftRoundedNormal(NoisySoftRoundAdapter): """Soft rounded normal distribution + uniform noise.""" class NoisySoftRoundedDeepFactorized(NoisySoftRoundAdapter): """Soft rounded deep factorized distribution + uniform noise."""
[ 2, 15069, 12131, 3012, 11419, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 20344, 3890, 46363, 329, 357, 4215, 8, 2835, 5499, 526, 15931, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 11125, 62, 1676, 65, 1799, 355, 256, 46428, 198, 198, 6738, 11192, 273, 11125, 62, 5589, 2234, 13, 29412, 13, 17080, 2455, 507, 1330, 2769, 62, 31412, 1143, 198, 6738, 11192, 273, 11125, 62, 5589, 2234, 13, 29412, 13, 17080, 2455, 507, 1330, 49385, 198, 6738, 11192, 273, 11125, 62, 5589, 2234, 13, 29412, 13, 17080, 2455, 507, 1330, 8187, 62, 3919, 786, 198, 6738, 11192, 273, 11125, 62, 5589, 2234, 13, 29412, 13, 2840, 1330, 2705, 62, 744, 62, 2840, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 9069, 313, 9229, 47307, 1600, 366, 22685, 47307, 1600, 366, 2949, 13560, 49, 6302, 26447, 1600, 198, 220, 220, 220, 366, 2949, 13560, 49, 6302, 29744, 41384, 1143, 1600, 366, 18380, 22685, 47307, 1600, 366, 2949, 13560, 18380, 49, 6302, 26447, 1600, 198, 220, 220, 220, 366, 2949, 13560, 18380, 49, 6302, 29744, 41384, 1143, 1, 198, 60, 628, 198, 4871, 2892, 313, 9229, 47307, 7, 27110, 79, 13, 17080, 2455, 507, 13, 20344, 3890, 2599, 198, 220, 37227, 48003, 257, 12948, 6082, 2884, 281, 41988, 937, 313, 9229, 2163, 13, 628, 220, 770, 318, 3417, 287, 30378, 412, 13, 287, 262, 3348, 198, 220, 1875, 366, 3118, 1191, 453, 16972, 1143, 47986, 3082, 2234, 1, 27, 1671, 11037, 198, 220, 1875, 412, 343, 1134, 333, 2449, 436, 16528, 1222, 15257, 383, 271, 27, 1671, 11037, 198, 220, 1875, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 13330, 13, 15, 2079, 4309, 628, 220, 37227, 628, 220, 287, 1851, 856, 796, 6407, 220, 1303, 5345, 284, 3991, 611, 262, 6121, 318, 407, 287, 1851, 856, 13, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 2779, 11, 1438, 2625, 9069, 313, 9229, 47307, 1, 2599, 198, 220, 220, 220, 37227, 24243, 7509, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 2779, 25, 317, 4600, 27110, 79, 13, 17080, 2455, 507, 13, 20344, 3890, 63, 2134, 10200, 257, 198, 220, 220, 220, 220, 220, 220, 220, 12948, 12, 39728, 4738, 7885, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 10903, 13, 317, 1438, 329, 428, 6082, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10007, 796, 8633, 7, 17946, 874, 28955, 198, 220, 220, 220, 2116, 13557, 8692, 796, 2779, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 8692, 13, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 41158, 2357, 1634, 62, 4906, 28, 8692, 13, 260, 17143, 2357, 1634, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 22046, 28, 8692, 13, 12102, 378, 62, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 12647, 62, 34242, 28, 8692, 13, 12154, 62, 12647, 62, 34242, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 28, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 1267, 628, 220, 2488, 26745, 198, 220, 825, 2779, 7, 944, 2599, 198, 220, 220, 220, 37227, 464, 2779, 6082, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13557, 8692, 628, 220, 825, 6121, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 37227, 464, 2651, 6121, 526, 15931, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 825, 34062, 62, 35636, 7, 944, 11, 331, 2599, 198, 220, 220, 220, 37227, 464, 19528, 6121, 526, 15931, 198, 220, 220, 220, 1303, 3914, 277, 7, 87, 8, 796, 2116, 13, 35636, 7, 87, 8, 198, 220, 220, 220, 1303, 3244, 308, 7, 88, 8, 796, 2116, 13, 259, 4399, 62, 35636, 7, 88, 8, 318, 5447, 355, 198, 220, 220, 220, 1303, 308, 7, 88, 8, 19039, 1167, 62, 87, 1391, 2124, 1058, 277, 7, 87, 8, 18189, 331, 1782, 198, 220, 220, 220, 1303, 543, 318, 655, 262, 34062, 286, 4600, 69, 63, 611, 340, 318, 287, 1851, 856, 13, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 220, 1303, 279, 2645, 600, 25, 7139, 28, 24326, 12, 15526, 628, 198, 4871, 10485, 47307, 7, 9069, 313, 9229, 47307, 2599, 198, 220, 37227, 17875, 5623, 12109, 2163, 1343, 2835, 526, 15931, 628, 220, 287, 1851, 856, 796, 10352, 628, 198, 4871, 1400, 13560, 22685, 47307, 7, 403, 6933, 62, 3919, 786, 13, 3118, 6933, 2949, 786, 47307, 2599, 198, 220, 37227, 3118, 6933, 7838, 1343, 2835, 526, 15931, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 2779, 11, 1438, 2625, 2949, 13560, 22685, 47307, 1, 2599, 198, 220, 220, 220, 37227, 24243, 7509, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 2779, 25, 317, 4600, 27110, 79, 13, 17080, 2455, 507, 13, 20344, 3890, 63, 2134, 10200, 257, 198, 220, 220, 220, 220, 220, 220, 220, 12948, 12, 39728, 4738, 7885, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 10903, 13, 317, 1438, 329, 428, 6082, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 22685, 47307, 7, 8692, 828, 1438, 28, 3672, 8, 628, 198, 4871, 1400, 13560, 49, 6302, 29744, 41384, 1143, 7, 2949, 13560, 22685, 47307, 2599, 198, 220, 37227, 49, 6302, 10766, 41384, 1143, 1343, 8187, 7838, 526, 15931, 628, 198, 4871, 1400, 13560, 49, 6302, 26447, 7, 2949, 13560, 22685, 47307, 2599, 198, 220, 37227, 49, 6302, 3487, 6082, 1343, 8187, 7838, 526, 15931, 628, 198, 4871, 8297, 22685, 47307, 7, 9069, 313, 9229, 47307, 2599, 198, 220, 37227, 40341, 3379, 40874, 284, 2835, 526, 15931, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 2779, 11, 17130, 11, 1438, 2625, 18380, 22685, 47307, 1, 2599, 198, 220, 220, 220, 37227, 24243, 7509, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 2779, 25, 317, 4600, 27110, 79, 13, 17080, 2455, 507, 13, 20344, 3890, 63, 2134, 10200, 257, 198, 220, 220, 220, 220, 220, 220, 220, 12948, 12, 39728, 4738, 7885, 13, 198, 220, 220, 220, 220, 220, 17130, 25, 48436, 393, 48700, 13, 51, 22854, 13, 36357, 7209, 1108, 286, 262, 40874, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 10903, 13, 317, 1438, 329, 428, 6082, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 8692, 28, 8692, 11, 1438, 28, 3672, 8, 198, 220, 220, 220, 2116, 13557, 26591, 796, 17130, 628, 198, 4871, 1400, 13560, 18380, 22685, 47307, 7, 403, 6933, 62, 3919, 786, 13, 3118, 6933, 2949, 786, 47307, 2599, 198, 220, 37227, 3118, 6933, 7838, 1343, 1180, 3379, 40874, 284, 2835, 526, 15931, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 2779, 11, 17130, 11, 1438, 2625, 2949, 13560, 18380, 22685, 47307, 1, 2599, 198, 220, 220, 220, 37227, 24243, 7509, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 2779, 25, 317, 4600, 27110, 79, 13, 17080, 2455, 507, 13, 20344, 3890, 63, 2134, 10200, 257, 198, 220, 220, 220, 220, 220, 220, 220, 12948, 12, 39728, 4738, 7885, 13, 198, 220, 220, 220, 220, 220, 17130, 25, 48436, 393, 48700, 13, 51, 22854, 13, 36357, 7209, 1108, 286, 2705, 2835, 13, 198, 220, 220, 220, 220, 220, 1438, 25, 10903, 13, 317, 1438, 329, 428, 6082, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 18380, 22685, 47307, 7, 8692, 11, 17130, 828, 1438, 28, 3672, 8, 628, 198, 4871, 1400, 13560, 18380, 49, 6302, 26447, 7, 2949, 13560, 18380, 22685, 47307, 2599, 198, 220, 37227, 18380, 19273, 3487, 6082, 1343, 8187, 7838, 526, 15931, 628, 198, 4871, 1400, 13560, 18380, 49, 6302, 29744, 41384, 1143, 7, 2949, 13560, 18380, 22685, 47307, 2599, 198, 220, 37227, 18380, 19273, 2769, 5766, 1143, 6082, 1343, 8187, 7838, 526, 15931, 198 ]
3.151857
1,508
from django.views import generic class JalQuerySetView(generic.ListView): """View mixin to render a JSON response for Select2.""" def render_to_response(self, context): """Return a JSON response in Select2 format.""" return 'hello !'
[ 198, 6738, 42625, 14208, 13, 33571, 1330, 14276, 628, 198, 4871, 28649, 20746, 7248, 7680, 7, 41357, 13, 8053, 7680, 2599, 198, 220, 220, 220, 37227, 7680, 5022, 259, 284, 8543, 257, 19449, 2882, 329, 9683, 17, 526, 15931, 628, 220, 220, 220, 825, 8543, 62, 1462, 62, 26209, 7, 944, 11, 4732, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 19449, 2882, 287, 9683, 17, 5794, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 31373, 5145, 6, 198 ]
3.011494
87
__author__ = 'Devesh Bajpai' ''' https://codeforces.com/problemset/problem/1167/A Solution: From the first occurrence of 8 in the given string s, we should have at least 10 characters. Say that 8 exists on ith index. Then n - 1 - i + 1 = n - i would give the length of the longest string starting with 8. That should be at least 11 characters. The extra ones (>11) can be deleted by the operations. ''' if __name__ == "__main__": t = int(raw_input()) for _ in xrange(0, t): n = int(raw_input()) s = raw_input() print solve(n, s)
[ 834, 9800, 834, 796, 705, 5005, 1158, 71, 347, 1228, 49712, 6, 198, 198, 7061, 6, 198, 5450, 1378, 19815, 891, 273, 728, 13, 785, 14, 1676, 22143, 316, 14, 45573, 14, 1157, 3134, 14, 32, 198, 198, 46344, 25, 3574, 262, 717, 19810, 286, 807, 287, 262, 1813, 4731, 264, 11, 356, 815, 423, 379, 1551, 838, 3435, 13, 13816, 326, 807, 7160, 198, 261, 340, 71, 6376, 13, 3244, 299, 532, 352, 532, 1312, 1343, 352, 796, 299, 532, 1312, 561, 1577, 262, 4129, 286, 262, 14069, 4731, 3599, 351, 807, 13, 1320, 815, 307, 198, 265, 1551, 1367, 3435, 13, 383, 3131, 3392, 45160, 1157, 8, 460, 307, 13140, 416, 262, 4560, 13, 198, 7061, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 256, 796, 493, 7, 1831, 62, 15414, 28955, 628, 220, 220, 220, 329, 4808, 287, 2124, 9521, 7, 15, 11, 256, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 493, 7, 1831, 62, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 8246, 62, 15414, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 8494, 7, 77, 11, 264, 8, 198 ]
2.784314
204
# Copyright 2014 Hewlett-Packard Development Company, L.P. # # Author: Kiall Mac Innes <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import MetaData, Table from migrate.changeset.constraint import ForeignKeyConstraint meta = MetaData()
[ 2, 15069, 1946, 30446, 15503, 12, 11869, 446, 7712, 5834, 11, 406, 13, 47, 13, 198, 2, 198, 2, 6434, 25, 21927, 439, 4100, 554, 2516, 1279, 4106, 439, 31, 71, 431, 13, 785, 29, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 6738, 44161, 282, 26599, 1330, 30277, 6601, 11, 8655, 198, 6738, 32492, 13, 36653, 316, 13, 1102, 2536, 2913, 1330, 8708, 9218, 3103, 2536, 2913, 198, 198, 28961, 796, 30277, 6601, 3419, 628, 198 ]
3.624413
213
# Generated by Django 4.0 on 2022-03-08 23:22 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 604, 13, 15, 319, 33160, 12, 3070, 12, 2919, 2242, 25, 1828, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
from __future__ import print_function import fileinput import asyncio asyncLib = asyncio.__file__ lineNum = 0 # This script is used to address an issue on Windows with asyncio in the Tornado web server. # See links below for more information # https://github.com/tornadoweb/tornado/issues/2608 # https://www.tornadoweb.org/en/stable/releases/v6.0.4.html#general-changes # https://bugs.python.org/issue37373 with open(asyncLib, 'r+') as origLib: lines = origLib.readlines() for line in lines: lineNum += 1 if line.startswith('import sys'): print('Found 1.') print(line, end='') importLine = lineNum elif line.startswith(' from .windows_events import'): print('Found 2.') print(line, end='') asyncLine = lineNum if importLine is not None and asyncLine is not None: origLib = fileinput.input(asyncLib, inplace = True) for n, line in enumerate(origLib, start=1): if n == importLine: print('import asyncio') if n == asyncLine + 1: print(' asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())') print(line, end='')
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 2393, 15414, 198, 11748, 30351, 952, 198, 198, 292, 13361, 25835, 796, 30351, 952, 13, 834, 7753, 834, 198, 1370, 33111, 796, 657, 198, 198, 2, 770, 4226, 318, 973, 284, 2209, 281, 2071, 319, 3964, 351, 30351, 952, 287, 262, 48970, 3992, 4382, 13, 198, 2, 4091, 6117, 2174, 329, 517, 1321, 198, 2, 3740, 1378, 12567, 13, 785, 14, 45910, 4584, 1765, 14, 45910, 4533, 14, 37165, 14, 21719, 23, 198, 2, 3740, 1378, 2503, 13, 45910, 4584, 1765, 13, 2398, 14, 268, 14, 31284, 14, 260, 29329, 14, 85, 21, 13, 15, 13, 19, 13, 6494, 2, 24622, 12, 36653, 198, 2, 3740, 1378, 32965, 13, 29412, 13, 2398, 14, 21949, 2718, 34770, 198, 198, 4480, 1280, 7, 292, 13361, 25835, 11, 705, 81, 10, 11537, 355, 1796, 25835, 25, 198, 220, 220, 220, 3951, 796, 1796, 25835, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 1627, 287, 3951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 33111, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 10786, 11748, 25064, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 21077, 352, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 886, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 13949, 796, 1627, 33111, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 13, 9688, 2032, 342, 10786, 220, 220, 220, 422, 764, 28457, 62, 31534, 1330, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 21077, 362, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 886, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 13949, 796, 1627, 33111, 198, 198, 361, 1330, 13949, 318, 407, 6045, 290, 30351, 13949, 318, 407, 6045, 25, 198, 220, 220, 220, 1796, 25835, 796, 2393, 15414, 13, 15414, 7, 292, 13361, 25835, 11, 287, 5372, 796, 6407, 8, 198, 220, 220, 220, 329, 299, 11, 1627, 287, 27056, 378, 7, 11612, 25835, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 1330, 13949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11748, 30351, 952, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 30351, 13949, 1343, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 220, 220, 30351, 952, 13, 2617, 62, 15596, 62, 26268, 62, 30586, 7, 292, 13361, 952, 13, 11209, 17563, 273, 9237, 39516, 36727, 28955, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 11, 886, 28, 7061, 8, 220 ]
2.434959
492
from collections import Counter
[ 6738, 17268, 1330, 15034, 198, 220, 220, 220, 220 ]
4
9
import sys import numpy ensg_gene = open(sys.argv[1], 'r') abun_file = open(sys.argv[2], 'r') output_file = open(sys.argv[3],'w') #set up ensg dict ensg_dict = {} gene_dict = {} gene_list = [] for line in ensg_gene: ensg, gene = line.strip().split() ensg_dict[ ensg ] = gene if gene not in gene_dict: gene_dict[gene] = [ ensg, 0 ] else: gene_dict[gene][0] += ','+ensg if gene not in gene_list: gene_list.append(gene) ensg_gene.close() #add abundances to ensg_dict abun_file.readline() #skip first line for line in abun_file: ensg = line.strip().split()[0].split('_')[0] tpm = float(line.strip().split()[4]) if ensg in ensg_dict: gene = ensg_dict[ ensg ] gene_dict[gene][1] += tpm abun_file.close() #convert gene level tpm to log10(tpm+1) for gene in gene_dict.keys(): gene_dict[gene].append( numpy.log10(gene_dict[gene][1] + 1) ) #print output file output_file.write( '\t'.join( ['ensg', 'gene', 'tpm','log10tpm'] ) + '\n') for gene in gene_list: output_file.write( '\t'.join( [ gene_dict[gene][0], gene, str(gene_dict[gene][1]), str(gene_dict[gene][2]) ] )+ '\n') output_file.close()
[ 11748, 25064, 198, 11748, 299, 32152, 198, 198, 641, 70, 62, 70, 1734, 796, 1280, 7, 17597, 13, 853, 85, 58, 16, 4357, 705, 81, 11537, 198, 397, 403, 62, 7753, 796, 1280, 7, 17597, 13, 853, 85, 58, 17, 4357, 705, 81, 11537, 198, 22915, 62, 7753, 796, 1280, 7, 17597, 13, 853, 85, 58, 18, 60, 4032, 86, 11537, 198, 198, 2, 2617, 510, 3140, 70, 8633, 198, 641, 70, 62, 11600, 796, 23884, 198, 70, 1734, 62, 11600, 796, 23884, 198, 70, 1734, 62, 4868, 796, 17635, 198, 1640, 1627, 287, 3140, 70, 62, 70, 1734, 25, 198, 220, 3140, 70, 11, 9779, 796, 1627, 13, 36311, 22446, 35312, 3419, 198, 220, 3140, 70, 62, 11600, 58, 3140, 70, 2361, 796, 9779, 198, 220, 611, 9779, 407, 287, 9779, 62, 11600, 25, 198, 220, 220, 220, 9779, 62, 11600, 58, 70, 1734, 60, 796, 685, 3140, 70, 11, 657, 2361, 198, 220, 2073, 25, 198, 220, 220, 220, 9779, 62, 11600, 58, 70, 1734, 7131, 15, 60, 15853, 705, 4032, 10, 641, 70, 198, 220, 611, 9779, 407, 287, 9779, 62, 4868, 25, 198, 220, 220, 220, 9779, 62, 4868, 13, 33295, 7, 70, 1734, 8, 198, 641, 70, 62, 70, 1734, 13, 19836, 3419, 198, 198, 2, 2860, 12467, 1817, 284, 3140, 70, 62, 11600, 198, 397, 403, 62, 7753, 13, 961, 1370, 3419, 1303, 48267, 717, 1627, 198, 1640, 1627, 287, 450, 403, 62, 7753, 25, 198, 220, 3140, 70, 796, 1627, 13, 36311, 22446, 35312, 3419, 58, 15, 4083, 35312, 10786, 62, 11537, 58, 15, 60, 198, 220, 256, 4426, 796, 12178, 7, 1370, 13, 36311, 22446, 35312, 3419, 58, 19, 12962, 198, 220, 611, 3140, 70, 287, 3140, 70, 62, 11600, 25, 198, 220, 220, 220, 9779, 796, 3140, 70, 62, 11600, 58, 3140, 70, 2361, 198, 220, 220, 220, 9779, 62, 11600, 58, 70, 1734, 7131, 16, 60, 15853, 256, 4426, 198, 397, 403, 62, 7753, 13, 19836, 3419, 198, 198, 2, 1102, 1851, 9779, 1241, 256, 4426, 284, 2604, 940, 7, 83, 4426, 10, 16, 8, 198, 1640, 9779, 287, 9779, 62, 11600, 13, 13083, 33529, 198, 220, 9779, 62, 11600, 58, 70, 1734, 4083, 33295, 7, 299, 32152, 13, 6404, 940, 7, 70, 1734, 62, 11600, 58, 70, 1734, 7131, 16, 60, 1343, 352, 8, 1267, 198, 198, 2, 4798, 5072, 2393, 198, 22915, 62, 7753, 13, 13564, 7, 705, 59, 83, 4458, 22179, 7, 37250, 641, 70, 3256, 705, 70, 1734, 3256, 705, 83, 4426, 41707, 6404, 940, 83, 4426, 20520, 1267, 1343, 705, 59, 77, 11537, 198, 1640, 9779, 287, 9779, 62, 4868, 25, 198, 220, 5072, 62, 7753, 13, 13564, 7, 705, 59, 83, 4458, 22179, 7, 685, 9779, 62, 11600, 58, 70, 1734, 7131, 15, 4357, 9779, 11, 965, 7, 70, 1734, 62, 11600, 58, 70, 1734, 7131, 16, 46570, 965, 7, 70, 1734, 62, 11600, 58, 70, 1734, 7131, 17, 12962, 2361, 1267, 10, 705, 59, 77, 11537, 198, 22915, 62, 7753, 13, 19836, 3419, 198 ]
2.255489
501
# coding: utf-8 # /*########################################################################## # Copyright (C) 2021 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ """Test silx.io.convert.write_to_h5""" import h5py import numpy from silx.io import spech5 from silx.io.convert import write_to_h5 from silx.io.dictdump import h5todict from silx.io import commonh5 from silx.io.spech5 import SpecH5 def test_with_commonh5(tmp_path): """Test write_to_h5 with commonh5 input""" fobj = commonh5.File("filename.txt", mode="w") group = fobj.create_group("group") dataset = group.create_dataset("dataset", data=numpy.array(50)) group["soft_link"] = dataset # Create softlink output_filepath = tmp_path / "output.h5" write_to_h5(fobj, str(output_filepath)) assert h5todict(str(output_filepath)) == { 'group': {'dataset': numpy.array(50), 'soft_link': numpy.array(50)}, } with h5py.File(output_filepath, mode="r") as h5file: soft_link = h5file.get("/group/soft_link", getlink=True) assert isinstance(soft_link, h5py.SoftLink) assert soft_link.path == "/group/dataset" def test_with_hdf5(tmp_path): """Test write_to_h5 with HDF5 file input""" filepath = tmp_path / "base.h5" with h5py.File(filepath, mode="w") as h5file: h5file["group/dataset"] = 50 h5file["group/soft_link"] = h5py.SoftLink("/group/dataset") h5file["group/external_link"] = h5py.ExternalLink("base.h5", "/group/dataset") output_filepath = tmp_path / "output.h5" write_to_h5(str(filepath), str(output_filepath)) assert h5todict(str(output_filepath)) == { 'group': {'dataset': 50, 'soft_link': 50}, } with h5py.File(output_filepath, mode="r") as h5file: soft_link = h5file.get("group/soft_link", getlink=True) assert isinstance(soft_link, h5py.SoftLink) assert soft_link.path == "/group/dataset" def test_with_spech5(tmp_path): """Test write_to_h5 with SpecH5 input""" filepath = tmp_path / "file.spec" filepath.write_bytes( bytes( """#F /tmp/sf.dat #S 1 cmd #L a b 1 2 """, encoding='ascii') ) output_filepath = tmp_path / "output.h5" with spech5.SpecH5(str(filepath)) as spech5file: write_to_h5(spech5file, str(output_filepath)) print(h5todict(str(output_filepath))) assert_equal(h5todict(str(output_filepath)), { '1.1': { 'instrument': { 'positioners': {}, 'specfile': { 'file_header': ['#F /tmp/sf.dat'], 'scan_header': ['#S 1 cmd', '#L a b'], }, }, 'measurement': { 'a': [1.], 'b': [2.], }, 'start_time': '', 'title': 'cmd', }, })
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 11900, 29113, 29113, 7804, 2235, 198, 2, 15069, 357, 34, 8, 33448, 3427, 16065, 354, 10599, 1313, 47532, 29118, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 2, 198, 2, 1303, 29113, 29113, 7804, 21017, 16208, 198, 37811, 14402, 3313, 87, 13, 952, 13, 1102, 1851, 13, 13564, 62, 1462, 62, 71, 20, 37811, 628, 198, 11748, 289, 20, 9078, 198, 11748, 299, 32152, 198, 6738, 3313, 87, 13, 952, 1330, 693, 354, 20, 198, 198, 6738, 3313, 87, 13, 952, 13, 1102, 1851, 1330, 3551, 62, 1462, 62, 71, 20, 198, 6738, 3313, 87, 13, 952, 13, 11600, 39455, 1330, 289, 20, 83, 375, 713, 198, 6738, 3313, 87, 13, 952, 1330, 2219, 71, 20, 198, 6738, 3313, 87, 13, 952, 13, 4125, 354, 20, 1330, 18291, 39, 20, 628, 198, 4299, 1332, 62, 4480, 62, 11321, 71, 20, 7, 22065, 62, 6978, 2599, 198, 220, 220, 220, 37227, 14402, 3551, 62, 1462, 62, 71, 20, 351, 2219, 71, 20, 5128, 37811, 198, 220, 220, 220, 277, 26801, 796, 2219, 71, 20, 13, 8979, 7203, 34345, 13, 14116, 1600, 4235, 2625, 86, 4943, 198, 220, 220, 220, 1448, 796, 277, 26801, 13, 17953, 62, 8094, 7203, 8094, 4943, 198, 220, 220, 220, 27039, 796, 1448, 13, 17953, 62, 19608, 292, 316, 7203, 19608, 292, 316, 1600, 1366, 28, 77, 32152, 13, 18747, 7, 1120, 4008, 198, 220, 220, 220, 1448, 14692, 4215, 62, 8726, 8973, 796, 27039, 1303, 13610, 2705, 8726, 628, 220, 220, 220, 5072, 62, 7753, 6978, 796, 45218, 62, 6978, 1220, 366, 22915, 13, 71, 20, 1, 198, 220, 220, 220, 3551, 62, 1462, 62, 71, 20, 7, 69, 26801, 11, 965, 7, 22915, 62, 7753, 6978, 4008, 628, 220, 220, 220, 6818, 289, 20, 83, 375, 713, 7, 2536, 7, 22915, 62, 7753, 6978, 4008, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8094, 10354, 1391, 6, 19608, 292, 316, 10354, 299, 32152, 13, 18747, 7, 1120, 828, 705, 4215, 62, 8726, 10354, 299, 32152, 13, 18747, 7, 1120, 8, 5512, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 22915, 62, 7753, 6978, 11, 4235, 2625, 81, 4943, 355, 289, 20, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2705, 62, 8726, 796, 289, 20, 7753, 13, 1136, 7203, 14, 8094, 14, 4215, 62, 8726, 1600, 651, 8726, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 4215, 62, 8726, 11, 289, 20, 9078, 13, 18380, 11280, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2705, 62, 8726, 13, 6978, 6624, 12813, 8094, 14, 19608, 292, 316, 1, 628, 198, 4299, 1332, 62, 4480, 62, 71, 7568, 20, 7, 22065, 62, 6978, 2599, 198, 220, 220, 220, 37227, 14402, 3551, 62, 1462, 62, 71, 20, 351, 5572, 37, 20, 2393, 5128, 37811, 198, 220, 220, 220, 2393, 6978, 796, 45218, 62, 6978, 1220, 366, 8692, 13, 71, 20, 1, 198, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 7753, 6978, 11, 4235, 2625, 86, 4943, 355, 289, 20, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 7753, 14692, 8094, 14, 19608, 292, 316, 8973, 796, 2026, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 7753, 14692, 8094, 14, 4215, 62, 8726, 8973, 796, 289, 20, 9078, 13, 18380, 11280, 7203, 14, 8094, 14, 19608, 292, 316, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 289, 20, 7753, 14692, 8094, 14, 22615, 62, 8726, 8973, 796, 289, 20, 9078, 13, 41506, 11280, 7203, 8692, 13, 71, 20, 1600, 12813, 8094, 14, 19608, 292, 316, 4943, 628, 220, 220, 220, 5072, 62, 7753, 6978, 796, 45218, 62, 6978, 1220, 366, 22915, 13, 71, 20, 1, 198, 220, 220, 220, 3551, 62, 1462, 62, 71, 20, 7, 2536, 7, 7753, 6978, 828, 965, 7, 22915, 62, 7753, 6978, 4008, 198, 220, 220, 220, 6818, 289, 20, 83, 375, 713, 7, 2536, 7, 22915, 62, 7753, 6978, 4008, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8094, 10354, 1391, 6, 19608, 292, 316, 10354, 2026, 11, 705, 4215, 62, 8726, 10354, 2026, 5512, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 22915, 62, 7753, 6978, 11, 4235, 2625, 81, 4943, 355, 289, 20, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2705, 62, 8726, 796, 289, 20, 7753, 13, 1136, 7203, 8094, 14, 4215, 62, 8726, 1600, 651, 8726, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 4215, 62, 8726, 11, 289, 20, 9078, 13, 18380, 11280, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2705, 62, 8726, 13, 6978, 6624, 12813, 8094, 14, 19608, 292, 316, 1, 628, 198, 4299, 1332, 62, 4480, 62, 4125, 354, 20, 7, 22065, 62, 6978, 2599, 198, 220, 220, 220, 37227, 14402, 3551, 62, 1462, 62, 71, 20, 351, 18291, 39, 20, 5128, 37811, 198, 220, 220, 220, 2393, 6978, 796, 45218, 62, 6978, 1220, 366, 7753, 13, 16684, 1, 198, 220, 220, 220, 2393, 6978, 13, 13564, 62, 33661, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9881, 7, 198, 37811, 2, 37, 1220, 22065, 14, 28202, 13, 19608, 198, 198, 2, 50, 352, 23991, 198, 2, 43, 257, 220, 275, 198, 16, 362, 198, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 11639, 292, 979, 72, 11537, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5072, 62, 7753, 6978, 796, 45218, 62, 6978, 1220, 366, 22915, 13, 71, 20, 1, 198, 220, 220, 220, 351, 693, 354, 20, 13, 22882, 39, 20, 7, 2536, 7, 7753, 6978, 4008, 355, 693, 354, 20, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 1462, 62, 71, 20, 7, 4125, 354, 20, 7753, 11, 965, 7, 22915, 62, 7753, 6978, 4008, 198, 220, 220, 220, 3601, 7, 71, 20, 83, 375, 713, 7, 2536, 7, 22915, 62, 7753, 6978, 22305, 628, 220, 220, 220, 6818, 62, 40496, 7, 71, 20, 83, 375, 713, 7, 2536, 7, 22915, 62, 7753, 6978, 36911, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16, 13, 16, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 259, 43872, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9150, 364, 10354, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16684, 7753, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 62, 25677, 10354, 37250, 2, 37, 1220, 22065, 14, 28202, 13, 19608, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35836, 62, 25677, 10354, 37250, 2, 50, 352, 23991, 3256, 705, 2, 43, 257, 220, 275, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1326, 5015, 434, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 685, 16, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 685, 17, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 62, 2435, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 705, 28758, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 32092, 198 ]
2.462446
1,611
import pygame import os import time import random import requests from rx import Observable, Observer from rx.concurrency import ThreadPoolScheduler from waffles_feels import waffles_feels from waffles_commands import WafflesCMD from waffles_pos import five_second_timer print('0') #Updates the actual displayed image based on waffle's reported emotional state. #Helper method for retrieving images _image_library = {} #starting the display print('0') pygame.init() screen = pygame.display.set_mode((400, 300)) done = False clock = pygame.time.Clock() CMD = WafflesCMD() print('1') #Creates an observable that publishes the same stream to multiple observers emote_gen = Observable.create(waffles_feels).publish() print('2') #The display subscriber disp = emote_gen.subscribe(UpdateDisplay) print('3') #The serial communication subscriber pool_sch = ThreadPoolScheduler() pos_gen = Observable.create(five_second_timer).subscribe_on(pool_sch) emote_and_turn = Observable.merge(emote_gen, pos_gen) print('q') cmd = emote_and_turn.subscribe(CMD) print('4') emote_gen.connect() emote_and_turn.connect() print('5')
[ 11748, 12972, 6057, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 7007, 198, 6738, 374, 87, 1330, 19243, 540, 11, 27058, 198, 6738, 374, 87, 13, 1102, 34415, 1330, 14122, 27201, 50, 1740, 18173, 628, 198, 6738, 266, 48501, 62, 5036, 1424, 1330, 266, 48501, 62, 5036, 1424, 198, 6738, 266, 48501, 62, 9503, 1746, 1330, 370, 48501, 34, 12740, 198, 6738, 266, 48501, 62, 1930, 1330, 1936, 62, 12227, 62, 45016, 198, 198, 4798, 10786, 15, 11537, 198, 2, 4933, 19581, 262, 4036, 9066, 2939, 1912, 319, 266, 30697, 338, 2098, 7016, 1181, 13, 198, 197, 197, 198, 2, 47429, 2446, 329, 50122, 4263, 198, 62, 9060, 62, 32016, 796, 23884, 628, 198, 2, 38690, 262, 3359, 198, 4798, 10786, 15, 11537, 198, 9078, 6057, 13, 15003, 3419, 198, 9612, 796, 12972, 6057, 13, 13812, 13, 2617, 62, 14171, 19510, 7029, 11, 5867, 4008, 198, 28060, 796, 10352, 198, 15750, 796, 12972, 6057, 13, 2435, 13, 44758, 3419, 628, 198, 34, 12740, 796, 370, 48501, 34, 12740, 3419, 198, 4798, 10786, 16, 11537, 198, 2, 16719, 274, 281, 42550, 326, 34134, 262, 976, 4269, 284, 3294, 17984, 198, 368, 1258, 62, 5235, 796, 19243, 540, 13, 17953, 7, 86, 48501, 62, 5036, 1424, 737, 12984, 1836, 3419, 198, 4798, 10786, 17, 11537, 198, 2, 464, 3359, 32944, 628, 198, 6381, 79, 796, 795, 1258, 62, 5235, 13, 7266, 12522, 7, 10260, 23114, 8, 198, 4798, 10786, 18, 11537, 198, 2, 464, 11389, 6946, 32944, 198, 198, 7742, 62, 20601, 796, 14122, 27201, 50, 1740, 18173, 3419, 198, 1930, 62, 5235, 796, 19243, 540, 13, 17953, 7, 13261, 62, 12227, 62, 45016, 737, 7266, 12522, 62, 261, 7, 7742, 62, 20601, 8, 628, 198, 368, 1258, 62, 392, 62, 15344, 796, 19243, 540, 13, 647, 469, 7, 368, 1258, 62, 5235, 11, 1426, 62, 5235, 8, 198, 4798, 10786, 80, 11537, 198, 198, 28758, 796, 795, 1258, 62, 392, 62, 15344, 13, 7266, 12522, 7, 34, 12740, 8, 198, 4798, 10786, 19, 11537, 198, 368, 1258, 62, 5235, 13, 8443, 3419, 198, 368, 1258, 62, 392, 62, 15344, 13, 8443, 3419, 198, 4798, 10786, 20, 11537, 198 ]
3.125
360
################################################################################## ##########--this is an autogenerated python model definition for proDEX--######### ##--original file: Family_Assessment_v05_forprodex.dxi --## ################################################################################## from .lib.proDEX import * situ_social_activity_family = Node() Relative_activity_Family = Node() calls_last_7_days = Node() visits_last_7_days = Node() together_outside_last_7_days = Node() Absolute_daily_activity_Family = Node() feat_calls_count_family_relative = Atrib() feat_calls_duration_family_relative = Atrib() feat_visits_family_relative_past_week = Atrib() feat_visits_family_relative = Atrib() feat_outside_family_relative_past_week = Atrib() feat_outside_family_relative = Atrib() feat_calls_count_family_weekly_vs_goal = Atrib() feat_visits_count_family_weekly_vs_goal = Atrib() feat_outside_count_family_weekly_vs_goal = Atrib() situ_social_activity_family.setName('situ_social_activity_family') Relative_activity_Family.setName('Relative_activity_Family') calls_last_7_days.setName('calls_last_7_days') visits_last_7_days.setName('visits_last_7_days') together_outside_last_7_days.setName('together_outside_last_7_days') Absolute_daily_activity_Family.setName('Absolute_daily_activity_Family') feat_calls_count_family_relative.setName('feat_calls_count_family_relative') feat_calls_duration_family_relative.setName('feat_calls_duration_family_relative') feat_visits_family_relative_past_week.setName('feat_visits_family_relative_past_week') feat_visits_family_relative.setName('feat_visits_family_relative') feat_outside_family_relative_past_week.setName('feat_outside_family_relative_past_week') feat_outside_family_relative.setName('feat_outside_family_relative') feat_calls_count_family_weekly_vs_goal.setName('feat_calls_count_family_weekly_vs_goal') feat_visits_count_family_weekly_vs_goal.setName('feat_visits_count_family_weekly_vs_goal') feat_outside_count_family_weekly_vs_goal.setName('feat_outside_count_family_weekly_vs_goal') situ_social_activity_family.setValues(['very_low', 'low', 'medium', 'high', 'very_high']) Relative_activity_Family.setValues(['high decrease', 'decrease', 'stable', 'increase', 'high increase']) calls_last_7_days.setValues(['decrease', 'stable', 'increase']) visits_last_7_days.setValues(['decrease', 'stable', 'increase']) together_outside_last_7_days.setValues(['decrease', 'stable', 'increase']) Absolute_daily_activity_Family.setValues(['very low', 'low', 'medium', 'high', 'very high']) feat_calls_count_family_relative.setValues(['decrease', 'stable', 'increase']) feat_calls_duration_family_relative.setValues(['decrease', 'stable', 'increase']) feat_visits_family_relative_past_week.setValues(['decrease', 'stable', 'increase']) feat_visits_family_relative.setValues(['decrease', 'stable', 'increase']) feat_outside_family_relative_past_week.setValues(['decrease', 'stable', 'increase']) feat_outside_family_relative.setValues(['decrease', 'stable', 'increase']) feat_calls_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high']) feat_visits_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high']) feat_outside_count_family_weekly_vs_goal.setValues(['low', 'medium', 'high']) situ_social_activity_family.addChild(Relative_activity_Family) Relative_activity_Family.setParent(situ_social_activity_family) situ_social_activity_family.addChild(Absolute_daily_activity_Family) Absolute_daily_activity_Family.setParent(situ_social_activity_family) Relative_activity_Family.addChild(calls_last_7_days) calls_last_7_days.setParent(Relative_activity_Family) Relative_activity_Family.addChild(visits_last_7_days) visits_last_7_days.setParent(Relative_activity_Family) Relative_activity_Family.addChild(together_outside_last_7_days) together_outside_last_7_days.setParent(Relative_activity_Family) calls_last_7_days.addChild(feat_calls_count_family_relative) feat_calls_count_family_relative.setParent(calls_last_7_days) calls_last_7_days.addChild(feat_calls_duration_family_relative) feat_calls_duration_family_relative.setParent(calls_last_7_days) visits_last_7_days.addChild(feat_visits_family_relative_past_week) feat_visits_family_relative_past_week.setParent(visits_last_7_days) visits_last_7_days.addChild(feat_visits_family_relative) feat_visits_family_relative.setParent(visits_last_7_days) together_outside_last_7_days.addChild(feat_outside_family_relative_past_week) feat_outside_family_relative_past_week.setParent(together_outside_last_7_days) together_outside_last_7_days.addChild(feat_outside_family_relative) feat_outside_family_relative.setParent(together_outside_last_7_days) Absolute_daily_activity_Family.addChild(feat_calls_count_family_weekly_vs_goal) feat_calls_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family) Absolute_daily_activity_Family.addChild(feat_visits_count_family_weekly_vs_goal) feat_visits_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family) Absolute_daily_activity_Family.addChild(feat_outside_count_family_weekly_vs_goal) feat_outside_count_family_weekly_vs_goal.setParent(Absolute_daily_activity_Family) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'very low'}, 'very_low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'low'}, 'very_low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'medium'}, 'low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'high'}, 'medium']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high decrease', Absolute_daily_activity_Family:'very high'}, 'high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'very low'}, 'very_low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'low'}, 'low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'medium'}, 'medium']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'high'}, 'high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'decrease', Absolute_daily_activity_Family:'very high'}, 'very_high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'very low'}, 'very_low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'low'}, 'low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'medium'}, 'medium']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'high'}, 'high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'stable', Absolute_daily_activity_Family:'very high'}, 'very_high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'very low'}, 'very_low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'low'}, 'low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'medium'}, 'medium']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'high'}, 'high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'increase', Absolute_daily_activity_Family:'very high'}, 'very_high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'very low'}, 'low']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'low'}, 'medium']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'medium'}, 'high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'high'}, 'very_high']) situ_social_activity_family.addFunctionRow([{Relative_activity_Family:'high increase', Absolute_daily_activity_Family:'very high'}, 'very_high']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'high decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'high decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'high decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'decrease', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'high decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'stable', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'high increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'decrease'}, 'decrease']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'stable'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'decrease', together_outside_last_7_days:'increase'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'decrease'}, 'stable']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'stable'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'stable', together_outside_last_7_days:'increase'}, 'high increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'decrease'}, 'increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'stable'}, 'high increase']) Relative_activity_Family.addFunctionRow([{calls_last_7_days:'increase', visits_last_7_days:'increase', together_outside_last_7_days:'increase'}, 'high increase']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'decrease'}, 'decrease']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'stable'}, 'decrease']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'decrease', feat_calls_duration_family_relative:'increase'}, 'stable']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'decrease'}, 'decrease']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'stable'}, 'stable']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'stable', feat_calls_duration_family_relative:'increase'}, 'increase']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'decrease'}, 'stable']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'stable'}, 'increase']) calls_last_7_days.addFunctionRow([{feat_calls_count_family_relative:'increase', feat_calls_duration_family_relative:'increase'}, 'increase']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'decrease'}, 'decrease']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'stable'}, 'stable']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'decrease', feat_visits_family_relative:'increase'}, 'increase']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'decrease'}, 'decrease']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'stable'}, 'stable']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'stable', feat_visits_family_relative:'increase'}, 'increase']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'decrease'}, 'decrease']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'stable'}, 'stable']) visits_last_7_days.addFunctionRow([{feat_visits_family_relative_past_week:'increase', feat_visits_family_relative:'increase'}, 'increase']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'decrease'}, 'decrease']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'stable'}, 'decrease']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'decrease', feat_outside_family_relative:'increase'}, 'stable']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'decrease'}, 'decrease']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'stable'}, 'stable']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'stable', feat_outside_family_relative:'increase'}, 'increase']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'decrease'}, 'decrease']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'stable'}, 'stable']) together_outside_last_7_days.addFunctionRow([{feat_outside_family_relative_past_week:'increase', feat_outside_family_relative:'increase'}, 'increase']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'very low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'low', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'very low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'medium', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'low'}, 'low']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'medium'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'low', feat_outside_count_family_weekly_vs_goal:'high'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'low'}, 'medium']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'medium'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'medium', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'low'}, 'high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'medium'}, 'very high']) Absolute_daily_activity_Family.addFunctionRow([{feat_calls_count_family_weekly_vs_goal:'high', feat_visits_count_family_weekly_vs_goal:'high', feat_outside_count_family_weekly_vs_goal:'high'}, 'very high'])
[ 29113, 29113, 14468, 2235, 198, 7804, 2235, 438, 5661, 318, 281, 1960, 519, 877, 515, 21015, 2746, 6770, 329, 386, 35, 6369, 438, 7804, 2, 198, 2235, 438, 14986, 2393, 25, 7884, 62, 8021, 21687, 62, 85, 2713, 62, 1640, 1676, 67, 1069, 13, 67, 29992, 1377, 2235, 198, 29113, 29113, 14468, 2235, 198, 198, 6738, 764, 8019, 13, 1676, 35, 6369, 1330, 1635, 198, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 796, 19081, 3419, 198, 6892, 876, 62, 21797, 62, 24094, 796, 19081, 3419, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 796, 19081, 3419, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 796, 19081, 3419, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 796, 19081, 3419, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 796, 19081, 3419, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 796, 1629, 822, 3419, 198, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 796, 1629, 822, 3419, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 796, 1629, 822, 3419, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 796, 1629, 822, 3419, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 796, 1629, 822, 3419, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 796, 1629, 822, 3419, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 796, 1629, 822, 3419, 198, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 796, 1629, 822, 3419, 198, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 796, 1629, 822, 3419, 198, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2617, 5376, 10786, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 11537, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2617, 5376, 10786, 6892, 876, 62, 21797, 62, 24094, 11537, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2617, 5376, 10786, 66, 5691, 62, 12957, 62, 22, 62, 12545, 11537, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2617, 5376, 10786, 4703, 896, 62, 12957, 62, 22, 62, 12545, 11537, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2617, 5376, 10786, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 11537, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2617, 5376, 10786, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 11537, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 13, 2617, 5376, 10786, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 11537, 198, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 13, 2617, 5376, 10786, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 11537, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 5376, 10786, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 11537, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 13, 2617, 5376, 10786, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 11537, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 5376, 10786, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 11537, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 13, 2617, 5376, 10786, 27594, 62, 43435, 62, 17989, 62, 43762, 11537, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 5376, 10786, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 11537, 198, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 5376, 10786, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 11537, 198, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 5376, 10786, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 11537, 198, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2617, 40161, 7, 17816, 548, 62, 9319, 3256, 705, 9319, 3256, 705, 24132, 3256, 705, 8929, 3256, 705, 548, 62, 8929, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2617, 40161, 7, 17816, 8929, 10070, 3256, 705, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 3256, 705, 8929, 2620, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2617, 40161, 7, 17816, 548, 1877, 3256, 705, 9319, 3256, 705, 24132, 3256, 705, 8929, 3256, 705, 548, 1029, 6, 12962, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 13, 2617, 40161, 7, 17816, 12501, 260, 589, 3256, 705, 31284, 3256, 705, 24988, 589, 6, 12962, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 40161, 7, 17816, 9319, 3256, 705, 24132, 3256, 705, 8929, 6, 12962, 198, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 40161, 7, 17816, 9319, 3256, 705, 24132, 3256, 705, 8929, 6, 12962, 198, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 40161, 7, 17816, 9319, 3256, 705, 24132, 3256, 705, 8929, 6, 12962, 198, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 16424, 7, 6892, 876, 62, 21797, 62, 24094, 8, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2617, 24546, 7, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 8, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 16424, 7, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 8, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2617, 24546, 7, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 8, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 66, 5691, 62, 12957, 62, 22, 62, 12545, 8, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2617, 24546, 7, 6892, 876, 62, 21797, 62, 24094, 8, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 4703, 896, 62, 12957, 62, 22, 62, 12545, 8, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2617, 24546, 7, 6892, 876, 62, 21797, 62, 24094, 8, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 8, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2617, 24546, 7, 6892, 876, 62, 21797, 62, 24094, 8, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 8, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 13, 2617, 24546, 7, 66, 5691, 62, 12957, 62, 22, 62, 12545, 8, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 8, 198, 27594, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 13, 2617, 24546, 7, 66, 5691, 62, 12957, 62, 22, 62, 12545, 8, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 8, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 24546, 7, 4703, 896, 62, 12957, 62, 22, 62, 12545, 8, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 8, 198, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 13, 2617, 24546, 7, 4703, 896, 62, 12957, 62, 22, 62, 12545, 8, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 8, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 13, 2617, 24546, 7, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 8, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 16424, 7, 27594, 62, 43435, 62, 17989, 62, 43762, 8, 198, 27594, 62, 43435, 62, 17989, 62, 43762, 13, 2617, 24546, 7, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 8, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 8, 198, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 24546, 7, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 8, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 8, 198, 27594, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 24546, 7, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 8, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 16424, 7, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 8, 198, 27594, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 13, 2617, 24546, 7, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 8, 198, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 10070, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1877, 6, 5512, 705, 548, 62, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 10070, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 9319, 6, 5512, 705, 548, 62, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 10070, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 24132, 6, 5512, 705, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 10070, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 8929, 6, 5512, 705, 24132, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 10070, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1029, 6, 5512, 705, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 12501, 260, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1877, 6, 5512, 705, 548, 62, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 12501, 260, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 12501, 260, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 12501, 260, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 12501, 260, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1029, 6, 5512, 705, 548, 62, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 31284, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1877, 6, 5512, 705, 548, 62, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 31284, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 31284, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 31284, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 31284, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1029, 6, 5512, 705, 548, 62, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 24988, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1877, 6, 5512, 705, 548, 62, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 24988, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 24988, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 24988, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 24988, 589, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1029, 6, 5512, 705, 548, 62, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 2620, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1877, 6, 5512, 705, 9319, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 2620, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 9319, 6, 5512, 705, 24132, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 2620, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 24132, 6, 5512, 705, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 2620, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 8929, 6, 5512, 705, 548, 62, 8929, 6, 12962, 198, 82, 34272, 62, 14557, 62, 21797, 62, 17989, 13, 2860, 22203, 25166, 26933, 90, 6892, 876, 62, 21797, 62, 24094, 32105, 8929, 2620, 3256, 36532, 62, 29468, 62, 21797, 62, 24094, 32105, 548, 1029, 6, 5512, 705, 548, 62, 8929, 6, 12962, 198, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 8929, 10070, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 8929, 10070, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 8929, 10070, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 8929, 10070, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 8929, 2620, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 31284, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 8929, 2620, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 12501, 260, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 31284, 6, 5512, 705, 8929, 2620, 6, 12962, 198, 6892, 876, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 66, 5691, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 11864, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 3256, 1978, 62, 43435, 62, 12957, 62, 22, 62, 12545, 32105, 24988, 589, 6, 5512, 705, 8929, 2620, 6, 12962, 198, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 31284, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 31284, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 31284, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 31284, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 24988, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 31284, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 24988, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 24988, 589, 6, 12962, 198, 66, 5691, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 43762, 32105, 24988, 589, 3256, 2218, 62, 66, 5691, 62, 32257, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 4703, 896, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 4703, 896, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 4703, 896, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 12501, 260, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 31284, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 31284, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 12501, 260, 589, 6, 5512, 705, 12501, 260, 589, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 31284, 6, 5512, 705, 31284, 6, 12962, 198, 45525, 62, 43435, 62, 12957, 62, 22, 62, 12545, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 43435, 62, 17989, 62, 43762, 62, 30119, 62, 10464, 32105, 24988, 589, 3256, 2218, 62, 43435, 62, 17989, 62, 43762, 32105, 24988, 589, 6, 5512, 705, 24988, 589, 6, 12962, 198, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 548, 1877, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 548, 1877, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 548, 1877, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 548, 1877, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 548, 1029, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 9319, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 24132, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 548, 1029, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 9319, 6, 5512, 705, 8929, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 24132, 6, 5512, 705, 548, 1029, 6, 12962, 198, 24849, 3552, 62, 29468, 62, 21797, 62, 24094, 13, 2860, 22203, 25166, 26933, 90, 27594, 62, 66, 5691, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 4703, 896, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 3256, 2218, 62, 43435, 62, 9127, 62, 17989, 62, 45291, 62, 14259, 62, 35231, 32105, 8929, 6, 5512, 705, 548, 1029, 6, 12962, 628 ]
2.965936
7,486
if __name__ == "__main__": s = MinStack() s.add(5) s.add(-3) s.add(1) s.add(6) s.add(-1) print(s.pop()) print(s.get_min()) s.add(-10) s.pop()
[ 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 264, 796, 1855, 25896, 3419, 198, 220, 220, 220, 264, 13, 2860, 7, 20, 8, 198, 220, 220, 220, 264, 13, 2860, 32590, 18, 8, 198, 220, 220, 220, 264, 13, 2860, 7, 16, 8, 198, 220, 220, 220, 264, 13, 2860, 7, 21, 8, 198, 220, 220, 220, 264, 13, 2860, 32590, 16, 8, 198, 220, 220, 220, 3601, 7, 82, 13, 12924, 28955, 198, 220, 220, 220, 3601, 7, 82, 13, 1136, 62, 1084, 28955, 198, 220, 220, 220, 264, 13, 2860, 32590, 940, 8, 198, 220, 220, 220, 264, 13, 12924, 3419, 198 ]
1.646018
113
# -------------- import numpy as np import pandas as pd from sklearn.model_selection import train_test_split # path- variable storing file path df = pd.read_csv(path) df.columns[range(5)] X = df.drop(['Price'], axis = 1) y= df.Price X_train,X_test,y_train,y_test = train_test_split(X , y , test_size = 0.3, random_state = 6) corr = X_train.corr(method = 'pearson') print(corr) #Code starts here # -------------- from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from math import sqrt regressor = LinearRegression() regressor.fit(X_train, y_train) y_pred = regressor.predict(X_test) mse = (mean_squared_error(y_test, y_pred)) print(mse) r2 = r2_score (y_test, y_pred) # Code starts here # -------------- from sklearn.linear_model import Lasso # Code starts here lasso = Lasso() lasso.fit(X_train, y_train) lasso_pred = lasso.predict(X_test) r2_lasso = r2_score(y_test, y_pred) print(r2_lasso) # -------------- from sklearn.linear_model import Ridge # Code starts here ridge = Ridge() ridge.fit(X_train, y_train) ridge_pred = ridge.predict(X_test) r2_ridge = r2_score(y_test , y_pred) print(r2_ridge) # Code ends here # -------------- from sklearn.model_selection import cross_val_score #Code starts here score = cross_val_score(regressor, X_train, y_train, cv= 10) mean_score = np.mean(score) print(mean_score) # -------------- from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline #Code starts here model = make_pipeline(PolynomialFeatures(2), LinearRegression()) model.fit(X_train , y_train) y_pred = model.predict(X_test) r2_poly = r2_score(y_test , y_pred) print(r2_poly)
[ 2, 220, 26171, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 201, 198, 201, 198, 2, 3108, 12, 7885, 23069, 2393, 3108, 201, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 8, 201, 198, 7568, 13, 28665, 82, 58, 9521, 7, 20, 15437, 201, 198, 55, 796, 47764, 13, 14781, 7, 17816, 18124, 6, 4357, 16488, 796, 352, 8, 201, 198, 88, 28, 47764, 13, 18124, 201, 198, 201, 198, 55, 62, 27432, 11, 55, 62, 9288, 11, 88, 62, 27432, 11, 88, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 55, 837, 331, 837, 1332, 62, 7857, 796, 657, 13, 18, 11, 4738, 62, 5219, 796, 718, 8, 201, 198, 10215, 81, 796, 1395, 62, 27432, 13, 10215, 81, 7, 24396, 796, 705, 431, 12613, 11537, 201, 198, 4798, 7, 10215, 81, 8, 201, 198, 2, 10669, 4940, 994, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 44800, 8081, 2234, 201, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 1612, 62, 16485, 1144, 62, 18224, 11, 374, 17, 62, 26675, 201, 198, 6738, 10688, 1330, 19862, 17034, 201, 198, 201, 198, 2301, 44292, 796, 44800, 8081, 2234, 3419, 201, 198, 2301, 44292, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 201, 198, 88, 62, 28764, 796, 842, 44292, 13, 79, 17407, 7, 55, 62, 9288, 8, 201, 198, 201, 198, 76, 325, 796, 357, 32604, 62, 16485, 1144, 62, 18224, 7, 88, 62, 9288, 11, 220, 331, 62, 28764, 4008, 201, 198, 4798, 7, 76, 325, 8, 201, 198, 81, 17, 796, 374, 17, 62, 26675, 357, 88, 62, 9288, 11, 331, 62, 28764, 8, 201, 198, 2, 6127, 4940, 994, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 406, 28372, 201, 198, 201, 198, 2, 6127, 4940, 994, 201, 198, 75, 28372, 796, 220, 406, 28372, 3419, 201, 198, 75, 28372, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 201, 198, 75, 28372, 62, 28764, 796, 300, 28372, 13, 79, 17407, 7, 55, 62, 9288, 8, 201, 198, 81, 17, 62, 75, 28372, 796, 374, 17, 62, 26675, 7, 88, 62, 9288, 11, 331, 62, 28764, 8, 201, 198, 4798, 7, 81, 17, 62, 75, 28372, 8, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 20614, 201, 198, 201, 198, 2, 6127, 4940, 994, 201, 198, 12818, 796, 20614, 3419, 201, 198, 12818, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 201, 198, 12818, 62, 28764, 796, 32525, 13, 79, 17407, 7, 55, 62, 9288, 8, 201, 198, 81, 17, 62, 12818, 796, 374, 17, 62, 26675, 7, 88, 62, 9288, 837, 331, 62, 28764, 8, 201, 198, 4798, 7, 81, 17, 62, 12818, 8, 201, 198, 201, 198, 201, 198, 2, 6127, 5645, 994, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 3272, 62, 2100, 62, 26675, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 26675, 796, 3272, 62, 2100, 62, 26675, 7, 2301, 44292, 11, 1395, 62, 27432, 11, 331, 62, 27432, 11, 220, 269, 85, 28, 838, 8, 201, 198, 32604, 62, 26675, 796, 45941, 13, 32604, 7, 26675, 8, 201, 198, 4798, 7, 32604, 62, 26675, 8, 628, 198, 2, 220, 26171, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 12280, 26601, 498, 23595, 201, 198, 6738, 1341, 35720, 13, 79, 541, 4470, 1330, 787, 62, 79, 541, 4470, 201, 198, 201, 198, 2, 10669, 4940, 994, 201, 198, 19849, 796, 787, 62, 79, 541, 4470, 7, 34220, 26601, 498, 23595, 7, 17, 828, 44800, 8081, 2234, 28955, 201, 198, 19849, 13, 11147, 7, 55, 62, 27432, 837, 331, 62, 27432, 8, 201, 198, 88, 62, 28764, 796, 2746, 13, 79, 17407, 7, 55, 62, 9288, 8, 201, 198, 201, 198, 81, 17, 62, 35428, 796, 374, 17, 62, 26675, 7, 88, 62, 9288, 837, 331, 62, 28764, 8, 201, 198, 4798, 7, 81, 17, 62, 35428, 8, 628, 198 ]
2.521552
696
import numpy as np import parl from parl.utils import logger from parl.utils import action_mapping # 将神经网络输出映射到对应的 实际动作取值范围 内 from parl.utils import ReplayMemory # 经验回放 from rlschool import make_env # 使用 RLSchool 创建飞行器环境 from parl.algorithms import DDPG import paddle.fluid as fluid import parl from parl import layers GAMMA = 0.99 # reward 的衰减因子,一般取 0.9 到 0.999 不等 TAU = 0.001 # target_model 跟 model 同步参数 的 软更新参数 ACTOR_LR = 0.0002 # Actor网络更新的 learning rate CRITIC_LR = 0.001 # Critic网络更新的 learning rate MEMORY_SIZE = 1e6 # replay memory的大小,越大越占用内存 MEMORY_WARMUP_SIZE = 1e4 # replay_memory 里需要预存一些经验数据,再从里面sample一个batch的经验让agent去learn REWARD_SCALE = 0.01 # reward 的缩放因子 BATCH_SIZE = 256 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来 TRAIN_TOTAL_STEPS = 1e6 # 总训练步数 TEST_EVERY_STEPS = 1e4 # 每个N步评估一下算法效果,每次评估5个episode求平均reward # 评估 agent, 跑 5 个episode,总reward求平均 # 创建飞行器环境 env = make_env("Quadrotor", task="velocity_control", seed=0) env.reset() obs_dim = env.observation_space.shape[ 0 ] act_dim = 5 # 使用parl框架搭建Agent:QuadrotorModel, DDPG, QuadrotorAgent三者嵌套 model = QuadrotorModel(act_dim) algorithm = DDPG( model, gamma=GAMMA, tau=TAU, actor_lr=ACTOR_LR, critic_lr=CRITIC_LR) agent = QuadrotorAgent(algorithm, obs_dim, act_dim) # 加载模型 # save_path = 'model_dir_3/steps_1000000.ckpt' # agent.restore(save_path) # parl库也为DDPG算法内置了ReplayMemory,可直接从 parl.utils 引入使用 rpm = ReplayMemory(int(MEMORY_SIZE), obs_dim, act_dim) test_flag = 0 total_steps = 0 testing = 1 if (not testing): while total_steps < TRAIN_TOTAL_STEPS: train_reward, steps = run_episode(env, agent, rpm) total_steps += steps # logger.info('Steps: {} Reward: {}'.format(total_steps, train_reward)) if total_steps // TEST_EVERY_STEPS >= test_flag: while total_steps // TEST_EVERY_STEPS >= test_flag: test_flag += 1 evaluate_reward = evaluate(env, agent) logger.info('Steps {}, Test reward: {}'.format(total_steps, evaluate_reward)) # 保存模型 ckpt = 'model_dir_1/steps_{}.ckpt'.format(total_steps) agent.save(ckpt) else: # 加载模型 save_path = 'steps_1000000.ckpt' agent.restore(save_path) evaluate_reward = evaluate(env, agent, render=True) logger.info('Test reward: {}'.format(evaluate_reward))
[ 11748, 299, 32152, 355, 45941, 198, 11748, 1582, 75, 198, 6738, 1582, 75, 13, 26791, 1330, 49706, 198, 6738, 1582, 75, 13, 26791, 1330, 2223, 62, 76, 5912, 220, 1303, 10263, 108, 228, 15351, 163, 119, 237, 163, 121, 239, 163, 119, 250, 164, 122, 241, 49035, 118, 23626, 254, 22887, 226, 26344, 108, 43380, 117, 41753, 242, 21410, 10263, 106, 252, 165, 247, 227, 27950, 101, 43291, 20998, 244, 161, 222, 120, 164, 234, 225, 32368, 112, 10263, 228, 227, 198, 6738, 1582, 75, 13, 26791, 1330, 23635, 30871, 220, 1303, 13328, 119, 237, 165, 103, 234, 32368, 252, 162, 242, 122, 198, 6738, 374, 7278, 1251, 1330, 787, 62, 24330, 220, 1303, 220, 45635, 18796, 101, 371, 6561, 1251, 10263, 230, 249, 161, 119, 118, 45617, 252, 26193, 234, 161, 247, 101, 163, 236, 107, 161, 95, 225, 198, 6738, 1582, 75, 13, 282, 7727, 907, 1330, 360, 6322, 38, 628, 198, 198, 11748, 39517, 13, 35522, 312, 355, 11711, 198, 11748, 1582, 75, 198, 6738, 1582, 75, 1330, 11685, 628, 628, 628, 198, 38, 2390, 5673, 796, 657, 13, 2079, 220, 1303, 6721, 13328, 248, 226, 26193, 108, 49035, 237, 32368, 254, 36310, 171, 120, 234, 31660, 48958, 105, 20998, 244, 657, 13, 24, 10263, 230, 108, 657, 13, 17032, 220, 38834, 163, 255, 231, 198, 5603, 52, 796, 657, 13, 8298, 220, 1303, 2496, 62, 19849, 5525, 115, 253, 2746, 10263, 238, 234, 29826, 98, 20998, 224, 46763, 108, 13328, 248, 226, 5525, 121, 107, 162, 249, 112, 23877, 108, 20998, 224, 46763, 108, 198, 10659, 1581, 62, 35972, 796, 657, 13, 34215, 220, 1303, 27274, 163, 121, 239, 163, 119, 250, 162, 249, 112, 23877, 108, 21410, 4673, 2494, 198, 9419, 2043, 2149, 62, 35972, 796, 657, 13, 8298, 220, 1303, 10056, 291, 163, 121, 239, 163, 119, 250, 162, 249, 112, 23877, 108, 21410, 4673, 2494, 198, 44, 3620, 15513, 62, 33489, 796, 352, 68, 21, 220, 1303, 24788, 4088, 21410, 32014, 22887, 237, 171, 120, 234, 164, 114, 232, 32014, 164, 114, 232, 39355, 254, 18796, 101, 37863, 227, 27764, 246, 198, 44, 3620, 15513, 62, 16279, 44, 8577, 62, 33489, 796, 352, 68, 19, 220, 1303, 24788, 62, 31673, 16268, 229, 234, 165, 250, 222, 17358, 223, 165, 95, 226, 27764, 246, 31660, 12859, 249, 163, 119, 237, 165, 103, 234, 46763, 108, 162, 235, 106, 171, 120, 234, 37863, 235, 20015, 236, 34932, 234, 165, 251, 95, 39873, 31660, 10310, 103, 43501, 21410, 163, 119, 237, 165, 103, 234, 164, 106, 102, 25781, 43889, 119, 35720, 198, 2200, 39743, 62, 6173, 21358, 796, 657, 13, 486, 220, 1303, 6721, 13328, 248, 226, 163, 120, 102, 162, 242, 122, 32368, 254, 36310, 198, 33, 11417, 62, 33489, 796, 17759, 220, 1303, 10545, 107, 237, 162, 105, 94, 163, 119, 247, 25781, 2193, 21410, 46763, 108, 162, 235, 106, 46763, 108, 34932, 237, 171, 120, 234, 20015, 236, 260, 1759, 4088, 49694, 237, 17312, 118, 34932, 234, 39873, 31660, 33699, 117, 46763, 108, 162, 235, 106, 49035, 118, 30266, 98, 198, 51, 3861, 1268, 62, 51, 27510, 62, 30516, 3705, 796, 352, 68, 21, 220, 1303, 10545, 222, 119, 164, 106, 255, 163, 119, 225, 29826, 98, 46763, 108, 198, 51, 6465, 62, 36, 5959, 56, 62, 30516, 3705, 796, 352, 68, 19, 220, 1303, 10545, 107, 237, 10310, 103, 45, 29826, 98, 46237, 226, 27670, 108, 31660, 10310, 233, 163, 106, 245, 37345, 243, 46763, 230, 162, 252, 250, 171, 120, 234, 162, 107, 237, 162, 105, 94, 46237, 226, 27670, 108, 20, 10310, 103, 38668, 162, 109, 224, 33176, 111, 161, 251, 229, 260, 904, 628, 198, 198, 2, 5525, 107, 226, 27670, 108, 5797, 11, 5525, 115, 239, 642, 220, 10310, 103, 38668, 171, 120, 234, 45250, 119, 260, 904, 162, 109, 224, 33176, 111, 161, 251, 229, 628, 198, 2, 10263, 230, 249, 161, 119, 118, 45617, 252, 26193, 234, 161, 247, 101, 163, 236, 107, 161, 95, 225, 198, 24330, 796, 787, 62, 24330, 7203, 4507, 324, 10599, 273, 1600, 4876, 2625, 626, 11683, 62, 13716, 1600, 9403, 28, 15, 8, 198, 24330, 13, 42503, 3419, 198, 8158, 62, 27740, 796, 17365, 13, 672, 3168, 341, 62, 13200, 13, 43358, 58, 657, 2361, 198, 529, 62, 27740, 796, 642, 198, 198, 2, 220, 45635, 18796, 101, 1845, 75, 162, 94, 228, 162, 252, 35050, 238, 255, 161, 119, 118, 36772, 171, 120, 248, 4507, 324, 10599, 273, 17633, 11, 360, 6322, 38, 11, 20648, 10599, 273, 36772, 49011, 38519, 161, 113, 234, 25001, 245, 198, 19849, 796, 20648, 10599, 273, 17633, 7, 529, 62, 27740, 8, 198, 282, 42289, 796, 360, 6322, 38, 7, 198, 220, 220, 220, 2746, 11, 34236, 28, 38, 2390, 5673, 11, 256, 559, 28, 5603, 52, 11, 8674, 62, 14050, 28, 10659, 1581, 62, 35972, 11, 4014, 62, 14050, 28, 9419, 2043, 2149, 62, 35972, 8, 198, 25781, 796, 20648, 10599, 273, 36772, 7, 282, 42289, 11, 10201, 62, 27740, 11, 719, 62, 27740, 8, 198, 198, 2, 10263, 232, 254, 164, 121, 121, 162, 101, 94, 161, 252, 233, 198, 2, 3613, 62, 6978, 796, 705, 19849, 62, 15908, 62, 18, 14, 20214, 62, 16, 10535, 13, 694, 457, 6, 198, 2, 5797, 13, 2118, 382, 7, 21928, 62, 6978, 8, 198, 198, 2, 1582, 75, 41753, 241, 20046, 253, 10310, 118, 35, 6322, 38, 163, 106, 245, 37345, 243, 37863, 227, 163, 121, 106, 12859, 228, 3041, 1759, 30871, 171, 120, 234, 20998, 107, 33566, 112, 162, 236, 98, 20015, 236, 1582, 75, 13, 26791, 10263, 120, 243, 17739, 98, 45635, 18796, 101, 198, 48235, 796, 23635, 30871, 7, 600, 7, 44, 3620, 15513, 62, 33489, 828, 10201, 62, 27740, 11, 719, 62, 27740, 8, 198, 198, 9288, 62, 32109, 796, 657, 198, 23350, 62, 20214, 796, 657, 628, 198, 33407, 796, 352, 198, 198, 361, 357, 1662, 4856, 2599, 198, 220, 220, 220, 981, 2472, 62, 20214, 1279, 29125, 1268, 62, 51, 27510, 62, 30516, 3705, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 260, 904, 11, 4831, 796, 1057, 62, 38668, 7, 24330, 11, 5797, 11, 37542, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 20214, 15853, 4831, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 10951, 10786, 8600, 82, 25, 23884, 32307, 25, 23884, 4458, 18982, 7, 23350, 62, 20214, 11, 4512, 62, 260, 904, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 20214, 3373, 43001, 62, 36, 5959, 56, 62, 30516, 3705, 18189, 1332, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2472, 62, 20214, 3373, 43001, 62, 36, 5959, 56, 62, 30516, 3705, 18189, 1332, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 32109, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 260, 904, 796, 13446, 7, 24330, 11, 5797, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 8600, 82, 1391, 5512, 6208, 6721, 25, 23884, 4458, 18982, 7, 23350, 62, 20214, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13446, 62, 260, 904, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 46479, 251, 27764, 246, 162, 101, 94, 161, 252, 233, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 796, 705, 19849, 62, 15908, 62, 16, 14, 20214, 23330, 27422, 694, 457, 4458, 18982, 7, 23350, 62, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 21928, 7, 694, 457, 8, 198, 198, 17772, 25, 198, 220, 220, 220, 1303, 10263, 232, 254, 164, 121, 121, 162, 101, 94, 161, 252, 233, 198, 220, 220, 220, 3613, 62, 6978, 796, 705, 20214, 62, 16, 10535, 13, 694, 457, 6, 198, 220, 220, 220, 5797, 13, 2118, 382, 7, 21928, 62, 6978, 8, 628, 220, 220, 220, 13446, 62, 260, 904, 796, 13446, 7, 24330, 11, 5797, 11, 8543, 28, 17821, 8, 198, 220, 220, 220, 49706, 13, 10951, 10786, 14402, 6721, 25, 23884, 4458, 18982, 7, 49786, 62, 260, 904, 4008 ]
1.68042
1,430
# -*- coding: utf-8 -*- import redis import logging try: import simplejson as json except ImportError: import json _logger = logging.getLogger(__name__)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 2266, 271, 198, 11748, 18931, 198, 28311, 25, 198, 220, 220, 220, 1330, 2829, 17752, 355, 33918, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 33918, 198, 198, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 220, 220, 220, 220, 198 ]
2.584615
65
import os import pickle import numpy as np from tqdm import tqdm from argparse import ArgumentParser import optuna optuna.logging.set_verbosity ( optuna.logging.ERROR ) # silence Optuna during trials study import warnings warnings.filterwarnings ( "ignore", category = RuntimeWarning ) from sklearn.model_selection import StratifiedShuffleSplit from sklearn.preprocessing import MinMaxScaler from imblearn.over_sampling import SMOTE from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.feature_selection import RFECV from sklearn.metrics import roc_auc_score, confusion_matrix, roc_curve from utils import custom_predictions, multiclass_predictions, plot_conf_matrices, plot_multi_prf_histos LABELS = ["cHL", "GZL", "PMBCL"] # +-------------------+ # | Options setup | # +-------------------+ MODELS = [ "log-reg", "lin-svm", "gaus-proc", "rnd-frs", "grad-bdt" ] parser = ArgumentParser ( description = "training script" ) parser . add_argument ( "-m" , "--model" , required = True , choices = MODELS ) parser . add_argument ( "-s" , "--split" , default = "50/30/20" ) parser . add_argument ( "-t" , "--threshold" , default = "rec90" ) args = parser . parse_args() if len ( args.split.split("/") ) == 2: test_size = 0.5 * float(args.split.split("/")[-1]) / 100 val_size = test_size val_size /= ( 1 - test_size ) # w.r.t. new dataset size elif len ( args.split.split("/") ) == 3: test_size = float(args.split.split("/")[2]) / 100 val_size = float(args.split.split("/")[1]) / 100 val_size /= ( 1 - test_size ) # w.r.t. new dataset size else: raise ValueError (f"The splitting ratios should be passed as 'XX/YY/ZZ', where XX% is " f"the percentage of data used for training, while YY% and ZZ% are " f"the ones used for validation and testing respectively.") if "rec" in args.threshold: rec_score = float(args.threshold.split("rec")[-1]) / 100 prec_score = None elif "prec" in args.threshold: rec_score = None prec_score = float(args.threshold.split("prec")[-1]) / 100 else: raise ValueError (f"The rule for custom predictions should be passed as 'recXX' where " f"XX% is the minimum recall score required, or as 'precYY' where YY% " f"is the minimum precision score required.") # +------------------+ # | Data loading | # +------------------+ data_dir = "./data" data_file = "db_mediastinalbulky_reduced.pkl" file_path = os.path.join ( data_dir, data_file ) with open (file_path, "rb") as file: data = pickle.load (file) # +------------------------------+ # | Input/output preparation | # +------------------------------+ cols = list ( data.columns ) X_cols = cols[2:] y_cols = "lymphoma_type" X = data.query("lymphoma_type != 2")[X_cols] . to_numpy() y = data.query("lymphoma_type != 2")[y_cols] . to_numpy() . flatten() y = ( y == 3 ) # PMBCL/cHL classification X_gz = data.query("lymphoma_type == 2")[X_cols] . to_numpy() y_gz = data.query("lymphoma_type == 2")[y_cols] . to_numpy() . flatten() # +------------------------+ # | Sub-sample studies | # +------------------------+ conf_matrices = [ list() , list() , list() ] # container for confusion matrices recalls = [ list() , list() , list() ] # container for recalls precisions = [ list() , list() , list() ] # container for precisions roc_curves = [ list() , list() ] # container for ROC curve variables ## initial control values optimized = False append_to_roc = [ True , True ] n_roc_points = [ -1 , -1 ] for i in tqdm(range(250)): # +--------------------------+ # | Train/test splitting | # +--------------------------+ sss = StratifiedShuffleSplit ( n_splits = 1, test_size = test_size ) for idx_train, idx_test in sss . split ( X, y ): X_train , y_train = X[idx_train] , y[idx_train] X_test , y_test = X[idx_test] , y[idx_test] # +------------------------+ # | Data preprocessing | # +------------------------+ scaler_train = MinMaxScaler() X_train = scaler_train.fit_transform (X_train) scaler_test = MinMaxScaler() X_test = scaler_test.fit_transform (X_test) scaler_gz = MinMaxScaler() X_gz = scaler_gz.fit_transform (X_gz) # +------------------+ # | Optuna setup | # +------------------+ # +------------------------------+ # | Hyperparams optimization | # +------------------------------+ ## LOGISTIC REGRESSION if args.model == "log-reg": best_model = LogisticRegression() ## LINEAR SVM elif args.model == "lin-svm": best_model = SVC ( kernel = "linear", probability = True ) ## GAUSSIAN PROCESS elif args.model == "gaus-proc": best_model = GaussianProcessClassifier() ## RANDOM FOREST elif args.model == "rnd-frs": if not optimized: study = optuna_study ( model_name = "rnd_forest_clf" , storage_dir = "./storage" , objective = objective , n_trials = 50 , direction = "maximize" , load_if_exists = False ) optimized = True best_model = RandomForestClassifier ( n_estimators = study.best_params["n_estims"] , max_depth = study.best_params["max_depth"] ) ## GRADIENT BDT elif args.model == "grad-bdt": if not optimized: study = optuna_study ( model_name = "grad_bdt_clf" , storage_dir = "./storage" , objective = objective , n_trials = 50 , direction = "maximize" , load_if_exists = False ) optimized = True best_model = GradientBoostingClassifier ( learning_rate = study.best_params["learn_rate"] , n_estimators = study.best_params["n_estims"] , max_depth = study.best_params["max_depth"] ) # +---------------------------+ # | Multiclass boundaries | # +---------------------------+ # +-----------------------------------------+ # | Model performance on train/test set | # +-----------------------------------------+ ## train/val splitting sss = StratifiedShuffleSplit ( n_splits = 1, test_size = val_size ) for idx_trn, idx_val in sss . split ( X_train, y_train ): X_trn , y_trn = X_train[idx_trn] , y_train[idx_trn] X_val , y_val = X_train[idx_val] , y_train[idx_val] sm = SMOTE() # oversampling technique X_trn_res, y_trn_res = sm.fit_resample ( X_trn , y_trn ) ## combine the datasets X_trn_comb = np.concatenate ( [ X_trn, X_gz ] ) y_trn_comb = np.concatenate ( [ np.where(y_trn, 3, 1), y_gz ] ) X_val_comb = np.concatenate ( [ X_val, X_gz ] ) y_val_comb = np.concatenate ( [ np.where(y_val, 3, 1), y_gz ] ) X_test_comb = np.concatenate ( [ X_test, X_gz ] ) y_test_comb = np.concatenate ( [ np.where(y_test, 3, 1), y_gz ] ) X_eval_comb = np.concatenate ( [ X_val, X_test, X_gz ] ) y_eval_comb = np.concatenate ( [ np.where(y_val, 3, 1) , np.where(y_test, 3, 1), y_gz ] ) ## model training best_model . fit (X_trn_res, y_trn_res) ## model predictions y_scores_trn = best_model.predict_proba ( X_trn ) _, threshold = custom_predictions ( y_true = y_trn , y_scores = y_scores_trn , recall_score = rec_score , precision_score = prec_score ) y_scores_trn_comb = best_model.predict_proba ( X_trn_comb ) y_pred_trn = multiclass_predictions ( y_true = y_trn_comb , y_scores = y_scores_trn_comb , boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the true train-set y_scores_val_comb = best_model.predict_proba ( X_val_comb ) y_pred_val = multiclass_predictions ( y_true = y_val_comb , y_scores = y_scores_val_comb , boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the val-set y_scores_test_comb = best_model.predict_proba ( X_test_comb ) y_pred_test = multiclass_predictions ( y_true = y_test_comb , y_scores = y_scores_test_comb , boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the test-set y_scores_eval_comb = best_model.predict_proba ( X_eval_comb ) y_pred_eval = multiclass_predictions ( y_true = y_eval_comb , y_scores = y_scores_eval_comb , boundaries = get_decision_boundaries ( y_scores_trn, threshold, len(y_gz) / len(y_trn_comb) ) ) # pred for the val-set + test-set ## model performances conf_matrix_trn = confusion_matrix ( y_trn_comb, y_pred_trn ) recall_2 = conf_matrix_trn[2,2] / np.sum ( conf_matrix_trn[2,:] ) recall_1 = conf_matrix_trn[1,1] / np.sum ( conf_matrix_trn[1,:] ) precision_2 = conf_matrix_trn[2,2] / np.sum ( conf_matrix_trn[:,2] ) precision_1 = conf_matrix_trn[1,1] / np.sum ( conf_matrix_trn[:,1] ) conf_matrices[0] . append ( conf_matrix_trn ) # add to the relative container recalls[0] . append ( [recall_2, recall_1] ) # add to the relative container precisions[0] . append ( [precision_2, precision_1] ) # add to the relative container conf_matrix_val = confusion_matrix ( y_val_comb, y_pred_val ) recall_2 = conf_matrix_val[2,2] / np.sum ( conf_matrix_val[2,:] ) recall_1 = conf_matrix_val[1,1] / np.sum ( conf_matrix_val[1,:] ) precision_2 = conf_matrix_val[2,2] / np.sum ( conf_matrix_val[:,2] ) precision_1 = conf_matrix_val[1,1] / np.sum ( conf_matrix_val[:,1] ) conf_matrices[1] . append ( conf_matrix_val ) # add to the relative container recalls[1] . append ( [recall_2, recall_1] ) # add to the relative container precisions[1] . append ( [precision_2, precision_1] ) # add to the relative container conf_matrix_test = confusion_matrix ( y_test_comb, y_pred_test ) recall_2 = conf_matrix_test[2,2] / np.sum ( conf_matrix_test[2,:] ) recall_1 = conf_matrix_test[1,1] / np.sum ( conf_matrix_test[1,:] ) precision_2 = conf_matrix_test[2,2] / np.sum ( conf_matrix_test[:,2] ) precision_1 = conf_matrix_test[1,1] / np.sum ( conf_matrix_test[:,1] ) conf_matrices[2] . append ( conf_matrix_test ) # add to the relative container recalls[2] . append ( [recall_2, recall_1] ) # add to the relative container precisions[2] . append ( [precision_2, precision_1] ) # add to the relative container auc_eval_2 = roc_auc_score ( (y_eval_comb == 3), y_scores_eval_comb[:,1] ) # one-vs-all AUC score (PMBCL class) fpr_eval_2 , tpr_eval_2 , _ = roc_curve ( (y_eval_comb == 3), y_scores_eval_comb[:,1] ) # one-vs-all ROC curve (PMBCL class) if (len(fpr_eval_2) == n_roc_points[0]): append_to_roc[0] = True if append_to_roc[0]: roc_curves[0] . append ( np.c_ [1 - fpr_eval_2, tpr_eval_2, auc_eval_2 * np.ones_like(fpr_eval_2)] ) # add to the relative container append_to_roc[0] = False ; n_roc_points[0] = len(fpr_eval_2) auc_eval_1 = roc_auc_score ( (y_eval_comb == 2), y_scores_eval_comb[:,1] ) # one-vs-all AUC score (GZL class) fpr_eval_1 , tpr_eval_1 , _ = roc_curve ( (y_eval_comb == 2), y_scores_eval_comb[:,1] ) # one-vs-all ROC curve (GZL class) if (len(fpr_eval_1) == n_roc_points[1]): append_to_roc[1] = True if append_to_roc[1]: roc_curves[1] . append ( np.c_ [1 - fpr_eval_1, tpr_eval_1, auc_eval_1 * np.ones_like(fpr_eval_1)] ) # add to the relative container append_to_roc[1] = False ; n_roc_points[1] = len(fpr_eval_1) # +----------------------+ # | Plots generation | # +----------------------+ plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[0], axis = 0) . astype(np.int32) , labels = LABELS , show_matrix = "both" , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_train" ) plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[1], axis = 0) . astype(np.int32) , labels = LABELS , show_matrix = "both" , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_val" ) plot_conf_matrices ( conf_matrix = np.mean(conf_matrices[2], axis = 0) . astype(np.int32) , labels = LABELS , show_matrix = "both" , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_test" ) plot_multi_prf_histos ( rec_scores = ( np.array(recalls[0])[:,0] , np.array(recalls[0])[:,1] ) , prec_scores = ( np.array(precisions[0])[:,0] , np.array(precisions[0])[:,1] ) , bins = 25 , title = f"Performance of multi-class {model_name()} (on train-set)" , cls_labels = (LABELS[2], LABELS[1]) , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_train_prf" ) plot_multi_prf_histos ( rec_scores = ( np.array(recalls[1])[:,0] , np.array(recalls[1])[:,1] ) , prec_scores = ( np.array(precisions[1])[:,0] , np.array(precisions[1])[:,1] ) , bins = 25 , title = f"Performance of multi-class {model_name()} (on val-set)" , cls_labels = (LABELS[2], LABELS[1]) , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_val_prf" ) plot_multi_prf_histos ( rec_scores = ( np.array(recalls[2])[:,0] , np.array(recalls[2])[:,1] ) , prec_scores = ( np.array(precisions[2])[:,0] , np.array(precisions[2])[:,1] ) , bins = 25 , title = f"Performance of multi-class {model_name()} (on test-set)" , cls_labels = (LABELS[2], LABELS[1]) , save_figure = True , fig_name = f"multi-clf/{args.model}/{args.model}_{args.threshold}_test_prf" ) # +-------------------+ # | Scores export | # +-------------------+ roc_vars_lbl3 = np.c_ [ np.mean(roc_curves[0], axis = 0) , np.std(roc_curves[0], axis = 0)[:,2] ] roc_vars_lbl2 = np.c_ [ np.mean(roc_curves[1], axis = 0) , np.std(roc_curves[1], axis = 0)[:,2] ] score_dir = "scores" score_name = f"{args.model}_{args.threshold}" filename = f"{score_dir}/multi-clf/{score_name}.npz" np . savez ( filename, roc_vars_lbl3 = roc_vars_lbl3, roc_vars_lbl2 = roc_vars_lbl2 ) print (f"Scores correctly exported to {filename}")
[ 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 256, 80, 36020, 220, 220, 220, 220, 1330, 256, 80, 36020, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 11748, 2172, 9613, 198, 8738, 9613, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 357, 2172, 9613, 13, 6404, 2667, 13, 24908, 1267, 220, 220, 1303, 9550, 13123, 9613, 1141, 9867, 2050, 198, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 357, 366, 46430, 1600, 6536, 796, 43160, 20361, 1267, 198, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 220, 220, 1330, 29186, 1431, 2484, 18137, 41205, 198, 6738, 1341, 35720, 13, 3866, 36948, 220, 220, 220, 220, 1330, 1855, 11518, 3351, 36213, 198, 6738, 545, 903, 1501, 13, 2502, 62, 37687, 11347, 220, 220, 220, 1330, 9447, 23051, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 220, 220, 220, 220, 220, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 13, 82, 14761, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 311, 15922, 198, 6738, 1341, 35720, 13, 4908, 31562, 62, 14681, 220, 1330, 12822, 31562, 18709, 9487, 7483, 198, 6738, 1341, 35720, 13, 1072, 11306, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 14534, 34605, 9487, 7483, 11, 17701, 1153, 45686, 278, 9487, 7483, 198, 6738, 1341, 35720, 13, 30053, 62, 49283, 1330, 20445, 2943, 53, 198, 6738, 1341, 35720, 13, 4164, 10466, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 686, 66, 62, 14272, 62, 26675, 11, 10802, 62, 6759, 8609, 11, 686, 66, 62, 22019, 303, 198, 198, 6738, 3384, 4487, 1330, 2183, 62, 28764, 9278, 11, 47368, 31172, 62, 28764, 9278, 11, 7110, 62, 10414, 62, 6759, 45977, 11, 7110, 62, 41684, 62, 1050, 69, 62, 10034, 418, 198, 198, 48780, 37142, 796, 14631, 66, 6581, 1600, 366, 38, 57, 43, 1600, 366, 5868, 2749, 43, 8973, 198, 198, 2, 220, 220, 1343, 1783, 6329, 10, 198, 2, 220, 220, 930, 220, 220, 18634, 9058, 220, 220, 930, 198, 2, 220, 220, 1343, 1783, 6329, 10, 198, 198, 33365, 37142, 796, 685, 366, 6404, 12, 2301, 1600, 366, 2815, 12, 82, 14761, 1600, 366, 4908, 385, 12, 36942, 1600, 366, 81, 358, 12, 69, 3808, 1600, 366, 9744, 12, 17457, 83, 1, 2361, 198, 198, 48610, 796, 45751, 46677, 357, 6764, 796, 366, 34409, 4226, 1, 1267, 198, 48610, 764, 751, 62, 49140, 357, 27444, 76, 1, 837, 366, 438, 19849, 1, 220, 220, 220, 220, 837, 2672, 796, 6407, 837, 7747, 796, 19164, 37142, 1267, 198, 48610, 764, 751, 62, 49140, 357, 27444, 82, 1, 837, 366, 438, 35312, 1, 220, 220, 220, 220, 837, 4277, 220, 796, 366, 1120, 14, 1270, 14, 1238, 1, 1267, 198, 48610, 764, 751, 62, 49140, 357, 27444, 83, 1, 837, 366, 438, 400, 10126, 1, 837, 4277, 220, 796, 366, 8344, 3829, 1, 1267, 198, 22046, 796, 30751, 764, 21136, 62, 22046, 3419, 198, 198, 361, 18896, 357, 26498, 13, 35312, 13, 35312, 7203, 14, 4943, 1267, 6624, 362, 25, 198, 220, 1332, 62, 7857, 796, 657, 13, 20, 1635, 12178, 7, 22046, 13, 35312, 13, 35312, 7203, 14, 4943, 58, 12, 16, 12962, 1220, 1802, 198, 220, 1188, 62, 7857, 220, 796, 1332, 62, 7857, 198, 220, 1188, 62, 7857, 1220, 28, 357, 352, 532, 1332, 62, 7857, 1267, 220, 220, 1303, 266, 13, 81, 13, 83, 13, 649, 27039, 2546, 198, 417, 361, 18896, 357, 26498, 13, 35312, 13, 35312, 7203, 14, 4943, 1267, 6624, 513, 25, 198, 220, 1332, 62, 7857, 796, 12178, 7, 22046, 13, 35312, 13, 35312, 7203, 14, 4943, 58, 17, 12962, 1220, 1802, 198, 220, 1188, 62, 7857, 220, 796, 12178, 7, 22046, 13, 35312, 13, 35312, 7203, 14, 4943, 58, 16, 12962, 1220, 1802, 198, 220, 1188, 62, 7857, 1220, 28, 357, 352, 532, 1332, 62, 7857, 1267, 220, 220, 1303, 266, 13, 81, 13, 83, 13, 649, 27039, 2546, 198, 17772, 25, 198, 220, 5298, 11052, 12331, 357, 69, 1, 464, 26021, 22423, 815, 307, 3804, 355, 705, 8051, 14, 26314, 14, 30148, 3256, 810, 21044, 4, 318, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 1169, 5873, 286, 1366, 973, 329, 3047, 11, 981, 575, 56, 4, 290, 1168, 57, 4, 389, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 1169, 3392, 973, 329, 21201, 290, 4856, 8148, 19570, 198, 198, 361, 366, 8344, 1, 287, 26498, 13, 400, 10126, 25, 198, 220, 664, 62, 26675, 220, 796, 12178, 7, 22046, 13, 400, 10126, 13, 35312, 7203, 8344, 4943, 58, 12, 16, 12962, 1220, 1802, 198, 220, 3718, 62, 26675, 796, 6045, 198, 417, 361, 366, 3866, 66, 1, 287, 26498, 13, 400, 10126, 25, 198, 220, 664, 62, 26675, 220, 796, 6045, 198, 220, 3718, 62, 26675, 796, 12178, 7, 22046, 13, 400, 10126, 13, 35312, 7203, 3866, 66, 4943, 58, 12, 16, 12962, 1220, 1802, 198, 17772, 25, 198, 220, 5298, 11052, 12331, 357, 69, 1, 464, 3896, 329, 2183, 16277, 815, 307, 3804, 355, 705, 8344, 8051, 6, 810, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 8051, 4, 318, 262, 5288, 10014, 4776, 2672, 11, 393, 355, 705, 3866, 66, 26314, 6, 810, 575, 56, 4, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 271, 262, 5288, 15440, 4776, 2672, 19570, 198, 198, 2, 220, 220, 1343, 1783, 44785, 198, 2, 220, 220, 930, 220, 220, 6060, 11046, 220, 220, 930, 198, 2, 220, 220, 1343, 1783, 44785, 198, 198, 7890, 62, 15908, 220, 796, 366, 19571, 7890, 1, 198, 7890, 62, 7753, 796, 366, 9945, 62, 2379, 459, 1292, 15065, 2584, 62, 445, 19513, 13, 79, 41582, 1, 220, 198, 7753, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 357, 1366, 62, 15908, 11, 1366, 62, 7753, 1267, 198, 198, 4480, 1280, 357, 7753, 62, 6978, 11, 366, 26145, 4943, 355, 2393, 25, 198, 220, 1366, 796, 2298, 293, 13, 2220, 357, 7753, 8, 198, 198, 2, 220, 220, 1343, 1783, 26171, 10, 198, 2, 220, 220, 930, 220, 220, 23412, 14, 22915, 11824, 220, 220, 930, 198, 2, 220, 220, 1343, 1783, 26171, 10, 198, 198, 4033, 82, 796, 1351, 357, 1366, 13, 28665, 82, 1267, 198, 55, 62, 4033, 82, 796, 951, 82, 58, 17, 47715, 198, 88, 62, 4033, 82, 796, 366, 306, 23335, 6086, 62, 4906, 1, 198, 198, 55, 796, 1366, 13, 22766, 7203, 306, 23335, 6086, 62, 4906, 14512, 362, 4943, 58, 55, 62, 4033, 82, 60, 764, 284, 62, 77, 32152, 3419, 198, 88, 796, 1366, 13, 22766, 7203, 306, 23335, 6086, 62, 4906, 14512, 362, 4943, 58, 88, 62, 4033, 82, 60, 764, 284, 62, 77, 32152, 3419, 764, 27172, 268, 3419, 198, 88, 796, 357, 331, 6624, 513, 1267, 220, 220, 1303, 3122, 2749, 43, 14, 66, 6581, 17923, 198, 198, 55, 62, 34586, 796, 1366, 13, 22766, 7203, 306, 23335, 6086, 62, 4906, 6624, 362, 4943, 58, 55, 62, 4033, 82, 60, 764, 284, 62, 77, 32152, 3419, 198, 88, 62, 34586, 796, 1366, 13, 22766, 7203, 306, 23335, 6086, 62, 4906, 6624, 362, 4943, 58, 88, 62, 4033, 82, 60, 764, 284, 62, 77, 32152, 3419, 764, 27172, 268, 3419, 198, 198, 2, 220, 220, 1343, 22369, 10, 198, 2, 220, 220, 930, 220, 220, 3834, 12, 39873, 3640, 220, 220, 930, 198, 2, 220, 220, 1343, 22369, 10, 198, 198, 10414, 62, 6759, 45977, 796, 685, 1351, 3419, 837, 1351, 3419, 837, 1351, 3419, 2361, 220, 220, 1303, 9290, 329, 10802, 2603, 45977, 198, 8344, 5691, 220, 220, 220, 220, 220, 220, 796, 685, 1351, 3419, 837, 1351, 3419, 837, 1351, 3419, 2361, 220, 220, 1303, 9290, 329, 16865, 198, 3866, 66, 3279, 220, 220, 220, 796, 685, 1351, 3419, 837, 1351, 3419, 837, 1351, 3419, 2361, 220, 220, 1303, 9290, 329, 3718, 3279, 198, 12204, 62, 22019, 1158, 220, 220, 220, 796, 685, 1351, 3419, 837, 1351, 3419, 2361, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9290, 329, 371, 4503, 12133, 9633, 198, 198, 2235, 4238, 1630, 3815, 198, 40085, 1143, 796, 10352, 198, 33295, 62, 1462, 62, 12204, 796, 685, 6407, 837, 6407, 2361, 198, 77, 62, 12204, 62, 13033, 220, 796, 685, 532, 16, 220, 220, 837, 532, 16, 220, 220, 2361, 198, 198, 1640, 1312, 287, 256, 80, 36020, 7, 9521, 7, 9031, 8, 2599, 628, 220, 1303, 220, 220, 1343, 22369, 44785, 198, 220, 1303, 220, 220, 930, 220, 220, 16835, 14, 9288, 26021, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 22369, 44785, 628, 220, 264, 824, 796, 29186, 1431, 2484, 18137, 41205, 357, 299, 62, 22018, 896, 796, 352, 11, 1332, 62, 7857, 796, 1332, 62, 7857, 1267, 198, 220, 329, 4686, 87, 62, 27432, 11, 4686, 87, 62, 9288, 287, 264, 824, 764, 6626, 357, 1395, 11, 331, 15179, 198, 220, 220, 220, 1395, 62, 27432, 837, 331, 62, 27432, 796, 1395, 58, 312, 87, 62, 27432, 60, 837, 331, 58, 312, 87, 62, 27432, 60, 198, 220, 220, 220, 1395, 62, 9288, 220, 837, 331, 62, 9288, 220, 796, 1395, 58, 312, 87, 62, 9288, 60, 220, 837, 331, 58, 312, 87, 62, 9288, 60, 220, 628, 220, 1303, 220, 220, 1343, 22369, 10, 198, 220, 1303, 220, 220, 930, 220, 220, 6060, 662, 36948, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 22369, 10, 628, 220, 16578, 263, 62, 27432, 796, 1855, 11518, 3351, 36213, 3419, 198, 220, 1395, 62, 27432, 796, 16578, 263, 62, 27432, 13, 11147, 62, 35636, 357, 55, 62, 27432, 8, 628, 220, 16578, 263, 62, 9288, 796, 1855, 11518, 3351, 36213, 3419, 198, 220, 1395, 62, 9288, 796, 16578, 263, 62, 9288, 13, 11147, 62, 35636, 357, 55, 62, 9288, 8, 628, 220, 16578, 263, 62, 34586, 796, 1855, 11518, 3351, 36213, 3419, 198, 220, 1395, 62, 34586, 796, 16578, 263, 62, 34586, 13, 11147, 62, 35636, 357, 55, 62, 34586, 8, 628, 220, 1303, 220, 220, 1343, 1783, 44785, 198, 220, 1303, 220, 220, 930, 220, 220, 13123, 9613, 9058, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 1783, 44785, 628, 220, 1303, 220, 220, 1343, 1783, 26171, 10, 198, 220, 1303, 220, 220, 930, 220, 220, 15079, 37266, 23989, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 1783, 26171, 10, 628, 220, 22492, 41605, 8808, 2149, 4526, 10761, 47621, 198, 220, 611, 26498, 13, 19849, 6624, 366, 6404, 12, 2301, 1298, 198, 220, 220, 220, 1266, 62, 19849, 796, 5972, 2569, 8081, 2234, 3419, 628, 220, 22492, 48920, 1503, 311, 15996, 198, 220, 1288, 361, 26498, 13, 19849, 6624, 366, 2815, 12, 82, 14761, 1298, 198, 220, 220, 220, 1266, 62, 19849, 796, 311, 15922, 357, 9720, 796, 366, 29127, 1600, 12867, 796, 6407, 1267, 628, 220, 22492, 14545, 2937, 11584, 1565, 41755, 7597, 198, 220, 1288, 361, 26498, 13, 19849, 6624, 366, 4908, 385, 12, 36942, 1298, 198, 220, 220, 220, 1266, 62, 19849, 796, 12822, 31562, 18709, 9487, 7483, 3419, 628, 220, 22492, 46920, 2662, 7473, 6465, 198, 220, 1288, 361, 26498, 13, 19849, 6624, 366, 81, 358, 12, 69, 3808, 1298, 628, 220, 220, 220, 611, 407, 23392, 25, 198, 220, 220, 220, 220, 220, 2050, 796, 2172, 9613, 62, 44517, 357, 2746, 62, 3672, 220, 796, 366, 81, 358, 62, 29623, 62, 565, 69, 1, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 15908, 796, 366, 19571, 35350, 1, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9432, 796, 9432, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 28461, 874, 220, 796, 2026, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4571, 796, 366, 9806, 48439, 1, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 361, 62, 1069, 1023, 796, 10352, 1267, 198, 220, 220, 220, 220, 220, 23392, 796, 6407, 628, 220, 220, 220, 1266, 62, 19849, 796, 14534, 34605, 9487, 7483, 357, 299, 62, 395, 320, 2024, 796, 2050, 13, 13466, 62, 37266, 14692, 77, 62, 395, 12078, 8973, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 18053, 220, 220, 220, 796, 2050, 13, 13466, 62, 37266, 14692, 9806, 62, 18053, 8973, 1267, 628, 198, 220, 22492, 10863, 2885, 28495, 347, 24544, 198, 220, 1288, 361, 26498, 13, 19849, 6624, 366, 9744, 12, 17457, 83, 1298, 628, 220, 220, 220, 611, 407, 23392, 25, 198, 220, 220, 220, 220, 220, 2050, 796, 2172, 9613, 62, 44517, 357, 2746, 62, 3672, 220, 796, 366, 9744, 62, 17457, 83, 62, 565, 69, 1, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 15908, 796, 366, 19571, 35350, 1, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9432, 796, 9432, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 28461, 874, 220, 796, 2026, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4571, 796, 366, 9806, 48439, 1, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 361, 62, 1069, 1023, 796, 10352, 1267, 198, 220, 220, 220, 220, 220, 23392, 796, 6407, 628, 220, 220, 220, 1266, 62, 19849, 796, 17701, 1153, 45686, 278, 9487, 7483, 357, 4673, 62, 4873, 796, 2050, 13, 13466, 62, 37266, 14692, 35720, 62, 4873, 8973, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 395, 320, 2024, 220, 796, 2050, 13, 13466, 62, 37266, 14692, 77, 62, 395, 12078, 8973, 220, 220, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 18053, 220, 220, 220, 220, 796, 2050, 13, 13466, 62, 37266, 14692, 9806, 62, 18053, 8973, 220, 1267, 628, 220, 1303, 220, 220, 1343, 22369, 6329, 10, 198, 220, 1303, 220, 220, 930, 220, 220, 7854, 291, 31172, 13215, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 22369, 6329, 10, 628, 220, 1303, 220, 220, 1343, 3880, 982, 19529, 198, 220, 1303, 220, 220, 930, 220, 220, 9104, 2854, 319, 4512, 14, 9288, 900, 220, 220, 930, 198, 220, 1303, 220, 220, 1343, 3880, 982, 19529, 628, 220, 22492, 4512, 14, 2100, 26021, 198, 220, 264, 824, 796, 29186, 1431, 2484, 18137, 41205, 357, 299, 62, 22018, 896, 796, 352, 11, 1332, 62, 7857, 796, 1188, 62, 7857, 1267, 198, 220, 329, 4686, 87, 62, 2213, 77, 11, 4686, 87, 62, 2100, 287, 264, 824, 764, 6626, 357, 1395, 62, 27432, 11, 331, 62, 27432, 15179, 198, 220, 220, 220, 1395, 62, 2213, 77, 837, 331, 62, 2213, 77, 796, 1395, 62, 27432, 58, 312, 87, 62, 2213, 77, 60, 837, 331, 62, 27432, 58, 312, 87, 62, 2213, 77, 60, 198, 220, 220, 220, 1395, 62, 2100, 837, 331, 62, 2100, 796, 1395, 62, 27432, 58, 312, 87, 62, 2100, 60, 837, 331, 62, 27432, 58, 312, 87, 62, 2100, 60, 220, 628, 220, 895, 796, 9447, 23051, 3419, 220, 220, 1303, 10753, 321, 11347, 8173, 198, 220, 1395, 62, 2213, 77, 62, 411, 11, 331, 62, 2213, 77, 62, 411, 796, 895, 13, 11147, 62, 411, 1403, 357, 1395, 62, 2213, 77, 837, 331, 62, 2213, 77, 1267, 628, 220, 22492, 12082, 262, 40522, 198, 220, 1395, 62, 2213, 77, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 1395, 62, 2213, 77, 11, 1395, 62, 34586, 2361, 1267, 198, 220, 331, 62, 2213, 77, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 45941, 13, 3003, 7, 88, 62, 2213, 77, 11, 513, 11, 352, 828, 331, 62, 34586, 2361, 1267, 628, 220, 1395, 62, 2100, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 1395, 62, 2100, 11, 1395, 62, 34586, 2361, 1267, 198, 220, 331, 62, 2100, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 45941, 13, 3003, 7, 88, 62, 2100, 11, 513, 11, 352, 828, 331, 62, 34586, 2361, 1267, 628, 220, 1395, 62, 9288, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 1395, 62, 9288, 11, 1395, 62, 34586, 2361, 1267, 198, 220, 331, 62, 9288, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 45941, 13, 3003, 7, 88, 62, 9288, 11, 513, 11, 352, 828, 331, 62, 34586, 2361, 1267, 628, 220, 1395, 62, 18206, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 1395, 62, 2100, 11, 1395, 62, 9288, 11, 1395, 62, 34586, 2361, 1267, 198, 220, 331, 62, 18206, 62, 24011, 796, 45941, 13, 1102, 9246, 268, 378, 357, 685, 45941, 13, 3003, 7, 88, 62, 2100, 11, 513, 11, 352, 8, 837, 45941, 13, 3003, 7, 88, 62, 9288, 11, 513, 11, 352, 828, 331, 62, 34586, 2361, 1267, 628, 220, 22492, 2746, 3047, 198, 220, 1266, 62, 19849, 764, 4197, 357, 55, 62, 2213, 77, 62, 411, 11, 331, 62, 2213, 77, 62, 411, 8, 628, 220, 22492, 2746, 16277, 198, 220, 331, 62, 1416, 2850, 62, 2213, 77, 796, 1266, 62, 19849, 13, 79, 17407, 62, 1676, 7012, 357, 1395, 62, 2213, 77, 1267, 198, 220, 4808, 11, 11387, 796, 2183, 62, 28764, 9278, 357, 331, 62, 7942, 796, 331, 62, 2213, 77, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 331, 62, 1416, 2850, 62, 2213, 77, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10014, 62, 26675, 796, 664, 62, 26675, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 62, 26675, 796, 3718, 62, 26675, 1267, 220, 220, 220, 628, 220, 331, 62, 1416, 2850, 62, 2213, 77, 62, 24011, 796, 1266, 62, 19849, 13, 79, 17407, 62, 1676, 7012, 357, 1395, 62, 2213, 77, 62, 24011, 1267, 198, 220, 331, 62, 28764, 62, 2213, 77, 796, 47368, 31172, 62, 28764, 9278, 357, 331, 62, 7942, 796, 331, 62, 2213, 77, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 331, 62, 1416, 2850, 62, 2213, 77, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13215, 796, 651, 62, 12501, 1166, 62, 7784, 3166, 357, 331, 62, 1416, 2850, 62, 2213, 77, 11, 11387, 11, 18896, 7, 88, 62, 34586, 8, 1220, 18896, 7, 88, 62, 2213, 77, 62, 24011, 8, 1267, 1267, 220, 220, 1303, 2747, 329, 262, 2081, 4512, 12, 2617, 628, 220, 331, 62, 1416, 2850, 62, 2100, 62, 24011, 796, 1266, 62, 19849, 13, 79, 17407, 62, 1676, 7012, 357, 1395, 62, 2100, 62, 24011, 1267, 198, 220, 331, 62, 28764, 62, 2100, 796, 47368, 31172, 62, 28764, 9278, 357, 331, 62, 7942, 796, 331, 62, 2100, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 331, 62, 1416, 2850, 62, 2100, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13215, 796, 651, 62, 12501, 1166, 62, 7784, 3166, 357, 331, 62, 1416, 2850, 62, 2213, 77, 11, 11387, 11, 18896, 7, 88, 62, 34586, 8, 1220, 18896, 7, 88, 62, 2213, 77, 62, 24011, 8, 1267, 1267, 220, 220, 1303, 2747, 329, 262, 1188, 12, 2617, 628, 220, 331, 62, 1416, 2850, 62, 9288, 62, 24011, 796, 1266, 62, 19849, 13, 79, 17407, 62, 1676, 7012, 357, 1395, 62, 9288, 62, 24011, 1267, 198, 220, 331, 62, 28764, 62, 9288, 796, 47368, 31172, 62, 28764, 9278, 357, 331, 62, 7942, 796, 331, 62, 9288, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 331, 62, 1416, 2850, 62, 9288, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13215, 796, 651, 62, 12501, 1166, 62, 7784, 3166, 357, 331, 62, 1416, 2850, 62, 2213, 77, 11, 11387, 11, 18896, 7, 88, 62, 34586, 8, 1220, 18896, 7, 88, 62, 2213, 77, 62, 24011, 8, 1267, 1267, 220, 220, 1303, 2747, 329, 262, 1332, 12, 2617, 628, 220, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 796, 1266, 62, 19849, 13, 79, 17407, 62, 1676, 7012, 357, 1395, 62, 18206, 62, 24011, 1267, 198, 220, 331, 62, 28764, 62, 18206, 796, 47368, 31172, 62, 28764, 9278, 357, 331, 62, 7942, 796, 331, 62, 18206, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13215, 796, 651, 62, 12501, 1166, 62, 7784, 3166, 357, 331, 62, 1416, 2850, 62, 2213, 77, 11, 11387, 11, 18896, 7, 88, 62, 34586, 8, 1220, 18896, 7, 88, 62, 2213, 77, 62, 24011, 8, 1267, 1267, 220, 220, 1303, 2747, 329, 262, 1188, 12, 2617, 1343, 1332, 12, 2617, 628, 220, 22492, 2746, 13289, 198, 220, 1013, 62, 6759, 8609, 62, 2213, 77, 796, 10802, 62, 6759, 8609, 357, 331, 62, 2213, 77, 62, 24011, 11, 331, 62, 28764, 62, 2213, 77, 1267, 198, 220, 10014, 62, 17, 796, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 17, 11, 47715, 1267, 198, 220, 10014, 62, 16, 796, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 16, 11, 47715, 1267, 198, 220, 15440, 62, 17, 796, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 45299, 17, 60, 1267, 198, 220, 15440, 62, 16, 796, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2213, 77, 58, 45299, 16, 60, 1267, 198, 220, 1013, 62, 6759, 45977, 58, 15, 60, 764, 24443, 357, 1013, 62, 6759, 8609, 62, 2213, 77, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 16865, 58, 15, 60, 220, 220, 220, 764, 24443, 357, 685, 8344, 439, 62, 17, 11, 10014, 62, 16, 60, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 3718, 3279, 58, 15, 60, 764, 24443, 357, 685, 3866, 16005, 62, 17, 11, 15440, 62, 16, 60, 1267, 220, 220, 1303, 751, 284, 262, 3585, 9290, 628, 220, 1013, 62, 6759, 8609, 62, 2100, 796, 10802, 62, 6759, 8609, 357, 331, 62, 2100, 62, 24011, 11, 331, 62, 28764, 62, 2100, 1267, 198, 220, 10014, 62, 17, 796, 1013, 62, 6759, 8609, 62, 2100, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2100, 58, 17, 11, 47715, 1267, 198, 220, 10014, 62, 16, 796, 1013, 62, 6759, 8609, 62, 2100, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2100, 58, 16, 11, 47715, 1267, 198, 220, 15440, 62, 17, 796, 1013, 62, 6759, 8609, 62, 2100, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2100, 58, 45299, 17, 60, 1267, 198, 220, 15440, 62, 16, 796, 1013, 62, 6759, 8609, 62, 2100, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 2100, 58, 45299, 16, 60, 1267, 198, 220, 1013, 62, 6759, 45977, 58, 16, 60, 764, 24443, 357, 1013, 62, 6759, 8609, 62, 2100, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 16865, 58, 16, 60, 220, 220, 220, 764, 24443, 357, 685, 8344, 439, 62, 17, 11, 10014, 62, 16, 60, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 3718, 3279, 58, 16, 60, 764, 24443, 357, 685, 3866, 16005, 62, 17, 11, 15440, 62, 16, 60, 1267, 220, 220, 1303, 751, 284, 262, 3585, 9290, 628, 220, 1013, 62, 6759, 8609, 62, 9288, 796, 10802, 62, 6759, 8609, 357, 331, 62, 9288, 62, 24011, 11, 331, 62, 28764, 62, 9288, 1267, 198, 220, 10014, 62, 17, 796, 1013, 62, 6759, 8609, 62, 9288, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 9288, 58, 17, 11, 47715, 1267, 198, 220, 10014, 62, 16, 796, 1013, 62, 6759, 8609, 62, 9288, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 9288, 58, 16, 11, 47715, 1267, 198, 220, 15440, 62, 17, 796, 1013, 62, 6759, 8609, 62, 9288, 58, 17, 11, 17, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 9288, 58, 45299, 17, 60, 1267, 198, 220, 15440, 62, 16, 796, 1013, 62, 6759, 8609, 62, 9288, 58, 16, 11, 16, 60, 1220, 45941, 13, 16345, 357, 1013, 62, 6759, 8609, 62, 9288, 58, 45299, 16, 60, 1267, 198, 220, 1013, 62, 6759, 45977, 58, 17, 60, 764, 24443, 357, 1013, 62, 6759, 8609, 62, 9288, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 16865, 58, 17, 60, 220, 220, 220, 764, 24443, 357, 685, 8344, 439, 62, 17, 11, 10014, 62, 16, 60, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 3718, 3279, 58, 17, 60, 764, 24443, 357, 685, 3866, 16005, 62, 17, 11, 15440, 62, 16, 60, 1267, 220, 220, 1303, 751, 284, 262, 3585, 9290, 628, 220, 257, 1229, 62, 18206, 62, 17, 796, 686, 66, 62, 14272, 62, 26675, 357, 357, 88, 62, 18206, 62, 24011, 6624, 513, 828, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 58, 45299, 16, 60, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 530, 12, 14259, 12, 439, 317, 9598, 4776, 357, 5868, 2749, 43, 1398, 8, 198, 220, 277, 1050, 62, 18206, 62, 17, 837, 256, 1050, 62, 18206, 62, 17, 837, 4808, 796, 686, 66, 62, 22019, 303, 357, 357, 88, 62, 18206, 62, 24011, 6624, 513, 828, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 58, 45299, 16, 60, 1267, 220, 220, 1303, 530, 12, 14259, 12, 439, 371, 4503, 12133, 357, 5868, 2749, 43, 1398, 8, 628, 220, 611, 357, 11925, 7, 69, 1050, 62, 18206, 62, 17, 8, 6624, 299, 62, 12204, 62, 13033, 58, 15, 60, 2599, 24443, 62, 1462, 62, 12204, 58, 15, 60, 796, 6407, 198, 220, 611, 24443, 62, 1462, 62, 12204, 58, 15, 5974, 198, 220, 220, 220, 686, 66, 62, 22019, 1158, 58, 15, 60, 764, 24443, 357, 45941, 13, 66, 62, 685, 16, 532, 277, 1050, 62, 18206, 62, 17, 11, 256, 1050, 62, 18206, 62, 17, 11, 257, 1229, 62, 18206, 62, 17, 1635, 45941, 13, 1952, 62, 2339, 7, 69, 1050, 62, 18206, 62, 17, 15437, 1267, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 220, 220, 24443, 62, 1462, 62, 12204, 58, 15, 60, 796, 10352, 2162, 299, 62, 12204, 62, 13033, 58, 15, 60, 796, 18896, 7, 69, 1050, 62, 18206, 62, 17, 8, 628, 220, 257, 1229, 62, 18206, 62, 16, 796, 686, 66, 62, 14272, 62, 26675, 357, 357, 88, 62, 18206, 62, 24011, 6624, 362, 828, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 58, 45299, 16, 60, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 530, 12, 14259, 12, 439, 317, 9598, 4776, 357, 38, 57, 43, 1398, 8, 198, 220, 277, 1050, 62, 18206, 62, 16, 837, 256, 1050, 62, 18206, 62, 16, 837, 4808, 796, 686, 66, 62, 22019, 303, 357, 357, 88, 62, 18206, 62, 24011, 6624, 362, 828, 331, 62, 1416, 2850, 62, 18206, 62, 24011, 58, 45299, 16, 60, 1267, 220, 220, 1303, 530, 12, 14259, 12, 439, 371, 4503, 12133, 357, 38, 57, 43, 1398, 8, 628, 220, 611, 357, 11925, 7, 69, 1050, 62, 18206, 62, 16, 8, 6624, 299, 62, 12204, 62, 13033, 58, 16, 60, 2599, 24443, 62, 1462, 62, 12204, 58, 16, 60, 796, 6407, 198, 220, 611, 24443, 62, 1462, 62, 12204, 58, 16, 5974, 198, 220, 220, 220, 686, 66, 62, 22019, 1158, 58, 16, 60, 764, 24443, 357, 45941, 13, 66, 62, 685, 16, 532, 277, 1050, 62, 18206, 62, 16, 11, 256, 1050, 62, 18206, 62, 16, 11, 257, 1229, 62, 18206, 62, 16, 1635, 45941, 13, 1952, 62, 2339, 7, 69, 1050, 62, 18206, 62, 16, 15437, 1267, 220, 220, 1303, 751, 284, 262, 3585, 9290, 198, 220, 220, 220, 24443, 62, 1462, 62, 12204, 58, 16, 60, 796, 10352, 2162, 299, 62, 12204, 62, 13033, 58, 16, 60, 796, 18896, 7, 69, 1050, 62, 18206, 62, 16, 8, 198, 198, 2, 220, 220, 1343, 19351, 44785, 198, 2, 220, 220, 930, 220, 220, 1345, 1747, 5270, 220, 220, 930, 198, 2, 220, 220, 1343, 19351, 44785, 198, 198, 29487, 62, 10414, 62, 6759, 45977, 357, 1013, 62, 6759, 8609, 796, 45941, 13, 32604, 7, 10414, 62, 6759, 45977, 58, 15, 4357, 16488, 796, 657, 8, 764, 6468, 2981, 7, 37659, 13, 600, 2624, 8, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 406, 6242, 37142, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 6759, 8609, 796, 366, 16885, 1, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 27432, 1, 1267, 198, 198, 29487, 62, 10414, 62, 6759, 45977, 357, 1013, 62, 6759, 8609, 796, 45941, 13, 32604, 7, 10414, 62, 6759, 45977, 58, 16, 4357, 16488, 796, 657, 8, 764, 6468, 2981, 7, 37659, 13, 600, 2624, 8, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 406, 6242, 37142, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 6759, 8609, 796, 366, 16885, 1, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 2100, 1, 1267, 198, 198, 29487, 62, 10414, 62, 6759, 45977, 357, 1013, 62, 6759, 8609, 796, 45941, 13, 32604, 7, 10414, 62, 6759, 45977, 58, 17, 4357, 16488, 796, 657, 8, 764, 6468, 2981, 7, 37659, 13, 600, 2624, 8, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 406, 6242, 37142, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 6759, 8609, 796, 366, 16885, 1, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 9288, 1, 1267, 198, 198, 29487, 62, 41684, 62, 1050, 69, 62, 10034, 418, 357, 664, 62, 1416, 2850, 220, 796, 357, 45941, 13, 18747, 7, 8344, 5691, 58, 15, 12962, 58, 45299, 15, 60, 220, 220, 220, 837, 45941, 13, 18747, 7, 8344, 5691, 58, 15, 12962, 58, 45299, 16, 60, 220, 220, 220, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3718, 62, 1416, 2850, 796, 357, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 15, 12962, 58, 45299, 15, 60, 837, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 15, 12962, 58, 45299, 16, 60, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 796, 1679, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 277, 1, 32273, 286, 5021, 12, 4871, 1391, 19849, 62, 3672, 3419, 92, 357, 261, 4512, 12, 2617, 16725, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 62, 23912, 1424, 796, 357, 48780, 37142, 58, 17, 4357, 406, 6242, 37142, 58, 16, 12962, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 27432, 62, 1050, 69, 1, 1267, 198, 198, 29487, 62, 41684, 62, 1050, 69, 62, 10034, 418, 357, 664, 62, 1416, 2850, 220, 796, 357, 45941, 13, 18747, 7, 8344, 5691, 58, 16, 12962, 58, 45299, 15, 60, 220, 220, 220, 837, 45941, 13, 18747, 7, 8344, 5691, 58, 16, 12962, 58, 45299, 16, 60, 220, 220, 220, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3718, 62, 1416, 2850, 796, 357, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 16, 12962, 58, 45299, 15, 60, 837, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 16, 12962, 58, 45299, 16, 60, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 796, 1679, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 277, 1, 32273, 286, 5021, 12, 4871, 1391, 19849, 62, 3672, 3419, 92, 357, 261, 1188, 12, 2617, 16725, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 62, 23912, 1424, 796, 357, 48780, 37142, 58, 17, 4357, 406, 6242, 37142, 58, 16, 12962, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 2100, 62, 1050, 69, 1, 1267, 198, 198, 29487, 62, 41684, 62, 1050, 69, 62, 10034, 418, 357, 664, 62, 1416, 2850, 220, 796, 357, 45941, 13, 18747, 7, 8344, 5691, 58, 17, 12962, 58, 45299, 15, 60, 220, 220, 220, 837, 45941, 13, 18747, 7, 8344, 5691, 58, 17, 12962, 58, 45299, 16, 60, 220, 220, 220, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3718, 62, 1416, 2850, 796, 357, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 17, 12962, 58, 45299, 15, 60, 837, 45941, 13, 18747, 7, 3866, 66, 3279, 58, 17, 12962, 58, 45299, 16, 60, 1267, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 796, 1679, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 277, 1, 32273, 286, 5021, 12, 4871, 1391, 19849, 62, 3672, 3419, 92, 357, 261, 1332, 12, 2617, 16725, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 62, 23912, 1424, 796, 357, 48780, 37142, 58, 17, 4357, 406, 6242, 37142, 58, 16, 12962, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 26875, 796, 6407, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 277, 1, 41684, 12, 565, 69, 14, 90, 22046, 13, 19849, 92, 14, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 92, 62, 9288, 62, 1050, 69, 1, 1267, 198, 198, 2, 220, 220, 1343, 1783, 6329, 10, 198, 2, 220, 220, 930, 220, 220, 44654, 10784, 220, 220, 930, 198, 2, 220, 220, 1343, 1783, 6329, 10, 198, 198, 12204, 62, 85, 945, 62, 75, 2436, 18, 796, 45941, 13, 66, 62, 685, 45941, 13, 32604, 7, 12204, 62, 22019, 1158, 58, 15, 4357, 16488, 796, 657, 8, 837, 45941, 13, 19282, 7, 12204, 62, 22019, 1158, 58, 15, 4357, 16488, 796, 657, 38381, 45299, 17, 60, 2361, 198, 12204, 62, 85, 945, 62, 75, 2436, 17, 796, 45941, 13, 66, 62, 685, 45941, 13, 32604, 7, 12204, 62, 22019, 1158, 58, 16, 4357, 16488, 796, 657, 8, 837, 45941, 13, 19282, 7, 12204, 62, 22019, 1158, 58, 16, 4357, 16488, 796, 657, 38381, 45299, 17, 60, 2361, 198, 198, 26675, 62, 15908, 220, 796, 366, 1416, 2850, 1, 198, 26675, 62, 3672, 796, 277, 1, 90, 22046, 13, 19849, 92, 23330, 22046, 13, 400, 10126, 36786, 198, 198, 34345, 796, 277, 1, 90, 26675, 62, 15908, 92, 14, 41684, 12, 565, 69, 14, 90, 26675, 62, 3672, 27422, 37659, 89, 1, 198, 37659, 764, 3613, 89, 357, 29472, 11, 686, 66, 62, 85, 945, 62, 75, 2436, 18, 796, 686, 66, 62, 85, 945, 62, 75, 2436, 18, 11, 686, 66, 62, 85, 945, 62, 75, 2436, 17, 796, 686, 66, 62, 85, 945, 62, 75, 2436, 17, 1267, 198, 4798, 357, 69, 1, 3351, 2850, 9380, 29050, 284, 1391, 34345, 92, 4943, 198 ]
2.137855
7,283
import dsz, dsz.cmd, dsz.control import ops, ops.pprint import ops.data import traceback, sys from optparse import OptionParser if (__name__ == '__main__'): usage = 'python windows\\eventloqs.py [Options]\n-m, --monitor \n Runs in monitor mode, defaults to false\n-i, --interval [timeinterval]\n Interval between eventlogquery commands to use when running in monitor mode\n-l, --log [logname]\n Restricts query/monitor to one log\n-c, --classic\n If present, only queries System/Security/Application logs\n-t, --target\n Remote target to query\n' parser = OptionParser(usage=usage) parser.add_option('-m', '--monitor', dest='monitor', action='store_true', default=False) parser.add_option('-c', '--classic', dest='classic', action='store_true', default=False) parser.add_option('-i', '--interval', dest='interval', type='int', action='store', default='300') parser.add_option('-l', '--log', dest='logname', type='string', action='store', default='') parser.add_option('-t', '--target', dest='target', type='string', action='store', default=None) (options, args) = parser.parse_args(sys.argv) if options.monitor: monitorlogs(options.interval, options.classic, options.logname, options.target) else: logs = logquery(options.logname, options.target, options.classic) printlogtable(logs)
[ 198, 11748, 288, 82, 89, 11, 288, 82, 89, 13, 28758, 11, 288, 82, 89, 13, 13716, 198, 11748, 39628, 11, 39628, 13, 381, 22272, 198, 11748, 39628, 13, 7890, 198, 11748, 12854, 1891, 11, 25064, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 361, 357, 834, 3672, 834, 6624, 705, 834, 12417, 834, 6, 2599, 198, 220, 220, 220, 8748, 796, 705, 29412, 9168, 6852, 15596, 5439, 48382, 13, 9078, 685, 29046, 60, 59, 77, 12, 76, 11, 1377, 41143, 3467, 77, 220, 220, 220, 44743, 287, 5671, 4235, 11, 26235, 284, 3991, 59, 77, 12, 72, 11, 1377, 3849, 2100, 685, 2435, 3849, 2100, 60, 59, 77, 220, 220, 220, 4225, 2100, 1022, 1785, 6404, 22766, 9729, 284, 779, 618, 2491, 287, 5671, 4235, 59, 77, 12, 75, 11, 1377, 6404, 685, 75, 2360, 480, 60, 59, 77, 220, 220, 220, 37163, 82, 12405, 14, 41143, 284, 530, 2604, 59, 77, 12, 66, 11, 1377, 49421, 59, 77, 220, 220, 220, 1002, 1944, 11, 691, 20743, 4482, 14, 24074, 14, 23416, 17259, 59, 77, 12, 83, 11, 1377, 16793, 59, 77, 220, 220, 220, 21520, 2496, 284, 12405, 59, 77, 6, 198, 220, 220, 220, 30751, 796, 16018, 46677, 7, 26060, 28, 26060, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 76, 3256, 705, 438, 41143, 3256, 2244, 11639, 41143, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 66, 3256, 705, 438, 49421, 3256, 2244, 11639, 49421, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 72, 3256, 705, 438, 3849, 2100, 3256, 2244, 11639, 3849, 2100, 3256, 2099, 11639, 600, 3256, 2223, 11639, 8095, 3256, 4277, 11639, 6200, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 75, 3256, 705, 438, 6404, 3256, 2244, 11639, 75, 2360, 480, 3256, 2099, 11639, 8841, 3256, 2223, 11639, 8095, 3256, 4277, 28, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 83, 3256, 705, 438, 16793, 3256, 2244, 11639, 16793, 3256, 2099, 11639, 8841, 3256, 2223, 11639, 8095, 3256, 4277, 28, 14202, 8, 198, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 611, 3689, 13, 41143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5671, 6404, 82, 7, 25811, 13, 3849, 2100, 11, 3689, 13, 49421, 11, 3689, 13, 75, 2360, 480, 11, 3689, 13, 16793, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17259, 796, 2604, 22766, 7, 25811, 13, 75, 2360, 480, 11, 3689, 13, 16793, 11, 3689, 13, 49421, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 6404, 11487, 7, 6404, 82, 8 ]
2.839583
480
version="0.2.1"
[ 9641, 2625, 15, 13, 17, 13, 16, 1 ]
1.875
8
import logging from django.core.management.base import BaseCommand from django.utils.translation import ugettext_lazy as _ from oscar.apps.customer.alerts import utils logger = logging.getLogger(__name__) class Command(BaseCommand): """ Check stock records of products for availability and send out alerts to customers that have registered for an alert. """ help = _("Check for products that are back in " "stock and send out alerts") def handle(self, **options): """ Check all products with active product alerts for availability and send out email alerts when a product is available to buy. """ utils.send_alerts()
[ 11748, 18931, 201, 198, 201, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 201, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 201, 198, 201, 198, 6738, 267, 13034, 13, 18211, 13, 23144, 263, 13, 44598, 82, 1330, 3384, 4487, 201, 198, 201, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 201, 198, 201, 198, 201, 198, 4871, 9455, 7, 14881, 21575, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 6822, 4283, 4406, 286, 3186, 329, 11500, 290, 3758, 503, 21675, 201, 198, 220, 220, 220, 284, 4297, 326, 423, 6823, 329, 281, 7995, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1037, 796, 4808, 7203, 9787, 329, 3186, 326, 389, 736, 287, 366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13578, 290, 3758, 503, 21675, 4943, 201, 198, 201, 198, 220, 220, 220, 825, 5412, 7, 944, 11, 12429, 25811, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 477, 3186, 351, 4075, 1720, 21675, 329, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11500, 290, 3758, 503, 3053, 21675, 618, 257, 1720, 318, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1695, 284, 2822, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 21280, 62, 44598, 82, 3419, 201, 198 ]
2.755639
266
from __future__ import print_function from collections import OrderedDict import os import shutil import subprocess import tempfile import textwrap import unittest import conda_smithy.lint_recipe as linter if __name__ == '__main__': unittest.main()
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 11748, 2420, 37150, 198, 11748, 555, 715, 395, 198, 198, 11748, 1779, 64, 62, 21453, 88, 13, 75, 600, 62, 29102, 431, 355, 300, 3849, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.185185
81
#!/usr/bin/env python """A script to split a fasta file into multiple smaller files. Output files will be <original>.xx.fasta """ from __future__ import print_function import argparse import sys import os import re from os.path import join as ospj if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--outdir', '-o', help="output directory") parser.add_argument('--input_fasta', help="Input read fasta 1") parser.add_argument('--prefix', help="output prefix") parser.add_argument('n_seqs', type=int, help="Number of sequences per file, the last file will contain slightly less") args = parser.parse_args() main(args)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 32, 4226, 284, 6626, 257, 3049, 64, 2393, 656, 3294, 4833, 3696, 13, 198, 198, 26410, 3696, 481, 307, 1279, 14986, 28401, 5324, 13, 7217, 64, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 267, 2777, 73, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 28, 834, 15390, 834, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 448, 15908, 3256, 705, 12, 78, 3256, 1037, 2625, 22915, 8619, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 7217, 64, 3256, 1037, 2625, 20560, 1100, 3049, 64, 352, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 40290, 3256, 1037, 2625, 22915, 21231, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 77, 62, 41068, 82, 3256, 2099, 28, 600, 11, 1037, 2625, 15057, 286, 16311, 583, 2393, 11, 262, 938, 2393, 481, 3994, 4622, 1342, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 8, 198 ]
3.130045
223
# -*- coding: utf-8 -*- import dataset,codecs, Names, sqlite3 """ Under MIT-Licence, 2016 Perttu Rautaniemi """ def createtables(): """ Opening the database and tables, create tables if they dont exist """ conn = sqlite3.connect('LuontonurkkaDB.db') conn.execute('''CREATE TABLE `grid` ( `id` INTEGER NOT NULL, `N` INTEGER NOT NULL, `E` INTEGER NOT NULL, `sqrname` VARCHAR, PRIMARY KEY(id) );''') conn.execute('''CREATE TABLE `species` ( `id` INTEGER NOT NULL, `namelatin` VARCHAR NOT NULL, `namefin` VARCHAR, `type` INTEGER NOT NULL, `picture` VARCHAR, `idEN` VARCHAR, `idFI` VARCHAR, PRIMARY KEY(id) );''') conn.execute('''CREATE TABLE "species_in_square" ( `id` INTEGER NOT NULL, `sid` INTEGER NOT NULL, `gid` INTEGER NOT NULL, `freq` INTEGER, PRIMARY KEY(id) )''') ## ## Sql for indexes ## conn.execute('''CREATE INDEX gridIndex on grid (N, E);''') conn.execute('''CREATE INDEX sqrID on species_in_square (gid);''') conn.close() """filling both species in square and square tables using id data from speciestable and gridcsv for""" #createtables() data_fillfromCSV()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 27039, 11, 19815, 721, 82, 11, 28531, 11, 44161, 578, 18, 198, 198, 37811, 198, 9203, 17168, 12, 26656, 594, 11, 1584, 350, 861, 28047, 371, 2306, 3216, 43967, 198, 37811, 628, 198, 4299, 1827, 316, 2977, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25522, 262, 6831, 290, 8893, 11, 2251, 8893, 611, 484, 17666, 2152, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48260, 796, 44161, 578, 18, 13, 8443, 10786, 25596, 756, 261, 333, 74, 4914, 11012, 13, 9945, 11537, 628, 220, 220, 220, 48260, 13, 41049, 7, 7061, 6, 43387, 6158, 43679, 4600, 25928, 63, 357, 198, 220, 220, 220, 220, 197, 63, 312, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 45, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 36, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 31166, 81, 3672, 63, 197, 53, 31315, 1503, 11, 198, 220, 220, 220, 220, 197, 4805, 3955, 13153, 35374, 7, 312, 8, 198, 220, 220, 220, 5619, 7061, 11537, 198, 220, 220, 220, 48260, 13, 41049, 7, 7061, 6, 43387, 6158, 43679, 4600, 35448, 63, 357, 198, 220, 220, 220, 220, 197, 63, 312, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 7402, 417, 10680, 63, 197, 53, 31315, 1503, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 3672, 15643, 63, 197, 53, 31315, 1503, 11, 198, 220, 220, 220, 220, 197, 63, 4906, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 34053, 63, 197, 53, 31315, 1503, 11, 198, 220, 220, 220, 220, 197, 63, 312, 1677, 63, 197, 53, 31315, 1503, 11, 198, 220, 220, 220, 220, 197, 63, 312, 11674, 63, 197, 53, 31315, 1503, 11, 198, 220, 220, 220, 220, 197, 4805, 3955, 13153, 35374, 7, 312, 8, 198, 220, 220, 220, 5619, 7061, 11537, 198, 220, 220, 220, 48260, 13, 41049, 7, 7061, 6, 43387, 6158, 43679, 366, 35448, 62, 259, 62, 23415, 1, 357, 198, 220, 220, 220, 220, 197, 63, 312, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 30255, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 70, 312, 63, 197, 12394, 7156, 1137, 5626, 15697, 11, 198, 220, 220, 220, 220, 197, 63, 19503, 80, 63, 197, 12394, 7156, 1137, 11, 198, 220, 220, 220, 220, 197, 4805, 3955, 13153, 35374, 7, 312, 8, 198, 220, 220, 220, 1267, 7061, 11537, 628, 220, 220, 220, 22492, 198, 220, 220, 220, 22492, 311, 13976, 329, 39199, 198, 220, 220, 220, 22492, 198, 220, 220, 220, 48260, 13, 41049, 7, 7061, 6, 43387, 6158, 24413, 6369, 10706, 15732, 198, 220, 220, 220, 319, 10706, 357, 45, 11, 412, 1776, 7061, 11537, 198, 220, 220, 220, 48260, 13, 41049, 7, 7061, 6, 43387, 6158, 24413, 6369, 19862, 81, 2389, 198, 220, 220, 220, 319, 4693, 62, 259, 62, 23415, 357, 70, 312, 1776, 7061, 11537, 198, 220, 220, 220, 48260, 13, 19836, 3419, 628, 198, 37811, 69, 4509, 1111, 4693, 287, 6616, 290, 6616, 8893, 1262, 4686, 1366, 422, 693, 979, 395, 540, 290, 10706, 40664, 329, 37811, 628, 628, 628, 198, 2, 20123, 316, 2977, 3419, 198, 7890, 62, 20797, 6738, 7902, 53, 3419 ]
2.131849
584
# -*- coding: utf-8 -*- import math import threading import time
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 10688, 198, 11748, 4704, 278, 198, 11748, 640, 628, 628 ]
2.653846
26
from typing import Any, Tuple from pesto.ws.core.match_apply import MatchApply, Json
[ 6738, 19720, 1330, 4377, 11, 309, 29291, 198, 198, 6738, 28064, 78, 13, 18504, 13, 7295, 13, 15699, 62, 39014, 1330, 13225, 44836, 11, 449, 1559, 628 ]
3.222222
27
# 2019-11-15 00:35:39(JST) import operator as op import sys # import collections # import math # from string import ascii_lowercase, ascii_uppercase, digits # from bisect import bisect_left as bi_l, bisect_right as bi_r # import itertools from functools import reduce # from scipy.misc import comb # float # import numpy as np mod = 10 ** 9 + 7 if __name__ == "__main__": main()
[ 2, 13130, 12, 1157, 12, 1314, 3571, 25, 2327, 25, 2670, 7, 41, 2257, 8, 201, 198, 11748, 10088, 355, 1034, 201, 198, 11748, 25064, 201, 198, 201, 198, 2, 1330, 17268, 201, 198, 2, 1330, 10688, 201, 198, 2, 422, 4731, 1330, 355, 979, 72, 62, 21037, 7442, 11, 355, 979, 72, 62, 7211, 2798, 589, 11, 19561, 201, 198, 2, 422, 47457, 478, 1330, 47457, 478, 62, 9464, 355, 3182, 62, 75, 11, 47457, 478, 62, 3506, 355, 3182, 62, 81, 201, 198, 2, 1330, 340, 861, 10141, 201, 198, 6738, 1257, 310, 10141, 1330, 4646, 201, 198, 201, 198, 2, 422, 629, 541, 88, 13, 44374, 1330, 1974, 1303, 12178, 201, 198, 2, 1330, 299, 32152, 355, 45941, 201, 198, 201, 198, 4666, 796, 838, 12429, 860, 1343, 767, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.612903
155
from typing import Sequence, Union
[ 6738, 19720, 1330, 45835, 11, 4479, 198 ]
5
7
r""" CLI === **DO NOT USE (WIP)** This module contains the command line interface for gperc. Is this really needed? I am not sure. But having something along the lines of CLI means that running orchestration jobs would be possible. Add code to your github actions by loading data from one place, dispatch this for training and then testing it out all via CLI. I am using ``python-fire`` from google for this, `link <https://github.com/google/python-fire>`_, that can convert any arbitrary python object to a CLI. Normally I would use this with a ``main`` function, but since there has to be configuration in the CLI, I am using a class ``Main`` (yes, I know, weird). The default CLI has the following structure: .. code-block:: python3 -m gperc [BEHEVIOUR] [CONFIGS] [TASKS] BEHEVIOUR: -h, --help: Show this modal and exit. main: Run the main orchestration serve (WIP): serve using YoCo CONFIGS: main: configurations for the main orchestration. train: python3 -m gperc main train -h data: python3 -m gperc main data -h arch: python3 -m gperc main arch -h serve (WIP): configurations for the server mode. port: python3 -m gperc serve -h TASKS: Tasks are specific to behaviour and can raise errors for incorrect configs main: tasks for the main orchestration. profile: python3 -m gperc main [CONFIGS] profile -h start: python3 -m gperc main [CONFIGS] start -h deploy: deploy model on NimbleBox.ai. python3 -m gperc main [CONFIGS] deploy -h This is how something like loading a dataset and running a model would look like: .. code-block:: bash python3 -m gperc main --modality "image/class" \ data --dataset_name "cifar10" \ arch --mno [1024,128,1] --ced [3,32,10] \ train --epochs 10 --batch_size 32 --lr 0.001 \ start In the first line we have invoked the ``gperc`` module with modality (read below), in the next three lines we have specified the data, the architecture and the training parameters. It ends with the ``start`` command, which starts the training. """ from typing import List import torch from torch.profiler import profile, record_function, ProfilerActivity from .models import Perceiver from .configs import PerceiverConfig
[ 81, 37811, 198, 5097, 40, 198, 18604, 198, 198, 1174, 18227, 5626, 23210, 357, 54, 4061, 8, 1174, 198, 198, 1212, 8265, 4909, 262, 3141, 1627, 7071, 329, 308, 525, 66, 13, 1148, 428, 1107, 2622, 30, 314, 716, 407, 1654, 13, 198, 1537, 1719, 1223, 1863, 262, 3951, 286, 43749, 1724, 326, 2491, 17771, 12401, 3946, 561, 307, 1744, 13, 198, 4550, 2438, 284, 534, 33084, 4028, 416, 11046, 1366, 422, 530, 1295, 11, 27965, 428, 329, 3047, 290, 788, 198, 33407, 340, 503, 477, 2884, 43749, 13, 198, 198, 40, 716, 1262, 7559, 29412, 12, 6495, 15506, 422, 23645, 329, 428, 11, 4600, 8726, 1279, 5450, 1378, 12567, 13, 785, 14, 13297, 14, 29412, 12, 6495, 29, 63, 62, 11, 326, 198, 5171, 10385, 597, 14977, 21015, 2134, 284, 257, 43749, 13, 29282, 314, 561, 779, 428, 351, 257, 7559, 12417, 15506, 2163, 11, 198, 4360, 1201, 612, 468, 284, 307, 8398, 287, 262, 43749, 11, 314, 716, 1262, 257, 1398, 7559, 13383, 15506, 357, 8505, 11, 314, 760, 11, 7650, 737, 198, 198, 464, 4277, 43749, 468, 262, 1708, 4645, 25, 198, 198, 492, 2438, 12, 9967, 3712, 628, 220, 220, 220, 21015, 18, 532, 76, 308, 525, 66, 685, 12473, 13909, 12861, 11698, 60, 685, 10943, 16254, 50, 60, 685, 51, 1921, 27015, 60, 628, 220, 220, 220, 9348, 13909, 12861, 11698, 25, 628, 220, 220, 220, 220, 220, 220, 220, 532, 71, 11, 1377, 16794, 25, 5438, 428, 953, 282, 290, 8420, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 25, 5660, 262, 1388, 17771, 12401, 198, 220, 220, 220, 220, 220, 220, 220, 4691, 357, 54, 4061, 2599, 4691, 1262, 25455, 7222, 628, 220, 220, 220, 25626, 50, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 25, 25412, 329, 262, 1388, 17771, 12401, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 25, 21015, 18, 532, 76, 308, 525, 66, 1388, 4512, 532, 71, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 21015, 18, 532, 76, 308, 525, 66, 1388, 1366, 532, 71, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3934, 25, 21015, 18, 532, 76, 308, 525, 66, 1388, 3934, 532, 71, 628, 220, 220, 220, 220, 220, 220, 220, 4691, 357, 54, 4061, 2599, 25412, 329, 262, 4382, 4235, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 25, 21015, 18, 532, 76, 308, 525, 66, 4691, 532, 71, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 309, 1921, 27015, 25, 628, 220, 220, 220, 220, 220, 220, 220, 309, 6791, 389, 2176, 284, 9172, 290, 460, 5298, 8563, 329, 11491, 4566, 82, 628, 220, 220, 220, 220, 220, 220, 220, 1388, 25, 8861, 329, 262, 1388, 17771, 12401, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7034, 25, 21015, 18, 532, 76, 308, 525, 66, 1388, 685, 10943, 16254, 50, 60, 7034, 532, 71, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 25, 21015, 18, 532, 76, 308, 525, 66, 1388, 685, 10943, 16254, 50, 60, 923, 532, 71, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6061, 25, 6061, 2746, 319, 27168, 903, 14253, 13, 1872, 13, 21015, 18, 532, 76, 308, 525, 66, 1388, 685, 10943, 16254, 50, 60, 6061, 532, 71, 628, 198, 1212, 318, 703, 1223, 588, 11046, 257, 27039, 290, 2491, 257, 2746, 561, 804, 588, 25, 198, 198, 492, 2438, 12, 9967, 3712, 27334, 198, 220, 220, 220, 220, 198, 220, 220, 220, 21015, 18, 532, 76, 308, 525, 66, 1388, 1377, 4666, 1483, 366, 9060, 14, 4871, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1377, 19608, 292, 316, 62, 3672, 366, 66, 361, 283, 940, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 3934, 1377, 76, 3919, 685, 35500, 11, 12762, 11, 16, 60, 1377, 771, 685, 18, 11, 2624, 11, 940, 60, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 1377, 538, 5374, 82, 838, 1377, 43501, 62, 7857, 3933, 1377, 14050, 657, 13, 8298, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 923, 198, 198, 818, 262, 717, 1627, 356, 423, 24399, 262, 7559, 70, 525, 66, 15506, 8265, 351, 953, 1483, 357, 961, 2174, 828, 287, 262, 1306, 1115, 198, 6615, 356, 423, 7368, 262, 1366, 11, 262, 10959, 290, 262, 3047, 10007, 13, 632, 5645, 351, 262, 198, 15506, 9688, 15506, 3141, 11, 543, 4940, 262, 3047, 13, 198, 37811, 628, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 28034, 198, 6738, 28034, 13, 5577, 5329, 1330, 7034, 11, 1700, 62, 8818, 11, 4415, 5329, 16516, 198, 198, 6738, 764, 27530, 1330, 2448, 39729, 198, 6738, 764, 11250, 82, 1330, 2448, 39729, 16934, 628, 198 ]
2.897436
819
"""Python module to request PMU data from a running ANDES """ import logging import time from .dime import Dime from numpy import array, ndarray, zeros from pypmu import Pmu from pypmu.frame import ConfigFrame2, HeaderFrame if __name__ == "__main__": mini = MiniPMU( name='TestPMU', dime_address='ipc:///tmp/dime', pmu_idx=[1], pmu_port=1414) mini.run()
[ 37811, 37906, 8265, 284, 2581, 3122, 52, 1366, 422, 257, 2491, 5357, 1546, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 640, 198, 198, 6738, 764, 67, 524, 1330, 360, 524, 198, 6738, 299, 32152, 1330, 7177, 11, 299, 67, 18747, 11, 1976, 27498, 198, 198, 6738, 12972, 4426, 84, 1330, 350, 30300, 198, 6738, 12972, 4426, 84, 13, 14535, 1330, 17056, 19778, 17, 11, 48900, 19778, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 9927, 796, 12558, 5868, 52, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 14402, 5868, 52, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37062, 62, 21975, 11639, 541, 66, 1378, 14, 22065, 14, 67, 524, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9114, 84, 62, 312, 87, 41888, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 9114, 84, 62, 634, 28, 1415, 1415, 8, 198, 220, 220, 220, 9927, 13, 5143, 3419, 198 ]
2.415663
166
print("St-1") print(2/0) print("St-2")
[ 4798, 7203, 1273, 12, 16, 4943, 198, 4798, 7, 17, 14, 15, 8, 198, 4798, 7203, 1273, 12, 17, 4943, 198 ]
1.857143
21
import torch from torch.utils.data import Dataset import json import os from PIL import Image from utils.trms_util import transform class PascalVOCDataset(Dataset): """ A Dataset class to be used in a DataLoader to create batches. """ def __init__(self, data_folder, split="TEST", keep_difficult=False): """ Args: data_folder: folder where data files are stored. split: split, one of 'TRAIN' or 'TEST'. keep_difficult: keep or discard objects that are condidered difficult to detect. """ self.split = split.upper() assert self.split in {"TRAIN", "TEST"} self.data_folder = data_folder self.keep_difficult = keep_difficult with open(os.path.join(data_folder, self.split + "_images.json"), "r") as j: self.images = json.load(j) with open(os.path.join(data_folder, self.split + "_objects.json"), "r") as j: self.objects = json.load(j) assert len(self.images) == len(self.objects) def collate_fn(self, batch): """ Describes how to combine images with different number of objects by using lists. Since each image may have a different number of objects, we need a collate function (to bew passed to the DataLoader). Args: batch: an iterable of N sets from __getitem__() Returns: a tensor of images, lists of varying-size tensors of bounding boxes, labels, and difficulties. """ images = list() boxes = list() labels = list() difficulties = list() for b in batch: images.append(b[0]) boxes.append(b[1]) labels.append(b[2]) difficulties.append(b[3]) images = torch.stack(images, dim=0) return images, boxes, labels, difficulties
[ 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 198, 11748, 33918, 198, 11748, 28686, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 6738, 3384, 4487, 13, 2213, 907, 62, 22602, 1330, 6121, 628, 198, 4871, 35163, 53, 4503, 27354, 292, 316, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 16092, 292, 316, 1398, 284, 307, 973, 287, 257, 6060, 17401, 284, 2251, 37830, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1366, 62, 43551, 11, 6626, 2625, 51, 6465, 1600, 1394, 62, 26069, 2249, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 43551, 25, 9483, 810, 1366, 3696, 389, 8574, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 25, 6626, 11, 530, 286, 705, 51, 3861, 1268, 6, 393, 705, 51, 6465, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 26069, 2249, 25, 1394, 393, 27537, 5563, 326, 389, 1779, 3089, 2408, 284, 4886, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35312, 796, 6626, 13, 45828, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 35312, 287, 19779, 51, 3861, 1268, 1600, 366, 51, 6465, 20662, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 62, 43551, 796, 1366, 62, 43551, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14894, 62, 26069, 2249, 796, 1394, 62, 26069, 2249, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 7890, 62, 43551, 11, 2116, 13, 35312, 1343, 45434, 17566, 13, 17752, 12340, 366, 81, 4943, 355, 474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17566, 796, 33918, 13, 2220, 7, 73, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 7890, 62, 43551, 11, 2116, 13, 35312, 1343, 45434, 48205, 13, 17752, 12340, 366, 81, 4943, 355, 474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48205, 796, 33918, 13, 2220, 7, 73, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 944, 13, 17566, 8, 6624, 18896, 7, 944, 13, 48205, 8, 628, 220, 220, 220, 825, 2927, 378, 62, 22184, 7, 944, 11, 15458, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39373, 22090, 703, 284, 12082, 4263, 351, 1180, 1271, 286, 5563, 416, 1262, 8341, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 4619, 1123, 2939, 743, 423, 257, 1180, 1271, 286, 5563, 11, 356, 761, 257, 2927, 378, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1462, 307, 86, 3804, 284, 262, 6060, 17401, 737, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 25, 281, 11629, 540, 286, 399, 5621, 422, 11593, 1136, 9186, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 11192, 273, 286, 4263, 11, 8341, 286, 15874, 12, 7857, 11192, 669, 286, 5421, 278, 10559, 11, 14722, 11, 290, 13156, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 10559, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13156, 796, 1351, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 275, 287, 15458, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 13, 33295, 7, 65, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10559, 13, 33295, 7, 65, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 13, 33295, 7, 65, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13156, 13, 33295, 7, 65, 58, 18, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 28034, 13, 25558, 7, 17566, 11, 5391, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4263, 11, 10559, 11, 14722, 11, 13156 ]
2.407979
777
#!/usr/bin/env python from distutils.core import setup from setuptools.command.test import test as TestCommand setup(name='neukrill-net', version='1.0', description='Neukrill-net NDSB tools', author='neuroglycerin', author_email='[email protected]', packages=['neukrill_net'], tests_require=['pytest'], install_requires=['scipy==0.14.0', 'numpy==1.9.1', 'six==1.8.0', 'pytest==2.6.4', 'Pillow==2.7.0', 'scikit-image==0.10.1', 'scikit-learn==0.15.2'], cmdclass={'test': PyTest}, )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 1233, 26791, 13, 7295, 1330, 9058, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 9288, 1330, 1332, 355, 6208, 21575, 198, 198, 40406, 7, 3672, 11639, 710, 2724, 20190, 12, 3262, 3256, 198, 220, 220, 220, 220, 220, 2196, 11639, 16, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 6764, 11639, 8199, 2724, 20190, 12, 3262, 399, 5258, 33, 4899, 3256, 198, 220, 220, 220, 220, 220, 1772, 11639, 710, 1434, 10853, 2189, 259, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 15763, 31, 15643, 10724, 19726, 9019, 13, 260, 3256, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 710, 2724, 20190, 62, 3262, 6, 4357, 198, 220, 220, 220, 220, 220, 5254, 62, 46115, 28, 17816, 9078, 9288, 6, 4357, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 17816, 1416, 541, 88, 855, 15, 13, 1415, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 32152, 855, 16, 13, 24, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19412, 855, 16, 13, 23, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 855, 17, 13, 21, 13, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 359, 322, 855, 17, 13, 22, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36216, 15813, 12, 9060, 855, 15, 13, 940, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36216, 15813, 12, 35720, 855, 15, 13, 1314, 13, 17, 6, 4357, 198, 220, 220, 220, 220, 220, 23991, 4871, 34758, 6, 9288, 10354, 9485, 14402, 5512, 198, 8, 198 ]
1.755844
385
from tensornetwork.contractors.custom_path_solvers import pathsolvers from tensornetwork.contractors.custom_path_solvers import nconinterface #pylint: disable=line-too-long from tensornetwork.contractors.custom_path_solvers.pathsolvers import greedy_cost_solve, greedy_size_solve, full_solve_complete #pylint: disable=line-too-long from tensornetwork.contractors.custom_path_solvers.nconinterface import ncon_solver, ncon_to_adj, ord_to_ncon, ncon_cost_check
[ 6738, 11192, 1211, 316, 1818, 13, 28484, 669, 13, 23144, 62, 6978, 62, 34453, 690, 1330, 13532, 349, 690, 198, 6738, 11192, 1211, 316, 1818, 13, 28484, 669, 13, 23144, 62, 6978, 62, 34453, 690, 1330, 299, 1102, 39994, 198, 2, 79, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 6738, 11192, 1211, 316, 1818, 13, 28484, 669, 13, 23144, 62, 6978, 62, 34453, 690, 13, 6978, 34453, 690, 1330, 31828, 62, 15805, 62, 82, 6442, 11, 31828, 62, 7857, 62, 82, 6442, 11, 1336, 62, 82, 6442, 62, 20751, 198, 2, 79, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 6738, 11192, 1211, 316, 1818, 13, 28484, 669, 13, 23144, 62, 6978, 62, 34453, 690, 13, 77, 1102, 39994, 1330, 299, 1102, 62, 82, 14375, 11, 299, 1102, 62, 1462, 62, 41255, 11, 2760, 62, 1462, 62, 77, 1102, 11, 299, 1102, 62, 15805, 62, 9122, 198 ]
2.980519
154
#!/usr/bin/python2 import os import yaml
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 198, 198, 11748, 28686, 198, 11748, 331, 43695, 198 ]
2.470588
17
from .base import * from .site import *
[ 6738, 764, 8692, 1330, 1635, 198, 6738, 764, 15654, 1330, 1635, 198 ]
3.333333
12
import numpy as np from np_model_base import NNModelBase import pandas as pd __author__ = "Christopher Potts" __version__ = "CS224u, Stanford, Spring 2020" if __name__ == '__main__': simple_example()
[ 11748, 299, 32152, 355, 45941, 198, 6738, 45941, 62, 19849, 62, 8692, 1330, 399, 45, 17633, 14881, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 834, 9800, 834, 796, 366, 38025, 6902, 912, 1, 198, 834, 9641, 834, 796, 366, 7902, 24137, 84, 11, 13863, 11, 8225, 12131, 1, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 2829, 62, 20688, 3419, 198 ]
2.929577
71
# Generated by Django 2.0.2 on 2018-02-27 10:01 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 17, 319, 2864, 12, 2999, 12, 1983, 838, 25, 486, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import os import numpy as np import cv2 import argparse from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns from tensorflow.keras import Input from model import u_net from preprocessing.preprocess_utils import display from experiments import lip_hair_color def make_confusion_matrix(cf, categories, group_names=None, count=True, percent=True, color_bar=True, xy_ticks=True, xy_plot_labels=True, sum_stats=True, fig_size=None, c_map='Blues', title=None): """ Code to generate text within each box and beautify confusion matrix. :param cf: Confusion matrix. :type cf: numpy array :param categories: array of classes. :type categories: numpy array :param group_names: classes in the project. :type group_names: numpy array :param count: whether to display the count of each class. :type count: boolean :param percent: whether to display percentage for each class. :type percent: boolean :param color_bar: whether to display color bar for the heat map. :type color_bar: boolean :param xy_ticks: whether to display xy labels. :type xy_ticks: boolean :param xy_plot_labels: whether to display xy title. :type xy_plot_labels: boolean :param sum_stats: whether to display overall accuracy. :type sum_stats: boolean :param fig_size: size of the plot. :type fig_size: tuple :param c_map: color scheme to use. :type c_map: str :param title: Title of the plot. :type title: str """ blanks = ['' for i in range(cf.size)] if group_names and len(group_names) == cf.size: group_labels = ["{}\n".format(value) for value in group_names] else: group_labels = blanks if count: group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()] else: group_counts = blanks if percent: row_size = np.size(cf, 0) col_size = np.size(cf, 1) group_percentages = [] for i in range(row_size): for j in range(col_size): group_percentages.append(cf[i][j] / cf[i].sum()) group_percentages = ["{0:.2%}".format(value) for value in group_percentages] else: group_percentages = blanks box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels, group_counts, group_percentages)] box_labels = np.asarray(box_labels).reshape(cf.shape[0], cf.shape[1]) # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS if sum_stats: # Accuracy is sum of diagonal divided by total observations accuracy = np.trace(cf) / float(np.sum(cf)) stats_text = "\n\nAccuracy={0:0.2%}".format(accuracy) else: stats_text = "" # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS if fig_size is None: # Get default figure size if not set fig_size = plt.rcParams.get('figure.figsize') if not xy_ticks: # Do not show categories if xyticks is False categories = False # MAKE THE HEAT MAP VISUALIZATION plt.figure(figsize=fig_size) sns.heatmap(cf, annot=box_labels, fmt="", cmap=c_map, cbar=color_bar, xticklabels=categories, yticklabels=categories) if xy_plot_labels: plt.ylabel('True label') plt.xlabel('Predicted label' + stats_text) else: plt.xlabel(stats_text) if title: plt.title(title) def plot_confusion_matrix(predictions, masks, path): """ Visualize confusion matrix. :param predictions: predicted output of the model. :type predictions: array :param masks: true masks of the images. :type masks: array :param path: directory to store the output :type path: str """ print('[INFO] Plotting confusion matrix...') corr = confusion_matrix(masks.ravel(), predictions.ravel()) make_confusion_matrix(corr, categories=['bg', 'skin', 'nose', 'eye_g', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'l_ear', 'r_ear', 'mouth', 'u_lip', 'l_lip', 'hair', 'hat', 'ear_r', 'neck_l', 'neck', 'cloth'], count=True, percent=False, color_bar=False, xy_ticks=True, xy_plot_labels=True, sum_stats=True, fig_size=(20, 18), c_map='coolwarm', title='Confusion matrix') # error correction - cropped heat map b, t = plt.ylim() # discover the values for bottom and top b += 0.5 # Add 0.5 to the bottom t -= 0.5 # Subtract 0.5 from the top plt.ylim(b, t) # update the ylim(bottom, top) values plt.savefig(os.path.join(path, 'confusion_matrix.png')) print('[ACTION] See results/visualization/confusion_matrix.png') def plot_mask(prediction, mask, norm_image): """ PLot segmentation mask for the given image. :param prediction: predicted output of the model. :type prediction: array :param mask: true masks of the images. :type mask: array :param norm_image: original image. :type norm_image: array """ image = (norm_image * 255.).astype(np.uint8) im_base = np.zeros((256, 256, 3), dtype=np.uint8) for idx, color in enumerate(color_list): im_base[prediction == idx] = color cv2.addWeighted(im_base, 0.8, image, 1, 0, im_base) display([image, mask, im_base], ['Original image', 'True mask', 'Predicted mask'], 'predict') def test(image, masks, action, color='red'): """ Used to plot either confusion matrix or predicted mask or apply makeup. :param image: original image. :type image: bytearray :param masks: true segmentation masks. :type masks: array :param action: user input specifying confusion matrix/mask prediction/applying makeup. :type action: str :param color: if action is applying makeup, then color to apply. Defaults to red. :type color: str """ input_img = Input(shape=(256, 256, 3), name='img') model = u_net.get_u_net(input_img, num_classes=19) model.load_weights(os.path.join(MODEL_DIR, 'u_net.h5')) print('[INFO] Predicting ...') predictions = model.predict(image) predictions = np.argmax(predictions, axis=-1) table = { 'hair': 13, 'upper_lip': 11, 'lower_lip': 12 } colors = { 'red': [212, 34, 34], 'purple': [128, 51, 125], 'pink': [247, 32, 125] } # Redirect to the function of specified action. if action == 'confusion_matrix': print('[INFO] Plotting confusion matrix ...') plot_confusion_matrix(predictions, masks, VISUALIZATION_DIR) elif action == 'mask': print('[INFO] Plotting segmentation mask ...') plot_mask(predictions[sample], masks[sample], image[sample]) elif action == 'hair_color': print('[INFO] Applying hair color ...') parts = [table['hair']] changed = lip_hair_color.color_change(image[sample], predictions[sample], parts, colors[color]) display([image[sample], changed], 'hair') elif action == "lip_color": print('[INFO] Applying lip color ...') parts = [table['upper_lip'], table['lower_lip']] changed = lip_hair_color.color_change(image[sample], predictions[sample], parts, colors[color]) display([image[sample], changed], 'lip') def main(): """ Define user arguments. """ ap = argparse.ArgumentParser() ap.add_argument("-v", "--visualize", type=str, required=True, choices=("confusion_matrix", "mask", "hair_color", "lip_color"), help="type of model") ap.add_argument("-c", "--color", type=str, choices=("red", "pink", "purple"), help="color to apply") args = vars(ap.parse_args()) # print('[INFO] Getting test data...') # test_data = get_test() # imgs = [] # masks = [] # for img, label in test_data: # for i in img: # i = np.array(i, dtype='float32') # imgs.append(i) # for j in label: # j = np.array(j, dtype='float32') # masks.append(j) # images = np.array(imgs) # masks = np.array(masks) # np.save('data/test_images.npy', images) # np.save('data/test_mask.npy', masks) # Load test images images = np.load('data/test_images.npy') masks = np.load('data/test_mask.npy') test(images, masks, args["visualize"], args["color"]) if __name__ == '__main__': VISUALIZATION_DIR = 'results/visualization/' MODEL_DIR = 'results/models/' color_list = [[0, 0, 0], [204, 0, 0], [255, 140, 26], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] sample = 4 main()
[ 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 1822, 29572, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 10802, 62, 6759, 8609, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 23412, 198, 6738, 2746, 1330, 334, 62, 3262, 198, 6738, 662, 36948, 13, 3866, 14681, 62, 26791, 1330, 3359, 198, 6738, 10256, 1330, 10645, 62, 27108, 62, 8043, 628, 198, 4299, 787, 62, 10414, 4241, 62, 6759, 8609, 7, 12993, 11, 9376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 14933, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1411, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 5657, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 83, 3378, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 29487, 62, 23912, 1424, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 34242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 7857, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 8899, 11639, 3629, 947, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 14202, 2599, 198, 220, 220, 220, 37227, 6127, 284, 7716, 2420, 1626, 1123, 3091, 290, 3566, 1958, 10802, 17593, 13, 628, 220, 220, 220, 1058, 17143, 30218, 25, 7326, 4241, 17593, 13, 198, 220, 220, 220, 1058, 4906, 30218, 25, 299, 32152, 7177, 198, 220, 220, 220, 1058, 17143, 9376, 25, 7177, 286, 6097, 13, 198, 220, 220, 220, 1058, 4906, 9376, 25, 299, 32152, 7177, 198, 220, 220, 220, 1058, 17143, 1448, 62, 14933, 25, 6097, 287, 262, 1628, 13, 198, 220, 220, 220, 1058, 4906, 1448, 62, 14933, 25, 299, 32152, 7177, 198, 220, 220, 220, 1058, 17143, 954, 25, 1771, 284, 3359, 262, 954, 286, 1123, 1398, 13, 198, 220, 220, 220, 1058, 4906, 954, 25, 25131, 198, 220, 220, 220, 1058, 17143, 1411, 25, 1771, 284, 3359, 5873, 329, 1123, 1398, 13, 198, 220, 220, 220, 1058, 4906, 1411, 25, 25131, 198, 220, 220, 220, 1058, 17143, 3124, 62, 5657, 25, 1771, 284, 3359, 3124, 2318, 329, 262, 4894, 3975, 13, 198, 220, 220, 220, 1058, 4906, 3124, 62, 5657, 25, 25131, 198, 220, 220, 220, 1058, 17143, 2124, 88, 62, 83, 3378, 25, 1771, 284, 3359, 2124, 88, 14722, 13, 198, 220, 220, 220, 1058, 4906, 2124, 88, 62, 83, 3378, 25, 25131, 198, 220, 220, 220, 1058, 17143, 2124, 88, 62, 29487, 62, 23912, 1424, 25, 1771, 284, 3359, 2124, 88, 3670, 13, 198, 220, 220, 220, 1058, 4906, 2124, 88, 62, 29487, 62, 23912, 1424, 25, 25131, 198, 220, 220, 220, 1058, 17143, 2160, 62, 34242, 25, 1771, 284, 3359, 4045, 9922, 13, 198, 220, 220, 220, 1058, 4906, 2160, 62, 34242, 25, 25131, 198, 220, 220, 220, 1058, 17143, 2336, 62, 7857, 25, 2546, 286, 262, 7110, 13, 198, 220, 220, 220, 1058, 4906, 2336, 62, 7857, 25, 46545, 198, 220, 220, 220, 1058, 17143, 269, 62, 8899, 25, 3124, 7791, 284, 779, 13, 198, 220, 220, 220, 1058, 4906, 269, 62, 8899, 25, 965, 198, 220, 220, 220, 1058, 17143, 3670, 25, 11851, 286, 262, 7110, 13, 198, 220, 220, 220, 1058, 4906, 3670, 25, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 698, 2283, 796, 685, 7061, 329, 1312, 287, 2837, 7, 12993, 13, 7857, 15437, 628, 220, 220, 220, 611, 1448, 62, 14933, 290, 18896, 7, 8094, 62, 14933, 8, 6624, 30218, 13, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 23912, 1424, 796, 14631, 90, 32239, 77, 1911, 18982, 7, 8367, 8, 329, 1988, 287, 1448, 62, 14933, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 23912, 1424, 796, 698, 2283, 628, 220, 220, 220, 611, 954, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 9127, 82, 796, 14631, 90, 15, 25, 15, 13, 15, 69, 32239, 77, 1911, 18982, 7, 8367, 8, 329, 1988, 287, 30218, 13, 2704, 41769, 3419, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 9127, 82, 796, 698, 2283, 628, 220, 220, 220, 611, 1411, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 7857, 796, 45941, 13, 7857, 7, 12993, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 7857, 796, 45941, 13, 7857, 7, 12993, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 25067, 1095, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 808, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 4033, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 25067, 1095, 13, 33295, 7, 12993, 58, 72, 7131, 73, 60, 1220, 30218, 58, 72, 4083, 16345, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 25067, 1095, 796, 14631, 90, 15, 25, 13, 17, 4, 92, 1911, 18982, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 1448, 62, 25067, 1095, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 25067, 1095, 796, 698, 2283, 628, 220, 220, 220, 3091, 62, 23912, 1424, 796, 685, 69, 1, 90, 85, 16, 18477, 85, 17, 18477, 85, 18, 92, 1911, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 16, 11, 410, 17, 11, 410, 18, 287, 19974, 7, 8094, 62, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 9127, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 25067, 1095, 15437, 198, 220, 220, 220, 3091, 62, 23912, 1424, 796, 45941, 13, 292, 18747, 7, 3524, 62, 23912, 1424, 737, 3447, 1758, 7, 12993, 13, 43358, 58, 15, 4357, 30218, 13, 43358, 58, 16, 12962, 628, 220, 220, 220, 1303, 42714, 5390, 24700, 1137, 6158, 35683, 44, 13153, 15486, 8808, 19505, 1222, 40383, 7473, 35683, 44, 13153, 37889, 198, 220, 220, 220, 611, 2160, 62, 34242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33222, 318, 2160, 286, 40039, 9086, 416, 2472, 13050, 198, 220, 220, 220, 220, 220, 220, 220, 9922, 796, 45941, 13, 40546, 7, 12993, 8, 1220, 12178, 7, 37659, 13, 16345, 7, 12993, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 62, 5239, 796, 37082, 77, 59, 77, 17320, 23843, 34758, 15, 25, 15, 13, 17, 4, 92, 1911, 18982, 7, 4134, 23843, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 62, 5239, 796, 13538, 628, 220, 220, 220, 1303, 25823, 19697, 11335, 29463, 2390, 2767, 4877, 15859, 12532, 2751, 5390, 25401, 5923, 38, 5883, 15365, 198, 220, 220, 220, 611, 2336, 62, 7857, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 4277, 3785, 2546, 611, 407, 900, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 7857, 796, 458, 83, 13, 6015, 10044, 4105, 13, 1136, 10786, 26875, 13, 5647, 7857, 11537, 628, 220, 220, 220, 611, 407, 2124, 88, 62, 83, 3378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2141, 407, 905, 9376, 611, 2124, 20760, 3378, 318, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 9376, 796, 10352, 628, 220, 220, 220, 1303, 39134, 3336, 11179, 1404, 34645, 50035, 25620, 14887, 6234, 198, 220, 220, 220, 458, 83, 13, 26875, 7, 5647, 7857, 28, 5647, 62, 7857, 8, 198, 220, 220, 220, 3013, 82, 13, 25080, 8899, 7, 12993, 11, 24708, 28, 3524, 62, 23912, 1424, 11, 46996, 2625, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 28, 66, 62, 8899, 11, 269, 5657, 28, 8043, 62, 5657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 624, 23912, 1424, 28, 66, 26129, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 42298, 23912, 1424, 28, 66, 26129, 8, 628, 220, 220, 220, 611, 2124, 88, 62, 29487, 62, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2645, 9608, 10786, 17821, 6167, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 39156, 5722, 6167, 6, 1343, 9756, 62, 5239, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 34242, 62, 5239, 8, 628, 220, 220, 220, 611, 3670, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 7839, 8, 628, 198, 4299, 7110, 62, 10414, 4241, 62, 6759, 8609, 7, 28764, 9278, 11, 20680, 11, 3108, 2599, 198, 220, 220, 220, 37227, 15612, 1096, 10802, 17593, 13, 628, 220, 220, 220, 1058, 17143, 16277, 25, 11001, 5072, 286, 262, 2746, 13, 198, 220, 220, 220, 1058, 4906, 16277, 25, 7177, 198, 220, 220, 220, 1058, 17143, 20680, 25, 2081, 20680, 286, 262, 4263, 13, 198, 220, 220, 220, 1058, 4906, 20680, 25, 7177, 198, 220, 220, 220, 1058, 17143, 3108, 25, 8619, 284, 3650, 262, 5072, 198, 220, 220, 220, 1058, 4906, 3108, 25, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 10786, 58, 10778, 60, 28114, 889, 10802, 17593, 986, 11537, 198, 220, 220, 220, 1162, 81, 796, 10802, 62, 6759, 8609, 7, 5356, 591, 13, 25843, 22784, 16277, 13, 25843, 28955, 198, 220, 220, 220, 787, 62, 10414, 4241, 62, 6759, 8609, 7, 10215, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9376, 28, 17816, 35904, 3256, 705, 20407, 3256, 705, 77, 577, 3256, 705, 25379, 62, 70, 3256, 705, 75, 62, 25379, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 81, 62, 25379, 3256, 705, 75, 62, 25367, 3256, 705, 81, 62, 25367, 3256, 705, 75, 62, 451, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 81, 62, 451, 3256, 705, 14775, 3256, 705, 84, 62, 40712, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 62, 40712, 3256, 705, 27108, 3256, 705, 5183, 3256, 705, 451, 62, 81, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27235, 62, 75, 3256, 705, 27235, 3256, 705, 44905, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1411, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 5657, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 83, 3378, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 62, 29487, 62, 23912, 1424, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2160, 62, 34242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 7857, 16193, 1238, 11, 1248, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 8899, 11639, 24494, 31975, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 18546, 4241, 17593, 11537, 628, 220, 220, 220, 1303, 4049, 17137, 532, 48998, 4894, 3975, 198, 220, 220, 220, 275, 11, 256, 796, 458, 83, 13, 88, 2475, 3419, 220, 1303, 7073, 262, 3815, 329, 4220, 290, 1353, 198, 220, 220, 220, 275, 15853, 657, 13, 20, 220, 1303, 3060, 657, 13, 20, 284, 262, 4220, 198, 220, 220, 220, 256, 48185, 657, 13, 20, 220, 1303, 3834, 83, 974, 657, 13, 20, 422, 262, 1353, 198, 220, 220, 220, 458, 83, 13, 88, 2475, 7, 65, 11, 256, 8, 220, 1303, 4296, 262, 331, 2475, 7, 22487, 11, 1353, 8, 3815, 628, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 705, 10414, 4241, 62, 6759, 8609, 13, 11134, 6, 4008, 198, 220, 220, 220, 3601, 10786, 58, 44710, 60, 4091, 2482, 14, 41464, 1634, 14, 10414, 4241, 62, 6759, 8609, 13, 11134, 11537, 628, 198, 4299, 7110, 62, 27932, 7, 28764, 2867, 11, 9335, 11, 2593, 62, 9060, 2599, 198, 220, 220, 220, 37227, 9297, 313, 10618, 341, 9335, 329, 262, 1813, 2939, 13, 628, 220, 220, 220, 1058, 17143, 17724, 25, 11001, 5072, 286, 262, 2746, 13, 198, 220, 220, 220, 1058, 4906, 17724, 25, 7177, 198, 220, 220, 220, 1058, 17143, 9335, 25, 2081, 20680, 286, 262, 4263, 13, 198, 220, 220, 220, 1058, 4906, 9335, 25, 7177, 198, 220, 220, 220, 1058, 17143, 2593, 62, 9060, 25, 2656, 2939, 13, 198, 220, 220, 220, 1058, 4906, 2593, 62, 9060, 25, 7177, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2939, 796, 357, 27237, 62, 9060, 1635, 14280, 15729, 459, 2981, 7, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 545, 62, 8692, 796, 45941, 13, 9107, 418, 19510, 11645, 11, 17759, 11, 513, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 329, 4686, 87, 11, 3124, 287, 27056, 378, 7, 8043, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 545, 62, 8692, 58, 28764, 2867, 6624, 4686, 87, 60, 796, 3124, 198, 220, 220, 220, 269, 85, 17, 13, 2860, 25844, 276, 7, 320, 62, 8692, 11, 657, 13, 23, 11, 2939, 11, 352, 11, 657, 11, 545, 62, 8692, 8, 198, 220, 220, 220, 3359, 26933, 9060, 11, 9335, 11, 545, 62, 8692, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 20556, 2939, 3256, 705, 17821, 9335, 3256, 705, 39156, 5722, 9335, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 17407, 11537, 628, 198, 4299, 1332, 7, 9060, 11, 20680, 11, 2223, 11, 3124, 11639, 445, 6, 2599, 198, 220, 220, 220, 37227, 16718, 284, 7110, 2035, 10802, 17593, 393, 11001, 9335, 393, 4174, 16029, 13, 628, 220, 220, 220, 1058, 17143, 2939, 25, 2656, 2939, 13, 198, 220, 220, 220, 1058, 4906, 2939, 25, 416, 83, 451, 2433, 198, 220, 220, 220, 1058, 17143, 20680, 25, 2081, 10618, 341, 20680, 13, 198, 220, 220, 220, 1058, 4906, 20680, 25, 7177, 198, 220, 220, 220, 1058, 17143, 2223, 25, 2836, 5128, 31577, 10802, 17593, 14, 27932, 198, 220, 220, 220, 17724, 14, 1324, 3157, 16029, 13, 198, 220, 220, 220, 1058, 4906, 2223, 25, 965, 198, 220, 220, 220, 1058, 17143, 3124, 25, 611, 2223, 318, 11524, 16029, 11, 788, 3124, 284, 4174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 2266, 13, 198, 220, 220, 220, 1058, 4906, 3124, 25, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 9600, 796, 23412, 7, 43358, 16193, 11645, 11, 17759, 11, 513, 828, 1438, 11639, 9600, 11537, 198, 220, 220, 220, 2746, 796, 334, 62, 3262, 13, 1136, 62, 84, 62, 3262, 7, 15414, 62, 9600, 11, 997, 62, 37724, 28, 1129, 8, 198, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 418, 13, 6978, 13, 22179, 7, 33365, 3698, 62, 34720, 11, 705, 84, 62, 3262, 13, 71, 20, 6, 4008, 628, 220, 220, 220, 3601, 10786, 58, 10778, 60, 49461, 278, 2644, 11537, 198, 220, 220, 220, 16277, 796, 2746, 13, 79, 17407, 7, 9060, 8, 198, 220, 220, 220, 16277, 796, 45941, 13, 853, 9806, 7, 28764, 9278, 11, 16488, 10779, 16, 8, 628, 220, 220, 220, 3084, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 27108, 10354, 1511, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 45828, 62, 40712, 10354, 1367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21037, 62, 40712, 10354, 1105, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 7577, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 445, 10354, 685, 21777, 11, 4974, 11, 4974, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14225, 1154, 10354, 685, 12762, 11, 6885, 11, 13151, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 79, 676, 10354, 685, 23753, 11, 3933, 11, 13151, 60, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1303, 2297, 1060, 284, 262, 2163, 286, 7368, 2223, 13, 198, 220, 220, 220, 611, 2223, 6624, 705, 10414, 4241, 62, 6759, 8609, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 10778, 60, 28114, 889, 10802, 17593, 2644, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 10414, 4241, 62, 6759, 8609, 7, 28764, 9278, 11, 20680, 11, 50035, 25620, 14887, 6234, 62, 34720, 8, 628, 220, 220, 220, 1288, 361, 2223, 6624, 705, 27932, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 10778, 60, 28114, 889, 10618, 341, 9335, 2644, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 27932, 7, 28764, 9278, 58, 39873, 4357, 20680, 58, 39873, 4357, 2939, 58, 39873, 12962, 628, 220, 220, 220, 1288, 361, 2223, 6624, 705, 27108, 62, 8043, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 10778, 60, 2034, 3157, 4190, 3124, 2644, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 685, 11487, 17816, 27108, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 3421, 796, 10645, 62, 27108, 62, 8043, 13, 8043, 62, 3803, 7, 9060, 58, 39873, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16277, 58, 39873, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 11, 7577, 58, 8043, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 26933, 9060, 58, 39873, 4357, 3421, 4357, 705, 27108, 11537, 628, 220, 220, 220, 1288, 361, 2223, 6624, 366, 40712, 62, 8043, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 10778, 60, 2034, 3157, 10645, 3124, 2644, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 685, 11487, 17816, 45828, 62, 40712, 6, 4357, 3084, 17816, 21037, 62, 40712, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 3421, 796, 10645, 62, 27108, 62, 8043, 13, 8043, 62, 3803, 7, 9060, 58, 39873, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16277, 58, 39873, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3354, 11, 7577, 58, 8043, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 26933, 9060, 58, 39873, 4357, 3421, 4357, 705, 40712, 11537, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 2896, 500, 2836, 7159, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2471, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 12, 85, 1600, 366, 438, 41464, 1096, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 7203, 10414, 4241, 62, 6759, 8609, 1600, 366, 27932, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27108, 62, 8043, 1600, 366, 40712, 62, 8043, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4906, 286, 2746, 4943, 198, 220, 220, 220, 2471, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 366, 438, 8043, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 7203, 445, 1600, 366, 79, 676, 1600, 366, 14225, 1154, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8043, 284, 4174, 4943, 198, 220, 220, 220, 26498, 796, 410, 945, 7, 499, 13, 29572, 62, 22046, 28955, 628, 220, 220, 220, 1303, 3601, 10786, 58, 10778, 60, 18067, 1332, 1366, 986, 11537, 198, 220, 220, 220, 1303, 1332, 62, 7890, 796, 651, 62, 9288, 3419, 198, 220, 220, 220, 1303, 545, 14542, 796, 17635, 198, 220, 220, 220, 1303, 20680, 796, 17635, 198, 220, 220, 220, 1303, 329, 33705, 11, 6167, 287, 1332, 62, 7890, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 1312, 287, 33705, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 45941, 13, 18747, 7, 72, 11, 288, 4906, 11639, 22468, 2624, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 474, 287, 6167, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 45941, 13, 18747, 7, 73, 11, 288, 4906, 11639, 22468, 2624, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 20680, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 1303, 4263, 796, 45941, 13, 18747, 7, 9600, 82, 8, 198, 220, 220, 220, 1303, 20680, 796, 45941, 13, 18747, 7, 5356, 591, 8, 198, 220, 220, 220, 1303, 45941, 13, 21928, 10786, 7890, 14, 9288, 62, 17566, 13, 77, 9078, 3256, 4263, 8, 198, 220, 220, 220, 1303, 45941, 13, 21928, 10786, 7890, 14, 9288, 62, 27932, 13, 77, 9078, 3256, 20680, 8, 628, 220, 220, 220, 1303, 8778, 1332, 4263, 198, 220, 220, 220, 4263, 796, 45941, 13, 2220, 10786, 7890, 14, 9288, 62, 17566, 13, 77, 9078, 11537, 198, 220, 220, 220, 20680, 796, 45941, 13, 2220, 10786, 7890, 14, 9288, 62, 27932, 13, 77, 9078, 11537, 198, 220, 220, 220, 1332, 7, 17566, 11, 20680, 11, 26498, 14692, 41464, 1096, 33116, 26498, 14692, 8043, 8973, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 50035, 25620, 14887, 6234, 62, 34720, 796, 705, 43420, 14, 41464, 1634, 14, 6, 198, 220, 220, 220, 19164, 3698, 62, 34720, 796, 705, 43420, 14, 27530, 14, 6, 198, 220, 220, 220, 3124, 62, 4868, 796, 16410, 15, 11, 657, 11, 657, 4357, 685, 18638, 11, 657, 11, 657, 4357, 685, 13381, 11, 12713, 11, 2608, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 18638, 11, 26956, 11, 657, 4357, 685, 4349, 11, 6885, 11, 14280, 4357, 685, 18638, 11, 657, 11, 26956, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 14280, 11, 14280, 4357, 685, 13381, 11, 26956, 11, 26956, 4357, 685, 15377, 11, 6885, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13381, 11, 657, 11, 657, 4357, 685, 15377, 11, 26956, 11, 657, 4357, 685, 13381, 11, 14280, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 24652, 4357, 685, 15, 11, 657, 11, 26956, 4357, 685, 13381, 11, 6885, 11, 24652, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 26956, 11, 26956, 4357, 685, 15, 11, 6885, 11, 657, 4357, 685, 13381, 11, 24652, 11, 6885, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 26956, 11, 657, 11907, 198, 220, 220, 220, 6291, 796, 604, 198, 220, 220, 220, 1388, 3419, 198 ]
2.094695
4,731
import large_image_source_tiff as tiff # from large_image.tilesource.base import GirderTileSource from large_image_source_tiff import girder_source from .tiff_reader import TiledTiffDirectory tiff.TiledTiffDirectory = TiledTiffDirectory
[ 11748, 1588, 62, 9060, 62, 10459, 62, 83, 733, 355, 256, 733, 198, 2, 422, 1588, 62, 9060, 13, 83, 2915, 1668, 13, 8692, 1330, 23837, 1082, 35103, 7416, 198, 6738, 1588, 62, 9060, 62, 10459, 62, 83, 733, 1330, 37370, 1082, 62, 10459, 198, 198, 6738, 764, 83, 733, 62, 46862, 1330, 309, 3902, 51, 733, 43055, 198, 83, 733, 13, 51, 3902, 51, 733, 43055, 796, 309, 3902, 51, 733, 43055, 628, 198 ]
3.2
75
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='header_layer_2']/h1", 'price' : "//input[@name='price']/@value", 'category' : "//div[@class='thanh_dinh_huong']/a", 'description' : "", 'images' : "//img[@id='anh_chitiet_sanpham']/@src", 'canonical' : "", 'base_url' : "//base/@href", 'brand' : "" } name = 'songvu.net' allowed_domains = ['songvu.net'] start_urls = ['http://songvu.net/ao-so-mi-nam-d37v3.html'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-id\d+\.html$']), 'parse_item'), Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+-d\d+(v3)?(p\d+)?\.html$']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
[ 2, 11160, 7560, 416, 17301, 13, 9078, 13, 23520, 428, 1627, 611, 345, 787, 17613, 13, 198, 6738, 15881, 88, 13, 2777, 4157, 1330, 14330, 198, 6738, 15881, 88, 13, 2815, 365, 742, 974, 669, 1330, 7502, 11627, 40450, 198, 198, 27481, 12599, 796, 1391, 198, 220, 220, 220, 705, 3672, 6, 1058, 366, 1003, 7146, 58, 31, 4871, 11639, 25677, 62, 29289, 62, 17, 20520, 14, 71, 16, 1600, 198, 220, 220, 220, 705, 20888, 6, 1058, 366, 1003, 15414, 58, 31, 3672, 11639, 20888, 20520, 14, 31, 8367, 1600, 198, 220, 220, 220, 705, 22872, 6, 1058, 366, 1003, 7146, 58, 31, 4871, 11639, 14813, 71, 62, 25194, 71, 62, 13415, 506, 20520, 14, 64, 1600, 198, 220, 220, 220, 705, 11213, 6, 1058, 366, 1600, 198, 220, 220, 220, 705, 17566, 6, 1058, 366, 1003, 9600, 58, 31, 312, 11639, 272, 71, 62, 354, 270, 1155, 62, 12807, 746, 321, 20520, 14, 31, 10677, 1600, 198, 220, 220, 220, 705, 49883, 605, 6, 1058, 366, 1600, 198, 220, 220, 220, 705, 8692, 62, 6371, 6, 1058, 366, 1003, 8692, 14, 31, 33257, 1600, 198, 220, 220, 220, 705, 17938, 6, 1058, 13538, 198, 92, 198, 3672, 796, 705, 34050, 40939, 13, 3262, 6, 198, 40845, 62, 3438, 1299, 796, 37250, 34050, 40939, 13, 3262, 20520, 198, 9688, 62, 6371, 82, 796, 37250, 4023, 1378, 34050, 40939, 13, 3262, 14, 5488, 12, 568, 12, 11632, 12, 7402, 12, 67, 2718, 85, 18, 13, 6494, 20520, 198, 36280, 62, 6371, 796, 10148, 198, 82, 9186, 499, 62, 6371, 82, 796, 685, 7061, 60, 198, 82, 9186, 499, 62, 38785, 796, 685, 10786, 3256, 705, 29572, 62, 9186, 11537, 60, 198, 82, 9186, 499, 62, 27780, 796, 17635, 198, 38785, 796, 685, 198, 220, 220, 220, 14330, 7, 11280, 11627, 40450, 7, 12154, 28, 17816, 14, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 12, 312, 59, 67, 10, 17405, 6494, 3, 20520, 828, 705, 29572, 62, 9186, 33809, 198, 220, 220, 220, 14330, 7, 11280, 11627, 40450, 7, 12154, 28, 17816, 14, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 12, 67, 59, 67, 33747, 85, 18, 19427, 7, 79, 59, 67, 10, 19427, 17405, 6494, 3, 20520, 828, 705, 29572, 33809, 198, 220, 220, 220, 1303, 31929, 7, 11280, 11627, 40450, 22784, 705, 29572, 62, 9186, 62, 392, 62, 28751, 33809, 198, 60, 198 ]
2.24505
404
# Generated by Django 2.1.3 on 2019-01-08 04:17 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 18, 319, 13130, 12, 486, 12, 2919, 8702, 25, 1558, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
import numpy as np import time import xgboost as xgb from sklearn.model_selection import KFold from regularization.score import myFeval from sklearn.metrics import mean_squared_error from regularization.data_process import data_process s = time.time() X_train, y_train, X_test, train_len, test_len = data_process() print('加载数据及预处理消耗时间:', time.time()-s) xgb_params = {"booster": 'gbtree', 'eta': 0.005, 'max_depth': 5, 'subsample': 0.7, # 随机采样训练样本 'colsample_bytree': 0.8, 'objective': 'reg:linear', 'eval_metric': 'rmse', 'silent': True, 'lambda': 1 } folds = KFold(n_splits=5, shuffle=True, random_state=2018) oof_xgb = np.zeros(train_len) predictions_xgb = np.zeros(test_len) for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train, y_train)): print("fold n°{}".format(fold_ + 1)) trn_data = xgb.DMatrix(X_train[trn_idx], y_train[trn_idx]) val_data = xgb.DMatrix(X_train[val_idx], y_train[val_idx]) watchlist = [(trn_data, 'train'), (val_data, 'valid_data')] clf = xgb.train(dtrain=trn_data, num_boost_round=20000, evals=watchlist, early_stopping_rounds=200, verbose_eval=100, params=xgb_params, feval=myFeval) oof_xgb[val_idx] = clf.predict(xgb.DMatrix(X_train[val_idx]), ntree_limit=clf.best_ntree_limit) predictions_xgb += clf.predict(xgb.DMatrix(X_test), ntree_limit=clf.best_ntree_limit) / folds.n_splits print("CV score: {:<8.8f}".format(mean_squared_error(oof_xgb, y_train.tolist()))) ''' -------------------------------------------- 1. 初始参数 reg:linear 0.45434592 2. 增加L2正则 'lambda':2 0.45488106 3. 2+增加L1正则 'alpha': 1 0.45456481 4. 增加L1正则 'alpha': 1 0.45460193 5. 3+subsample改为0.6 0.45449627 6. 只改subsample 0.6 0.45448684 7. 只改subsample 0.8 0.45625735 8. 1+增加L1正则0.5 0.45431723 9. 1+增加L1正则0.3 0.45450940 10.1+增加L1正则0.7 0.45447847 11.1+增加L1正则0.6 0.45467713 12.1+增加L1正则0.55 0.45430484 ○ 13.12+L2正则0.5 0.45467713 14.12+L2正则3 0.45431729 15.1+增加L2正则3 0.45484879 16.1+增加L2正则1 0.45434592 17.1+增加L2正则0.5 0.45469010 '''
[ 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 2124, 70, 39521, 355, 2124, 22296, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 509, 37, 727, 198, 6738, 3218, 1634, 13, 26675, 1330, 616, 37, 18206, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 1612, 62, 16485, 1144, 62, 18224, 198, 6738, 3218, 1634, 13, 7890, 62, 14681, 1330, 1366, 62, 14681, 198, 198, 82, 796, 640, 13, 2435, 3419, 198, 55, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 9288, 11, 4512, 62, 11925, 11, 1332, 62, 11925, 796, 1366, 62, 14681, 3419, 198, 4798, 10786, 27950, 254, 164, 121, 121, 46763, 108, 162, 235, 106, 20998, 232, 165, 95, 226, 13783, 226, 49426, 228, 162, 114, 230, 32003, 245, 33768, 114, 29785, 112, 171, 120, 248, 3256, 640, 13, 2435, 3419, 12, 82, 8, 198, 198, 87, 22296, 62, 37266, 796, 19779, 2127, 6197, 1298, 705, 70, 18347, 631, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17167, 10354, 657, 13, 22544, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 18053, 10354, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 39873, 10354, 657, 13, 22, 11, 1303, 16268, 248, 237, 17312, 118, 34932, 229, 43718, 115, 164, 106, 255, 163, 119, 225, 43718, 115, 17312, 105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4033, 39873, 62, 1525, 21048, 10354, 657, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 425, 10354, 705, 2301, 25, 29127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18206, 62, 4164, 1173, 10354, 705, 26224, 325, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18217, 298, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50033, 10354, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 69, 10119, 796, 509, 37, 727, 7, 77, 62, 22018, 896, 28, 20, 11, 36273, 28, 17821, 11, 4738, 62, 5219, 28, 7908, 8, 198, 37711, 62, 87, 22296, 796, 45941, 13, 9107, 418, 7, 27432, 62, 11925, 8, 198, 28764, 9278, 62, 87, 22296, 796, 45941, 13, 9107, 418, 7, 9288, 62, 11925, 8, 198, 198, 1640, 5591, 62, 11, 357, 2213, 77, 62, 312, 87, 11, 1188, 62, 312, 87, 8, 287, 27056, 378, 7, 69, 10119, 13, 35312, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 2599, 198, 220, 220, 220, 3601, 7203, 11379, 299, 7200, 90, 92, 1911, 18982, 7, 11379, 62, 1343, 352, 4008, 198, 220, 220, 220, 491, 77, 62, 7890, 796, 2124, 22296, 13, 35, 46912, 7, 55, 62, 27432, 58, 2213, 77, 62, 312, 87, 4357, 331, 62, 27432, 58, 2213, 77, 62, 312, 87, 12962, 198, 220, 220, 220, 1188, 62, 7890, 796, 2124, 22296, 13, 35, 46912, 7, 55, 62, 27432, 58, 2100, 62, 312, 87, 4357, 331, 62, 27432, 58, 2100, 62, 312, 87, 12962, 628, 220, 220, 220, 2342, 4868, 796, 47527, 2213, 77, 62, 7890, 11, 705, 27432, 33809, 357, 2100, 62, 7890, 11, 705, 12102, 62, 7890, 11537, 60, 198, 220, 220, 220, 537, 69, 796, 2124, 22296, 13, 27432, 7, 67, 27432, 28, 2213, 77, 62, 7890, 11, 997, 62, 39521, 62, 744, 28, 2167, 405, 11, 819, 874, 28, 8340, 4868, 11, 1903, 62, 301, 33307, 62, 744, 82, 28, 2167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 18206, 28, 3064, 11, 42287, 28, 87, 22296, 62, 37266, 11, 730, 2100, 28, 1820, 37, 18206, 8, 198, 220, 220, 220, 267, 1659, 62, 87, 22296, 58, 2100, 62, 312, 87, 60, 796, 537, 69, 13, 79, 17407, 7, 87, 22296, 13, 35, 46912, 7, 55, 62, 27432, 58, 2100, 62, 312, 87, 46570, 299, 21048, 62, 32374, 28, 565, 69, 13, 13466, 62, 429, 631, 62, 32374, 8, 198, 220, 220, 220, 16277, 62, 87, 22296, 15853, 537, 69, 13, 79, 17407, 7, 87, 22296, 13, 35, 46912, 7, 55, 62, 9288, 828, 299, 21048, 62, 32374, 28, 565, 69, 13, 13466, 62, 429, 631, 62, 32374, 8, 1220, 38744, 13, 77, 62, 22018, 896, 198, 198, 4798, 7203, 33538, 4776, 25, 46110, 27, 23, 13, 23, 69, 92, 1911, 18982, 7, 32604, 62, 16485, 1144, 62, 18224, 7, 37711, 62, 87, 22296, 11, 331, 62, 27432, 13, 83, 349, 396, 3419, 22305, 628, 198, 198, 7061, 6, 198, 20368, 10541, 198, 16, 13, 10263, 230, 251, 34650, 233, 20998, 224, 46763, 108, 220, 842, 25, 29127, 220, 220, 220, 220, 657, 13, 2231, 3559, 2231, 5892, 198, 17, 13, 10263, 95, 252, 27950, 254, 43, 17, 29826, 96, 26344, 247, 705, 50033, 10354, 17, 220, 220, 220, 657, 13, 2231, 33646, 15801, 198, 18, 13, 362, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 705, 26591, 10354, 352, 220, 657, 13, 2231, 2231, 2414, 6659, 198, 19, 13, 10263, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 705, 26591, 10354, 352, 220, 220, 220, 657, 13, 2231, 3510, 486, 6052, 198, 20, 13, 513, 10, 7266, 39873, 162, 242, 117, 10310, 118, 15, 13, 21, 220, 220, 220, 220, 220, 657, 13, 2231, 2598, 4846, 1983, 198, 21, 13, 10263, 237, 103, 162, 242, 117, 7266, 39873, 657, 13, 21, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 31115, 41580, 198, 22, 13, 10263, 237, 103, 162, 242, 117, 7266, 39873, 657, 13, 23, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 26704, 22, 2327, 198, 23, 13, 352, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 15, 13, 20, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 3559, 1558, 1954, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 24, 13, 352, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 15, 13, 18, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 17885, 46899, 198, 940, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 15, 13, 22, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 2598, 3695, 2857, 198, 1157, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 15, 13, 21, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 24669, 50055, 198, 1065, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 16, 29826, 96, 26344, 247, 15, 13, 2816, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 31794, 34137, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24966, 233, 198, 1485, 13, 1065, 10, 43, 17, 29826, 96, 26344, 247, 15, 13, 20, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 24669, 50055, 198, 1415, 13, 1065, 10, 43, 17, 29826, 96, 26344, 247, 18, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 3559, 1558, 1959, 198, 1314, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 17, 29826, 96, 26344, 247, 18, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 2780, 2780, 3720, 198, 1433, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 17, 29826, 96, 26344, 247, 16, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2231, 3559, 2231, 5892, 198, 1558, 13, 16, 10, 161, 95, 252, 27950, 254, 43, 17, 29826, 96, 26344, 247, 15, 13, 20, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 34229, 3388, 20943, 628, 628, 198, 7061, 6 ]
1.690583
1,338
from django.test import TestCase from apps.datablock.models import DataBlock from apps.fleet.models import Fleet from apps.physicaldevice.models import Device from apps.stream.models import StreamId, StreamVariable from ..test_util import TestMixin from .utils import * from .utils import _get_real_slug
[ 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 6725, 13, 19608, 397, 5354, 13, 27530, 1330, 6060, 12235, 198, 6738, 6725, 13, 33559, 13, 27530, 1330, 20001, 198, 6738, 6725, 13, 42854, 25202, 13, 27530, 1330, 16232, 198, 6738, 6725, 13, 5532, 13, 27530, 1330, 13860, 7390, 11, 13860, 43015, 198, 198, 6738, 11485, 9288, 62, 22602, 1330, 6208, 35608, 259, 198, 6738, 764, 26791, 1330, 1635, 198, 6738, 764, 26791, 1330, 4808, 1136, 62, 5305, 62, 6649, 1018, 628 ]
3.698795
83
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os TEST_APP_URL = os.environ['TEST_APP_URL']
[ 2, 15069, 1584, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 198, 51, 6465, 62, 24805, 62, 21886, 796, 28686, 13, 268, 2268, 17816, 51, 6465, 62, 24805, 62, 21886, 20520, 628 ]
3.605714
175
import nengo model = nengo.Network() with model: a = nengo.Ensemble(n_neurons=100, dimensions=2, radius=1) stim = nengo.Node([0,0]) nengo.Connection(stim, a)
[ 11748, 299, 1516, 78, 198, 198, 19849, 796, 299, 1516, 78, 13, 26245, 3419, 198, 4480, 2746, 25, 198, 220, 220, 220, 257, 796, 299, 1516, 78, 13, 4834, 15140, 7, 77, 62, 710, 333, 684, 28, 3064, 11, 15225, 28, 17, 11, 16874, 28, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7132, 796, 299, 1516, 78, 13, 19667, 26933, 15, 11, 15, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 299, 1516, 78, 13, 32048, 7, 42003, 11, 257, 8 ]
2.068966
87
# 時系列予測の問題に季節項を導入する # 時系列データは、目的変数を観測値の要素の和に分解するのが定石 # Own Library import mcmc_tools import analysis_data as ad import seaborn as sns import matplotlib.pyplot as plt if __name__ == '__main__': spm = SPM('data-ss2.txt', '../model/model12-2') spm.describe() spm.observe_ts() stan_data = spm.create_data() mcmc_sample = spm.fit(stan_data) # 全体の観測および予測分布 spm.create_figure(mcmc_sample, 'y_mean_pred') # 要素ごとに分けて観測および予測分布 spm.create_figure(mcmc_sample, 'mu_pred') spm.create_figure(mcmc_sample, 'season_pred')
[ 2, 10545, 25081, 163, 111, 119, 26344, 245, 12859, 230, 162, 116, 105, 15474, 243, 237, 165, 94, 234, 28618, 27764, 96, 163, 107, 222, 165, 254, 227, 31758, 22887, 236, 17739, 98, 33623, 25748, 198, 2, 10545, 25081, 163, 111, 119, 26344, 245, 21959, 6312, 23376, 31676, 23513, 33566, 106, 21410, 13783, 231, 46763, 108, 31758, 17358, 111, 162, 116, 105, 161, 222, 97, 5641, 17358, 223, 163, 112, 254, 15474, 240, 234, 28618, 26344, 228, 164, 100, 96, 33623, 25748, 5641, 35585, 22522, 248, 163, 253, 111, 198, 198, 2, 11744, 10074, 198, 11748, 285, 11215, 66, 62, 31391, 198, 11748, 3781, 62, 7890, 355, 512, 198, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 599, 76, 796, 311, 5868, 10786, 7890, 12, 824, 17, 13, 14116, 3256, 705, 40720, 19849, 14, 19849, 1065, 12, 17, 11537, 198, 220, 220, 220, 599, 76, 13, 20147, 4892, 3419, 628, 220, 220, 220, 599, 76, 13, 672, 2655, 303, 62, 912, 3419, 628, 220, 220, 220, 336, 272, 62, 7890, 796, 599, 76, 13, 17953, 62, 7890, 3419, 628, 220, 220, 220, 285, 11215, 66, 62, 39873, 796, 599, 76, 13, 11147, 7, 14192, 62, 7890, 8, 628, 220, 220, 220, 1303, 10263, 227, 101, 19526, 241, 5641, 17358, 111, 162, 116, 105, 2515, 232, 1792, 230, 2515, 111, 12859, 230, 162, 116, 105, 26344, 228, 30585, 225, 198, 220, 220, 220, 599, 76, 13, 17953, 62, 26875, 7, 76, 11215, 66, 62, 39873, 11, 705, 88, 62, 32604, 62, 28764, 11537, 628, 220, 220, 220, 1303, 5525, 99, 223, 163, 112, 254, 2515, 242, 30201, 28618, 26344, 228, 2515, 239, 28134, 17358, 111, 162, 116, 105, 2515, 232, 1792, 230, 2515, 111, 12859, 230, 162, 116, 105, 26344, 228, 30585, 225, 198, 220, 220, 220, 599, 76, 13, 17953, 62, 26875, 7, 76, 11215, 66, 62, 39873, 11, 705, 30300, 62, 28764, 11537, 198, 220, 220, 220, 599, 76, 13, 17953, 62, 26875, 7, 76, 11215, 66, 62, 39873, 11, 705, 6230, 62, 28764, 11537, 198 ]
1.520548
365
################################################################################ # # MRC FGU Computational Genomics Group # # $Id$ # # Copyright (C) 2009 Andreas Heger # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ################################################################################# ''' ScopTester.py - ====================================================== :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Code ---- ''' import sys import re import string import os import time from Pairsdb import * import alignlib import pairsdblib from MessagePairsdb import MessagePairsdb from TableDomainsScopTest import TableDomainsScopTest from TablePairsdbNeighbours import TablePairsdbNeighbours from Pairsdb import * import Tools #------------------------------------------- # Class: ScopTest # Superclasses: Message # Subclasses: # Function: update ScopTest-database # # Author: Andreas Heger #------------------------------------------- ##-------------------------------------------------------------------------------------- ##-------------------------------------------------------------------------------------- ##-------------------------------------------------------------------------------------- class ScopTesterFullProfiles( ScopTesterProfiles ): """use full length profiles. beware of multidomain-proteins, use iterative multiple alignment method. """ ##-------------------------------------------------------------------------------------- class Alignator: """ aligns two sequences and returns result. """ ##-------------------------------------------------------------------------------------- ##-------------------------------------------------------------------------------------- def CheckResult( self, result, info1 = None, info2 = None): """check if result is ok. The function below returns everything. return tuple of strings as result. """ if (result.getLength() > 0): row_ali, col_ali = alignlib.writeAlignataCompressed( result ) return map(str, (result.getScore(), result.getLength(), result.getNumGaps(), alignlib.calculatePercentSimilarity( result ), result.getRowFrom(), result.getRowTo(), row_ali, result.getColFrom(), result.getColTo(), col_ali ) ) else: return ("0",) * 12 ##-------------------------------------------------------------------------------------- class AlignatorIterative(Alignator): """ aligns two sequences iteratively, checks if alignment regions are overlapping with domain regions and returns result only for those overlapping. This is useful if you have several domains in a sequence, but you need only compare to one. """ ##-------------------------------------------------------------------------------------- def Align( self, a1, a2, result ): """align repetetively. Take highest scoring alignment, that overlaps with domains and put it in result. Note: performIterativeAlignment does not work, as it is linear. It requires domains to be in the same order. Result is empty, fragments are saved in object. """ fragmentor = alignlib.makeFragmentorRepetitive( self.mAlignator, self.mMinScore ) ## align iteratively and convert fragments to Alignata-objects val = fragmentor.Fragment( a1, a2, result) self.mFragments = map( lambda x: alignlib.AlignataPtr(x), val) for fragment in self.mFragments: fragment.thisown = 1 ## alignlib.performIterativeAlignmentNonConst( result, ## a1, a2, ## self.mAlignator, ## self.mMinScore ) ##-------------------------------------------------------------------------------------- def CheckResult( self, result, info1, info2): """check if result is ok. Check for each fragment, if it overlaps with the domains to be tested and dump if ok. This simulates psiblast. """ row_from, row_to = map(string.atoi, info1[1:3]) col_from, col_to = map(string.atoi, info2[1:3]) ## check for overlap for fragment in self.mFragments: # print alignlib.writeAlignataTable( fragment, 8, 1) xcol_from = Tools.MapRight(fragment, row_from ) xcol_to = Tools.MapLeft(fragment, row_to ) overlap = min(col_to, xcol_to) - max(col_from, xcol_from) # print self.mMinOverlap, overlap, xcol_from, xcol_to, col_from, col_to if overlap > self.mMinOverlap: return map(str, (fragment.getScore(), fragment.getLength(), fragment.getNumGaps(), alignlib.calculatePercentSimilarity( fragment ), fragment.getRowFrom(), fragment.getRowTo(), fragment.getColFrom(), fragment.getColTo(), overlap, xcol_from, xcol_to, (xcol_to - xcol_from) - (col_to - col_from)) ) return ("0",) * 12 ##-------------------------------------------------------------------------------------- if __name__ == '__main__': dbhandle = Pairsdb() if not dbhandle.Connect(): print "Connection failed" sys.exit(1) a = alignlib.makeFullDP( -10.0, -2.0 ) alignator = Alignator( a ) x = ScopTesterSequences( dbhandle, alignator ) x.Process() if param_alignator == 0: a = alignlib.makeFullDP( param_gop, param_gep) alignator = Alignator( a ) if param_entities == 0: tester = ScopTesterSequences( dbhandle, alignator ) tester.mLogLevel = param_loglevel matches = a.CalculateMatches()
[ 29113, 29113, 14468, 198, 2, 198, 2, 220, 220, 337, 7397, 25503, 52, 22476, 864, 5215, 31994, 4912, 198, 2, 198, 2, 220, 220, 720, 7390, 3, 198, 2, 198, 2, 220, 220, 15069, 357, 34, 8, 3717, 33728, 679, 1362, 198, 2, 198, 2, 220, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 198, 2, 220, 220, 13096, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 220, 355, 3199, 416, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 198, 2, 220, 220, 286, 262, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 220, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 220, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 220, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 198, 2, 220, 220, 5693, 11, 3457, 1539, 7863, 10857, 8474, 532, 26264, 25508, 11, 6182, 11, 8779, 220, 7816, 16243, 12, 12952, 22, 11, 4916, 13, 198, 29113, 29113, 14468, 2, 198, 7061, 6, 198, 3351, 404, 51, 7834, 13, 9078, 532, 220, 198, 10052, 4770, 50155, 198, 198, 25, 13838, 25, 33728, 679, 1362, 198, 25, 26362, 25, 720, 7390, 3, 198, 25, 10430, 25, 930, 40838, 91, 198, 25, 36142, 25, 11361, 198, 198, 10669, 198, 650, 198, 198, 7061, 6, 198, 11748, 25064, 198, 11748, 302, 198, 11748, 4731, 198, 11748, 28686, 198, 11748, 640, 220, 198, 198, 6738, 350, 3468, 9945, 1330, 1635, 198, 198, 11748, 10548, 8019, 198, 11748, 14729, 67, 2436, 571, 198, 198, 6738, 16000, 47, 3468, 9945, 1330, 16000, 47, 3468, 9945, 198, 6738, 8655, 24510, 1299, 3351, 404, 14402, 1330, 8655, 24510, 1299, 3351, 404, 14402, 198, 6738, 8655, 47, 3468, 9945, 46445, 65, 4662, 1330, 8655, 47, 3468, 9945, 46445, 65, 4662, 198, 6738, 350, 3468, 9945, 1330, 1635, 198, 11748, 20003, 198, 198, 2, 3880, 32284, 198, 2, 5016, 25, 197, 220, 220, 220, 220, 220, 220, 1446, 404, 14402, 198, 2, 3115, 37724, 25, 220, 16000, 198, 2, 3834, 37724, 25, 220, 220, 220, 220, 198, 2, 15553, 25, 220, 220, 220, 220, 220, 4296, 1446, 404, 14402, 12, 48806, 198, 2, 198, 2, 6434, 25, 197, 220, 220, 220, 220, 220, 220, 33728, 679, 1362, 198, 2, 3880, 32284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2235, 10097, 19351, 438, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2235, 10097, 19351, 438, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2235, 10097, 19351, 438, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4871, 1446, 404, 51, 7834, 13295, 15404, 2915, 7, 1446, 404, 51, 7834, 15404, 2915, 15179, 198, 220, 220, 220, 37227, 1904, 1336, 4129, 16545, 13, 198, 220, 220, 220, 40600, 286, 1963, 312, 296, 391, 12, 1676, 660, 1040, 11, 779, 11629, 876, 3294, 19114, 198, 220, 220, 220, 2446, 13, 198, 220, 220, 220, 37227, 198, 198, 2235, 10097, 19351, 438, 198, 4871, 978, 570, 1352, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10548, 82, 734, 16311, 290, 5860, 1255, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 22492, 10097, 19351, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 10097, 19351, 438, 198, 220, 220, 220, 825, 6822, 23004, 7, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 16, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 17, 796, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9122, 611, 1255, 318, 12876, 13, 383, 2163, 2174, 5860, 2279, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46545, 286, 13042, 355, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 20274, 13, 1136, 24539, 3419, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 7344, 11, 951, 62, 7344, 796, 10548, 8019, 13, 13564, 2348, 570, 1045, 7293, 2790, 7, 1255, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3975, 7, 2536, 11, 357, 20274, 13, 1136, 26595, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 1136, 24539, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 1136, 33111, 38, 1686, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10548, 8019, 13, 9948, 3129, 378, 31905, 18925, 414, 7, 1255, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 1136, 25166, 4863, 22784, 1255, 13, 1136, 25166, 2514, 22784, 5752, 62, 7344, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 1136, 5216, 4863, 22784, 1255, 13, 1136, 5216, 2514, 22784, 951, 62, 7344, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5855, 15, 1600, 8, 1635, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2235, 10097, 19351, 438, 198, 4871, 978, 570, 1352, 29993, 876, 7, 2348, 570, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10548, 82, 734, 16311, 11629, 9404, 11, 8794, 611, 19114, 7652, 389, 32997, 351, 198, 220, 220, 220, 7386, 7652, 290, 5860, 1255, 691, 329, 883, 32997, 13, 770, 318, 4465, 611, 345, 423, 198, 220, 220, 220, 1811, 18209, 287, 257, 8379, 11, 475, 345, 761, 691, 8996, 284, 530, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 22492, 10097, 19351, 438, 198, 220, 220, 220, 825, 978, 570, 7, 2116, 11, 257, 16, 11, 257, 17, 11, 1255, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31494, 46152, 316, 2280, 13, 7214, 4511, 9689, 19114, 11, 326, 12893, 1686, 351, 18209, 198, 220, 220, 220, 220, 220, 220, 220, 290, 1234, 340, 287, 1255, 13, 5740, 25, 1620, 29993, 876, 2348, 16747, 857, 407, 670, 11, 355, 340, 318, 14174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 4433, 18209, 284, 307, 287, 262, 976, 1502, 13, 628, 220, 220, 220, 220, 220, 220, 220, 25414, 318, 6565, 11, 21441, 389, 7448, 287, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 24225, 273, 796, 10548, 8019, 13, 15883, 42974, 434, 273, 6207, 17295, 7, 2116, 13, 76, 2348, 570, 1352, 11, 2116, 13, 76, 9452, 26595, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 10548, 11629, 9404, 290, 10385, 21441, 284, 978, 570, 1045, 12, 48205, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 24225, 273, 13, 42974, 434, 7, 257, 16, 11, 257, 17, 11, 1255, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 42974, 902, 796, 3975, 7, 37456, 2124, 25, 10548, 8019, 13, 2348, 570, 1045, 46745, 7, 87, 828, 1188, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 24225, 287, 2116, 13, 76, 42974, 902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 13, 5661, 593, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 10548, 8019, 13, 525, 687, 29993, 876, 2348, 16747, 15419, 34184, 7, 1255, 11, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 16, 11, 257, 17, 11, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 2348, 570, 1352, 11, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 9452, 26595, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 10097, 19351, 438, 198, 220, 220, 220, 825, 6822, 23004, 7, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 16, 11, 7508, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9122, 611, 1255, 318, 12876, 13, 6822, 329, 1123, 24225, 11, 611, 340, 12893, 1686, 198, 220, 220, 220, 220, 220, 220, 220, 351, 262, 18209, 284, 307, 6789, 290, 10285, 611, 12876, 13, 770, 985, 15968, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 10506, 459, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 6738, 11, 5752, 62, 1462, 796, 3975, 7, 8841, 13, 5549, 72, 11, 7508, 16, 58, 16, 25, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 6738, 11, 951, 62, 1462, 796, 3975, 7, 8841, 13, 5549, 72, 11, 7508, 17, 58, 16, 25, 18, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 2198, 329, 21721, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24225, 287, 2116, 13, 76, 42974, 902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10548, 8019, 13, 13564, 2348, 570, 1045, 10962, 7, 24225, 11, 807, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 4033, 62, 6738, 796, 20003, 13, 13912, 11028, 7, 8310, 363, 434, 11, 5752, 62, 6738, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 4033, 62, 1462, 220, 220, 796, 20003, 13, 13912, 18819, 7, 8310, 363, 434, 11, 5752, 62, 1462, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21721, 796, 949, 7, 4033, 62, 1462, 11, 2124, 4033, 62, 1462, 8, 532, 3509, 7, 4033, 62, 6738, 11, 2124, 4033, 62, 6738, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 2116, 13, 76, 9452, 5886, 37796, 11, 21721, 11, 2124, 4033, 62, 6738, 11, 2124, 4033, 62, 1462, 11, 951, 62, 6738, 11, 951, 62, 1462, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21721, 1875, 2116, 13, 76, 9452, 5886, 37796, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3975, 7, 2536, 11, 357, 8310, 363, 434, 13, 1136, 26595, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 13, 1136, 24539, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 13, 1136, 33111, 38, 1686, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10548, 8019, 13, 9948, 3129, 378, 31905, 18925, 414, 7, 24225, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 13, 1136, 25166, 4863, 22784, 24225, 13, 1136, 25166, 2514, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24225, 13, 1136, 5216, 4863, 22784, 24225, 13, 1136, 5216, 2514, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21721, 11, 2124, 4033, 62, 6738, 11, 2124, 4033, 62, 1462, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 4033, 62, 1462, 532, 2124, 4033, 62, 6738, 8, 532, 357, 4033, 62, 1462, 532, 951, 62, 6738, 4008, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5855, 15, 1600, 8, 1635, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2235, 10097, 19351, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 20613, 28144, 796, 350, 3468, 9945, 3419, 198, 220, 220, 220, 611, 407, 20613, 28144, 13, 13313, 33529, 198, 197, 4798, 366, 32048, 4054, 1, 198, 197, 17597, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 257, 796, 10548, 8019, 13, 15883, 13295, 6322, 7, 532, 940, 13, 15, 11, 532, 17, 13, 15, 1267, 198, 220, 220, 220, 10548, 1352, 796, 978, 570, 1352, 7, 257, 1267, 628, 220, 220, 220, 2124, 796, 1446, 404, 51, 7834, 44015, 3007, 7, 20613, 28144, 11, 10548, 1352, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2124, 13, 18709, 3419, 628, 220, 220, 220, 611, 5772, 62, 31494, 1352, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 10548, 8019, 13, 15883, 13295, 6322, 7, 5772, 62, 70, 404, 11, 5772, 62, 469, 79, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10548, 1352, 796, 978, 570, 1352, 7, 257, 1267, 198, 220, 220, 220, 611, 5772, 62, 298, 871, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 7834, 796, 1446, 404, 51, 7834, 44015, 3007, 7, 20613, 28144, 11, 10548, 1352, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 256, 7834, 13, 76, 11187, 4971, 796, 5772, 62, 75, 2467, 626, 628, 220, 220, 220, 220, 220, 220, 220, 7466, 796, 257, 13, 9771, 3129, 378, 19044, 2052, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 628, 628 ]
2.462457
2,930
import webracer import nose.plugins.attrib from . import utils from .apps import kitchen_sink_app utils.app_runner_setup(__name__, kitchen_sink_app.app, 8056) base_config = dict(host='localhost', port=8056) @nose.plugins.attrib.attr('client')
[ 11748, 356, 1671, 11736, 198, 11748, 9686, 13, 37390, 13, 1078, 822, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 18211, 1330, 9592, 62, 82, 676, 62, 1324, 198, 198, 26791, 13, 1324, 62, 16737, 62, 40406, 7, 834, 3672, 834, 11, 9592, 62, 82, 676, 62, 1324, 13, 1324, 11, 807, 2713, 21, 8, 198, 198, 8692, 62, 11250, 796, 8633, 7, 4774, 11639, 36750, 3256, 2493, 28, 1795, 3980, 8, 198, 198, 31, 77, 577, 13, 37390, 13, 1078, 822, 13, 35226, 10786, 16366, 11537, 198 ]
2.764045
89
from django.db import models from lectures.models import Day # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 25917, 13, 27530, 1330, 3596, 198, 198, 2, 13610, 534, 4981, 994, 13, 628 ]
3.913043
23
from tests.test_helper import * from datetime import date from braintree.dispute import Dispute
[ 6738, 5254, 13, 9288, 62, 2978, 525, 1330, 1635, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 865, 2913, 631, 13, 6381, 79, 1133, 1330, 36060, 1133, 198 ]
3.428571
28
"Step 3: Stepping Up to OOP" 'Adding Persistence' # Notice how we still fetch, update, and # reassign to keys to update the shelve. import shelve db = shelve.open('class-shelve') sue = db['sue'] sue.giveRaise(.25) db['sue'] = sue tom = db['tom'] tom.giveRaise(.20) db['tom'] = tom db.close() ''' class instances allow us to combine both data and behavior for our stored items. In a sense, instance attributes and class methods take the place of records and processing programs in more traditional schemes. '''
[ 1, 8600, 513, 25, 2441, 2105, 3205, 284, 440, 3185, 1, 198, 6, 32901, 9467, 13274, 6, 198, 2, 17641, 703, 356, 991, 21207, 11, 4296, 11, 290, 220, 198, 2, 12719, 570, 284, 8251, 284, 4296, 262, 7497, 303, 13, 198, 198, 11748, 7497, 303, 220, 198, 9945, 796, 7497, 303, 13, 9654, 10786, 4871, 12, 82, 2978, 303, 11537, 220, 628, 198, 82, 518, 796, 20613, 17816, 82, 518, 20520, 198, 82, 518, 13, 26535, 21762, 786, 7, 13, 1495, 8, 198, 9945, 17816, 82, 518, 20520, 796, 20889, 628, 198, 39532, 796, 20613, 17816, 39532, 20520, 198, 39532, 13, 26535, 21762, 786, 7, 13, 1238, 8, 198, 9945, 17816, 39532, 20520, 796, 16667, 198, 9945, 13, 19836, 3419, 628, 198, 7061, 6, 198, 4871, 10245, 1249, 514, 284, 12082, 1111, 1366, 290, 4069, 329, 674, 198, 301, 1850, 3709, 13, 554, 257, 2565, 11, 4554, 12608, 290, 1398, 5050, 1011, 262, 1295, 286, 4406, 198, 392, 7587, 4056, 287, 517, 4569, 16546, 13, 198, 7061, 6, 198 ]
3.058824
170
#!/usr/bin/python # # Exemplary script to read the annotations generated by the web application # in this repo. # # @author: Luis Carlos Garcia-Peraza Herrera ([email protected]). # @date : 20 Jan 2021. import argparse import json import cv2 import numpy as np import os # My imports import wat.common def parse_cmdline_params(): """ @brief Parse command line parameters to get input and output file names. @param[in] argv Array of command line arguments. @return input and output file names if they were specified. """ parser = argparse.ArgumentParser() parser.add_argument('--dir', required=True, help='Path to the output directory.') parser.add_argument('--gt-suffix', default='_seg', required=False, help='Suffix of the segmentation-like annotations.') args = parser.parse_args() return args if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 220, 198, 2, 1475, 18856, 560, 4226, 284, 1100, 262, 37647, 7560, 416, 262, 3992, 3586, 198, 2, 287, 428, 29924, 13, 198, 2, 198, 2, 2488, 9800, 25, 20894, 17409, 18555, 12, 5990, 7056, 46508, 357, 2290, 2304, 7063, 418, 13, 70, 746, 31, 14816, 13, 785, 737, 198, 2, 2488, 4475, 220, 1058, 1160, 2365, 33448, 13, 198, 198, 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 198, 2, 2011, 17944, 198, 11748, 4383, 13, 11321, 198, 198, 4299, 21136, 62, 28758, 1370, 62, 37266, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 65, 3796, 2547, 325, 3141, 1627, 10007, 284, 651, 5128, 290, 5072, 2393, 3891, 13, 198, 220, 220, 220, 2488, 17143, 58, 259, 60, 1822, 85, 15690, 286, 3141, 1627, 7159, 13, 220, 220, 198, 220, 220, 220, 2488, 7783, 5128, 290, 5072, 2393, 3891, 611, 484, 547, 7368, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15908, 3256, 2672, 28, 17821, 11, 1037, 11639, 15235, 284, 262, 5072, 8619, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 13655, 12, 37333, 844, 3256, 4277, 11639, 62, 325, 70, 3256, 2672, 28, 25101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 50, 1648, 844, 286, 262, 10618, 341, 12, 2339, 37647, 2637, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1441, 26498, 628, 628, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.967213
305
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module to enforce authentication on endpoints.method. Usage: ----- # configuration of an endpoints method with enforced user auth check only. @loaner_endpoints.authed_method( chrome_message.ChromeRequest, chrome_message.ChromeResponse, name='heartbeat', path='heartbeat', http_method='GET', user_auth_only=True) def do_something(self, request): ... The above method will execute if the current user is authenticated properly. # configuration of an endpoints method with enforced permission. @loaner_endpoints.authed_method( chrome_message.ChromeRequest, chrome_message.ChromeResponse, name='heartbeat', path='heartbeat', http_method='GET', permission='view') def do_something(self, request): ... The above method will only execute if the current user's role has the permission "view". Note: ----- Please see permission module for more information on how the check_auth() decorator works. """ import endpoints from loaner.web_app.backend.auth import permissions class Error(Exception): """Default error class for this module.""" class AuthCheckNotPresent(Error): """Raised when auth_method was called without auth check.""" def authed_method(*args, **kwargs): """Configures an endpoint method and enforces permissions.""" def auth_method_decorator(auth_function): """Decorator for auth_method.""" kwarg_auth = None kwarg_permission = None for key in kwargs: if key is 'permission': kwarg_permission = kwargs.pop('permission') auth_function = permissions.check_auth( permission=kwarg_permission)(auth_function) break elif key is 'user_auth_only': kwarg_auth = kwargs.pop('user_auth_only') auth_function = permissions.check_auth( user_auth_only=kwarg_auth)(auth_function) break if not kwarg_auth and not kwarg_permission: raise AuthCheckNotPresent( 'No permission or user_auth_only was passed. Authentication on this ' 'method cannot run.') # Always apply the standard `endpoints.method` decorator. return endpoints.method(*args, **kwargs)(auth_function) return auth_method_decorator
[ 2, 15069, 2864, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 12, 1797, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 26796, 284, 4605, 18239, 319, 886, 13033, 13, 24396, 13, 198, 198, 28350, 25, 198, 30934, 198, 1303, 8398, 286, 281, 886, 13033, 2446, 351, 20326, 2836, 6284, 2198, 691, 13, 198, 31, 5439, 272, 263, 62, 437, 13033, 13, 2306, 704, 62, 24396, 7, 198, 220, 220, 220, 32030, 62, 20500, 13, 1925, 5998, 18453, 11, 198, 220, 220, 220, 32030, 62, 20500, 13, 1925, 5998, 31077, 11, 198, 220, 220, 220, 1438, 11639, 11499, 12945, 3256, 198, 220, 220, 220, 3108, 11639, 11499, 12945, 3256, 198, 220, 220, 220, 2638, 62, 24396, 11639, 18851, 3256, 198, 220, 220, 220, 2836, 62, 18439, 62, 8807, 28, 17821, 8, 198, 4299, 466, 62, 18927, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 2644, 198, 198, 464, 2029, 2446, 481, 12260, 611, 262, 1459, 2836, 318, 44529, 6105, 13, 628, 1303, 8398, 286, 281, 886, 13033, 2446, 351, 20326, 7170, 13, 198, 31, 5439, 272, 263, 62, 437, 13033, 13, 2306, 704, 62, 24396, 7, 198, 220, 220, 220, 32030, 62, 20500, 13, 1925, 5998, 18453, 11, 198, 220, 220, 220, 32030, 62, 20500, 13, 1925, 5998, 31077, 11, 198, 220, 220, 220, 1438, 11639, 11499, 12945, 3256, 198, 220, 220, 220, 3108, 11639, 11499, 12945, 3256, 198, 220, 220, 220, 2638, 62, 24396, 11639, 18851, 3256, 198, 220, 220, 220, 7170, 11639, 1177, 11537, 198, 4299, 466, 62, 18927, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 2644, 198, 198, 464, 2029, 2446, 481, 691, 12260, 611, 262, 1459, 2836, 338, 2597, 468, 262, 7170, 198, 1, 1177, 1911, 198, 198, 6425, 25, 198, 30934, 198, 5492, 766, 7170, 8265, 329, 517, 1321, 319, 703, 262, 2198, 62, 18439, 3419, 198, 12501, 273, 1352, 2499, 13, 198, 37811, 198, 198, 11748, 886, 13033, 198, 198, 6738, 8063, 263, 13, 12384, 62, 1324, 13, 1891, 437, 13, 18439, 1330, 21627, 628, 198, 4871, 13047, 7, 16922, 2599, 198, 220, 37227, 19463, 4049, 1398, 329, 428, 8265, 526, 15931, 628, 198, 4871, 26828, 9787, 3673, 34695, 7, 12331, 2599, 198, 220, 37227, 21762, 1417, 618, 6284, 62, 24396, 373, 1444, 1231, 6284, 2198, 526, 15931, 628, 198, 4299, 1960, 704, 62, 24396, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 37227, 16934, 942, 281, 36123, 2446, 290, 551, 27087, 21627, 526, 15931, 628, 220, 825, 6284, 62, 24396, 62, 12501, 273, 1352, 7, 18439, 62, 8818, 2599, 198, 220, 220, 220, 37227, 10707, 273, 1352, 329, 6284, 62, 24396, 526, 15931, 198, 220, 220, 220, 479, 86, 853, 62, 18439, 796, 6045, 198, 220, 220, 220, 479, 86, 853, 62, 525, 3411, 796, 6045, 198, 220, 220, 220, 329, 1994, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 611, 1994, 318, 705, 525, 3411, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 853, 62, 525, 3411, 796, 479, 86, 22046, 13, 12924, 10786, 525, 3411, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 8818, 796, 21627, 13, 9122, 62, 18439, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7170, 28, 46265, 853, 62, 525, 3411, 5769, 18439, 62, 8818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 1288, 361, 1994, 318, 705, 7220, 62, 18439, 62, 8807, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 853, 62, 18439, 796, 479, 86, 22046, 13, 12924, 10786, 7220, 62, 18439, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 8818, 796, 21627, 13, 9122, 62, 18439, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 18439, 62, 8807, 28, 46265, 853, 62, 18439, 5769, 18439, 62, 8818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 611, 407, 479, 86, 853, 62, 18439, 290, 407, 479, 86, 853, 62, 525, 3411, 25, 198, 220, 220, 220, 220, 220, 5298, 26828, 9787, 3673, 34695, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 7170, 393, 2836, 62, 18439, 62, 8807, 373, 3804, 13, 48191, 319, 428, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 2314, 1057, 2637, 8, 198, 220, 220, 220, 1303, 16622, 4174, 262, 3210, 4600, 437, 13033, 13, 24396, 63, 11705, 1352, 13, 198, 220, 220, 220, 1441, 886, 13033, 13, 24396, 46491, 22046, 11, 12429, 46265, 22046, 5769, 18439, 62, 8818, 8, 628, 220, 1441, 6284, 62, 24396, 62, 12501, 273, 1352, 198 ]
3.079121
910
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDHarvester import DQMEDHarvester from DQM.SiPixelPhase1Common.HistogramManager_cfi import * import DQM.SiPixelPhase1Common.TriggerEventFlag_cfi as trigger SiPixelPhase1RecHitsNRecHits = DefaultHistoTrack.clone( name = "rechits", title = "RecHits", range_min = 0, range_max = 30, range_nbins = 30, xlabel = "rechits", dimensions = 0, specs = VPSet( StandardSpecificationTrend_Num, Specification().groupBy("PXBarrel/Event") .reduce("COUNT") .groupBy("PXBarrel") .save(nbins=100, xmin=0, xmax=5000), Specification().groupBy("PXForward/Event") .reduce("COUNT") .groupBy("PXForward") .save(nbins=100, xmin=0, xmax=5000), Specification().groupBy("PXAll/Event") .reduce("COUNT") .groupBy("PXAll") .save(nbins=100, xmin=0, xmax=5000) ) ) SiPixelPhase1RecHitsClustX = DefaultHistoTrack.clone( name = "clustersize_x", title = "Cluster Size X (OnTrack)", range_min = 0, range_max = 50, range_nbins = 50, xlabel = "size[pixels]", dimensions = 1, specs = VPSet( StandardSpecification2DProfile ) ) SiPixelPhase1RecHitsClustY = SiPixelPhase1RecHitsClustX.clone( name = "clustersize_y", title = "Cluster Size Y (OnTrack)", xlabel = "size[pixels]" ) SiPixelPhase1RecHitsErrorX = DefaultHistoTrack.clone( enabled=False, name = "rechiterror_x", title = "RecHit Error in X-direction", range_min = 0, range_max = 0.02, range_nbins = 100, xlabel = "X error", dimensions = 1, specs = VPSet( StandardSpecification2DProfile ) ) SiPixelPhase1RecHitsErrorY = SiPixelPhase1RecHitsErrorX.clone( enabled=False, name = "rechiterror_y", title = "RecHit Error in Y-direction", xlabel = "Y error" ) SiPixelPhase1RecHitsPosition = DefaultHistoTrack.clone( enabled = False, name = "rechit_pos", title = "Position of RecHits on Module", range_min = -1, range_max = 1, range_nbins = 100, range_y_min = -4, range_y_max = 4, range_y_nbins = 100, xlabel = "x offset", ylabel = "y offset", dimensions = 2, specs = VPSet( Specification(PerModule).groupBy("PXBarrel/PXLayer/DetId").save(), Specification(PerModule).groupBy("PXForward/PXDisk/DetId").save(), ) ) SiPixelPhase1RecHitsProb = DefaultHistoTrack.clone( name = "clusterprob", title = "Cluster Probability", xlabel = "log_10(Pr)", range_min = -10, range_max = 1, range_nbins = 50, dimensions = 1, specs = VPSet( Specification().groupBy("PXBarrel/PXLayer").saveAll(), Specification().groupBy("PXForward/PXDisk").saveAll(), StandardSpecification2DProfile, Specification().groupBy("PXBarrel/LumiBlock") .reduce("MEAN") .groupBy("PXBarrel", "EXTEND_X") .save(), Specification().groupBy("PXForward/LumiBlock") .reduce("MEAN") .groupBy("PXForward", "EXTEND_X") .save(), Specification(PerLayer1D).groupBy("PXBarrel/Shell/PXLayer").save(), Specification(PerLayer1D).groupBy("PXForward/HalfCylinder/PXRing/PXDisk").save() ) ) SiPixelPhase1RecHitsConf = cms.VPSet( SiPixelPhase1RecHitsNRecHits, SiPixelPhase1RecHitsClustX, SiPixelPhase1RecHitsClustY, SiPixelPhase1RecHitsErrorX, SiPixelPhase1RecHitsErrorY, SiPixelPhase1RecHitsPosition, SiPixelPhase1RecHitsProb, ) from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer SiPixelPhase1RecHitsAnalyzer = DQMEDAnalyzer('SiPixelPhase1RecHits', src = cms.InputTag("generalTracks"), histograms = SiPixelPhase1RecHitsConf, geometry = SiPixelPhase1Geometry, onlyValidHits = cms.bool(False), triggerflags = trigger.SiPixelPhase1Triggers ) SiPixelPhase1RecHitsHarvester = DQMEDHarvester("SiPixelPhase1Harvester", histograms = SiPixelPhase1RecHitsConf, geometry = SiPixelPhase1Geometry )
[ 11748, 48849, 14055, 13, 36301, 7248, 13, 16934, 355, 269, 907, 198, 6738, 360, 48, 5653, 712, 1063, 13, 14055, 13, 35, 48, 30733, 13587, 1158, 353, 1330, 360, 48, 30733, 13587, 1158, 353, 198, 6738, 360, 48, 44, 13, 42801, 40809, 35645, 16, 17227, 13, 13749, 21857, 13511, 62, 66, 12463, 1330, 1635, 198, 11748, 360, 48, 44, 13, 42801, 40809, 35645, 16, 17227, 13, 48344, 9237, 34227, 62, 66, 12463, 355, 7616, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 45, 6690, 39, 896, 796, 15161, 13749, 78, 24802, 13, 21018, 7, 198, 220, 1438, 796, 366, 260, 354, 896, 1600, 198, 220, 3670, 796, 366, 6690, 39, 896, 1600, 198, 220, 2837, 62, 1084, 796, 657, 11, 2837, 62, 9806, 796, 1542, 11, 2837, 62, 46803, 1040, 796, 1542, 11, 198, 220, 2124, 18242, 796, 366, 260, 354, 896, 1600, 198, 220, 15225, 796, 657, 11, 198, 220, 25274, 796, 569, 3705, 316, 7, 198, 220, 220, 220, 198, 220, 220, 8997, 22882, 2649, 45461, 62, 33111, 11, 198, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 10374, 2411, 14, 9237, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 7203, 34, 28270, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 3886, 7203, 47, 55, 10374, 2411, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21928, 7, 46803, 1040, 28, 3064, 11, 2124, 1084, 28, 15, 11, 2124, 9806, 28, 27641, 828, 628, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 39746, 14, 9237, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 7203, 34, 28270, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 3886, 7203, 47, 55, 39746, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21928, 7, 46803, 1040, 28, 3064, 11, 2124, 1084, 28, 15, 11, 2124, 9806, 28, 27641, 828, 628, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 3237, 14, 9237, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 7203, 34, 28270, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 3886, 7203, 47, 55, 3237, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21928, 7, 46803, 1040, 28, 3064, 11, 2124, 1084, 28, 15, 11, 2124, 9806, 28, 27641, 8, 628, 220, 1267, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 2601, 436, 55, 796, 15161, 13749, 78, 24802, 13, 21018, 7, 198, 220, 1438, 796, 366, 565, 13654, 1096, 62, 87, 1600, 198, 220, 3670, 796, 366, 2601, 5819, 12849, 1395, 357, 2202, 24802, 42501, 198, 220, 2837, 62, 1084, 796, 657, 11, 2837, 62, 9806, 796, 2026, 11, 2837, 62, 46803, 1040, 796, 2026, 11, 198, 220, 2124, 18242, 796, 366, 7857, 58, 79, 14810, 60, 1600, 198, 220, 15225, 796, 352, 11, 198, 220, 25274, 796, 569, 3705, 316, 7, 198, 220, 220, 220, 8997, 22882, 2649, 17, 35, 37046, 198, 220, 1267, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 2601, 436, 56, 796, 15638, 40809, 35645, 16, 6690, 39, 896, 2601, 436, 55, 13, 21018, 7, 198, 220, 1438, 796, 366, 565, 13654, 1096, 62, 88, 1600, 198, 220, 3670, 796, 366, 2601, 5819, 12849, 575, 357, 2202, 24802, 42501, 198, 220, 2124, 18242, 796, 366, 7857, 58, 79, 14810, 30866, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 12331, 55, 796, 15161, 13749, 78, 24802, 13, 21018, 7, 198, 220, 9343, 28, 25101, 11, 198, 220, 1438, 796, 366, 260, 354, 2676, 1472, 62, 87, 1600, 198, 220, 3670, 796, 366, 6690, 17889, 13047, 287, 1395, 12, 37295, 1600, 198, 220, 2837, 62, 1084, 796, 657, 11, 2837, 62, 9806, 796, 657, 13, 2999, 11, 2837, 62, 46803, 1040, 796, 1802, 11, 198, 220, 2124, 18242, 796, 366, 55, 4049, 1600, 198, 220, 15225, 796, 352, 11, 198, 220, 25274, 796, 569, 3705, 316, 7, 198, 220, 220, 220, 8997, 22882, 2649, 17, 35, 37046, 198, 220, 1267, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 12331, 56, 796, 15638, 40809, 35645, 16, 6690, 39, 896, 12331, 55, 13, 21018, 7, 198, 220, 9343, 28, 25101, 11, 198, 220, 1438, 796, 366, 260, 354, 2676, 1472, 62, 88, 1600, 198, 220, 3670, 796, 366, 6690, 17889, 13047, 287, 575, 12, 37295, 1600, 198, 220, 2124, 18242, 796, 366, 56, 4049, 1, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 26545, 796, 15161, 13749, 78, 24802, 13, 21018, 7, 198, 220, 9343, 796, 10352, 11, 198, 220, 1438, 796, 366, 260, 354, 270, 62, 1930, 1600, 198, 220, 3670, 796, 366, 26545, 286, 3311, 39, 896, 319, 19937, 1600, 198, 220, 2837, 62, 1084, 220, 220, 796, 532, 16, 11, 2837, 62, 9806, 220, 220, 796, 352, 11, 2837, 62, 46803, 1040, 220, 220, 796, 1802, 11, 198, 220, 2837, 62, 88, 62, 1084, 796, 532, 19, 11, 2837, 62, 88, 62, 9806, 796, 604, 11, 2837, 62, 88, 62, 46803, 1040, 796, 1802, 11, 198, 220, 2124, 18242, 796, 366, 87, 11677, 1600, 198, 220, 331, 18242, 796, 366, 88, 11677, 1600, 198, 220, 15225, 796, 362, 11, 198, 220, 25274, 796, 569, 3705, 316, 7, 198, 220, 220, 220, 18291, 2649, 7, 5990, 26796, 737, 8094, 3886, 7203, 47, 55, 10374, 2411, 14, 47, 32457, 2794, 14, 11242, 7390, 11074, 21928, 22784, 198, 220, 220, 220, 18291, 2649, 7, 5990, 26796, 737, 8094, 3886, 7203, 47, 55, 39746, 14, 47, 55, 40961, 14, 11242, 7390, 11074, 21928, 22784, 198, 220, 1267, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 2964, 65, 796, 15161, 13749, 78, 24802, 13, 21018, 7, 198, 220, 1438, 796, 366, 565, 5819, 1676, 65, 1600, 198, 220, 3670, 796, 366, 2601, 5819, 30873, 1799, 1600, 198, 220, 2124, 18242, 796, 366, 6404, 62, 940, 7, 6836, 42501, 198, 220, 2837, 62, 1084, 796, 532, 940, 11, 2837, 62, 9806, 796, 352, 11, 2837, 62, 46803, 1040, 796, 2026, 11, 198, 220, 15225, 796, 352, 11, 198, 220, 25274, 796, 569, 3705, 316, 7, 628, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 10374, 2411, 14, 47, 32457, 2794, 11074, 21928, 3237, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 39746, 14, 47, 55, 40961, 11074, 21928, 3237, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 8997, 22882, 2649, 17, 35, 37046, 11, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 10374, 2411, 14, 43, 12994, 12235, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 7203, 11682, 1565, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 3886, 7203, 47, 55, 10374, 2411, 1600, 366, 13918, 10619, 62, 55, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21928, 22784, 628, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 22446, 8094, 3886, 7203, 47, 55, 39746, 14, 43, 12994, 12235, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 7203, 11682, 1565, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 3886, 7203, 47, 55, 39746, 1600, 366, 13918, 10619, 62, 55, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21928, 22784, 628, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 7, 5990, 49925, 16, 35, 737, 8094, 3886, 7203, 47, 55, 10374, 2411, 14, 23248, 14, 47, 32457, 2794, 11074, 21928, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 2649, 7, 5990, 49925, 16, 35, 737, 8094, 3886, 7203, 47, 55, 39746, 14, 31305, 34, 2645, 5540, 14, 47, 55, 39687, 14, 47, 55, 40961, 11074, 21928, 3419, 198, 220, 1267, 198, 8, 628, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 18546, 796, 269, 907, 13, 53, 3705, 316, 7, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 45, 6690, 39, 896, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 2601, 436, 55, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 2601, 436, 56, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 12331, 55, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 12331, 56, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 26545, 11, 198, 220, 15638, 40809, 35645, 16, 6690, 39, 896, 2964, 65, 11, 198, 8, 198, 198, 6738, 360, 48, 5653, 712, 1063, 13, 14055, 13, 35, 48, 30733, 37702, 9107, 1330, 360, 48, 30733, 37702, 9107, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 37702, 9107, 796, 360, 48, 30733, 37702, 9107, 10786, 42801, 40809, 35645, 16, 6690, 39, 896, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 24622, 2898, 4595, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 1554, 26836, 796, 15638, 40809, 35645, 16, 6690, 39, 896, 18546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 22939, 796, 15638, 40809, 35645, 16, 10082, 15748, 11, 198, 220, 220, 220, 220, 220, 220, 220, 691, 47139, 39, 896, 796, 269, 907, 13, 30388, 7, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 7616, 33152, 796, 7616, 13, 42801, 40809, 35645, 16, 2898, 328, 5355, 198, 8, 198, 198, 42801, 40809, 35645, 16, 6690, 39, 896, 13587, 1158, 353, 796, 360, 48, 30733, 13587, 1158, 353, 7203, 42801, 40809, 35645, 16, 13587, 1158, 353, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1554, 26836, 796, 15638, 40809, 35645, 16, 6690, 39, 896, 18546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 22939, 796, 15638, 40809, 35645, 16, 10082, 15748, 198, 8, 198 ]
2.24492
1,821
import os, requests from progressbar import progressbar from caltechdata_api import get_metadata, caltechdata_edit def get_datacite_dates(prefix): """Get sumbitted date for DataCite DOIs with specific prefix""" doi_dates = {} doi_urls = {} url = ( "https://api.datacite.org/dois?query=prefix:" + prefix + "&page[cursor]=1&page[size]=500" ) next_link = url meta = requests.get(next_link).json()["meta"] for j in progressbar(range(meta["totalPages"])): r = requests.get(next_link) data = r.json() for doi in data["data"]: date = doi["attributes"]["registered"].split("T")[0] doi_dates[doi["id"]] = date doi_urls[doi["id"]] = doi["attributes"]["url"] if "next" in data["links"]: next_link = data["links"]["next"] else: next_link = None return doi_dates, doi_urls token = os.environ["TINDTOK"] doi_dates, doi_urls = get_datacite_dates("10.14291") for doi in doi_urls: if "data.caltech.edu" in doi_urls[doi]: caltech_id = doi_urls[doi].split("/")[-1] if caltech_id not in ["252", "253", "254", "255"]: metadata = get_metadata(caltech_id, emails=True) print(caltech_id) # print(metadata['dates']) for date in metadata["dates"]: if date["dateType"] == "Issued": print(date["date"], doi_dates[doi]) date["date"] = doi_dates[doi] response = caltechdata_edit(token, caltech_id, metadata, production=True) print(response)
[ 11748, 28686, 11, 7007, 198, 6738, 4371, 5657, 1330, 4371, 5657, 198, 6738, 2386, 13670, 7890, 62, 15042, 1330, 651, 62, 38993, 11, 2386, 13670, 7890, 62, 19312, 628, 198, 4299, 651, 62, 19608, 330, 578, 62, 19581, 7, 40290, 2599, 198, 220, 220, 220, 37227, 3855, 2160, 65, 2175, 3128, 329, 6060, 34, 578, 8410, 3792, 351, 2176, 21231, 37811, 198, 220, 220, 220, 23899, 62, 19581, 796, 23884, 198, 220, 220, 220, 23899, 62, 6371, 82, 796, 23884, 198, 220, 220, 220, 19016, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 15042, 13, 19608, 330, 578, 13, 2398, 14, 4598, 271, 30, 22766, 28, 40290, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 21231, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 366, 5, 7700, 58, 66, 21471, 22241, 16, 5, 7700, 58, 7857, 22241, 4059, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1306, 62, 8726, 796, 19016, 198, 220, 220, 220, 13634, 796, 7007, 13, 1136, 7, 19545, 62, 8726, 737, 17752, 3419, 14692, 28961, 8973, 198, 220, 220, 220, 329, 474, 287, 4371, 5657, 7, 9521, 7, 28961, 14692, 23350, 47798, 8973, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 1136, 7, 19545, 62, 8726, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 374, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 23899, 287, 1366, 14692, 7890, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 23899, 14692, 1078, 7657, 1, 7131, 1, 33736, 1, 4083, 35312, 7203, 51, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23899, 62, 19581, 58, 34023, 14692, 312, 8973, 60, 796, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23899, 62, 6371, 82, 58, 34023, 14692, 312, 8973, 60, 796, 23899, 14692, 1078, 7657, 1, 7131, 1, 6371, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 19545, 1, 287, 1366, 14692, 28751, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 8726, 796, 1366, 14692, 28751, 1, 7131, 1, 19545, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 8726, 796, 6045, 198, 220, 220, 220, 1441, 23899, 62, 19581, 11, 23899, 62, 6371, 82, 628, 198, 30001, 796, 28686, 13, 268, 2268, 14692, 51, 12115, 10468, 42, 8973, 198, 198, 34023, 62, 19581, 11, 23899, 62, 6371, 82, 796, 651, 62, 19608, 330, 578, 62, 19581, 7203, 940, 13, 1415, 33551, 4943, 198, 1640, 23899, 287, 23899, 62, 6371, 82, 25, 198, 220, 220, 220, 611, 366, 7890, 13, 9948, 13670, 13, 15532, 1, 287, 23899, 62, 6371, 82, 58, 34023, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2386, 13670, 62, 312, 796, 23899, 62, 6371, 82, 58, 34023, 4083, 35312, 7203, 14, 4943, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2386, 13670, 62, 312, 407, 287, 14631, 22800, 1600, 366, 28592, 1600, 366, 24970, 1600, 366, 13381, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 651, 62, 38993, 7, 9948, 13670, 62, 312, 11, 7237, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9948, 13670, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 38993, 17816, 19581, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3128, 287, 20150, 14692, 19581, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 14692, 4475, 6030, 8973, 6624, 366, 27738, 1739, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4475, 14692, 4475, 33116, 23899, 62, 19581, 58, 34023, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 14692, 4475, 8973, 796, 23899, 62, 19581, 58, 34023, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2386, 13670, 7890, 62, 19312, 7, 30001, 11, 2386, 13670, 62, 312, 11, 20150, 11, 3227, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 26209, 8, 198 ]
2.122876
765
import json from app import Category
[ 11748, 33918, 198, 6738, 598, 1330, 21743, 628 ]
4.75
8
"""Transformation between two frames. """ from compas.geometry import Frame from compas.geometry import Point from compas.geometry import Transformation F1 = Frame.worldXY() F2 = Frame([1.5, 1, 0], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15]) P = Point(2, 2, 2) # local point in F1 # transformation between 2 frames F1, F2 T = Transformation.from_frame_to_frame(F1, F2) # Transform geometry (=point P) into another coordinate frame print(P.transformed(T))
[ 37811, 8291, 1161, 1022, 734, 13431, 13, 198, 37811, 198, 6738, 552, 292, 13, 469, 15748, 1330, 25184, 198, 6738, 552, 292, 13, 469, 15748, 1330, 6252, 198, 6738, 552, 292, 13, 469, 15748, 1330, 49127, 198, 198, 37, 16, 796, 25184, 13, 6894, 34278, 3419, 198, 37, 17, 796, 25184, 26933, 16, 13, 20, 11, 352, 11, 657, 4357, 685, 15, 13, 3104, 11, 657, 13, 3104, 11, 657, 13, 1983, 4357, 25915, 15, 13, 3134, 11, 657, 13, 4790, 11, 532, 15, 13, 1314, 12962, 198, 47, 796, 6252, 7, 17, 11, 362, 11, 362, 8, 220, 1303, 1957, 966, 287, 376, 16, 198, 198, 2, 13389, 1022, 362, 13431, 376, 16, 11, 376, 17, 198, 51, 796, 49127, 13, 6738, 62, 14535, 62, 1462, 62, 14535, 7, 37, 16, 11, 376, 17, 8, 198, 198, 2, 26981, 22939, 46121, 4122, 350, 8, 656, 1194, 20435, 5739, 198, 4798, 7, 47, 13, 7645, 12214, 7, 51, 4008, 198 ]
2.85625
160
import os
[ 11748, 28686, 628, 628, 628 ]
3
5
import torch from torch import nn from torchvision import transforms from .faster_rcnn import FasterRCNN from ..builder import DETECTORS from PIL import Image import numpy as np @DETECTORS.register_module()
[ 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 10178, 1330, 31408, 198, 198, 6738, 764, 69, 1603, 62, 6015, 20471, 1330, 38996, 7397, 6144, 198, 6738, 11485, 38272, 1330, 38267, 9782, 20673, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 299, 32152, 355, 45941, 198, 31, 35, 2767, 9782, 20673, 13, 30238, 62, 21412, 3419, 198 ]
3.525424
59
from django.conf.urls import url from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns=[ url('^$',views.login_page,name = 'come'), url(r'^new/profile$', views.profile, name='profile'), url(r'^user/', views.user, name='user'), url(r'^search/', views.search_results, name='search_results'), url(r'^new/article$', views.new_article, name='new-article'), url(r'^home/', views.home, name='home'), url(r'^comment/', views.comment, name='comment'), ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 764, 1330, 5009, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 628, 198, 6371, 33279, 82, 41888, 198, 220, 220, 220, 198, 220, 220, 220, 19016, 10786, 61, 3, 3256, 33571, 13, 38235, 62, 7700, 11, 3672, 796, 705, 2958, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3605, 14, 13317, 3, 3256, 5009, 13, 13317, 11, 1438, 11639, 13317, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7220, 14, 3256, 5009, 13, 7220, 11, 1438, 11639, 7220, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 12947, 14, 3256, 5009, 13, 12947, 62, 43420, 11, 1438, 11639, 12947, 62, 43420, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3605, 14, 20205, 3, 3256, 5009, 13, 3605, 62, 20205, 11, 1438, 11639, 3605, 12, 20205, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 11195, 14, 3256, 5009, 13, 11195, 11, 1438, 11639, 11195, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 23893, 14, 3256, 5009, 13, 23893, 11, 1438, 11639, 23893, 33809, 198, 220, 220, 220, 198, 220, 220, 220, 198, 60, 198, 361, 6460, 13, 30531, 25, 198, 220, 220, 220, 19016, 33279, 82, 47932, 9037, 7, 33692, 13, 30733, 3539, 62, 21886, 11, 3188, 62, 15763, 796, 6460, 13, 30733, 3539, 62, 13252, 2394, 8, 198 ]
2.627049
244
# Import ROS2 libraries import rclpy from rclpy.node import Node from rclpy.action import ActionClient, ActionServer, GoalResponse, CancelResponse from rclpy.qos import QoSProfile from rclpy.callback_groups import ReentrantCallbackGroup from rclpy.executors import MultiThreadedExecutor # Import message files from geometry_msgs.msg import PoseStamped from nav_msgs.msg import OccupancyGrid as OccG from nav_msgs.msg import Odometry from nav2_msgs.action import NavigateToPose from tf2_msgs.msg import TFMessage from autonomous_exploration_msgs.msg import ExplorationTargets, ExplorationTarget, PosData from autonomous_exploration_msgs.action import AutonomousExplorationAction # Import other libraries import numpy as np import time ################################################################################################### if __name__ == '__main__': main()
[ 2, 17267, 48263, 17, 12782, 198, 11748, 374, 565, 9078, 198, 6738, 374, 565, 9078, 13, 17440, 1330, 19081, 198, 6738, 374, 565, 9078, 13, 2673, 1330, 7561, 11792, 11, 7561, 10697, 11, 25376, 31077, 11, 27910, 31077, 198, 6738, 374, 565, 9078, 13, 80, 418, 1330, 1195, 34049, 37046, 198, 6738, 374, 565, 9078, 13, 47423, 62, 24432, 1330, 797, 298, 5250, 47258, 13247, 198, 6738, 374, 565, 9078, 13, 18558, 315, 669, 1330, 15237, 16818, 276, 23002, 38409, 198, 198, 2, 17267, 3275, 3696, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 37557, 1273, 13322, 198, 6738, 6812, 62, 907, 14542, 13, 19662, 1330, 15227, 3883, 41339, 355, 10775, 38, 198, 6738, 6812, 62, 907, 14542, 13, 19662, 1330, 10529, 15748, 198, 6738, 6812, 17, 62, 907, 14542, 13, 2673, 1330, 13244, 10055, 2514, 47, 577, 198, 6738, 48700, 17, 62, 907, 14542, 13, 19662, 1330, 24958, 12837, 198, 6738, 18284, 62, 20676, 6944, 62, 907, 14542, 13, 19662, 1330, 36806, 51, 853, 1039, 11, 36806, 21745, 11, 18574, 6601, 198, 6738, 18284, 62, 20676, 6944, 62, 907, 14542, 13, 2673, 1330, 5231, 38175, 18438, 6944, 12502, 198, 198, 2, 17267, 584, 12782, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 29113, 29113, 29113, 21017, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
3.837719
228
from abc import ABC, abstractmethod from enum import Enum from typing import Optional, Union, Iterable, NoReturn try: # Assume we're a sub-module in a package. from utils import arguments as arg from base.abstract.tree_item import TreeInterface from loggers.extended_logger_interface import ExtendedLoggerInterface except ImportError: # Apparently no higher-level package has been imported, fall back to a local import. from ..utils import arguments as arg from ..base.abstract.tree_item import TreeInterface from .extended_logger_interface import ExtendedLoggerInterface Logger = Union[ExtendedLoggerInterface, arg.DefaultArgument]
[ 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 32233, 11, 4479, 11, 40806, 540, 11, 1400, 13615, 198, 198, 28311, 25, 220, 1303, 2195, 2454, 356, 821, 257, 850, 12, 21412, 287, 257, 5301, 13, 198, 220, 220, 220, 422, 3384, 4487, 1330, 7159, 355, 1822, 198, 220, 220, 220, 422, 2779, 13, 397, 8709, 13, 21048, 62, 9186, 1330, 12200, 39317, 198, 220, 220, 220, 422, 2604, 5355, 13, 2302, 1631, 62, 6404, 1362, 62, 39994, 1330, 24204, 11187, 1362, 39317, 198, 16341, 17267, 12331, 25, 220, 1303, 18626, 645, 2440, 12, 5715, 5301, 468, 587, 17392, 11, 2121, 736, 284, 257, 1957, 1330, 13, 198, 220, 220, 220, 422, 11485, 26791, 1330, 7159, 355, 1822, 198, 220, 220, 220, 422, 11485, 8692, 13, 397, 8709, 13, 21048, 62, 9186, 1330, 12200, 39317, 198, 220, 220, 220, 422, 764, 2302, 1631, 62, 6404, 1362, 62, 39994, 1330, 24204, 11187, 1362, 39317, 198, 198, 11187, 1362, 796, 4479, 58, 11627, 1631, 11187, 1362, 39317, 11, 1822, 13, 19463, 28100, 1713, 60, 628, 198 ]
3.622951
183
import sys import math BASE=20 Sym2Base={} Base2Sym={} l, h = [int(i) for i in input().split()] for i in range(h): numeral=input() for j in range(BASE): idx=l*j STR=numeral[idx:idx+l] if j in Base2Sym: Base2Sym[j]+=[STR] else: Base2Sym[j]=[STR] for key,value in Base2Sym.items(): Sym2Base[''.join(value)]=key ######################################## N1_sym=[] N2_sym=[] s1 = int(int(input())/h) for i in range(s1): N1_sym.append(''.join([input() for i in range(h)])) s2 = int(int(input())/h) for i in range(s2): N2_sym.append(''.join([input() for i in range(h)])) ######################################### N1=0 N2=0 for i in N1_sym: N1=N1*20+Sym2Base[i] for i in N2_sym: N2=N2*20+Sym2Base[i] ######################################### operation = input() if operation=='+': result=N1+N2 elif operation=='*': result=N1*N2 elif operation=='-': result=N1-N2 elif operation=='/': result=N1/N2 result_Base=[] if result==0: result_Base.append(0) while not(result/BASE==0): result_Base.append(result % BASE) result=int(result/BASE) result_Base.reverse() for i in result_Base: for j in Base2Sym[i]: print(j)
[ 11748, 25064, 198, 11748, 10688, 198, 198, 33, 11159, 28, 1238, 198, 43094, 17, 14881, 34758, 92, 198, 14881, 17, 43094, 34758, 92, 198, 198, 75, 11, 289, 796, 685, 600, 7, 72, 8, 329, 1312, 287, 5128, 22446, 35312, 3419, 60, 198, 1640, 1312, 287, 2837, 7, 71, 2599, 198, 220, 220, 220, 997, 1691, 28, 15414, 3419, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 33, 11159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 28, 75, 9, 73, 198, 220, 220, 220, 220, 220, 220, 220, 19269, 28, 22510, 1691, 58, 312, 87, 25, 312, 87, 10, 75, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 474, 287, 7308, 17, 43094, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7308, 17, 43094, 58, 73, 48688, 41888, 18601, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7308, 17, 43094, 58, 73, 22241, 58, 18601, 60, 198, 198, 1640, 1994, 11, 8367, 287, 7308, 17, 43094, 13, 23814, 33529, 198, 220, 220, 220, 15845, 17, 14881, 17816, 4458, 22179, 7, 8367, 15437, 28, 2539, 198, 198, 29113, 7804, 198, 198, 45, 16, 62, 37047, 28, 21737, 198, 45, 17, 62, 37047, 28, 21737, 198, 82, 16, 796, 493, 7, 600, 7, 15414, 3419, 20679, 71, 8, 198, 1640, 1312, 287, 2837, 7, 82, 16, 2599, 198, 220, 220, 220, 399, 16, 62, 37047, 13, 33295, 10786, 4458, 22179, 26933, 15414, 3419, 329, 1312, 287, 2837, 7, 71, 15437, 4008, 198, 82, 17, 796, 493, 7, 600, 7, 15414, 3419, 20679, 71, 8, 198, 1640, 1312, 287, 2837, 7, 82, 17, 2599, 198, 220, 220, 220, 399, 17, 62, 37047, 13, 33295, 10786, 4458, 22179, 26933, 15414, 3419, 329, 1312, 287, 2837, 7, 71, 15437, 4008, 198, 198, 29113, 7804, 2, 198, 198, 45, 16, 28, 15, 198, 45, 17, 28, 15, 198, 1640, 1312, 287, 399, 16, 62, 37047, 25, 198, 220, 220, 220, 399, 16, 28, 45, 16, 9, 1238, 10, 43094, 17, 14881, 58, 72, 60, 198, 1640, 1312, 287, 399, 17, 62, 37047, 25, 198, 220, 220, 220, 399, 17, 28, 45, 17, 9, 1238, 10, 43094, 17, 14881, 58, 72, 60, 198, 198, 29113, 7804, 2, 198, 198, 27184, 796, 5128, 3419, 198, 361, 4905, 855, 6, 10, 10354, 198, 220, 220, 220, 1255, 28, 45, 16, 10, 45, 17, 198, 417, 361, 4905, 855, 6, 9, 10354, 198, 220, 220, 220, 1255, 28, 45, 16, 9, 45, 17, 198, 417, 361, 4905, 855, 29001, 10354, 198, 220, 220, 220, 1255, 28, 45, 16, 12, 45, 17, 198, 417, 361, 4905, 855, 26488, 10354, 198, 220, 220, 220, 1255, 28, 45, 16, 14, 45, 17, 198, 198, 20274, 62, 14881, 28, 21737, 198, 361, 1255, 855, 15, 25, 198, 220, 220, 220, 1255, 62, 14881, 13, 33295, 7, 15, 8, 198, 198, 4514, 407, 7, 20274, 14, 33, 11159, 855, 15, 2599, 198, 220, 220, 220, 1255, 62, 14881, 13, 33295, 7, 20274, 4064, 49688, 8, 198, 220, 220, 220, 1255, 28, 600, 7, 20274, 14, 33, 11159, 8, 198, 198, 20274, 62, 14881, 13, 50188, 3419, 198, 1640, 1312, 287, 1255, 62, 14881, 25, 198, 220, 220, 220, 329, 474, 287, 7308, 17, 43094, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 73, 8, 198, 220, 220, 220, 220, 198 ]
2.149047
577
import os import shutil import zipfile import urllib import xml.etree.ElementTree as ET import numpy as np import csv import pandas # from google.colab import drive # from google.colab import files # %matplotlib inline # # automatically reload modules when they have changed # %reload_ext autoreload # %autoreload 2 # # import keras import keras # import keras_retinanet from keras_retinanet import models from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image from keras_retinanet.utils.visualization import draw_box, draw_caption from keras_retinanet.utils.colors import label_color # import miscellaneous modules import matplotlib.pyplot as plt import cv2 import os import numpy as np import time # set tf backend to allow memory to grow, instead of claiming everything import tensorflow as tf import json import os import pickle as pkl import Save_solar import shutil solar_detection(images_path = './keras-retinanet/7fc8992d8a_012288112DOPENPIPELINE_Orthomosaic_export_FriNov22014645.383588.jpg') Save_solar.save_json('./list_bb.json')
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 19974, 7753, 198, 11748, 2956, 297, 571, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 21370, 198, 11748, 19798, 292, 198, 2, 422, 23645, 13, 4033, 397, 1330, 3708, 198, 2, 422, 23645, 13, 4033, 397, 1330, 3696, 198, 198, 2, 4064, 6759, 29487, 8019, 26098, 198, 198, 2, 1303, 6338, 18126, 13103, 618, 484, 423, 3421, 198, 2, 4064, 260, 2220, 62, 2302, 1960, 382, 2220, 198, 2, 4064, 2306, 382, 2220, 362, 198, 2, 1303, 1330, 41927, 292, 198, 11748, 41927, 292, 198, 198, 2, 1330, 41927, 292, 62, 1186, 259, 272, 316, 198, 6738, 41927, 292, 62, 1186, 259, 272, 316, 1330, 4981, 198, 6738, 41927, 292, 62, 1186, 259, 272, 316, 13, 26791, 13, 9060, 1330, 1100, 62, 9060, 62, 65, 2164, 11, 662, 14681, 62, 9060, 11, 47558, 62, 9060, 198, 6738, 41927, 292, 62, 1186, 259, 272, 316, 13, 26791, 13, 41464, 1634, 1330, 3197, 62, 3524, 11, 3197, 62, 6888, 1159, 198, 6738, 41927, 292, 62, 1186, 259, 272, 316, 13, 26791, 13, 4033, 669, 1330, 6167, 62, 8043, 198, 198, 2, 1330, 2984, 25673, 13103, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 269, 85, 17, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 2, 900, 48700, 30203, 284, 1249, 4088, 284, 1663, 11, 2427, 286, 8512, 2279, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 2298, 293, 355, 279, 41582, 198, 11748, 12793, 62, 82, 6192, 198, 11748, 4423, 346, 198, 82, 6192, 62, 15255, 3213, 7, 17566, 62, 6978, 796, 705, 19571, 6122, 292, 12, 1186, 259, 272, 316, 14, 22, 16072, 23, 41561, 67, 23, 64, 62, 486, 1828, 3459, 14686, 35, 3185, 1677, 47, 4061, 3698, 8881, 62, 5574, 400, 296, 8546, 291, 62, 39344, 62, 30214, 20795, 17, 1264, 3510, 2231, 13, 2548, 2327, 3459, 13, 9479, 11537, 198, 16928, 62, 82, 6192, 13, 21928, 62, 17752, 7, 4458, 14, 4868, 62, 11848, 13, 17752, 11537, 628, 220, 220, 220 ]
3.002778
360
"""Clean Code in Python - Chapter 6: Descriptors > A Pythonic Implementation """ class HistoryTracedAttribute: """Trace the values of this attribute into another one given by the name at ``trace_attribute_name``. """ def _needs_to_track_change(self, instance, value) -> bool: """Determine if the value change needs to be traced or not. Rules for adding a value to the trace: * If the value is not previously set (it's the first one). * If the new value is != than the current one. """ try: current_value = instance.__dict__[self._name] except KeyError: return True return value != current_value class Traveller: """A person visiting several cities. We wish to track the path of the traveller, as he or she is visiting each new city. >>> alice = Traveller("Alice", "Barcelona") >>> alice.current_city = "Paris" >>> alice.current_city = "Brussels" >>> alice.current_city = "Amsterdam" >>> alice.cities_visited ['Barcelona', 'Paris', 'Brussels', 'Amsterdam'] >>> alice.current_city 'Amsterdam' >>> alice.current_city = "Amsterdam" >>> alice.cities_visited ['Barcelona', 'Paris', 'Brussels', 'Amsterdam'] >>> bob = Traveller("Bob", "Rotterdam") >>> bob.current_city = "Amsterdam" >>> bob.current_city 'Amsterdam' >>> bob.cities_visited ['Rotterdam', 'Amsterdam'] """ current_city = HistoryTracedAttribute("cities_visited")
[ 37811, 32657, 6127, 287, 11361, 532, 7006, 718, 25, 2935, 6519, 669, 198, 198, 29, 317, 11361, 291, 46333, 198, 198, 37811, 628, 198, 4871, 7443, 2898, 2286, 33682, 25, 198, 220, 220, 220, 37227, 2898, 558, 262, 3815, 286, 428, 11688, 656, 1194, 530, 1813, 416, 262, 1438, 379, 198, 220, 220, 220, 7559, 40546, 62, 42348, 62, 3672, 15506, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 50032, 62, 1462, 62, 11659, 62, 3803, 7, 944, 11, 4554, 11, 1988, 8, 4613, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35, 2357, 3810, 611, 262, 1988, 1487, 2476, 284, 307, 23246, 393, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 14252, 329, 4375, 257, 1988, 284, 262, 12854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1002, 262, 1988, 318, 407, 4271, 900, 357, 270, 338, 262, 717, 530, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1002, 262, 649, 1988, 318, 14512, 621, 262, 1459, 530, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 8367, 796, 4554, 13, 834, 11600, 834, 58, 944, 13557, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 14512, 1459, 62, 8367, 628, 198, 4871, 43662, 6051, 25, 198, 220, 220, 220, 37227, 32, 1048, 10013, 1811, 4736, 13, 628, 220, 220, 220, 775, 4601, 284, 2610, 262, 3108, 286, 262, 49130, 11, 355, 339, 393, 673, 318, 10013, 1123, 198, 220, 220, 220, 649, 1748, 13, 628, 220, 220, 220, 13163, 435, 501, 796, 43662, 6051, 7203, 44484, 1600, 366, 10374, 14308, 4943, 198, 220, 220, 220, 13163, 435, 501, 13, 14421, 62, 19205, 796, 366, 40313, 1, 198, 220, 220, 220, 13163, 435, 501, 13, 14421, 62, 19205, 796, 366, 9414, 385, 14002, 1, 198, 220, 220, 220, 13163, 435, 501, 13, 14421, 62, 19205, 796, 366, 5840, 22506, 1, 628, 220, 220, 220, 13163, 435, 501, 13, 66, 871, 62, 4703, 863, 198, 220, 220, 220, 37250, 10374, 14308, 3256, 705, 40313, 3256, 705, 9414, 385, 14002, 3256, 705, 5840, 22506, 20520, 628, 220, 220, 220, 13163, 435, 501, 13, 14421, 62, 19205, 198, 220, 220, 220, 705, 5840, 22506, 6, 628, 220, 220, 220, 13163, 435, 501, 13, 14421, 62, 19205, 796, 366, 5840, 22506, 1, 198, 220, 220, 220, 13163, 435, 501, 13, 66, 871, 62, 4703, 863, 198, 220, 220, 220, 37250, 10374, 14308, 3256, 705, 40313, 3256, 705, 9414, 385, 14002, 3256, 705, 5840, 22506, 20520, 628, 220, 220, 220, 13163, 29202, 796, 43662, 6051, 7203, 18861, 1600, 366, 24864, 353, 11043, 4943, 198, 220, 220, 220, 13163, 29202, 13, 14421, 62, 19205, 796, 366, 5840, 22506, 1, 198, 220, 220, 220, 13163, 29202, 13, 14421, 62, 19205, 198, 220, 220, 220, 705, 5840, 22506, 6, 198, 220, 220, 220, 13163, 29202, 13, 66, 871, 62, 4703, 863, 198, 220, 220, 220, 37250, 24864, 353, 11043, 3256, 705, 5840, 22506, 20520, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1459, 62, 19205, 796, 7443, 2898, 2286, 33682, 7203, 66, 871, 62, 4703, 863, 4943, 198 ]
2.660312
577
"""Retrieve data from PyPI.""" from distutils.version import LooseVersion from logging import getLogger import xmlrpclib from flask.ext.celery import single_instance from pypi_portal.extensions import celery, db, redis from pypi_portal.models.pypi import Package from pypi_portal.models.redis import POLL_SIMPLE_THROTTLE LOG = getLogger(__name__) THROTTLE = 1 * 60 * 60 @celery.task(bind=True, soft_time_limit=120) @single_instance def update_package_list(): """Get a list of all packages from PyPI through their XMLRPC API. This task returns something in case the user schedules it from a view. The view can wait up to a certain amount of time for this task to finish, and if nothing times out, it can tell the user if it found any new packages. Since views can schedule this task, we don't want some rude person hammering PyPI or our application with repeated requests. This task is limited to one run per 1 hour at most. Returns: List of new packages found. Returns None if task is rate-limited. """ # Rate limit. lock = redis.lock(POLL_SIMPLE_THROTTLE, timeout=int(THROTTLE)) have_lock = lock.acquire(blocking=False) if not have_lock: LOG.warning('poll_simple() task has already executed in the past 4 hours. Rate limiting.') return None # Query API. client = xmlrpclib.ServerProxy('https://pypi.python.org/pypi') results = client.search(dict(summary='')) if not results: LOG.error('Reply from API had no results.') return list() LOG.debug('Sorting results.') results.sort(key=lambda x: (x['name'], LooseVersion(x['version']))) filtered = (r for r in results if r['version'][0].isdigit()) packages = {r['name']: dict(summary=r['summary'], version=r['version'], id=0) for r in filtered} LOG.debug('Pruning unchanged packages.') for row in db.session.query(Package.id, Package.name, Package.summary, Package.latest_version): if packages.get(row[1]) == dict(summary=row[2], version=row[3], id=0): packages.pop(row[1]) elif row[1] in packages: packages[row[1]]['id'] = row[0] new_package_names = {n for n, d in packages.items() if not d['id']} # Merge into database. LOG.debug('Found {} new packages in PyPI, updating {} total.'.format(len(new_package_names), len(packages))) with db.session.begin_nested(): for name, data in packages.items(): db.session.merge(Package(id=data['id'], name=name, summary=data['summary'], latest_version=data['version'])) db.session.commit() return list(new_package_names)
[ 37811, 9781, 30227, 1366, 422, 9485, 11901, 526, 15931, 198, 198, 6738, 1233, 26791, 13, 9641, 1330, 6706, 577, 14815, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 11748, 35555, 81, 79, 565, 571, 198, 198, 6738, 42903, 13, 2302, 13, 7015, 88, 1330, 2060, 62, 39098, 198, 198, 6738, 279, 4464, 72, 62, 634, 282, 13, 2302, 5736, 1330, 18725, 1924, 11, 20613, 11, 2266, 271, 198, 6738, 279, 4464, 72, 62, 634, 282, 13, 27530, 13, 79, 4464, 72, 1330, 15717, 198, 6738, 279, 4464, 72, 62, 634, 282, 13, 27530, 13, 445, 271, 1330, 19922, 3069, 62, 48913, 16437, 62, 4221, 49, 29089, 2538, 198, 198, 25294, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 198, 4221, 49, 29089, 2538, 796, 352, 1635, 3126, 1635, 3126, 628, 198, 31, 7015, 88, 13, 35943, 7, 21653, 28, 17821, 11, 2705, 62, 2435, 62, 32374, 28, 10232, 8, 198, 31, 29762, 62, 39098, 198, 4299, 4296, 62, 26495, 62, 4868, 33529, 198, 220, 220, 220, 37227, 3855, 257, 1351, 286, 477, 10392, 422, 9485, 11901, 832, 511, 23735, 49, 5662, 7824, 13, 628, 220, 220, 220, 770, 4876, 5860, 1223, 287, 1339, 262, 2836, 24025, 340, 422, 257, 1570, 13, 383, 1570, 460, 4043, 510, 284, 257, 1728, 2033, 286, 198, 220, 220, 220, 640, 329, 428, 4876, 284, 5461, 11, 290, 611, 2147, 1661, 503, 11, 340, 460, 1560, 262, 2836, 611, 340, 1043, 597, 649, 10392, 13, 628, 220, 220, 220, 4619, 5009, 460, 7269, 428, 4876, 11, 356, 836, 470, 765, 617, 22066, 1048, 15554, 278, 9485, 11901, 393, 674, 3586, 351, 5100, 198, 220, 220, 220, 7007, 13, 770, 4876, 318, 3614, 284, 530, 1057, 583, 352, 1711, 379, 749, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 7343, 286, 649, 10392, 1043, 13, 16409, 6045, 611, 4876, 318, 2494, 12, 10698, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 14806, 4179, 13, 198, 220, 220, 220, 5793, 796, 2266, 271, 13, 5354, 7, 16402, 3069, 62, 48913, 16437, 62, 4221, 49, 29089, 2538, 11, 26827, 28, 600, 7, 4221, 49, 29089, 2538, 4008, 198, 220, 220, 220, 423, 62, 5354, 796, 5793, 13, 330, 29782, 7, 41938, 28, 25101, 8, 198, 220, 220, 220, 611, 407, 423, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 43917, 10786, 30393, 62, 36439, 3419, 4876, 468, 1541, 10945, 287, 262, 1613, 604, 2250, 13, 14806, 15637, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1303, 43301, 7824, 13, 198, 220, 220, 220, 5456, 796, 35555, 81, 79, 565, 571, 13, 10697, 44148, 10786, 5450, 1378, 79, 4464, 72, 13, 29412, 13, 2398, 14, 79, 4464, 72, 11537, 198, 220, 220, 220, 2482, 796, 5456, 13, 12947, 7, 11600, 7, 49736, 28, 7061, 4008, 198, 220, 220, 220, 611, 407, 2482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 18224, 10786, 36875, 422, 7824, 550, 645, 2482, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 3419, 628, 220, 220, 220, 41605, 13, 24442, 10786, 50, 24707, 2482, 2637, 8, 198, 220, 220, 220, 2482, 13, 30619, 7, 2539, 28, 50033, 2124, 25, 357, 87, 17816, 3672, 6, 4357, 6706, 577, 14815, 7, 87, 17816, 9641, 20520, 22305, 198, 220, 220, 220, 29083, 796, 357, 81, 329, 374, 287, 2482, 611, 374, 17816, 9641, 6, 7131, 15, 4083, 9409, 328, 270, 28955, 198, 220, 220, 220, 10392, 796, 1391, 81, 17816, 3672, 6, 5974, 8633, 7, 49736, 28, 81, 17816, 49736, 6, 4357, 2196, 28, 81, 17816, 9641, 6, 4357, 4686, 28, 15, 8, 329, 374, 287, 29083, 92, 628, 220, 220, 220, 41605, 13, 24442, 10786, 47, 5143, 278, 21588, 10392, 2637, 8, 198, 220, 220, 220, 329, 5752, 287, 20613, 13, 29891, 13, 22766, 7, 27813, 13, 312, 11, 15717, 13, 3672, 11, 15717, 13, 49736, 11, 15717, 13, 42861, 62, 9641, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10392, 13, 1136, 7, 808, 58, 16, 12962, 6624, 8633, 7, 49736, 28, 808, 58, 17, 4357, 2196, 28, 808, 58, 18, 4357, 4686, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10392, 13, 12924, 7, 808, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5752, 58, 16, 60, 287, 10392, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10392, 58, 808, 58, 16, 60, 7131, 6, 312, 20520, 796, 5752, 58, 15, 60, 198, 220, 220, 220, 649, 62, 26495, 62, 14933, 796, 1391, 77, 329, 299, 11, 288, 287, 10392, 13, 23814, 3419, 611, 407, 288, 17816, 312, 20520, 92, 628, 220, 220, 220, 1303, 39407, 656, 6831, 13, 198, 220, 220, 220, 41605, 13, 24442, 10786, 21077, 23884, 649, 10392, 287, 9485, 11901, 11, 19698, 23884, 2472, 2637, 13, 18982, 7, 11925, 7, 3605, 62, 26495, 62, 14933, 828, 18896, 7, 43789, 22305, 198, 220, 220, 220, 351, 20613, 13, 29891, 13, 27471, 62, 77, 7287, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 1366, 287, 10392, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 647, 469, 7, 27813, 7, 312, 28, 7890, 17816, 312, 6, 4357, 1438, 28, 3672, 11, 10638, 28, 7890, 17816, 49736, 6, 4357, 3452, 62, 9641, 28, 7890, 17816, 9641, 20520, 4008, 198, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 220, 220, 220, 1441, 1351, 7, 3605, 62, 26495, 62, 14933, 8, 198 ]
2.794243
938
# Project Quex (http://quex.sourceforge.net); License: MIT; # (C) 2005-2020 Frank-Rene Schaefer; #_______________________________________________________________________________ import quex.output.core.state.core as state_coder import quex.output.core.state.entry as entry import quex.output.core.mega_state.core as mega_state_coder from quex.blackboard import Lng from collections import defaultdict from copy import copy def do(TheAnalyzer): """Generate source code for a given state machine 'SM'. """ Lng.register_analyzer(TheAnalyzer) assert id(Lng.analyzer) == id(TheAnalyzer) # (*) Init State must be first! txt = [] state_coder.do(txt, TheAnalyzer.state_db[TheAnalyzer.init_state_index], TheAnalyzer) # (*) Second: The drop-out catcher, since it is referenced the most. # (Is implemented entirely by 'entry') code_drop_out_catcher(txt, TheAnalyzer) # (*) Code the Mega States (implementing multiple states in one) for state in TheAnalyzer.mega_state_list: mega_state_coder.do(txt, state, TheAnalyzer) # (*) All other (normal) states (sorted by their frequency of appearance) for state in remaining_non_mega_state_iterable(TheAnalyzer): state_coder.do(txt, state, TheAnalyzer) Lng.unregister_analyzer() return txt def get_frequency_db(StateDB, RemainderStateIndexList): """Sort the list in a away, so that states that are used more often appear earlier. This happens in the hope of more cache locality. """ # Count number of transitions to a state: frequency_db frequency_db = defaultdict(int) for state in (StateDB[i] for i in RemainderStateIndexList): assert state.transition_map is not None for interval, target_index in state.transition_map: frequency_db[target_index] += 1 return frequency_db
[ 2, 4935, 4670, 87, 357, 4023, 1378, 421, 1069, 13, 10459, 30293, 13, 3262, 1776, 13789, 25, 17168, 26, 198, 2, 357, 34, 8, 5075, 12, 42334, 5278, 12, 49, 1734, 35756, 41027, 26, 220, 198, 2, 27193, 2602, 37405, 198, 11748, 627, 1069, 13, 22915, 13, 7295, 13, 5219, 13, 7295, 220, 220, 220, 220, 220, 355, 220, 220, 220, 220, 1181, 62, 66, 12342, 198, 11748, 627, 1069, 13, 22915, 13, 7295, 13, 5219, 13, 13000, 220, 220, 220, 220, 355, 220, 220, 220, 220, 5726, 198, 11748, 627, 1069, 13, 22915, 13, 7295, 13, 13731, 62, 5219, 13, 7295, 355, 220, 220, 220, 220, 23465, 62, 5219, 62, 66, 12342, 198, 6738, 220, 220, 627, 1069, 13, 13424, 3526, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 406, 782, 198, 198, 6738, 220, 220, 17268, 1330, 4277, 11600, 628, 198, 6738, 220, 220, 4866, 220, 220, 220, 220, 220, 220, 220, 1330, 4866, 198, 198, 4299, 466, 7, 464, 37702, 9107, 2599, 198, 220, 220, 220, 37227, 8645, 378, 2723, 2438, 329, 257, 1813, 1181, 4572, 705, 12310, 4458, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 406, 782, 13, 30238, 62, 38200, 9107, 7, 464, 37702, 9107, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6818, 4686, 7, 43, 782, 13, 38200, 9107, 8, 6624, 4686, 7, 464, 37702, 9107, 8, 628, 220, 220, 220, 1303, 20789, 8, 44707, 1812, 1276, 307, 717, 0, 198, 220, 220, 220, 256, 742, 796, 17635, 198, 220, 220, 220, 1181, 62, 66, 12342, 13, 4598, 7, 14116, 11, 383, 37702, 9107, 13, 5219, 62, 9945, 58, 464, 37702, 9107, 13, 15003, 62, 5219, 62, 9630, 4357, 383, 37702, 9107, 8, 628, 220, 220, 220, 1303, 20789, 8, 5498, 25, 383, 4268, 12, 448, 32408, 11, 1201, 340, 318, 20717, 262, 749, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 357, 3792, 9177, 5000, 416, 705, 13000, 11537, 198, 220, 220, 220, 2438, 62, 14781, 62, 448, 62, 9246, 2044, 7, 14116, 11, 383, 37702, 9107, 8, 628, 220, 220, 220, 1303, 20789, 8, 6127, 262, 13421, 1829, 357, 320, 26908, 278, 3294, 2585, 287, 530, 8, 198, 220, 220, 220, 329, 1181, 287, 383, 37702, 9107, 13, 13731, 62, 5219, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23465, 62, 5219, 62, 66, 12342, 13, 4598, 7, 14116, 11, 1181, 11, 383, 37702, 9107, 8, 628, 220, 220, 220, 1303, 20789, 8, 1439, 584, 357, 11265, 8, 2585, 357, 82, 9741, 416, 511, 8373, 286, 5585, 8, 198, 220, 220, 220, 329, 1181, 287, 5637, 62, 13159, 62, 13731, 62, 5219, 62, 2676, 540, 7, 464, 37702, 9107, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 66, 12342, 13, 4598, 7, 14116, 11, 1181, 11, 383, 37702, 9107, 8, 220, 628, 220, 220, 220, 406, 782, 13, 403, 30238, 62, 38200, 9107, 3419, 198, 220, 220, 220, 1441, 256, 742, 198, 198, 4299, 651, 62, 35324, 62, 9945, 7, 9012, 11012, 11, 42606, 1082, 9012, 15732, 8053, 2599, 198, 220, 220, 220, 37227, 42758, 262, 1351, 287, 257, 1497, 11, 523, 326, 2585, 326, 389, 973, 517, 198, 220, 220, 220, 220, 220, 220, 1690, 1656, 2961, 13, 770, 4325, 287, 262, 2911, 286, 517, 220, 198, 220, 220, 220, 220, 220, 220, 12940, 48036, 13, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2764, 1271, 286, 27188, 284, 257, 1181, 25, 8373, 62, 9945, 198, 220, 220, 220, 8373, 62, 9945, 796, 4277, 11600, 7, 600, 8, 198, 220, 220, 220, 329, 1181, 287, 357, 9012, 11012, 58, 72, 60, 329, 1312, 287, 42606, 1082, 9012, 15732, 8053, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1181, 13, 7645, 653, 62, 8899, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16654, 11, 2496, 62, 9630, 287, 1181, 13, 7645, 653, 62, 8899, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 62, 9945, 58, 16793, 62, 9630, 60, 15853, 352, 198, 220, 220, 220, 1441, 8373, 62, 9945, 628 ]
2.765805
696
# python-3 # coding: utf-8 ''' Script Name: BuildConsolidatedFeaturesFile.py Created date : Sunday, 27th March Author : Sreejith Menon Description : buildFeatureFl(input file,output file) Reads from a csv file (taken as a parameter) containing a list of image GIDs. Extracts the below features from the IBEIS dataset: 1. nid 2. names 3. species_texts 4. sex_texts 5. age_months_est 6. exemplar_flags 7. quality_texts Outputs 3 files in the same directory as the outFL directory File 1 : Map of all images and their annotation IDs (csv) File 2 : Annotation ID's and their features (csv) File 3 : Image GID, annotation ID's and their features (csv) File 4 : Image GID, annotation ID's and their features (json) ''' from __future__ import print_function import GetPropertiesAPI as GP import importlib, json, re, sys, csv, time, math # importlib.reload(GP) # un-comment if there are any changes made to API import pandas as pd # import DataStructsHelperAPI as DS from math import floor # importlib.reload(GP) from multiprocessing import Process import DataStructsHelperAPI as DS # Original Microsoft Tagging API output is a R list, # This method parses the data into python readable form and dumps the output into a JSON. ''' Logic for reading data from the consolidatedHITResults file - changed The input for the below method will be a csv file/list with all the image GID's for which the features have to be extracted. ''' # these APIs require encoded annot_uuid_list ggr_eco_ftr_api_map = {'age': "/api/annot/age/months/json", 'sex': "/api/annot/sex/text/json", 'bbox': "/api/annot/bbox/json", 'nid': "/api/annot/name/rowid/json", 'exemplar': "/api/annot/exemplar/json", 'species': "/api/annot/species/json", 'quality': "/api/annot/quality/text/json", 'view_point': "/api/annot/yaw/text/json" } # these APIs takes in an encoded gid list ggr_otr_ftr_api_map = {'contributor': "/api/image/note", 'lat': "/api/image/lat", 'long': "/api/image/lon", 'datetime': "/api/image/unixtime", 'width': "/api/image/width", 'height': "/api/image/height", 'orientation': "/api/image/orientation" } if __name__ == "__main__": gids = list(map(str, list(range(1, 1862)))) buildFeatureFl(gids, "../data/Flickr_IBEIS_Giraffe_Ftrs.csv", False) # __main__() # gidAidMapFl = "../data/full_gid_aid_map.json" # getAdditionalAnnotFeatures(gidAidMapFl,'bbox',"../data/gid_bbox.json") # buildBeautyFtrFl("../data/beautyFeatures_GZC_R.csv",['GID','pleasure','arousal','dominance','y'],"../data/beautyFeatures_GZC") # DS.combineJson("../data/beautyFeatures_GZC.json","../data/imgs_exif_data_full.json","../data/GZC_exifs_beauty_full.json") # p1 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_1.json",1,5000)) # p2 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_2.json",5001,10000)) # p3 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_3.json",10001,15000)) # p4 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_4.json",15001,20000)) # p5 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_5.json",20001,25000)) # p6 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_6.json",25001,30000)) # p7 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_7.json",30001,35000)) # p8 = Process(target=build_exif_ftrs_fl_ggr, args=("uuid_gid_map.json", "ggr_uuid_list.dat", "ggr_exif_extract_8.json",35001,37433)) # p9 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_1",1,5000)) # p10 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_2",5001,10000)) # p11 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_3",10001,15000)) # p12 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_4",15001,20000)) # p13 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_5",20001,25000)) # p14 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_6",25001,30000)) # p15 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_7",30001,35000)) # p16 = Process(target=build_feature_file_ggr, args=("uuid_gid_map.json", "ggr_ftr_extract_8",35001,37433)) # p1 = Process(target=test, args=(0, 400, "/tmp/test1.json")) # p2 = Process(target=test, args=(400, 800, "/tmp/test2.json")) # p3 = Process(target=test, args=(800, 1200, "/tmp/test3.json")) # p4 = Process(target=test, args=(1200, 1600, "/tmp/test4.json")) # p5 = Process(target=test, args=(1600, 2000, "/tmp/test5.json")) # p6 = Process(target=test, args=(2000, 2400, "/tmp/test6.json")) # p7 = Process(target=test, args=(2400, 2800, "/tmp/test7.json")) # p8 = Process(target=test, args=(2800, 3200, "/tmp/test8.json")) # p9 = Process(target=test, args=(3200, 3600, "/tmp/test9.json")) # p10 = Process(target=test, args=(3600, 4033, "/tmp/test10.json")) # p1.start() # p2.start() # p3.start() # p4.start() # p5.start() # p6.start() # p7.start() # p8.start() # p9.start() # p10.start() # # p11.start() # # p12.start() # # p13.start() # # p14.start() # # p15.start() # # p16.start()
[ 2, 21015, 12, 18, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 7061, 6, 198, 7391, 6530, 25, 10934, 9444, 10180, 515, 23595, 8979, 13, 9078, 198, 198, 41972, 3128, 1058, 3502, 11, 2681, 400, 2805, 198, 198, 13838, 1058, 311, 631, 73, 342, 6065, 261, 198, 198, 11828, 1058, 220, 198, 11249, 38816, 7414, 7, 15414, 2393, 11, 22915, 2393, 8, 198, 5569, 82, 422, 257, 269, 21370, 2393, 357, 83, 1685, 355, 257, 11507, 8, 7268, 257, 1351, 286, 2939, 402, 47954, 13, 220, 198, 198, 11627, 974, 82, 262, 2174, 3033, 422, 262, 314, 12473, 1797, 27039, 25, 198, 16, 13, 299, 312, 198, 17, 13, 3891, 198, 18, 13, 4693, 62, 5239, 82, 198, 19, 13, 1714, 62, 5239, 82, 198, 20, 13, 2479, 62, 41537, 62, 395, 198, 21, 13, 21433, 283, 62, 33152, 198, 22, 13, 3081, 62, 5239, 82, 198, 198, 26410, 82, 513, 3696, 287, 262, 976, 8619, 355, 262, 503, 3697, 8619, 198, 8979, 352, 1058, 9347, 286, 477, 4263, 290, 511, 23025, 32373, 357, 40664, 8, 198, 8979, 362, 1058, 1052, 38983, 4522, 338, 290, 511, 3033, 357, 40664, 8, 198, 8979, 513, 1058, 7412, 402, 2389, 11, 23025, 4522, 338, 290, 511, 3033, 357, 40664, 8, 198, 8979, 604, 1058, 7412, 402, 2389, 11, 23025, 4522, 338, 290, 511, 3033, 357, 17752, 8, 198, 7061, 6, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 3497, 2964, 18200, 17614, 355, 14714, 198, 11748, 1330, 8019, 11, 33918, 11, 302, 11, 25064, 11, 269, 21370, 11, 640, 11, 10688, 198, 2, 1330, 8019, 13, 260, 2220, 7, 16960, 8, 1303, 555, 12, 23893, 611, 612, 389, 597, 2458, 925, 284, 7824, 198, 11748, 19798, 292, 355, 279, 67, 198, 2, 1330, 6060, 44909, 82, 47429, 17614, 355, 17400, 198, 6738, 10688, 1330, 4314, 198, 2, 1330, 8019, 13, 260, 2220, 7, 16960, 8, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 11748, 6060, 44909, 82, 47429, 17614, 355, 17400, 628, 628, 628, 198, 2, 13745, 5413, 309, 16406, 7824, 5072, 318, 257, 371, 1351, 11, 198, 2, 770, 2446, 13544, 274, 262, 1366, 656, 21015, 31744, 1296, 290, 45514, 262, 5072, 656, 257, 19449, 13, 628, 198, 198, 7061, 6, 198, 11187, 291, 329, 3555, 1366, 422, 262, 27890, 39, 2043, 25468, 2393, 532, 3421, 198, 464, 5128, 329, 262, 2174, 2446, 481, 307, 257, 269, 21370, 2393, 14, 4868, 351, 477, 262, 2939, 402, 2389, 338, 329, 543, 262, 3033, 423, 284, 307, 21242, 13, 198, 7061, 6, 628, 198, 198, 2, 777, 23113, 2421, 30240, 24708, 62, 12303, 312, 62, 4868, 198, 1130, 81, 62, 47704, 62, 701, 81, 62, 15042, 62, 8899, 796, 1391, 6, 496, 10354, 12813, 15042, 14, 34574, 14, 496, 14, 41537, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8044, 10354, 12813, 15042, 14, 34574, 14, 8044, 14, 5239, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 10354, 12813, 15042, 14, 34574, 14, 65, 3524, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 312, 10354, 12813, 15042, 14, 34574, 14, 3672, 14, 808, 312, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1069, 18856, 283, 10354, 12813, 15042, 14, 34574, 14, 1069, 18856, 283, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35448, 10354, 12813, 15042, 14, 34574, 14, 35448, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13237, 10354, 12813, 15042, 14, 34574, 14, 13237, 14, 5239, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1177, 62, 4122, 10354, 12813, 15042, 14, 34574, 14, 88, 707, 14, 5239, 14, 17752, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 2, 777, 23113, 2753, 287, 281, 30240, 308, 312, 1351, 198, 1130, 81, 62, 313, 81, 62, 701, 81, 62, 15042, 62, 8899, 796, 1391, 6, 3642, 2455, 273, 10354, 12813, 15042, 14, 9060, 14, 11295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15460, 10354, 12813, 15042, 14, 9060, 14, 15460, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 10354, 12813, 15042, 14, 9060, 14, 14995, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19608, 8079, 10354, 12813, 15042, 14, 9060, 14, 403, 6346, 524, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 12813, 15042, 14, 9060, 14, 10394, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 12813, 15042, 14, 9060, 14, 17015, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13989, 341, 10354, 12813, 15042, 14, 9060, 14, 13989, 341, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 308, 2340, 796, 1351, 7, 8899, 7, 2536, 11, 1351, 7, 9521, 7, 16, 11, 49658, 35514, 198, 220, 220, 220, 1382, 38816, 7414, 7, 70, 2340, 11, 366, 40720, 7890, 14, 47250, 62, 9865, 36, 1797, 62, 38, 343, 21223, 62, 37, 2213, 82, 13, 40664, 1600, 10352, 8, 198, 2, 11593, 12417, 834, 3419, 198, 2, 308, 312, 44245, 13912, 7414, 796, 366, 40720, 7890, 14, 12853, 62, 70, 312, 62, 1698, 62, 8899, 13, 17752, 1, 198, 2, 651, 17699, 2025, 1662, 23595, 7, 70, 312, 44245, 13912, 7414, 4032, 65, 3524, 40264, 40720, 7890, 14, 70, 312, 62, 65, 3524, 13, 17752, 4943, 198, 198, 2, 1382, 38413, 88, 37, 2213, 7414, 7203, 40720, 7890, 14, 40544, 88, 23595, 62, 38, 57, 34, 62, 49, 13, 40664, 1600, 17816, 38, 2389, 41707, 1154, 5015, 41707, 283, 516, 282, 41707, 3438, 14149, 41707, 88, 6, 17241, 40720, 7890, 14, 40544, 88, 23595, 62, 38, 57, 34, 4943, 198, 198, 2, 17400, 13, 24011, 500, 41, 1559, 7203, 40720, 7890, 14, 40544, 88, 23595, 62, 38, 57, 34, 13, 17752, 2430, 40720, 7890, 14, 9600, 82, 62, 1069, 361, 62, 7890, 62, 12853, 13, 17752, 2430, 40720, 7890, 14, 38, 57, 34, 62, 1069, 361, 82, 62, 40544, 88, 62, 12853, 13, 17752, 4943, 198, 2, 279, 16, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 16, 13, 17752, 1600, 16, 11, 27641, 4008, 198, 2, 279, 17, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 17, 13, 17752, 1600, 4059, 16, 11, 49388, 4008, 198, 2, 279, 18, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 18, 13, 17752, 1600, 3064, 486, 11, 1314, 830, 4008, 198, 2, 279, 19, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 19, 13, 17752, 1600, 1314, 8298, 11, 2167, 405, 4008, 198, 2, 279, 20, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 20, 13, 17752, 1600, 2167, 486, 11, 1495, 830, 4008, 198, 2, 279, 21, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 21, 13, 17752, 1600, 1495, 8298, 11, 18, 2388, 4008, 198, 2, 279, 22, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 22, 13, 17752, 1600, 6200, 486, 11, 2327, 830, 4008, 198, 2, 279, 23, 796, 10854, 7, 16793, 28, 11249, 62, 1069, 361, 62, 701, 3808, 62, 2704, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 12303, 312, 62, 4868, 13, 19608, 1600, 366, 1130, 81, 62, 1069, 361, 62, 2302, 974, 62, 23, 13, 17752, 1600, 2327, 8298, 11, 31020, 2091, 4008, 198, 198, 2, 279, 24, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 16, 1600, 16, 11, 27641, 4008, 198, 2, 279, 940, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 17, 1600, 4059, 16, 11, 49388, 4008, 198, 2, 279, 1157, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 18, 1600, 3064, 486, 11, 1314, 830, 4008, 198, 2, 279, 1065, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 19, 1600, 1314, 8298, 11, 2167, 405, 4008, 198, 2, 279, 1485, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 20, 1600, 2167, 486, 11, 1495, 830, 4008, 198, 2, 279, 1415, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 21, 1600, 1495, 8298, 11, 18, 2388, 4008, 198, 2, 279, 1314, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 22, 1600, 6200, 486, 11, 2327, 830, 4008, 198, 2, 279, 1433, 796, 10854, 7, 16793, 28, 11249, 62, 30053, 62, 7753, 62, 1130, 81, 11, 26498, 28, 7203, 12303, 312, 62, 70, 312, 62, 8899, 13, 17752, 1600, 366, 1130, 81, 62, 701, 81, 62, 2302, 974, 62, 23, 1600, 2327, 8298, 11, 31020, 2091, 4008, 198, 198, 2, 279, 16, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 15, 11, 7337, 11, 12813, 22065, 14, 9288, 16, 13, 17752, 48774, 198, 2, 279, 17, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 7029, 11, 10460, 11, 12813, 22065, 14, 9288, 17, 13, 17752, 48774, 198, 2, 279, 18, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 7410, 11, 24938, 11, 12813, 22065, 14, 9288, 18, 13, 17752, 48774, 198, 2, 279, 19, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 27550, 11, 26143, 11, 12813, 22065, 14, 9288, 19, 13, 17752, 48774, 198, 2, 279, 20, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 36150, 11, 4751, 11, 12813, 22065, 14, 9288, 20, 13, 17752, 48774, 198, 2, 279, 21, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 11024, 11, 48548, 11, 12813, 22065, 14, 9288, 21, 13, 17752, 48774, 198, 2, 279, 22, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 1731, 405, 11, 2579, 405, 11, 12813, 22065, 14, 9288, 22, 13, 17752, 48774, 198, 2, 279, 23, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 2078, 405, 11, 513, 2167, 11, 12813, 22065, 14, 9288, 23, 13, 17752, 48774, 198, 2, 279, 24, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 18, 2167, 11, 4570, 405, 11, 12813, 22065, 14, 9288, 24, 13, 17752, 48774, 198, 2, 279, 940, 796, 10854, 7, 16793, 28, 9288, 11, 26498, 16193, 2623, 405, 11, 2319, 2091, 11, 12813, 22065, 14, 9288, 940, 13, 17752, 48774, 198, 198, 2, 279, 16, 13, 9688, 3419, 198, 2, 279, 17, 13, 9688, 3419, 198, 2, 279, 18, 13, 9688, 3419, 198, 2, 279, 19, 13, 9688, 3419, 198, 2, 279, 20, 13, 9688, 3419, 198, 2, 279, 21, 13, 9688, 3419, 198, 2, 279, 22, 13, 9688, 3419, 198, 2, 279, 23, 13, 9688, 3419, 198, 2, 279, 24, 13, 9688, 3419, 198, 2, 279, 940, 13, 9688, 3419, 198, 2, 1303, 279, 1157, 13, 9688, 3419, 198, 2, 1303, 279, 1065, 13, 9688, 3419, 198, 2, 1303, 279, 1485, 13, 9688, 3419, 198, 2, 1303, 279, 1415, 13, 9688, 3419, 198, 2, 1303, 279, 1314, 13, 9688, 3419, 198, 2, 1303, 279, 1433, 13, 9688, 3419, 198 ]
2.275402
2,549
# TODO import subprocess import sys import os import re from glob import glob try: from PySide2.QtWidgets import * from PySide2.QtGui import * from PySide2.QtCore import * except: from PySide.QtGui import * from PySide.QtCore import *
[ 2, 16926, 46, 220, 198, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 15095, 1330, 15095, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 9485, 24819, 17, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 220, 220, 220, 422, 9485, 24819, 17, 13, 48, 83, 8205, 72, 220, 220, 220, 220, 1330, 1635, 198, 220, 220, 220, 422, 9485, 24819, 17, 13, 48, 83, 14055, 220, 220, 220, 1330, 1635, 198, 16341, 25, 198, 220, 220, 220, 422, 9485, 24819, 13, 48, 83, 8205, 72, 220, 1330, 1635, 198, 220, 220, 220, 422, 9485, 24819, 13, 48, 83, 14055, 1330, 1635 ]
2.409091
110
# /usr/bin/env python3.6 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2021, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ AdaRound Nightly Tests """ import pytest import json import unittest import logging import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np import tensorflow as tf from tensorflow.keras.applications.mobilenet import MobileNet from packaging import version from aimet_common.utils import AimetLogger from aimet_common.defs import QuantScheme from aimet_tensorflow.examples.test_models import keras_model from aimet_tensorflow.quantsim import QuantizationSimModel from aimet_tensorflow.adaround.adaround_weight import Adaround, AdaroundParameters tf.compat.v1.disable_eager_execution() class AdaroundAcceptanceTests(unittest.TestCase): """ AdaRound test cases """ @pytest.mark.cuda def test_adaround_mobilenet_only_weights(self): """ test end to end adaround with only weight quantized """ def dummy_forward_pass(session: tf.compat.v1.Session): """ Dummy forward pass """ input_data = np.random.rand(1, 224, 224, 3) input_tensor = session.graph.get_tensor_by_name('input_1:0') output_tensor = session.graph.get_tensor_by_name('conv_preds/BiasAdd:0') output = session.run(output_tensor, feed_dict={input_tensor: input_data}) return output AimetLogger.set_level_for_all_areas(logging.DEBUG) tf.compat.v1.reset_default_graph() _ = MobileNet(weights=None, input_shape=(224, 224, 3)) init = tf.compat.v1.global_variables_initializer() dataset_size = 128 batch_size = 64 possible_batches = dataset_size // batch_size input_data = np.random.rand(dataset_size, 224, 224, 3) dataset = tf.data.Dataset.from_tensor_slices(input_data) dataset = dataset.batch(batch_size=batch_size) session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph()) session.run(init) params = AdaroundParameters(data_set=dataset, num_batches=possible_batches, default_num_iterations=1, default_reg_param=0.01, default_beta_range=(20, 2), default_warm_start=0.2) starting_op_names = ['input_1'] if version.parse(tf.version.VERSION) >= version.parse("2.00"): output_op_names = ['predictions/Softmax'] else: output_op_names = ['act_softmax/Softmax'] adarounded_session = Adaround.apply_adaround(session, starting_op_names, output_op_names, params, path='./', filename_prefix='mobilenet', default_param_bw=4, default_quant_scheme=QuantScheme.post_training_tf_enhanced) orig_output = dummy_forward_pass(session) adarounded_output = dummy_forward_pass(adarounded_session) self.assertEqual(orig_output.shape, adarounded_output.shape) # Test exported encodings JSON file with open('./mobilenet.encodings') as json_file: encoding_data = json.load(json_file) print(encoding_data) self.assertTrue(isinstance(encoding_data["conv1/Conv2D/ReadVariableOp:0"], list)) session.close() adarounded_session.close() # Delete encodings JSON file if os.path.exists("./mobilenet.encodings"): os.remove("./mobilenet.encodings") def test_adaround_resnet18_followed_by_quantsim(self): """ test end to end adaround with weight 4 bits and output activations 8 bits quantized """ def dummy_forward_pass(session: tf.compat.v1.Session, _): """ Dummy forward pass """ input_data = np.random.rand(32, 16, 16, 3) input_tensor = session.graph.get_tensor_by_name('conv2d_input:0') output_tensor = session.graph.get_tensor_by_name('keras_model/Softmax:0') output = session.run(output_tensor, feed_dict={input_tensor: input_data}) return output np.random.seed(1) AimetLogger.set_level_for_all_areas(logging.DEBUG) tf.compat.v1.reset_default_graph() _ = keras_model() init = tf.compat.v1.global_variables_initializer() dataset_size = 32 batch_size = 16 possible_batches = dataset_size // batch_size input_data = np.random.rand(dataset_size, 16, 16, 3) dataset = tf.data.Dataset.from_tensor_slices(input_data) dataset = dataset.batch(batch_size=batch_size) session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph()) session.run(init) params = AdaroundParameters(data_set=dataset, num_batches=possible_batches, default_num_iterations=10) starting_op_names = ['conv2d_input'] output_op_names = ['keras_model/Softmax'] # W4A8 param_bw = 4 output_bw = 8 quant_scheme = QuantScheme.post_training_tf_enhanced adarounded_session = Adaround.apply_adaround(session, starting_op_names, output_op_names, params, path='./', filename_prefix='dummy', default_param_bw=param_bw, default_quant_scheme=quant_scheme, default_config_file=None) # Read exported param encodings JSON file with open('./dummy.encodings') as json_file: encoding_data = json.load(json_file) encoding = encoding_data["conv2d/Conv2D/ReadVariableOp:0"][0] before_min, before_max, before_delta, before_offset = encoding.get('min'), encoding.get('max'), \ encoding.get('scale'), encoding.get('offset') print(before_min, before_max, before_delta, before_offset) # Create QuantSim using adarounded_model, set and freeze parameter encodings and then invoke compute_encodings sim = QuantizationSimModel(adarounded_session, starting_op_names, output_op_names, quant_scheme, default_output_bw=output_bw, default_param_bw=param_bw, use_cuda=False) sim.set_and_freeze_param_encodings(encoding_path='./dummy.encodings') sim.compute_encodings(dummy_forward_pass, None) quantizer = sim.quantizer_config('conv2d/Conv2D/ReadVariableOp_quantized') encoding = quantizer.get_encoding() after_min, after_max, after_delta, after_offset = encoding.min, encoding.max, encoding.delta, encoding.offset print(after_min, after_max, after_delta, after_offset) self.assertEqual(before_min, after_min) self.assertEqual(before_max, after_max) self.assertAlmostEqual(before_delta, after_delta, places=4) self.assertEqual(before_offset, after_offset) session.close() adarounded_session.close() # Delete encodings file if os.path.exists("./dummy.encodings"): os.remove("./dummy.encodings")
[ 2, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 21, 198, 2, 532, 9, 12, 4235, 25, 21015, 532, 9, 12, 198, 2, 38093, 25609, 198, 2, 220, 25248, 12, 34, 3185, 38162, 9947, 12, 2257, 7227, 12, 12404, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 33448, 11, 32903, 27724, 3337, 11, 3457, 13, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 220, 352, 13, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 220, 362, 13, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 220, 513, 13, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 20420, 198, 2, 220, 220, 220, 220, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 198, 2, 220, 220, 220, 220, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 220, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 220, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 198, 2, 220, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 198, 2, 220, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 198, 2, 220, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 198, 2, 220, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 198, 2, 220, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 198, 2, 220, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 198, 2, 220, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 198, 2, 220, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 2, 220, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 2, 198, 2, 220, 25248, 12, 34, 3185, 38162, 9947, 12, 10619, 12, 12404, 198, 2, 38093, 25609, 198, 198, 37811, 47395, 22685, 5265, 306, 30307, 37227, 198, 198, 11748, 12972, 9288, 198, 11748, 33918, 198, 11748, 555, 715, 395, 198, 11748, 18931, 198, 11748, 28686, 198, 418, 13, 268, 2268, 17816, 10234, 62, 8697, 47, 62, 23678, 62, 25294, 62, 2538, 18697, 20520, 796, 705, 17, 6, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 1324, 677, 602, 13, 76, 25898, 268, 316, 1330, 12173, 7934, 198, 6738, 16846, 1330, 2196, 198, 6738, 4031, 316, 62, 11321, 13, 26791, 1330, 36223, 316, 11187, 1362, 198, 6738, 4031, 316, 62, 11321, 13, 4299, 82, 1330, 16972, 27054, 1326, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 1069, 12629, 13, 9288, 62, 27530, 1330, 41927, 292, 62, 19849, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 421, 1187, 320, 1330, 16972, 1634, 8890, 17633, 198, 6738, 4031, 316, 62, 83, 22854, 11125, 13, 324, 14145, 13, 324, 14145, 62, 6551, 1330, 1215, 14145, 11, 1215, 14145, 48944, 198, 198, 27110, 13, 5589, 265, 13, 85, 16, 13, 40223, 62, 68, 3536, 62, 18558, 1009, 3419, 628, 198, 4871, 1215, 14145, 38855, 590, 51, 3558, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47395, 22685, 1332, 2663, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 66, 15339, 198, 220, 220, 220, 825, 1332, 62, 324, 14145, 62, 76, 25898, 268, 316, 62, 8807, 62, 43775, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1332, 886, 284, 886, 512, 14145, 351, 691, 3463, 5554, 1143, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 825, 31548, 62, 11813, 62, 6603, 7, 29891, 25, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 360, 13513, 2651, 1208, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 796, 45941, 13, 25120, 13, 25192, 7, 16, 11, 26063, 11, 26063, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 83, 22854, 796, 6246, 13, 34960, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 15414, 62, 16, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 83, 22854, 796, 6246, 13, 34960, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 42946, 62, 28764, 82, 14, 33, 4448, 4550, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 6246, 13, 5143, 7, 22915, 62, 83, 22854, 11, 3745, 62, 11600, 34758, 15414, 62, 83, 22854, 25, 5128, 62, 7890, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 628, 220, 220, 220, 220, 220, 220, 220, 36223, 316, 11187, 1362, 13, 2617, 62, 5715, 62, 1640, 62, 439, 62, 533, 292, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 5589, 265, 13, 85, 16, 13, 42503, 62, 12286, 62, 34960, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 12173, 7934, 7, 43775, 28, 14202, 11, 5128, 62, 43358, 16193, 24137, 11, 26063, 11, 513, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2315, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 7857, 796, 13108, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 5598, 198, 220, 220, 220, 220, 220, 220, 220, 1744, 62, 8664, 2052, 796, 27039, 62, 7857, 3373, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 796, 45941, 13, 25120, 13, 25192, 7, 19608, 292, 316, 62, 7857, 11, 26063, 11, 26063, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 48700, 13, 7890, 13, 27354, 292, 316, 13, 6738, 62, 83, 22854, 62, 82, 677, 274, 7, 15414, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 27039, 13, 43501, 7, 43501, 62, 7857, 28, 43501, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6246, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 7, 34960, 28, 27110, 13, 5589, 265, 13, 85, 16, 13, 1136, 62, 12286, 62, 34960, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 5143, 7, 15003, 8, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1215, 14145, 48944, 7, 7890, 62, 2617, 28, 19608, 292, 316, 11, 997, 62, 8664, 2052, 28, 79, 4733, 62, 8664, 2052, 11, 4277, 62, 22510, 62, 2676, 602, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 2301, 62, 17143, 28, 15, 13, 486, 11, 4277, 62, 31361, 62, 9521, 16193, 1238, 11, 362, 828, 4277, 62, 31975, 62, 9688, 28, 15, 13, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3599, 62, 404, 62, 14933, 796, 37250, 15414, 62, 16, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2196, 13, 29572, 7, 27110, 13, 9641, 13, 43717, 8, 18189, 2196, 13, 29572, 7203, 17, 13, 405, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 404, 62, 14933, 796, 37250, 28764, 9278, 14, 18380, 9806, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 404, 62, 14933, 796, 37250, 529, 62, 4215, 9806, 14, 18380, 9806, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 512, 283, 6302, 62, 29891, 796, 1215, 14145, 13, 39014, 62, 324, 14145, 7, 29891, 11, 220, 3599, 62, 404, 62, 14933, 11, 5072, 62, 404, 62, 14933, 11, 42287, 11, 3108, 28, 4458, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 62, 40290, 11639, 76, 25898, 268, 316, 3256, 4277, 62, 17143, 62, 65, 86, 28, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 40972, 62, 15952, 1326, 28, 24915, 27054, 1326, 13, 7353, 62, 34409, 62, 27110, 62, 16550, 2903, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 22915, 796, 31548, 62, 11813, 62, 6603, 7, 29891, 8, 198, 220, 220, 220, 220, 220, 220, 220, 512, 283, 6302, 62, 22915, 796, 31548, 62, 11813, 62, 6603, 7, 324, 283, 6302, 62, 29891, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11612, 62, 22915, 13, 43358, 11, 512, 283, 6302, 62, 22915, 13, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 29050, 2207, 375, 654, 19449, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 4458, 14, 76, 25898, 268, 316, 13, 12685, 375, 654, 11537, 355, 33918, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 7890, 796, 33918, 13, 2220, 7, 17752, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12685, 7656, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 271, 39098, 7, 12685, 7656, 62, 7890, 14692, 42946, 16, 14, 3103, 85, 17, 35, 14, 5569, 43015, 18257, 25, 15, 33116, 1351, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 512, 283, 6302, 62, 29891, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23520, 2207, 375, 654, 19449, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 1911, 14, 76, 25898, 268, 316, 13, 12685, 375, 654, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 1911, 14, 76, 25898, 268, 316, 13, 12685, 375, 654, 4943, 628, 220, 220, 220, 825, 1332, 62, 324, 14145, 62, 411, 3262, 1507, 62, 27780, 276, 62, 1525, 62, 421, 1187, 320, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1332, 886, 284, 886, 512, 14145, 351, 3463, 604, 10340, 290, 5072, 1753, 602, 807, 10340, 5554, 1143, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 825, 31548, 62, 11813, 62, 6603, 7, 29891, 25, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 11, 4808, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 360, 13513, 2651, 1208, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 796, 45941, 13, 25120, 13, 25192, 7, 2624, 11, 1467, 11, 1467, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 83, 22854, 796, 6246, 13, 34960, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 42946, 17, 67, 62, 15414, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 83, 22854, 796, 6246, 13, 34960, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 6122, 292, 62, 19849, 14, 18380, 9806, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 6246, 13, 5143, 7, 22915, 62, 83, 22854, 11, 3745, 62, 11600, 34758, 15414, 62, 83, 22854, 25, 5128, 62, 7890, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 628, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 36223, 316, 11187, 1362, 13, 2617, 62, 5715, 62, 1640, 62, 439, 62, 533, 292, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 5589, 265, 13, 85, 16, 13, 42503, 62, 12286, 62, 34960, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 41927, 292, 62, 19849, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2315, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 7857, 796, 3933, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 1744, 62, 8664, 2052, 796, 27039, 62, 7857, 3373, 15458, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 796, 45941, 13, 25120, 13, 25192, 7, 19608, 292, 316, 62, 7857, 11, 1467, 11, 1467, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 48700, 13, 7890, 13, 27354, 292, 316, 13, 6738, 62, 83, 22854, 62, 82, 677, 274, 7, 15414, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 27039, 13, 43501, 7, 43501, 62, 7857, 28, 43501, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6246, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 7, 34960, 28, 27110, 13, 5589, 265, 13, 85, 16, 13, 1136, 62, 12286, 62, 34960, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 5143, 7, 15003, 8, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1215, 14145, 48944, 7, 7890, 62, 2617, 28, 19608, 292, 316, 11, 997, 62, 8664, 2052, 28, 79, 4733, 62, 8664, 2052, 11, 4277, 62, 22510, 62, 2676, 602, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3599, 62, 404, 62, 14933, 796, 37250, 42946, 17, 67, 62, 15414, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 404, 62, 14933, 796, 37250, 6122, 292, 62, 19849, 14, 18380, 9806, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 370, 19, 32, 23, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 65, 86, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 65, 86, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 5554, 62, 15952, 1326, 796, 16972, 27054, 1326, 13, 7353, 62, 34409, 62, 27110, 62, 16550, 2903, 628, 220, 220, 220, 220, 220, 220, 220, 512, 283, 6302, 62, 29891, 796, 1215, 14145, 13, 39014, 62, 324, 14145, 7, 29891, 11, 3599, 62, 404, 62, 14933, 11, 5072, 62, 404, 62, 14933, 11, 42287, 11, 3108, 28, 4458, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 62, 40290, 11639, 67, 13513, 3256, 4277, 62, 17143, 62, 65, 86, 28, 17143, 62, 65, 86, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 40972, 62, 15952, 1326, 28, 40972, 62, 15952, 1326, 11, 4277, 62, 11250, 62, 7753, 28, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 29050, 5772, 2207, 375, 654, 19449, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 4458, 14, 67, 13513, 13, 12685, 375, 654, 11537, 355, 33918, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 62, 7890, 796, 33918, 13, 2220, 7, 17752, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 21004, 62, 7890, 14692, 42946, 17, 67, 14, 3103, 85, 17, 35, 14, 5569, 43015, 18257, 25, 15, 1, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 878, 62, 1084, 11, 878, 62, 9806, 11, 878, 62, 67, 12514, 11, 878, 62, 28968, 796, 21004, 13, 1136, 10786, 1084, 33809, 21004, 13, 1136, 10786, 9806, 33809, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 13, 1136, 10786, 9888, 33809, 21004, 13, 1136, 10786, 28968, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19052, 62, 1084, 11, 878, 62, 9806, 11, 878, 62, 67, 12514, 11, 878, 62, 28968, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 16972, 8890, 1262, 512, 283, 6302, 62, 19849, 11, 900, 290, 16611, 11507, 2207, 375, 654, 290, 788, 26342, 24061, 62, 12685, 375, 654, 198, 220, 220, 220, 220, 220, 220, 220, 985, 796, 16972, 1634, 8890, 17633, 7, 324, 283, 6302, 62, 29891, 11, 3599, 62, 404, 62, 14933, 11, 5072, 62, 404, 62, 14933, 11, 5554, 62, 15952, 1326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 22915, 62, 65, 86, 28, 22915, 62, 65, 86, 11, 4277, 62, 17143, 62, 65, 86, 28, 17143, 62, 65, 86, 11, 779, 62, 66, 15339, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 985, 13, 2617, 62, 392, 62, 5787, 2736, 62, 17143, 62, 12685, 375, 654, 7, 12685, 7656, 62, 6978, 28, 4458, 14, 67, 13513, 13, 12685, 375, 654, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 985, 13, 5589, 1133, 62, 12685, 375, 654, 7, 67, 13513, 62, 11813, 62, 6603, 11, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5554, 7509, 796, 985, 13, 40972, 7509, 62, 11250, 10786, 42946, 17, 67, 14, 3103, 85, 17, 35, 14, 5569, 43015, 18257, 62, 40972, 1143, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 5554, 7509, 13, 1136, 62, 12685, 7656, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 706, 62, 1084, 11, 706, 62, 9806, 11, 706, 62, 67, 12514, 11, 706, 62, 28968, 796, 21004, 13, 1084, 11, 21004, 13, 9806, 11, 21004, 13, 67, 12514, 11, 21004, 13, 28968, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8499, 62, 1084, 11, 706, 62, 9806, 11, 706, 62, 67, 12514, 11, 706, 62, 28968, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 19052, 62, 1084, 11, 706, 62, 1084, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 19052, 62, 9806, 11, 706, 62, 9806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 19052, 62, 67, 12514, 11, 706, 62, 67, 12514, 11, 4113, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 19052, 62, 28968, 11, 706, 62, 28968, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 512, 283, 6302, 62, 29891, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23520, 2207, 375, 654, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 1911, 14, 67, 13513, 13, 12685, 375, 654, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 1911, 14, 67, 13513, 13, 12685, 375, 654, 4943, 198 ]
2.415177
3,637
import unittest import logging logging.basicConfig(level=logging.CRITICAL) from aoc2019 import Amplifier
[ 11748, 555, 715, 395, 201, 198, 11748, 18931, 201, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 9419, 2043, 20151, 8, 201, 198, 6738, 257, 420, 23344, 1330, 44074, 7483, 201 ]
3.085714
35
import time from selenium import webdriver import json from crawlpack.helpers import id_gen, connect chrome_options = webdriver.ChromeOptions() chrome_options.add_experimental_option( "prefs",{'profile.managed_default_content_settings.javascript': 2}) driver = webdriver.Chrome(chrome_options=chrome_options) conn, cur = connect() for count in range(1,89): try: url = "file:///home/Desktop/crawler%20scripts/scripts/uber_eats/page_source"+str(count)+".html" driver.get(url) raw_title = driver.find_element_by_xpath('//*[@id="app-content"]/div/div/div[1]/div/div[1]/div[2]/div/div[2]/div/div/h1').text try: split_title = raw_title.split('-') rest_name = split_title[0].strip() location = split_title[1].strip() except: rest_name = raw_title location = "Bangalore" dedupe_id = id_gen(rest_name,location) items = driver.find_elements_by_css_selector('#app-content>div>div>div:nth-child(1)>div>div:nth-child(1)>div:nth-child(2)>div>div:nth-child(3)>div:nth-child(2)>div:nth-child(1)>div>div:nth-child(2)>div>div>div>div:nth-child(1)>div:nth-child(1)') prices = driver.find_elements_by_css_selector('#app-content>div>div>div:nth-child(1)>div>div:nth-child(1)>div:nth-child(2)>div>div:nth-child(3)>div:nth-child(2)>div:nth-child(1)>div>div:nth-child(2)>div>div>div>div:nth-child(1)>div:nth-child(3)>span:nth-child(1)') items_final = {} num_items = len(items) for i in range(0,num_items): item_price = prices[i].text.replace("INR","") item_name = items[i].text items_final[item_name] = item_price items_json = json.dumps(items_final) cur.execute("""INSERT INTO uber_eats2 (name,location,items) VALUES (%s,%s,%s)""",(rest_name,location,items_json)) conn.commit() print("Crawled {0}/88 Restaurant: {1} Items: {2}".format(count,rest_name,str(len(items_final)))) except: print("error ",url)
[ 11748, 640, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 11748, 33918, 198, 6738, 27318, 8002, 13, 16794, 364, 1330, 4686, 62, 5235, 11, 2018, 628, 198, 198, 46659, 62, 25811, 796, 3992, 26230, 13, 1925, 5998, 29046, 3419, 198, 46659, 62, 25811, 13, 2860, 62, 23100, 9134, 62, 18076, 7, 366, 3866, 9501, 1600, 90, 6, 13317, 13, 39935, 62, 12286, 62, 11299, 62, 33692, 13, 37495, 10354, 362, 30072, 198, 26230, 796, 3992, 26230, 13, 1925, 5998, 7, 46659, 62, 25811, 28, 46659, 62, 25811, 8, 198, 37043, 11, 1090, 796, 2018, 3419, 198, 1640, 954, 287, 2837, 7, 16, 11, 4531, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 366, 7753, 1378, 14, 11195, 14, 36881, 14, 66, 39464, 4, 1238, 46521, 14, 46521, 14, 18478, 62, 68, 1381, 14, 7700, 62, 10459, 1, 10, 2536, 7, 9127, 47762, 1911, 6494, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 1136, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7839, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 87, 6978, 10786, 1003, 9, 58, 31, 312, 2625, 1324, 12, 11299, 8973, 14, 7146, 14, 7146, 14, 7146, 58, 16, 60, 14, 7146, 14, 7146, 58, 16, 60, 14, 7146, 58, 17, 60, 14, 7146, 14, 7146, 58, 17, 60, 14, 7146, 14, 7146, 14, 71, 16, 27691, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 7839, 796, 8246, 62, 7839, 13, 35312, 10786, 12, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1334, 62, 3672, 796, 6626, 62, 7839, 58, 15, 4083, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 796, 6626, 62, 7839, 58, 16, 4083, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1334, 62, 3672, 796, 8246, 62, 7839, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 796, 366, 43984, 40612, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4648, 48722, 62, 312, 796, 4686, 62, 5235, 7, 2118, 62, 3672, 11, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 796, 4639, 13, 19796, 62, 68, 3639, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 2, 1324, 12, 11299, 29, 7146, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 18, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 29, 7146, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4536, 796, 4639, 13, 19796, 62, 68, 3639, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 2, 1324, 12, 11299, 29, 7146, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 18, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 17, 8, 29, 7146, 29, 7146, 29, 7146, 29, 7146, 25, 77, 400, 12, 9410, 7, 16, 8, 29, 7146, 25, 77, 400, 12, 9410, 7, 18, 8, 29, 12626, 25, 77, 400, 12, 9410, 7, 16, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 62, 20311, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 23814, 796, 18896, 7, 23814, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 22510, 62, 23814, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 62, 20888, 796, 4536, 58, 72, 4083, 5239, 13, 33491, 7203, 1268, 49, 2430, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 62, 3672, 796, 3709, 58, 72, 4083, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 62, 20311, 58, 9186, 62, 3672, 60, 796, 2378, 62, 20888, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 62, 17752, 796, 33918, 13, 67, 8142, 7, 23814, 62, 20311, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7203, 15931, 20913, 17395, 39319, 48110, 62, 68, 1381, 17, 357, 3672, 11, 24886, 11, 23814, 8, 26173, 35409, 37633, 82, 11, 4, 82, 11, 4, 82, 8, 15931, 1600, 7, 2118, 62, 3672, 11, 24886, 11, 23814, 62, 17752, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 34, 49263, 1391, 15, 92, 14, 3459, 26078, 25, 1391, 16, 92, 17230, 25, 1391, 17, 92, 1911, 18982, 7, 9127, 11, 2118, 62, 3672, 11, 2536, 7, 11925, 7, 23814, 62, 20311, 35514, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18224, 33172, 6371, 8, 198 ]
2.143617
940
from .DepthNet import DepthNet from .MotionNet import MotionNet
[ 6738, 764, 48791, 7934, 1330, 36350, 7934, 198, 6738, 764, 45740, 7934, 1330, 20843, 7934, 198 ]
4
16
from django.test import TestCase from .models import Image, Profile # Create your tests here.
[ 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 764, 27530, 1330, 7412, 11, 13118, 198, 198, 2, 13610, 534, 5254, 994, 13, 198 ]
3.8
25
# # PySNMP MIB module NBS-SIGLANE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NBS-SIGLANE-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:07:45 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") NbsCmmcChannelBand, = mibBuilder.importSymbols("NBS-CMMCENUM-MIB", "NbsCmmcChannelBand") NbsTcMicroAmp, NbsTcMHz, NbsTcTemperature, NbsTcMilliDb, nbs = mibBuilder.importSymbols("NBS-MIB", "NbsTcMicroAmp", "NbsTcMHz", "NbsTcTemperature", "NbsTcMilliDb", "nbs") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Unsigned32, ModuleIdentity, ObjectIdentity, Bits, Gauge32, iso, TimeTicks, IpAddress, Integer32, MibIdentifier, NotificationType, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Unsigned32", "ModuleIdentity", "ObjectIdentity", "Bits", "Gauge32", "iso", "TimeTicks", "IpAddress", "Integer32", "MibIdentifier", "NotificationType", "Counter32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") nbsSigLaneMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 629, 236)) if mibBuilder.loadTexts: nbsSigLaneMib.setLastUpdated('201503120000Z') if mibBuilder.loadTexts: nbsSigLaneMib.setOrganization('NBS') nbsSigLanePortGrp = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 10)) if mibBuilder.loadTexts: nbsSigLanePortGrp.setStatus('current') nbsSigLaneLaneGrp = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 20)) if mibBuilder.loadTexts: nbsSigLaneLaneGrp.setStatus('current') nbsSigLaneTraps = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 100)) if mibBuilder.loadTexts: nbsSigLaneTraps.setStatus('current') nbsSigLaneTraps0 = ObjectIdentity((1, 3, 6, 1, 4, 1, 629, 236, 100, 0)) if mibBuilder.loadTexts: nbsSigLaneTraps0.setStatus('current') nbsSigLanePortTable = MibTable((1, 3, 6, 1, 4, 1, 629, 236, 10, 1), ) if mibBuilder.loadTexts: nbsSigLanePortTable.setStatus('current') nbsSigLanePortEntry = MibTableRow((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1), ).setIndexNames((0, "NBS-SIGLANE-MIB", "nbsSigLanePortIfIndex")) if mibBuilder.loadTexts: nbsSigLanePortEntry.setStatus('current') nbsSigLanePortIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 1), InterfaceIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLanePortIfIndex.setStatus('current') nbsSigLanePortFacility = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("fiber", 2), ("lambda", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLanePortFacility.setStatus('current') nbsSigLanePortLanes = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 10, 1, 1, 20), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLanePortLanes.setStatus('current') nbsSigLaneLaneTable = MibTable((1, 3, 6, 1, 4, 1, 629, 236, 20, 1), ) if mibBuilder.loadTexts: nbsSigLaneLaneTable.setStatus('current') nbsSigLaneLaneEntry = MibTableRow((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1), ).setIndexNames((0, "NBS-SIGLANE-MIB", "nbsSigLaneLaneIfIndex"), (0, "NBS-SIGLANE-MIB", "nbsSigLaneLaneIndex")) if mibBuilder.loadTexts: nbsSigLaneLaneEntry.setStatus('current') nbsSigLaneLaneIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 1), InterfaceIndex()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneIfIndex.setStatus('current') nbsSigLaneLaneIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneIndex.setStatus('current') nbsSigLaneLaneFrequency = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 10), NbsTcMHz()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneFrequency.setStatus('current') nbsSigLaneLaneWavelengthX = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 11), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(4, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneWavelengthX.setStatus('current') nbsSigLaneLaneChannelBand = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 12), NbsCmmcChannelBand()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneChannelBand.setStatus('current') nbsSigLaneLaneChannelNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 13), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneChannelNumber.setStatus('current') nbsSigLaneLaneTxPowerLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneTxPowerLevel.setStatus('current') nbsSigLaneLaneTxPower = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 21), NbsTcMilliDb().clone(-2147483648)).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneTxPower.setStatus('current') nbsSigLaneLaneRxPowerLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 30), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneRxPowerLevel.setStatus('current') nbsSigLaneLaneRxPower = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 31), NbsTcMilliDb().clone(-2147483648)).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneRxPower.setStatus('current') nbsSigLaneLaneBiasAmpsLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 40), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneBiasAmpsLevel.setStatus('current') nbsSigLaneLaneBiasAmps = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 41), NbsTcMicroAmp().clone(-1)).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneBiasAmps.setStatus('current') nbsSigLaneLaneLaserTempLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 50), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("notSupported", 1), ("lowAlarm", 2), ("lowWarning", 3), ("ok", 4), ("highWarning", 5), ("highAlarm", 6))).clone('ok')).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneLaserTempLevel.setStatus('current') nbsSigLaneLaneLaserTemp = MibTableColumn((1, 3, 6, 1, 4, 1, 629, 236, 20, 1, 1, 51), NbsTcTemperature().clone(-2147483648)).setMaxAccess("readonly") if mibBuilder.loadTexts: nbsSigLaneLaneLaserTemp.setStatus('current') mibBuilder.exportSymbols("NBS-SIGLANE-MIB", nbsSigLanePortEntry=nbsSigLanePortEntry, nbsSigLaneLaneLaserTempLevel=nbsSigLaneLaneLaserTempLevel, nbsSigLanePortTable=nbsSigLanePortTable, nbsSigLaneLaneEntry=nbsSigLaneLaneEntry, nbsSigLaneTraps0=nbsSigLaneTraps0, nbsSigLaneMib=nbsSigLaneMib, PYSNMP_MODULE_ID=nbsSigLaneMib, nbsSigLaneLaneIfIndex=nbsSigLaneLaneIfIndex, nbsSigLaneLaneTable=nbsSigLaneLaneTable, nbsSigLaneLaneLaserTemp=nbsSigLaneLaneLaserTemp, nbsSigLaneLaneIndex=nbsSigLaneLaneIndex, nbsSigLaneLaneBiasAmps=nbsSigLaneLaneBiasAmps, nbsSigLanePortFacility=nbsSigLanePortFacility, nbsSigLaneLaneChannelBand=nbsSigLaneLaneChannelBand, nbsSigLaneLaneTxPowerLevel=nbsSigLaneLaneTxPowerLevel, nbsSigLanePortGrp=nbsSigLanePortGrp, nbsSigLaneLaneTxPower=nbsSigLaneLaneTxPower, nbsSigLanePortLanes=nbsSigLanePortLanes, nbsSigLaneLaneWavelengthX=nbsSigLaneLaneWavelengthX, nbsSigLaneLaneBiasAmpsLevel=nbsSigLaneLaneBiasAmpsLevel, nbsSigLanePortIfIndex=nbsSigLanePortIfIndex, nbsSigLaneLaneGrp=nbsSigLaneLaneGrp, nbsSigLaneLaneRxPowerLevel=nbsSigLaneLaneRxPowerLevel, nbsSigLaneTraps=nbsSigLaneTraps, nbsSigLaneLaneRxPower=nbsSigLaneLaneRxPower, nbsSigLaneLaneFrequency=nbsSigLaneLaneFrequency, nbsSigLaneLaneChannelNumber=nbsSigLaneLaneChannelNumber)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 399, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 67, 615, 47562, 19, 14, 13603, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 45, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 2892, 2758, 2808, 1160, 25, 2998, 25, 2231, 13130, 198, 2, 1550, 2583, 42274, 54, 15567, 19, 12, 44, 12, 1415, 2425, 3859, 21450, 2196, 1248, 13, 20, 13, 15, 416, 2836, 288, 615, 47562, 19, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 18, 357, 12286, 11, 1526, 2681, 13130, 11, 7769, 25, 1954, 25, 1314, 8, 220, 198, 2, 198, 46541, 11, 9515, 33234, 7483, 11, 2556, 316, 10100, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 46541, 1600, 366, 10267, 33234, 7483, 1600, 366, 12349, 316, 10100, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 11395, 17257, 3103, 2536, 2913, 11, 1482, 2536, 6003, 9492, 5458, 11, 1482, 2536, 6003, 38176, 11, 11052, 10699, 3103, 2536, 2913, 11, 14206, 11395, 3103, 2536, 2913, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 9492, 5458, 1600, 366, 3103, 2536, 6003, 38176, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 28008, 11395, 3103, 2536, 2913, 4943, 198, 39317, 15732, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 5064, 12, 8895, 33, 1600, 366, 39317, 15732, 4943, 198, 45, 1443, 34, 3020, 66, 29239, 31407, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 45, 4462, 12, 24187, 9655, 1677, 5883, 12, 8895, 33, 1600, 366, 45, 1443, 34, 3020, 66, 29239, 31407, 4943, 198, 45, 1443, 51, 66, 13031, 32, 3149, 11, 399, 1443, 51, 66, 25983, 11, 399, 1443, 51, 66, 42492, 11, 399, 1443, 51, 66, 22603, 72, 43832, 11, 299, 1443, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 45, 4462, 12, 8895, 33, 1600, 366, 45, 1443, 51, 66, 13031, 32, 3149, 1600, 366, 45, 1443, 51, 66, 25983, 1600, 366, 45, 1443, 51, 66, 42492, 1600, 366, 45, 1443, 51, 66, 22603, 72, 43832, 1600, 366, 77, 1443, 4943, 198, 3673, 2649, 13247, 11, 19937, 38143, 3610, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 3673, 2649, 13247, 1600, 366, 26796, 38143, 3610, 4943, 198, 44, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 11, 15034, 2414, 11, 791, 32696, 2624, 11, 19937, 7390, 26858, 11, 9515, 7390, 26858, 11, 44733, 11, 35094, 469, 2624, 11, 47279, 11, 3862, 51, 3378, 11, 314, 79, 20231, 11, 34142, 2624, 11, 337, 571, 33234, 7483, 11, 42808, 6030, 11, 15034, 2624, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 1600, 366, 31694, 2414, 1600, 366, 3118, 32696, 2624, 1600, 366, 26796, 7390, 26858, 1600, 366, 10267, 7390, 26858, 1600, 366, 33, 896, 1600, 366, 38, 559, 469, 2624, 1600, 366, 26786, 1600, 366, 7575, 51, 3378, 1600, 366, 40, 79, 20231, 1600, 366, 46541, 2624, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 3673, 2649, 6030, 1600, 366, 31694, 2624, 4943, 198, 23114, 10100, 11, 8255, 723, 3103, 4018, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 23114, 10100, 1600, 366, 8206, 723, 3103, 4018, 4943, 198, 77, 1443, 50, 328, 43, 1531, 44, 571, 796, 19937, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 44, 571, 13, 2617, 5956, 17354, 10786, 1264, 1120, 27970, 2388, 57, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 44, 571, 13, 2617, 26121, 1634, 10786, 45, 4462, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 8642, 79, 796, 9515, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 8642, 79, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 8642, 79, 796, 9515, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 8642, 79, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 15721, 862, 796, 9515, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1802, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 15721, 862, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 15721, 862, 15, 796, 9515, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1802, 11, 657, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 15721, 862, 15, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 45, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 1600, 366, 77, 1443, 50, 328, 43, 1531, 13924, 1532, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 1532, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 11, 352, 11, 352, 11, 352, 828, 26491, 15732, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 1532, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 47522, 879, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 11, 352, 11, 352, 11, 838, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 847, 1600, 352, 828, 5855, 69, 1856, 1600, 362, 828, 5855, 50033, 1600, 513, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 47522, 879, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 13924, 43, 7305, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 838, 11, 352, 11, 352, 11, 1160, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 13924, 43, 7305, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 45, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 1600, 366, 77, 1443, 50, 328, 43, 1531, 43, 1531, 1532, 15732, 12340, 357, 15, 11, 366, 45, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 1600, 366, 77, 1443, 50, 328, 43, 1531, 43, 1531, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 1532, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 352, 828, 26491, 15732, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 1532, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 362, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 37, 28707, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 838, 828, 399, 1443, 51, 66, 25983, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 37, 28707, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33484, 26623, 55, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 1367, 828, 16531, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 19, 11, 807, 4008, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33484, 26623, 55, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 31407, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 1105, 828, 399, 1443, 34, 3020, 66, 29239, 31407, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 31407, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 15057, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 1511, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 15057, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 4971, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 1160, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 1662, 48181, 1600, 352, 828, 5855, 9319, 2348, 1670, 1600, 362, 828, 5855, 9319, 20361, 1600, 513, 828, 5855, 482, 1600, 604, 828, 5855, 8929, 20361, 1600, 642, 828, 5855, 8929, 2348, 1670, 1600, 718, 4008, 737, 21018, 10786, 482, 11537, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 4971, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 2310, 828, 399, 1443, 51, 66, 22603, 72, 43832, 22446, 21018, 32590, 17, 20198, 2780, 26780, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 4971, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 1542, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 1662, 48181, 1600, 352, 828, 5855, 9319, 2348, 1670, 1600, 362, 828, 5855, 9319, 20361, 1600, 513, 828, 5855, 482, 1600, 604, 828, 5855, 8929, 20361, 1600, 642, 828, 5855, 8929, 2348, 1670, 1600, 718, 4008, 737, 21018, 10786, 482, 11537, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 4971, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 3261, 828, 399, 1443, 51, 66, 22603, 72, 43832, 22446, 21018, 32590, 17, 20198, 2780, 26780, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 4971, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 2319, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 1662, 48181, 1600, 352, 828, 5855, 9319, 2348, 1670, 1600, 362, 828, 5855, 9319, 20361, 1600, 513, 828, 5855, 482, 1600, 604, 828, 5855, 8929, 20361, 1600, 642, 828, 5855, 8929, 2348, 1670, 1600, 718, 4008, 737, 21018, 10786, 482, 11537, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 4971, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 6073, 828, 399, 1443, 51, 66, 13031, 32, 3149, 22446, 21018, 32590, 16, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 4971, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 2026, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 1662, 48181, 1600, 352, 828, 5855, 9319, 2348, 1670, 1600, 362, 828, 5855, 9319, 20361, 1600, 513, 828, 5855, 482, 1600, 604, 828, 5855, 8929, 20361, 1600, 642, 828, 5855, 8929, 2348, 1670, 1600, 718, 4008, 737, 21018, 10786, 482, 11537, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 4971, 13, 2617, 19580, 10786, 14421, 11537, 198, 77, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 718, 1959, 11, 34044, 11, 1160, 11, 352, 11, 352, 11, 6885, 828, 399, 1443, 51, 66, 42492, 22446, 21018, 32590, 17, 20198, 2780, 26780, 23, 29720, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 299, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 13, 2617, 19580, 10786, 14421, 11537, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 45, 4462, 12, 50, 3528, 25697, 36, 12, 8895, 33, 1600, 299, 1443, 50, 328, 43, 1531, 13924, 30150, 28, 77, 1443, 50, 328, 43, 1531, 13924, 30150, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 4971, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 4971, 11, 299, 1443, 50, 328, 43, 1531, 13924, 10962, 28, 77, 1443, 50, 328, 43, 1531, 13924, 10962, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 30150, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 30150, 11, 299, 1443, 50, 328, 43, 1531, 15721, 862, 15, 28, 77, 1443, 50, 328, 43, 1531, 15721, 862, 15, 11, 299, 1443, 50, 328, 43, 1531, 44, 571, 28, 77, 1443, 50, 328, 43, 1531, 44, 571, 11, 350, 56, 15571, 7378, 62, 33365, 24212, 62, 2389, 28, 77, 1443, 50, 328, 43, 1531, 44, 571, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 1532, 15732, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 1532, 15732, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 10962, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 10962, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 43, 6005, 30782, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 15732, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 15732, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 11, 299, 1443, 50, 328, 43, 1531, 13924, 47522, 879, 28, 77, 1443, 50, 328, 43, 1531, 13924, 47522, 879, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 31407, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 31407, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 4971, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 4971, 11, 299, 1443, 50, 328, 43, 1531, 13924, 8642, 79, 28, 77, 1443, 50, 328, 43, 1531, 13924, 8642, 79, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 46047, 13434, 11, 299, 1443, 50, 328, 43, 1531, 13924, 43, 7305, 28, 77, 1443, 50, 328, 43, 1531, 13924, 43, 7305, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33484, 26623, 55, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33484, 26623, 55, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 4971, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 33, 4448, 5840, 862, 4971, 11, 299, 1443, 50, 328, 43, 1531, 13924, 1532, 15732, 28, 77, 1443, 50, 328, 43, 1531, 13924, 1532, 15732, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 8642, 79, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 8642, 79, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 4971, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 4971, 11, 299, 1443, 50, 328, 43, 1531, 15721, 862, 28, 77, 1443, 50, 328, 43, 1531, 15721, 862, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 49, 87, 13434, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 37, 28707, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 37, 28707, 11, 299, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 15057, 28, 77, 1443, 50, 328, 43, 1531, 43, 1531, 29239, 15057, 8, 198 ]
2.409369
3,757
from django.contrib import admin from .models import CarMake, CarModel # Register your models here. #admin.site.register(CarMake) #admin.site.register(CarModel) # CarModelInline class # CarModelAdmin class # CarMakeAdmin class with CarModelInline # Register models here admin.site.register(CarModel) admin.site.register(CarMake, CarMakeAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 1879, 12050, 11, 1879, 17633, 628, 198, 2, 17296, 534, 4981, 994, 13, 198, 2, 28482, 13, 15654, 13, 30238, 7, 9914, 12050, 8, 198, 2, 28482, 13, 15654, 13, 30238, 7, 9914, 17633, 8, 198, 2, 1879, 17633, 818, 1370, 1398, 198, 2, 1879, 17633, 46787, 1398, 198, 2, 1879, 12050, 46787, 1398, 351, 1879, 17633, 818, 1370, 198, 220, 220, 220, 220, 198, 198, 2, 17296, 4981, 994, 198, 28482, 13, 15654, 13, 30238, 7, 9914, 17633, 8, 198, 28482, 13, 15654, 13, 30238, 7, 9914, 12050, 11, 1879, 12050, 46787, 8, 198 ]
3.25
108
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.2, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( type='UPerHead', in_channels=[128, 256, 512, 1024], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
[ 2, 15069, 357, 66, 8, 30277, 19193, 82, 11, 3457, 13, 290, 29116, 13, 198, 198, 2, 1439, 2489, 10395, 13, 198, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 628, 198, 27237, 62, 37581, 796, 8633, 7, 4906, 11639, 28985, 15766, 3256, 4433, 62, 9744, 28, 17821, 8, 198, 19849, 796, 8633, 7, 198, 220, 220, 220, 2099, 11639, 27195, 12342, 10707, 12342, 3256, 198, 220, 220, 220, 2181, 13363, 28, 14202, 11, 198, 220, 220, 220, 32774, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 3103, 85, 8199, 55, 83, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 504, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 21593, 41888, 18, 11, 513, 11, 860, 11, 513, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 82, 41888, 4846, 11, 17817, 11, 40400, 11, 46720, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 6978, 62, 4873, 28, 15, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 9888, 62, 15003, 62, 8367, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 521, 1063, 41888, 15, 11, 352, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 36899, 62, 2256, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 52, 5990, 13847, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 8961, 41888, 12762, 11, 17759, 11, 22243, 11, 28119, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 9630, 41888, 15, 11, 352, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 62, 1416, 2040, 16193, 16, 11, 362, 11, 513, 11, 718, 828, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 28, 25836, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 10366, 952, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 1129, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 37581, 28, 27237, 62, 37581, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10548, 62, 20772, 364, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 12501, 1098, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 21544, 14539, 28338, 43, 793, 3256, 779, 62, 82, 17225, 1868, 28, 25101, 11, 2994, 62, 6551, 28, 16, 13, 15, 36911, 198, 220, 220, 220, 37419, 62, 2256, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 4851, 45, 13847, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 8961, 28, 22842, 11, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 9630, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 28, 11645, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1102, 14259, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1673, 265, 62, 15414, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 10366, 952, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 28, 1129, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 37581, 28, 27237, 62, 37581, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10548, 62, 20772, 364, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 12501, 1098, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 21544, 14539, 28338, 43, 793, 3256, 779, 62, 82, 17225, 1868, 28, 25101, 11, 2994, 62, 6551, 28, 15, 13, 19, 36911, 198, 220, 220, 220, 1303, 2746, 3047, 290, 4856, 6460, 198, 220, 220, 220, 4512, 62, 37581, 28, 11600, 22784, 198, 220, 220, 220, 1332, 62, 37581, 28, 11600, 7, 14171, 11639, 1929, 2305, 6, 4008, 198 ]
2.023088
693
# ================================================================================================== # Copyright 2011 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== import pytest from twitter.common.quantity import Time, Amount from twitter.common.quantity.parse_simple import parse_time, InvalidTime
[ 2, 38093, 10052, 28, 198, 2, 15069, 2813, 3009, 11, 3457, 13, 198, 2, 16529, 3880, 438, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 670, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 287, 262, 38559, 24290, 2393, 11, 393, 379, 25, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 10052, 28, 198, 198, 11748, 12972, 9288, 198, 6738, 17044, 13, 11321, 13, 40972, 414, 1330, 3862, 11, 26308, 198, 6738, 17044, 13, 11321, 13, 40972, 414, 13, 29572, 62, 36439, 1330, 21136, 62, 2435, 11, 17665, 7575, 198 ]
5.083333
204
__author__ = "Tauseef Hilal Tantary" __title__ = "iCODE-BOT" __version__ = 1.0
[ 834, 9800, 834, 796, 366, 51, 682, 891, 24410, 282, 44116, 560, 1, 198, 834, 7839, 834, 796, 366, 72, 34, 16820, 12, 33, 2394, 1, 198, 834, 9641, 834, 796, 352, 13, 15, 198 ]
2.257143
35
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import pulumi import pulumi.runtime from .. import utilities, tables class DatabaseInstance(pulumi.CustomResource): """ Creates a new Google SQL Database Instance. For more information, see the [official documentation](https://cloud.google.com/sql/), or the [JSON API](https://cloud.google.com/sql/docs/admin-api/v1beta4/instances). ~> **NOTE on `google_sql_database_instance`:** - Second-generation instances include a default 'root'@'%' user with no password. This user will be deleted by Terraform on instance creation. You should use `google_sql_user` to define a custom user with a restricted host and strong password. """ def __init__(__self__, __name__, __opts__=None, database_version=None, master_instance_name=None, name=None, project=None, region=None, replica_configuration=None, settings=None): """Create a DatabaseInstance resource with the given unique name, props, and options.""" if not __name__: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(__name__, str): raise TypeError('Expected resource name to be a string') if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() __props__['database_version'] = database_version __props__['master_instance_name'] = master_instance_name __props__['name'] = name __props__['project'] = project __props__['region'] = region __props__['replica_configuration'] = replica_configuration if not settings: raise TypeError('Missing required property settings') __props__['settings'] = settings __props__['connection_name'] = None __props__['first_ip_address'] = None __props__['ip_addresses'] = None __props__['self_link'] = None __props__['server_ca_cert'] = None __props__['service_account_email_address'] = None super(DatabaseInstance, __self__).__init__( 'gcp:sql/databaseInstance:DatabaseInstance', __name__, __props__, __opts__)
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 24118, 687, 10290, 357, 27110, 5235, 8, 16984, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 11485, 1330, 20081, 11, 8893, 198, 198, 4871, 24047, 33384, 7, 79, 377, 12994, 13, 15022, 26198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 649, 3012, 16363, 24047, 2262, 590, 13, 1114, 517, 1321, 11, 766, 262, 685, 16841, 10314, 16151, 5450, 1378, 17721, 13, 13297, 13, 785, 14, 25410, 14, 828, 198, 220, 220, 220, 393, 262, 685, 40386, 7824, 16151, 5450, 1378, 17721, 13, 13297, 13, 785, 14, 25410, 14, 31628, 14, 28482, 12, 15042, 14, 85, 16, 31361, 19, 14, 8625, 1817, 737, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5299, 29, 12429, 16580, 319, 4600, 13297, 62, 25410, 62, 48806, 62, 39098, 63, 25, 1174, 532, 5498, 12, 20158, 10245, 2291, 257, 198, 220, 220, 220, 4277, 705, 15763, 6, 31, 6, 4, 6, 2836, 351, 645, 9206, 13, 770, 2836, 481, 307, 13140, 416, 24118, 687, 319, 198, 220, 220, 220, 4554, 6282, 13, 921, 815, 779, 4600, 13297, 62, 25410, 62, 7220, 63, 284, 8160, 257, 2183, 2836, 351, 198, 220, 220, 220, 257, 10770, 2583, 290, 1913, 9206, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 834, 944, 834, 11, 11593, 3672, 834, 11, 11593, 404, 912, 834, 28, 14202, 11, 6831, 62, 9641, 28, 14202, 11, 4958, 62, 39098, 62, 3672, 28, 14202, 11, 1438, 28, 14202, 11, 1628, 28, 14202, 11, 3814, 28, 14202, 11, 30069, 62, 11250, 3924, 28, 14202, 11, 6460, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 24047, 33384, 8271, 351, 262, 1813, 3748, 1438, 11, 25744, 11, 290, 3689, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11593, 3672, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 43730, 8271, 1438, 4578, 357, 1640, 37902, 45, 6282, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 834, 3672, 834, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 7254, 8271, 1438, 284, 307, 257, 4731, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11593, 404, 912, 834, 290, 407, 318, 39098, 7, 834, 404, 912, 834, 11, 17472, 12994, 13, 26198, 29046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3109, 7254, 8271, 3689, 284, 307, 257, 20857, 29046, 4554, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 796, 8633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 48806, 62, 9641, 20520, 796, 6831, 62, 9641, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 9866, 62, 39098, 62, 3672, 20520, 796, 4958, 62, 39098, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 3672, 20520, 796, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 16302, 20520, 796, 1628, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 36996, 20520, 796, 3814, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 35666, 3970, 62, 11250, 3924, 20520, 796, 30069, 62, 11250, 3924, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6460, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 43730, 2672, 3119, 6460, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 33692, 20520, 796, 6460, 628, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 38659, 62, 3672, 20520, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 11085, 62, 541, 62, 21975, 20520, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 541, 62, 2860, 16746, 20520, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 944, 62, 8726, 20520, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 15388, 62, 6888, 62, 22583, 20520, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 17816, 15271, 62, 23317, 62, 12888, 62, 21975, 20520, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 38105, 33384, 11, 11593, 944, 834, 737, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 70, 13155, 25, 25410, 14, 48806, 33384, 25, 38105, 33384, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 3672, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 1676, 862, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 404, 912, 834, 8, 628, 198 ]
2.742373
885
from django.db import models from django.contrib.auth.models import AbstractUser from django.contrib.auth import get_user_model # Create your models here. class UserProfile(AbstractUser): """ 自定义的用户Model 拓展字段gender, nick_name, mobile, qq """ GENDER_CHOICES = ( ('male', "男"), ('female', "女"), ('secret', "保密") ) nick_name = models.CharField(max_length=40, blank=True, verbose_name="昵称") # 头像url avatar = models.CharField(verbose_name="头像", blank=True, null=True, max_length=256) gender = models.CharField(max_length=6, choices=GENDER_CHOICES, default="secret", verbose_name="性别") # email可以随便填,但是手机号需要唯一: 后续可加入校验验证码 mobile = models.CharField(max_length=11, verbose_name="手机号", unique=True) qq = models.CharField(max_length=12, verbose_name="QQ号", blank=True, null=True) # 公司有时候会用到钉钉/微信发送消息,需要记录用户相关ID dingding = models.CharField(max_length=40, verbose_name="钉钉ID", blank=True, null=True) wechat = models.CharField(max_length=40, verbose_name="微信ID", blank=True, null=True) # 能否访问本系统,默认是不可以访问本系统 # 注意第一个管理员用户,可以去数据库调整can_view的值为1 can_view = models.BooleanField(verbose_name="能访问", default=False, blank=True) is_deleted = models.BooleanField(verbose_name="删除", default=False, blank=True) # 注意:get_user_model()方法可以获取到本系统使用的是哪个用户Model # 默认的用户Model是:django.contrib.auth.models.User # 在settings.py中配置:AUTH_USER_MODEL可以修改成指定的用户Model # AUTH_USER_MODEL = "account.UserProfile" User = get_user_model() # 注意这句是要放在class UserProfile后面的 class MessageScope(models.Model): """ 消息范围 """ scope = models.SlugField(verbose_name="范围", max_length=10) name = models.CharField(verbose_name="范围名称", max_length=10, blank=True) class Message(models.Model): """ 用户消息Model """ user = models.ForeignKey(to=User, verbose_name='用户', on_delete=models.CASCADE) sender = models.CharField(max_length=15, verbose_name="发送者", default='system', blank=True) # 消息类型,想用type,但是还是用scope,type和types是mysql的预保留字 scope = models.ForeignKey(to=MessageScope, verbose_name="消息范围", blank=True, on_delete=models.CASCADE) title = models.CharField(max_length=100, verbose_name="消息标题") content = models.CharField(max_length=512, verbose_name="消息内容", blank=True) link = models.CharField(max_length=128, verbose_name="链接", blank=True, null=True) unread = models.BooleanField(verbose_name="未读", blank=True, default=True) time_added = models.DateTimeField(auto_now_add=True, verbose_name="添加时间") is_deleted = models.BooleanField(verbose_name="删除", default=False, blank=True)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 198, 2, 13610, 534, 4981, 994, 13, 628, 198, 4871, 11787, 37046, 7, 23839, 12982, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5525, 229, 103, 22522, 248, 20046, 231, 21410, 18796, 101, 22755, 115, 17633, 198, 220, 220, 220, 10545, 233, 241, 161, 109, 243, 27764, 245, 162, 106, 113, 8388, 11, 14428, 62, 3672, 11, 5175, 11, 10662, 80, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 402, 10619, 1137, 62, 44899, 34444, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 22606, 3256, 366, 18796, 115, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 24724, 3256, 366, 42637, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 21078, 3256, 366, 46479, 251, 43380, 228, 4943, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 14428, 62, 3672, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1821, 11, 9178, 28, 17821, 11, 15942, 577, 62, 3672, 2625, 23626, 113, 163, 100, 108, 4943, 198, 220, 220, 220, 1303, 36469, 112, 161, 225, 237, 6371, 198, 220, 220, 220, 30919, 796, 4981, 13, 12441, 15878, 7, 19011, 577, 62, 3672, 2625, 13783, 112, 161, 225, 237, 1600, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 3509, 62, 13664, 28, 11645, 8, 198, 220, 220, 220, 5279, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 21, 11, 7747, 28, 38, 10619, 1137, 62, 44899, 34444, 11, 4277, 2625, 21078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 2625, 45250, 100, 26344, 104, 4943, 198, 220, 220, 220, 1303, 3053, 20998, 107, 20015, 98, 49694, 237, 160, 122, 123, 161, 94, 104, 171, 120, 234, 19526, 228, 42468, 33699, 233, 17312, 118, 20998, 115, 165, 250, 222, 17358, 223, 161, 242, 107, 31660, 25, 10263, 238, 236, 163, 119, 255, 20998, 107, 27950, 254, 17739, 98, 43718, 94, 165, 103, 234, 165, 103, 234, 46237, 223, 163, 254, 223, 198, 220, 220, 220, 5175, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1157, 11, 15942, 577, 62, 3672, 2625, 33699, 233, 17312, 118, 20998, 115, 1600, 3748, 28, 17821, 8, 198, 220, 220, 220, 10662, 80, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1065, 11, 15942, 577, 62, 3672, 2625, 48, 48, 20998, 115, 1600, 9178, 28, 17821, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 1303, 10263, 227, 105, 20998, 116, 17312, 231, 33768, 114, 161, 222, 247, 27670, 248, 18796, 101, 26344, 108, 165, 240, 231, 165, 240, 231, 14, 36181, 106, 46479, 94, 20998, 239, 34460, 223, 162, 114, 230, 162, 223, 107, 171, 120, 234, 165, 250, 222, 17358, 223, 164, 106, 108, 37605, 243, 18796, 101, 22755, 115, 33566, 116, 17739, 111, 2389, 198, 220, 220, 220, 44852, 12083, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1821, 11, 15942, 577, 62, 3672, 2625, 165, 240, 231, 165, 240, 231, 2389, 1600, 9178, 28, 17821, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 356, 17006, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1821, 11, 15942, 577, 62, 3672, 2625, 36181, 106, 46479, 94, 2389, 1600, 9178, 28, 17821, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 1303, 5525, 225, 121, 28938, 99, 164, 106, 123, 29785, 106, 17312, 105, 163, 111, 119, 163, 119, 253, 171, 120, 234, 165, 119, 246, 164, 106, 97, 42468, 38834, 20998, 107, 20015, 98, 164, 106, 123, 29785, 106, 17312, 105, 163, 111, 119, 163, 119, 253, 198, 220, 220, 220, 1303, 10545, 111, 101, 35707, 237, 163, 105, 105, 31660, 10310, 103, 163, 106, 94, 49426, 228, 37772, 246, 18796, 101, 22755, 115, 171, 120, 234, 20998, 107, 20015, 98, 43889, 119, 46763, 108, 162, 235, 106, 41753, 241, 164, 108, 225, 46763, 112, 5171, 62, 1177, 21410, 161, 222, 120, 10310, 118, 16, 198, 220, 220, 220, 460, 62, 1177, 796, 4981, 13, 46120, 13087, 15878, 7, 19011, 577, 62, 3672, 2625, 47797, 121, 164, 106, 123, 29785, 106, 1600, 4277, 28, 25101, 11, 9178, 28, 17821, 8, 198, 220, 220, 220, 318, 62, 2934, 33342, 796, 4981, 13, 46120, 13087, 15878, 7, 19011, 577, 62, 3672, 2625, 26344, 254, 165, 247, 97, 1600, 4277, 28, 25101, 11, 9178, 28, 17821, 8, 628, 198, 2, 10545, 111, 101, 35707, 237, 171, 120, 248, 1136, 62, 7220, 62, 19849, 3419, 43095, 37345, 243, 20998, 107, 20015, 98, 164, 236, 115, 20998, 244, 26344, 108, 17312, 105, 163, 111, 119, 163, 119, 253, 45635, 18796, 101, 21410, 42468, 161, 241, 103, 10310, 103, 18796, 101, 22755, 115, 17633, 198, 2, 16268, 119, 246, 164, 106, 97, 21410, 18796, 101, 22755, 115, 17633, 42468, 171, 120, 248, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 13, 12982, 198, 2, 10263, 250, 101, 33692, 13, 9078, 40792, 165, 227, 235, 163, 121, 106, 171, 120, 248, 32, 24318, 62, 29904, 62, 33365, 3698, 20998, 107, 20015, 98, 46479, 106, 162, 242, 117, 22755, 238, 162, 234, 229, 22522, 248, 21410, 18796, 101, 22755, 115, 17633, 198, 2, 37195, 62, 29904, 62, 33365, 3698, 796, 366, 23317, 13, 12982, 37046, 1, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 198, 2, 10545, 111, 101, 35707, 237, 32573, 247, 20998, 98, 42468, 17358, 223, 162, 242, 122, 28839, 101, 4871, 11787, 37046, 28938, 236, 165, 251, 95, 21410, 628, 198, 4871, 16000, 43642, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 114, 230, 162, 223, 107, 164, 234, 225, 32368, 112, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8354, 796, 4981, 13, 11122, 1018, 15878, 7, 19011, 577, 62, 3672, 2625, 164, 234, 225, 32368, 112, 1600, 3509, 62, 13664, 28, 940, 8, 198, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 19011, 577, 62, 3672, 2625, 164, 234, 225, 32368, 112, 28938, 235, 163, 100, 108, 1600, 3509, 62, 13664, 28, 940, 11, 9178, 28, 17821, 8, 628, 198, 4871, 16000, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 242, 101, 22755, 115, 162, 114, 230, 162, 223, 107, 17633, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2836, 796, 4981, 13, 33616, 9218, 7, 1462, 28, 12982, 11, 15942, 577, 62, 3672, 11639, 18796, 101, 22755, 115, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198, 220, 220, 220, 29788, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1314, 11, 15942, 577, 62, 3672, 2625, 20998, 239, 34460, 223, 38519, 1600, 4277, 11639, 10057, 3256, 9178, 28, 17821, 8, 198, 220, 220, 220, 1303, 10545, 114, 230, 162, 223, 107, 163, 109, 119, 161, 252, 233, 171, 120, 234, 46349, 111, 18796, 101, 4906, 171, 120, 234, 19526, 228, 42468, 32573, 246, 42468, 18796, 101, 29982, 171, 120, 234, 4906, 161, 240, 234, 19199, 42468, 28744, 13976, 21410, 165, 95, 226, 46479, 251, 45911, 247, 27764, 245, 198, 220, 220, 220, 8354, 796, 4981, 13, 33616, 9218, 7, 1462, 28, 12837, 43642, 11, 15942, 577, 62, 3672, 2625, 162, 114, 230, 162, 223, 107, 164, 234, 225, 32368, 112, 1600, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198, 220, 220, 220, 3670, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 15942, 577, 62, 3672, 2625, 162, 114, 230, 162, 223, 107, 43718, 229, 165, 95, 246, 4943, 198, 220, 220, 220, 2695, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 25836, 11, 15942, 577, 62, 3672, 2625, 162, 114, 230, 162, 223, 107, 37863, 227, 22522, 117, 1600, 9178, 28, 17821, 8, 198, 220, 220, 220, 2792, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 12762, 11, 15942, 577, 62, 3672, 2625, 165, 241, 122, 162, 236, 98, 1600, 9178, 28, 17821, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 555, 961, 796, 4981, 13, 46120, 13087, 15878, 7, 19011, 577, 62, 3672, 2625, 17312, 103, 46237, 119, 1600, 9178, 28, 17821, 11, 4277, 28, 17821, 8, 198, 220, 220, 220, 640, 62, 29373, 796, 4981, 13, 10430, 7575, 15878, 7, 23736, 62, 2197, 62, 2860, 28, 17821, 11, 15942, 577, 62, 3672, 2625, 162, 115, 119, 27950, 254, 33768, 114, 29785, 112, 4943, 198, 220, 220, 220, 318, 62, 2934, 33342, 796, 4981, 13, 46120, 13087, 15878, 7, 19011, 577, 62, 3672, 2625, 26344, 254, 165, 247, 97, 1600, 4277, 28, 25101, 11, 9178, 28, 17821, 8, 198 ]
1.763926
1,508
# Generated by Django 3.2.3 on 2021-06-09 13:27 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 18, 319, 33448, 12, 3312, 12, 2931, 1511, 25, 1983, 201, 198, 201, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 201, 198, 201, 198 ]
2.567568
37
import torch from torch import nn import numpy as np import matplotlib.pyplot as plt # hyper parameters TIME_STEP = 10 INPUT_SIZE = 1 LR = 0.02 steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32) x_np = np.sin(steps) y_np = np.cos(steps) plt.plot(steps, y_np, 'r-', label='target (cos)') plt.plot(steps, x_np, 'b-', label='input (sin)') plt.legend(loc='best') plt.show() rnn = RNN() print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) loss_func = nn.MSELoss() h_state = None plt.figure(1, figsize=(12, 5)) plt.ion() for step in range(100): start, end = step * np.pi, (step + 1) * np.pi # use sin predicts cos steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) x_np = np.sin(steps) y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) prediction, h_state = rnn(x, h_state) h_state = h_state.data loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() plt.plot(steps, y_np.flatten(), 'r-') plt.plot(steps, prediction.data.numpy().flatten(), 'b-') plt.draw(); plt.pause(0.05) plt.ioff() plt.show()
[ 11748, 28034, 201, 198, 6738, 28034, 1330, 299, 77, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 201, 198, 201, 198, 2, 8718, 10007, 201, 198, 34694, 62, 42135, 796, 838, 201, 198, 1268, 30076, 62, 33489, 796, 352, 201, 198, 35972, 796, 657, 13, 2999, 201, 198, 201, 198, 20214, 796, 45941, 13, 21602, 10223, 7, 15, 11, 45941, 13, 14415, 1635, 362, 11, 1802, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 201, 198, 87, 62, 37659, 796, 45941, 13, 31369, 7, 20214, 8, 201, 198, 88, 62, 37659, 796, 45941, 13, 6966, 7, 20214, 8, 201, 198, 489, 83, 13, 29487, 7, 20214, 11, 331, 62, 37659, 11, 705, 81, 12, 3256, 6167, 11639, 16793, 357, 6966, 8, 11537, 201, 198, 489, 83, 13, 29487, 7, 20214, 11, 2124, 62, 37659, 11, 705, 65, 12, 3256, 6167, 11639, 15414, 357, 31369, 8, 11537, 201, 198, 489, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 201, 198, 489, 83, 13, 12860, 3419, 201, 198, 201, 198, 201, 198, 81, 20471, 796, 371, 6144, 3419, 201, 198, 4798, 7, 81, 20471, 8, 201, 198, 201, 198, 40085, 7509, 796, 28034, 13, 40085, 13, 23159, 7, 81, 20471, 13, 17143, 7307, 22784, 300, 81, 28, 35972, 8, 201, 198, 22462, 62, 20786, 796, 299, 77, 13, 5653, 3698, 793, 3419, 201, 198, 201, 198, 71, 62, 5219, 796, 6045, 201, 198, 201, 198, 489, 83, 13, 26875, 7, 16, 11, 2336, 7857, 16193, 1065, 11, 642, 4008, 201, 198, 489, 83, 13, 295, 3419, 201, 198, 201, 198, 1640, 2239, 287, 2837, 7, 3064, 2599, 201, 198, 220, 220, 220, 923, 11, 886, 796, 2239, 1635, 45941, 13, 14415, 11, 357, 9662, 1343, 352, 8, 1635, 45941, 13, 14415, 201, 198, 220, 220, 220, 1303, 779, 7813, 26334, 8615, 201, 198, 220, 220, 220, 4831, 796, 45941, 13, 21602, 10223, 7, 9688, 11, 886, 11, 20460, 62, 42135, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 28, 25101, 8, 201, 198, 220, 220, 220, 2124, 62, 37659, 796, 45941, 13, 31369, 7, 20214, 8, 201, 198, 220, 220, 220, 331, 62, 37659, 796, 45941, 13, 6966, 7, 20214, 8, 201, 198, 201, 198, 220, 220, 220, 2124, 796, 28034, 13, 6738, 62, 77, 32152, 7, 87, 62, 37659, 58, 37659, 13, 3605, 22704, 11, 1058, 11, 45941, 13, 3605, 22704, 12962, 201, 198, 220, 220, 220, 331, 796, 28034, 13, 6738, 62, 77, 32152, 7, 88, 62, 37659, 58, 37659, 13, 3605, 22704, 11, 1058, 11, 45941, 13, 3605, 22704, 12962, 201, 198, 201, 198, 220, 220, 220, 17724, 11, 289, 62, 5219, 796, 374, 20471, 7, 87, 11, 289, 62, 5219, 8, 201, 198, 220, 220, 220, 289, 62, 5219, 796, 289, 62, 5219, 13, 7890, 201, 198, 201, 198, 220, 220, 220, 2994, 796, 2994, 62, 20786, 7, 28764, 2867, 11, 331, 8, 201, 198, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 201, 198, 220, 220, 220, 2994, 13, 1891, 904, 3419, 201, 198, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 20214, 11, 331, 62, 37659, 13, 2704, 41769, 22784, 705, 81, 12, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 20214, 11, 17724, 13, 7890, 13, 77, 32152, 22446, 2704, 41769, 22784, 705, 65, 12, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 19334, 9783, 201, 198, 220, 220, 220, 458, 83, 13, 32125, 7, 15, 13, 2713, 8, 201, 198, 201, 198, 489, 83, 13, 952, 487, 3419, 201, 198, 489, 83, 13, 12860, 3419 ]
2.040562
641
import os import re import collections NOTES_DIR = '/home/dave/nonlinearfunction/gatsby-garden/_notes' md_files = [fname for fname in os.listdir(NOTES_DIR) if fname.endswith('.md')] existing_notes = [fname[:-3] for fname in md_files] refs = collections.defaultdict(int) linked_notes = set() for filename in md_files: with open(os.path.join(NOTES_DIR, filename), 'r') as f: md_str = f.read() wikilinks = re.findall(r'\[\[([^\]]+)\]\]', md_str) wikilinks = set([s.split('|')[0] for s in wikilinks]) for s in wikilinks: refs[s] += 1 # print(f"File: {filename} wikilinks: {wikilinks}") linked_notes = linked_notes.union(wikilinks) new_notes = linked_notes - set(existing_notes) trivial_notes = set() for s in new_notes: if refs[s] > 1: print(f'creating {s} with {refs[s]} refs') with open(os.path.join(NOTES_DIR, s + '.md'), 'w') as f: f.write('') else: trivial_notes.add(s) for filename in md_files: with open(os.path.join(NOTES_DIR, filename), 'r') as f: md_str = f.read() for s in trivial_notes: new_md_str = re.sub(r'\[\[' + s + r'(\|([^\]]+))?\]\]', lambda m: m.group(2) if m.group(2) else s, md_str) if new_md_str != md_str: print(f"{filename}: removed trivial link '{s}'") md_str = new_md_str with open(os.path.join(NOTES_DIR, filename), 'w') as f: f.write(md_str)
[ 11748, 28686, 198, 11748, 302, 198, 11748, 17268, 198, 198, 11929, 1546, 62, 34720, 796, 31051, 11195, 14, 67, 1015, 14, 13159, 29127, 8818, 14, 70, 1381, 1525, 12, 70, 5872, 47835, 17815, 6, 198, 198, 9132, 62, 16624, 796, 685, 69, 3672, 329, 277, 3672, 287, 28686, 13, 4868, 15908, 7, 11929, 1546, 62, 34720, 8, 611, 277, 3672, 13, 437, 2032, 342, 7, 4458, 9132, 11537, 60, 198, 198, 25687, 62, 17815, 796, 685, 69, 3672, 58, 21912, 18, 60, 329, 277, 3672, 287, 45243, 62, 16624, 60, 198, 5420, 82, 796, 17268, 13, 12286, 11600, 7, 600, 8, 198, 25614, 62, 17815, 796, 900, 3419, 198, 198, 1640, 29472, 287, 45243, 62, 16624, 25, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11929, 1546, 62, 34720, 11, 29472, 828, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 62, 2536, 796, 277, 13, 961, 3419, 198, 220, 220, 220, 47145, 346, 2973, 796, 302, 13, 19796, 439, 7, 81, 6, 59, 58, 59, 58, 26933, 61, 59, 11907, 10, 19415, 60, 59, 60, 3256, 45243, 62, 2536, 8, 198, 220, 220, 220, 47145, 346, 2973, 796, 900, 26933, 82, 13, 35312, 10786, 91, 11537, 58, 15, 60, 329, 264, 287, 47145, 346, 2973, 12962, 198, 220, 220, 220, 329, 264, 287, 47145, 346, 2973, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 82, 58, 82, 60, 15853, 352, 198, 220, 220, 220, 1303, 3601, 7, 69, 1, 8979, 25, 1391, 34345, 92, 47145, 346, 2973, 25, 1391, 20763, 346, 2973, 92, 4943, 198, 220, 220, 220, 6692, 62, 17815, 796, 6692, 62, 17815, 13, 24592, 7, 20763, 346, 2973, 8, 198, 198, 3605, 62, 17815, 796, 6692, 62, 17815, 532, 900, 7, 25687, 62, 17815, 8, 198, 83, 15104, 498, 62, 17815, 796, 900, 3419, 198, 1640, 264, 287, 649, 62, 17815, 25, 198, 220, 220, 220, 611, 1006, 82, 58, 82, 60, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 20123, 278, 1391, 82, 92, 351, 1391, 5420, 82, 58, 82, 48999, 1006, 82, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11929, 1546, 62, 34720, 11, 264, 1343, 45302, 9132, 33809, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 7061, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20861, 62, 17815, 13, 2860, 7, 82, 8, 198, 198, 1640, 29472, 287, 45243, 62, 16624, 25, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11929, 1546, 62, 34720, 11, 29472, 828, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 62, 2536, 796, 277, 13, 961, 3419, 198, 220, 220, 220, 329, 264, 287, 20861, 62, 17815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9132, 62, 2536, 796, 302, 13, 7266, 7, 81, 6, 59, 58, 59, 17816, 1343, 264, 1343, 374, 6, 38016, 91, 26933, 61, 59, 11907, 10, 4008, 30, 59, 60, 59, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 285, 25, 285, 13, 8094, 7, 17, 8, 611, 285, 13, 8094, 7, 17, 8, 2073, 264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 9132, 62, 2536, 14512, 45243, 62, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 34345, 38362, 4615, 20861, 2792, 705, 90, 82, 92, 6, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 62, 2536, 796, 649, 62, 9132, 62, 2536, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11929, 1546, 62, 34720, 11, 29472, 828, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 9132, 62, 2536, 8, 198 ]
2.04426
723
import pytesseract import numpy as np import cv2
[ 11748, 12972, 83, 408, 263, 529, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 269, 85, 17, 220, 628, 628, 628 ]
2.545455
22
from . import special from . import old_special from .mode_indices import rmax_to_lmax, lmax_to_rmax, mode_indices from .vsh_functions import (Emn, vsh_mode, get_zn, VSH, vsh_normalization_values, get_zn_far, VSH_far, vsh_normalization_values_far) from .vsh_translation import vsh_translation from .vsh_rotation import vsh_rotation_matrix, rotate_expansion_coefficients from .expansion import expand_E, expand_E_far, expand_H, expand_H_far from .decomposition import (near_field_point_matching, far_field_point_matching, integral_project_fields_onto, integral_project_fields, integral_project_source, integral_project_source) from .cluster_coefficients import cluster_coefficients
[ 6738, 764, 1330, 2041, 198, 6738, 764, 1330, 1468, 62, 20887, 198, 198, 6738, 764, 14171, 62, 521, 1063, 1330, 374, 9806, 62, 1462, 62, 75, 9806, 11, 300, 9806, 62, 1462, 62, 81, 9806, 11, 4235, 62, 521, 1063, 198, 6738, 764, 85, 1477, 62, 12543, 2733, 1330, 357, 10161, 77, 11, 410, 1477, 62, 14171, 11, 651, 62, 47347, 11, 569, 9693, 11, 410, 1477, 62, 11265, 1634, 62, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 47347, 62, 16370, 11, 569, 9693, 62, 16370, 11, 410, 1477, 62, 11265, 1634, 62, 27160, 62, 16370, 8, 198, 6738, 764, 85, 1477, 62, 41519, 1330, 410, 1477, 62, 41519, 220, 198, 6738, 764, 85, 1477, 62, 10599, 341, 1330, 410, 1477, 62, 10599, 341, 62, 6759, 8609, 11, 23064, 62, 11201, 5487, 62, 1073, 41945, 198, 6738, 764, 11201, 5487, 1330, 4292, 62, 36, 11, 4292, 62, 36, 62, 16370, 11, 4292, 62, 39, 11, 4292, 62, 39, 62, 16370, 198, 6738, 764, 12501, 296, 9150, 1330, 357, 40093, 62, 3245, 62, 4122, 62, 15699, 278, 11, 1290, 62, 3245, 62, 4122, 62, 15699, 278, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19287, 62, 16302, 62, 25747, 62, 5957, 11, 19287, 62, 16302, 62, 25747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19287, 62, 16302, 62, 10459, 11, 19287, 62, 16302, 62, 10459, 8, 198, 6738, 764, 565, 5819, 62, 1073, 41945, 1330, 13946, 62, 1073, 41945, 198 ]
2.488673
309
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 14 10:10:32 2021 @author: [email protected] [email protected] [email protected] """ import spacy import os import json from typing import List, Tuple, Optional from thinc.api import Model from spacy.pipeline import Lemmatizer from spacy.tokens import Token from spacy.language import Language from spacy.lang.ca import Catalan @spacy.registry.callbacks("before_callback") @spacy.registry.misc("ca_lookups_loader") @Catalan.factory( "lemmatizer", assigns=["token.lemma"], default_config={"model": None, "mode": "rule", "overwrite": False}, default_score_weights={"lemma_acc": 1.0}, ) class CatalanLemmatizer(Lemmatizer): """ Copied from French Lemmatizer Catalan language lemmatizer applies the default rule based lemmatization procedure with some modifications for better Catalan language support. The parts of speech 'ADV', 'PRON', 'DET', 'ADP' and 'AUX' are added to use the rule-based lemmatization. As a last resort, the lemmatizer checks in the lookup table. """ @classmethod
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 2758, 1478, 838, 25, 940, 25, 2624, 33448, 198, 198, 31, 9800, 25, 1097, 33280, 13, 14892, 4359, 14870, 16, 31, 65, 1416, 13, 274, 355, 959, 13, 70, 315, 44448, 31, 65, 1416, 13, 274, 1097, 1326, 13, 283, 434, 5733, 31, 65, 1416, 13, 274, 198, 37811, 198, 198, 11748, 599, 1590, 198, 11748, 28686, 198, 11748, 33918, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 32233, 198, 6738, 294, 1939, 13, 15042, 1330, 9104, 198, 6738, 599, 1590, 13, 79, 541, 4470, 1330, 20607, 6759, 7509, 198, 6738, 599, 1590, 13, 83, 482, 641, 1330, 29130, 198, 6738, 599, 1590, 13, 16129, 1330, 15417, 198, 6738, 599, 1590, 13, 17204, 13, 6888, 1330, 31066, 628, 198, 31, 2777, 1590, 13, 2301, 4592, 13, 13345, 10146, 7203, 19052, 62, 47423, 4943, 628, 198, 31, 2777, 1590, 13, 2301, 4592, 13, 44374, 7203, 6888, 62, 5460, 4739, 62, 29356, 4943, 628, 198, 31, 39075, 272, 13, 69, 9548, 7, 198, 220, 220, 220, 366, 293, 3020, 265, 7509, 1600, 198, 220, 220, 220, 46974, 28, 14692, 30001, 13, 10671, 2611, 33116, 198, 220, 220, 220, 4277, 62, 11250, 28, 4895, 19849, 1298, 6045, 11, 366, 14171, 1298, 366, 25135, 1600, 366, 2502, 13564, 1298, 10352, 5512, 198, 220, 220, 220, 4277, 62, 26675, 62, 43775, 28, 4895, 10671, 2611, 62, 4134, 1298, 352, 13, 15, 5512, 198, 8, 628, 198, 4871, 31066, 43, 368, 6759, 7509, 7, 43, 368, 6759, 7509, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6955, 798, 422, 4141, 20607, 6759, 7509, 198, 220, 220, 220, 31066, 3303, 443, 3020, 265, 7509, 8991, 262, 4277, 3896, 1912, 443, 3020, 265, 1634, 198, 220, 220, 220, 8771, 351, 617, 19008, 329, 1365, 31066, 3303, 1104, 13, 628, 220, 220, 220, 383, 3354, 286, 4046, 705, 2885, 53, 3256, 705, 4805, 1340, 3256, 705, 35, 2767, 3256, 705, 2885, 47, 6, 290, 705, 26830, 55, 6, 389, 2087, 284, 779, 198, 220, 220, 220, 262, 3896, 12, 3106, 443, 3020, 265, 1634, 13, 1081, 257, 938, 12600, 11, 262, 443, 3020, 265, 7509, 8794, 287, 198, 220, 220, 220, 262, 35847, 3084, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 628 ]
2.825436
401
from typing import Any
[ 6738, 19720, 1330, 4377, 628, 198 ]
4.166667
6
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Energized Blu import urllib.request import datetime import os import time File = 'energized/blu' List = [] # Thanks to all maintainers of hosts lists. Sources = [ 'https://raw.githubusercontent.com/AdroitAdorKhan/Energized/master/EnergizedHosts/EnergizedHosts', 'https://raw.githubusercontent.com/StevenBlack/hosts/master/alternates/fakenews-gambling/hosts', 'http://someonewhocares.org/hosts/zero/', 'https://hblock.molinero.xyz/hosts', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Mirror/MoaAB/MoaAB.active.txt', 'https://raw.githubusercontent.com/hoshsadiq/adblock-nocoin-list/master/hosts.txt', 'https://raw.githubusercontent.com/Yhonay/antipopads/master/hosts', 'https://raw.githubusercontent.com/notracking/hosts-blocklists/master/hostnames.txt', 'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.2o7Net/hosts', 'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Dead/hosts', 'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Risk/hosts', 'https://raw.githubusercontent.com/FadeMind/hosts.extras/master/add.Spam/hosts', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/ZeusTracker.txt', 'https://raw.githubusercontent.com/StevenBlack/hosts/master/data/StevenBlack/hosts', 'https://zerodot1.gitlab.io/CoinBlockerLists/hosts_browser', 'https://zerodot1.gitlab.io/CoinBlockerLists/hosts', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/Spam404.txt', 'https://raw.githubusercontent.com/CHEF-KOCH/NSABlocklist/master/HOSTS', 'https://raw.githubusercontent.com/azet12/KADhosts/master/KADhosts.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/AdguardMobileSpyware.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/AdguardTracking.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasylistAdserver.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasyPrivacySpecific.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/EasyPrivacyTracking.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEAds.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEMalvertising.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/DisconnectMEMalware.txt', 'https://raw.githubusercontent.com/EnergizedProtection/EnergizedTools/master/Converter/Hosts/Wally3K_Blacklist.txt' ] for Link in Sources: try: print('[+] Retrieving list from: {}'.format(Link)) r = urllib.request.urlopen(Link) Host = r.readlines() Host = [x.decode('UTF-8') for x in Host] Host = [x.strip() for x in Host] Host = [z for z in Host if z != '' and z[0] != '#'] Host = [h.split()[1] for h in Host if h.split()[0] in ['0.0.0.0', '127.0.0.1']] Host = [x for x in Host if x not in ['localhost', 'localhost.localdomain', 'locals']] print('[+] Found {} domains to block.'.format(str(len(Host)))) r.close() List += Host except: print('[-] ERROR: I can\'t retrieve the list from: {}'.format(Link)) print('[+] Removing duplicates and sorting...') List = sorted(list(set(List))) print('[+] Applying whitelist...') r = urllib.request.urlopen('https://raw.githubusercontent.com/AdroitAdorKhan/Energized/master/EnergizedHosts/EnergizedWhites') Whitelist = r.readlines() Whitelist = [x.decode('utf-8') for x in Whitelist] Whitelist = [x.strip() for x in Whitelist] Whitelist = [z for z in Whitelist if z != '' and z[0] != '#'] r.close() for i in range(0, len(Whitelist)): try: List.remove(Whitelist[i]) except: pass print('[+] Total domains count {}.'.format(str(len(List)))) if not os.path.exists(os.path.dirname(File)): os.makedirs(os.path.dirname(File)) with open(File, 'w') as f: print('[+] Writing to file...') f.write('''# Energized - ad.porn.malware blocking.\n# A merged collection of hosts from reputable sources.\n# https://ador.chorompotro.com\n\n# Energized Blu - Lightweight Energized Protection.\n# Version: ''' + time.strftime("%y.%m.%j", time.gmtime()) + '''\n# Project Git: https://github.com/EnergizedProtection/EnergizedBlu\n# RAW Source: https://raw.githubusercontent.com/EnergizedProtection/EnergizedBlu/master/energized/blu\n# Last updated: {}'''.format(datetime.datetime.now().strftime('%a, %d %b %y %X'))) f.write('''\n# Total Domains: {}\n\n'''.format(str(len(List)))) f.write('''\n# -================-Maintainer-================-\n# Nayem Ador - https://adroitadorkhan.github.io\n# -============================================-\n\n''') f.write('''\n127.0.0.1 localhost\n127.0.0.1 localhost.localdomain\n127.0.0.1 local\n255.255.255.255 broadcasthost\n::1 localhost\n::1 ip6-localhost\n::1 ip6-loopback\nfe80::1%lo0 localhost\nff00::0 ip6-localnet\nff00::0 ip6-mcastprefix\nff02::1 ip6-allnodes\nff02::2 ip6-allrouters\nff02::3 ip6-allhosts\n0.0.0.0 0.0.0.0\n\n\n# -====================-Features-====================-\n# # Lightweight Energized Protection Ever! #\n#\n# - Based on Hosts file, all the bad stuff blocked with 0.0.0.0 \n# - Compatible with all devices, regardless of OS. \n# - Strictly blocks all advertisements, malwares, spams, statistics, trackers on both web browsing and applications. \n# - YouTube, Spotify, UC and Shareit Ads Blocking. \n# - Reduces page loading time. \n# - Reduces data consumptions. Saves data expenses. \n# - Increases privacy. \n# - No extra abracadabra!\n#\n# -==================================================-\n\n\n''') f.write('\n'.join('0.0.0.0 ' + url for url in List)) print('[+] Done!')
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 412, 25649, 1143, 12391, 220, 198, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 640, 198, 198, 8979, 796, 705, 877, 70, 1143, 14, 65, 2290, 6, 198, 8053, 796, 17635, 198, 2, 6930, 284, 477, 5529, 364, 286, 11453, 8341, 13, 198, 21188, 796, 685, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 2782, 7775, 2782, 273, 42, 7637, 14, 36, 25649, 1143, 14, 9866, 14, 36, 25649, 1143, 17932, 82, 14, 36, 25649, 1143, 17932, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 28292, 9915, 14, 4774, 82, 14, 9866, 14, 33645, 689, 14, 69, 1685, 15515, 12, 70, 15366, 14, 4774, 82, 3256, 198, 197, 6, 4023, 1378, 11246, 44181, 71, 420, 3565, 13, 2398, 14, 4774, 82, 14, 22570, 14, 3256, 198, 197, 6, 5450, 1378, 71, 9967, 13, 76, 24910, 3529, 13, 5431, 89, 14, 4774, 82, 3256, 198, 220, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 27453, 1472, 14, 44, 12162, 6242, 14, 44, 12162, 6242, 13, 5275, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 71, 3768, 82, 48687, 14, 324, 9967, 12, 77, 25634, 259, 12, 4868, 14, 9866, 14, 4774, 82, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 56, 24130, 323, 14, 415, 42800, 5643, 14, 9866, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 1662, 81, 5430, 14, 4774, 82, 12, 9967, 20713, 14, 9866, 14, 4774, 14933, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 37, 671, 28478, 14, 4774, 82, 13, 2302, 8847, 14, 9866, 14, 2860, 13, 17, 78, 22, 7934, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 37, 671, 28478, 14, 4774, 82, 13, 2302, 8847, 14, 9866, 14, 2860, 13, 20489, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 37, 671, 28478, 14, 4774, 82, 13, 2302, 8847, 14, 9866, 14, 2860, 13, 49, 1984, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 37, 671, 28478, 14, 4774, 82, 13, 2302, 8847, 14, 9866, 14, 2860, 13, 4561, 321, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 57, 27650, 35694, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 28292, 9915, 14, 4774, 82, 14, 9866, 14, 7890, 14, 28292, 9915, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 9107, 375, 313, 16, 13, 18300, 23912, 13, 952, 14, 24387, 12235, 263, 43, 1023, 14, 4774, 82, 62, 40259, 3256, 198, 220, 705, 5450, 1378, 9107, 375, 313, 16, 13, 18300, 23912, 13, 952, 14, 24387, 12235, 263, 43, 1023, 14, 4774, 82, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 4561, 321, 26429, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 3398, 25425, 12, 22328, 3398, 14, 47549, 12235, 4868, 14, 9866, 14, 39, 10892, 50, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 1031, 316, 1065, 14, 42, 2885, 4774, 82, 14, 9866, 14, 42, 2885, 4774, 82, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 2782, 14864, 17066, 4561, 88, 1574, 13, 14116, 3256, 198, 220, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 2782, 14864, 2898, 5430, 13, 14116, 3256, 220, 198, 220, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 36, 292, 2645, 396, 2782, 15388, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 28406, 48948, 32419, 13, 14116, 3256, 198, 220, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 28406, 48948, 2898, 5430, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 7279, 8443, 11682, 2782, 82, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 7279, 8443, 44, 3620, 282, 31809, 13, 14116, 3256, 198, 220, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 7279, 8443, 44, 3620, 282, 1574, 13, 14116, 3256, 198, 197, 6, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 33637, 14, 9866, 14, 3103, 332, 353, 14, 17932, 82, 14, 54, 453, 18, 42, 62, 9915, 4868, 13, 14116, 6, 198, 60, 198, 198, 1640, 7502, 287, 26406, 25, 198, 197, 28311, 25, 198, 197, 197, 4798, 10786, 58, 10, 60, 4990, 37418, 1351, 422, 25, 23884, 4458, 18982, 7, 11280, 4008, 198, 197, 197, 81, 796, 2956, 297, 571, 13, 25927, 13, 6371, 9654, 7, 11280, 8, 198, 197, 197, 17932, 796, 374, 13, 961, 6615, 3419, 198, 197, 197, 17932, 796, 685, 87, 13, 12501, 1098, 10786, 48504, 12, 23, 11537, 329, 2124, 287, 14504, 60, 198, 197, 197, 17932, 796, 685, 87, 13, 36311, 3419, 329, 2124, 287, 14504, 60, 198, 197, 197, 17932, 796, 685, 89, 329, 1976, 287, 14504, 611, 1976, 14512, 10148, 290, 1976, 58, 15, 60, 14512, 705, 2, 20520, 198, 197, 197, 17932, 796, 685, 71, 13, 35312, 3419, 58, 16, 60, 329, 289, 287, 14504, 611, 289, 13, 35312, 3419, 58, 15, 60, 287, 37250, 15, 13, 15, 13, 15, 13, 15, 3256, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 11907, 198, 197, 197, 17932, 796, 685, 87, 329, 2124, 287, 14504, 611, 2124, 407, 287, 37250, 36750, 3256, 705, 36750, 13, 17946, 1940, 296, 391, 3256, 705, 17946, 874, 6, 11907, 198, 197, 197, 4798, 10786, 58, 10, 60, 4062, 23884, 18209, 284, 2512, 2637, 13, 18982, 7, 2536, 7, 11925, 7, 17932, 35514, 198, 197, 197, 81, 13, 19836, 3419, 198, 197, 197, 8053, 15853, 14504, 198, 197, 16341, 25, 198, 197, 197, 4798, 10786, 58, 12, 60, 33854, 25, 314, 460, 43054, 83, 19818, 262, 1351, 422, 25, 23884, 4458, 18982, 7, 11280, 4008, 198, 198, 4798, 10786, 58, 10, 60, 3982, 5165, 14184, 16856, 290, 29407, 986, 11537, 198, 8053, 796, 23243, 7, 4868, 7, 2617, 7, 8053, 22305, 198, 4798, 10786, 58, 10, 60, 2034, 3157, 20542, 46331, 986, 11537, 198, 81, 796, 2956, 297, 571, 13, 25927, 13, 6371, 9654, 10786, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 2782, 7775, 2782, 273, 42, 7637, 14, 36, 25649, 1143, 14, 9866, 14, 36, 25649, 1143, 17932, 82, 14, 36, 25649, 1143, 1199, 2737, 11537, 198, 43617, 46331, 796, 374, 13, 961, 6615, 3419, 198, 43617, 46331, 796, 685, 87, 13, 12501, 1098, 10786, 40477, 12, 23, 11537, 329, 2124, 287, 13183, 46331, 60, 198, 43617, 46331, 796, 685, 87, 13, 36311, 3419, 329, 2124, 287, 13183, 46331, 60, 198, 43617, 46331, 796, 685, 89, 329, 1976, 287, 13183, 46331, 611, 1976, 14512, 10148, 290, 1976, 58, 15, 60, 14512, 705, 2, 20520, 198, 81, 13, 19836, 3419, 198, 198, 1640, 1312, 287, 2837, 7, 15, 11, 18896, 7, 43617, 46331, 8, 2599, 198, 197, 28311, 25, 198, 197, 197, 8053, 13, 28956, 7, 43617, 46331, 58, 72, 12962, 198, 197, 16341, 25, 198, 197, 197, 6603, 198, 198, 4798, 10786, 58, 10, 60, 7472, 18209, 954, 23884, 2637, 13, 18982, 7, 2536, 7, 11925, 7, 8053, 35514, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 15908, 3672, 7, 8979, 8, 2599, 198, 197, 418, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 8979, 4008, 198, 198, 4480, 1280, 7, 8979, 11, 705, 86, 11537, 355, 277, 25, 198, 197, 4798, 10786, 58, 10, 60, 22183, 284, 2393, 986, 11537, 198, 197, 69, 13, 13564, 7, 7061, 6, 2, 412, 25649, 1143, 532, 512, 13, 79, 1211, 13, 7617, 1574, 12013, 13, 59, 77, 2, 317, 23791, 4947, 286, 11453, 422, 40300, 4237, 13, 59, 77, 2, 3740, 1378, 7079, 13, 354, 273, 3361, 313, 305, 13, 785, 59, 77, 59, 77, 2, 412, 25649, 1143, 12391, 532, 4401, 6551, 412, 25649, 1143, 9985, 13, 59, 77, 2, 10628, 25, 705, 7061, 1343, 640, 13, 2536, 31387, 7203, 4, 88, 13, 4, 76, 13, 4, 73, 1600, 640, 13, 39870, 2435, 28955, 1343, 705, 7061, 59, 77, 2, 4935, 15151, 25, 3740, 1378, 12567, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 38676, 59, 77, 2, 33782, 8090, 25, 3740, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36, 25649, 1143, 19703, 3213, 14, 36, 25649, 1143, 38676, 14, 9866, 14, 877, 70, 1143, 14, 65, 2290, 59, 77, 2, 4586, 6153, 25, 23884, 7061, 4458, 18982, 7, 19608, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 64, 11, 4064, 67, 4064, 65, 4064, 88, 4064, 55, 6, 22305, 198, 197, 69, 13, 13564, 7, 7061, 6, 59, 77, 2, 7472, 9666, 1299, 25, 23884, 59, 77, 59, 77, 7061, 4458, 18982, 7, 2536, 7, 11925, 7, 8053, 35514, 198, 197, 69, 13, 13564, 7, 7061, 6, 59, 77, 2, 532, 4770, 12, 44, 2913, 10613, 12, 4770, 12, 59, 77, 2, 38808, 368, 1215, 273, 532, 3740, 1378, 324, 7775, 324, 967, 7637, 13, 12567, 13, 952, 59, 77, 2, 532, 10052, 25609, 12, 59, 77, 59, 77, 7061, 11537, 198, 197, 69, 13, 13564, 7, 7061, 6, 59, 77, 16799, 13, 15, 13, 15, 13, 16, 1957, 4774, 59, 77, 16799, 13, 15, 13, 15, 13, 16, 1957, 4774, 13, 17946, 1940, 296, 391, 59, 77, 16799, 13, 15, 13, 15, 13, 16, 1957, 59, 77, 13381, 13, 13381, 13, 13381, 13, 13381, 3154, 34004, 400, 455, 59, 77, 3712, 16, 1957, 4774, 59, 77, 3712, 16, 20966, 21, 12, 36750, 59, 77, 3712, 16, 20966, 21, 12, 26268, 1891, 59, 77, 5036, 1795, 3712, 16, 4, 5439, 15, 1957, 4774, 59, 77, 487, 405, 3712, 15, 20966, 21, 12, 12001, 3262, 59, 77, 487, 405, 3712, 15, 20966, 21, 12, 76, 2701, 40290, 59, 77, 487, 2999, 3712, 16, 20966, 21, 12, 439, 77, 4147, 59, 77, 487, 2999, 3712, 17, 20966, 21, 12, 439, 472, 1010, 59, 77, 487, 2999, 3712, 18, 20966, 21, 12, 439, 4774, 82, 59, 77, 15, 13, 15, 13, 15, 13, 15, 657, 13, 15, 13, 15, 13, 15, 59, 77, 59, 77, 59, 77, 2, 532, 4770, 1421, 12, 23595, 12, 4770, 1421, 12, 59, 77, 2, 220, 220, 220, 1303, 4401, 6551, 412, 25649, 1143, 9985, 10776, 0, 1303, 59, 77, 2, 59, 77, 2, 532, 13403, 319, 14504, 82, 2393, 11, 477, 262, 2089, 3404, 10226, 351, 657, 13, 15, 13, 15, 13, 15, 3467, 77, 2, 532, 3082, 16873, 351, 477, 4410, 11, 7692, 286, 7294, 13, 3467, 77, 2, 532, 520, 2012, 306, 7021, 477, 25210, 11, 6428, 86, 3565, 11, 599, 4105, 11, 7869, 11, 2610, 364, 319, 1111, 3992, 23182, 290, 5479, 13, 3467, 77, 2, 532, 7444, 11, 26778, 11, 14417, 290, 8734, 270, 47442, 1086, 8629, 13, 3467, 77, 2, 532, 2297, 26873, 2443, 11046, 640, 13, 3467, 77, 2, 532, 2297, 26873, 1366, 2784, 8544, 13, 311, 3080, 1366, 9307, 13, 3467, 77, 2, 532, 23920, 6782, 13, 3467, 77, 2, 532, 1400, 3131, 450, 11510, 324, 397, 430, 0, 59, 77, 2, 59, 77, 2, 532, 10052, 4770, 855, 12, 59, 77, 59, 77, 59, 77, 7061, 11537, 198, 197, 69, 13, 13564, 10786, 59, 77, 4458, 22179, 10786, 15, 13, 15, 13, 15, 13, 15, 705, 1343, 19016, 329, 19016, 287, 7343, 4008, 198, 197, 4798, 10786, 58, 10, 60, 24429, 0, 11537, 198 ]
2.681468
2,207
import json import requests from settings import * if __name__ == "__main__": post_rain_notice()
[ 11748, 33918, 198, 11748, 7007, 198, 6738, 6460, 1330, 1635, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1281, 62, 3201, 62, 42138, 3419, 198 ]
3.028571
35
from collections import deque from abc import ABC, abstractmethod from multiprocessing import Queue as MQueue from multiprocessing import Process from redrawing.components.stage import Stage class Queue(ABC): '''! Generic queue for communication between stages. ''' @abstractmethod def get(self): '''! Returns the first element of the queue. Returns: @returns the first element of the queue ''' ... @abstractmethod def insert(self, value): '''! Insert a value in the end of the queue. Parameters: @param value - the value ''' ... @abstractmethod def empty(self): '''! See if the queue is empty. Returns: @returns True if empty ''' ... @abstractmethod def full(self): '''! See if the queue if full Returns: @returns True if full ''' ... class SimpleQueue(Queue): '''! A simple queue. Must not be used for multiprocessing Uses collections.deque for implement the queue ''' def get(self): '''! Returns the first element of the queue. Returns: @returns the first element of the queue ''' return self.queue.popleft() def insert(self, value): '''! Insert a value in the end of the queue. Parameters: @param value - the value ''' self.queue.append(value) def empty(self): '''! See if the queue is empty. Returns: @returns True if empty ''' if len(self.queue) > 0: return False return True def full(self): '''! See if the queue if full Returns: @returns True if full ''' if len(self.queue) >= self.max_size: return True return False class ProcessQueue(Queue): '''! Queue for using in multiprocessing. For single process pipeline, SimpleQueue is better Uses multiprocessing.queue for implement the queue ''' def get(self): '''! Returns the first element of the queue. Returns: @returns the first element of the queue ''' return self.queue.get() def insert(self, value): '''! Insert a value in the end of the queue. Parameters: @param value - the value ''' self.queue.put(value) def empty(self): '''! See if the queue is empty. Returns: @returns True if empty ''' return self.queue.empty() def full(self): '''! See if the queue if full Returns: @returns True if full ''' return self.queue.full() class Pipeline(ABC): '''! Generic pipeline of stages ''' def insert_stage(self, stage): '''! Inserts a new stage to the pipeline Parameters: @param state - the stage @todo Alterar para o tipo correto de exceção ''' if not isinstance(stage, Stage): raise Exception("Stages must be of Stage class") if stage in self.substages: return self.stages.append(stage) self.substages_configs[stage] = [] @abstractmethod def create_connection(self, stage_out, id_out, stage_in, id_in, max_size): '''! Create a connection between stages Parameters: @param stage_out - Stage where the data will come from @param id_out - ID of the output communication channel @param stage_in - Stage from where the data will go @param id_in - ID of the input communication channel @param max_size - Maximum channel queue size ''' queue = None if stage_in.has_input_queue(id_in): queue = stage_in.input_queue[id_in] else: queue = self.create_queue(max_size) stage_in._setInputQueue(queue, id_in) stage_out._setOutputQueue(queue, id_out) @abstractmethod def run(self): '''! Runs the pipeline until error/exception ''' ... class SingleProcess_Pipeline(Pipeline): '''! Pipeline of stages to be runned on a single process ''' def start(self): '''! Starts the stages Is automatically called by the run and runOnce method ''' for stage in self.stages: for substage in self.substages_configs[stage]: substage["substage"].setup() stage.setup() self.started = True def run(self): '''! Runs the pipeline until error/exception ''' if not self.started: self.start() while True: self.runOnce() def runOnce(self): '''! Runs all the stages once ''' if not self.started: self.start() for stage in self.stages: for substage in self.substages_configs[stage]: if substage["run_before"] == True: substage["substage"].run(stage._context) stage.run() for substage in self.substages_configs[stage]: if substage["run_before"] == False: substage["substage"].run(stage._context) class MultiProcess_Pipeline(Pipeline): '''! Pipeline of stages runned parallely on multiple process ''' def _run_stage(self, stage): '''! Starts and runs a stage Parameters: @param stage - stage to be runned ''' for substage in self.substages_configs[stage]: substage["substage"].setup() stage.setup() while True: for substage in self.substages_configs[stage]: if substage["run_before"] == True: substage["substage"].run(stage._context) stage.run() for substage in self.substages_configs[stage]: if substage["run_before"] == False: substage["substage"].run(stage._context) def run(self): '''! Run the stages on multiple process. Locks the code until the stages end ''' process = [] for stage in self.stages: p = Process(target=self._run_stage, args=(stage,)) p.start() process.append(p) while 1: try: pass except KeyboardInterrupt: break print("TERMINANDO") for p in process: p.terminate() p.join(1) p.close()
[ 6738, 17268, 1330, 390, 4188, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 18540, 305, 919, 278, 1330, 4670, 518, 355, 337, 34991, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 198, 6738, 2266, 1831, 278, 13, 5589, 3906, 13, 14247, 1330, 15371, 198, 198, 4871, 4670, 518, 7, 24694, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 42044, 16834, 329, 6946, 1022, 9539, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 717, 5002, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 262, 717, 5002, 286, 262, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 7550, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35835, 257, 1988, 287, 262, 886, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1988, 532, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 6565, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 318, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1336, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 611, 1336, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 198, 4871, 17427, 34991, 7, 34991, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2829, 16834, 13, 12039, 407, 307, 973, 329, 18540, 305, 919, 278, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 17268, 13, 2934, 4188, 329, 3494, 262, 16834, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 717, 5002, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 262, 717, 5002, 286, 262, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 36560, 13, 79, 643, 701, 3419, 628, 220, 220, 220, 825, 7550, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35835, 257, 1988, 287, 262, 886, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1988, 532, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 13, 33295, 7, 8367, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 6565, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 318, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 36560, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 1336, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 611, 1336, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 36560, 8, 18189, 2116, 13, 9806, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 4871, 10854, 34991, 7, 34991, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 4670, 518, 329, 1262, 287, 18540, 305, 919, 278, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 2060, 1429, 11523, 11, 17427, 34991, 318, 1365, 198, 220, 220, 220, 220, 220, 220, 220, 36965, 18540, 305, 919, 278, 13, 36560, 329, 3494, 262, 16834, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 717, 5002, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 262, 717, 5002, 286, 262, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 36560, 13, 1136, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 7550, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35835, 257, 1988, 287, 262, 886, 286, 262, 16834, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1988, 532, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36560, 13, 1996, 7, 8367, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 6565, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 318, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 36560, 13, 28920, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1336, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 611, 262, 16834, 611, 1336, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 82, 6407, 611, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 36560, 13, 12853, 3419, 198, 198, 4871, 37709, 7, 24694, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 42044, 11523, 286, 9539, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 7550, 62, 14247, 7, 944, 11, 3800, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35835, 82, 257, 649, 3800, 284, 262, 11523, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1181, 532, 262, 3800, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 83, 24313, 32770, 283, 31215, 267, 8171, 78, 1162, 1186, 78, 390, 43748, 16175, 28749, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 14247, 11, 15371, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 1273, 1095, 1276, 307, 286, 15371, 1398, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3800, 287, 2116, 13, 7266, 301, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 1095, 13, 33295, 7, 14247, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 60, 796, 17635, 628, 220, 220, 220, 2488, 397, 8709, 24396, 628, 220, 220, 220, 825, 2251, 62, 38659, 7, 944, 11, 3800, 62, 448, 11, 4686, 62, 448, 11, 3800, 62, 259, 11, 4686, 62, 259, 11, 3509, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 4637, 1022, 9539, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3800, 62, 448, 532, 15371, 810, 262, 1366, 481, 1282, 422, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 4686, 62, 448, 532, 4522, 286, 262, 5072, 6946, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3800, 62, 259, 532, 15371, 422, 810, 262, 1366, 481, 467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 4686, 62, 259, 532, 4522, 286, 262, 5128, 6946, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3509, 62, 7857, 532, 22246, 6518, 16834, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3800, 62, 259, 13, 10134, 62, 15414, 62, 36560, 7, 312, 62, 259, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 3800, 62, 259, 13, 15414, 62, 36560, 58, 312, 62, 259, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 2116, 13, 17953, 62, 36560, 7, 9806, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3800, 62, 259, 13557, 2617, 20560, 34991, 7, 36560, 11, 4686, 62, 259, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3800, 62, 448, 13557, 2617, 26410, 34991, 7, 36560, 11, 4686, 62, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44743, 262, 11523, 1566, 4049, 14, 1069, 4516, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 198, 198, 4871, 14206, 18709, 62, 47, 541, 4470, 7, 47, 541, 4470, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 37709, 286, 9539, 284, 307, 1057, 2817, 319, 257, 2060, 1429, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 923, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50181, 262, 9539, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1148, 6338, 1444, 416, 262, 1057, 290, 1057, 7454, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3800, 287, 2116, 13, 301, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 40406, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3800, 13, 40406, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46981, 796, 6407, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44743, 262, 11523, 1566, 4049, 14, 1069, 4516, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 7454, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1057, 7454, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44743, 477, 262, 9539, 1752, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3800, 287, 2116, 13, 301, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3293, 496, 14692, 5143, 62, 19052, 8973, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 5143, 7, 14247, 13557, 22866, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3800, 13, 5143, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3293, 496, 14692, 5143, 62, 19052, 8973, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 5143, 7, 14247, 13557, 22866, 8, 628, 198, 4871, 15237, 18709, 62, 47, 541, 4470, 7, 47, 541, 4470, 2599, 198, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 37709, 286, 9539, 1057, 2817, 9315, 306, 319, 3294, 1429, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 628, 220, 220, 220, 825, 4808, 5143, 62, 14247, 7, 944, 11, 3800, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50181, 290, 4539, 257, 3800, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 3800, 532, 3800, 284, 307, 1057, 2817, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 40406, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 3800, 13, 40406, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3293, 496, 14692, 5143, 62, 19052, 8973, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 5143, 7, 14247, 13557, 22866, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3800, 13, 5143, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3293, 496, 287, 2116, 13, 7266, 301, 1095, 62, 11250, 82, 58, 14247, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3293, 496, 14692, 5143, 62, 19052, 8973, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3293, 496, 14692, 7266, 14247, 1, 4083, 5143, 7, 14247, 13557, 22866, 8, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5660, 262, 9539, 319, 3294, 1429, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 3320, 262, 2438, 1566, 262, 9539, 886, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1429, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3800, 287, 2116, 13, 301, 1095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 10854, 7, 16793, 28, 944, 13557, 5143, 62, 14247, 11, 26498, 16193, 14247, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1429, 13, 33295, 7, 79, 8, 628, 220, 220, 220, 220, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5781, 23678, 6981, 46, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 1429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 23705, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 22179, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
1.974973
3,676
""" Contains Python "bindings" to molecule object and Python functions utilizing molecule object key functionalities The intent is to provide a Pythonic interface to mo utilities and, thus, enable easy/consistent use of mo from within python programs. Testing: $ python <path-to-location>/pymo.py """ import os import subprocess as sp import shlex import shutil import sys import argparse import logging import unittest from tempfile import NamedTemporaryFile, mkdtemp log = logging.getLogger('lilly.' + __name__) log.addHandler(logging.NullHandler()) build_dir = 'Linux' try: build_dir = os.environ['BUILD_DIR'] except EnvironmentError: pass home_dir = os.environ['LILLYMOL_HOME'] root_dir = home_dir + '/bin/' + build_dir # dictionary of commands that will be turned into functions # function_name: [script_name, debug_message, default_params_dict] mo_tool_map = { 'dicer': [root_dir + '/dicer', 'Recursively cuts molecules based on queries', {}], 'fileconv': [root_dir + '/fileconv', 'file/molecule conversion utilities', {}], 'iwdescr': [root_dir + '/iwdescr', 'compute physicochemical descriptors using iwdescr', {'-l': ''}], 'make_these_molecules': [root_dir + '/make_these_molecules', 'Makes molecules from isotopically labelled ' 'reagents according to make file, not ' 'combinatorial join', {}], 'preferred_smiles': [root_dir + '/preferred_smiles', '', {}], 'alogp': [root_dir + '/abraham', '', {'-l': '', '-F': home_dir + '/contrib/data/queries/abraham/Abraham', '-P': home_dir + '/contrib/data/queries/abraham/Alpha2H', '-g': 'all' }] } def __function_generator(fct_name, script_name, debug_msg, default_params_dict, expect_zero=True): """ A generator for functions which runs one of LillyMol scripts with a predefined set of parameters. :param str fct_name: the function name of the newly generated function :param script_name: your LillyMol script path (from mo_tool above) :param debug_msg: quick message about what the script does (from mo_tool above) :param default_params_dict: default parameters :param expect_zero: whether to expect zero as a return value from the script :return: a function which you can call to run the script :rtype: callable """ funct.__name__ = fct_name funct.__doc__ = debug_msg return funct for name, params in list(mo_tool_map.items()): nparams = len(params) if not (3 <= nparams <= 5): raise IndexError('mo_tool_map: "{}" has {:d} parameter(s) but should ' 'have 3-5'.format(name, nparams)) locals()[name] = __function_generator(name, *params) def make_these_molecules(rgnt_list, make_these_file, reaction_file_list, outfile=None, params_dict={}, debug=True, loggero=None): """ Alternative to trxn, used in MMP code for generating new mols from MMP's, trxn version would be alternative: For connecting one bond (two components, single cut fragments): trxn.sh -S - -r oneConnection.rxn partOne.smi partTwo.smi For connecting two bonds (three component, two cut fragments): trxn.sh -S -rxn -S - -r twoConnection.rxn partThree.smi partOne.smi partTwo.smi BUT, if we have a long list of different contexts (partOne) and don't want exhaustive enumeration, specify rxn's: make_these_molecules.sh -R oneConnection.rxn -M m2Make.txt -S - partOne.smi partTwo.smi In this case, you can put all context fragments SMILES (context1a, context 1b, ...) in one reagent file, and all fragments SMILES (frag1, frag2, ...) in the second reagent file. If you have something like (context1a frag1\n context1a frag2\ncontext1b frag3\n...) in your m2Make.txt file, you will create the molecules you wanted """ log.debug("Generating virtual compounds using rxn and reagents supplied plus specified combinations file") # prep reagents file string rgnt_string = " ".join(rgnt_list) log.debug("These are the reagent files...." + str(rgnt_string)) # prep params string params_string = " " for k, v in list(params_dict.items()): params_string += k + " " + v + " " params_string = params_string[:-1] # set outfile # improved a bit to handle files with '.' in main name, other than in the extension if outfile: if outfile[-4:] == ".smi" or outfile[-4:] == ".txt": params_string += " -S " + os.path.splitext(outfile)[0] else: params_string += " -S " + outfile reaction_file = "" for rxn_file in reaction_file_list: # todo: if single string, this is split in characters reaction_file += ' -R ' + rxn_file cmd_line = (mo_tool_map['make_these_molecules'][0] + reaction_file + ' -M ' + make_these_file + " " + params_string + " " + rgnt_string) log.debug("Executing: %s" % cmd_line) #if debug: #print(cmd_line) my_proc = sp.Popen(shlex.split(cmd_line), stdout=None, stderr=sp.PIPE, shell=False) for line in my_proc.stderr.readlines(): log.debug(line.rstrip()) exit_status = my_proc.wait() log.debug("Done generating compounds") return exit_status ##################################################### class _TestPymo(unittest.TestCase): """Test class for pymo module Example usage: python pymo.py (to execute all tests) python pymo.py -c (for verbose console logging) python pymo.py -f mylog.log (for logging to file mylog.log) python pymo.py -c -f mylog.log (for both) python pymo.py _Test_pymo.test_fetch_smiles # (to execute only the specified test) coverage run pymo.py (to run test code coverage analysis) coverage report pymo.py (to view the result of the test code coverage analysis) """ def setUp(self): """setup test data location, unittest config and logger""" # location of test data self.test_data_location = root_dir + '/contrib/script/py/mmp/testdata/' # temp output file and dir self.temp_inp_file = NamedTemporaryFile(encoding='utf-8', mode='wt', suffix='.smi', delete=False) self.temp_out_file = NamedTemporaryFile(encoding='utf-8', mode='wt', delete=False) self.temp_out_dir = mkdtemp() test_smiles = { # basic test set - all the below id's and structures are CHEMBL '3105327': 'Cc1ccc2c(ccn2c3nc(cs3)c4cc(ccc4F)C(F)(F)F)c1', '1526778': 'CC(=O)c1c(C)n(c(C)c1C(=O)C)c2nc(c(C)s2)c3ccc(C)c(C)c3', '1494678': 'CC(=O)c1c(C)n(c(C)c1C(=O)C)c2nc(c(C)s2)c3ccccc3', '472166': 'OC(CCn1ccnc1)(c2ccccc2)c3ccccc3', '69798': 'Cc1nccn1CCC(O)(c2ccccc2)c3ccccc3', '367346': 'Cc1sc(N)nc1c2cccc(Cl)c2', '366881': 'Cc1sc(N)nc1c2ccc(Cl)c(Cl)c2', '1477460': 'COc1ccc(cc1)c2nc(sc2C)n3c(C)c(C(=O)C)c(C(=O)C)c3C', '1441050': 'COc1ccc(cc1OC)c2nc(sc2C)n3c(C)c(C(=O)C)c(C(=O)C)c3C' } # write test data to temp file 01 for smi_id, smi in test_smiles.items(): string = smi+' '+smi_id+'\n' self.temp_inp_file.write(string) self.temp_inp_file.close() def tearDown(self): """cleanup test data and settings""" # Clean up the directory # os.removedirs(self.temp_out_dir) shutil.rmtree(self.temp_out_dir) if __name__ == "__main__": # optional command line flags parser = argparse.ArgumentParser() parser.add_argument('-l', '--log_file', help='Name of file to place debug log info in') parser.add_argument('-c', '--console', help='Switch on console logging', default=False, action='store_true') args = parser.parse_args() #print(args) logger_file = args.log_file console_on = args.console pymotest_logger = logging.getLogger("pymo.testlogger") pymotest_logger.setLevel(logging.DEBUG) log_formatter = logging.Formatter("%(asctime)s [%(funcName)-12.12s] " "[%(levelname)-5.5s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S") if console_on: print("Switched on console") h1 = logging.StreamHandler(stream=sys.stdout) h1.setLevel(logging.DEBUG) h1.setFormatter(log_formatter) pymotest_logger.addHandler(h1) else: print("console off") if logger_file is not None: print(("Switched on logging to file: {}".format(logger_file))) fileHandler = logging.FileHandler(filename=logger_file) fileHandler.setFormatter(log_formatter) fileHandler.setLevel(logging.DEBUG) pymotest_logger.addHandler(fileHandler) else: print("file logging off") if console_on is False and logger_file is None: pymotest_logger.setLevel(logging.CRITICAL) unittest.main()
[ 37811, 198, 4264, 1299, 11361, 366, 21653, 654, 1, 284, 27756, 2134, 290, 11361, 5499, 198, 22602, 2890, 27756, 2134, 1994, 10345, 871, 198, 464, 6824, 318, 284, 2148, 257, 11361, 291, 7071, 284, 6941, 20081, 290, 11, 4145, 11, 198, 21633, 2562, 14, 5936, 7609, 779, 286, 6941, 422, 1626, 21015, 4056, 13, 198, 198, 44154, 25, 198, 3, 21015, 1279, 6978, 12, 1462, 12, 24886, 29, 14, 79, 4948, 78, 13, 9078, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 850, 14681, 355, 599, 198, 11748, 427, 2588, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 555, 715, 395, 198, 6738, 20218, 7753, 1330, 34441, 12966, 5551, 8979, 11, 33480, 67, 29510, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 10786, 75, 6548, 2637, 1343, 11593, 3672, 834, 8, 198, 6404, 13, 2860, 25060, 7, 6404, 2667, 13, 35067, 25060, 28955, 198, 198, 11249, 62, 15908, 796, 705, 19314, 6, 198, 198, 28311, 25, 198, 220, 220, 220, 220, 220, 1382, 62, 15908, 796, 28686, 13, 268, 2268, 17816, 19499, 26761, 62, 34720, 20520, 198, 16341, 9344, 12331, 25, 198, 220, 220, 220, 220, 1208, 198, 198, 11195, 62, 15908, 796, 28686, 13, 268, 2268, 17816, 43, 8267, 56, 44, 3535, 62, 39069, 20520, 198, 15763, 62, 15908, 796, 1363, 62, 15908, 1343, 31051, 8800, 14, 6, 1343, 1382, 62, 15908, 198, 198, 2, 22155, 286, 9729, 326, 481, 307, 2900, 656, 5499, 198, 2, 2163, 62, 3672, 25, 685, 12048, 62, 3672, 11, 14257, 62, 20500, 11, 4277, 62, 37266, 62, 11600, 60, 198, 5908, 62, 25981, 62, 8899, 796, 1391, 198, 220, 220, 220, 705, 67, 16647, 10354, 685, 15763, 62, 15908, 1343, 31051, 67, 16647, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6690, 1834, 2280, 6630, 17745, 1912, 319, 20743, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23884, 4357, 198, 220, 220, 220, 705, 7753, 42946, 10354, 685, 15763, 62, 15908, 1343, 31051, 7753, 42946, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 14, 76, 2305, 23172, 11315, 20081, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23884, 4357, 198, 220, 220, 220, 705, 14246, 20147, 81, 10354, 685, 15763, 62, 15908, 1343, 31051, 14246, 20147, 81, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5589, 1133, 22270, 32864, 12145, 669, 1262, 1312, 16993, 3798, 81, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 29001, 75, 10354, 10148, 92, 4357, 198, 220, 220, 220, 705, 15883, 62, 27218, 62, 76, 2305, 13930, 10354, 685, 15763, 62, 15908, 1343, 31051, 15883, 62, 27218, 62, 76, 2305, 13930, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44, 1124, 17745, 422, 31624, 404, 1146, 30538, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 49638, 1864, 284, 787, 2393, 11, 407, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 785, 8800, 21592, 4654, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23884, 4357, 198, 220, 220, 220, 705, 3866, 18186, 62, 5796, 2915, 10354, 685, 15763, 62, 15908, 1343, 31051, 3866, 18186, 62, 5796, 2915, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23884, 4357, 198, 220, 220, 220, 705, 11794, 79, 10354, 685, 15763, 62, 15908, 1343, 31051, 397, 13220, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 29001, 75, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12, 37, 10354, 1363, 62, 15908, 1343, 31051, 3642, 822, 14, 7890, 14, 421, 10640, 14, 397, 13220, 14, 4826, 13220, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12, 47, 10354, 1363, 62, 15908, 1343, 31051, 3642, 822, 14, 7890, 14, 421, 10640, 14, 397, 13220, 14, 38077, 17, 39, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12, 70, 10354, 705, 439, 6, 1782, 60, 198, 92, 198, 198, 4299, 11593, 8818, 62, 8612, 1352, 7, 69, 310, 62, 3672, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4226, 62, 3672, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 62, 19662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 37266, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1607, 62, 22570, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 17301, 329, 5499, 543, 4539, 530, 286, 35134, 44, 349, 14750, 351, 257, 198, 220, 220, 220, 2747, 18156, 900, 286, 10007, 13, 628, 220, 220, 220, 1058, 17143, 965, 277, 310, 62, 3672, 25, 262, 2163, 1438, 286, 262, 8308, 7560, 2163, 198, 220, 220, 220, 1058, 17143, 4226, 62, 3672, 25, 534, 35134, 44, 349, 4226, 3108, 357, 6738, 6941, 62, 25981, 2029, 8, 198, 220, 220, 220, 1058, 17143, 14257, 62, 19662, 25, 2068, 3275, 546, 644, 262, 4226, 857, 357, 6738, 6941, 62, 25981, 2029, 8, 198, 220, 220, 220, 1058, 17143, 4277, 62, 37266, 62, 11600, 25, 4277, 10007, 198, 220, 220, 220, 1058, 17143, 1607, 62, 22570, 25, 1771, 284, 1607, 6632, 355, 257, 1441, 1988, 422, 262, 4226, 198, 220, 220, 220, 1058, 7783, 25, 257, 2163, 543, 345, 460, 869, 284, 1057, 262, 4226, 198, 220, 220, 220, 1058, 81, 4906, 25, 869, 540, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1257, 310, 13, 834, 3672, 834, 796, 277, 310, 62, 3672, 198, 220, 220, 220, 1257, 310, 13, 834, 15390, 834, 796, 14257, 62, 19662, 628, 220, 220, 220, 1441, 1257, 310, 628, 198, 1640, 1438, 11, 42287, 287, 1351, 7, 5908, 62, 25981, 62, 8899, 13, 23814, 3419, 2599, 198, 220, 220, 220, 299, 37266, 796, 18896, 7, 37266, 8, 628, 220, 220, 220, 611, 407, 357, 18, 19841, 299, 37266, 19841, 642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 10786, 5908, 62, 25981, 62, 8899, 25, 45144, 36786, 468, 46110, 67, 92, 11507, 7, 82, 8, 475, 815, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14150, 513, 12, 20, 4458, 18982, 7, 3672, 11, 299, 37266, 4008, 628, 220, 220, 220, 17205, 3419, 58, 3672, 60, 796, 11593, 8818, 62, 8612, 1352, 7, 3672, 11, 1635, 37266, 8, 628, 198, 4299, 787, 62, 27218, 62, 76, 2305, 13930, 7, 41345, 429, 62, 4868, 11, 787, 62, 27218, 62, 7753, 11, 6317, 62, 7753, 62, 4868, 11, 503, 7753, 28, 14202, 11, 42287, 62, 11600, 34758, 5512, 14257, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 78, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27182, 284, 491, 87, 77, 11, 973, 287, 337, 7378, 2438, 329, 15453, 649, 285, 10220, 422, 337, 7378, 338, 11, 491, 87, 77, 2196, 561, 307, 5559, 25, 198, 220, 220, 220, 1114, 14320, 530, 6314, 357, 11545, 6805, 11, 2060, 2005, 21441, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 491, 87, 77, 13, 1477, 220, 532, 50, 532, 532, 81, 530, 32048, 13, 40914, 77, 636, 3198, 13, 5796, 72, 636, 7571, 13, 5796, 72, 198, 220, 220, 220, 1114, 14320, 734, 13100, 357, 15542, 7515, 11, 734, 2005, 21441, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 491, 87, 77, 13, 1477, 220, 532, 50, 532, 40914, 77, 532, 50, 532, 532, 81, 734, 32048, 13, 40914, 77, 636, 12510, 13, 5796, 72, 220, 636, 3198, 13, 5796, 72, 636, 7571, 13, 5796, 72, 198, 220, 220, 220, 21728, 11, 611, 356, 423, 257, 890, 1351, 286, 1180, 26307, 357, 3911, 3198, 8, 290, 836, 470, 765, 36049, 27056, 341, 11, 11986, 374, 87, 77, 338, 25, 198, 220, 220, 220, 220, 220, 220, 220, 787, 62, 27218, 62, 76, 2305, 13930, 13, 1477, 532, 49, 530, 32048, 13, 40914, 77, 532, 44, 285, 17, 12050, 13, 14116, 532, 50, 532, 636, 3198, 13, 5796, 72, 636, 7571, 13, 5796, 72, 198, 220, 220, 220, 554, 428, 1339, 11, 345, 460, 1234, 477, 4732, 21441, 9447, 4146, 1546, 357, 22866, 16, 64, 11, 4732, 352, 65, 11, 2644, 8, 220, 287, 530, 302, 25781, 2393, 11, 290, 198, 220, 220, 220, 477, 21441, 9447, 4146, 1546, 357, 8310, 363, 16, 11, 7956, 17, 11, 2644, 8, 287, 262, 1218, 302, 25781, 2393, 13, 220, 1002, 345, 423, 1223, 588, 357, 22866, 16, 64, 7956, 16, 59, 77, 198, 220, 220, 220, 4732, 16, 64, 7956, 17, 59, 77, 22866, 16, 65, 7956, 18, 59, 77, 23029, 287, 534, 285, 17, 12050, 13, 14116, 2393, 11, 345, 481, 2251, 262, 17745, 345, 2227, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2604, 13, 24442, 7203, 8645, 803, 7166, 16439, 1262, 374, 87, 77, 290, 302, 49638, 14275, 5556, 7368, 17790, 2393, 4943, 628, 220, 220, 220, 1303, 3143, 302, 49638, 2393, 4731, 198, 220, 220, 220, 48670, 429, 62, 8841, 796, 366, 27071, 22179, 7, 41345, 429, 62, 4868, 8, 628, 220, 220, 220, 2604, 13, 24442, 7203, 4711, 389, 262, 302, 25781, 3696, 1106, 1, 1343, 965, 7, 41345, 429, 62, 8841, 4008, 628, 220, 220, 220, 1303, 3143, 42287, 4731, 198, 220, 220, 220, 42287, 62, 8841, 796, 366, 366, 198, 220, 220, 220, 329, 479, 11, 410, 287, 1351, 7, 37266, 62, 11600, 13, 23814, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 8841, 15853, 479, 1343, 366, 366, 1343, 410, 1343, 366, 366, 198, 220, 220, 220, 42287, 62, 8841, 796, 42287, 62, 8841, 58, 21912, 16, 60, 628, 220, 220, 220, 1303, 900, 503, 7753, 198, 220, 220, 220, 1303, 6596, 257, 1643, 284, 5412, 3696, 351, 705, 2637, 287, 1388, 1438, 11, 584, 621, 287, 262, 7552, 198, 220, 220, 220, 611, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 7753, 58, 12, 19, 47715, 6624, 27071, 5796, 72, 1, 393, 503, 7753, 58, 12, 19, 47715, 6624, 27071, 14116, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 8841, 15853, 366, 532, 50, 366, 1343, 28686, 13, 6978, 13, 22018, 578, 742, 7, 448, 7753, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 8841, 15853, 366, 532, 50, 366, 1343, 503, 7753, 628, 220, 220, 220, 6317, 62, 7753, 796, 13538, 198, 220, 220, 220, 329, 374, 87, 77, 62, 7753, 287, 6317, 62, 7753, 62, 4868, 25, 220, 1303, 284, 4598, 25, 611, 2060, 4731, 11, 428, 318, 6626, 287, 3435, 198, 220, 220, 220, 220, 220, 220, 220, 6317, 62, 7753, 15853, 705, 532, 49, 705, 1343, 374, 87, 77, 62, 7753, 628, 220, 220, 220, 23991, 62, 1370, 796, 357, 5908, 62, 25981, 62, 8899, 17816, 15883, 62, 27218, 62, 76, 2305, 13930, 6, 7131, 15, 60, 1343, 6317, 62, 7753, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 532, 44, 705, 1343, 787, 62, 27218, 62, 7753, 1343, 366, 366, 1343, 42287, 62, 8841, 1343, 366, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48670, 429, 62, 8841, 8, 628, 220, 220, 220, 2604, 13, 24442, 7203, 23002, 15129, 25, 4064, 82, 1, 4064, 23991, 62, 1370, 8, 198, 220, 220, 220, 1303, 361, 14257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 28758, 62, 1370, 8, 628, 220, 220, 220, 616, 62, 36942, 796, 599, 13, 47, 9654, 7, 1477, 2588, 13, 35312, 7, 28758, 62, 1370, 828, 14367, 448, 28, 14202, 11, 336, 1082, 81, 28, 2777, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 25101, 8, 628, 220, 220, 220, 329, 1627, 287, 616, 62, 36942, 13, 301, 1082, 81, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 1370, 13, 81, 36311, 28955, 628, 220, 220, 220, 8420, 62, 13376, 796, 616, 62, 36942, 13, 17077, 3419, 628, 220, 220, 220, 2604, 13, 24442, 7203, 45677, 15453, 16439, 4943, 628, 220, 220, 220, 1441, 8420, 62, 13376, 628, 198, 29113, 14468, 4242, 2, 198, 4871, 4808, 14402, 47, 4948, 78, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 1398, 329, 279, 4948, 78, 8265, 628, 220, 220, 220, 17934, 8748, 25, 628, 220, 220, 220, 220, 21015, 279, 4948, 78, 13, 9078, 357, 1462, 12260, 477, 5254, 8, 628, 220, 220, 220, 220, 21015, 279, 4948, 78, 13, 9078, 532, 66, 357, 1640, 15942, 577, 8624, 18931, 8, 198, 220, 220, 220, 220, 21015, 279, 4948, 78, 13, 9078, 532, 69, 616, 6404, 13, 6404, 357, 1640, 18931, 284, 2393, 616, 6404, 13, 6404, 8, 198, 220, 220, 220, 220, 21015, 279, 4948, 78, 13, 9078, 532, 66, 532, 69, 616, 6404, 13, 6404, 357, 1640, 1111, 8, 628, 220, 220, 220, 220, 21015, 279, 4948, 78, 13, 9078, 4808, 14402, 62, 79, 4948, 78, 13, 9288, 62, 69, 7569, 62, 5796, 2915, 1303, 357, 1462, 12260, 691, 262, 7368, 1332, 8, 628, 220, 220, 220, 220, 5197, 1057, 279, 4948, 78, 13, 9078, 357, 1462, 1057, 1332, 2438, 5197, 3781, 8, 198, 220, 220, 220, 220, 5197, 989, 279, 4948, 78, 13, 9078, 357, 1462, 1570, 262, 1255, 286, 262, 1332, 2438, 5197, 3781, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40406, 1332, 1366, 4067, 11, 555, 715, 395, 4566, 290, 49706, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4067, 286, 1332, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 62, 7890, 62, 24886, 796, 6808, 62, 15908, 1343, 31051, 3642, 822, 14, 12048, 14, 9078, 14, 3020, 79, 14, 9288, 7890, 14, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20218, 5072, 2393, 290, 26672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29510, 62, 259, 79, 62, 7753, 796, 34441, 12966, 5551, 8979, 7, 12685, 7656, 11639, 40477, 12, 23, 3256, 4235, 11639, 46569, 3256, 35488, 28, 4458, 5796, 72, 3256, 12233, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29510, 62, 448, 62, 7753, 796, 34441, 12966, 5551, 8979, 7, 12685, 7656, 11639, 40477, 12, 23, 3256, 4235, 11639, 46569, 3256, 12233, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29510, 62, 448, 62, 15908, 796, 33480, 67, 29510, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 5796, 2915, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4096, 1332, 900, 532, 477, 262, 2174, 4686, 338, 290, 8573, 389, 5870, 3620, 9148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26717, 4310, 1983, 10354, 705, 34, 66, 16, 535, 66, 17, 66, 7, 535, 77, 17, 66, 18, 10782, 7, 6359, 18, 8, 66, 19, 535, 7, 535, 66, 19, 37, 8, 34, 7, 37, 5769, 37, 8, 37, 8, 66, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1314, 2075, 39761, 10354, 705, 4093, 7, 28, 46, 8, 66, 16, 66, 7, 34, 8, 77, 7, 66, 7, 34, 8, 66, 16, 34, 7, 28, 46, 8, 34, 8, 66, 17, 10782, 7, 66, 7, 34, 8, 82, 17, 8, 66, 18, 535, 66, 7, 34, 8, 66, 7, 34, 8, 66, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1415, 5824, 30924, 10354, 705, 4093, 7, 28, 46, 8, 66, 16, 66, 7, 34, 8, 77, 7, 66, 7, 34, 8, 66, 16, 34, 7, 28, 46, 8, 34, 8, 66, 17, 10782, 7, 66, 7, 34, 8, 82, 17, 8, 66, 18, 535, 535, 66, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2857, 20666, 21, 10354, 705, 4503, 7, 4093, 77, 16, 535, 10782, 16, 5769, 66, 17, 535, 535, 66, 17, 8, 66, 18, 535, 535, 66, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3388, 43240, 10354, 705, 34, 66, 16, 77, 535, 77, 16, 46361, 7, 46, 5769, 66, 17, 535, 535, 66, 17, 8, 66, 18, 535, 535, 66, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27824, 30557, 10354, 705, 34, 66, 16, 1416, 7, 45, 8, 10782, 16, 66, 17, 535, 535, 7, 2601, 8, 66, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2623, 3104, 6659, 10354, 705, 34, 66, 16, 1416, 7, 45, 8, 10782, 16, 66, 17, 535, 66, 7, 2601, 8, 66, 7, 2601, 8, 66, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1415, 3324, 34716, 10354, 705, 8220, 66, 16, 535, 66, 7, 535, 16, 8, 66, 17, 10782, 7, 1416, 17, 34, 8, 77, 18, 66, 7, 34, 8, 66, 7, 34, 7, 28, 46, 8, 34, 8, 66, 7, 34, 7, 28, 46, 8, 34, 8, 66, 18, 34, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18444, 940, 1120, 10354, 705, 8220, 66, 16, 535, 66, 7, 535, 16, 4503, 8, 66, 17, 10782, 7, 1416, 17, 34, 8, 77, 18, 66, 7, 34, 8, 66, 7, 34, 7, 28, 46, 8, 34, 8, 66, 7, 34, 7, 28, 46, 8, 34, 8, 66, 18, 34, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 1332, 1366, 284, 20218, 2393, 5534, 198, 220, 220, 220, 220, 220, 220, 220, 329, 895, 72, 62, 312, 11, 895, 72, 287, 1332, 62, 5796, 2915, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 796, 895, 72, 10, 6, 705, 10, 5796, 72, 62, 312, 10, 6, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29510, 62, 259, 79, 62, 7753, 13, 13564, 7, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29510, 62, 259, 79, 62, 7753, 13, 19836, 3419, 628, 220, 220, 220, 825, 11626, 8048, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27773, 929, 1332, 1366, 290, 6460, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5985, 510, 262, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28686, 13, 2787, 2668, 17062, 7, 944, 13, 29510, 62, 448, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 944, 13, 29510, 62, 448, 62, 15908, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1303, 11902, 3141, 1627, 9701, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 75, 3256, 705, 438, 6404, 62, 7753, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 2393, 284, 1295, 14257, 2604, 7508, 287, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 705, 438, 41947, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 38978, 319, 8624, 18931, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 8095, 62, 7942, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1303, 4798, 7, 22046, 8, 198, 220, 220, 220, 49706, 62, 7753, 796, 26498, 13, 6404, 62, 7753, 198, 220, 220, 220, 8624, 62, 261, 796, 26498, 13, 41947, 628, 220, 220, 220, 279, 4948, 313, 395, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 79, 4948, 78, 13, 9288, 6404, 1362, 4943, 198, 220, 220, 220, 279, 4948, 313, 395, 62, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 628, 220, 220, 220, 2604, 62, 687, 1436, 796, 18931, 13, 8479, 1436, 7203, 4, 7, 292, 310, 524, 8, 82, 685, 4, 7, 20786, 5376, 13219, 1065, 13, 1065, 82, 60, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12878, 4, 7, 5715, 3672, 13219, 20, 13, 20, 82, 60, 4064, 7, 20500, 8, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 69, 16762, 2625, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4943, 628, 220, 220, 220, 611, 8624, 62, 261, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10462, 10981, 319, 8624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 289, 16, 796, 18931, 13, 12124, 25060, 7, 5532, 28, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 16, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 16, 13, 2617, 8479, 1436, 7, 6404, 62, 687, 1436, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4948, 313, 395, 62, 6404, 1362, 13, 2860, 25060, 7, 71, 16, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 41947, 572, 4943, 628, 220, 220, 220, 611, 49706, 62, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 10462, 10981, 319, 18931, 284, 2393, 25, 23884, 1911, 18982, 7, 6404, 1362, 62, 7753, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 25060, 796, 18931, 13, 8979, 25060, 7, 34345, 28, 6404, 1362, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 25060, 13, 2617, 8479, 1436, 7, 6404, 62, 687, 1436, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 25060, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4948, 313, 395, 62, 6404, 1362, 13, 2860, 25060, 7, 7753, 25060, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7753, 18931, 572, 4943, 628, 220, 220, 220, 611, 8624, 62, 261, 318, 10352, 290, 49706, 62, 7753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4948, 313, 395, 62, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 9419, 2043, 20151, 8, 628, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.219023
4,237
import pandas as pd # import pytz import unittest from records_mover.records.pandas import prep_df_for_csv_output from records_mover.records.schema import RecordsSchema from records_mover.records import DelimitedRecordsFormat, ProcessingInstructions
[ 11748, 19798, 292, 355, 279, 67, 198, 2, 1330, 12972, 22877, 198, 11748, 555, 715, 395, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 13, 79, 392, 292, 1330, 3143, 62, 7568, 62, 1640, 62, 40664, 62, 22915, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 13, 15952, 2611, 1330, 13407, 27054, 2611, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 1330, 4216, 320, 863, 6690, 3669, 26227, 11, 28403, 43993, 507, 628 ]
3.302632
76
import numpy as np from tensorflow.python.keras.utils import Sequence, to_categorical from tensorflow.python.keras.preprocessing.sequence import pad_sequences class TemporalOrderExp6aSequence(Sequence): """ From Hochreiter&Schmidhuber(1997): The goal is to classify sequences. Elements and targets are represented locally (input vectors with only one non-zero bit). The sequence starts with an E, ends with a B (the "trigger symbol") and otherwise consists of randomly chosen symbols from the set {a, b, c, d} except for two elements at positions t1 and t2 that are either X or Y . The sequence length is randomly chosen between 100 and 110, t1 is randomly chosen between 10 and 20, and t2 is randomly chosen between 50 and 60. There are 4 sequence classes Q, R, S, U which depend on the temporal order of X and Y. The rules are: X, X -> Q, X, Y -> R, Y , X -> S, Y , Y -> U. """ # encoding/decoding single instance version # encoding/decoding batch versions def __len__(self): """ Let's assume 1000 sequences as the size of data. """ return int(1000. / self.batch_size) class DifficultyLevel: """ On HARD, settings are identical to the original settings from the '97 paper.""" EASY, NORMAL, MODERATE, HARD, NIGHTMARE = range(5) @staticmethod
[ 11748, 299, 32152, 355, 45941, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 26791, 1330, 45835, 11, 284, 62, 66, 2397, 12409, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 3866, 36948, 13, 43167, 1330, 14841, 62, 3107, 3007, 628, 198, 198, 4871, 5825, 35738, 18743, 16870, 21, 64, 44015, 594, 7, 44015, 594, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3574, 367, 5374, 260, 2676, 5, 14874, 13602, 13415, 527, 7, 21498, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 383, 3061, 318, 284, 36509, 16311, 13, 26632, 290, 6670, 389, 7997, 15726, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15414, 30104, 351, 691, 530, 1729, 12, 22570, 1643, 737, 383, 8379, 4940, 351, 281, 412, 11, 5645, 198, 220, 220, 220, 220, 220, 220, 220, 351, 257, 347, 357, 1169, 366, 46284, 6194, 4943, 290, 4306, 10874, 286, 15456, 7147, 14354, 198, 220, 220, 220, 220, 220, 220, 220, 422, 262, 900, 1391, 64, 11, 275, 11, 269, 11, 288, 92, 2845, 329, 734, 4847, 379, 6116, 256, 16, 290, 256, 17, 326, 389, 198, 220, 220, 220, 220, 220, 220, 220, 2035, 1395, 393, 575, 764, 383, 8379, 4129, 318, 15456, 7147, 1022, 1802, 290, 9796, 11, 256, 16, 318, 198, 220, 220, 220, 220, 220, 220, 220, 15456, 7147, 1022, 838, 290, 1160, 11, 290, 256, 17, 318, 15456, 7147, 1022, 2026, 290, 3126, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1318, 389, 604, 8379, 6097, 1195, 11, 371, 11, 311, 11, 471, 543, 4745, 319, 262, 21964, 1502, 286, 1395, 290, 575, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3173, 389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 1395, 4613, 1195, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 575, 4613, 371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 837, 1395, 4613, 311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 575, 837, 575, 4613, 471, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 21004, 14, 12501, 7656, 2060, 4554, 2196, 628, 220, 220, 220, 1303, 21004, 14, 12501, 7656, 15458, 6300, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3914, 338, 7048, 8576, 16311, 355, 262, 2546, 286, 1366, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 12825, 13, 1220, 2116, 13, 43501, 62, 7857, 8, 628, 220, 220, 220, 1398, 27419, 4971, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1550, 367, 9795, 11, 6460, 389, 10411, 284, 262, 2656, 6460, 422, 262, 705, 5607, 3348, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 412, 26483, 11, 25273, 42126, 11, 19164, 1137, 6158, 11, 367, 9795, 11, 37707, 44, 12203, 796, 2837, 7, 20, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.812992
508
#pilaniamte version 0.4.1 from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageEnhance, ImageColor, ImageFont, ImageSequence import cv2 import numpy from time import sleep import os, math #functions that draw stuff on #translation functions #transparency functions #UNTESTED #transform #color change functions #image filter functions #blend #clear image functions #save frame image #turn frame into png #shortcut save functions (ie a function that translates every frame and also saves frame)
[ 2, 79, 38239, 1789, 660, 2196, 657, 13, 19, 13, 16, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 11, 7412, 41472, 11, 7412, 22417, 11, 7412, 35476, 590, 11, 7412, 10258, 11, 7412, 23252, 11, 7412, 44015, 594, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 198, 6738, 640, 1330, 3993, 198, 11748, 28686, 11, 10688, 628, 220, 1303, 12543, 2733, 326, 3197, 3404, 319, 628, 220, 1303, 41519, 5499, 628, 220, 1303, 7645, 11944, 5499, 628, 220, 1303, 4944, 51, 6465, 1961, 628, 220, 1303, 35636, 628, 220, 1303, 8043, 1487, 5499, 628, 220, 1303, 9060, 8106, 5499, 628, 220, 1303, 2436, 437, 628, 220, 1303, 20063, 2939, 5499, 628, 220, 1303, 21928, 5739, 2939, 198, 220, 220, 198, 220, 1303, 15344, 5739, 656, 279, 782, 628, 220, 1303, 19509, 8968, 3613, 5499, 357, 494, 257, 2163, 326, 23677, 790, 5739, 290, 635, 16031, 5739, 8 ]
3.593333
150
import numpy as np from pygsl import statistics as gsl_stat from scipy import stats as sp_stat import ineqpy as ineq from ineqpy import _statistics as ineq_stat # Generate random data x, w = ineq.utils.generate_data_to_test((60,90)) # Replicating weights x_rep, w_rep = ineq.utils.repeat_data_from_weighted(x, w) svy = ineq.api.Survey print( """ ========== Quickstart ========== We generate random weighted data to show how ineqpy works. The variables simulate being: x : Income w : Weights ```python >>> x, w = ineq.utils.generate_data_to_test((60,90)) ``` To test with classical statistics we generate: x_rep : Income values replicated w times each one. w_rep : Ones column. ```python >>> x_rep, w_rep = ineq.utils.repeat_data_from_weighted(x, w) ``` Additional information: np : numpy package sp : scipy package pd : pandas package gsl_stat : GNU Scientific Library written in C. ineq : IneqPy """ ) print( """ Examples and comparision with other packages ============================================ STATISTICS ========== MEAN ---- """ ) print('```python') print('>>> np.mean(x_rep)'.ljust(24), '=', np.mean(x_rep)) print('>>> ineq.mean(x, w)'.ljust(24), '=', ineq.mean(x, w)) print('>>> gsl_stat.wmean(w, x)'.ljust(24), '=', gsl_stat.wmean(w, x)) print('```') # %timeit ineq.mean(None, x, w) # %timeit gsl_stat.wmean(w, x) # %timeit ineq_stat.mean(x, w) print( """ VARIANCE -------- """ ) np_var = np.var(x_rep) inq_var = ineq.var(x, w) wvar_1 = ineq_stat.wvar(x, w, 1) # population variance wvar_2 = ineq_stat.wvar(x, w, 2) # sample frequency variance gsl_wvar = gsl_stat.wvariance(w, x) wvar_3 = ineq_stat.wvar(x, w, 3) # sample reliability variance print('```python') print('>>> np.var(x_rep)'.ljust(32), '=', np_var) print('>>> ineq.var(x, w)'.ljust(32), '=', inq_var) print('>>> ineq_stat.wvar(x, w, kind=1)'.ljust(32), '=', wvar_1) print('>>> ineq_stat.wvar(x, w, kind=2)'.ljust(32), '=', wvar_2) print('>>> gsl_stat.wvariance(w, x)'.ljust(32), '=', gsl_wvar) print('>>> ineq_stat.wvar(x, w, kind=3)'.ljust(32), '=', wvar_3) print('```') print( """ COVARIANCE ---------- """ ) np_cov = np.cov(x_rep, x_rep) ineq_wcov1 = ineq_stat.wcov(x, x, w, 1) ineq_wcov2 = ineq_stat.wcov(x, x, w, 2) ineq_wcov3 = ineq_stat.wcov(x, x, w, 3) print('```python') print('>>> np.cov(x_rep, x_rep)'.ljust(35), '= ', np_cov) print('>>> ineq_stat.wcov(x, x, w, kind=1)'.ljust(35), '= ', ineq_wcov1) print('>>> ineq_stat.wcov(x, x, w, kind=2)'.ljust(35), '= ', ineq_wcov2) print('>>> ineq_stat.wcov(x, x, w, kind=3)'.ljust(35), '= ', ineq_wcov3) print('```') print( """ SKEWNESS -------- """ ) gsl_wskew = gsl_stat.wskew(w, x) sp_skew = sp_stat.skew(x_rep) ineq_skew = ineq.skew(x, w) print('```python') print('>>> gsl_stat.wskew(w, x)'.ljust(24), '= ', gsl_wskew) print('>>> sp_stat.skew(x_rep)'.ljust(24), '= ', sp_skew) print('>>> ineq.skew(x, w)'.ljust(24), '= ', ineq_skew) print('```') # %timeit gsl_stat.wskew(w, x) # %timeit sp_stat.skew(x_rep) # %timeit ineq.skew(None, x, w) print( """ KURTOSIS -------- """ ) sp_kurt = sp_stat.kurtosis(x_rep) gsl_wkurt = gsl_stat.wkurtosis(w, x) ineq_kurt = ineq.kurt(x, w) - 3 print('```python') print('>>> sp_stat.kurtosis(x_rep)'.ljust(28), '= ', sp_kurt) print('>>> gsl_stat.wkurtosis(w, x)'.ljust(28), '= ', gsl_wkurt) print('>>> ineq.kurt(x, w) - 3'.ljust(28), '= ', ineq_kurt) print('```') # %timeit sp_stat.kurtosis(x_rep) # %timeit gsl_stat.wkurtosis(w, x) # %timeit ineq.kurt(None, x, w) - 3 print( """ PERCENTILES ----------- """ ) q = 50 ineq_perc_50 = ineq_stat.percentile(x, w, q) np_perc_50 = np.percentile(x_rep, q) print('```python') print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_50) print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_50) q = 25 ineq_perc_25 = ineq_stat.percentile(x, w, q) np_perc_25 = np.percentile(x_rep, q) print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_25) print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_25) q = 75 ineq_perc_75 = ineq_stat.percentile(x, w, q) np_perc_75 = np.percentile(x_rep, q) print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_75) print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_75) q = 10 ineq_perc_10 = ineq_stat.percentile(x, w, q) np_perc_10 = np.percentile(x_rep, q) print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_10) print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_10) q = 90 ineq_perc_90 = ineq_stat.percentile(x, w, q) np_perc_90 = np.percentile(x_rep, q) print('>>> ineq_stat.percentile(x, w, %s)'.ljust(34) % q, '= ', ineq_perc_90) print('>>> np.percentile(x_rep, %s)'.ljust(34) % q, '= ', np_perc_90) print('```') print( """ Another way to use this is through the API module as shown below: API MODULE ========== """ ) data = np.c_[x, w] columns = list('xw') df = svy(data=data, columns=columns, weights='w') print('```python') print(">>> data = svy(data=data, columns=columns, weights='w')") print(">>> data.head()") print(df.head()) print('') print('>>> data.weights =', df.weights) print('```') print('') main_var = 'x' # df.mean(main_var) # df.var(main_var) # df.skew(main_var) # df.kurt(main_var) # df.gini(main_var) # df.atkinson(main_var) # df.theil(main_var) # df.percentile(main_var) print('```python') print('>>> df.mean(main_var)'.ljust(27), '=', df.mean(main_var)) print('>>> df.percentile(main_var)'.ljust(27), '=', df.percentile(main_var)) print('>>> df.var(main_var)'.ljust(27), '=', df.var(main_var)) print('>>> df.skew(main_var)'.ljust(27), '=', df.skew(main_var)) print('>>> df.kurt(main_var)'.ljust(27), '=', df.kurt(main_var)) print('>>> df.gini(main_var)'.ljust(27), '=', df.gini(main_var)) print('>>> df.atkinson(main_var)'.ljust(27), '=', df.atkinson(main_var)) print('>>> df.theil(main_var)'.ljust(27), '=', df.theil(main_var)) print('```')
[ 11748, 299, 32152, 355, 45941, 198, 6738, 12972, 70, 6649, 1330, 7869, 355, 308, 6649, 62, 14269, 198, 6738, 629, 541, 88, 1330, 9756, 355, 599, 62, 14269, 198, 198, 11748, 287, 27363, 9078, 355, 287, 27363, 198, 6738, 287, 27363, 9078, 1330, 4808, 14269, 3969, 355, 287, 27363, 62, 14269, 198, 198, 2, 2980, 378, 4738, 1366, 198, 87, 11, 266, 796, 287, 27363, 13, 26791, 13, 8612, 378, 62, 7890, 62, 1462, 62, 9288, 19510, 1899, 11, 3829, 4008, 198, 2, 18407, 12364, 19590, 198, 87, 62, 7856, 11, 266, 62, 7856, 796, 287, 27363, 13, 26791, 13, 44754, 62, 7890, 62, 6738, 62, 6551, 276, 7, 87, 11, 266, 8, 198, 82, 7670, 796, 287, 27363, 13, 15042, 13, 14214, 3304, 198, 198, 4798, 7, 198, 37811, 198, 2559, 855, 198, 21063, 9688, 198, 2559, 855, 198, 198, 1135, 7716, 4738, 26356, 1366, 284, 905, 703, 287, 27363, 9078, 2499, 13, 383, 9633, 220, 198, 14323, 5039, 852, 25, 628, 220, 220, 220, 2124, 1058, 19003, 198, 220, 220, 220, 266, 1058, 775, 2337, 198, 198, 15506, 63, 29412, 198, 33409, 2124, 11, 266, 796, 287, 27363, 13, 26791, 13, 8612, 378, 62, 7890, 62, 1462, 62, 9288, 19510, 1899, 11, 3829, 4008, 198, 15506, 63, 198, 198, 2514, 1332, 351, 15993, 7869, 356, 7716, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2124, 62, 7856, 1058, 19003, 3815, 35108, 266, 1661, 1123, 530, 13, 198, 220, 220, 220, 266, 62, 7856, 1058, 32606, 5721, 13, 198, 198, 15506, 63, 29412, 198, 33409, 2124, 62, 7856, 11, 266, 62, 7856, 796, 287, 27363, 13, 26791, 13, 44754, 62, 7890, 62, 6738, 62, 6551, 276, 7, 87, 11, 266, 8, 198, 15506, 63, 198, 198, 17699, 1321, 25, 628, 220, 220, 220, 45941, 1058, 299, 32152, 5301, 198, 220, 220, 220, 599, 1058, 629, 541, 88, 5301, 198, 220, 220, 220, 279, 67, 1058, 19798, 292, 5301, 198, 220, 220, 220, 308, 6649, 62, 14269, 1058, 22961, 22060, 10074, 3194, 287, 327, 13, 198, 220, 220, 220, 287, 27363, 1058, 554, 27363, 20519, 198, 37811, 198, 8, 628, 198, 4798, 7, 198, 37811, 198, 27730, 290, 4616, 1166, 351, 584, 10392, 198, 10052, 25609, 198, 198, 35744, 8808, 19505, 198, 2559, 855, 198, 198, 11682, 1565, 198, 650, 198, 198, 37811, 198, 8, 198, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 45941, 13, 32604, 7, 87, 62, 7856, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 3256, 45941, 13, 32604, 7, 87, 62, 7856, 4008, 198, 4798, 10786, 33409, 287, 27363, 13, 32604, 7, 87, 11, 266, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 3256, 287, 27363, 13, 32604, 7, 87, 11, 266, 4008, 198, 4798, 10786, 33409, 308, 6649, 62, 14269, 13, 86, 32604, 7, 86, 11, 2124, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 3256, 308, 6649, 62, 14269, 13, 86, 32604, 7, 86, 11, 2124, 4008, 198, 4798, 10786, 15506, 63, 11537, 198, 198, 2, 4064, 2435, 270, 287, 27363, 13, 32604, 7, 14202, 11, 2124, 11, 266, 8, 198, 2, 4064, 2435, 270, 308, 6649, 62, 14269, 13, 86, 32604, 7, 86, 11, 2124, 8, 198, 2, 4064, 2435, 270, 287, 27363, 62, 14269, 13, 32604, 7, 87, 11, 266, 8, 198, 198, 4798, 7, 198, 37811, 198, 198, 53, 1503, 16868, 5222, 198, 982, 198, 198, 37811, 198, 8, 198, 198, 37659, 62, 7785, 796, 45941, 13, 7785, 7, 87, 62, 7856, 8, 198, 259, 80, 62, 7785, 796, 287, 27363, 13, 7785, 7, 87, 11, 266, 8, 198, 86, 7785, 62, 16, 796, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 352, 8, 220, 1303, 3265, 24198, 198, 86, 7785, 62, 17, 796, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 362, 8, 220, 1303, 6291, 8373, 24198, 198, 70, 6649, 62, 86, 7785, 796, 308, 6649, 62, 14269, 13, 86, 25641, 590, 7, 86, 11, 2124, 8, 198, 86, 7785, 62, 18, 796, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 513, 8, 220, 1303, 6291, 17843, 24198, 198, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 45941, 13, 7785, 7, 87, 62, 7856, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 45941, 62, 7785, 8, 198, 4798, 10786, 33409, 287, 27363, 13, 7785, 7, 87, 11, 266, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 287, 80, 62, 7785, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 1611, 28, 16, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 266, 7785, 62, 16, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 1611, 28, 17, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 266, 7785, 62, 17, 8, 198, 4798, 10786, 33409, 308, 6649, 62, 14269, 13, 86, 25641, 590, 7, 86, 11, 2124, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 308, 6649, 62, 86, 7785, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 7785, 7, 87, 11, 266, 11, 1611, 28, 18, 8, 4458, 75, 3137, 7, 2624, 828, 705, 28, 3256, 266, 7785, 62, 18, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 198, 4798, 7, 198, 37811, 198, 198, 8220, 53, 1503, 16868, 5222, 198, 35937, 198, 198, 37811, 198, 8, 198, 198, 37659, 62, 66, 709, 796, 45941, 13, 66, 709, 7, 87, 62, 7856, 11, 2124, 62, 7856, 8, 198, 500, 80, 62, 86, 66, 709, 16, 796, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 352, 8, 198, 500, 80, 62, 86, 66, 709, 17, 796, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 362, 8, 198, 500, 80, 62, 86, 66, 709, 18, 796, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 513, 8, 198, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 45941, 13, 66, 709, 7, 87, 62, 7856, 11, 2124, 62, 7856, 8, 4458, 75, 3137, 7, 2327, 828, 705, 28, 46083, 45941, 62, 66, 709, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 1611, 28, 16, 8, 4458, 75, 3137, 7, 2327, 828, 705, 28, 46083, 287, 27363, 62, 86, 66, 709, 16, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 1611, 28, 17, 8, 4458, 75, 3137, 7, 2327, 828, 705, 28, 46083, 287, 27363, 62, 86, 66, 709, 17, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 86, 66, 709, 7, 87, 11, 2124, 11, 266, 11, 1611, 28, 18, 8, 4458, 75, 3137, 7, 2327, 828, 705, 28, 46083, 287, 27363, 62, 86, 66, 709, 18, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 4798, 7, 198, 37811, 198, 198, 18831, 6217, 31097, 198, 982, 198, 198, 37811, 198, 8, 198, 198, 70, 6649, 62, 18504, 365, 86, 796, 308, 6649, 62, 14269, 13, 18504, 365, 86, 7, 86, 11, 2124, 8, 198, 2777, 62, 82, 365, 86, 796, 220, 599, 62, 14269, 13, 82, 365, 86, 7, 87, 62, 7856, 8, 198, 500, 80, 62, 82, 365, 86, 796, 220, 287, 27363, 13, 82, 365, 86, 7, 87, 11, 266, 8, 198, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 308, 6649, 62, 14269, 13, 18504, 365, 86, 7, 86, 11, 2124, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 46083, 308, 6649, 62, 18504, 365, 86, 8, 198, 4798, 10786, 33409, 599, 62, 14269, 13, 82, 365, 86, 7, 87, 62, 7856, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 46083, 599, 62, 82, 365, 86, 8, 198, 4798, 10786, 33409, 287, 27363, 13, 82, 365, 86, 7, 87, 11, 266, 8, 4458, 75, 3137, 7, 1731, 828, 705, 28, 46083, 287, 27363, 62, 82, 365, 86, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 198, 2, 4064, 2435, 270, 308, 6649, 62, 14269, 13, 18504, 365, 86, 7, 86, 11, 2124, 8, 198, 2, 4064, 2435, 270, 599, 62, 14269, 13, 82, 365, 86, 7, 87, 62, 7856, 8, 198, 2, 4064, 2435, 270, 287, 27363, 13, 82, 365, 86, 7, 14202, 11, 2124, 11, 266, 8, 198, 198, 4798, 7, 198, 37811, 198, 198, 42, 4261, 51, 2640, 1797, 198, 982, 198, 198, 37811, 198, 8, 198, 198, 2777, 62, 74, 3325, 796, 599, 62, 14269, 13, 74, 3325, 5958, 7, 87, 62, 7856, 8, 198, 70, 6649, 62, 43021, 3325, 796, 308, 6649, 62, 14269, 13, 43021, 3325, 5958, 7, 86, 11, 2124, 8, 198, 500, 80, 62, 74, 3325, 796, 287, 27363, 13, 74, 3325, 7, 87, 11, 266, 8, 532, 513, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 599, 62, 14269, 13, 74, 3325, 5958, 7, 87, 62, 7856, 8, 4458, 75, 3137, 7, 2078, 828, 705, 28, 46083, 599, 62, 74, 3325, 8, 198, 4798, 10786, 33409, 308, 6649, 62, 14269, 13, 43021, 3325, 5958, 7, 86, 11, 2124, 8, 4458, 75, 3137, 7, 2078, 828, 705, 28, 46083, 308, 6649, 62, 43021, 3325, 8, 198, 4798, 10786, 33409, 287, 27363, 13, 74, 3325, 7, 87, 11, 266, 8, 532, 513, 4458, 75, 3137, 7, 2078, 828, 705, 28, 46083, 287, 27363, 62, 74, 3325, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 2, 4064, 2435, 270, 599, 62, 14269, 13, 74, 3325, 5958, 7, 87, 62, 7856, 8, 198, 2, 4064, 2435, 270, 308, 6649, 62, 14269, 13, 43021, 3325, 5958, 7, 86, 11, 2124, 8, 198, 2, 4064, 2435, 270, 287, 27363, 13, 74, 3325, 7, 14202, 11, 2124, 11, 266, 8, 532, 513, 198, 198, 4798, 7, 198, 37811, 198, 18973, 43960, 4146, 1546, 198, 32284, 198, 198, 37811, 198, 8, 198, 80, 796, 2026, 198, 500, 80, 62, 525, 66, 62, 1120, 796, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 10662, 8, 198, 37659, 62, 525, 66, 62, 1120, 796, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 10662, 8, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 287, 27363, 62, 525, 66, 62, 1120, 8, 198, 4798, 10786, 33409, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 45941, 62, 525, 66, 62, 1120, 8, 198, 198, 80, 796, 1679, 198, 500, 80, 62, 525, 66, 62, 1495, 796, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 10662, 8, 198, 37659, 62, 525, 66, 62, 1495, 796, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 10662, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 287, 27363, 62, 525, 66, 62, 1495, 8, 198, 4798, 10786, 33409, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 45941, 62, 525, 66, 62, 1495, 8, 198, 198, 80, 796, 5441, 198, 500, 80, 62, 525, 66, 62, 2425, 796, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 10662, 8, 198, 37659, 62, 525, 66, 62, 2425, 796, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 10662, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 287, 27363, 62, 525, 66, 62, 2425, 8, 198, 4798, 10786, 33409, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 45941, 62, 525, 66, 62, 2425, 8, 198, 198, 80, 796, 838, 198, 500, 80, 62, 525, 66, 62, 940, 796, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 10662, 8, 198, 37659, 62, 525, 66, 62, 940, 796, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 10662, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 287, 27363, 62, 525, 66, 62, 940, 8, 198, 4798, 10786, 33409, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 45941, 62, 525, 66, 62, 940, 8, 198, 198, 80, 796, 4101, 198, 500, 80, 62, 525, 66, 62, 3829, 796, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 10662, 8, 198, 37659, 62, 525, 66, 62, 3829, 796, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 10662, 8, 198, 4798, 10786, 33409, 287, 27363, 62, 14269, 13, 25067, 576, 7, 87, 11, 266, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 287, 27363, 62, 525, 66, 62, 3829, 8, 198, 4798, 10786, 33409, 45941, 13, 25067, 576, 7, 87, 62, 7856, 11, 4064, 82, 8, 4458, 75, 3137, 7, 2682, 8, 4064, 10662, 11, 705, 28, 46083, 45941, 62, 525, 66, 62, 3829, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 198, 4798, 7, 198, 37811, 198, 6610, 835, 284, 779, 428, 318, 832, 262, 7824, 8265, 355, 3402, 2174, 25, 198, 198, 17614, 33893, 198, 2559, 855, 198, 198, 37811, 198, 8, 198, 198, 7890, 796, 45941, 13, 66, 62, 58, 87, 11, 266, 60, 198, 28665, 82, 796, 1351, 10786, 87, 86, 11537, 198, 198, 7568, 796, 264, 7670, 7, 7890, 28, 7890, 11, 15180, 28, 28665, 82, 11, 19590, 11639, 86, 11537, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 7203, 33409, 1366, 796, 264, 7670, 7, 7890, 28, 7890, 11, 15180, 28, 28665, 82, 11, 19590, 11639, 86, 11537, 4943, 198, 4798, 7203, 33409, 1366, 13, 2256, 3419, 4943, 198, 4798, 7, 7568, 13, 2256, 28955, 198, 4798, 7, 7061, 8, 198, 4798, 10786, 33409, 1366, 13, 43775, 796, 3256, 47764, 13, 43775, 8, 198, 4798, 10786, 15506, 63, 11537, 198, 4798, 7, 7061, 8, 198, 12417, 62, 7785, 796, 705, 87, 6, 198, 2, 47764, 13, 32604, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 7785, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 82, 365, 86, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 74, 3325, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 1655, 72, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 265, 26030, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 1169, 346, 7, 12417, 62, 7785, 8, 198, 2, 47764, 13, 25067, 576, 7, 12417, 62, 7785, 8, 198, 198, 4798, 10786, 15506, 63, 29412, 11537, 198, 4798, 10786, 33409, 47764, 13, 32604, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 32604, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 25067, 576, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 25067, 576, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 7785, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 7785, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 82, 365, 86, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 82, 365, 86, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 74, 3325, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 74, 3325, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 1655, 72, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 1655, 72, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 265, 26030, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 265, 26030, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 33409, 47764, 13, 1169, 346, 7, 12417, 62, 7785, 8, 4458, 75, 3137, 7, 1983, 828, 705, 28, 3256, 47764, 13, 1169, 346, 7, 12417, 62, 7785, 4008, 198, 4798, 10786, 15506, 63, 11537 ]
2.126029
2,793