content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# Copyright (c) 2017, Mayo Clinic # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of the Mayo Clinic nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. import unittest import os from fhirtordf.fhir.picklejar import picklejar, picklejarfactory from tests.utils.base_test_case import make_and_clear_directory if __name__ == '__main__': unittest.main()
[ 2, 15069, 357, 66, 8, 2177, 11, 32987, 26690, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 17613, 11, 198, 2, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 2, 220, 220, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 220, 220, 220, 220, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 220, 220, 220, 220, 16126, 262, 1438, 286, 262, 32987, 26690, 4249, 262, 3891, 286, 663, 20420, 198, 2, 220, 220, 220, 220, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 198, 2, 220, 220, 220, 220, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 198, 2, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 198, 2, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 198, 2, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 198, 2, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 220, 198, 2, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 198, 2, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 198, 2, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 11748, 555, 715, 395, 198, 198, 11748, 28686, 198, 198, 6738, 277, 49756, 585, 69, 13, 69, 71, 343, 13, 27729, 293, 9491, 1330, 2298, 293, 9491, 11, 2298, 293, 9491, 69, 9548, 198, 6738, 5254, 13, 26791, 13, 8692, 62, 9288, 62, 7442, 1330, 787, 62, 392, 62, 20063, 62, 34945, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.399225
516
# Created by rahman at 15:20 2020-03-05 using PyCharm import subprocess from image_attacks.im_utils import slice_files, combine_files, clean_trim, count_cats, make_features_counts, score from shared_tools.utils import make_allPairs, classifiers, DATAPATH, city def attack_images(cores, prob_cutoff): """ :param cores: how many cores to use for multiprocessing :param prob_cutoff: user's image belongs to a certain category if the output of the last FC layer of the resnet model for the category > prob_cutoff :return: """ mediaFile = "target_media" slice_files(mediaFile, DATAPATH, cores) subprocess.call(['./parallelize_im2proba.sh', cores, city]) # downloads images and converts to embeddings, shell script calls im2proba.py prob_file = combine_files(DATAPATH, cores) clean_file = clean_trim(prob_cutoff, DATAPATH, prob_file) counts_file = count_cats(DATAPATH, clean_file, countsFile="proba_cut_01_counts.csv" ) allPairs = make_allPairs("avg_pairs.csv", u_list_file=counts_file, DATAPATH=DATAPATH, friendFile=city + ".target_friends", makeStrangers=True) data_file = DATAPATH + "im_dataset.csv" dataset = make_features_counts(DATAPATH, clean_file, data_file, counts_file, allPairs) score(dataset, name="mini-counts, cosine, entropy of max cat", classifiers=classifiers) print ("Created image dataset at", data_file) return data_file if __name__ == '__main__': data_file = attack_images(cores = 120, prob_cutoff = 0.05)
[ 2, 15622, 416, 374, 993, 805, 379, 1315, 25, 1238, 12131, 12, 3070, 12, 2713, 1262, 9485, 1925, 1670, 198, 11748, 850, 14681, 198, 198, 6738, 2939, 62, 38458, 13, 320, 62, 26791, 1330, 16416, 62, 16624, 11, 12082, 62, 16624, 11, 3424, 62, 2213, 320, 11, 954, 62, 24619, 11, 787, 62, 40890, 62, 9127, 82, 11, 4776, 198, 198, 6738, 4888, 62, 31391, 13, 26791, 1330, 787, 62, 439, 47, 3468, 11, 1398, 13350, 11, 360, 1404, 2969, 12599, 11, 1748, 628, 198, 198, 4299, 1368, 62, 17566, 7, 66, 2850, 11, 1861, 62, 8968, 2364, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 21758, 25, 703, 867, 21758, 284, 779, 329, 18540, 305, 919, 278, 198, 220, 220, 220, 1058, 17143, 1861, 62, 8968, 2364, 25, 2836, 338, 2939, 14448, 284, 257, 1728, 6536, 611, 262, 5072, 286, 262, 938, 10029, 7679, 286, 262, 581, 3262, 2746, 329, 262, 6536, 220, 1875, 1861, 62, 8968, 2364, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 2056, 8979, 796, 366, 16793, 62, 11431, 1, 628, 220, 220, 220, 16416, 62, 16624, 7, 11431, 8979, 11, 360, 1404, 2969, 12599, 11, 21758, 8, 628, 220, 220, 220, 850, 14681, 13, 13345, 26933, 4458, 14, 1845, 29363, 1096, 62, 320, 17, 1676, 7012, 13, 1477, 3256, 21758, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 12962, 220, 1303, 21333, 4263, 290, 26161, 284, 11525, 67, 654, 11, 7582, 4226, 3848, 545, 17, 1676, 7012, 13, 9078, 628, 220, 220, 220, 1861, 62, 7753, 796, 12082, 62, 16624, 7, 35, 1404, 2969, 12599, 11, 21758, 8, 628, 220, 220, 220, 3424, 62, 7753, 796, 3424, 62, 2213, 320, 7, 1676, 65, 62, 8968, 2364, 11, 360, 1404, 2969, 12599, 11, 1861, 62, 7753, 8, 628, 220, 220, 220, 9853, 62, 7753, 796, 954, 62, 24619, 7, 35, 1404, 2969, 12599, 11, 3424, 62, 7753, 11, 9853, 8979, 2625, 1676, 7012, 62, 8968, 62, 486, 62, 9127, 82, 13, 40664, 1, 1267, 628, 220, 220, 220, 477, 47, 3468, 796, 787, 62, 439, 47, 3468, 7203, 615, 70, 62, 79, 3468, 13, 40664, 1600, 334, 62, 4868, 62, 7753, 28, 9127, 82, 62, 7753, 11, 360, 1404, 2969, 12599, 28, 35, 1404, 2969, 12599, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1545, 8979, 28, 19205, 1343, 27071, 16793, 62, 36154, 1600, 787, 13290, 6606, 28, 17821, 8, 628, 220, 220, 220, 1366, 62, 7753, 796, 360, 1404, 2969, 12599, 1343, 366, 320, 62, 19608, 292, 316, 13, 40664, 1, 628, 220, 220, 220, 27039, 796, 787, 62, 40890, 62, 9127, 82, 7, 35, 1404, 2969, 12599, 11, 3424, 62, 7753, 11, 1366, 62, 7753, 11, 9853, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 47, 3468, 8, 628, 220, 220, 220, 4776, 7, 19608, 292, 316, 11, 1438, 2625, 45313, 12, 9127, 82, 11, 8615, 500, 11, 40709, 286, 3509, 3797, 1600, 1398, 13350, 28, 4871, 13350, 8, 628, 220, 220, 220, 3601, 5855, 41972, 2939, 27039, 379, 1600, 1366, 62, 7753, 8, 628, 220, 220, 220, 1441, 1366, 62, 7753, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1366, 62, 7753, 796, 1368, 62, 17566, 7, 66, 2850, 796, 7982, 11, 1861, 62, 8968, 2364, 796, 657, 13, 2713, 8, 628, 628, 628, 628, 628, 628, 628 ]
2.545741
634
import numpy as np from dr.backend.base import Backend
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1553, 13, 1891, 437, 13, 8692, 1330, 5157, 437, 628 ]
3.166667
18
from random import randint from time import sleep computador = randint(1, 5) print('\033[34m-==-\033[m'*17) print('Vamos jogar um jogo, tente adivinhar o número que estou pensando !') sleep(1) jogador = int(input('Chute um valor de 1 até 5: ')) print('PROCESSANDO...') sleep(1) if jogador == computador: print('\033[1;32mPARABÉNS, VOCÊ ACERTOU!!\033[m Eu realmente esta pensando no número {} !'.format(computador)) else: print('\033[1;31mERROUUUU !!\033[m Eu estava pensando no número {} e não no número {}'.format(computador,jogador)) print('\033[34m-==-'*17)
[ 6738, 4738, 1330, 43720, 600, 198, 6738, 640, 1330, 3993, 198, 785, 1996, 7079, 796, 43720, 600, 7, 16, 11, 642, 8, 198, 4798, 10786, 59, 44427, 58, 2682, 76, 12, 855, 12, 59, 44427, 58, 76, 6, 9, 1558, 8, 198, 4798, 10786, 53, 321, 418, 48342, 283, 23781, 474, 24076, 11, 11105, 68, 512, 452, 259, 9869, 267, 299, 21356, 647, 78, 8358, 1556, 280, 29707, 25440, 5145, 11537, 198, 42832, 7, 16, 8, 198, 73, 519, 7079, 796, 493, 7, 15414, 10786, 1925, 1133, 23781, 1188, 273, 390, 352, 379, 2634, 642, 25, 705, 4008, 198, 4798, 10786, 4805, 4503, 7597, 6981, 46, 986, 11537, 198, 42832, 7, 16, 8, 198, 198, 361, 48342, 7079, 6624, 2653, 7079, 25, 198, 220, 220, 220, 3601, 10786, 59, 44427, 58, 16, 26, 2624, 76, 27082, 6242, 38351, 8035, 11, 569, 4503, 127, 232, 7125, 17395, 2606, 3228, 59, 44427, 58, 76, 412, 84, 1103, 434, 68, 1556, 64, 29707, 25440, 645, 299, 21356, 647, 78, 23884, 5145, 4458, 18982, 7, 785, 1996, 7079, 4008, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 59, 44427, 58, 16, 26, 3132, 76, 1137, 49, 2606, 30100, 52, 37867, 59, 44427, 58, 76, 412, 84, 1556, 4170, 29707, 25440, 645, 299, 21356, 647, 78, 23884, 304, 299, 28749, 645, 299, 21356, 647, 78, 23884, 4458, 18982, 7, 785, 1996, 7079, 11, 73, 519, 7079, 4008, 198, 198, 4798, 10786, 59, 44427, 58, 2682, 76, 12, 855, 19355, 9, 1558, 8 ]
2.298387
248
from datetime import date from dateutil.relativedelta import relativedelta from celery.task import task, group from django.db.models import Sum, Count from go.billing import settings from go.billing.models import ( Account, Transaction, MessageCost, Statement, LineItem) from go.base.utils import vumi_api @task() def generate_monthly_statement(account_id, from_date, to_date): """Generate a new *Monthly* ``Statement`` for the given ``account`` between the given ``from_date`` and ``to_date``. """ account = Account.objects.get(id=account_id) tagpools = get_tagpools(account) statement = Statement( account=account, title=settings.MONTHLY_STATEMENT_TITLE, type=Statement.TYPE_MONTHLY, from_date=from_date, to_date=to_date) statement.save() items = [] items.extend(make_message_items(account, statement, tagpools)) items.extend(make_session_items(account, statement, tagpools)) statement.lineitem_set.bulk_create(items) return statement @task() def generate_monthly_account_statements(): """Spawn sub-tasks to generate a *Monthly* ``Statement`` for accounts without a *Monthly* statement. """ today = date.today() last_month = today - relativedelta(months=1) from_date = date(last_month.year, last_month.month, 1) to_date = date(today.year, today.month, 1) - relativedelta(days=1) account_list = Account.objects.exclude( statement__type=Statement.TYPE_MONTHLY, statement__from_date=from_date, statement__to_date=to_date) task_list = [] for account in account_list: task_list.append( generate_monthly_statement.s(account.id, from_date, to_date)) return group(task_list)()
[ 6738, 4818, 8079, 1330, 3128, 198, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 198, 198, 6738, 18725, 1924, 13, 35943, 1330, 4876, 11, 1448, 198, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 5060, 11, 2764, 198, 198, 6738, 467, 13, 65, 4509, 1330, 6460, 198, 6738, 467, 13, 65, 4509, 13, 27530, 1330, 357, 198, 220, 220, 220, 10781, 11, 45389, 11, 16000, 13729, 11, 21983, 11, 6910, 7449, 8, 198, 6738, 467, 13, 8692, 13, 26791, 1330, 410, 12994, 62, 15042, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 31, 35943, 3419, 198, 4299, 7716, 62, 8424, 306, 62, 26090, 7, 23317, 62, 312, 11, 422, 62, 4475, 11, 284, 62, 4475, 2599, 198, 220, 220, 220, 37227, 8645, 378, 257, 649, 1635, 31948, 306, 9, 7559, 48682, 15506, 329, 262, 1813, 7559, 23317, 15506, 198, 220, 220, 220, 220, 220, 220, 1022, 262, 1813, 7559, 6738, 62, 4475, 15506, 290, 7559, 1462, 62, 4475, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1848, 796, 10781, 13, 48205, 13, 1136, 7, 312, 28, 23317, 62, 312, 8, 198, 220, 220, 220, 7621, 7742, 82, 796, 651, 62, 12985, 7742, 82, 7, 23317, 8, 628, 220, 220, 220, 2643, 796, 21983, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1848, 28, 23317, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 33692, 13, 27857, 4221, 11319, 62, 35744, 12529, 62, 49560, 2538, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 48682, 13, 25216, 62, 27857, 4221, 11319, 11, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 4475, 28, 6738, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 4475, 28, 1462, 62, 4475, 8, 628, 220, 220, 220, 2643, 13, 21928, 3419, 628, 220, 220, 220, 3709, 796, 17635, 198, 220, 220, 220, 3709, 13, 2302, 437, 7, 15883, 62, 20500, 62, 23814, 7, 23317, 11, 2643, 11, 7621, 7742, 82, 4008, 198, 220, 220, 220, 3709, 13, 2302, 437, 7, 15883, 62, 29891, 62, 23814, 7, 23317, 11, 2643, 11, 7621, 7742, 82, 4008, 628, 220, 220, 220, 2643, 13, 1370, 9186, 62, 2617, 13, 65, 12171, 62, 17953, 7, 23814, 8, 198, 220, 220, 220, 1441, 2643, 628, 198, 31, 35943, 3419, 198, 4299, 7716, 62, 8424, 306, 62, 23317, 62, 14269, 3196, 33529, 198, 220, 220, 220, 37227, 49855, 850, 12, 83, 6791, 284, 7716, 257, 1635, 31948, 306, 9, 7559, 48682, 15506, 329, 5504, 198, 220, 220, 220, 220, 220, 220, 1231, 257, 1635, 31948, 306, 9, 2643, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1909, 796, 3128, 13, 40838, 3419, 198, 220, 220, 220, 938, 62, 8424, 796, 1909, 532, 48993, 1572, 12514, 7, 41537, 28, 16, 8, 198, 220, 220, 220, 422, 62, 4475, 796, 3128, 7, 12957, 62, 8424, 13, 1941, 11, 938, 62, 8424, 13, 8424, 11, 352, 8, 198, 220, 220, 220, 284, 62, 4475, 796, 3128, 7, 40838, 13, 1941, 11, 1909, 13, 8424, 11, 352, 8, 532, 48993, 1572, 12514, 7, 12545, 28, 16, 8, 198, 220, 220, 220, 1848, 62, 4868, 796, 10781, 13, 48205, 13, 1069, 9152, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2643, 834, 4906, 28, 48682, 13, 25216, 62, 27857, 4221, 11319, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2643, 834, 6738, 62, 4475, 28, 6738, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2643, 834, 1462, 62, 4475, 28, 1462, 62, 4475, 8, 628, 220, 220, 220, 4876, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 1848, 287, 1848, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 4868, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 8424, 306, 62, 26090, 13, 82, 7, 23317, 13, 312, 11, 422, 62, 4475, 11, 284, 62, 4475, 4008, 628, 220, 220, 220, 1441, 1448, 7, 35943, 62, 4868, 8, 3419, 198 ]
2.644018
677
_base_ = './i_base.py' item_cfg = {'b': 2} item6 = {'cfg': item_cfg}
[ 62, 8692, 62, 796, 705, 19571, 72, 62, 8692, 13, 9078, 6, 198, 9186, 62, 37581, 796, 1391, 6, 65, 10354, 362, 92, 198, 9186, 21, 796, 1391, 6, 37581, 10354, 2378, 62, 37581, 92, 198 ]
1.916667
36
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from collections import OrderedDict from functools import partial from typing import Dict import oneflow._oneflow_internal import oneflow.framework.c_api_util as c_api_util import oneflow.framework.graph_build_util as graph_build_util import oneflow.framework.session_context as session_ctx from oneflow.framework.distribute import get_rank from oneflow.framework.tensor import Tensor, TensorTuple from oneflow.framework.multi_client_session import MultiClientSession from oneflow.framework.tensor_tuple_util import convert_to_tensor_tuple from oneflow.nn.graph.block import Block, BlockType from oneflow.nn.graph.config import GraphConfig from oneflow.nn.graph.optimizer import OptDict, VariableConfig from oneflow.amp import GradScaler from oneflow.nn.graph.util import add_indent, sys_exc_error_msg, list_to_func_return from oneflow.nn.module import Module from oneflow.nn.optimizer.optimizer import Optimizer from oneflow.nn.optimizer.lr_scheduler import LrScheduler
[ 37811, 198, 15269, 12131, 383, 1881, 37535, 46665, 13, 1439, 2489, 10395, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 19720, 1330, 360, 713, 198, 198, 11748, 530, 11125, 13557, 505, 11125, 62, 32538, 198, 11748, 530, 11125, 13, 30604, 13, 66, 62, 15042, 62, 22602, 355, 269, 62, 15042, 62, 22602, 198, 11748, 530, 11125, 13, 30604, 13, 34960, 62, 11249, 62, 22602, 355, 4823, 62, 11249, 62, 22602, 198, 11748, 530, 11125, 13, 30604, 13, 29891, 62, 22866, 355, 6246, 62, 49464, 198, 6738, 530, 11125, 13, 30604, 13, 17080, 4163, 1330, 651, 62, 43027, 198, 6738, 530, 11125, 13, 30604, 13, 83, 22854, 1330, 309, 22854, 11, 309, 22854, 51, 29291, 198, 6738, 530, 11125, 13, 30604, 13, 41684, 62, 16366, 62, 29891, 1330, 15237, 11792, 36044, 198, 6738, 530, 11125, 13, 30604, 13, 83, 22854, 62, 83, 29291, 62, 22602, 1330, 10385, 62, 1462, 62, 83, 22854, 62, 83, 29291, 198, 6738, 530, 11125, 13, 20471, 13, 34960, 13, 9967, 1330, 9726, 11, 9726, 6030, 198, 6738, 530, 11125, 13, 20471, 13, 34960, 13, 11250, 1330, 29681, 16934, 198, 6738, 530, 11125, 13, 20471, 13, 34960, 13, 40085, 7509, 1330, 13123, 35, 713, 11, 35748, 16934, 198, 6738, 530, 11125, 13, 696, 1330, 17701, 3351, 36213, 198, 6738, 530, 11125, 13, 20471, 13, 34960, 13, 22602, 1330, 751, 62, 521, 298, 11, 25064, 62, 41194, 62, 18224, 62, 19662, 11, 1351, 62, 1462, 62, 20786, 62, 7783, 198, 6738, 530, 11125, 13, 20471, 13, 21412, 1330, 19937, 198, 6738, 530, 11125, 13, 20471, 13, 40085, 7509, 13, 40085, 7509, 1330, 30011, 7509, 198, 6738, 530, 11125, 13, 20471, 13, 40085, 7509, 13, 14050, 62, 1416, 704, 18173, 1330, 406, 81, 50, 1740, 18173, 628 ]
3.6097
433
import sys import csv import re from modules.pixelBasedDecoding import decodePixelBased # Input parsing: # needs to know up front how large the image is going to be x_dim = int(sys.argv[1]) y_dim = int(sys.argv[2]) # Extract tile nr tile_nr = sys.argv[3] tile_nr_int = int(re.findall(r"\d+", tile_nr)[0]) codebook = sys.argv[4] bit_len = int(sys.argv[5]) threshold = float(sys.argv[6]) # Prefix to be able to sort the images in the correct order image_prefix= sys.argv[7] image_path_list = [sys.argv[i] for i in range(8, len(sys.argv))] # Decode pixelbase decoded_df = decodePixelBased(x_dim,y_dim, codebook, bit_len, image_path_list,image_prefix,threshold) # Add an extra rown with tile number to the dataframe decoded_df['Tile'] = [tile_nr_int for i in range(0,len(decoded_df))] decoded_df.to_csv(f"decoded_{tile_nr}.csv", index=False)
[ 11748, 25064, 198, 11748, 269, 21370, 198, 11748, 302, 198, 6738, 13103, 13, 32515, 15001, 10707, 7656, 1330, 36899, 40809, 15001, 198, 198, 2, 23412, 32096, 25, 198, 198, 2, 2476, 284, 760, 510, 2166, 703, 1588, 262, 2939, 318, 1016, 284, 307, 198, 87, 62, 27740, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 88, 62, 27740, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 198, 2, 29677, 17763, 299, 81, 198, 40927, 62, 48624, 796, 220, 25064, 13, 853, 85, 58, 18, 60, 198, 40927, 62, 48624, 62, 600, 796, 493, 7, 260, 13, 19796, 439, 7, 81, 1, 59, 67, 10, 1600, 17763, 62, 48624, 38381, 15, 12962, 628, 198, 8189, 2070, 796, 25064, 13, 853, 85, 58, 19, 60, 198, 2545, 62, 11925, 796, 220, 493, 7, 17597, 13, 853, 85, 58, 20, 12962, 198, 400, 10126, 796, 12178, 7, 17597, 13, 853, 85, 58, 21, 12962, 198, 198, 2, 3771, 13049, 284, 307, 1498, 284, 3297, 262, 4263, 287, 262, 3376, 1502, 198, 9060, 62, 40290, 28, 25064, 13, 853, 85, 58, 22, 60, 198, 9060, 62, 6978, 62, 4868, 796, 685, 17597, 13, 853, 85, 58, 72, 60, 329, 1312, 287, 2837, 7, 23, 11, 18896, 7, 17597, 13, 853, 85, 4008, 60, 198, 198, 2, 4280, 1098, 17465, 8692, 198, 12501, 9043, 62, 7568, 796, 36899, 40809, 15001, 7, 87, 62, 27740, 11, 88, 62, 27740, 11, 2438, 2070, 11, 1643, 62, 11925, 11, 2939, 62, 6978, 62, 4868, 11, 9060, 62, 40290, 11, 400, 10126, 8, 198, 198, 2, 3060, 281, 3131, 686, 675, 351, 17763, 1271, 284, 262, 1366, 14535, 198, 12501, 9043, 62, 7568, 17816, 35103, 20520, 796, 685, 40927, 62, 48624, 62, 600, 329, 1312, 287, 2837, 7, 15, 11, 11925, 7, 12501, 9043, 62, 7568, 4008, 60, 198, 12501, 9043, 62, 7568, 13, 1462, 62, 40664, 7, 69, 1, 12501, 9043, 23330, 40927, 62, 48624, 27422, 40664, 1600, 6376, 28, 25101, 8, 198 ]
2.561934
331
# Generated by Django 3.2.6 on 2021-08-08 21:52 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 21, 319, 33448, 12, 2919, 12, 2919, 2310, 25, 4309, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import os, sys os.chdir("G:\\My Drive\\Academic\\Research\\Neural Heap") from neural_heap.dataset.io_synthesis.io_synthesis_args import IOSynthesisArgs from neural_heap.dataset.io_synthesis.io_synthesis_utils import IOSynthesisUtils
[ 11748, 28686, 11, 25064, 201, 198, 418, 13, 354, 15908, 7203, 38, 25, 6852, 3666, 9974, 6852, 12832, 49113, 6852, 25104, 6852, 8199, 1523, 679, 499, 4943, 201, 198, 6738, 17019, 62, 258, 499, 13, 19608, 292, 316, 13, 952, 62, 1837, 429, 8497, 13, 952, 62, 1837, 429, 8497, 62, 22046, 1330, 314, 2640, 44411, 42035, 201, 198, 6738, 17019, 62, 258, 499, 13, 19608, 292, 316, 13, 952, 62, 1837, 429, 8497, 13, 952, 62, 1837, 429, 8497, 62, 26791, 1330, 314, 2640, 44411, 18274, 4487, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.5
98
from pyteal import * from algosdk.v2client import algod from algosdk import account, mnemonic import pyteal # from deploy import PytealDeploy algod_token = 'B3SU4KcVKi94Jap2VXkK83xx38bsv95K5UZm2lab' algod_addres = "http://testnet-algorand.api.purestake.io/ps2" purestack_token = { "X-Api-Key": algod_token } tmpl_fee = Int(1000) tmpl_period = Int(50) tmpl_dur = Int(5000) tmpl_lease = Bytes("base64", "023sdDE2") tmpl_amt = Int(2000) tmpl_rcv = Addr("6ZHGHH5Z5CTPCF5WCESXMGRSVK7QJETR63M3NY5FJCUYDHO57VTCMJOBGY") tmpl_timeout = Int(30000)
[ 6738, 12972, 660, 282, 1330, 1635, 201, 198, 6738, 435, 70, 418, 34388, 13, 85, 17, 16366, 1330, 435, 25344, 201, 198, 6738, 435, 70, 418, 34388, 1330, 1848, 11, 285, 77, 50016, 201, 198, 11748, 12972, 660, 282, 201, 198, 201, 198, 2, 422, 6061, 1330, 9485, 660, 282, 49322, 201, 198, 201, 198, 201, 198, 14016, 375, 62, 30001, 796, 705, 33, 18, 12564, 19, 42, 66, 47191, 72, 5824, 41, 499, 17, 53, 55, 74, 42, 5999, 5324, 2548, 1443, 85, 3865, 42, 20, 52, 57, 76, 17, 23912, 6, 201, 198, 14016, 375, 62, 2860, 411, 796, 366, 4023, 1378, 9288, 3262, 12, 282, 7053, 392, 13, 15042, 13, 37424, 301, 539, 13, 952, 14, 862, 17, 1, 201, 198, 37424, 25558, 62, 30001, 796, 1391, 201, 198, 220, 220, 220, 366, 55, 12, 32, 14415, 12, 9218, 1298, 435, 25344, 62, 30001, 201, 198, 92, 201, 198, 201, 198, 17209, 489, 62, 39071, 796, 2558, 7, 12825, 8, 201, 198, 17209, 489, 62, 41007, 796, 2558, 7, 1120, 8, 201, 198, 17209, 489, 62, 67, 333, 796, 2558, 7, 27641, 8, 201, 198, 17209, 489, 62, 1274, 796, 2750, 4879, 7203, 8692, 2414, 1600, 366, 45310, 21282, 7206, 17, 4943, 201, 198, 17209, 489, 62, 321, 83, 796, 2558, 7, 11024, 8, 201, 198, 17209, 489, 62, 6015, 85, 796, 3060, 81, 7203, 21, 57, 39, 38, 16768, 20, 57, 20, 4177, 5662, 37, 20, 27353, 1546, 55, 20474, 6998, 47191, 22, 48, 41, 2767, 49, 5066, 44, 18, 12805, 20, 37, 34382, 52, 35755, 32298, 3553, 53, 4825, 43421, 9864, 31212, 4943, 201, 198, 17209, 489, 62, 48678, 796, 2558, 7, 18, 2388, 8, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220 ]
1.976027
292
# Copyright (c) 2016 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from tempest import config from tempest.lib import decorators from murano_tempest_tests.tests.api.application_catalog import base from murano_tempest_tests import utils CONF = config.CONF
[ 2, 220, 220, 220, 15069, 357, 66, 8, 1584, 7381, 20836, 11, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 198, 6738, 20218, 395, 1330, 4566, 198, 6738, 20218, 395, 13, 8019, 1330, 11705, 2024, 198, 198, 6738, 4636, 5733, 62, 29510, 395, 62, 41989, 13, 41989, 13, 15042, 13, 31438, 62, 9246, 11794, 1330, 2779, 198, 6738, 4636, 5733, 62, 29510, 395, 62, 41989, 1330, 3384, 4487, 198, 198, 10943, 37, 796, 4566, 13, 10943, 37, 628, 198 ]
3.294355
248
#!/usr/bin/python # See file COPYING distributed with python-hypothesis for copyright and # license. from setuptools import setup long_description = open('README.rst').read() setup(name='python-hypothesis', version='0.4.2', description='Python library for the Hypothes.is API', author='Christian Haselgrove', author_email='[email protected]', url='https://github.com/chaselgrove/python-hypothesis', packages=['h_annot'], scripts=[], install_requires=['requests', 'python-dateutil', 'six'], classifiers=['Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries'], license='BSD license', long_description=long_description ) # eof
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 4091, 2393, 27975, 45761, 9387, 351, 21015, 12, 36362, 313, 8497, 329, 6634, 290, 220, 198, 2, 5964, 13, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 6511, 62, 11213, 796, 1280, 10786, 15675, 11682, 13, 81, 301, 27691, 961, 3419, 198, 198, 40406, 7, 3672, 11639, 29412, 12, 36362, 313, 8497, 3256, 220, 198, 220, 220, 220, 220, 220, 2196, 11639, 15, 13, 19, 13, 17, 3256, 220, 198, 220, 220, 220, 220, 220, 6764, 11639, 37906, 5888, 329, 262, 21209, 31690, 13, 271, 7824, 3256, 220, 198, 220, 220, 220, 220, 220, 1772, 11639, 20298, 7875, 417, 27333, 303, 3256, 220, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 43533, 666, 13, 10134, 417, 27333, 303, 31, 388, 562, 1150, 13, 15532, 3256, 220, 198, 220, 220, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 354, 48038, 27333, 303, 14, 29412, 12, 36362, 313, 8497, 3256, 220, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 71, 62, 34574, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 14750, 41888, 4357, 220, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 17816, 8897, 3558, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 12, 4475, 22602, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19412, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 1398, 13350, 28, 17816, 41206, 12678, 7904, 513, 532, 12995, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31441, 7904, 5313, 9344, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35364, 15417, 7904, 3594, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 7294, 13362, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4455, 7904, 13505, 54, 14, 40717, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 10442, 7712, 7904, 46267, 6, 4357, 220, 198, 220, 220, 220, 220, 220, 5964, 11639, 21800, 5964, 3256, 220, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 198, 220, 220, 220, 220, 1267, 198, 198, 2, 304, 1659, 198 ]
2.216117
546
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2018-04-22 14:31 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 22, 319, 2864, 12, 3023, 12, 1828, 1478, 25, 3132, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.736842
57
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow from oneflow.framework.docstr.utils import add_docstr add_docstr( oneflow.index_select, """ input.index_select(dim, index) -> Tensor The interface is consistent with PyTorch. The documentation is referenced from: https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch/#torchindex_select Select values along an axis specified by `dim`. :attr:`index` must be an Int32 Tensor with 1-D. :attr:`dim` must be in the range of input Dimensions. value of :attr:`index` must be in the range of the dim-th of input. Note that ``input`` and ``index`` do not broadcast against each other. Args: input (Tensor): the source tensor dim (int): the axis along which to index index (Tensor): the 1-D tensor containing the indices to index For example: .. code-block:: python >>> import oneflow as flow >>> input = flow.tensor([[1,2,3],[4,5,6]], dtype=flow.int32) >>> input tensor([[1, 2, 3], [4, 5, 6]], dtype=oneflow.int32) >>> index = flow.tensor([0,1], dtype=flow.int32) >>> output = flow.index_select(input, 1, index) >>> output tensor([[1, 2], [4, 5]], dtype=oneflow.int32) >>> output = input.index_select(1, index) >>> output tensor([[1, 2], [4, 5]], dtype=oneflow.int32) """, )
[ 37811, 198, 15269, 12131, 383, 1881, 37535, 46665, 13, 1439, 2489, 10395, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 11748, 530, 11125, 198, 6738, 530, 11125, 13, 30604, 13, 15390, 2536, 13, 26791, 1330, 751, 62, 15390, 2536, 198, 198, 2860, 62, 15390, 2536, 7, 198, 220, 220, 220, 530, 11125, 13, 9630, 62, 19738, 11, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 13, 9630, 62, 19738, 7, 27740, 11, 6376, 8, 4613, 309, 22854, 628, 220, 220, 220, 383, 7071, 318, 6414, 351, 9485, 15884, 354, 13, 220, 220, 220, 220, 198, 220, 220, 220, 383, 10314, 318, 20717, 422, 25, 3740, 1378, 9078, 13165, 354, 12, 31522, 13, 961, 83, 704, 420, 82, 13, 952, 14, 23548, 14, 42861, 14, 26495, 62, 5420, 4972, 14, 13165, 354, 31113, 13165, 354, 9630, 62, 19738, 628, 220, 220, 220, 9683, 3815, 1863, 281, 16488, 7368, 416, 4600, 27740, 44646, 628, 220, 220, 220, 1058, 35226, 25, 63, 9630, 63, 1276, 307, 281, 2558, 2624, 309, 22854, 351, 352, 12, 35, 13, 198, 220, 220, 220, 1058, 35226, 25, 63, 27740, 63, 1276, 307, 287, 262, 2837, 286, 5128, 41265, 13, 198, 220, 220, 220, 1988, 286, 1058, 35226, 25, 63, 9630, 63, 1276, 307, 287, 262, 2837, 286, 262, 5391, 12, 400, 286, 5128, 13, 198, 220, 220, 220, 5740, 326, 7559, 15414, 15506, 290, 7559, 9630, 15506, 466, 407, 7025, 1028, 1123, 584, 13, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 357, 51, 22854, 2599, 262, 2723, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 357, 600, 2599, 262, 16488, 1863, 543, 284, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 357, 51, 22854, 2599, 262, 352, 12, 35, 11192, 273, 7268, 262, 36525, 284, 6376, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1114, 1672, 25, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 530, 11125, 355, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 796, 5202, 13, 83, 22854, 26933, 58, 16, 11, 17, 11, 18, 38430, 19, 11, 20, 11, 21, 60, 4357, 288, 4906, 28, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5128, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 26933, 58, 16, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 11, 718, 60, 4357, 288, 4906, 28, 505, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 6376, 796, 5202, 13, 83, 22854, 26933, 15, 11, 16, 4357, 288, 4906, 28, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5072, 796, 5202, 13, 9630, 62, 19738, 7, 15414, 11, 352, 11, 6376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 26933, 58, 16, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 60, 4357, 288, 4906, 28, 505, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5072, 796, 5128, 13, 9630, 62, 19738, 7, 16, 11, 6376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 26933, 58, 16, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 642, 60, 4357, 288, 4906, 28, 505, 11125, 13, 600, 2624, 8, 198, 220, 220, 220, 13538, 1600, 198, 8, 198 ]
2.610039
777
someList = ['470 градусов по фаренгейту', 'Сталкер', 'Наруто', 'Форсаж', 'Оно', 'Оно2', 'Смешарики', 'Лунтик'] print(someList) someList.append('frdfvty') del someList[8] print(someList)
[ 11246, 8053, 796, 37250, 27790, 12466, 111, 21169, 16142, 43666, 35072, 21727, 25443, 110, 12466, 123, 15166, 220, 141, 226, 16142, 21169, 16843, 22177, 140, 111, 16843, 140, 117, 20375, 35072, 3256, 705, 140, 94, 20375, 16142, 30143, 31583, 16843, 21169, 3256, 705, 140, 251, 16142, 21169, 35072, 20375, 15166, 3256, 705, 140, 97, 15166, 21169, 21727, 16142, 140, 114, 3256, 705, 140, 252, 22177, 15166, 3256, 705, 140, 252, 22177, 15166, 17, 3256, 705, 140, 94, 43108, 16843, 141, 230, 16142, 21169, 18849, 31583, 18849, 3256, 705, 140, 249, 35072, 22177, 20375, 18849, 31583, 20520, 198, 4798, 7, 11246, 8053, 8, 198, 11246, 8053, 13, 33295, 10786, 69, 4372, 69, 85, 774, 11537, 198, 12381, 617, 8053, 58, 23, 60, 198, 4798, 7, 11246, 8053, 8, 198 ]
1.453125
128
import asyncio from aiogoogle import Aiogoogle, GoogleAPI from aiogoogle.auth.creds import ClientCreds, UserCreds import base64 import bs4 import json import scraper.util import scraper.flags AUTHOR = "Erratic Errata"
[ 11748, 30351, 952, 198, 6738, 257, 72, 24076, 2467, 1330, 38230, 24076, 2467, 11, 3012, 17614, 198, 6738, 257, 72, 24076, 2467, 13, 18439, 13, 66, 445, 82, 1330, 20985, 34, 445, 82, 11, 11787, 34, 445, 82, 198, 11748, 2779, 2414, 198, 11748, 275, 82, 19, 198, 11748, 33918, 198, 198, 11748, 19320, 525, 13, 22602, 198, 11748, 19320, 525, 13, 33152, 198, 198, 32, 24318, 1581, 796, 366, 9139, 81, 1512, 41512, 1045, 1, 198 ]
2.857143
77
# Copyright 2021-2022 VMware, Inc. # SPDX-License-Identifier: BSD-2-Clause
[ 2, 15069, 33448, 12, 1238, 1828, 37754, 11, 3457, 13, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 17, 12, 2601, 682, 198 ]
2.678571
28
"""Storage engine sanity tests""" from pymongo import MongoClient import copy import unittest import time from . import storage ITEM_VISIBLE = {"key" : "valueA", storage.VISIBLE_KEY : True} ITEM_HIDDEN = {"key" : "valueB"} def is_same_dictionary(a, b): """Shallow dictionary comparison""" keysA = set(a.keys()) keysB = set(b.keys()) sharedKeys = keysA & keysB if len(keysA) != len(keysB) or len(sharedKeys) != len(keysB): return False for k, v in a.items(): if b[k] != v: return False return True class StorageTest(unittest.TestCase): """Tests the storage engine implementation for sanity.""" def list(self): """Wraps storage listing returning list.""" return list(self.storage.list()) MONGO_TEST_COLLECTION = "storage_test" # Override test loading to skip test from storage test base class # without skipping them in the subclasses.
[ 37811, 31425, 3113, 34182, 5254, 37811, 198, 198, 6738, 279, 4948, 25162, 1330, 42591, 11792, 198, 11748, 4866, 198, 11748, 555, 715, 395, 198, 11748, 640, 198, 198, 6738, 764, 1330, 6143, 198, 198, 2043, 3620, 62, 29817, 34563, 796, 19779, 2539, 1, 1058, 366, 8367, 32, 1600, 6143, 13, 29817, 34563, 62, 20373, 1058, 6407, 92, 198, 2043, 3620, 62, 39, 2389, 41819, 220, 796, 19779, 2539, 1, 1058, 366, 8367, 33, 20662, 198, 198, 4299, 318, 62, 31642, 62, 67, 14188, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 37227, 2484, 12154, 22155, 7208, 37811, 198, 220, 220, 220, 8251, 32, 796, 900, 7, 64, 13, 13083, 28955, 198, 220, 220, 220, 8251, 33, 796, 900, 7, 65, 13, 13083, 28955, 198, 220, 220, 220, 4888, 40729, 796, 8251, 32, 1222, 8251, 33, 198, 220, 220, 220, 611, 18896, 7, 13083, 32, 8, 14512, 18896, 7, 13083, 33, 8, 393, 18896, 7, 28710, 40729, 8, 14512, 18896, 7, 13083, 33, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 329, 479, 11, 410, 287, 257, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 58, 74, 60, 14512, 410, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 6407, 628, 628, 198, 198, 4871, 20514, 14402, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 6143, 3113, 7822, 329, 34182, 526, 15931, 628, 220, 220, 220, 825, 1351, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36918, 862, 6143, 13487, 8024, 1351, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 944, 13, 35350, 13, 4868, 28955, 628, 198, 198, 27857, 11230, 62, 51, 6465, 62, 25154, 16779, 2849, 796, 366, 35350, 62, 9288, 1, 628, 198, 2, 3827, 13154, 1332, 11046, 284, 14267, 1332, 422, 6143, 1332, 2779, 1398, 198, 2, 1231, 31017, 606, 287, 262, 850, 37724, 13, 628 ]
2.738235
340
import torch import copy from torch import nn from torch.nn import functional as F from torch.nn.modules.container import ModuleList class NeighborAttention(nn.Module): """ A graph-based attention replacement. """ class NeighborEncoderLayer(nn.Module): """ Copy-paste of torch.nn.TransformerEncoderLayer but uses 'NeighborAttention' instead of the regural torch.nn.MultiheadAttention. """ class SimpleNeighborEncoderLayer(nn.Module): """ Copy-paste of torch.nn.TransformerEncoderLayer but uses 'NeighborAttention' instead of the regural torch.nn.MultiheadAttention. """ class GCN(nn.Module): """ NeighborEncoder is a stack of NeighborEncoderLayers. """
[ 11748, 28034, 198, 11748, 4866, 198, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 6738, 28034, 13, 20471, 13, 18170, 13, 34924, 1330, 19937, 8053, 628, 198, 4871, 28708, 8086, 1463, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4823, 12, 3106, 3241, 9014, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 28708, 27195, 12342, 49925, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17393, 12, 34274, 286, 28034, 13, 20471, 13, 8291, 16354, 27195, 12342, 49925, 475, 198, 220, 220, 220, 3544, 705, 46445, 2865, 8086, 1463, 6, 2427, 286, 262, 842, 1523, 198, 220, 220, 220, 28034, 13, 20471, 13, 29800, 2256, 8086, 1463, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 17427, 46445, 2865, 27195, 12342, 49925, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17393, 12, 34274, 286, 28034, 13, 20471, 13, 8291, 16354, 27195, 12342, 49925, 475, 198, 220, 220, 220, 3544, 705, 46445, 2865, 8086, 1463, 6, 2427, 286, 262, 842, 1523, 198, 220, 220, 220, 28034, 13, 20471, 13, 29800, 2256, 8086, 1463, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 20145, 45, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28708, 27195, 12342, 318, 257, 8931, 286, 28708, 27195, 12342, 43, 6962, 13, 198, 220, 220, 220, 37227, 198 ]
2.987654
243
username="postgres" password="dr@g0ngThcetaG"
[ 29460, 2625, 7353, 34239, 1, 198, 28712, 2625, 7109, 31, 70, 15, 782, 817, 66, 17167, 38, 1 ]
2.5
18
# Testoob, Python Testing Out Of (The) Box # Copyright (C) 2005-2006 The Testoob Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "getting information about tests" def create_test_info(arg): """ Factory method for creating TestInfo instances. """ if isinstance(arg, TestInfo): return arg return TestInfo(arg) class TestInfo: """ An interface for getting information about tests. Reporters receive instances of this class. """ # should be usable as dictionary keys, so define __hash__ and __cmp__ from testoob.utils import add_fields_pickling add_fields_pickling(TestInfo)
[ 2, 6208, 78, 672, 11, 11361, 23983, 3806, 3226, 357, 464, 8, 8315, 198, 2, 15069, 357, 34, 8, 5075, 12, 13330, 383, 6208, 78, 672, 4816, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 1, 37210, 1321, 546, 5254, 1, 198, 198, 4299, 2251, 62, 9288, 62, 10951, 7, 853, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19239, 2446, 329, 4441, 6208, 12360, 10245, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 853, 11, 6208, 12360, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1822, 628, 220, 220, 220, 1441, 6208, 12360, 7, 853, 8, 198, 198, 4871, 6208, 12360, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 7071, 329, 1972, 1321, 546, 5254, 13, 198, 220, 220, 220, 1432, 3816, 3328, 10245, 286, 428, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 815, 307, 24284, 355, 22155, 8251, 11, 523, 8160, 11593, 17831, 834, 290, 11593, 48991, 834, 198, 198, 6738, 1332, 78, 672, 13, 26791, 1330, 751, 62, 25747, 62, 27729, 1359, 198, 2860, 62, 25747, 62, 27729, 1359, 7, 14402, 12360, 8, 198 ]
3.407855
331
import urllib import os from subprocess import Popen directory = 'C:\\Temp\\cygwindownload' if not os.path.isdir(directory): os.makedirs(directory) urllib.urlretrieve("https://cygwin.com/setup-x86.exe", directory + '\\setup.exe') p = Popen("cygwin-install.bat") stdout, stderr = p.communicate()
[ 11748, 2956, 297, 571, 201, 198, 11748, 28686, 201, 198, 201, 198, 6738, 850, 14681, 1330, 8099, 268, 201, 198, 201, 198, 201, 198, 34945, 796, 705, 34, 25, 6852, 30782, 6852, 948, 70, 7972, 593, 2220, 6, 201, 198, 361, 407, 28686, 13, 6978, 13, 9409, 343, 7, 34945, 2599, 201, 198, 220, 220, 28686, 13, 76, 4335, 17062, 7, 34945, 8, 201, 198, 333, 297, 571, 13, 6371, 1186, 30227, 7203, 5450, 1378, 948, 70, 5404, 13, 785, 14, 40406, 12, 87, 4521, 13, 13499, 1600, 8619, 1343, 705, 6852, 40406, 13, 13499, 11537, 201, 198, 201, 198, 79, 796, 8099, 268, 7203, 948, 70, 5404, 12, 17350, 13, 8664, 4943, 201, 198, 19282, 448, 11, 336, 1082, 81, 796, 279, 13, 10709, 5344, 3419, 201, 198 ]
2.44186
129
# -*- coding: utf-8 -*- import datetime, json, logging, os, pprint from availability_app import settings_app from availability_app.lib import view_info_helper from availability_app.lib.concurrency import AsyncHelper # temporary demo helper from availability_app.lib.ezb_v1_handler import EzbV1Helper from availability_app.lib.bib_items_v2 import BibItemsInfo from availability_app.lib.bib_items_async_v2 import BibItemsInfoAsync # not yet in production from availability_app.lib.stats_v1_handler import StatsValidator, StatsBuilder from django.conf import settings as project_settings from django.contrib.auth import logout from django.core.urlresolvers import reverse from django.http import HttpResponse, HttpResponseNotFound, HttpResponseBadRequest, HttpResponseRedirect from django.shortcuts import get_object_or_404, render log = logging.getLogger( __name__ ) slog = logging.getLogger( 'stats_logger' ) ezb1_helper = EzbV1Helper() stats_builder = StatsBuilder() stats_validator = StatsValidator() bib_items = BibItemsInfo() # =========================== # demo handlers # =========================== def concurrency_test( request ): """ Tests concurrency, via trio, with django. """ if project_settings.DEBUG == False: # only active on dev-server return HttpResponseNotFound( '<div>404 / Not Found</div>' ) async_hlpr = AsyncHelper() url_dct = { 'shortest': 'https://httpbin.org/delay/.6', 'shorter': 'https://httpbin.org/delay/.8', 'standard': 'https://httpbin.org/delay/1', 'longer': 'https://httpbin.org/delay/1.2', 'longest': 'https://httpbin.org/delay/1.4' } if request.GET.get( 'outlier', '' ) == 'yes': url_dct['outlier'] = 'https://httpbin.org/delay/10' async_hlpr.process_urls( url_dct ) response_dct = { 'results:': async_hlpr.results_dct, 'total_time_taken': async_hlpr.total_time_taken } output = json.dumps( response_dct, sort_keys=True, indent=2 ) return HttpResponse( output, content_type='application/json; charset=utf-8' ) def v2_bib_items_async( request, bib_value ): """ Not currently used; non-async version in production is used by easyrequest_hay. """ # if project_settings.DEBUG == False: # only active on dev-server # return HttpResponseNotFound( '<div>404 / Not Found</div>' ) bib_items_async = bitems_async = BibItemsInfoAsync() log.debug( f'starting... request.__dict__, ```{request.__dict__}```' ) start_stamp = datetime.datetime.now() query_dct = bitems_async.build_query_dct( request, start_stamp ) raw_data_dct = bitems_async.manage_data_calls( bib_value ) host = request.META.get( 'HTTP_HOST', '127.0.0.1' ) data_dct = bitems_async.prep_data( raw_data_dct, host ) response_dct = bitems_async.build_response_dct( data_dct, start_stamp ) jsn = json.dumps( { 'query': query_dct, 'response': response_dct }, sort_keys=True, indent=2 ) return HttpResponse( jsn, content_type='application/javascript; charset=utf-8' ) # =========================== # primary app handlers # =========================== def ezb_v1( request, id_type, id_value ): """ Handles existing easyborrow-api call. """ params = request.GET log.debug( 'starting; id_type, `%s`; id_value, `%s`' % (id_type, id_value) ) validity_dct = ezb1_helper.validate( id_type, id_value ) if validity_dct['validity'] is not True: data_dct = { 'query': ezb1_helper.build_query_dct( request, datetime.datetime.now() ), u'response': {u'error': validity_dct['error']} } jsn = json.dumps( data_dct, sort_keys=True, indent=2 ) return HttpResponseBadRequest( jsn, content_type=u'application/javascript; charset=utf-8' ) else: data_dct = ezb1_helper.build_data_dct( id_type, validity_dct['value'], request.GET.get('show_marc', ''), request ) jsn = json.dumps( data_dct, sort_keys=True, indent=2 ) return HttpResponse( jsn, content_type='application/javascript; charset=utf-8' ) def v2_bib_items( request, bib_value ): """ Handles easy_request_hay call. """ # log.debug( f'starting... request.__dict__, ```{pprint.pformat(request.__dict__)}```' ) log.debug( f'starting... request.__dict__, ```{request.__dict__}```' ) start_stamp = datetime.datetime.now() query_dct = bib_items.build_query_dct( request, start_stamp ) host = request.META.get( 'HTTP_HOST', '127.0.0.1' ) data_dct = bib_items.prep_data( bib_value, host ) ## TODO- refactor this quick-handling of a bad sierra response response_dct = {} if 'httpStatus' in data_dct.keys(): if data_dct['httpStatus'] != 200: response_dct = { 'problem_sierra_response': data_dct } jsn = json.dumps( { 'query': query_dct, 'response': response_dct }, sort_keys=True, indent=2 ) return HttpResponseNotFound( jsn, content_type='application/javascript; charset=utf-8' ) else: response_dct = bib_items.build_response_dct( data_dct, start_stamp ) jsn = json.dumps( { 'query': query_dct, 'response': response_dct }, sort_keys=True, indent=2 ) return HttpResponse( jsn, content_type='application/javascript; charset=utf-8' ) def ezb_v1_stats( request ): """ Returns basic stats on v1-api usage. """ log.debug( 'starting ezb_v1_stats()' ) slog.info( 'new entry!' ) ## grab & validate params rq_now = datetime.datetime.now() if stats_validator.check_params( request.GET, request.scheme, request.META['HTTP_HOST'], rq_now ) == False: return HttpResponseBadRequest( stats_validator.output, content_type=u'application/javascript; charset=utf-8' ) ## run-query results = stats_builder.run_query( request.GET ) ## build response stats_builder.build_response( results, request.GET, request.scheme, request.META['HTTP_HOST'], rq_now ) return HttpResponse( stats_builder.output, content_type=u'application/javascript; charset=utf-8' ) def locations_and_statuses( request ): """ Shows values being used. """ rq_now = datetime.datetime.now() data_dct = { 'query': ezb1_helper.build_query_dct( request, rq_now ), 'response': { 'ezb_available_locations': json.loads( os.environ['AVL_API__EZB_AVAILABLE_LOCATIONS'] ), 'ezb_available_statuses': json.loads( os.environ['AVL_API__EZB_AVAILABLE_STATUSES'] ), 'time_taken': str( datetime.datetime.now() - rq_now ) } } output = json.dumps( data_dct, sort_keys=True, indent=2 ) return HttpResponse( output, content_type='application/json; charset=utf-8' ) # =========================== # for development convenience # =========================== def version( request ): """ Returns basic data including branch & commit. """ # log.debug( 'request.__dict__, ```%s```' % pprint.pformat(request.__dict__) ) rq_now = datetime.datetime.now() commit = view_info_helper.get_commit() branch = view_info_helper.get_branch() info_txt = commit.replace( 'commit', branch ) resp_now = datetime.datetime.now() taken = resp_now - rq_now context_dct = view_info_helper.make_context( request, rq_now, info_txt, taken ) output = json.dumps( context_dct, sort_keys=True, indent=2 ) return HttpResponse( output, content_type='application/json; charset=utf-8' ) def error_check( request ): """ For checking that admins receive error-emails. """ if project_settings.DEBUG == True: 1/0 else: return HttpResponseNotFound( '<div>404 / Not Found</div>' )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 4818, 8079, 11, 33918, 11, 18931, 11, 28686, 11, 279, 4798, 198, 198, 6738, 11500, 62, 1324, 1330, 6460, 62, 1324, 198, 6738, 11500, 62, 1324, 13, 8019, 1330, 1570, 62, 10951, 62, 2978, 525, 198, 6738, 11500, 62, 1324, 13, 8019, 13, 1102, 34415, 1330, 1081, 13361, 47429, 220, 1303, 8584, 13605, 31904, 198, 6738, 11500, 62, 1324, 13, 8019, 13, 8471, 65, 62, 85, 16, 62, 30281, 1330, 412, 14969, 53, 16, 47429, 198, 6738, 11500, 62, 1324, 13, 8019, 13, 65, 571, 62, 23814, 62, 85, 17, 1330, 43278, 23022, 12360, 198, 6738, 11500, 62, 1324, 13, 8019, 13, 65, 571, 62, 23814, 62, 292, 13361, 62, 85, 17, 1330, 43278, 23022, 12360, 42367, 220, 1303, 407, 1865, 287, 3227, 198, 6738, 11500, 62, 1324, 13, 8019, 13, 34242, 62, 85, 16, 62, 30281, 1330, 20595, 47139, 1352, 11, 20595, 32875, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 355, 1628, 62, 33692, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 2604, 448, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 11, 367, 29281, 31077, 3673, 21077, 11, 367, 29281, 31077, 22069, 18453, 11, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 11, 8543, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 11593, 3672, 834, 1267, 198, 82, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 705, 34242, 62, 6404, 1362, 6, 1267, 198, 8471, 65, 16, 62, 2978, 525, 796, 412, 14969, 53, 16, 47429, 3419, 198, 34242, 62, 38272, 796, 20595, 32875, 3419, 198, 34242, 62, 12102, 1352, 796, 20595, 47139, 1352, 3419, 198, 65, 571, 62, 23814, 796, 43278, 23022, 12360, 3419, 628, 198, 2, 36658, 2559, 855, 198, 2, 13605, 32847, 198, 2, 36658, 2559, 855, 628, 198, 4299, 1673, 13382, 62, 9288, 7, 2581, 15179, 198, 220, 220, 220, 37227, 30307, 1673, 13382, 11, 2884, 19886, 11, 351, 42625, 14208, 13, 37227, 198, 220, 220, 220, 611, 1628, 62, 33692, 13, 30531, 6624, 10352, 25, 220, 1303, 691, 4075, 319, 1614, 12, 15388, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 3673, 21077, 7, 705, 27, 7146, 29, 26429, 1220, 1892, 4062, 3556, 7146, 29, 6, 1267, 198, 220, 220, 220, 30351, 62, 18519, 1050, 796, 1081, 13361, 47429, 3419, 198, 220, 220, 220, 19016, 62, 67, 310, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19509, 395, 10354, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 11757, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1477, 4337, 10354, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 11757, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20307, 10354, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 14, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 263, 10354, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 14, 16, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 395, 10354, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 14, 16, 13, 19, 6, 1782, 198, 220, 220, 220, 611, 2581, 13, 18851, 13, 1136, 7, 705, 448, 2505, 3256, 10148, 1267, 6624, 705, 8505, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 67, 310, 17816, 448, 2505, 20520, 796, 705, 5450, 1378, 4023, 8800, 13, 2398, 14, 40850, 14, 940, 6, 198, 220, 220, 220, 30351, 62, 18519, 1050, 13, 14681, 62, 6371, 82, 7, 19016, 62, 67, 310, 1267, 198, 220, 220, 220, 2882, 62, 67, 310, 796, 1391, 705, 43420, 25, 10354, 30351, 62, 18519, 1050, 13, 43420, 62, 67, 310, 11, 705, 23350, 62, 2435, 62, 83, 1685, 10354, 30351, 62, 18519, 1050, 13, 23350, 62, 2435, 62, 83, 1685, 1782, 198, 220, 220, 220, 5072, 796, 33918, 13, 67, 8142, 7, 2882, 62, 67, 310, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 1441, 367, 29281, 31077, 7, 5072, 11, 2695, 62, 4906, 11639, 31438, 14, 17752, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 4299, 410, 17, 62, 65, 571, 62, 23814, 62, 292, 13361, 7, 2581, 11, 275, 571, 62, 8367, 15179, 198, 220, 220, 220, 37227, 1892, 3058, 973, 26, 1729, 12, 292, 13361, 2196, 287, 3227, 318, 973, 416, 2562, 25927, 62, 71, 323, 13, 37227, 198, 220, 220, 220, 1303, 611, 1628, 62, 33692, 13, 30531, 6624, 10352, 25, 220, 1303, 691, 4075, 319, 1614, 12, 15388, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 367, 29281, 31077, 3673, 21077, 7, 705, 27, 7146, 29, 26429, 1220, 1892, 4062, 3556, 7146, 29, 6, 1267, 198, 220, 220, 220, 275, 571, 62, 23814, 62, 292, 13361, 796, 1643, 5232, 62, 292, 13361, 796, 43278, 23022, 12360, 42367, 3419, 198, 220, 220, 220, 2604, 13, 24442, 7, 277, 338, 83, 433, 278, 986, 2581, 13, 834, 11600, 834, 11, 7559, 63, 90, 25927, 13, 834, 11600, 834, 92, 15506, 63, 6, 1267, 198, 220, 220, 220, 923, 62, 301, 696, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 12405, 62, 67, 310, 796, 1643, 5232, 62, 292, 13361, 13, 11249, 62, 22766, 62, 67, 310, 7, 2581, 11, 923, 62, 301, 696, 1267, 198, 220, 220, 220, 8246, 62, 7890, 62, 67, 310, 796, 1643, 5232, 62, 292, 13361, 13, 805, 496, 62, 7890, 62, 66, 5691, 7, 275, 571, 62, 8367, 1267, 198, 220, 220, 220, 2583, 796, 2581, 13, 44, 20892, 13, 1136, 7, 705, 40717, 62, 39, 10892, 3256, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 1267, 198, 220, 220, 220, 1366, 62, 67, 310, 796, 1643, 5232, 62, 292, 13361, 13, 46012, 62, 7890, 7, 8246, 62, 7890, 62, 67, 310, 11, 2583, 1267, 198, 220, 220, 220, 2882, 62, 67, 310, 796, 1643, 5232, 62, 292, 13361, 13, 11249, 62, 26209, 62, 67, 310, 7, 1366, 62, 67, 310, 11, 923, 62, 301, 696, 1267, 198, 220, 220, 220, 474, 16184, 796, 33918, 13, 67, 8142, 7, 1391, 705, 22766, 10354, 12405, 62, 67, 310, 11, 705, 26209, 10354, 2882, 62, 67, 310, 8964, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 1441, 367, 29281, 31077, 7, 474, 16184, 11, 2695, 62, 4906, 11639, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 2, 36658, 2559, 855, 198, 2, 4165, 598, 32847, 198, 2, 36658, 2559, 855, 628, 198, 4299, 304, 14969, 62, 85, 16, 7, 2581, 11, 4686, 62, 4906, 11, 4686, 62, 8367, 15179, 198, 220, 220, 220, 37227, 7157, 829, 4683, 2562, 2865, 808, 12, 15042, 869, 13, 37227, 198, 220, 220, 220, 42287, 796, 2581, 13, 18851, 198, 220, 220, 220, 2604, 13, 24442, 7, 705, 38690, 26, 4686, 62, 4906, 11, 4600, 4, 82, 63, 26, 4686, 62, 8367, 11, 4600, 4, 82, 63, 6, 4064, 357, 312, 62, 4906, 11, 4686, 62, 8367, 8, 1267, 198, 220, 220, 220, 19648, 62, 67, 310, 796, 304, 14969, 16, 62, 2978, 525, 13, 12102, 378, 7, 4686, 62, 4906, 11, 4686, 62, 8367, 1267, 198, 220, 220, 220, 611, 19648, 62, 67, 310, 17816, 12102, 414, 20520, 318, 407, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 67, 310, 796, 1391, 705, 22766, 10354, 304, 14969, 16, 62, 2978, 525, 13, 11249, 62, 22766, 62, 67, 310, 7, 2581, 11, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 10612, 334, 821, 2777, 2591, 10354, 1391, 84, 6, 18224, 10354, 19648, 62, 67, 310, 17816, 18224, 20520, 92, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 796, 33918, 13, 67, 8142, 7, 1366, 62, 67, 310, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 22069, 18453, 7, 474, 16184, 11, 2695, 62, 4906, 28, 84, 6, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 67, 310, 796, 304, 14969, 16, 62, 2978, 525, 13, 11249, 62, 7890, 62, 67, 310, 7, 4686, 62, 4906, 11, 19648, 62, 67, 310, 17816, 8367, 6, 4357, 2581, 13, 18851, 13, 1136, 10786, 12860, 62, 3876, 66, 3256, 10148, 828, 2581, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 796, 33918, 13, 67, 8142, 7, 1366, 62, 67, 310, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7, 474, 16184, 11, 2695, 62, 4906, 11639, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 4299, 410, 17, 62, 65, 571, 62, 23814, 7, 2581, 11, 275, 571, 62, 8367, 15179, 198, 220, 220, 220, 37227, 7157, 829, 2562, 62, 25927, 62, 71, 323, 869, 13, 37227, 198, 220, 220, 220, 1303, 2604, 13, 24442, 7, 277, 338, 83, 433, 278, 986, 2581, 13, 834, 11600, 834, 11, 7559, 63, 90, 381, 22272, 13, 79, 18982, 7, 25927, 13, 834, 11600, 834, 38165, 15506, 63, 6, 1267, 198, 220, 220, 220, 2604, 13, 24442, 7, 277, 338, 83, 433, 278, 986, 2581, 13, 834, 11600, 834, 11, 7559, 63, 90, 25927, 13, 834, 11600, 834, 92, 15506, 63, 6, 1267, 198, 220, 220, 220, 923, 62, 301, 696, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 12405, 62, 67, 310, 796, 275, 571, 62, 23814, 13, 11249, 62, 22766, 62, 67, 310, 7, 2581, 11, 923, 62, 301, 696, 1267, 198, 220, 220, 220, 2583, 796, 2581, 13, 44, 20892, 13, 1136, 7, 705, 40717, 62, 39, 10892, 3256, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 1267, 198, 220, 220, 220, 1366, 62, 67, 310, 796, 275, 571, 62, 23814, 13, 46012, 62, 7890, 7, 275, 571, 62, 8367, 11, 2583, 1267, 198, 220, 220, 220, 22492, 16926, 46, 12, 1006, 11218, 428, 2068, 12, 4993, 1359, 286, 257, 2089, 264, 16367, 2882, 198, 220, 220, 220, 2882, 62, 67, 310, 796, 23884, 198, 220, 220, 220, 611, 705, 4023, 19580, 6, 287, 1366, 62, 67, 310, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 67, 310, 17816, 4023, 19580, 20520, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 67, 310, 796, 1391, 705, 45573, 62, 82, 16367, 62, 26209, 10354, 1366, 62, 67, 310, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 796, 33918, 13, 67, 8142, 7, 1391, 705, 22766, 10354, 12405, 62, 67, 310, 11, 705, 26209, 10354, 2882, 62, 67, 310, 8964, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 3673, 21077, 7, 474, 16184, 11, 2695, 62, 4906, 11639, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 67, 310, 796, 275, 571, 62, 23814, 13, 11249, 62, 26209, 62, 67, 310, 7, 1366, 62, 67, 310, 11, 923, 62, 301, 696, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 796, 33918, 13, 67, 8142, 7, 1391, 705, 22766, 10354, 12405, 62, 67, 310, 11, 705, 26209, 10354, 2882, 62, 67, 310, 8964, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 7, 474, 16184, 11, 2695, 62, 4906, 11639, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 4299, 304, 14969, 62, 85, 16, 62, 34242, 7, 2581, 15179, 198, 220, 220, 220, 37227, 16409, 4096, 9756, 319, 410, 16, 12, 15042, 8748, 13, 37227, 198, 220, 220, 220, 2604, 13, 24442, 7, 705, 38690, 304, 14969, 62, 85, 16, 62, 34242, 3419, 6, 1267, 198, 220, 220, 220, 25801, 13, 10951, 7, 705, 3605, 5726, 13679, 1267, 198, 220, 220, 220, 22492, 5552, 1222, 26571, 42287, 198, 220, 220, 220, 374, 80, 62, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 611, 9756, 62, 12102, 1352, 13, 9122, 62, 37266, 7, 2581, 13, 18851, 11, 2581, 13, 15952, 1326, 11, 2581, 13, 44, 20892, 17816, 40717, 62, 39, 10892, 6, 4357, 374, 80, 62, 2197, 1267, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 22069, 18453, 7, 9756, 62, 12102, 1352, 13, 22915, 11, 2695, 62, 4906, 28, 84, 6, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 198, 220, 220, 220, 22492, 1057, 12, 22766, 198, 220, 220, 220, 2482, 796, 9756, 62, 38272, 13, 5143, 62, 22766, 7, 2581, 13, 18851, 1267, 198, 220, 220, 220, 22492, 1382, 2882, 198, 220, 220, 220, 9756, 62, 38272, 13, 11249, 62, 26209, 7, 2482, 11, 2581, 13, 18851, 11, 2581, 13, 15952, 1326, 11, 2581, 13, 44, 20892, 17816, 40717, 62, 39, 10892, 6, 4357, 374, 80, 62, 2197, 1267, 198, 220, 220, 220, 1441, 367, 29281, 31077, 7, 9756, 62, 38272, 13, 22915, 11, 2695, 62, 4906, 28, 84, 6, 31438, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 4299, 7064, 62, 392, 62, 14269, 2664, 7, 2581, 15179, 198, 220, 220, 220, 37227, 25156, 3815, 852, 973, 13, 37227, 198, 220, 220, 220, 374, 80, 62, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 1366, 62, 67, 310, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 304, 14969, 16, 62, 2978, 525, 13, 11249, 62, 22766, 62, 67, 310, 7, 2581, 11, 374, 80, 62, 2197, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26209, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8471, 65, 62, 15182, 62, 17946, 602, 10354, 33918, 13, 46030, 7, 28686, 13, 268, 2268, 17816, 10116, 43, 62, 17614, 834, 36, 57, 33, 62, 10116, 32, 4146, 17534, 62, 29701, 18421, 20520, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8471, 65, 62, 15182, 62, 14269, 2664, 10354, 33918, 13, 46030, 7, 28686, 13, 268, 2268, 17816, 10116, 43, 62, 17614, 834, 36, 57, 33, 62, 10116, 32, 4146, 17534, 62, 35744, 2937, 1546, 20520, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 62, 83, 1685, 10354, 965, 7, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 532, 374, 80, 62, 2197, 1267, 1782, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 5072, 796, 33918, 13, 67, 8142, 7, 1366, 62, 67, 310, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 1441, 367, 29281, 31077, 7, 5072, 11, 2695, 62, 4906, 11639, 31438, 14, 17752, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 2, 36658, 2559, 855, 198, 2, 329, 2478, 15607, 198, 2, 36658, 2559, 855, 628, 198, 4299, 2196, 7, 2581, 15179, 198, 220, 220, 220, 37227, 16409, 4096, 1366, 1390, 8478, 1222, 4589, 13, 37227, 198, 220, 220, 220, 1303, 2604, 13, 24442, 7, 705, 25927, 13, 834, 11600, 834, 11, 7559, 63, 4, 82, 15506, 63, 6, 4064, 279, 4798, 13, 79, 18982, 7, 25927, 13, 834, 11600, 834, 8, 1267, 198, 220, 220, 220, 374, 80, 62, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 4589, 796, 1570, 62, 10951, 62, 2978, 525, 13, 1136, 62, 41509, 3419, 198, 220, 220, 220, 8478, 796, 1570, 62, 10951, 62, 2978, 525, 13, 1136, 62, 1671, 3702, 3419, 198, 220, 220, 220, 7508, 62, 14116, 796, 4589, 13, 33491, 7, 705, 41509, 3256, 8478, 1267, 198, 220, 220, 220, 1217, 62, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 2077, 796, 1217, 62, 2197, 532, 374, 80, 62, 2197, 198, 220, 220, 220, 4732, 62, 67, 310, 796, 1570, 62, 10951, 62, 2978, 525, 13, 15883, 62, 22866, 7, 2581, 11, 374, 80, 62, 2197, 11, 7508, 62, 14116, 11, 2077, 1267, 198, 220, 220, 220, 5072, 796, 33918, 13, 67, 8142, 7, 4732, 62, 67, 310, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 17, 1267, 198, 220, 220, 220, 1441, 367, 29281, 31077, 7, 5072, 11, 2695, 62, 4906, 11639, 31438, 14, 17752, 26, 34534, 316, 28, 40477, 12, 23, 6, 1267, 628, 198, 4299, 4049, 62, 9122, 7, 2581, 15179, 198, 220, 220, 220, 37227, 1114, 10627, 326, 44563, 3328, 4049, 12, 368, 1768, 13, 37227, 198, 220, 220, 220, 611, 1628, 62, 33692, 13, 30531, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 14, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 367, 29281, 31077, 3673, 21077, 7, 705, 27, 7146, 29, 26429, 1220, 1892, 4062, 3556, 7146, 29, 6, 1267, 198 ]
2.589752
2,908
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions import time wd = webdriver.Firefox() wd.get("https://www.google.com/search?q=python") # wd.find_element_by_css_selector("a").click() # This doesn't work, same error # The css selector is needed, because not all a tags are clickable WebDriverWait(wd, 20).until( expected_conditions.element_to_be_clickable((By.CSS_SELECTOR, 'div[id=search] a[href^="http"]')) ).click() # WebDriverWait(wd, 20).until( # expected_conditions.element_to_be_clickable((By.XPATH, "//div[@id='search']//a[contains(@href,'http')]")) # ).click() time.sleep(5) wd.close()
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 198, 11748, 640, 198, 198, 16993, 796, 3992, 26230, 13, 13543, 12792, 3419, 198, 198, 16993, 13, 1136, 7203, 5450, 1378, 2503, 13, 13297, 13, 785, 14, 12947, 30, 80, 28, 29412, 4943, 198, 198, 2, 266, 67, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 7203, 64, 11074, 12976, 3419, 220, 1303, 770, 1595, 470, 670, 11, 976, 4049, 198, 198, 2, 383, 269, 824, 31870, 318, 2622, 11, 780, 407, 477, 257, 15940, 389, 3904, 540, 198, 13908, 32103, 21321, 7, 16993, 11, 1160, 737, 28446, 7, 198, 220, 220, 220, 2938, 62, 17561, 1756, 13, 30854, 62, 1462, 62, 1350, 62, 12976, 540, 19510, 3886, 13, 49155, 62, 46506, 1581, 11, 705, 7146, 58, 312, 28, 12947, 60, 257, 58, 33257, 61, 2625, 4023, 8973, 6, 4008, 198, 737, 12976, 3419, 198, 198, 2, 5313, 32103, 21321, 7, 16993, 11, 1160, 737, 28446, 7, 198, 2, 220, 220, 220, 220, 2938, 62, 17561, 1756, 13, 30854, 62, 1462, 62, 1350, 62, 12976, 540, 19510, 3886, 13, 27481, 12599, 11, 366, 1003, 7146, 58, 31, 312, 11639, 12947, 20520, 1003, 64, 58, 3642, 1299, 7, 31, 33257, 4032, 4023, 11537, 30866, 4008, 198, 2, 6739, 12976, 3419, 198, 198, 2435, 13, 42832, 7, 20, 8, 198, 198, 16993, 13, 19836, 3419, 198 ]
2.788104
269
from functools import wraps from flask import g, abort
[ 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 42903, 1330, 308, 11, 15614, 220 ]
3.928571
14
#Elsa by Frostmeister import discord import math import time import datetime import googlesearch as gs import urbandictionary as ud import random import asyncio import os from discord.ext import commands bot = commands.Bot(description=" The Snow Queen ❄️" , command_prefix=("e!","E!")) ################ EVENTS ################### @bot.event @bot.event @bot.event @bot.event @bot.event @bot.event @bot.event ############ BOT RUN ################ bot.run(os.getenv("TOKEN"))
[ 2, 49050, 416, 15122, 1326, 1694, 628, 198, 198, 11748, 36446, 198, 11748, 10688, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 11748, 467, 519, 829, 3679, 355, 308, 82, 198, 11748, 2956, 3903, 14188, 355, 334, 67, 198, 11748, 4738, 198, 11748, 30351, 952, 198, 11748, 28686, 198, 6738, 36446, 13, 2302, 1330, 9729, 628, 198, 198, 13645, 796, 9729, 13, 20630, 7, 11213, 2625, 383, 7967, 7542, 43074, 226, 37929, 1, 837, 3141, 62, 40290, 28, 7203, 68, 0, 2430, 36, 2474, 4008, 628, 198, 198, 14468, 220, 220, 22399, 220, 220, 1303, 14468, 2235, 628, 198, 31, 13645, 13, 15596, 628, 198, 220, 220, 220, 628, 628, 198, 31, 13645, 13, 15596, 628, 628, 198, 198, 31, 13645, 13, 15596, 628, 628, 198, 31, 13645, 13, 15596, 628, 198, 31, 13645, 13, 15596, 628, 628, 198, 31, 13645, 13, 15596, 628, 628, 628, 198, 198, 31, 13645, 13, 15596, 628, 628, 628, 628, 628, 628, 198, 198, 7804, 4242, 220, 220, 220, 220, 347, 2394, 32494, 220, 220, 220, 1303, 7804, 4242, 21017, 198, 198, 13645, 13, 5143, 7, 418, 13, 1136, 24330, 7203, 10468, 43959, 48774, 628 ]
2.837696
191
# Working in IT, a lot of what we do boils down to using a computer to perform a # certain task. In your job you might create user accounts, configure the network, # install software, backup existing data, or execute a whole range of other # computer based tasks from day to day. Back in my first IT job, I realized that # every day I came into work I typed the same three commands to authenticate # into systems. Those credentials timed out everyday by design, for security # reasons, so I created a script that would automatically run these commands for # me every morning to avoid having to type them myself. Funny enough, the team # that monitors anomalous activity discovered my little invention and contacted # me to remove it, oops. Tasks performed by a computer that need to be done # multiple times with little variation are really well suited for automation, because # when you automate a task you avoid the possibility of human errors, and reduce # the time it takes to do it. Imagine this scenario, your company had a booth at a # recent conference and has gathered a huge list of emails from people interested # in learning more about your products. You want to send these people your # monthly email newsletter, but some of the people on the list are already # subscribed to receive it. So how do you make sure everyone receives your # newsletter, without accidentally sending it to the same person twice? Well, you # could manually check each email address one by one to make sure you only add # new ones to the list, sounds boring and inefficient, right? It could be, and it's also # more error prone, you might accidentally miss new emails, or add emails that # were already there, or it might get so boring you fall asleep at your desk, Even # your automated coffee machine won't help you out there. So what could you do # instead? You could get the computer to do the work for you. You could write a # program that checks for duplicates, and the adds each new email to the list. # Your computer will do exactly as its told no matter how many emails there are in # the list, so it won't get tired or make any mistakes. Even better, once you've # written the program you can use the same code in the future situations, saving # you even more time, pretty cool, right? It gets better, think about when you're # going to send these emails out, if you send them out manually you'll have to send # the same email to everybody, personalizing the emails would be way too much # manual work. If instead you use automation to send them, you could have the # name and company of each person added to the email automatically. The result? # More effective emails, without you spending hours inserting names into the text. # Automating tasks allows you to focus on projects that are a better use of your # time, letting computer do the boring stuff for you. Learning how to program is # the first step to being able to do this, if you want to get computers to do the # work for you, you're in the right place. Earlier in this video I told you about the # first task I ever automated, now I want to tell you about coolest thing I ever # automated. It was a script that changed a bunch of access permissions for a # whole lot of Google Internal Services. The script reversed a large directory tree # with tons of different files, checked the file contents, and then updated the # permissions to the services based on the conditions that I laid out in the script. # Okay, I admit I'm total nerd, but I still think it's really cool. Next up, it's time to # share your ideas. What things would you like to automate using programming? # While these discussion prompts are optional, they're really fun. Seriously, they let # you get to know your fellow learners a bit, and collaborate on ideas and insights. # Make sure you read what others are saying, they may give you ideas that you # haven't even though of. After that, you're ready to take your very first quiz of the # course. Don't worry, it's just for practice.
[ 2, 14594, 287, 7283, 11, 257, 1256, 286, 644, 356, 466, 40169, 866, 284, 1262, 257, 3644, 284, 1620, 257, 198, 2, 1728, 4876, 13, 554, 534, 1693, 345, 1244, 2251, 2836, 5504, 11, 17425, 262, 3127, 11, 198, 2, 2721, 3788, 11, 11559, 4683, 1366, 11, 393, 12260, 257, 2187, 2837, 286, 584, 198, 2, 3644, 1912, 8861, 422, 1110, 284, 1110, 13, 5157, 287, 616, 717, 7283, 1693, 11, 314, 6939, 326, 198, 2, 790, 1110, 314, 1625, 656, 670, 314, 25683, 262, 976, 1115, 9729, 284, 8323, 5344, 198, 2, 656, 3341, 13, 5845, 18031, 28805, 503, 10908, 416, 1486, 11, 329, 2324, 198, 2, 3840, 11, 523, 314, 2727, 257, 4226, 326, 561, 6338, 1057, 777, 9729, 329, 198, 2, 502, 790, 3329, 284, 3368, 1719, 284, 2099, 606, 3589, 13, 40473, 1576, 11, 262, 1074, 198, 2, 326, 19374, 26921, 516, 3842, 5071, 616, 1310, 14250, 290, 11237, 198, 2, 502, 284, 4781, 340, 11, 267, 2840, 13, 309, 6791, 6157, 416, 257, 3644, 326, 761, 284, 307, 1760, 198, 2, 3294, 1661, 351, 1310, 12291, 389, 1107, 880, 16662, 329, 22771, 11, 780, 198, 2, 618, 345, 43511, 257, 4876, 345, 3368, 262, 5885, 286, 1692, 8563, 11, 290, 4646, 198, 2, 262, 640, 340, 2753, 284, 466, 340, 13, 18450, 428, 8883, 11, 534, 1664, 550, 257, 18600, 379, 257, 198, 2, 2274, 4495, 290, 468, 9272, 257, 3236, 1351, 286, 7237, 422, 661, 4609, 198, 2, 287, 4673, 517, 546, 534, 3186, 13, 921, 765, 284, 3758, 777, 661, 534, 198, 2, 9651, 3053, 13129, 11, 475, 617, 286, 262, 661, 319, 262, 1351, 389, 1541, 198, 2, 45794, 284, 3328, 340, 13, 1406, 703, 466, 345, 787, 1654, 2506, 11583, 534, 198, 2, 13129, 11, 1231, 14716, 7216, 340, 284, 262, 976, 1048, 5403, 30, 3894, 11, 345, 198, 2, 714, 14500, 2198, 1123, 3053, 2209, 530, 416, 530, 284, 787, 1654, 345, 691, 751, 198, 2, 649, 3392, 284, 262, 1351, 11, 5238, 14262, 290, 30904, 11, 826, 30, 632, 714, 307, 11, 290, 340, 338, 635, 198, 2, 517, 4049, 17592, 11, 345, 1244, 14716, 2051, 649, 7237, 11, 393, 751, 7237, 326, 198, 2, 547, 1541, 612, 11, 393, 340, 1244, 651, 523, 14262, 345, 2121, 16039, 379, 534, 6915, 11, 3412, 198, 2, 534, 16359, 6891, 4572, 1839, 470, 1037, 345, 503, 612, 13, 1406, 644, 714, 345, 466, 198, 2, 2427, 30, 921, 714, 651, 262, 3644, 284, 466, 262, 670, 329, 345, 13, 921, 714, 3551, 257, 198, 2, 1430, 326, 8794, 329, 14184, 16856, 11, 290, 262, 6673, 1123, 649, 3053, 284, 262, 1351, 13, 198, 2, 3406, 3644, 481, 466, 3446, 355, 663, 1297, 645, 2300, 703, 867, 7237, 612, 389, 287, 198, 2, 262, 1351, 11, 523, 340, 1839, 470, 651, 10032, 393, 787, 597, 10135, 13, 3412, 1365, 11, 1752, 345, 1053, 198, 2, 3194, 262, 1430, 345, 460, 779, 262, 976, 2438, 287, 262, 2003, 7445, 11, 8914, 198, 2, 345, 772, 517, 640, 11, 2495, 3608, 11, 826, 30, 632, 3011, 1365, 11, 892, 546, 618, 345, 821, 198, 2, 1016, 284, 3758, 777, 7237, 503, 11, 611, 345, 3758, 606, 503, 14500, 345, 1183, 423, 284, 3758, 198, 2, 262, 976, 3053, 284, 7288, 11, 2614, 2890, 262, 7237, 561, 307, 835, 1165, 881, 198, 2, 10107, 670, 13, 1002, 2427, 345, 779, 22771, 284, 3758, 606, 11, 345, 714, 423, 262, 198, 2, 1438, 290, 1664, 286, 1123, 1048, 2087, 284, 262, 3053, 6338, 13, 383, 1255, 30, 198, 2, 3125, 4050, 7237, 11, 1231, 345, 4581, 2250, 19319, 3891, 656, 262, 2420, 13, 198, 2, 17406, 803, 8861, 3578, 345, 284, 2962, 319, 4493, 326, 389, 257, 220, 1365, 779, 286, 534, 198, 2, 640, 11, 9616, 3644, 466, 262, 14262, 3404, 329, 345, 13, 18252, 703, 284, 1430, 318, 198, 2, 262, 717, 2239, 284, 852, 1498, 284, 466, 428, 11, 611, 345, 765, 284, 651, 9061, 284, 466, 262, 198, 2, 670, 329, 345, 11, 345, 821, 287, 262, 826, 1295, 13, 20635, 287, 428, 2008, 314, 1297, 345, 546, 262, 198, 2, 717, 4876, 314, 1683, 16359, 11, 783, 314, 765, 284, 1560, 345, 546, 38889, 1517, 314, 1683, 198, 2, 16359, 13, 632, 373, 257, 4226, 326, 3421, 257, 7684, 286, 1895, 21627, 329, 257, 198, 2, 2187, 1256, 286, 3012, 18628, 6168, 13, 383, 4226, 17687, 257, 1588, 8619, 5509, 198, 2, 351, 10860, 286, 1180, 3696, 11, 10667, 262, 2393, 10154, 11, 290, 788, 6153, 262, 198, 2, 21627, 284, 262, 2594, 1912, 319, 262, 3403, 326, 314, 8104, 503, 287, 262, 4226, 13, 198, 2, 16805, 11, 314, 9159, 314, 1101, 2472, 34712, 11, 475, 314, 991, 892, 340, 338, 1107, 3608, 13, 7406, 510, 11, 340, 338, 640, 284, 198, 2, 2648, 534, 4213, 13, 1867, 1243, 561, 345, 588, 284, 43511, 1262, 8300, 30, 198, 2, 2893, 777, 5114, 36454, 389, 11902, 11, 484, 821, 1107, 1257, 13, 27777, 11, 484, 1309, 198, 2, 345, 651, 284, 760, 534, 5891, 46184, 257, 1643, 11, 290, 30081, 319, 4213, 290, 17218, 13, 198, 2, 6889, 1654, 345, 1100, 644, 1854, 389, 2282, 11, 484, 743, 1577, 345, 4213, 326, 345, 198, 2, 4398, 470, 772, 996, 286, 13, 2293, 326, 11, 345, 821, 3492, 284, 1011, 534, 845, 717, 38964, 286, 262, 198, 2, 1781, 13, 2094, 470, 5490, 11, 340, 338, 655, 329, 3357, 13, 628, 198 ]
4.418681
910
""" Analytic integral for vectorized field / potential computation """ __all__ = [ "c_coeffs", "d_distance", "gamma0", "omega", "potential_dipoles", "potential_vertex_dipoles", "triangle_potential_approx", "triangle_potential_dipole_linear", "triangle_potential_uniform", "x_distance", "x_distance2", ] import numpy as np def determinant(a): """Faster determinant for the two last dimensions of 'a'""" det = a[..., 0, 0] * (a[..., 1, 1] * a[..., 2, 2] - a[..., 2, 1] * a[..., 1, 2]) det += a[..., 0, 1] * (a[..., 1, 2] * a[..., 2, 0] - a[..., 2, 2] * a[..., 1, 0]) det += a[..., 0, 2] * (a[..., 1, 0] * a[..., 2, 1] - a[..., 2, 0] * a[..., 1, 1]) return det def norm(vecs): """Faster vector norm for the last dimension of 'vecs'""" return np.sqrt(np.einsum("...i,...i", vecs, vecs)) def cross(r1, r2): """Cross product without overhead for the last dimensions of 'r1' and 'r2'""" result = np.zeros(r1.shape) result[..., 0] = r1[..., 1] * r2[..., 2] - r1[..., 2] * r2[..., 1] result[..., 1] = r1[..., 2] * r2[..., 0] - r1[..., 0] * r2[..., 2] result[..., 2] = r1[..., 0] * r2[..., 1] - r1[..., 1] * r2[..., 0] return result def gamma0(R, reg=1e-13, symmetrize=True): """1/r integrals over the edges of a triangle called gamma_0 (line charge potentials). **NOTE: MAY NOT BE VERY PRECISE FOR POINTS DIRECTLY AT TRIANGLE EDGES.** Parameters ---------- R : ndarray (..., N_triverts, xyz) displacement vectors (r-r') between Neval evaluation points (r) and the 3 vertices of the Ntri triangles/triangle. reg: float, a small value added to the arguments of the logarithm, regularizes the values very close to the line segments symmetrize: recalculates the result for by mirroring the evaluation points with respect the line segment mid point to get rid off the badly behaving points on the negative extension of the line segment Returns ------- res: array (Neval, Nverts) The analytic integrals for each vertex/edge """ edges = np.roll(R[0], 2, -2) - np.roll(R[0], 1, -2) dotprods1 = np.einsum("...i,...i", np.roll(R, 1, -2), edges) dotprods2 = np.einsum("...i,...i", np.roll(R, 2, -2), edges) en = norm(edges) del edges n = norm(R) # Regularize s.t. neither the denominator or the numerator can be zero # Avoid numerical issues directly at the edge nn1 = np.roll(n, 1, -1) * en nn2 = np.roll(n, 2, -1) * en res = np.log((nn1 + dotprods1 + reg) / (nn2 + dotprods2 + reg)) # Symmetrize the result since on the negative extension of the edge # there's division of two small values resulting numerical instabilities # (also incompatible with adding the reg value) if symmetrize: mask = ((np.abs(dotprods1 + nn1)) < 1e-12) * (dotprods1 + dotprods2 < 0) res[mask] = -np.log( (nn1[mask] - dotprods1[mask] + reg) / (nn2[mask] - dotprods2[mask] + reg) ) res /= en return -res def omega(R): """Calculate the solid angle of a triangles see A. Van Oosterom and J. Strackee IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-30, NO. 2, 1983 Parameters ---------- R : ndarray (Neval, (Ntri), N_triverts, xyz) displacement vectors (r-r') of Ntri triangles and Neval evaluation points for the 3 vertices of the triangles/triangle. The shape of R can any with the constraint that the last dimenion corrsponds to coordinates (x, y, z) and the second last dimension to triangle vertices (vert1, vert2, vert3) Returns ------- sa: (Neval, (Ntri)) Solid angles of subtened by triangles at evaluation points """ # Distances d = norm(R) # Scalar triple products stp = determinant(R) # Denominator denom = np.prod(d, axis=-1) for i in range(3): j = (i + 1) % 3 k = (i + 2) % 3 # denom += np.sum(R[..., i, :]*R[..., j, :], axis=-1)*d[..., k] denom += np.einsum("...i,...i,...", R[..., i, :], R[..., j, :], d[..., k]) # Solid angles sa = -2 * np.arctan2(stp, denom) return sa def x_distance(R, tn, ta=None): """Signed distances in the triangle planes from the opposite edge towards the node for all evaluation points in R The distances are normalized to one at the node if areas are given The distances are multiplied by the edge lenght if areass are None Parameters: R: ndarray (... Ntri, Nverts, xyz) displacement vectors (coordinates) tn: ndarray (Ntri, 3) triangle normals ta: ndarray (Ntri) triangle areas if None, normalizization with double area is not carried out returns: ndaarray (..., Ntri, N_triverts (3)), distance in the triangle plane """ edges = np.roll(R[0], 2, -2) - np.roll(R[0], 1, -2) if ta is not None: edges /= 2 * ta[:, None, None] edges = -cross(edges, tn[:, None, :]) return np.einsum("...k,...k->...", np.roll(R, 1, -2), edges) def x_distance2(mesh): """Signed distances in the triangle planes from the opposite edge towards the node for all evalution points in R """ # TODO: with gradient, needs mesh info pass def d_distance(R, tn): """Signed distance from the triangle plane for each triangle Parameters: R: ndarray (... Ntri, Nverts, xyz) displacement vectors (coordinates) tn: ndarray (Ntri, 3) triangle normals Returns: ndarray (..., Ntri, N_triverts (3)) of signed distances """ return np.einsum("...ki,ki->...k", np.take(R, 0, -2), tn) def c_coeffs(R, ta): """Cotan-coeffs Parameters: R: ndarray (... Ntri, Nverts, xyz) displacement vectors (coordinates) ta: ndarray (Ntri) triangle areas Returns: ndarray (..., Ntri, N_triverts (3)) """ edges = np.roll(R[0], 2, -2) - np.roll(R[0], 1, -2) return np.einsum("...ik,...jk->...ij", edges, edges / (2 * ta[:, None, None])) def triangle_potential_uniform(R, tn, planar=False): """1/r potential of a uniform triangle for original derivation see A. S. Ferguson, Xu Zhang and G. Stroink, "A complete linear discretization for calculating the magnetic field using the boundary element method," in IEEE Transactions on Biomedical Engineering, vol. 41, no. 5, pp. 455-460, May 1994. doi: 10.1109/10.293220 Parameters ---------- R : (Neval, (Ntri), 3, 3) array Displacement vectors (Neval, (Ntri), Ntri_verts, xyz) tn : ((Ntri), 3) array Triangle normals (Ntri, dir) planar: boolean If True, assume all the triangles and the evaluation points are on the same plane (for speed), leaves out the omega term Returns ------- result: result: ndarray (Neval, (Ntri)) Resultant 1/r potential for each triangle (Ntri) at the field evaluation points (Neval) """ x = x_distance(R, tn, None) result = np.einsum("...i,...i", gamma0(R), x) if not planar: result += d_distance(R, tn) * omega(R) return result def triangle_potential_approx(Rcenters, ta, reg=1e-12): """1/r potential of a uniform triangle using centroid approximation Calculates 1/R potentials for triangle centroids (The singularity at the centroid is handled with the very small reg value, but anyway the values close to the centroid are inexact) Parameters ---------- Rcenters : (N, (Ntri), 3) array Displacement vectors (Neval, Ntri, xyz) from triangle centers ta : (Ntri) array Triangle areas reg: float Regularization value used in approximation Returns ------- result: result: ndarray (...., Ntri, Ntri_verts) Resultant 1/r potential for each node (Ntri_verts) in each triangle (Ntri) in the displacement vectors R """ result = ta / (norm(Rcenters) + reg) return result def potential_dipoles(R, face_normals, face_areas): """Approximate the potential of linearly varying dipole density by by dipoles at each face Parameters R : ndarray (Neval, Ntri, Ntri_verts, N_xyz) Displacement vectors face_normals: ndarray (Ntri, 3) normals for each triangle face_areas: ndarray (Ntri,) areas for each triangle Return Potential approximation for vertex in each face pot: (Neval, Ntri, Ntriverts) """ nn = face_normals # Calculate quadrature points corresponding to linear shape functions (Ok?) weights = np.array([[0.5, 0.25, 0.25], [0.25, 0.5, 0.25], [0.25, 0.25, 0.5]]) # weights = np.eye(3) # weights = np.ones((3,3))/3 # Combine vertices for quadrature points Rquad = np.einsum("...ij,ik->...kj", R, weights) pot = np.einsum("ik, ...ijk->...ij", nn, Rquad) / (norm(Rquad) ** 3) pot = pot * (face_areas[:, None] / 3) return pot def potential_vertex_dipoles(R, vertex_normals, vertex_areas): """Approximate the potential of linearly varying dipole density by by dipoles at each vertex Parameters R : ndarray (Neval, Nvertex, N_xyz) Displacement vectors vertex_normals: ndarray (Nvertex, 3) normals for each triangle vertex_areas: ndarray (Nvertex,) areas for each triangle Return Potential approximation for vertex in each face pot: (Neval, Ntri, Ntriverts) """ nn = vertex_normals pot = np.einsum("ik, lik->li", nn, R) / (norm(R) ** 3) pot *= vertex_areas return pot def triangle_potential_dipole_linear(R, tn, ta): """Potential of dipolar density with magnitude of a linear shape function on a triangle, "omega_i" in de Munck's paper for the original derivation, see: J. C. de Munck, "A linear discretization of the volume mesh_conductor boundary integral equation using analytically integrated elements (electrophysiology application)," in IEEE Transactions on Biomedical Engineering, vol. 39, no. 9, pp. 986-990, Sept. 1992. doi: 10.1109/10.256433 Parameters ---------- R : (..., Ntri, 3, 3) array Displacement vectors (...., Ntri, Ntri_verts, xyz) tn : ((Ntri), 3) array Triangle normals (Ntri, dir) ta : (Ntri), array Triangle areas (Ntri, dir) Returns ------- result: ndarray (...., Ntri, Ntri_verts) Resultant dipolar potential for each shape functions (Ntri_verts) in each triangle (Ntri) at the points corresponding to displacement vectors in R """ result = np.einsum( "...i,...ij,...->...j", gamma0(R), c_coeffs(R, ta), d_distance(R, tn), optimize=True, ) x_dists = x_distance(R, tn, ta) result -= x_dists * omega(R)[..., :, None] return result
[ 37811, 198, 198, 37702, 13370, 19287, 329, 15879, 1143, 2214, 1220, 2785, 29964, 198, 198, 37811, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 66, 62, 1073, 14822, 82, 1600, 198, 220, 220, 220, 366, 67, 62, 30246, 1600, 198, 220, 220, 220, 366, 28483, 2611, 15, 1600, 198, 220, 220, 220, 366, 462, 4908, 1600, 198, 220, 220, 220, 366, 13059, 1843, 62, 67, 541, 4316, 1600, 198, 220, 220, 220, 366, 13059, 1843, 62, 332, 16886, 62, 67, 541, 4316, 1600, 198, 220, 220, 220, 366, 28461, 9248, 62, 13059, 1843, 62, 1324, 13907, 1600, 198, 220, 220, 220, 366, 28461, 9248, 62, 13059, 1843, 62, 67, 541, 2305, 62, 29127, 1600, 198, 220, 220, 220, 366, 28461, 9248, 62, 13059, 1843, 62, 403, 6933, 1600, 198, 220, 220, 220, 366, 87, 62, 30246, 1600, 198, 220, 220, 220, 366, 87, 62, 30246, 17, 1600, 198, 60, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 3416, 415, 7, 64, 2599, 198, 220, 220, 220, 37227, 37, 1603, 3416, 415, 329, 262, 734, 938, 15225, 286, 705, 64, 6, 37811, 198, 220, 220, 220, 1062, 796, 257, 58, 986, 11, 657, 11, 657, 60, 1635, 357, 64, 58, 986, 11, 352, 11, 352, 60, 1635, 257, 58, 986, 11, 362, 11, 362, 60, 532, 257, 58, 986, 11, 362, 11, 352, 60, 1635, 257, 58, 986, 11, 352, 11, 362, 12962, 198, 220, 220, 220, 1062, 15853, 257, 58, 986, 11, 657, 11, 352, 60, 1635, 357, 64, 58, 986, 11, 352, 11, 362, 60, 1635, 257, 58, 986, 11, 362, 11, 657, 60, 532, 257, 58, 986, 11, 362, 11, 362, 60, 1635, 257, 58, 986, 11, 352, 11, 657, 12962, 198, 220, 220, 220, 1062, 15853, 257, 58, 986, 11, 657, 11, 362, 60, 1635, 357, 64, 58, 986, 11, 352, 11, 657, 60, 1635, 257, 58, 986, 11, 362, 11, 352, 60, 532, 257, 58, 986, 11, 362, 11, 657, 60, 1635, 257, 58, 986, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 1441, 1062, 628, 198, 4299, 2593, 7, 303, 6359, 2599, 198, 220, 220, 220, 37227, 37, 1603, 15879, 2593, 329, 262, 938, 15793, 286, 705, 303, 6359, 6, 37811, 198, 220, 220, 220, 1441, 45941, 13, 31166, 17034, 7, 37659, 13, 68, 1040, 388, 7203, 986, 72, 42303, 72, 1600, 1569, 6359, 11, 1569, 6359, 4008, 628, 198, 4299, 3272, 7, 81, 16, 11, 374, 17, 2599, 198, 220, 220, 220, 37227, 21544, 1720, 1231, 16965, 329, 262, 938, 15225, 286, 705, 81, 16, 6, 290, 705, 81, 17, 6, 37811, 198, 220, 220, 220, 1255, 796, 45941, 13, 9107, 418, 7, 81, 16, 13, 43358, 8, 198, 220, 220, 220, 1255, 58, 986, 11, 657, 60, 796, 374, 16, 58, 986, 11, 352, 60, 1635, 374, 17, 58, 986, 11, 362, 60, 532, 374, 16, 58, 986, 11, 362, 60, 1635, 374, 17, 58, 986, 11, 352, 60, 198, 220, 220, 220, 1255, 58, 986, 11, 352, 60, 796, 374, 16, 58, 986, 11, 362, 60, 1635, 374, 17, 58, 986, 11, 657, 60, 532, 374, 16, 58, 986, 11, 657, 60, 1635, 374, 17, 58, 986, 11, 362, 60, 198, 220, 220, 220, 1255, 58, 986, 11, 362, 60, 796, 374, 16, 58, 986, 11, 657, 60, 1635, 374, 17, 58, 986, 11, 352, 60, 532, 374, 16, 58, 986, 11, 352, 60, 1635, 374, 17, 58, 986, 11, 657, 60, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 34236, 15, 7, 49, 11, 842, 28, 16, 68, 12, 1485, 11, 23606, 316, 380, 2736, 28, 17821, 2599, 198, 220, 220, 220, 37227, 16, 14, 81, 4132, 30691, 625, 262, 13015, 286, 257, 22950, 1444, 34236, 62, 15, 198, 220, 220, 220, 357, 1370, 3877, 2785, 82, 737, 628, 220, 220, 220, 12429, 16580, 25, 26720, 5626, 9348, 29550, 22814, 34, 24352, 7473, 19922, 1268, 4694, 42242, 11319, 5161, 37679, 15567, 2538, 198, 220, 220, 220, 8392, 48075, 13, 1174, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 371, 1058, 299, 67, 18747, 357, 986, 11, 399, 62, 28461, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29358, 30104, 357, 81, 12, 81, 11537, 1022, 9873, 282, 12660, 2173, 357, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 513, 9421, 1063, 286, 262, 399, 28461, 44360, 14, 28461, 9248, 13, 198, 220, 220, 220, 842, 25, 12178, 11, 257, 1402, 1988, 2087, 284, 262, 7159, 286, 262, 2604, 283, 342, 76, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3218, 4340, 262, 3815, 845, 1969, 284, 262, 1627, 17894, 198, 220, 220, 220, 23606, 316, 380, 2736, 25, 42653, 3129, 689, 262, 1255, 329, 416, 10162, 278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 12660, 2173, 351, 2461, 262, 1627, 10618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3095, 966, 284, 651, 5755, 572, 262, 11234, 37722, 2173, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4633, 7552, 286, 262, 1627, 10618, 628, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 581, 25, 7177, 357, 45, 18206, 11, 399, 24040, 8, 198, 220, 220, 220, 220, 220, 220, 220, 383, 49166, 4132, 30691, 329, 1123, 37423, 14, 14907, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 13015, 796, 45941, 13, 2487, 7, 49, 58, 15, 4357, 362, 11, 532, 17, 8, 532, 45941, 13, 2487, 7, 49, 58, 15, 4357, 352, 11, 532, 17, 8, 198, 220, 220, 220, 16605, 1676, 9310, 16, 796, 45941, 13, 68, 1040, 388, 7203, 986, 72, 42303, 72, 1600, 45941, 13, 2487, 7, 49, 11, 352, 11, 532, 17, 828, 13015, 8, 198, 220, 220, 220, 16605, 1676, 9310, 17, 796, 45941, 13, 68, 1040, 388, 7203, 986, 72, 42303, 72, 1600, 45941, 13, 2487, 7, 49, 11, 362, 11, 532, 17, 828, 13015, 8, 198, 220, 220, 220, 551, 796, 2593, 7, 276, 3212, 8, 198, 220, 220, 220, 1619, 13015, 198, 220, 220, 220, 299, 796, 2593, 7, 49, 8, 198, 220, 220, 220, 1303, 23603, 1096, 264, 13, 83, 13, 6159, 262, 31457, 1352, 393, 262, 5470, 1352, 460, 307, 6632, 198, 220, 220, 220, 1303, 24390, 29052, 2428, 3264, 379, 262, 5743, 198, 220, 220, 220, 299, 77, 16, 796, 45941, 13, 2487, 7, 77, 11, 352, 11, 532, 16, 8, 1635, 551, 198, 220, 220, 220, 299, 77, 17, 796, 45941, 13, 2487, 7, 77, 11, 362, 11, 532, 16, 8, 1635, 551, 198, 220, 220, 220, 581, 796, 45941, 13, 6404, 19510, 20471, 16, 1343, 16605, 1676, 9310, 16, 1343, 842, 8, 1220, 357, 20471, 17, 1343, 16605, 1676, 9310, 17, 1343, 842, 4008, 628, 220, 220, 220, 1303, 1632, 3020, 316, 380, 2736, 262, 1255, 1201, 319, 262, 4633, 7552, 286, 262, 5743, 198, 220, 220, 220, 1303, 612, 338, 7297, 286, 734, 1402, 3815, 7186, 29052, 916, 5738, 198, 220, 220, 220, 1303, 357, 14508, 27294, 351, 4375, 262, 842, 1988, 8, 198, 220, 220, 220, 611, 23606, 316, 380, 2736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 14808, 37659, 13, 8937, 7, 26518, 1676, 9310, 16, 1343, 299, 77, 16, 4008, 1279, 352, 68, 12, 1065, 8, 1635, 357, 26518, 1676, 9310, 16, 1343, 16605, 1676, 9310, 17, 1279, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 581, 58, 27932, 60, 796, 532, 37659, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 20471, 16, 58, 27932, 60, 532, 16605, 1676, 9310, 16, 58, 27932, 60, 1343, 842, 8, 1220, 357, 20471, 17, 58, 27932, 60, 532, 16605, 1676, 9310, 17, 58, 27932, 60, 1343, 842, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 581, 1220, 28, 551, 198, 220, 220, 220, 1441, 532, 411, 628, 198, 4299, 37615, 7, 49, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 4735, 9848, 286, 257, 44360, 628, 220, 220, 220, 766, 198, 220, 220, 220, 317, 13, 6656, 440, 6197, 296, 290, 449, 13, 4285, 330, 11035, 198, 220, 220, 220, 40552, 44069, 10659, 11053, 6177, 20068, 2662, 1961, 20151, 36924, 8881, 1137, 2751, 11, 198, 220, 220, 220, 38570, 13, 347, 11682, 12, 1270, 11, 8005, 13, 362, 11, 13540, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 371, 1058, 299, 67, 18747, 357, 45, 18206, 11, 357, 45, 28461, 828, 399, 62, 28461, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29358, 30104, 357, 81, 12, 81, 11537, 286, 399, 28461, 44360, 198, 220, 220, 220, 220, 220, 220, 220, 290, 9873, 282, 12660, 2173, 329, 262, 513, 9421, 1063, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 44360, 14, 28461, 9248, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 371, 460, 597, 351, 262, 32315, 326, 198, 220, 220, 220, 220, 220, 220, 220, 262, 938, 5391, 268, 295, 1162, 81, 2777, 24764, 284, 22715, 357, 87, 11, 331, 11, 1976, 8, 290, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 938, 15793, 284, 22950, 9421, 1063, 357, 1851, 16, 11, 9421, 17, 11, 9421, 18, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 473, 25, 357, 45, 18206, 11, 357, 45, 28461, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 15831, 18333, 286, 850, 1452, 276, 416, 44360, 379, 12660, 2173, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 4307, 1817, 198, 220, 220, 220, 288, 796, 2593, 7, 49, 8, 198, 220, 220, 220, 1303, 34529, 283, 15055, 3186, 198, 220, 220, 220, 336, 79, 796, 3416, 415, 7, 49, 8, 198, 220, 220, 220, 1303, 5601, 6351, 1352, 198, 220, 220, 220, 2853, 296, 796, 45941, 13, 1676, 67, 7, 67, 11, 16488, 10779, 16, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 357, 72, 1343, 352, 8, 4064, 513, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 357, 72, 1343, 362, 8, 4064, 513, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 2853, 296, 15853, 45941, 13, 16345, 7, 49, 58, 986, 11, 1312, 11, 1058, 60, 9, 49, 58, 986, 11, 474, 11, 1058, 4357, 16488, 10779, 16, 27493, 67, 58, 986, 11, 479, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2853, 296, 15853, 45941, 13, 68, 1040, 388, 7203, 986, 72, 42303, 72, 11, 9313, 11, 371, 58, 986, 11, 1312, 11, 1058, 4357, 371, 58, 986, 11, 474, 11, 1058, 4357, 288, 58, 986, 11, 479, 12962, 198, 220, 220, 220, 1303, 15831, 18333, 198, 220, 220, 220, 473, 796, 532, 17, 1635, 45941, 13, 283, 310, 272, 17, 7, 301, 79, 11, 2853, 296, 8, 198, 220, 220, 220, 1441, 473, 628, 198, 4299, 2124, 62, 30246, 7, 49, 11, 256, 77, 11, 20486, 28, 14202, 2599, 198, 220, 220, 220, 37227, 50, 3916, 18868, 287, 262, 22950, 13016, 422, 262, 6697, 198, 220, 220, 220, 5743, 3371, 262, 10139, 329, 477, 12660, 2173, 287, 371, 628, 220, 220, 220, 383, 18868, 389, 39279, 284, 530, 379, 262, 10139, 611, 3006, 389, 1813, 198, 220, 220, 220, 383, 18868, 389, 33096, 416, 262, 5743, 18896, 456, 83, 611, 389, 562, 389, 6045, 628, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 371, 25, 299, 67, 18747, 357, 986, 399, 28461, 11, 399, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29358, 30104, 357, 37652, 17540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 256, 77, 25, 299, 67, 18747, 357, 45, 28461, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 2593, 874, 198, 220, 220, 220, 220, 220, 220, 220, 20486, 25, 299, 67, 18747, 357, 45, 28461, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 3006, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6045, 11, 3487, 528, 1634, 351, 4274, 1989, 318, 407, 5281, 503, 628, 220, 220, 220, 5860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 6814, 18747, 357, 986, 11, 399, 28461, 11, 399, 62, 28461, 24040, 357, 18, 36911, 5253, 287, 262, 22950, 6614, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13015, 796, 45941, 13, 2487, 7, 49, 58, 15, 4357, 362, 11, 532, 17, 8, 532, 45941, 13, 2487, 7, 49, 58, 15, 4357, 352, 11, 532, 17, 8, 198, 220, 220, 220, 611, 20486, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 1220, 28, 362, 1635, 20486, 58, 45299, 6045, 11, 6045, 60, 198, 220, 220, 220, 13015, 796, 532, 19692, 7, 276, 3212, 11, 256, 77, 58, 45299, 6045, 11, 1058, 12962, 198, 220, 220, 220, 1441, 45941, 13, 68, 1040, 388, 7203, 986, 74, 42303, 74, 3784, 9313, 11, 45941, 13, 2487, 7, 49, 11, 352, 11, 532, 17, 828, 13015, 8, 628, 198, 4299, 2124, 62, 30246, 17, 7, 76, 5069, 2599, 198, 220, 220, 220, 37227, 50, 3916, 18868, 287, 262, 22950, 13016, 422, 262, 6697, 198, 220, 220, 220, 5743, 3371, 262, 10139, 329, 477, 5418, 1009, 2173, 287, 371, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 25, 351, 31312, 11, 2476, 19609, 7508, 198, 220, 220, 220, 1208, 628, 198, 4299, 288, 62, 30246, 7, 49, 11, 256, 77, 2599, 198, 220, 220, 220, 37227, 50, 3916, 5253, 422, 262, 22950, 6614, 329, 1123, 22950, 628, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 371, 25, 299, 67, 18747, 357, 986, 399, 28461, 11, 399, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29358, 30104, 357, 37652, 17540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 256, 77, 25, 299, 67, 18747, 357, 45, 28461, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 2593, 874, 628, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 357, 986, 11, 399, 28461, 11, 399, 62, 28461, 24040, 357, 18, 4008, 286, 4488, 18868, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 45941, 13, 68, 1040, 388, 7203, 986, 4106, 11, 4106, 3784, 986, 74, 1600, 45941, 13, 20657, 7, 49, 11, 657, 11, 532, 17, 828, 256, 77, 8, 628, 198, 4299, 269, 62, 1073, 14822, 82, 7, 49, 11, 20486, 2599, 198, 220, 220, 220, 37227, 34, 313, 272, 12, 1073, 14822, 82, 628, 220, 220, 220, 40117, 25, 628, 220, 220, 220, 220, 220, 220, 220, 371, 25, 299, 67, 18747, 357, 986, 399, 28461, 11, 399, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29358, 30104, 357, 37652, 17540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20486, 25, 299, 67, 18747, 357, 45, 28461, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22950, 3006, 628, 198, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 357, 986, 11, 399, 28461, 11, 399, 62, 28461, 24040, 357, 18, 4008, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13015, 796, 45941, 13, 2487, 7, 49, 58, 15, 4357, 362, 11, 532, 17, 8, 532, 45941, 13, 2487, 7, 49, 58, 15, 4357, 352, 11, 532, 17, 8, 198, 220, 220, 220, 1441, 45941, 13, 68, 1040, 388, 7203, 986, 1134, 42303, 73, 74, 3784, 986, 2926, 1600, 13015, 11, 13015, 1220, 357, 17, 1635, 20486, 58, 45299, 6045, 11, 6045, 60, 4008, 628, 198, 4299, 22950, 62, 13059, 1843, 62, 403, 6933, 7, 49, 11, 256, 77, 11, 1410, 283, 28, 25101, 2599, 198, 220, 220, 220, 37227, 16, 14, 81, 2785, 286, 257, 8187, 22950, 628, 220, 220, 220, 329, 2656, 16124, 341, 766, 198, 220, 220, 220, 317, 13, 311, 13, 15031, 11, 33591, 19439, 290, 402, 13, 30183, 676, 11, 198, 220, 220, 220, 366, 32, 1844, 14174, 1221, 1186, 1634, 329, 26019, 262, 14091, 2214, 198, 220, 220, 220, 1262, 262, 18645, 5002, 2446, 553, 198, 220, 220, 220, 287, 40552, 46192, 319, 8436, 35914, 14044, 11, 198, 220, 220, 220, 2322, 13, 6073, 11, 645, 13, 642, 11, 9788, 13, 46839, 12, 34716, 11, 1737, 9162, 13, 198, 220, 220, 220, 23899, 25, 838, 13, 11442, 24, 14, 940, 13, 1959, 2624, 1238, 628, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 371, 1058, 357, 45, 18206, 11, 357, 45, 28461, 828, 513, 11, 513, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3167, 489, 5592, 30104, 357, 45, 18206, 11, 357, 45, 28461, 828, 399, 28461, 62, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 256, 77, 1058, 14808, 45, 28461, 828, 513, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 33233, 2593, 874, 357, 45, 28461, 11, 26672, 8, 198, 220, 220, 220, 1410, 283, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 7048, 477, 262, 44360, 290, 262, 12660, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 319, 262, 976, 6614, 357, 1640, 2866, 828, 5667, 503, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37615, 3381, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1255, 25, 1255, 25, 220, 299, 67, 18747, 357, 45, 18206, 11, 357, 45, 28461, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25414, 415, 352, 14, 81, 2785, 329, 1123, 22950, 357, 45, 28461, 8, 198, 220, 220, 220, 220, 220, 220, 220, 379, 262, 2214, 12660, 2173, 357, 45, 18206, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 796, 2124, 62, 30246, 7, 49, 11, 256, 77, 11, 6045, 8, 198, 220, 220, 220, 1255, 796, 45941, 13, 68, 1040, 388, 7203, 986, 72, 42303, 72, 1600, 34236, 15, 7, 49, 828, 2124, 8, 198, 220, 220, 220, 611, 407, 1410, 283, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 288, 62, 30246, 7, 49, 11, 256, 77, 8, 1635, 37615, 7, 49, 8, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 22950, 62, 13059, 1843, 62, 1324, 13907, 7, 49, 1087, 364, 11, 20486, 11, 842, 28, 16, 68, 12, 1065, 2599, 198, 220, 220, 220, 37227, 16, 14, 81, 2785, 286, 257, 8187, 22950, 1262, 1247, 3882, 40874, 628, 220, 220, 220, 27131, 689, 352, 14, 49, 2785, 82, 329, 22950, 1247, 305, 2340, 198, 220, 220, 220, 357, 464, 18032, 414, 379, 262, 1247, 3882, 318, 12118, 351, 262, 845, 1402, 198, 220, 220, 220, 842, 1988, 11, 475, 6949, 262, 3815, 1969, 284, 262, 1247, 3882, 389, 16087, 529, 8, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 371, 1087, 364, 1058, 357, 45, 11, 357, 45, 28461, 828, 513, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3167, 489, 5592, 30104, 357, 45, 18206, 11, 399, 28461, 11, 2124, 45579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 422, 22950, 10399, 198, 220, 220, 220, 20486, 1058, 357, 45, 28461, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 33233, 3006, 628, 220, 220, 220, 842, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 23603, 1634, 1988, 973, 287, 40874, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1255, 25, 1255, 25, 220, 299, 67, 18747, 357, 1106, 11, 399, 28461, 11, 399, 28461, 62, 24040, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25414, 415, 352, 14, 81, 2785, 329, 1123, 10139, 357, 45, 28461, 62, 24040, 8, 198, 220, 220, 220, 220, 220, 220, 220, 287, 1123, 22950, 357, 45, 28461, 8, 287, 262, 29358, 30104, 371, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 20486, 1220, 357, 27237, 7, 49, 1087, 364, 8, 1343, 842, 8, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 2785, 62, 67, 541, 4316, 7, 49, 11, 1986, 62, 27237, 874, 11, 1986, 62, 533, 292, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 262, 2785, 286, 9493, 11458, 15874, 19550, 2305, 12109, 416, 198, 220, 220, 220, 220, 220, 220, 220, 416, 19550, 4316, 379, 1123, 1986, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 1058, 299, 67, 18747, 357, 45, 18206, 11, 399, 28461, 11, 399, 28461, 62, 24040, 11, 399, 62, 5431, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3167, 489, 5592, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1986, 62, 27237, 874, 25, 299, 67, 18747, 357, 45, 28461, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 874, 329, 1123, 22950, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1986, 62, 533, 292, 25, 299, 67, 18747, 357, 45, 28461, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3006, 329, 1123, 22950, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 32480, 40874, 329, 37423, 287, 1123, 1986, 198, 220, 220, 220, 220, 220, 220, 220, 1787, 25, 357, 45, 18206, 11, 399, 28461, 11, 399, 28461, 24040, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 77, 796, 1986, 62, 27237, 874, 198, 220, 220, 220, 1303, 27131, 378, 15094, 81, 1300, 2173, 11188, 284, 14174, 5485, 5499, 357, 18690, 10091, 198, 220, 220, 220, 19590, 796, 45941, 13, 18747, 26933, 58, 15, 13, 20, 11, 657, 13, 1495, 11, 657, 13, 1495, 4357, 685, 15, 13, 1495, 11, 657, 13, 20, 11, 657, 13, 1495, 4357, 685, 15, 13, 1495, 11, 657, 13, 1495, 11, 657, 13, 20, 11907, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 19590, 796, 45941, 13, 25379, 7, 18, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 19590, 796, 45941, 13, 1952, 19510, 18, 11, 18, 4008, 14, 18, 198, 220, 220, 220, 1303, 29176, 9421, 1063, 329, 15094, 81, 1300, 2173, 198, 220, 220, 220, 371, 47003, 796, 45941, 13, 68, 1040, 388, 7203, 986, 2926, 11, 1134, 3784, 986, 42421, 1600, 371, 11, 19590, 8, 198, 220, 220, 220, 1787, 796, 45941, 13, 68, 1040, 388, 7203, 1134, 11, 2644, 45961, 3784, 986, 2926, 1600, 299, 77, 11, 371, 47003, 8, 1220, 357, 27237, 7, 49, 47003, 8, 12429, 513, 8, 198, 220, 220, 220, 1787, 796, 1787, 1635, 357, 2550, 62, 533, 292, 58, 45299, 6045, 60, 1220, 513, 8, 628, 220, 220, 220, 1441, 1787, 628, 198, 4299, 2785, 62, 332, 16886, 62, 67, 541, 4316, 7, 49, 11, 37423, 62, 27237, 874, 11, 37423, 62, 533, 292, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 262, 2785, 286, 9493, 11458, 15874, 19550, 2305, 12109, 416, 198, 220, 220, 220, 220, 220, 220, 220, 416, 19550, 4316, 379, 1123, 37423, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 1058, 299, 67, 18747, 357, 45, 18206, 11, 399, 332, 16886, 11, 399, 62, 5431, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3167, 489, 5592, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37423, 62, 27237, 874, 25, 299, 67, 18747, 357, 45, 332, 16886, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 874, 329, 1123, 22950, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37423, 62, 533, 292, 25, 299, 67, 18747, 357, 45, 332, 16886, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3006, 329, 1123, 22950, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 32480, 40874, 329, 37423, 287, 1123, 1986, 198, 220, 220, 220, 220, 220, 220, 220, 1787, 25, 357, 45, 18206, 11, 399, 28461, 11, 399, 28461, 24040, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 77, 796, 37423, 62, 27237, 874, 198, 220, 220, 220, 1787, 796, 45941, 13, 68, 1040, 388, 7203, 1134, 11, 4300, 3784, 4528, 1600, 299, 77, 11, 371, 8, 1220, 357, 27237, 7, 49, 8, 12429, 513, 8, 198, 220, 220, 220, 1787, 1635, 28, 37423, 62, 533, 292, 628, 220, 220, 220, 1441, 1787, 628, 198, 4299, 22950, 62, 13059, 1843, 62, 67, 541, 2305, 62, 29127, 7, 49, 11, 256, 77, 11, 20486, 2599, 198, 220, 220, 220, 37227, 25396, 1843, 286, 19550, 6192, 12109, 351, 14735, 286, 257, 198, 220, 220, 220, 14174, 5485, 2163, 319, 257, 22950, 11, 366, 462, 4908, 62, 72, 1, 287, 390, 12107, 694, 338, 3348, 628, 220, 220, 220, 329, 262, 2656, 16124, 341, 11, 766, 25, 198, 220, 220, 220, 449, 13, 327, 13, 390, 12107, 694, 11, 366, 32, 14174, 1221, 1186, 1634, 286, 262, 6115, 19609, 62, 17561, 33029, 198, 220, 220, 220, 18645, 19287, 16022, 1262, 4284, 83, 1146, 11521, 4847, 198, 220, 220, 220, 357, 9509, 10051, 893, 12371, 3586, 27267, 198, 220, 220, 220, 287, 40552, 46192, 319, 8436, 35914, 14044, 11, 198, 220, 220, 220, 2322, 13, 5014, 11, 645, 13, 860, 11, 9788, 13, 860, 4521, 12, 34155, 11, 2362, 13, 9768, 13, 198, 220, 220, 220, 23899, 25, 838, 13, 11442, 24, 14, 940, 13, 1495, 2414, 2091, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 371, 1058, 357, 986, 11, 399, 28461, 11, 513, 11, 513, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3167, 489, 5592, 30104, 357, 1106, 11, 399, 28461, 11, 399, 28461, 62, 24040, 11, 2124, 45579, 8, 198, 220, 220, 220, 256, 77, 1058, 14808, 45, 28461, 828, 513, 8, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 33233, 2593, 874, 357, 45, 28461, 11, 26672, 8, 198, 220, 220, 220, 20486, 1058, 357, 45, 28461, 828, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 33233, 3006, 357, 45, 28461, 11, 26672, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1255, 25, 220, 299, 67, 18747, 357, 1106, 11, 399, 28461, 11, 399, 28461, 62, 24040, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25414, 415, 19550, 6192, 2785, 329, 1123, 5485, 5499, 357, 45, 28461, 62, 24040, 8, 198, 220, 220, 220, 220, 220, 220, 220, 287, 1123, 22950, 357, 45, 28461, 8, 379, 262, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 284, 29358, 30104, 287, 371, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1255, 796, 45941, 13, 68, 1040, 388, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27896, 72, 42303, 2926, 42303, 3784, 986, 73, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 15, 7, 49, 828, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 1073, 14822, 82, 7, 49, 11, 20486, 828, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 30246, 7, 49, 11, 256, 77, 828, 198, 220, 220, 220, 220, 220, 220, 220, 27183, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2124, 62, 67, 1023, 796, 2124, 62, 30246, 7, 49, 11, 256, 77, 11, 20486, 8, 198, 220, 220, 220, 1255, 48185, 2124, 62, 67, 1023, 1635, 37615, 7, 49, 38381, 986, 11, 1058, 11, 6045, 60, 628, 220, 220, 220, 1441, 1255, 198 ]
2.358888
4,748
""" _GetNotClosedOutWorkflows_ Oracle implementation of GetNotClosedOutWorkflows Lists top level filesets not injected to monitoring """ from WMCore.Database.DBFormatter import DBFormatter
[ 37811, 198, 62, 3855, 3673, 2601, 1335, 7975, 12468, 44041, 62, 198, 198, 48625, 7822, 286, 3497, 3673, 2601, 1335, 7975, 12468, 44041, 198, 43, 1023, 1353, 1241, 3696, 1039, 407, 25077, 284, 9904, 198, 37811, 198, 6738, 370, 9655, 382, 13, 38105, 13, 11012, 8479, 1436, 1330, 20137, 8479, 1436, 628 ]
3.673077
52
from setuptools import setup, find_packages __version__ = '0.1.0' setup( name='cst-micro-chassis', version=__version__, author='CyberSolutionsTech', license='MIT', author_email='[email protected]', description='Microservices chassis pattern library', long_description=read('README.md'), long_description_content_type='text/markdown', packages=find_packages(where='src'), package_dir={'': 'src'}, url='https://pypi.org/project/cst-micro-chassis/', project_urls={ 'Source': 'https://github.com/CyberSolutionsTech/cst-micro-chassis' }, install_requires=[ 'flask==1.1.*', 'flask-restful==0.3.*', ], classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', 'License :: OSI Approved :: MIT License', ], python_requires='>=3.7', )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 16, 13, 15, 6, 628, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 66, 301, 12, 24055, 12, 354, 20297, 3256, 198, 220, 220, 220, 2196, 28, 834, 9641, 834, 11, 198, 220, 220, 220, 1772, 11639, 20418, 527, 50, 14191, 17760, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 6988, 349, 3609, 13, 32353, 13484, 16115, 31, 948, 527, 12, 82, 14191, 13, 785, 3256, 198, 220, 220, 220, 6764, 11639, 13031, 30416, 24587, 3912, 5888, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 10786, 15675, 11682, 13, 9132, 33809, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 11639, 5239, 14, 4102, 2902, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 3003, 11639, 10677, 33809, 198, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 79, 4464, 72, 13, 2398, 14, 16302, 14, 66, 301, 12, 24055, 12, 354, 20297, 14, 3256, 198, 220, 220, 220, 1628, 62, 6371, 82, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7416, 10354, 705, 5450, 1378, 12567, 13, 785, 14, 20418, 527, 50, 14191, 17760, 14, 66, 301, 12, 24055, 12, 354, 20297, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 2093, 855, 16, 13, 16, 15885, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 2093, 12, 2118, 913, 855, 15, 13, 18, 15885, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 16932, 7535, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 22, 3256, 198, 8, 198 ]
2.483376
391
# # Copyright (c) 2010 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from cli.command.command import Command
[ 2, 198, 2, 15069, 357, 66, 8, 3050, 2297, 10983, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 628, 198, 6738, 537, 72, 13, 21812, 13, 21812, 1330, 9455, 628 ]
3.622857
175
import collections import os,sys Coord = collections.namedtuple("Coord", ["x", "y"])
[ 11748, 17268, 198, 11748, 28686, 11, 17597, 628, 198, 7222, 585, 796, 17268, 13, 13190, 83, 29291, 7203, 7222, 585, 1600, 14631, 87, 1600, 366, 88, 8973, 8 ]
3.071429
28
import os import time import fero from fero import FeroError from typing import Optional, Union from marshmallow import ( Schema, fields, validate, EXCLUDE, ) from .common import FeroObject
[ 11748, 28686, 198, 11748, 640, 198, 11748, 277, 3529, 198, 6738, 277, 3529, 1330, 376, 3529, 12331, 198, 6738, 19720, 1330, 32233, 11, 4479, 198, 6738, 22397, 42725, 1330, 357, 198, 220, 220, 220, 10011, 2611, 11, 198, 220, 220, 220, 7032, 11, 198, 220, 220, 220, 26571, 11, 198, 220, 220, 220, 7788, 5097, 52, 7206, 11, 198, 8, 198, 198, 6738, 764, 11321, 1330, 376, 3529, 10267, 628, 628, 198 ]
2.930556
72
from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium import webdriver from decouple import config import time import re import os url = "https://busyliving.co.uk/" username = config("login_username") password = config("password") # Log in to the site and get the source code # Define a class to store the results needed # Finds the elements needed and put them in an array # Define the path to the files directory = "s3://busyliving" local = "C:\\Users\\emilf\\Downloads\\Ringley\\Images\\" files_names = os.listdir("C:\\Users\\emilf\\Downloads\\Ringley\\Images\\") grant = " --grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers" # Change the file # Function that does it all # Runs the program replace(finder(site_login(url)))
[ 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 220, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 201, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 201, 198, 6738, 875, 43846, 1330, 4566, 201, 198, 11748, 640, 201, 198, 11748, 302, 201, 198, 11748, 28686, 201, 198, 201, 198, 6371, 796, 366, 5450, 1378, 10885, 2645, 1412, 13, 1073, 13, 2724, 30487, 201, 198, 29460, 796, 4566, 7203, 38235, 62, 29460, 4943, 201, 198, 28712, 796, 4566, 7203, 28712, 4943, 201, 198, 201, 198, 2, 5972, 287, 284, 262, 2524, 290, 651, 262, 2723, 2438, 201, 198, 201, 198, 2, 2896, 500, 257, 1398, 284, 3650, 262, 2482, 2622, 201, 198, 201, 198, 2, 9938, 82, 262, 4847, 2622, 290, 1234, 606, 287, 281, 7177, 201, 198, 201, 198, 2, 2896, 500, 262, 3108, 284, 262, 3696, 201, 198, 34945, 796, 366, 82, 18, 1378, 10885, 2645, 1412, 1, 201, 198, 12001, 796, 366, 34, 25, 6852, 14490, 6852, 368, 346, 69, 6852, 10002, 82, 6852, 39687, 1636, 6852, 29398, 6852, 1, 201, 198, 16624, 62, 14933, 796, 28686, 13, 4868, 15908, 7203, 34, 25, 6852, 14490, 6852, 368, 346, 69, 6852, 10002, 82, 6852, 39687, 1636, 6852, 29398, 6852, 4943, 201, 198, 2164, 415, 796, 366, 1377, 2164, 1187, 1100, 28, 9900, 28, 4023, 1378, 16436, 13, 33103, 8356, 13, 785, 14, 24432, 14, 20541, 14, 3237, 14490, 1, 201, 198, 201, 198, 2, 9794, 262, 2393, 201, 198, 201, 198, 2, 15553, 326, 857, 340, 477, 201, 198, 201, 198, 2, 44743, 262, 1430, 201, 198, 33491, 7, 22805, 7, 15654, 62, 38235, 7, 6371, 22305 ]
3.016667
300
import csv from datetime import datetime from typing import Dict, Optional, Union def attendee_report(csv_path: str) -> Dict: """Given a standard Zoom CSV attendee report, returns massaged information.""" report = [] field_map = { "email": ["Email", str], "first_name": ["First Name", str], "last_name": ["Last Name", str], "attended": ["Attended", to_bool], "join_time": ["Join Time", to_datetime], "leave_time": ["Leave Time", to_datetime], "minutes": ["Time in Session (minutes)", to_minutes], } with open(csv_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=",") section = None tmp = None for row in csv_reader: if len(row) == 2 and row[0] == "Attendee Details": section = "attendees" continue if not section: continue if not len(report) and row[0] == "Attended": fields = row continue tmp = dict(zip(fields, row)) report.append({k: v[1](tmp[v[0]]) for k, v in field_map.items()}) return report
[ 11748, 269, 21370, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 360, 713, 11, 32233, 11, 4479, 628, 628, 198, 198, 4299, 5262, 1453, 62, 13116, 7, 40664, 62, 6978, 25, 965, 8, 4613, 360, 713, 25, 198, 220, 220, 220, 37227, 15056, 257, 3210, 40305, 44189, 5262, 1453, 989, 11, 5860, 2347, 1886, 1321, 526, 15931, 198, 220, 220, 220, 989, 796, 17635, 198, 220, 220, 220, 2214, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12888, 1298, 14631, 15333, 1600, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 3672, 1298, 14631, 5962, 6530, 1600, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12957, 62, 3672, 1298, 14631, 5956, 6530, 1600, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 1631, 1298, 14631, 8086, 1631, 1600, 284, 62, 30388, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22179, 62, 2435, 1298, 14631, 18234, 3862, 1600, 284, 62, 19608, 8079, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 47408, 62, 2435, 1298, 14631, 35087, 3862, 1600, 284, 62, 19608, 8079, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 1769, 1298, 14631, 7575, 287, 23575, 357, 1084, 1769, 42501, 284, 62, 1084, 1769, 4357, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 351, 1280, 7, 40664, 62, 6978, 8, 355, 269, 21370, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 46862, 796, 269, 21370, 13, 46862, 7, 40664, 62, 7753, 11, 46728, 2676, 28, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 269, 21370, 62, 46862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 808, 8, 6624, 362, 290, 5752, 58, 15, 60, 6624, 366, 8086, 437, 1453, 14890, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 366, 1078, 437, 2841, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 13116, 8, 290, 5752, 58, 15, 60, 6624, 366, 8086, 1631, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 8633, 7, 13344, 7, 25747, 11, 5752, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 13, 33295, 15090, 74, 25, 410, 58, 16, 16151, 22065, 58, 85, 58, 15, 11907, 8, 329, 479, 11, 410, 287, 2214, 62, 8899, 13, 23814, 3419, 30072, 628, 220, 220, 220, 1441, 989, 198 ]
2.159633
545
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import sys import copy import torch if __name__ == '__main__': old_model_path = sys.argv[1] new_model_path = sys.argv[2] model = torch.load(old_model_path, map_location='cpu') model['model'] = update_model(model['model']) torch.save(model, new_model_path)
[ 2, 41906, 17174, 4557, 35625, 198, 2, 220, 15069, 357, 66, 8, 2864, 11, 15127, 23929, 44680, 6234, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 220, 220, 220, 220, 1635, 16126, 262, 1438, 286, 262, 15127, 23929, 44680, 6234, 4249, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3891, 286, 663, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 198, 2, 220, 220, 220, 220, 220, 220, 220, 10944, 422, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 198, 2, 220, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 220, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 220, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 15127, 23929, 44680, 6234, 9348, 43031, 19146, 7473, 15529, 198, 2, 220, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 198, 2, 220, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 220, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 198, 2, 220, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 220, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 198, 2, 220, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 2, 41906, 17174, 4557, 35625, 198, 11748, 25064, 198, 11748, 4866, 198, 11748, 28034, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1468, 62, 19849, 62, 6978, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 649, 62, 19849, 62, 6978, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 220, 220, 2746, 796, 28034, 13, 2220, 7, 727, 62, 19849, 62, 6978, 11, 3975, 62, 24886, 11639, 36166, 11537, 198, 220, 220, 220, 2746, 17816, 19849, 20520, 796, 4296, 62, 19849, 7, 19849, 17816, 19849, 6, 12962, 198, 220, 220, 220, 28034, 13, 21928, 7, 19849, 11, 649, 62, 19849, 62, 6978, 8, 198 ]
3.400673
594
# # Copyright IBM Corp. 2014 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from paver.easy import * from shutil import rmtree, copytree, copyfile from subprocess import call import os import getpass @task @task @task @task @task @task @task @task @task @needs('clean', 'copy_client_code', 'copy_mongo_manifest', 'create_mongo_service', 'deploy_to_bluemix') @task @needs('clean', 'copy_client_code', 'copy_cloudant_manifest', 'create_cloudant_service', 'deploy_to_bluemix')
[ 2, 198, 2, 15069, 19764, 11421, 13, 1946, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 279, 8770, 13, 38171, 1330, 1635, 198, 6738, 4423, 346, 1330, 374, 16762, 631, 11, 4866, 21048, 11, 4866, 7753, 198, 6738, 850, 14681, 1330, 869, 198, 11748, 28686, 198, 11748, 651, 6603, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 31, 50032, 10786, 27773, 3256, 705, 30073, 62, 16366, 62, 8189, 3256, 705, 30073, 62, 76, 25162, 62, 805, 8409, 3256, 705, 17953, 62, 76, 25162, 62, 15271, 3256, 705, 2934, 1420, 62, 1462, 62, 65, 2290, 368, 844, 11537, 198, 198, 31, 35943, 198, 31, 50032, 10786, 27773, 3256, 705, 30073, 62, 16366, 62, 8189, 3256, 705, 30073, 62, 17721, 415, 62, 805, 8409, 3256, 705, 17953, 62, 17721, 415, 62, 15271, 3256, 705, 2934, 1420, 62, 1462, 62, 65, 2290, 368, 844, 11537 ]
3.184466
309
from asciimatics.effects import Effect from asciimatics.screen import Screen from pyfiglet import Figlet import re import ftfy import unicodedata # XXX: Should this be a Renderer?
[ 6738, 355, 979, 320, 23372, 13, 34435, 1330, 7896, 198, 6738, 355, 979, 320, 23372, 13, 9612, 1330, 15216, 198, 198, 6738, 12972, 5647, 1616, 1330, 12138, 1616, 198, 198, 11748, 302, 198, 11748, 10117, 24928, 198, 11748, 28000, 9043, 1045, 628, 198, 198, 2, 27713, 25, 10358, 428, 307, 257, 28703, 11882, 30, 628 ]
3.381818
55
import pymongo import shutil import os import argparse import re import urllib2 import subprocess import time import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import kmeanstree from sys import exit # instanciate and configure an argument parser PARSER = argparse.ArgumentParser(description='') PARSER.add_argument('serverfile', metavar='SERVERFILE', help='The full path to the cherrypy python file, which will be used for the benchmark (absolute!!!)') PARSER.add_argument('port', metavar='PORT', help='The port on which the webserver will run') PARSER.add_argument('database', metavar='DB', help='The name of the MongoDB Database on localhost') PARSER.add_argument('collection', metavar='COLLECTION', help='The name of the Collection in the Database') PARSER.add_argument('origpath', metavar='ORIGINALPATH', help='The original path, where the queries and targets are (absolute!!!). This is used for the informations in the output files and reading the groundtruth file.') PARSER.add_argument('tolerance', metavar='TOLERANCE', help='The tolerance (in frames) how many frames the found target can be away from ground truth') # parse input arguments ARGS = PARSER.parse_args() SERVERFILE = ARGS.serverfile PORT = ARGS.port DBNAME = ARGS.database COLNAME = ARGS.collection ORIGPATH = ARGS.origpath TOLERANCE = int(ARGS.tolerance) # Directory of this file ROOTDIR = os.path.abspath('.') if (not os.path.exists(SERVERFILE)) or (not os.path.isfile(SERVERFILE)): print "The webserver file: '" + SERVERFILE + "', doesn't exist or is not a file!" sys.exit(1) if (not os.path.exists(ORIGPATH)) or (not os.path.isdir(ORIGPATH)): print "The given path: '" + ORIGPATH + "', doesn't exist or is not a directory!" sys.exit(1) GTFILE = os.path.join(ORIGPATH, 'BENCHMARK_FULL.TXT') if (not os.path.exists(GTFILE)) or (not os.path.isfile(GTFILE)): print "The groundtruth file: '" + GTFILE + "', doesn't exist or is not a file!" sys.exit(1) # Read Ground Truth file and split on lines and on spaces for each line # Ground Truth looks like: # <querypath> <targetpath> <position_from> <position_to>... GTDATA = open(GTFILE, 'r').read().split('\n') for lineNum in range(0, len(GTDATA)): GTDATA[lineNum] = GTDATA[lineNum].split() # Establish MongoDb Connection and get db and video collection MONGOCLIENT = pymongo.MongoClient(port=8099) DB = MONGOCLIENT[DBNAME] VIDEOS = DB[COLNAME] # Get config from MongoDb CONFIG = VIDEOS.find_one({'_id': 'config'}) COLORNORMAL = '\033[0m' COLORWARNING = '\033[93m' COLORFAIL = '\033[91m' # Search for all videos starting with "query" in database # RegEx: Search for substring "query" in path, with digits after the string and a period after the digits # (so we can be sure 'query' is not some directory name or else...) if __name__ == '__main__': outdir = os.path.join(ROOTDIR, 'out') try: os.mkdir(outdir) except OSError: print COLORWARNING + "WARNING: Output directory already exists. Existing data may be overwritten." + COLORNORMAL benchmarkTreeBuild(outdir) benchmarkSceneSearch(outdir)
[ 11748, 279, 4948, 25162, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 302, 198, 11748, 2956, 297, 571, 17, 198, 11748, 850, 14681, 198, 11748, 640, 198, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 76, 489, 13, 1904, 10786, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 479, 32604, 301, 631, 198, 198, 6738, 25064, 1330, 8420, 198, 198, 2, 916, 272, 979, 378, 290, 17425, 281, 4578, 30751, 198, 27082, 35009, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 28, 7061, 8, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 15388, 7753, 3256, 1138, 615, 283, 11639, 35009, 5959, 25664, 3256, 198, 197, 16794, 11639, 464, 1336, 3108, 284, 262, 23612, 9078, 21015, 2393, 11, 543, 481, 307, 973, 329, 262, 18335, 357, 48546, 3228, 8133, 11537, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 634, 3256, 1138, 615, 283, 11639, 15490, 3256, 198, 197, 16794, 11639, 464, 2493, 319, 543, 262, 2639, 18497, 481, 1057, 11537, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 48806, 3256, 1138, 615, 283, 11639, 11012, 3256, 198, 197, 16794, 11639, 464, 1438, 286, 262, 42591, 11012, 24047, 319, 1957, 4774, 11537, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 43681, 3256, 1138, 615, 283, 11639, 25154, 16779, 2849, 3256, 198, 197, 16794, 11639, 464, 1438, 286, 262, 12251, 287, 262, 24047, 11537, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 11612, 6978, 3256, 1138, 615, 283, 11639, 1581, 3528, 17961, 34219, 3256, 198, 197, 16794, 11639, 464, 2656, 3108, 11, 810, 262, 20743, 290, 6670, 389, 357, 48546, 10185, 737, 770, 318, 973, 329, 262, 4175, 602, 287, 262, 5072, 3696, 290, 3555, 262, 2323, 35310, 2393, 2637, 8, 198, 27082, 35009, 13, 2860, 62, 49140, 10786, 83, 37668, 3256, 1138, 615, 283, 11639, 51, 3535, 1137, 19240, 3256, 198, 197, 16794, 11639, 464, 15621, 357, 259, 13431, 8, 703, 867, 13431, 262, 1043, 2496, 460, 307, 1497, 422, 2323, 3872, 11537, 198, 198, 2, 21136, 5128, 7159, 198, 1503, 14313, 796, 350, 27415, 1137, 13, 29572, 62, 22046, 3419, 198, 198, 35009, 5959, 25664, 796, 5923, 14313, 13, 15388, 7753, 198, 15490, 796, 5923, 14313, 13, 634, 198, 11012, 20608, 796, 5923, 14313, 13, 48806, 198, 25154, 20608, 796, 5923, 14313, 13, 43681, 198, 1581, 3528, 34219, 796, 5923, 14313, 13, 11612, 6978, 198, 51, 3535, 1137, 19240, 796, 493, 7, 1503, 14313, 13, 83, 37668, 8, 198, 198, 2, 27387, 286, 428, 2393, 198, 13252, 2394, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 10786, 2637, 8, 198, 198, 361, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 35009, 5959, 25664, 4008, 393, 357, 1662, 28686, 13, 6978, 13, 4468, 576, 7, 35009, 5959, 25664, 8, 2599, 198, 197, 4798, 366, 464, 2639, 18497, 2393, 25, 705, 1, 1343, 18871, 5959, 25664, 1343, 366, 3256, 1595, 470, 2152, 393, 318, 407, 257, 2393, 2474, 198, 197, 17597, 13, 37023, 7, 16, 8, 198, 198, 361, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 1581, 3528, 34219, 4008, 393, 357, 1662, 28686, 13, 6978, 13, 9409, 343, 7, 1581, 3528, 34219, 8, 2599, 198, 197, 4798, 366, 464, 1813, 3108, 25, 705, 1, 1343, 43901, 34219, 1343, 366, 3256, 1595, 470, 2152, 393, 318, 407, 257, 8619, 2474, 198, 197, 17597, 13, 37023, 7, 16, 8, 198, 198, 38, 10234, 41119, 796, 28686, 13, 6978, 13, 22179, 7, 1581, 3528, 34219, 11, 705, 33, 1677, 3398, 44, 14175, 62, 37, 9994, 13, 51, 25010, 11537, 198, 198, 361, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 38, 10234, 41119, 4008, 393, 357, 1662, 28686, 13, 6978, 13, 4468, 576, 7, 38, 10234, 41119, 8, 2599, 198, 197, 4798, 366, 464, 2323, 35310, 2393, 25, 705, 1, 1343, 7963, 25664, 1343, 366, 3256, 1595, 470, 2152, 393, 318, 407, 257, 2393, 2474, 198, 197, 17597, 13, 37023, 7, 16, 8, 198, 198, 2, 4149, 13706, 14056, 2393, 290, 6626, 319, 3951, 290, 319, 9029, 329, 1123, 1627, 198, 2, 13706, 14056, 3073, 588, 25, 198, 2, 1279, 22766, 6978, 29, 1279, 16793, 6978, 29, 1279, 9150, 62, 6738, 29, 1279, 9150, 62, 1462, 29, 986, 198, 19555, 26947, 796, 1280, 7, 38, 10234, 41119, 11, 705, 81, 27691, 961, 22446, 35312, 10786, 59, 77, 11537, 198, 1640, 1627, 33111, 287, 2837, 7, 15, 11, 18896, 7, 19555, 26947, 8, 2599, 198, 197, 19555, 26947, 58, 1370, 33111, 60, 796, 7963, 26947, 58, 1370, 33111, 4083, 35312, 3419, 198, 198, 2, 10062, 17148, 42591, 43832, 26923, 290, 651, 20613, 290, 2008, 4947, 198, 44, 18494, 4503, 43, 28495, 796, 279, 4948, 25162, 13, 44, 25162, 11792, 7, 634, 28, 1795, 2079, 8, 198, 11012, 796, 337, 18494, 4503, 43, 28495, 58, 11012, 20608, 60, 198, 11008, 36, 2640, 796, 20137, 58, 25154, 20608, 60, 198, 198, 2, 3497, 4566, 422, 42591, 43832, 198, 10943, 16254, 796, 48876, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 705, 11250, 6, 30072, 198, 198, 25154, 30649, 1581, 42126, 796, 705, 59, 44427, 58, 15, 76, 6, 198, 46786, 31502, 796, 705, 59, 44427, 58, 6052, 76, 6, 198, 46786, 7708, 4146, 796, 705, 59, 44427, 58, 6420, 76, 6, 628, 198, 198, 2, 11140, 329, 477, 5861, 3599, 351, 366, 22766, 1, 287, 6831, 198, 2, 3310, 3109, 25, 11140, 329, 3293, 1806, 366, 22766, 1, 287, 3108, 11, 351, 19561, 706, 262, 4731, 290, 257, 2278, 706, 262, 19561, 198, 2, 357, 568, 356, 460, 307, 1654, 705, 22766, 6, 318, 407, 617, 8619, 1438, 393, 2073, 23029, 198, 197, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 448, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 34720, 11, 705, 448, 11537, 198, 197, 28311, 25, 198, 197, 197, 418, 13, 28015, 15908, 7, 448, 15908, 8, 198, 197, 16341, 440, 5188, 81, 1472, 25, 198, 197, 197, 4798, 20444, 1581, 31502, 1343, 366, 31502, 25, 25235, 8619, 1541, 7160, 13, 1475, 9665, 1366, 743, 307, 6993, 9108, 526, 1343, 20444, 30649, 1581, 42126, 628, 197, 26968, 4102, 27660, 15580, 7, 448, 15908, 8, 628, 197, 26968, 4102, 36542, 18243, 7, 448, 15908, 8 ]
2.963356
1,037
import pytest import mock import numpy as np import awkward as awk from zinv.utils.AwkwardOps import ( get_nth_object, get_nth_sorted_object_indices, get_attr_for_min_ref, jagged_prod, ) @pytest.mark.parametrize("array,id,size,out", ([ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), 0, 3, np.array([0, 3, 5]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), 1, 3, np.array([1, 4, 6]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), 2, 3, np.array([2, np.nan, 7]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), 3, 3, np.array([np.nan, np.nan, 8]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), 4, 3, np.array([np.nan, np.nan, np.nan]), ])) @pytest.mark.parametrize("array,ref,id,size,out", ([ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 0, 3, np.array([0, 4, 5]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 1, 3, np.array([2, 3, 7]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 2, 3, np.array([1, np.nan, 8]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 3, 3, np.array([np.nan, np.nan, 6]), ], [ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 4, 3, np.array([np.nan, np.nan, np.nan]), ])) @pytest.mark.parametrize("array,ref,size,out", ([ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]), awk.JaggedArray.fromiter([[3, 1, 2], [1, 2], [4, 1, 3, 2]]), 3, np.array([1, 3, 6]), ],)) @pytest.mark.parametrize("input_,output", ([ awk.JaggedArray.fromiter([[0, 1, 2], [3, 4], [5, 6, 7, 8]]).astype(np.float32), np.array([0, 12, 1680]), ],))
[ 11748, 12972, 9288, 198, 11748, 15290, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 13006, 355, 3253, 74, 198, 198, 6738, 1976, 16340, 13, 26791, 13, 23155, 12378, 41472, 1330, 357, 198, 220, 220, 220, 651, 62, 77, 400, 62, 15252, 11, 198, 220, 220, 220, 651, 62, 77, 400, 62, 82, 9741, 62, 15252, 62, 521, 1063, 11, 198, 220, 220, 220, 651, 62, 35226, 62, 1640, 62, 1084, 62, 5420, 11, 198, 220, 220, 220, 474, 14655, 62, 1676, 67, 11, 198, 8, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 18747, 11, 312, 11, 7857, 11, 448, 1600, 29565, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 657, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 15, 11, 513, 11, 642, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 352, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 16, 11, 604, 11, 718, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 362, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 17, 11, 45941, 13, 12647, 11, 767, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 513, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 37659, 13, 12647, 11, 45941, 13, 12647, 11, 807, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 604, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 37659, 13, 12647, 11, 45941, 13, 12647, 11, 45941, 13, 12647, 46570, 198, 60, 4008, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 18747, 11, 5420, 11, 312, 11, 7857, 11, 448, 1600, 29565, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 657, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 15, 11, 604, 11, 642, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 352, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 17, 11, 513, 11, 767, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 362, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 16, 11, 45941, 13, 12647, 11, 807, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 513, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 37659, 13, 12647, 11, 45941, 13, 12647, 11, 718, 46570, 198, 4357, 685, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 604, 11, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 37659, 13, 12647, 11, 45941, 13, 12647, 11, 45941, 13, 12647, 46570, 198, 60, 4008, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 18747, 11, 5420, 11, 7857, 11, 448, 1600, 29565, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 828, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 18, 11, 352, 11, 362, 4357, 685, 16, 11, 362, 4357, 685, 19, 11, 352, 11, 513, 11, 362, 11907, 828, 198, 220, 220, 220, 513, 11, 198, 220, 220, 220, 45941, 13, 18747, 26933, 16, 11, 513, 11, 718, 46570, 198, 220, 220, 220, 16589, 4008, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 15414, 62, 11, 22915, 1600, 29565, 198, 220, 220, 220, 3253, 74, 13, 41, 14655, 19182, 13, 6738, 2676, 26933, 58, 15, 11, 352, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11, 767, 11, 807, 11907, 737, 459, 2981, 7, 37659, 13, 22468, 2624, 828, 198, 220, 220, 220, 45941, 13, 18747, 26933, 15, 11, 1105, 11, 1467, 1795, 46570, 198, 4357, 4008, 198 ]
1.854403
1,147
#!/usr/bin/env python import datetime import time import os from shutil import copyfile from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from grovepi import * SLEEP_TIME = 3 dht_sensor_port = 7 dht_sensor_type = 0 g_login = GoogleAuth() g_login.LocalWebserverAuth() drive = GoogleDrive(g_login) # set loop delay time in seconds, must be less than 1000 loopdelay = 5 # set time at which to upload to google drive upload_time = datetime.time(12, 0, 0) # generate two time objects to represent a range of time using the loop delay # to make sure the current time will only be within the update range once per day upload_time_begin = datetime.time(upload_time.hour, upload_time.minute, upload_time.second) minuteoffset = loopdelay/60 secondoffset = loopdelay%60 upload_time_end = datetime.time(upload_time.hour, (upload_time.minute + minuteoffset), (upload_time.second + secondoffset)) # object to hold the currrent time now = datetime.datetime.now().time() today = datetime.datetime.now().date() # check to see if there is an old log file; if there is delete it if os.path.exists("logdata.tmp"): os.remove("logdata.tmp") #initalize temp file to hold the log data as it is produced tempfile = open("logdata.tmp", 'w') # begin file with time program was started print("Program started at %s on %s\n" % (now.strftime("%H:%M:%S"), today)) tempfile.write("Log started at %s on %s\n" % (now.strftime("%H:%M:%S"), today)) #print(upload_time_begin) #print(upload_time_end) [temperature, humidity] = dht(dht_sensor_port, dht_sensor_type) # Main loop while True: #try block to catch if the user intrupts the script running try: #update the now time now = datetime.datetime.now().time() today = datetime.datetime.now().date() # if now is between upload time and loopdelay seconds after that time: if upload_time_begin < now < upload_time_end: #close the file tempfile.close() # generate logfile final na,e logfilename = "%s.dat" % datetime.datetime.now().date() #copy contents of temp file to final log file form copyfile("logdata.tmp", logfilename) # will be uploading logic upload(logfilename) # delete old files os.remove("logdata.tmp") os.remove(logfilename) # open new tempfile and write the first line tempfile = open("logdata.tmp", 'w') tempfile.write("Log started at %s on %s\n" % (now, today)) # get/write data to the file [temperature, humidity] = dht(dht_sensor_port, dht_sensor_type) tempstring = now.strftime("%H:%M:%S") + "| TEMPERATURE: " + str(temperature) + " | HUMIDITY: " + str(humidity) + "\n" tempfile.write(tempstring) print(tempstring) # wait for a user difined number of seconds time.sleep(loopdelay) except KeyboardInterrupt: tempfile.close() interruptfile = "%s-interrupt.dat" % datetime.datetime.now().date() copyfile("logdata.tmp", interruptfile) upload(interruptfile) os.remove(interruptfile) break
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 4818, 8079, 198, 11748, 640, 198, 11748, 28686, 198, 6738, 4423, 346, 1330, 4866, 7753, 198, 6738, 279, 5173, 11590, 13, 18439, 1330, 3012, 30515, 198, 6738, 279, 5173, 11590, 13, 19472, 1330, 3012, 24825, 198, 6738, 7128, 303, 14415, 1330, 1635, 198, 198, 50, 2538, 8905, 62, 34694, 796, 513, 198, 198, 67, 4352, 62, 82, 22854, 62, 634, 796, 767, 198, 67, 4352, 62, 82, 22854, 62, 4906, 796, 657, 198, 198, 70, 62, 38235, 796, 3012, 30515, 3419, 198, 70, 62, 38235, 13, 14565, 1135, 1443, 18497, 30515, 3419, 198, 19472, 796, 3012, 24825, 7, 70, 62, 38235, 8, 628, 198, 2, 900, 9052, 5711, 640, 287, 4201, 11, 1276, 307, 1342, 621, 8576, 198, 26268, 40850, 796, 642, 198, 198, 2, 900, 640, 379, 543, 284, 9516, 284, 23645, 3708, 198, 25850, 62, 2435, 796, 4818, 8079, 13, 2435, 7, 1065, 11, 657, 11, 657, 8, 628, 198, 198, 2, 7716, 734, 640, 5563, 284, 2380, 257, 2837, 286, 640, 1262, 262, 9052, 5711, 198, 2, 284, 787, 1654, 262, 1459, 640, 481, 691, 307, 1626, 262, 4296, 2837, 1752, 583, 1110, 198, 25850, 62, 2435, 62, 27471, 796, 4818, 8079, 13, 2435, 7, 25850, 62, 2435, 13, 9769, 11, 9516, 62, 2435, 13, 11374, 11, 9516, 62, 2435, 13, 12227, 8, 198, 198, 11374, 28968, 796, 9052, 40850, 14, 1899, 198, 12227, 28968, 796, 9052, 40850, 4, 1899, 198, 25850, 62, 2435, 62, 437, 796, 4818, 8079, 13, 2435, 7, 25850, 62, 2435, 13, 9769, 11, 357, 25850, 62, 2435, 13, 11374, 1343, 5664, 28968, 828, 357, 25850, 62, 2435, 13, 12227, 1343, 1218, 28968, 4008, 628, 198, 2, 2134, 284, 1745, 262, 1090, 81, 1156, 640, 198, 2197, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2435, 3419, 198, 40838, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 4475, 3419, 628, 198, 2, 2198, 284, 766, 611, 612, 318, 281, 1468, 2604, 2393, 26, 611, 612, 318, 12233, 340, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7203, 6404, 7890, 13, 22065, 1, 2599, 198, 220, 220, 220, 28686, 13, 28956, 7203, 6404, 7890, 13, 22065, 4943, 198, 198, 2, 259, 1287, 1096, 20218, 2393, 284, 1745, 262, 2604, 1366, 355, 340, 318, 4635, 198, 29510, 7753, 796, 1280, 7203, 6404, 7890, 13, 22065, 1600, 705, 86, 11537, 198, 198, 2, 2221, 2393, 351, 640, 1430, 373, 2067, 198, 4798, 7203, 15167, 2067, 379, 4064, 82, 319, 4064, 82, 59, 77, 1, 4064, 357, 2197, 13, 2536, 31387, 7203, 4, 39, 25, 4, 44, 25, 4, 50, 12340, 1909, 4008, 198, 29510, 7753, 13, 13564, 7203, 11187, 2067, 379, 4064, 82, 319, 4064, 82, 59, 77, 1, 4064, 357, 2197, 13, 2536, 31387, 7203, 4, 39, 25, 4, 44, 25, 4, 50, 12340, 1909, 4008, 198, 198, 2, 4798, 7, 25850, 62, 2435, 62, 27471, 8, 198, 2, 4798, 7, 25850, 62, 2435, 62, 437, 8, 198, 198, 58, 11498, 21069, 11, 27716, 60, 796, 288, 4352, 7, 67, 4352, 62, 82, 22854, 62, 634, 11, 288, 4352, 62, 82, 22854, 62, 4906, 8, 628, 198, 2, 8774, 9052, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 28311, 2512, 284, 4929, 611, 262, 2836, 493, 3622, 82, 262, 4226, 2491, 198, 220, 220, 220, 1949, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19119, 262, 783, 640, 198, 220, 220, 220, 220, 220, 220, 220, 783, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1909, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 4475, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 783, 318, 1022, 9516, 640, 290, 9052, 40850, 4201, 706, 326, 640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9516, 62, 2435, 62, 27471, 1279, 783, 1279, 9516, 62, 2435, 62, 437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19836, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 7753, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 2604, 7753, 2457, 12385, 11, 68, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 34345, 796, 36521, 82, 13, 19608, 1, 4064, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 4475, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30073, 10154, 286, 20218, 2393, 284, 2457, 2604, 2393, 1296, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4866, 7753, 7203, 6404, 7890, 13, 22065, 1600, 2604, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 481, 307, 33794, 9156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9516, 7, 6404, 34345, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 1468, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7203, 6404, 7890, 13, 22065, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 6404, 34345, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1280, 649, 20218, 7753, 290, 3551, 262, 717, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 7753, 796, 1280, 7203, 6404, 7890, 13, 22065, 1600, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 7753, 13, 13564, 7203, 11187, 2067, 379, 4064, 82, 319, 4064, 82, 59, 77, 1, 4064, 357, 2197, 11, 1909, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 14, 13564, 1366, 284, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 685, 11498, 21069, 11, 27716, 60, 796, 288, 4352, 7, 67, 4352, 62, 82, 22854, 62, 634, 11, 288, 4352, 62, 82, 22854, 62, 4906, 8, 628, 220, 220, 220, 220, 220, 220, 220, 20218, 8841, 796, 783, 13, 2536, 31387, 7203, 4, 39, 25, 4, 44, 25, 4, 50, 4943, 1343, 366, 91, 309, 3620, 18973, 40086, 25, 366, 1343, 965, 7, 11498, 21069, 8, 1343, 366, 220, 220, 930, 45850, 2389, 9050, 25, 366, 1343, 965, 7, 17047, 17995, 8, 1343, 37082, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 7753, 13, 13564, 7, 29510, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 29510, 8841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4043, 329, 257, 2836, 288, 361, 1389, 1271, 286, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 26268, 40850, 8, 628, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 7753, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11313, 7753, 796, 36521, 82, 12, 3849, 3622, 13, 19608, 1, 4064, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 4475, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4866, 7753, 7203, 6404, 7890, 13, 22065, 1600, 11313, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 7, 3849, 3622, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 3849, 3622, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2270, 198 ]
2.579839
1,240
colors = { "white": (255, 255, 255), "red": (255, 0, 0), "green": (0, 255, 0), "blue": (0, 0, 255), "orange": (255, 128, 0) }
[ 4033, 669, 796, 1391, 198, 220, 220, 220, 366, 11186, 1298, 357, 13381, 11, 14280, 11, 14280, 828, 198, 220, 220, 220, 366, 445, 1298, 357, 13381, 11, 657, 11, 657, 828, 198, 220, 220, 220, 366, 14809, 1298, 357, 15, 11, 14280, 11, 657, 828, 198, 220, 220, 220, 366, 17585, 1298, 357, 15, 11, 657, 11, 14280, 828, 198, 220, 220, 220, 366, 43745, 1298, 357, 13381, 11, 13108, 11, 657, 8, 198, 92 ]
1.907895
76
from domain.address_details import AddressDetails from domain.gdk_account import GdkAccount from domain.gdk_wallet import GdkWallet from typing import Dict, List from domain.utxo import Utxo from services.wallet import WalletService class AccountService: """create a new GDK account""" """derive new addresses for an account""" """list all known addresses of the account""" """get the balance of the account, include only unspent where min_num_confs is met""" """list all the known unspents for an account"""
[ 6738, 7386, 13, 21975, 62, 36604, 1330, 17917, 24259, 198, 6738, 7386, 13, 21287, 74, 62, 23317, 1330, 402, 34388, 30116, 198, 6738, 7386, 13, 21287, 74, 62, 44623, 1330, 402, 34388, 47152, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 198, 198, 6738, 7386, 13, 315, 87, 78, 1330, 7273, 87, 78, 198, 6738, 2594, 13, 44623, 1330, 37249, 16177, 198, 198, 4871, 10781, 16177, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 17953, 257, 649, 27044, 42, 1848, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 1082, 425, 649, 9405, 329, 281, 1848, 37811, 628, 220, 220, 220, 37227, 4868, 477, 1900, 9405, 286, 262, 1848, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 1136, 262, 5236, 286, 262, 1848, 11, 2291, 691, 555, 2777, 298, 810, 949, 62, 22510, 62, 1102, 9501, 318, 1138, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 4868, 477, 262, 1900, 555, 2777, 658, 329, 281, 1848, 37811 ]
3.226744
172
from __future__ import absolute_import # flake8: noqa # import apis into api package from ngsi_v2.api.api_entry_point_api import APIEntryPointApi from ngsi_v2.api.attribute_value_api import AttributeValueApi from ngsi_v2.api.attributes_api import AttributesApi from ngsi_v2.api.batch_operations_api import BatchOperationsApi from ngsi_v2.api.entities_api import EntitiesApi from ngsi_v2.api.registrations_api import RegistrationsApi from ngsi_v2.api.subscriptions_api import SubscriptionsApi from ngsi_v2.api.types_api import TypesApi
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 2, 781, 539, 23, 25, 645, 20402, 198, 198, 2, 1330, 2471, 271, 656, 40391, 5301, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 15042, 62, 13000, 62, 4122, 62, 15042, 1330, 7824, 30150, 12727, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 42348, 62, 8367, 62, 15042, 1330, 3460, 4163, 11395, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 1078, 7657, 62, 15042, 1330, 49213, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 43501, 62, 3575, 602, 62, 15042, 1330, 347, 963, 18843, 602, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 298, 871, 62, 15042, 1330, 7232, 871, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 2301, 396, 9143, 62, 15042, 1330, 13811, 9143, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 7266, 12048, 507, 62, 15042, 1330, 3834, 12048, 507, 32, 14415, 198, 6738, 23370, 13396, 62, 85, 17, 13, 15042, 13, 19199, 62, 15042, 1330, 24897, 32, 14415, 198 ]
2.84127
189
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 198 ]
3.444444
9
from __future__ import annotations from cli_stryket.system_exception import InvalidSystemException
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 6738, 537, 72, 62, 301, 563, 7126, 13, 10057, 62, 1069, 4516, 1330, 17665, 11964, 16922, 628, 628, 198 ]
3.961538
26
import pandas as pd import glob txt_files = glob.glob("*.txt") image_files=[] for i in txt_files: i=i.replace(".txt", ""); image_files.append(i) print(image_files) print(len(image_files)) #print((txt_files)) df=pd.read_csv('train.csv') # enter your filename with exiftags df['Assessment']='' df['Compression/Ratio']='' df['BPP']='' df['Signature']='' df['Signature Rotated']='' df['SW']='' df['Luminance(QT)']='' df['Chrominance(QT)']='' df['Quality Factor(Luminance)']='' df['Quality Factor(Chrominance)']='' print (df.name) for i in image_files: #df2=df[df['name'].str.contains(i)] #print(df2) file_name=i+".txt" sw=[] with open(file_name, 'r') as f: for line in f: if 'Destination ID=0 (Luminance)' in line: count=0 lum_list=[] for line in f: if count<9: #print (line) count=count+1 lum_list.append(line) else: break if 'Destination ID=1 (Chrominance)' in line: count=0 chrom_list=[] for line in f: if count<9: #print (line) count=count+1 chrom_list.append(line) else: break #cr='' if 'Compression Ratio:' in line: cr=line print (cr) else: cr='' #bpp='' if 'Bits per pixel:' in line: bpp=line #print (line) else: bpp='' if 'Signature:' in line: sign=line #print (line) if 'Signature (Rotated):' in line: signR=line #print (line) if 'SW :' in line: #print(line) sw.append(line) if 'ASSESSMENT:' in line: assessment=line #print (line) lum_li=lum_list[:-1] chrom_li=chrom_list[:-1] #print (sw) #print(lum_li) #print(chrom_li) #print (cr) cr= cr print (cr) bpp = bpp.strip('Bits per pixel: ') sign = sign.strip('Signature: ') signR = signR.strip('Signature (Rotated): ') assessment=assessment.strip('ASSESSMENT: Class 1 - ') lum_qf= (lum_list[-1]) chrom_qf= (chrom_list[-1]) lum_qf=lum_qf.strip('Approx quality factor = ') chrom_qf=chrom_qf.strip('Approx quality factor = ') df.loc[df['name'].str.contains(i), 'Assessment'] = assessment df.loc[df['name'].str.contains(i), 'Compression/Ratio'] = str(cr) df.loc[df['name'].str.contains(i), 'BPP'] = str(bpp) df.loc[df['name'].str.contains(i), 'Signature'] = sign df.loc[df['name'].str.contains(i), 'Signature Rotated'] = signR df.loc[df['name'].str.contains(i), 'SW'] = str(sw) df.loc[df['name'].str.contains(i), 'Luminance(QT)'] = str(lum_li) df.loc[df['name'].str.contains(i), 'Chrominance(QT)'] = str(chrom_li) df.loc[df['name'].str.contains(i), 'Quality Factor(Luminance)'] = lum_qf df.loc[df['name'].str.contains(i), 'Quality Factor(Chrominance)'] = chrom_qf df.to_csv('updated_test.csv', index=False) #your csv with exif and jpegsnoop data print (df.shape)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 15095, 198, 14116, 62, 16624, 796, 15095, 13, 4743, 672, 7203, 24620, 14116, 4943, 198, 9060, 62, 16624, 28, 21737, 198, 1640, 1312, 287, 256, 742, 62, 16624, 25, 198, 220, 220, 220, 1312, 28, 72, 13, 33491, 7, 1911, 14116, 1600, 13538, 1776, 198, 220, 220, 220, 2939, 62, 16624, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 198, 4798, 7, 9060, 62, 16624, 8, 198, 198, 4798, 7, 11925, 7, 9060, 62, 16624, 4008, 198, 198, 2, 4798, 19510, 14116, 62, 16624, 4008, 198, 198, 7568, 28, 30094, 13, 961, 62, 40664, 10786, 27432, 13, 40664, 11537, 1303, 3802, 534, 29472, 351, 409, 2135, 3775, 198, 7568, 17816, 8021, 21687, 20520, 28, 7061, 198, 7568, 17816, 7293, 2234, 14, 29665, 952, 20520, 28, 7061, 198, 7568, 17816, 33, 10246, 20520, 28, 7061, 198, 7568, 17816, 11712, 1300, 20520, 28, 7061, 198, 7568, 17816, 11712, 1300, 18481, 515, 20520, 28, 7061, 198, 7568, 17816, 17887, 20520, 28, 7061, 198, 7568, 17816, 43, 7230, 590, 7, 48, 51, 8, 20520, 28, 7061, 198, 7568, 17816, 1925, 398, 14149, 7, 48, 51, 8, 20520, 28, 7061, 198, 7568, 17816, 35013, 27929, 7, 43, 7230, 590, 8, 20520, 28, 7061, 198, 7568, 17816, 35013, 27929, 7, 1925, 398, 14149, 8, 20520, 28, 7061, 198, 198, 4798, 357, 7568, 13, 3672, 8, 628, 198, 1640, 1312, 287, 2939, 62, 16624, 25, 198, 220, 220, 220, 1303, 7568, 17, 28, 7568, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 15437, 198, 220, 220, 220, 1303, 4798, 7, 7568, 17, 8, 220, 220, 220, 220, 628, 198, 220, 220, 220, 2393, 62, 3672, 28, 72, 10, 1911, 14116, 1, 198, 220, 220, 220, 1509, 28, 21737, 198, 220, 220, 220, 351, 1280, 7, 7753, 62, 3672, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 24159, 1883, 4522, 28, 15, 357, 43, 7230, 590, 33047, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46390, 62, 4868, 28, 21737, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 27, 24, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 9127, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46390, 62, 4868, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 24159, 1883, 4522, 28, 16, 357, 1925, 398, 14149, 33047, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 4868, 28, 21737, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 27, 24, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 28, 9127, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 4868, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6098, 28, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7293, 2234, 33956, 32105, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1067, 28, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 6098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1067, 28, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 65, 381, 28, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 33, 896, 583, 17465, 32105, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 381, 28, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 381, 28, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 11712, 1300, 32105, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1051, 28, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 11712, 1300, 357, 24864, 515, 2599, 6, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1051, 49, 28, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 17887, 1058, 6, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1509, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 10705, 7597, 10979, 32105, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8922, 28, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 46390, 62, 4528, 28, 75, 388, 62, 4868, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 4528, 28, 28663, 62, 4868, 58, 21912, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 2032, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 75, 388, 62, 4528, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 28663, 62, 4528, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 6098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1067, 28, 1067, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 6098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 381, 796, 275, 381, 13, 36311, 10786, 33, 896, 583, 17465, 25, 220, 220, 220, 220, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 796, 1051, 13, 36311, 10786, 11712, 1300, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 49, 796, 1051, 49, 13, 36311, 10786, 11712, 1300, 357, 24864, 515, 2599, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8922, 28, 562, 21687, 13, 36311, 10786, 10705, 7597, 10979, 25, 5016, 352, 532, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 46390, 62, 80, 69, 28, 357, 75, 388, 62, 4868, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 80, 69, 28, 357, 28663, 62, 4868, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 46390, 62, 80, 69, 28, 75, 388, 62, 80, 69, 13, 36311, 10786, 4677, 13907, 3081, 5766, 796, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15358, 62, 80, 69, 28, 28663, 62, 80, 69, 13, 36311, 10786, 4677, 13907, 3081, 5766, 796, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 8021, 21687, 20520, 796, 8922, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 7293, 2234, 14, 29665, 952, 20520, 796, 965, 7, 6098, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 33, 10246, 20520, 796, 965, 7, 65, 381, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 11712, 1300, 20520, 796, 1051, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 11712, 1300, 18481, 515, 20520, 796, 1051, 49, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 17887, 20520, 796, 965, 7, 2032, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 43, 7230, 590, 7, 48, 51, 8, 20520, 796, 965, 7, 75, 388, 62, 4528, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 1925, 398, 14149, 7, 48, 51, 8, 20520, 796, 965, 7, 28663, 62, 4528, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 35013, 27929, 7, 43, 7230, 590, 8, 20520, 796, 46390, 62, 80, 69, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 7568, 17816, 3672, 6, 4083, 2536, 13, 3642, 1299, 7, 72, 828, 705, 35013, 27929, 7, 1925, 398, 14149, 8, 20520, 796, 15358, 62, 80, 69, 198, 198, 7568, 13, 1462, 62, 40664, 10786, 43162, 62, 9288, 13, 40664, 3256, 6376, 28, 25101, 8, 1303, 14108, 269, 21370, 351, 409, 361, 290, 474, 431, 14542, 3919, 404, 1366, 198, 4798, 357, 7568, 13, 43358, 8 ]
1.69129
2,193
#!/usr/bin/env python ## # omnibus - deadbits # Twitter username search ## from BeautifulSoup import BeautifulSoup from http import get
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2235, 198, 2, 22284, 26333, 532, 2636, 9895, 198, 2, 3009, 20579, 2989, 198, 2235, 198, 198, 6738, 23762, 50, 10486, 1330, 23762, 50, 10486, 198, 198, 6738, 2638, 1330, 651, 628, 628 ]
3.357143
42
import logging from niftypet.ninst import install_tools as tls from .conftest import HOME log = logging.getLogger(__name__) DATA_URL = "https://zenodo.org/record/3877529/files/amyloidPET_FBP_TP0_extra.zip?download=1" if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
[ 11748, 18931, 198, 198, 6738, 47803, 6449, 13, 77, 8625, 1330, 2721, 62, 31391, 355, 256, 7278, 198, 198, 6738, 764, 1102, 701, 395, 1330, 41779, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 26947, 62, 21886, 796, 366, 5450, 1378, 4801, 24313, 13, 2398, 14, 22105, 14, 32220, 2425, 1959, 14, 16624, 14, 321, 2645, 1868, 47731, 62, 37, 20866, 62, 7250, 15, 62, 26086, 13, 13344, 30, 15002, 28, 16, 1, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 1388, 3419, 198 ]
2.62931
116
forces = pinocchio.StdVect_Force() for i in range(rmodel.njoints): forces.append(pinocchio.Force.Zero()) tau,fr,fl = pbm.x2vars(res) Mr = rmodel.frames[pbm.idR].placement jr = rmodel.frames[pbm.idR].parent forces[jr] = Mr.act(pinocchio.Force(fr)) Ml = rmodel.frames[pbm.idL].placement jl = rmodel.frames[pbm.idL].parent fl = pinocchio.Force(fl) forces[jl] = Mr.act(pinocchio.Force(fl)) print(pinocchio.rnea(rmodel,rdata,pbm.q,pbm.vq,zero(rmodel.nv),forces)-tau)
[ 27087, 796, 6757, 420, 40900, 13, 1273, 67, 53, 478, 62, 10292, 3419, 198, 1640, 1312, 287, 2837, 7, 81, 19849, 13, 77, 73, 1563, 82, 2599, 3386, 13, 33295, 7, 11635, 420, 40900, 13, 10292, 13, 28667, 28955, 198, 198, 83, 559, 11, 8310, 11, 2704, 796, 279, 20475, 13, 87, 17, 85, 945, 7, 411, 8, 198, 198, 5246, 796, 374, 19849, 13, 37805, 58, 79, 20475, 13, 312, 49, 4083, 489, 5592, 198, 73, 81, 796, 374, 19849, 13, 37805, 58, 79, 20475, 13, 312, 49, 4083, 8000, 198, 27087, 58, 73, 81, 60, 796, 1770, 13, 529, 7, 11635, 420, 40900, 13, 10292, 7, 8310, 4008, 198, 198, 44, 75, 796, 374, 19849, 13, 37805, 58, 79, 20475, 13, 312, 43, 4083, 489, 5592, 198, 20362, 796, 374, 19849, 13, 37805, 58, 79, 20475, 13, 312, 43, 4083, 8000, 198, 2704, 796, 6757, 420, 40900, 13, 10292, 7, 2704, 8, 198, 27087, 58, 20362, 60, 796, 1770, 13, 529, 7, 11635, 420, 40900, 13, 10292, 7, 2704, 4008, 198, 198, 4798, 7, 11635, 420, 40900, 13, 81, 39718, 7, 81, 19849, 11, 4372, 1045, 11, 79, 20475, 13, 80, 11, 79, 20475, 13, 85, 80, 11, 22570, 7, 81, 19849, 13, 48005, 828, 27087, 13219, 83, 559, 8, 198 ]
2.187793
213
''' boxdb/support_litebase -> v0.3 This file contain code for 1)get the data from file, and get row data [ ]get_content() speed optimization [ ]get_element() function added ''' def get_content(context, target): """ It gets the content from any file with data in it(auto generated) and returns in list """ lines = [] try: with open(target,encoding='UTF-8') as file: for line in file: line = line.strip() lines.append(line) except FileNotFoundError: print(f"{context} file missing") return lines def get_columns(table_name): """ It gets the content from any file with data in it(auto generated) and returns in list """ lines = [] try: with open(f"{table_name}/{table_name}_data.txt",encoding='UTF-8') as file: for line in file: line = line.strip() try: lines.append(line.removesuffix("-P").strip()) except Exception: lines.append(line) except FileNotFoundError: print("column file missing") return lines def get_primary_column(table_name): """ This gets all the primary key rows from the table """ #FIXME optimization need takes 0.009 secs columns= get_content("row", f"{table_name}/{table_name}_data.txt") return [ elements[: len(elements) - 2].strip() for elements in columns if elements.find("-P") > 0] def get_elements(table_name,column): """ get values from column """ with open(f'.\\{table_name}\\tables\\{column}.txt','r+',encoding="UTF-8") as files: line=files.readlines() return [elements.removesuffix('\n').strip() for elements in line]
[ 7061, 6, 198, 3524, 9945, 14, 11284, 62, 36890, 8692, 4613, 410, 15, 13, 18, 198, 198, 1212, 2393, 3994, 2438, 329, 198, 16, 8, 1136, 262, 1366, 422, 2393, 11, 290, 651, 5752, 1366, 198, 198, 58, 2361, 1136, 62, 11299, 3419, 2866, 23989, 198, 58, 2361, 1136, 62, 30854, 3419, 2163, 2087, 198, 198, 7061, 6, 198, 198, 4299, 651, 62, 11299, 7, 22866, 11, 2496, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 632, 3011, 262, 2695, 422, 597, 2393, 351, 198, 220, 220, 220, 1366, 287, 340, 7, 23736, 7560, 8, 290, 5860, 287, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 17635, 198, 220, 220, 220, 1949, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 16793, 11, 12685, 7656, 11639, 48504, 12, 23, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 22866, 92, 2393, 4814, 4943, 198, 220, 220, 220, 1441, 3951, 198, 198, 4299, 651, 62, 28665, 82, 7, 11487, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 632, 3011, 262, 2695, 422, 597, 2393, 351, 198, 220, 220, 220, 1366, 287, 340, 7, 23736, 7560, 8, 290, 5860, 287, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 17635, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 1, 90, 11487, 62, 3672, 92, 14, 90, 11487, 62, 3672, 92, 62, 7890, 13, 14116, 1600, 12685, 7656, 11639, 48504, 12, 23, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 1370, 13, 2787, 5241, 1648, 844, 7203, 12, 47, 11074, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28665, 2393, 4814, 4943, 198, 220, 220, 220, 1441, 3951, 198, 220, 220, 220, 220, 198, 198, 4299, 651, 62, 39754, 62, 28665, 7, 11487, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 3011, 477, 262, 4165, 1994, 15274, 422, 262, 3084, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 47084, 11682, 23989, 761, 2753, 657, 13, 28694, 792, 82, 198, 220, 220, 220, 15180, 28, 651, 62, 11299, 7203, 808, 1600, 277, 1, 90, 11487, 62, 3672, 92, 14, 90, 11487, 62, 3672, 92, 62, 7890, 13, 14116, 4943, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 4847, 58, 25, 18896, 7, 68, 3639, 8, 532, 362, 4083, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4847, 287, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4847, 13, 19796, 7203, 12, 47, 4943, 1875, 657, 60, 198, 198, 4299, 651, 62, 68, 3639, 7, 11487, 62, 3672, 11, 28665, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 651, 3815, 422, 5721, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 1280, 7, 69, 4458, 6852, 90, 11487, 62, 3672, 92, 6852, 83, 2977, 6852, 90, 28665, 27422, 14116, 41707, 81, 10, 3256, 12685, 7656, 2625, 48504, 12, 23, 4943, 355, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 28, 16624, 13, 961, 6615, 3419, 198, 220, 220, 220, 1441, 685, 68, 3639, 13, 2787, 5241, 1648, 844, 10786, 59, 77, 27691, 36311, 3419, 329, 4847, 287, 1627, 60, 198 ]
2.320313
768
import re CITY_RE = re.compile('[^a-zA-Z- ]') DATA = { 'a': { 'anzherosudzhensk':'анжеро-судженск', 'ashukino':'ашукино', }, 'b': { 'bronnitsy':'бронницы', 'biysk':'бийск', }, 'c': { 'chelyabinsk':'челябинск', }, 'd': { }, 'e': { 'elektrostal':'электросталь', }, 'f': { }, 'g': { }, 'h': { }, 'i': { 'ivanteyevka':'ивантеевка', 'irkutsk':'иркутск', 'ivanovo':'иваново', }, 'j': { }, 'k': { 'kirov':'киров', 'krasnoarmeysk':'красноармейск', 'korolyov':'королев', 'kashira':'кашира', 'kazan':'казань', 'kozhevnikovo':'кожевниково', 'klin':'клин', 'klimovsk':'климовск', 'krasnodar':'краснодар', }, 'l': { 'leninsk_kuznetsky':'ленинск-кузнецкий', }, 'm': { 'moscow':'москва', 'mezhdurechensk':'междуреченск', }, 'n': { 'novoaltaysk':'новоалтайск', 'nizhniy_novgorod':'нижний новгород', }, 'o': { 'oktyabrsky':'октябрьский', 'orenburg':'оренбург', }, 'p': { 'podolsk':'подольск', 'plavsk':'плавск', 'prokopyevsk':'прокопьевск', }, 'q': { }, 'r': { 'ramenskoye':'раменское', }, 's': { 'st_petersburg':'санкт-петербург', 'staraya yurga':'старая юрга', 'sverdlovskiy':'свердловский', }, 't': { 'tayga':'тайга', 'tula':'тула', }, 'v': { 'volgograd':'волгоград', }, 'u': { }, 'w': { }, 'x': { }, 'y': { 'yaroslavl':'ярославль', 'yekaterinburg':'екатеринбург', }, 'z': { 'zhukovskiy':'жуковский', }, }
[ 11748, 302, 198, 198, 34, 9050, 62, 2200, 796, 302, 13, 5589, 576, 10786, 58, 61, 64, 12, 89, 32, 12, 57, 12, 2361, 11537, 198, 26947, 796, 1391, 198, 220, 220, 220, 705, 64, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 35410, 258, 4951, 463, 89, 5135, 74, 10354, 6, 16142, 22177, 140, 114, 16843, 21169, 15166, 12, 21727, 35072, 43666, 140, 114, 16843, 22177, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 1077, 2724, 2879, 10354, 6, 16142, 141, 230, 35072, 31583, 18849, 22177, 15166, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 65, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 65, 1313, 77, 896, 88, 10354, 6, 140, 109, 21169, 15166, 22177, 22177, 18849, 141, 228, 45035, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 8482, 893, 74, 10354, 6, 140, 109, 18849, 140, 117, 21727, 31583, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 66, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2395, 306, 397, 35803, 10354, 6, 141, 229, 16843, 30143, 40623, 140, 109, 18849, 22177, 21727, 31583, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 67, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 68, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11129, 21841, 305, 7757, 10354, 6, 141, 235, 30143, 16843, 31583, 20375, 21169, 15166, 21727, 20375, 16142, 30143, 45367, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 69, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 70, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 71, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 72, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 452, 415, 2959, 1990, 4914, 10354, 6, 18849, 38857, 16142, 22177, 20375, 16843, 16843, 38857, 31583, 16142, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 14232, 5500, 74, 10354, 6, 18849, 21169, 31583, 35072, 20375, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 13809, 18768, 10354, 6, 18849, 38857, 16142, 22177, 25443, 110, 15166, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 73, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 74, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 4106, 18657, 10354, 6, 31583, 18849, 21169, 25443, 110, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 8847, 3919, 283, 1326, 893, 74, 10354, 6, 31583, 21169, 16142, 21727, 22177, 15166, 16142, 21169, 43108, 16843, 140, 117, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 273, 3366, 709, 10354, 6, 31583, 15166, 21169, 25443, 119, 16843, 38857, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 1077, 8704, 10354, 6, 31583, 16142, 141, 230, 18849, 21169, 16142, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 1031, 272, 10354, 6, 31583, 16142, 140, 115, 16142, 22177, 45367, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 7204, 89, 258, 85, 17187, 18768, 10354, 6, 31583, 25443, 114, 16843, 38857, 22177, 18849, 31583, 25443, 110, 15166, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 2815, 10354, 6, 31583, 30143, 18849, 22177, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 2475, 709, 8135, 10354, 6, 31583, 30143, 18849, 43108, 25443, 110, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 74, 8847, 77, 375, 283, 10354, 6, 31583, 21169, 16142, 21727, 22177, 25443, 112, 16142, 21169, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 75, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11925, 35803, 62, 74, 10277, 45938, 2584, 10354, 6, 30143, 16843, 22177, 18849, 22177, 21727, 31583, 12, 31583, 35072, 140, 115, 22177, 16843, 141, 228, 31583, 18849, 140, 117, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 76, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 16785, 8232, 10354, 6, 43108, 15166, 21727, 31583, 38857, 16142, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 1326, 23548, 67, 495, 29937, 74, 10354, 6, 43108, 16843, 140, 114, 43666, 35072, 21169, 16843, 141, 229, 16843, 22177, 21727, 31583, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 77, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 77, 18768, 2501, 592, 74, 10354, 6, 22177, 25443, 110, 15166, 16142, 30143, 20375, 16142, 140, 117, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 77, 528, 21116, 7745, 62, 37302, 7053, 375, 10354, 6, 22177, 18849, 140, 114, 22177, 18849, 140, 117, 12466, 121, 25443, 110, 140, 111, 15166, 21169, 25443, 112, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 78, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 482, 774, 397, 3808, 2584, 10354, 6, 25443, 118, 20375, 40623, 140, 109, 21169, 45367, 21727, 31583, 18849, 140, 117, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 29578, 7423, 10354, 6, 15166, 21169, 16843, 22177, 140, 109, 35072, 21169, 140, 111, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 79, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 33320, 349, 8135, 10354, 6, 140, 123, 25443, 112, 25443, 119, 45367, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 489, 615, 8135, 10354, 6, 140, 123, 30143, 16142, 38857, 21727, 31583, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 1676, 74, 11081, 1990, 8135, 10354, 6, 140, 123, 21169, 25443, 118, 25443, 123, 45367, 16843, 38857, 21727, 31583, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 80, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 81, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 859, 641, 74, 726, 68, 10354, 6, 21169, 16142, 43108, 16843, 22177, 21727, 31583, 15166, 16843, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 82, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 301, 62, 6449, 364, 7423, 10354, 6, 21727, 16142, 22177, 31583, 20375, 12, 140, 123, 16843, 20375, 16843, 21169, 140, 109, 35072, 21169, 140, 111, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 7364, 11729, 331, 45098, 10354, 6, 21727, 20375, 16142, 21169, 16142, 40623, 220, 141, 236, 21169, 140, 111, 16142, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 82, 332, 25404, 709, 20545, 88, 10354, 6, 21727, 38857, 16843, 21169, 43666, 30143, 25443, 110, 21727, 31583, 18849, 140, 117, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 83, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 83, 323, 4908, 10354, 6, 20375, 16142, 140, 117, 140, 111, 16142, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 83, 4712, 10354, 6, 20375, 35072, 30143, 16142, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 85, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 10396, 70, 519, 6335, 10354, 6, 38857, 25443, 119, 140, 111, 25443, 111, 21169, 16142, 43666, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 84, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 86, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 87, 10354, 1391, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 88, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 88, 283, 26388, 75, 10354, 6, 40623, 21169, 15166, 21727, 30143, 16142, 38857, 30143, 45367, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 88, 988, 729, 259, 7423, 10354, 6, 16843, 31583, 16142, 20375, 16843, 21169, 18849, 22177, 140, 109, 35072, 21169, 140, 111, 3256, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 89, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 705, 23548, 2724, 709, 20545, 88, 10354, 6, 140, 114, 35072, 31583, 25443, 110, 21727, 31583, 18849, 140, 117, 3256, 198, 220, 220, 220, 8964, 198, 92, 198 ]
1.317945
1,343
import json import os from collections import OrderedDict from itertools import count from multiprocessing import cpu_count from tempfile import TemporaryDirectory as InTemporaryDirectory from types import MethodType from joblib import Parallel, delayed from checkpoint import __version__ as version from checkpoint.crypt import Crypt, generate_key from checkpoint.io import IO from checkpoint.readers import get_all_readers from checkpoint.utils import LogColors, Logger, get_reader_by_extension class Sequence: """Class to represent a sequence of operations.""" def __init__(self, sequence_name, order_dict=None, logger=None, terminal_log=False): """Initialize the sequence class. Parameters ---------- sequence_name: str Name of the sequence. order_dict: dict, optional Dictionary of function names and their order in the sequence. logger: `checkpoint.utils.Logger`, optional Logger for the sequence class log: bool, optional If True, the sequence will be logged. """ self.terminal_log = terminal_log self.log_mode = 't' if self.terminal_log else 'f' self.logger = logger or Logger(log_mode=self.log_mode) self.sequence_name = sequence_name self.sequence_dict = OrderedDict() self.order_dict = order_dict or {} self._sequence_functions = self.sequence_dict.items() self.sequence_functions = [] self.get_sequence_functions() # User hook that is triggered when the sequence/sequence function has finished self.on_sequence_end = lambda seq: None self.on_sequence_function_end = lambda seq: None def __repr__(self): """Return the string representation of the Sequence.""" _member_functions = [ _func.__name__ for _func in self.sequence_dict.values()] return f'Name: {self.name}, Member Function: {_member_functions}' def add_sequence_function(self, func, order=0): """Add a member function to the sequence. Parameters ---------- func: method Function that is to be added to the sequence. order: int, optional The order of the function in the sequence """ if not func.__name__.startswith('seq'): raise ValueError('Function name must start with "seq"') if order in self.sequence_dict: _msg = f'Warning: overriting {self.sequence_dict[order].__name__} with {func.__name__}' self.logger.log( _msg, LogColors.WARNING, timestamp=True, log_caller=True, log_type="INFO") self.sequence_dict[order] = func def add_sub_sequence(self, sequence, order=0): """Add a sub sequence to the current sequence. Parameter --------- sequence: :class: `Sequence` The sub sequence that is to be added order: int, optional The order of the sub sequence in the sequence """ if not isinstance(sequence, Sequence): raise TypeError('Sub sequence must be of type Sequence') _iterator = (count(start=order, step=1)) for func_obj in sequence.sequence_dict.items(): self.add_sequence_function(func_obj[1], order=next(_iterator)) def execute_sequence(self, execution_policy='decreasing_order', pass_args=False): """Execute all functions in the current sequence. Parameters ---------- execution_policy: str The policy to be followed while executing the functions. Possible values are 'increasing_order' or 'decreasing_order'. pass_args: bool If True, the arguments of the executed function will be passed to the next function. """ self.update_order() _return_values = [] if execution_policy == 'decreasing_order': _sorted_sequence = sorted(self.sequence_dict.items(), reverse=True) for func_obj in _sorted_sequence: context_text = func_obj[1].__name__.split( 'seq_')[-1].replace('_', ' ').title() try: if pass_args: if len(_return_values) > 0: _return_value = func_obj[1](_return_values[-1]) else: _return_value = func_obj[1]() else: _return_value = func_obj[1]() except Exception as e: _msg = f'{context_text}' self.logger.log( _msg, [LogColors.ERROR, LogColors.UNDERLINE], timestamp=True, log_type="ERROR") raise type(e)(f'{context_text} failed with error: {e}') _msg = f'{context_text}' self.logger.log( _msg, [LogColors.SUCCESS, LogColors.UNDERLINE], timestamp=True, log_type="SUCCESS") self.on_sequence_function_end(self) _return_values.append(_return_value) self.on_sequence_end(self) elif execution_policy == 'increasing_order': for _, func in self.sequence_dict.items(): if pass_args: _return_value = func(_return_values[-1]) else: _return_value = func() _return_values.append(_return_value) self.on_sequence_end(self) else: raise ValueError( f'{execution_policy} is an invalid execution policy') return _return_values def update_order(self): """Update the order of sequence functions in sequence dict.""" self.sequence_dict = OrderedDict(sorted(self.sequence_dict.items())) def flush_sequence(self): """Flush the sequence.""" self.sequence_dict.clear() def get_sequence_functions(self): """Get all the sequence functions.""" self.sequence_functions.clear() for name in dir(self): if name.startswith('seq') and isinstance(getattr(self, name), MethodType): _func = getattr(self, name) if name not in self.order_dict: self.order_dict[name] = len(self.sequence_functions) self.sequence_functions.append(_func) self.generate_sequence() def generate_sequence(self): """Generate a sequence from all memeber functions.""" for func in self.sequence_functions: _name = func.__name__ _order = self.order_dict[_name] self.add_sequence_function(func, _order) @property @property @sequence_functions.setter def sequence_functions(self, functions): """Set the value of sequence functions to a list. Parameters ---------- functions: list of methods List of methods that are to be assigned """ self._sequence_functions = functions[:] class IOSequence(Sequence): """Class to represent a sequence of IO operations.""" def __init__(self, sequence_name='IO_Sequence', order_dict=None, root_dir=None, ignore_dirs=None, num_cores=None, terminal_log=False): """Initialize the IO sequence class. Default execution sequence is: 1. Walk through the root directory 2. Group files by extension 3. Map readers based on extension 4. Read files 5. Encrypt the files Parameters ---------- sequence_name: str Name of the sequence. order_dict: dict, optional Dictionary of function names and their order in the sequence. root_dir: str, optional The root directory. ignore_dirs: list of str, optional List of directories to be ignored. num_cores: int, optional Number of cores to be used for parallel processing. terminal_log: bool, optional If True, messages will be logged to the terminal """ self.default_order_dict = { 'seq_walk_directories': 4, 'seq_group_files': 3, 'seq_map_readers': 2, 'seq_read_files': 1, 'seq_encrypt_files': 0, } super(IOSequence, self).__init__(sequence_name, order_dict or self.default_order_dict, terminal_log=terminal_log) self.root_dir = root_dir or os.getcwd() self.ignore_dirs = ignore_dirs or [] self.ignore_dirs.append('.checkpoint') self.io = IO(self.root_dir, ignore_dirs=self.ignore_dirs) self.num_cores = num_cores or cpu_count() def seq_walk_directories(self): """Walk through all directories in the root directory. Parameters ---------- root_directory: str The root directory to be walked through. """ directory2files = {} for root, file in self.io.walk_directory(): if root in directory2files: directory2files[root].append(os.path.join(root, file)) else: directory2files[root] = [os.path.join(root, file)] return directory2files def seq_group_files(self, directory2files): """Group files in the same directory. Parameters ---------- directory2files: dict Dictionary of directory names and their files. """ extensions_dict = {} for files in directory2files.items(): for file in files[1]: base_file = os.path.basename(file) extension = base_file.split('.')[-1].lower() if extension not in extensions_dict: extensions_dict[extension] = [file] else: extensions_dict[extension].append(file) return extensions_dict def seq_map_readers(self, extensions_dict): """Map the extensions to their respective Readers. Parameters ---------- extensions_dict: dict Dictionary of extensions and their files. Returns ------- dict Dictionary of extensions and their Readers. """ _readers = {} unavailabe_extensions = [] for extension, _ in extensions_dict.items(): _readers[extension] = get_reader_by_extension(extension) if not _readers[extension]: all_readers = get_all_readers() with InTemporaryDirectory() as temp_dir: temp_file = os.path.join(temp_dir, f'temp.{extension}') self.io.write(temp_file, 'w+', 'test content') selected_reader = None for reader in all_readers: try: _msg = f'Trying {reader.__name__} for extension {extension}' self.logger.log( _msg, colors=LogColors.BOLD, log_caller=True, log_type="INFO") reader = reader() reader.read(temp_file, validate=False) selected_reader = reader except Exception: selected_reader = None continue if selected_reader: _msg = f'{selected_reader.__class__.__name__} selected' self.logger.log( _msg, colors=LogColors.SUCCESS, timestamp=True, log_type="SUCCESS") _readers[extension] = selected_reader else: unavailabe_extensions.append(extension) del _readers[extension] self.logger.log( f'No reader found for extension {extension}, skipping', colors=LogColors.ERROR, log_caller=True, log_type="ERROR") for extension in unavailabe_extensions: del extensions_dict[extension] return [_readers, extensions_dict] def seq_read_files(self, readers_extension): """Read the gathered files using their respective reader. Parameters ---------- readers_extension: list Readers dict and extensions dict packed in a list. Returns ------- dict Dictionary of files and their content. """ readers_dict, extension_dict = readers_extension contents = \ Parallel(self.num_cores)(delayed(readers_dict[ext].read)(files, validate=False) for (ext, files) in extension_dict.items()) return contents def seq_encrypt_files(self, contents): """Encrypt the read files. Parameters ---------- contents: dict Dictionary of file paths and their content. Returns ------- dict Dictionary of file paths and their encrypted content. """ # TODO: Parallelize this path2content = {} crypt_obj = Crypt(key='crypt.key', key_path=os.path.join( self.root_dir, '.checkpoint')) for content in contents: for obj in content: path = list(obj.keys())[0] path2content[path] = crypt_obj.encrypt(path) return path2content class CheckpointSequence(Sequence): """Sequence to perform checkpoint operations.""" def __init__(self, sequence_name, order_dict, root_dir, ignore_dirs, terminal_log=False): """Initialize the CheckpointSequence class. Parameters ---------- sequence_name: str Name of the sequence. order_dict: dict Dictionary of function names and their order in the sequence. root_dir: str The root directory. ignore_dirs: list of str List of directories to be ignored. terminal_log: bool, optional If True, messages will be logged to the terminal """ self.sequence_name = sequence_name self.order_dict = order_dict self.root_dir = root_dir self.ignore_dirs = ignore_dirs super(CheckpointSequence, self).__init__(sequence_name, order_dict, terminal_log=terminal_log) def _validate_checkpoint(self): """Validate if a checkpoint is valid.""" checkpoint_path = os.path.join(self.root_dir, '.checkpoint', self.sequence_name) if not os.path.isdir(checkpoint_path): raise ValueError(f'Checkpoint {self.sequence_name} does not exist') def seq_init_checkpoint(self): """Initialize the checkpoint directory.""" _io = IO(path=self.root_dir, mode="a", ignore_dirs=self.ignore_dirs) path = _io.make_dir('.checkpoint') generate_key('crypt.key', path) checkpoint_config = { 'current_checkpoint': None, 'checkpoints': [], 'ignore_dirs': self.ignore_dirs, 'root_dir': self.root_dir, } config_path = os.path.join(self.root_dir, '.checkpoint', '.config') _io.write(config_path, 'w+', json.dumps(checkpoint_config)) def seq_create_checkpoint(self): """Create a new checkpoint for the target directory.""" checkpoint_path = os.path.join(self.root_dir, '.checkpoint', self.sequence_name) if os.path.isdir(checkpoint_path): raise ValueError(f'Checkpoint {self.sequence_name} already exists') _io = IO(path=self.root_dir, mode="a", ignore_dirs=self.ignore_dirs) _io_sequence = IOSequence(root_dir=self.root_dir, ignore_dirs=self.ignore_dirs, terminal_log=self.terminal_log) enc_files = _io_sequence.execute_sequence(pass_args=True)[-1] checkpoint_path = os.path.join( self.root_dir, '.checkpoint', self.sequence_name) checkpoint_path = _io.make_dir(checkpoint_path) checkpoint_file_path = os.path.join( checkpoint_path, f'{self.sequence_name}.json') config_path = os.path.join(self.root_dir, '.checkpoint', '.config') with open(checkpoint_file_path, 'w+') as checkpoint_file: json.dump(enc_files, checkpoint_file, indent=4) with open(config_path, 'r') as config_file: checkpoint_config = json.load(config_file) checkpoint_config['checkpoints'].append(self.sequence_name) checkpoint_config['current_checkpoint'] = self.sequence_name with open(config_path, 'w+') as config_file: json.dump(checkpoint_config, config_file, indent=4) root2file = {} for root, file in _io.walk_directory(): if root in root2file: root2file[root].append(os.path.join(root, file)) else: root2file[root] = [os.path.join(root, file)] with open(os.path.join(checkpoint_path, '.metadata'), 'w+') as metadata_file: json.dump(root2file, metadata_file, indent=4) def seq_delete_checkpoint(self): """Delete the checkpoint for the target directory.""" self._validate_checkpoint() _io = IO(path=self.root_dir, mode="a", ignore_dirs=self.ignore_dirs) checkpoint_path = os.path.join( self.root_dir, '.checkpoint', self.sequence_name) config_path = os.path.join(self.root_dir, '.checkpoint', '.config') with open(config_path, 'r') as config_file: checkpoint_config = json.load(config_file) checkpoint_config['checkpoints'].remove(self.sequence_name) if len(checkpoint_config['checkpoints']): _new_current_checkpoint = checkpoint_config['checkpoints'][-1] else: _new_current_checkpoint = None checkpoint_config['current_checkpoint'] = _new_current_checkpoint with open(config_path, 'w+') as config_file: json.dump(checkpoint_config, config_file, indent=4) _io.delete_dir(checkpoint_path) def seq_restore_checkpoint(self): """Restore back to a specific checkpoint.""" self._validate_checkpoint() _io = IO(path=self.root_dir, mode="a", ignore_dirs=self.ignore_dirs) _key = os.path.join(self.root_dir, '.checkpoint') crypt = Crypt(key='crypt.key', key_path=_key) checkpoint_path = os.path.join(self.root_dir, '.checkpoint', self.sequence_name, f'{self.sequence_name}.json') config_path = os.path.join(self.root_dir, '.checkpoint', '.config') with open(checkpoint_path, 'r') as checkpoint_file: checkpoint_dict = json.load(checkpoint_file) with open(config_path, 'r') as config_file: checkpoint_config = json.load(config_file) checkpoint_config['current_checkpoint'] = self.sequence_name with open(config_path, 'w+') as config_file: json.dump(checkpoint_config, config_file, indent=4) for file, content in checkpoint_dict.items(): content = crypt.decrypt(content) _io.write(file, 'wb+', content) def seq_version(self): """Print the version of the sequence.""" _msg = f'Running version {version}' self.logger.log(_msg, timestamp=True, log_type="INFO") class CLISequence(Sequence): """Sequence for the CLI environment.""" def __init__(self, sequence_name='CLI_Sequence', order_dict=None, arg_parser=None, args=None, terminal_log=False): """Initialize the CLISequence class. Default execution sequence is: 1. Parse the arguments. 2. Determine the action to perform from the arguments. 3. Perform the action. Parameters ---------- sequence_name: str Name of the sequence. order_dict: dict Dictionary of the order of the functions in the sequence. arg_parser: ArgumentParser Argument parser for the CLI. """ self.default_order_dict = { 'seq_parse_args': 2, 'seq_determine_action': 1, 'seq_perform_action': 0, } self.args = args self.arg_parser = arg_parser super(CLISequence, self).__init__(sequence_name=sequence_name, order_dict=order_dict or self.default_order_dict, terminal_log=terminal_log) def seq_parse_args(self): """Parse the arguments from the CLI.""" if self.args is None: args = self.arg_parser.parse_args() else: args = self.arg_parser.parse_args(self.args) return args def seq_determine_action(self, args): """Determine the action to be performed. Parameters ---------- args: ArgumentParser Parsed arguments from the CLI. """ if args.action == 'create': action = 'seq_create_checkpoint' elif args.action == 'restore': action = 'seq_restore_checkpoint' elif args.action == 'delete': action = 'seq_delete_checkpoint' elif args.action == 'init': action = 'seq_init_checkpoint' elif args.action == 'version': action = 'seq_version' else: raise ValueError('Invalid action.') return [action, args] def seq_perform_action(self, action_args): """Perform the action. Parameters ---------- action_args: list List containing action and args NameSpace. """ action, args = action_args _name = args.name _path = args.path _ignore_dirs = args.ignore_dirs or [] _helper_actions = ['seq_init_checkpoint', 'seq_version'] if not (_name and _path) and action not in _helper_actions: raise ValueError(f'{args.action} requires a valid name and a path') order_dict = {action: 0} _checkpoint_sequence = CheckpointSequence( _name, order_dict, _path, _ignore_dirs, terminal_log=self.terminal_log) action_function = getattr(_checkpoint_sequence, action) action_function()
[ 11748, 33918, 198, 11748, 28686, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 340, 861, 10141, 1330, 954, 198, 6738, 18540, 305, 919, 278, 1330, 42804, 62, 9127, 198, 6738, 20218, 7753, 1330, 46042, 43055, 355, 554, 12966, 5551, 43055, 198, 6738, 3858, 1330, 11789, 6030, 198, 198, 6738, 1693, 8019, 1330, 42945, 11, 11038, 198, 198, 6738, 26954, 1330, 11593, 9641, 834, 355, 2196, 198, 6738, 26954, 13, 29609, 1330, 15126, 11, 7716, 62, 2539, 198, 6738, 26954, 13, 952, 1330, 24418, 198, 6738, 26954, 13, 961, 364, 1330, 651, 62, 439, 62, 961, 364, 198, 6738, 26954, 13, 26791, 1330, 5972, 5216, 669, 11, 5972, 1362, 11, 651, 62, 46862, 62, 1525, 62, 2302, 3004, 628, 198, 4871, 45835, 25, 198, 220, 220, 220, 37227, 9487, 284, 2380, 257, 8379, 286, 4560, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8379, 62, 3672, 11, 1502, 62, 11600, 28, 14202, 11, 49706, 28, 14202, 11, 12094, 62, 6404, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 8379, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 3672, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 25, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 2163, 3891, 290, 511, 1502, 287, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 25, 4600, 9122, 4122, 13, 26791, 13, 11187, 1362, 47671, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5972, 1362, 329, 262, 8379, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 262, 8379, 481, 307, 18832, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23705, 282, 62, 6404, 796, 12094, 62, 6404, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 62, 14171, 796, 705, 83, 6, 611, 2116, 13, 23705, 282, 62, 6404, 2073, 705, 69, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 796, 49706, 393, 5972, 1362, 7, 6404, 62, 14171, 28, 944, 13, 6404, 62, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 3672, 796, 8379, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 11600, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2875, 62, 11600, 796, 1502, 62, 11600, 393, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43167, 62, 12543, 2733, 796, 2116, 13, 43167, 62, 11600, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 12543, 2733, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 43167, 62, 12543, 2733, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11787, 8011, 326, 318, 13973, 618, 262, 8379, 14, 43167, 2163, 468, 5201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 43167, 62, 437, 796, 37456, 33756, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 43167, 62, 8818, 62, 437, 796, 37456, 33756, 25, 6045, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 4731, 10552, 286, 262, 45835, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 19522, 62, 12543, 2733, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 20786, 13, 834, 3672, 834, 329, 4808, 20786, 287, 2116, 13, 43167, 62, 11600, 13, 27160, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 6, 5376, 25, 1391, 944, 13, 3672, 5512, 10239, 15553, 25, 1391, 62, 19522, 62, 12543, 2733, 92, 6, 628, 220, 220, 220, 825, 751, 62, 43167, 62, 8818, 7, 944, 11, 25439, 11, 1502, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 2888, 2163, 284, 262, 8379, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 25, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15553, 326, 318, 284, 307, 2087, 284, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 25, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1502, 286, 262, 2163, 287, 262, 8379, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 25439, 13, 834, 3672, 834, 13, 9688, 2032, 342, 10786, 41068, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 22203, 1438, 1276, 923, 351, 366, 41068, 1, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1502, 287, 2116, 13, 43167, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 20361, 25, 625, 799, 278, 1391, 944, 13, 43167, 62, 11600, 58, 2875, 4083, 834, 3672, 834, 92, 351, 1391, 20786, 13, 834, 3672, 834, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 11, 5972, 5216, 669, 13, 31502, 11, 41033, 28, 17821, 11, 2604, 62, 13345, 263, 28, 17821, 11, 2604, 62, 4906, 2625, 10778, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 11600, 58, 2875, 60, 796, 25439, 628, 220, 220, 220, 825, 751, 62, 7266, 62, 43167, 7, 944, 11, 8379, 11, 1502, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 850, 8379, 284, 262, 1459, 8379, 13, 628, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 198, 220, 220, 220, 220, 220, 220, 220, 45337, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 25, 1058, 4871, 25, 4600, 44015, 594, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 850, 8379, 326, 318, 284, 307, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 25, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1502, 286, 262, 850, 8379, 287, 262, 8379, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 43167, 11, 45835, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 7004, 8379, 1276, 307, 286, 2099, 45835, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 48727, 796, 357, 9127, 7, 9688, 28, 2875, 11, 2239, 28, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 25439, 62, 26801, 287, 8379, 13, 43167, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 43167, 62, 8818, 7, 20786, 62, 26801, 58, 16, 4357, 1502, 28, 19545, 28264, 48727, 4008, 628, 220, 220, 220, 825, 12260, 62, 43167, 7, 944, 11, 9706, 62, 30586, 11639, 12501, 260, 2313, 62, 2875, 3256, 1208, 62, 22046, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23002, 1133, 477, 5499, 287, 262, 1459, 8379, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 9706, 62, 30586, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2450, 284, 307, 3940, 981, 23710, 262, 5499, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33671, 3815, 389, 705, 42647, 62, 2875, 6, 393, 705, 12501, 260, 2313, 62, 2875, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 22046, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 262, 7159, 286, 262, 10945, 2163, 481, 307, 3804, 284, 262, 1306, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 62, 2875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 27160, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 611, 9706, 62, 30586, 6624, 705, 12501, 260, 2313, 62, 2875, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 82, 9741, 62, 43167, 796, 23243, 7, 944, 13, 43167, 62, 11600, 13, 23814, 22784, 9575, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 25439, 62, 26801, 287, 4808, 82, 9741, 62, 43167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 5239, 796, 25439, 62, 26801, 58, 16, 4083, 834, 3672, 834, 13, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 11537, 58, 12, 16, 4083, 33491, 10786, 62, 3256, 705, 705, 737, 7839, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1208, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 28264, 7783, 62, 27160, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 8367, 796, 25439, 62, 26801, 58, 16, 16151, 62, 7783, 62, 27160, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 8367, 796, 25439, 62, 26801, 58, 16, 60, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 8367, 796, 25439, 62, 26801, 58, 16, 60, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 90, 22866, 62, 5239, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 11, 685, 11187, 5216, 669, 13, 24908, 11, 5972, 5216, 669, 13, 4944, 14418, 24027, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 28, 17821, 11, 2604, 62, 4906, 2625, 24908, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 2099, 7, 68, 5769, 69, 6, 90, 22866, 62, 5239, 92, 4054, 351, 4049, 25, 1391, 68, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 90, 22866, 62, 5239, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 11, 685, 11187, 5216, 669, 13, 12564, 4093, 7597, 11, 5972, 5216, 669, 13, 4944, 14418, 24027, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 28, 17821, 11, 2604, 62, 4906, 2625, 12564, 4093, 7597, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 43167, 62, 8818, 62, 437, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 27160, 13, 33295, 28264, 7783, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 43167, 62, 437, 7, 944, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9706, 62, 30586, 6624, 705, 42647, 62, 2875, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 25439, 287, 2116, 13, 43167, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1208, 62, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 8367, 796, 25439, 28264, 7783, 62, 27160, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 8367, 796, 25439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 27160, 13, 33295, 28264, 7783, 62, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 261, 62, 43167, 62, 437, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 90, 18558, 1009, 62, 30586, 92, 318, 281, 12515, 9706, 2450, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 7783, 62, 27160, 628, 220, 220, 220, 825, 4296, 62, 2875, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 1502, 286, 8379, 5499, 287, 8379, 8633, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 11600, 796, 14230, 1068, 35, 713, 7, 82, 9741, 7, 944, 13, 43167, 62, 11600, 13, 23814, 3419, 4008, 628, 220, 220, 220, 825, 24773, 62, 43167, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7414, 1530, 262, 8379, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 11600, 13, 20063, 3419, 628, 220, 220, 220, 825, 651, 62, 43167, 62, 12543, 2733, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 262, 8379, 5499, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 12543, 2733, 13, 20063, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 26672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 13, 9688, 2032, 342, 10786, 41068, 11537, 290, 318, 39098, 7, 1136, 35226, 7, 944, 11, 1438, 828, 11789, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 20786, 796, 651, 35226, 7, 944, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 2116, 13, 2875, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2875, 62, 11600, 58, 3672, 60, 796, 18896, 7, 944, 13, 43167, 62, 12543, 2733, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 12543, 2733, 13, 33295, 28264, 20786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8612, 378, 62, 43167, 3419, 628, 220, 220, 220, 825, 7716, 62, 43167, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 257, 8379, 422, 477, 25336, 527, 5499, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 25439, 287, 2116, 13, 43167, 62, 12543, 2733, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3672, 796, 25439, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2875, 796, 2116, 13, 2875, 62, 11600, 29795, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 43167, 62, 8818, 7, 20786, 11, 4808, 2875, 8, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 43167, 62, 12543, 2733, 13, 2617, 353, 198, 220, 220, 220, 825, 8379, 62, 12543, 2733, 7, 944, 11, 5499, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 1988, 286, 8379, 5499, 284, 257, 1351, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 5499, 25, 1351, 286, 5050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 5050, 326, 389, 284, 307, 8686, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43167, 62, 12543, 2733, 796, 5499, 58, 47715, 628, 198, 4871, 314, 2640, 4853, 594, 7, 44015, 594, 2599, 198, 220, 220, 220, 37227, 9487, 284, 2380, 257, 8379, 286, 24418, 4560, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8379, 62, 3672, 11639, 9399, 62, 44015, 594, 3256, 1502, 62, 11600, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15908, 28, 14202, 11, 8856, 62, 15908, 82, 28, 14202, 11, 997, 62, 66, 2850, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 24418, 8379, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 9706, 8379, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 6857, 832, 262, 6808, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 4912, 3696, 416, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 9347, 7183, 1912, 319, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 4149, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 642, 13, 14711, 6012, 262, 3696, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 3672, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 25, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 2163, 3891, 290, 511, 1502, 287, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15908, 25, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 6808, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 25, 1351, 286, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 29196, 284, 307, 9514, 13, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 66, 2850, 25, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 21758, 284, 307, 973, 329, 10730, 7587, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 6218, 481, 307, 18832, 284, 262, 12094, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12286, 62, 2875, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 11152, 62, 12942, 1749, 10354, 604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 8094, 62, 16624, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 8899, 62, 961, 364, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 961, 62, 16624, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 12685, 6012, 62, 16624, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 40, 2640, 4853, 594, 11, 2116, 737, 834, 15003, 834, 7, 43167, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 393, 2116, 13, 12286, 62, 2875, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 23705, 282, 62, 6404, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 796, 6808, 62, 15908, 393, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46430, 62, 15908, 82, 796, 8856, 62, 15908, 82, 393, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46430, 62, 15908, 82, 13, 33295, 7, 4458, 9122, 4122, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 952, 796, 24418, 7, 944, 13, 15763, 62, 15908, 11, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 66, 2850, 796, 997, 62, 66, 2850, 393, 42804, 62, 9127, 3419, 628, 220, 220, 220, 825, 33756, 62, 11152, 62, 12942, 1749, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35963, 832, 477, 29196, 287, 262, 6808, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 34945, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 6808, 8619, 284, 307, 6807, 832, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8619, 17, 16624, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 2393, 287, 2116, 13, 952, 13, 11152, 62, 34945, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 287, 8619, 17, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 17, 16624, 58, 15763, 4083, 33295, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 17, 16624, 58, 15763, 60, 796, 685, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 8619, 17, 16624, 628, 220, 220, 220, 825, 33756, 62, 8094, 62, 16624, 7, 944, 11, 8619, 17, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13247, 3696, 287, 262, 976, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8619, 17, 16624, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 8619, 3891, 290, 511, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18366, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3696, 287, 8619, 17, 16624, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 7753, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7552, 796, 2779, 62, 7753, 13, 35312, 10786, 2637, 38381, 12, 16, 4083, 21037, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7552, 407, 287, 18366, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 62, 11600, 58, 2302, 3004, 60, 796, 685, 7753, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 62, 11600, 58, 2302, 3004, 4083, 33295, 7, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18366, 62, 11600, 628, 220, 220, 220, 825, 33756, 62, 8899, 62, 961, 364, 7, 944, 11, 18366, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13912, 262, 18366, 284, 511, 11756, 41969, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 18366, 62, 11600, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 18366, 290, 511, 3696, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 18366, 290, 511, 41969, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 961, 364, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 555, 615, 603, 11231, 62, 2302, 5736, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7552, 11, 4808, 287, 18366, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 961, 364, 58, 2302, 3004, 60, 796, 651, 62, 46862, 62, 1525, 62, 2302, 3004, 7, 2302, 3004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4808, 961, 364, 58, 2302, 3004, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 961, 364, 796, 651, 62, 439, 62, 961, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 554, 12966, 5551, 43055, 3419, 355, 20218, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 29510, 62, 15908, 11, 277, 470, 45787, 13, 90, 2302, 3004, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 952, 13, 13564, 7, 29510, 62, 7753, 11, 705, 86, 10, 3256, 705, 9288, 2695, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 46862, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9173, 287, 477, 62, 961, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 51, 14992, 1391, 46862, 13, 834, 3672, 834, 92, 329, 7552, 1391, 2302, 3004, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 11, 7577, 28, 11187, 5216, 669, 13, 33, 15173, 11, 2604, 62, 13345, 263, 28, 17821, 11, 2604, 62, 4906, 2625, 10778, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 9173, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 13, 961, 7, 29510, 62, 7753, 11, 26571, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 46862, 796, 9173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 46862, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6163, 62, 46862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 90, 34213, 62, 46862, 13, 834, 4871, 834, 13, 834, 3672, 834, 92, 6163, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 11, 7577, 28, 11187, 5216, 669, 13, 12564, 4093, 7597, 11, 41033, 28, 17821, 11, 2604, 62, 4906, 2625, 12564, 4093, 7597, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 961, 364, 58, 2302, 3004, 60, 796, 6163, 62, 46862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 615, 603, 11231, 62, 2302, 5736, 13, 33295, 7, 2302, 3004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 4808, 961, 364, 58, 2302, 3004, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 2949, 9173, 1043, 329, 7552, 1391, 2302, 3004, 5512, 31017, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7577, 28, 11187, 5216, 669, 13, 24908, 11, 2604, 62, 13345, 263, 28, 17821, 11, 2604, 62, 4906, 2625, 24908, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 329, 7552, 287, 555, 615, 603, 11231, 62, 2302, 5736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 18366, 62, 11600, 58, 2302, 3004, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 62, 961, 364, 11, 18366, 62, 11600, 60, 628, 220, 220, 220, 825, 33756, 62, 961, 62, 16624, 7, 944, 11, 7183, 62, 2302, 3004, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 262, 9272, 3696, 1262, 511, 11756, 9173, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 7183, 62, 2302, 3004, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41969, 8633, 290, 18366, 8633, 11856, 287, 257, 1351, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 3696, 290, 511, 2695, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7183, 62, 11600, 11, 7552, 62, 11600, 796, 7183, 62, 2302, 3004, 628, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42945, 7, 944, 13, 22510, 62, 66, 2850, 5769, 12381, 16548, 7, 961, 364, 62, 11600, 58, 2302, 4083, 961, 5769, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 28, 25101, 8, 329, 357, 2302, 11, 3696, 8, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7552, 62, 11600, 13, 23814, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10154, 628, 220, 220, 220, 825, 33756, 62, 12685, 6012, 62, 16624, 7, 944, 11, 10154, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27195, 6012, 262, 1100, 3696, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 10154, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 2393, 13532, 290, 511, 2695, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 2393, 13532, 290, 511, 19365, 2695, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 42945, 1096, 428, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 17, 11299, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 8194, 62, 26801, 796, 15126, 7, 2539, 11639, 29609, 13, 2539, 3256, 1994, 62, 6978, 28, 418, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2695, 287, 10154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 1351, 7, 26801, 13, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 17, 11299, 58, 6978, 60, 796, 8194, 62, 26801, 13, 12685, 6012, 7, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3108, 17, 11299, 628, 198, 4871, 6822, 4122, 44015, 594, 7, 44015, 594, 2599, 198, 220, 220, 220, 37227, 44015, 594, 284, 1620, 26954, 4560, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8379, 62, 3672, 11, 1502, 62, 11600, 11, 6808, 62, 15908, 11, 8856, 62, 15908, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 6822, 4122, 44015, 594, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 3672, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 2163, 3891, 290, 511, 1502, 287, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15908, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 6808, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 25, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 29196, 284, 307, 9514, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 25, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 6218, 481, 307, 18832, 284, 262, 12094, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 3672, 796, 8379, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2875, 62, 11600, 796, 1502, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 796, 6808, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46430, 62, 15908, 82, 796, 8856, 62, 15908, 82, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 9787, 4122, 44015, 594, 11, 2116, 737, 834, 15003, 834, 7, 43167, 62, 3672, 11, 1502, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 23705, 282, 62, 6404, 8, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 9122, 4122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 611, 257, 26954, 318, 4938, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 2116, 13, 43167, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 9122, 4122, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 9787, 4122, 1391, 944, 13, 43167, 62, 3672, 92, 857, 407, 2152, 11537, 628, 198, 220, 220, 220, 825, 33756, 62, 15003, 62, 9122, 4122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 26954, 8619, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 796, 24418, 7, 6978, 28, 944, 13, 15763, 62, 15908, 11, 4235, 2625, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 4808, 952, 13, 15883, 62, 15908, 7, 4458, 9122, 4122, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 2539, 10786, 29609, 13, 2539, 3256, 3108, 8, 628, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14421, 62, 9122, 4122, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9122, 13033, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46430, 62, 15908, 82, 10354, 2116, 13, 46430, 62, 15908, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15763, 62, 15908, 10354, 2116, 13, 15763, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 45302, 11250, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 13, 13564, 7, 11250, 62, 6978, 11, 705, 86, 10, 3256, 33918, 13, 67, 8142, 7, 9122, 4122, 62, 11250, 4008, 628, 198, 220, 220, 220, 825, 33756, 62, 17953, 62, 9122, 4122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 257, 649, 26954, 329, 262, 2496, 8619, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 2116, 13, 43167, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 9122, 4122, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 9787, 4122, 1391, 944, 13, 43167, 62, 3672, 92, 1541, 7160, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 796, 24418, 7, 6978, 28, 944, 13, 15763, 62, 15908, 11, 4235, 2625, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 62, 43167, 796, 314, 2640, 4853, 594, 7, 15763, 62, 15908, 28, 944, 13, 15763, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 944, 13, 23705, 282, 62, 6404, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2207, 62, 16624, 796, 4808, 952, 62, 43167, 13, 41049, 62, 43167, 7, 6603, 62, 22046, 28, 17821, 38381, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 2116, 13, 43167, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 4808, 952, 13, 15883, 62, 15908, 7, 9122, 4122, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 7753, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 11, 277, 6, 90, 944, 13, 43167, 62, 3672, 27422, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 45302, 11250, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9122, 4122, 62, 7753, 62, 6978, 11, 705, 86, 10, 11537, 355, 26954, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 12685, 62, 16624, 11, 26954, 62, 7753, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 81, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 17816, 9122, 13033, 6, 4083, 33295, 7, 944, 13, 43167, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 17816, 14421, 62, 9122, 4122, 20520, 796, 2116, 13, 43167, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 86, 10, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 9122, 4122, 62, 11250, 11, 4566, 62, 7753, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6808, 17, 7753, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 2393, 287, 4808, 952, 13, 11152, 62, 34945, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6808, 287, 6808, 17, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 17, 7753, 58, 15763, 4083, 33295, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 17, 7753, 58, 15763, 60, 796, 685, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 9122, 4122, 62, 6978, 11, 45302, 38993, 33809, 705, 86, 10, 11537, 355, 20150, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 15763, 17, 7753, 11, 20150, 62, 7753, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 825, 33756, 62, 33678, 62, 9122, 4122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 262, 26954, 329, 262, 2496, 8619, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12102, 378, 62, 9122, 4122, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 796, 24418, 7, 6978, 28, 944, 13, 15763, 62, 15908, 11, 4235, 2625, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 2116, 13, 43167, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 45302, 11250, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 81, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 17816, 9122, 13033, 6, 4083, 28956, 7, 944, 13, 43167, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9122, 4122, 62, 11250, 17816, 9122, 13033, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3605, 62, 14421, 62, 9122, 4122, 796, 26954, 62, 11250, 17816, 9122, 13033, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3605, 62, 14421, 62, 9122, 4122, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 17816, 14421, 62, 9122, 4122, 20520, 796, 4808, 3605, 62, 14421, 62, 9122, 4122, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 86, 10, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 9122, 4122, 62, 11250, 11, 4566, 62, 7753, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 13, 33678, 62, 15908, 7, 9122, 4122, 62, 6978, 8, 628, 220, 220, 220, 825, 33756, 62, 2118, 382, 62, 9122, 4122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19452, 382, 736, 284, 257, 2176, 26954, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12102, 378, 62, 9122, 4122, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 796, 24418, 7, 6978, 28, 944, 13, 15763, 62, 15908, 11, 4235, 2625, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 15908, 82, 28, 944, 13, 46430, 62, 15908, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2539, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 8194, 796, 15126, 7, 2539, 11639, 29609, 13, 2539, 3256, 1994, 62, 6978, 28, 62, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43167, 62, 3672, 11, 277, 6, 90, 944, 13, 43167, 62, 3672, 27422, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 15763, 62, 15908, 11, 45302, 9122, 4122, 3256, 45302, 11250, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9122, 4122, 62, 6978, 11, 705, 81, 11537, 355, 26954, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11600, 796, 33918, 13, 2220, 7, 9122, 4122, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 81, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 11250, 17816, 14421, 62, 9122, 4122, 20520, 796, 2116, 13, 43167, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 86, 10, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 9122, 4122, 62, 11250, 11, 4566, 62, 7753, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 11, 2695, 287, 26954, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 8194, 13, 12501, 6012, 7, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 952, 13, 13564, 7, 7753, 11, 705, 39346, 10, 3256, 2695, 8, 628, 220, 220, 220, 825, 33756, 62, 9641, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18557, 262, 2196, 286, 262, 8379, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 19662, 796, 277, 6, 28768, 2196, 1391, 9641, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 6404, 28264, 19662, 11, 41033, 28, 17821, 11, 2604, 62, 4906, 2625, 10778, 4943, 628, 198, 4871, 7852, 1797, 4853, 594, 7, 44015, 594, 2599, 198, 220, 220, 220, 37227, 44015, 594, 329, 262, 43749, 2858, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8379, 62, 3672, 11639, 5097, 40, 62, 44015, 594, 3256, 1502, 62, 11600, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 48610, 28, 14202, 11, 26498, 28, 14202, 11, 12094, 62, 6404, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 7852, 1797, 4853, 594, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 9706, 8379, 318, 25, 628, 220, 220, 220, 220, 220, 220, 220, 352, 13, 2547, 325, 262, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 45559, 3810, 262, 2223, 284, 1620, 422, 262, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 35006, 262, 2223, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8379, 62, 3672, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 262, 1502, 286, 262, 5499, 287, 262, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 48610, 25, 45751, 46677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45751, 30751, 329, 262, 43749, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12286, 62, 2875, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 29572, 62, 22046, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 67, 2357, 3810, 62, 2673, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 62, 525, 687, 62, 2673, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22046, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 853, 62, 48610, 796, 1822, 62, 48610, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 5097, 1797, 4853, 594, 11, 2116, 737, 834, 15003, 834, 7, 43167, 62, 3672, 28, 43167, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 28, 2875, 62, 11600, 393, 2116, 13, 12286, 62, 2875, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 23705, 282, 62, 6404, 8, 628, 220, 220, 220, 825, 33756, 62, 29572, 62, 22046, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10044, 325, 262, 7159, 422, 262, 43749, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22046, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 2116, 13, 853, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 2116, 13, 853, 62, 48610, 13, 29572, 62, 22046, 7, 944, 13, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26498, 628, 220, 220, 220, 825, 33756, 62, 67, 2357, 3810, 62, 2673, 7, 944, 11, 26498, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35, 2357, 3810, 262, 2223, 284, 307, 6157, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 25, 45751, 46677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23042, 276, 7159, 422, 262, 43749, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 2673, 6624, 705, 17953, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 705, 41068, 62, 17953, 62, 9122, 4122, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26498, 13, 2673, 6624, 705, 2118, 382, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 705, 41068, 62, 2118, 382, 62, 9122, 4122, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26498, 13, 2673, 6624, 705, 33678, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 705, 41068, 62, 33678, 62, 9122, 4122, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26498, 13, 2673, 6624, 705, 15003, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 705, 41068, 62, 15003, 62, 9122, 4122, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26498, 13, 2673, 6624, 705, 9641, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 705, 41068, 62, 9641, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 2223, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 2673, 11, 26498, 60, 628, 220, 220, 220, 825, 33756, 62, 525, 687, 62, 2673, 7, 944, 11, 2223, 62, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5990, 687, 262, 2223, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 22046, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 7268, 2223, 290, 26498, 6530, 14106, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 11, 26498, 796, 2223, 62, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 3672, 796, 26498, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 6978, 796, 26498, 13, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 46430, 62, 15908, 82, 796, 26498, 13, 46430, 62, 15908, 82, 393, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2978, 525, 62, 4658, 796, 37250, 41068, 62, 15003, 62, 9122, 4122, 3256, 705, 41068, 62, 9641, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 44104, 3672, 290, 4808, 6978, 8, 290, 2223, 407, 287, 4808, 2978, 525, 62, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 90, 22046, 13, 2673, 92, 4433, 257, 4938, 1438, 290, 257, 3108, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 11600, 796, 1391, 2673, 25, 657, 92, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 9122, 4122, 62, 43167, 796, 6822, 4122, 44015, 594, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3672, 11, 1502, 62, 11600, 11, 4808, 6978, 11, 4808, 46430, 62, 15908, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12094, 62, 6404, 28, 944, 13, 23705, 282, 62, 6404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 8818, 796, 651, 35226, 28264, 9122, 4122, 62, 43167, 11, 2223, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 8818, 3419, 198 ]
2.16515
10,548
# from secret import FLAG FLAG = "CSR{fuckingIdiotShitStupid}" c = hashfun(FLAG) print(c) print(len(FLAG)) print(len(c)) m = revhash(c) print(m) c = [10, 30, 31, 62, 27, 9, 4, 0, 1, 1, 4, 4, 7, 13, 8, 12, 21, 28, 12, 6, 60] m = revhash(c) print(m)
[ 2, 422, 3200, 1330, 9977, 4760, 198, 198, 38948, 796, 366, 7902, 49, 90, 69, 19296, 7390, 5151, 2484, 270, 1273, 7658, 36786, 628, 628, 198, 66, 796, 12234, 12543, 7, 38948, 8, 198, 4798, 7, 66, 8, 198, 4798, 7, 11925, 7, 38948, 4008, 198, 4798, 7, 11925, 7, 66, 4008, 198, 198, 76, 796, 2710, 17831, 7, 66, 8, 198, 4798, 7, 76, 8, 198, 198, 66, 796, 685, 940, 11, 1542, 11, 3261, 11, 8190, 11, 2681, 11, 860, 11, 604, 11, 657, 11, 352, 11, 352, 11, 604, 11, 604, 11, 767, 11, 1511, 11, 807, 11, 1105, 11, 2310, 11, 2579, 11, 1105, 11, 718, 11, 3126, 60, 198, 76, 796, 2710, 17831, 7, 66, 8, 198, 4798, 7, 76, 8, 198 ]
2.007874
127
#!/usr/local/bin/python3 total_fuel = 0 with open("input.txt") as f: for line in f.readlines(): total_fuel += int(int(line) / 3) - 2 print(total_fuel)
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 18, 198, 198, 23350, 62, 25802, 796, 657, 198, 4480, 1280, 7203, 15414, 13, 14116, 4943, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 25802, 15853, 493, 7, 600, 7, 1370, 8, 1220, 513, 8, 532, 362, 198, 4798, 7, 23350, 62, 25802, 8, 198 ]
2.309859
71
#!/usr/bin/env python __author__ = "Akalanka Galappaththi" __email__ = "[email protected]" __copyright__ = "Copyright 2020, The Bug Report Summarization Project @ Sybil-Lab" __license__ = "MIT" __maintainer__ = "Akalanka Galappaththi" from models.Turn import Turn class BugReport: """Class represents a comment of a bug report. Parameters ---------- title : str Title of the bug report (One sentence summary) bug_id : int bug_id is a unique identifier product : str Software product name list_of_turns :list of int Contains a list of comment numbers """ def add_topics(self, topics): """Add topic list to the bug report Parameters ---------- topics : list List of topic words """ self.topics.extend(topics) def add_a_turn(self, turn): """Add a comment to the list Parameters ---------- turn : object Turn object """ self.list_of_turns.append(turn) def number_of_turns(self): """Return the number of turns in the bug report Returns ------- len : int Length of the list """ return len(self.list_of_turns) def get_turns(self): """Returns a list of turns Returns ------- list_of_turns : list List of turns """ return self.list_of_turns def get_a_turn(self, turn_id): """Return a turn with a matching ID Parameters ---------- turn_id : int Turn ID Returns ------- t : object Turn object """ for t in self.list_of_turns: if t.get_id() == turn_id: return t def get_title(self): """Get title Returns ------- title : str Title of the bug report """ return self.title def set_title(self, title): """Set title Parameters ---------- title : str Title of the bug report """ self.title = title def set_bug_id(self, bug_id): """Set bug ID Parameters ---------- bug_id : int Bug ID """ self.bug_id = bug_id def get_bug_id(self): """Get bug ID Returns ------- bug_id : int Bug ID """ return self.bug_id def get_product(self): """Get product name Returns ------- product : str Product name """ return self.product def set_product(self, product): """Set product name Parameters ---------- product : str Product name """ self.product = product
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 834, 9800, 834, 796, 366, 33901, 282, 15927, 5027, 1324, 776, 400, 72, 1, 198, 834, 12888, 834, 796, 366, 64, 13, 13528, 1324, 776, 400, 72, 31, 2261, 400, 13, 6888, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 12131, 11, 383, 15217, 6358, 5060, 3876, 1634, 4935, 2488, 1632, 33473, 12, 17822, 1, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 76, 2913, 10613, 834, 796, 366, 33901, 282, 15927, 5027, 1324, 776, 400, 72, 1, 198, 198, 6738, 4981, 13, 17278, 1330, 6756, 628, 198, 4871, 15217, 19100, 25, 198, 220, 220, 220, 37227, 9487, 6870, 257, 2912, 286, 257, 5434, 989, 13, 220, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11851, 286, 262, 5434, 989, 357, 3198, 6827, 10638, 8, 198, 220, 220, 220, 5434, 62, 312, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5434, 62, 312, 318, 257, 3748, 27421, 198, 220, 220, 220, 1720, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10442, 1720, 1438, 198, 220, 220, 220, 1351, 62, 1659, 62, 15344, 82, 1058, 4868, 286, 493, 198, 220, 220, 220, 220, 220, 220, 220, 49850, 257, 1351, 286, 2912, 3146, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 751, 62, 4852, 873, 7, 944, 11, 10233, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 7243, 1351, 284, 262, 5434, 989, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 10233, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 7243, 2456, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4852, 873, 13, 2302, 437, 7, 4852, 873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 751, 62, 64, 62, 15344, 7, 944, 11, 1210, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 2912, 284, 262, 1351, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1210, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6756, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 1659, 62, 15344, 82, 13, 33295, 7, 15344, 8, 628, 220, 220, 220, 825, 1271, 62, 1659, 62, 15344, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1271, 286, 4962, 287, 262, 5434, 989, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 18896, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 4868, 62, 1659, 62, 15344, 82, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 651, 62, 15344, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 257, 1351, 286, 4962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 1659, 62, 15344, 82, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4962, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4868, 62, 1659, 62, 15344, 82, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 825, 651, 62, 64, 62, 15344, 7, 944, 11, 1210, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 1210, 351, 257, 12336, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1210, 62, 312, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6756, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 256, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6756, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2116, 13, 4868, 62, 1659, 62, 15344, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 13, 1136, 62, 312, 3419, 6624, 1210, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 651, 62, 7839, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 3670, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11851, 286, 262, 5434, 989, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7839, 628, 220, 220, 220, 825, 900, 62, 7839, 7, 944, 11, 3670, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 3670, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11851, 286, 262, 5434, 989, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7839, 796, 3670, 628, 220, 220, 220, 825, 900, 62, 25456, 62, 312, 7, 944, 11, 5434, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 5434, 4522, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 5434, 62, 312, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15217, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25456, 62, 312, 796, 5434, 62, 312, 628, 220, 220, 220, 825, 651, 62, 25456, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 5434, 4522, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5434, 62, 312, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15217, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 25456, 62, 312, 628, 220, 220, 220, 825, 651, 62, 11167, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 1720, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8721, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 11167, 628, 220, 220, 220, 825, 900, 62, 11167, 7, 944, 11, 1720, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 1720, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8721, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11167, 796, 1720, 198 ]
2.025482
1,452
#!/usr/bin/python3 # -*- coding:utf-8 -*- # Project: http://plankton-toolbox.org # Copyright (c) 2010-2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). import app_tools import toolbox_utils @toolbox_utils.singleton class ToolManager(object): """ The tool manager is used to set up available tools. """ def __init__(self): """ """ self._parent = None self._toollist = [] # List of tools derived from ToolsBase. def set_parent(self, parentwidget): """ """ self._parent = parentwidget def init_tools(self): """ Tool activator. """ self._toollist.append(app_tools.DatasetViewerTool('Dataset viewer', self._parent)) self._toollist.append(app_tools.GraphPlotterTool('Graph plotter', self._parent)) self._toollist.append(app_tools.LogTool('Toolbox logging', self._parent)) def get_tool_by_name(self, object_name): """ Returns the tool. """ for tool in self._toollist: if tool.objectName() == object_name: return tool return None def show_tool_by_name(self, object_name): """ Makes a tool visible. """ for tool in self._toollist: if tool.objectName() == object_name: tool.show_tool() return def get_tool_list(self): """ """ return self._toollist
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 201, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 201, 198, 2, 4935, 25, 2638, 1378, 489, 962, 1122, 12, 25981, 3524, 13, 2398, 201, 198, 2, 15069, 357, 66, 8, 3050, 12, 7908, 9447, 25374, 11, 14023, 25582, 2770, 290, 15084, 3225, 30766, 5136, 220, 201, 198, 2, 13789, 25, 17168, 13789, 357, 3826, 38559, 24290, 13, 14116, 393, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 2781, 737, 201, 198, 201, 198, 11748, 598, 62, 31391, 201, 198, 11748, 2891, 3524, 62, 26791, 201, 198, 201, 198, 201, 198, 31, 25981, 3524, 62, 26791, 13, 12215, 10565, 201, 198, 4871, 16984, 13511, 7, 15252, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 383, 2891, 4706, 318, 973, 284, 900, 510, 1695, 4899, 13, 220, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8000, 796, 6045, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1462, 692, 396, 796, 17635, 1303, 7343, 286, 4899, 10944, 422, 20003, 14881, 13, 201, 198, 201, 198, 220, 220, 220, 825, 900, 62, 8000, 7, 944, 11, 2560, 42655, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8000, 796, 2560, 42655, 201, 198, 201, 198, 220, 220, 220, 825, 2315, 62, 31391, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16984, 1753, 1352, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1462, 692, 396, 13, 33295, 7, 1324, 62, 31391, 13, 27354, 292, 316, 7680, 263, 25391, 10786, 27354, 292, 316, 19091, 3256, 2116, 13557, 8000, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1462, 692, 396, 13, 33295, 7, 1324, 62, 31391, 13, 37065, 43328, 353, 25391, 10786, 37065, 7110, 353, 3256, 2116, 13557, 8000, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1462, 692, 396, 13, 33295, 7, 1324, 62, 31391, 13, 11187, 25391, 10786, 25391, 3524, 18931, 3256, 2116, 13557, 8000, 4008, 201, 198, 201, 198, 220, 220, 220, 825, 651, 62, 25981, 62, 1525, 62, 3672, 7, 944, 11, 2134, 62, 3672, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 262, 2891, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2891, 287, 2116, 13557, 1462, 692, 396, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2891, 13, 15252, 5376, 3419, 6624, 2134, 62, 3672, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2891, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 905, 62, 25981, 62, 1525, 62, 3672, 7, 944, 11, 2134, 62, 3672, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27433, 257, 2891, 7424, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2891, 287, 2116, 13557, 1462, 692, 396, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2891, 13, 15252, 5376, 3419, 6624, 2134, 62, 3672, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 13, 12860, 62, 25981, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 651, 62, 25981, 62, 4868, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1462, 692, 396, 201, 198 ]
2.264706
680
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core import PipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.pipeline.transport import HttpRequest, HttpResponse from ._configuration import ContainerRegistryConfiguration from .operations import ContainerRegistryOperations from .operations import ContainerRegistryRepositoryOperations from .operations import ContainerRegistryBlobOperations from .operations import RefreshTokensOperations from .operations import AccessTokensOperations from . import models class ContainerRegistry(object): """Metadata API definition for the Azure Container Registry runtime. :ivar container_registry: ContainerRegistryOperations operations :vartype container_registry: azure.containerregistry.operations.ContainerRegistryOperations :ivar container_registry_repository: ContainerRegistryRepositoryOperations operations :vartype container_registry_repository: azure.containerregistry.operations.ContainerRegistryRepositoryOperations :ivar container_registry_blob: ContainerRegistryBlobOperations operations :vartype container_registry_blob: azure.containerregistry.operations.ContainerRegistryBlobOperations :ivar refresh_tokens: RefreshTokensOperations operations :vartype refresh_tokens: azure.containerregistry.operations.RefreshTokensOperations :ivar access_tokens: AccessTokensOperations operations :vartype access_tokens: azure.containerregistry.operations.AccessTokensOperations :param url: Registry login URL. :type url: str """ def _send_request(self, http_request, **kwargs): # type: (HttpRequest, Any) -> HttpResponse """Runs the network request through the client's chained policies. :param http_request: The network request you want to make. Required. :type http_request: ~azure.core.pipeline.transport.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to True. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.pipeline.transport.HttpResponse """ path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } http_request.url = self._client.format_url(http_request.url, **path_format_arguments) stream = kwargs.pop("stream", True) pipeline_response = self._client._pipeline.run(http_request, stream=stream, **kwargs) return pipeline_response.http_response
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 16529, 35937, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 13, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 16935, 515, 13, 198, 2, 16529, 35937, 198, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 198, 198, 6738, 35560, 495, 13, 7295, 1330, 37709, 11792, 198, 6738, 13845, 2118, 1330, 2935, 48499, 7509, 11, 23283, 7509, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 11, 2150, 3233, 276, 12, 320, 3742, 198, 220, 220, 220, 422, 19720, 1330, 4377, 628, 220, 220, 220, 422, 35560, 495, 13, 7295, 13, 79, 541, 4470, 13, 7645, 634, 1330, 367, 29281, 18453, 11, 367, 29281, 31077, 198, 198, 6738, 47540, 11250, 3924, 1330, 43101, 8081, 4592, 38149, 198, 6738, 764, 3575, 602, 1330, 43101, 8081, 4592, 18843, 602, 198, 6738, 764, 3575, 602, 1330, 43101, 8081, 4592, 6207, 13264, 18843, 602, 198, 6738, 764, 3575, 602, 1330, 43101, 8081, 4592, 3629, 672, 18843, 602, 198, 6738, 764, 3575, 602, 1330, 22539, 22906, 18843, 602, 198, 6738, 764, 3575, 602, 1330, 8798, 22906, 18843, 602, 198, 6738, 764, 1330, 4981, 628, 198, 4871, 43101, 8081, 4592, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9171, 14706, 7824, 6770, 329, 262, 22134, 43101, 33432, 19124, 13, 628, 220, 220, 220, 1058, 452, 283, 9290, 62, 2301, 4592, 25, 43101, 8081, 4592, 18843, 602, 4560, 198, 220, 220, 220, 1058, 85, 433, 2981, 9290, 62, 2301, 4592, 25, 35560, 495, 13, 34924, 2301, 4592, 13, 3575, 602, 13, 29869, 8081, 4592, 18843, 602, 198, 220, 220, 220, 1058, 452, 283, 9290, 62, 2301, 4592, 62, 260, 1930, 37765, 25, 43101, 8081, 4592, 6207, 13264, 18843, 602, 4560, 198, 220, 220, 220, 1058, 85, 433, 2981, 9290, 62, 2301, 4592, 62, 260, 1930, 37765, 25, 35560, 495, 13, 34924, 2301, 4592, 13, 3575, 602, 13, 29869, 8081, 4592, 6207, 13264, 18843, 602, 198, 220, 220, 220, 1058, 452, 283, 9290, 62, 2301, 4592, 62, 2436, 672, 25, 43101, 8081, 4592, 3629, 672, 18843, 602, 4560, 198, 220, 220, 220, 1058, 85, 433, 2981, 9290, 62, 2301, 4592, 62, 2436, 672, 25, 35560, 495, 13, 34924, 2301, 4592, 13, 3575, 602, 13, 29869, 8081, 4592, 3629, 672, 18843, 602, 198, 220, 220, 220, 1058, 452, 283, 14976, 62, 83, 482, 641, 25, 22539, 22906, 18843, 602, 4560, 198, 220, 220, 220, 1058, 85, 433, 2981, 14976, 62, 83, 482, 641, 25, 35560, 495, 13, 34924, 2301, 4592, 13, 3575, 602, 13, 8134, 3447, 22906, 18843, 602, 198, 220, 220, 220, 1058, 452, 283, 1895, 62, 83, 482, 641, 25, 8798, 22906, 18843, 602, 4560, 198, 220, 220, 220, 1058, 85, 433, 2981, 1895, 62, 83, 482, 641, 25, 35560, 495, 13, 34924, 2301, 4592, 13, 3575, 602, 13, 15457, 22906, 18843, 602, 198, 220, 220, 220, 1058, 17143, 19016, 25, 33432, 17594, 10289, 13, 198, 220, 220, 220, 1058, 4906, 19016, 25, 965, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 21280, 62, 25927, 7, 944, 11, 2638, 62, 25927, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 25, 357, 43481, 18453, 11, 4377, 8, 4613, 367, 29281, 31077, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 82, 262, 3127, 2581, 832, 262, 5456, 338, 40682, 4788, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2638, 62, 25927, 25, 383, 3127, 2581, 345, 765, 284, 787, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2638, 62, 25927, 25, 5299, 1031, 495, 13, 7295, 13, 79, 541, 4470, 13, 7645, 634, 13, 43481, 18453, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 2539, 4775, 20512, 4269, 25, 10127, 262, 2882, 21437, 481, 307, 35377, 13, 2896, 13185, 284, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 2882, 286, 534, 3127, 869, 13, 8314, 407, 466, 4049, 9041, 319, 534, 2882, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 5299, 1031, 495, 13, 7295, 13, 79, 541, 4470, 13, 7645, 634, 13, 43481, 31077, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 18982, 62, 853, 2886, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 2116, 13557, 46911, 1096, 13, 6371, 7203, 944, 13557, 11250, 13, 6371, 1600, 2116, 13557, 11250, 13, 6371, 11, 705, 2536, 3256, 14267, 62, 22708, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 25927, 13, 6371, 796, 2116, 13557, 16366, 13, 18982, 62, 6371, 7, 4023, 62, 25927, 13, 6371, 11, 12429, 6978, 62, 18982, 62, 853, 2886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 796, 479, 86, 22046, 13, 12924, 7203, 5532, 1600, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11523, 62, 26209, 796, 2116, 13557, 16366, 13557, 79, 541, 4470, 13, 5143, 7, 4023, 62, 25927, 11, 4269, 28, 5532, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11523, 62, 26209, 13, 4023, 62, 26209, 198 ]
3.385776
928
from RPIO import PWM
[ 6738, 25812, 9399, 1330, 350, 22117, 628 ]
3.142857
7
# program to compute the time # of execution of any python code import time from collections import Counter if __name__ == "__main__": puzzle_input = read_input("day14.txt") start = time.time() print(f"Part 1: {part1(puzzle_input)}") print(f"Part 2: {part2(puzzle_input)}") end = time.time() print(f"Took {round(end - start, 5)} to process the puzzle")
[ 2, 1430, 284, 24061, 262, 640, 198, 2, 286, 9706, 286, 597, 21015, 2438, 198, 11748, 640, 198, 6738, 17268, 1330, 15034, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 15027, 62, 15414, 796, 1100, 62, 15414, 7203, 820, 1415, 13, 14116, 4943, 198, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7, 69, 1, 7841, 352, 25, 1391, 3911, 16, 7, 79, 9625, 62, 15414, 38165, 4943, 198, 220, 220, 220, 3601, 7, 69, 1, 7841, 362, 25, 1391, 3911, 17, 7, 79, 9625, 62, 15414, 38165, 4943, 198, 220, 220, 220, 886, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7, 69, 1, 51, 566, 1391, 744, 7, 437, 532, 923, 11, 642, 38165, 284, 1429, 262, 15027, 4943, 198 ]
2.735714
140
import numpy as np from sklearn.model_selection import train_test_split from file_io import features_from_file, labels_from_file, add_history from utils import labels_to_categorical, transpose_vector, get_count, get_mean_stddev, normalize_data BATCH_SIZE = 128
[ 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 6738, 2393, 62, 952, 1330, 3033, 62, 6738, 62, 7753, 11, 14722, 62, 6738, 62, 7753, 11, 751, 62, 23569, 198, 6738, 3384, 4487, 1330, 14722, 62, 1462, 62, 66, 2397, 12409, 11, 1007, 3455, 62, 31364, 11, 651, 62, 9127, 11, 651, 62, 32604, 62, 301, 1860, 1990, 11, 3487, 1096, 62, 7890, 628, 198, 33, 11417, 62, 33489, 796, 13108, 628, 628 ]
3.141176
85
import cv2 import numpy as np import glob # This function records images from the connected camera to specified directory # when the "Space" key is pressed. # directory: should be a string corresponding to the name of an existing # directory print("Hello!") folder = 'calibration_data' ####### THE FOLDER YOU CREATED GOES HERE! print(folder) # This function calls OpenCV's camera calibration on the directory of images # created above. # Returns the following values # intrinsics: the current camera intrinsic calibration matrix # distortion: the current distortion coefficients # roi: the region of the image with full data # new_intrinsics: the intrinsic calibration matrix of an image after # undistortion and roi cropping # This function will save the calibration data to a file in the specified # directory # This function will load the calibration data from a file in the specified # directory
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 15095, 198, 198, 2, 770, 2163, 4406, 4263, 422, 262, 5884, 4676, 284, 7368, 8619, 220, 198, 2, 618, 262, 366, 14106, 1, 1994, 318, 12070, 13, 198, 2, 8619, 25, 815, 307, 257, 4731, 11188, 284, 262, 1438, 286, 281, 4683, 220, 198, 2, 8619, 198, 4798, 7203, 15496, 2474, 8, 198, 43551, 796, 705, 9948, 571, 1358, 62, 7890, 6, 46424, 2235, 3336, 376, 3535, 14418, 7013, 29244, 11617, 10351, 1546, 15698, 0, 198, 4798, 7, 43551, 8, 628, 198, 2, 770, 2163, 3848, 4946, 33538, 338, 4676, 36537, 319, 262, 8619, 286, 4263, 220, 198, 2, 2727, 2029, 13, 220, 198, 2, 16409, 262, 1708, 3815, 198, 2, 22496, 873, 25, 262, 1459, 4676, 28327, 36537, 17593, 220, 220, 198, 2, 25100, 25, 262, 1459, 25100, 44036, 198, 2, 686, 72, 25, 262, 3814, 286, 262, 2939, 351, 1336, 1366, 198, 2, 649, 62, 600, 81, 1040, 873, 25, 262, 28327, 36537, 17593, 286, 281, 2939, 706, 220, 198, 2, 3318, 396, 5817, 290, 686, 72, 6763, 2105, 220, 220, 220, 198, 198, 2, 770, 2163, 481, 3613, 262, 36537, 1366, 284, 257, 2393, 287, 262, 7368, 220, 198, 2, 8619, 198, 220, 220, 220, 220, 198, 2, 770, 2163, 481, 3440, 262, 36537, 1366, 422, 257, 2393, 287, 262, 7368, 220, 198, 2, 8619, 220, 220, 220, 628, 198 ]
3.940426
235
FILENAME = './puzzle1/data/input' s = 0 previous_value = None with open(FILENAME) as file: for line in file: if previous_value: if int(line) > previous_value: s += 1 previous_value = int(line) print(s)
[ 46700, 1677, 10067, 796, 705, 19571, 79, 9625, 16, 14, 7890, 14, 15414, 6, 201, 198, 201, 198, 82, 796, 657, 201, 198, 3866, 1442, 62, 8367, 796, 6045, 201, 198, 4480, 1280, 7, 46700, 1677, 10067, 8, 355, 2393, 25, 201, 198, 220, 220, 220, 329, 1627, 287, 2393, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2180, 62, 8367, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 493, 7, 1370, 8, 1875, 2180, 62, 8367, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 62, 8367, 796, 493, 7, 1370, 8, 201, 198, 4798, 7, 82, 8 ]
1.984733
131
''' Author : MiKueen Level : Medium Problem Statement : Single Number III Given an array of numbers nums, in which exactly two elements appear only once and all the other elements appear exactly twice. Find the two elements that appear only once. Example: Input: [1,2,1,3,2,5] Output: [3,5] Note: The order of the result is not important. So in the above example, [5, 3] is also correct. Your algorithm should run in linear runtime complexity. Could you implement it using only constant space complexity? '''
[ 7061, 6, 198, 13838, 1058, 13756, 42, 518, 268, 198, 4971, 1058, 13398, 198, 40781, 21983, 1058, 14206, 7913, 6711, 198, 198, 15056, 281, 7177, 286, 3146, 997, 82, 11, 287, 543, 3446, 734, 4847, 1656, 691, 1752, 290, 477, 262, 584, 4847, 1656, 3446, 5403, 13, 9938, 262, 734, 4847, 326, 1656, 691, 1752, 13, 198, 198, 16281, 25, 198, 20560, 25, 220, 685, 16, 11, 17, 11, 16, 11, 18, 11, 17, 11, 20, 60, 198, 26410, 25, 685, 18, 11, 20, 60, 198, 6425, 25, 198, 198, 464, 1502, 286, 262, 1255, 318, 407, 1593, 13, 1406, 287, 262, 2029, 1672, 11, 685, 20, 11, 513, 60, 318, 635, 3376, 13, 198, 7120, 11862, 815, 1057, 287, 14174, 19124, 13357, 13, 10347, 345, 3494, 340, 1262, 691, 6937, 2272, 13357, 30, 198, 7061, 6, 198, 220, 220, 220, 220 ]
3.640845
142
print('hello word','sub2') name = input() print('hello,', name) if name=='test': print('hello1,', name) else: print('hello2,', name)
[ 4798, 10786, 31373, 1573, 41707, 7266, 17, 11537, 198, 198, 3672, 796, 5128, 3419, 198, 4798, 10786, 31373, 11, 3256, 1438, 8, 198, 198, 361, 1438, 855, 6, 9288, 10354, 198, 220, 220, 220, 3601, 10786, 31373, 16, 11, 3256, 1438, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 31373, 17, 11, 3256, 1438, 8 ]
2.491228
57
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
t = (1, 2, 3) a, b, c = t print(a) print(b) print(c)
[ 83, 796, 357, 16, 11, 362, 11, 513, 8, 198, 64, 11, 275, 11, 269, 796, 256, 198, 198, 4798, 7, 64, 8, 198, 4798, 7, 65, 8, 198, 4798, 7, 66, 8 ]
1.606061
33
import numpy as np import wave #takes input frame and width of sample in bytes and transforms it into a number between -1 and 1 #reverses squash() vunsquash = np.vectorize(unsquash) vsquash = np.vectorize(squash) #Gets next frame in the file #Arranges the file into numpy matrix for input using every possible sequence. #Arranges the file into numpy matrix for input sequentially.
[ 11748, 299, 32152, 355, 45941, 198, 11748, 6769, 198, 198, 2, 83, 1124, 5128, 5739, 290, 9647, 286, 6291, 287, 9881, 290, 31408, 340, 656, 257, 1271, 1022, 532, 16, 290, 352, 198, 198, 2, 260, 690, 274, 34613, 3419, 198, 198, 85, 13271, 421, 1077, 796, 45941, 13, 31364, 1096, 7, 13271, 421, 1077, 8, 198, 198, 14259, 421, 1077, 796, 45941, 13, 31364, 1096, 7, 16485, 1077, 8, 198, 198, 2, 38, 1039, 1306, 5739, 287, 262, 2393, 198, 198, 2, 3163, 81, 6231, 262, 2393, 656, 299, 32152, 17593, 329, 5128, 1262, 790, 1744, 8379, 13, 628, 198, 2, 3163, 81, 6231, 262, 2393, 656, 299, 32152, 17593, 329, 5128, 4726, 3746, 13, 198 ]
3.324786
117
# -*- coding: utf-8 -*- """Console script for polr.""" import sys import click from .polr import Polr from . import utils from . import settings _client = None @click.group() def polr(args=None): """ Console script for polr. """ return 0 SHORTEN_HELP_STR = "Return an error if a link with the desired customending already exists" @polr.command(name="shorten") @click.argument("url") @click.option("-e", "--ending", "ending", help="A custom ending for the shortened link.") @click.option("-f", "--fail", "raise_on_exists", is_flag=True, help=SHORTEN_HELP_STR) def shorten(url, ending="", raise_on_exists=False): """ Shorten a link with the option to give it a custom ending. Checks to see if a link with the given ending exists. Can be configured to fail if it already exists with [-f|--fail]. Usage: jinc go shorten URL [(-e|--ending=)ending] [(-f|--fail)] Examples: \b # Use default ending $ polr shorten https://example.com http://go/ad14gfwe \b # Use custom ending, if ending already exists don't return error, return link with that ending. $ polr shorten https://example.com -e my-custom-ending http://go/my-custom-ending \b # Use custom ending, return error if it already exists. polr shorten https://example.com -e my-custom-ending -f """ client = get_client() try: shortened = client.shorten(url, ending=ending, raise_on_exists=raise_on_exists) click.echo(shortened) except client.ShortenerException as err: utils.print_error_and_exit(f"{err}") @polr.command(name="shorten-bulk") @click.argument("links") @polr.command(name="exists", help="Check to see if a link with the given ending already exists.") @click.argument("ending") @polr.command(name="lookup") @click.argument("ending") @polr.command(name="data") @click.argument("ending") if __name__ == "__main__": sys.exit(polr()) # pragma: no cover
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 47581, 4226, 329, 755, 81, 526, 15931, 198, 11748, 25064, 198, 198, 11748, 3904, 198, 198, 6738, 764, 16104, 81, 1330, 2165, 81, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 1330, 6460, 628, 198, 62, 16366, 796, 6045, 628, 198, 198, 31, 12976, 13, 8094, 3419, 198, 4299, 755, 81, 7, 22046, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24371, 4226, 329, 755, 81, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 657, 628, 198, 9693, 9863, 1677, 62, 39, 3698, 47, 62, 18601, 796, 366, 13615, 281, 4049, 611, 257, 2792, 351, 262, 10348, 2183, 1571, 1541, 7160, 1, 628, 198, 31, 16104, 81, 13, 21812, 7, 3672, 2625, 19509, 268, 4943, 198, 31, 12976, 13, 49140, 7203, 6371, 4943, 198, 31, 12976, 13, 18076, 7203, 12, 68, 1600, 366, 438, 1571, 1600, 366, 1571, 1600, 1037, 2625, 32, 2183, 7464, 329, 262, 34464, 2792, 19570, 198, 31, 12976, 13, 18076, 7203, 12, 69, 1600, 366, 438, 32165, 1600, 366, 40225, 62, 261, 62, 1069, 1023, 1600, 318, 62, 32109, 28, 17821, 11, 1037, 28, 9693, 9863, 1677, 62, 39, 3698, 47, 62, 18601, 8, 198, 4299, 45381, 7, 6371, 11, 7464, 2625, 1600, 5298, 62, 261, 62, 1069, 1023, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10073, 268, 257, 2792, 351, 262, 3038, 284, 1577, 340, 257, 2183, 7464, 13, 47719, 284, 766, 611, 257, 2792, 351, 198, 220, 220, 220, 262, 1813, 7464, 7160, 13, 1680, 307, 17839, 284, 2038, 611, 340, 1541, 7160, 351, 25915, 69, 91, 438, 32165, 4083, 628, 220, 220, 220, 29566, 25, 628, 220, 220, 220, 220, 220, 220, 220, 474, 1939, 467, 45381, 10289, 685, 32590, 68, 91, 438, 1571, 28, 8, 1571, 60, 685, 32590, 69, 91, 438, 32165, 15437, 628, 220, 220, 220, 21066, 25, 628, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 4277, 7464, 198, 220, 220, 220, 220, 220, 220, 220, 720, 755, 81, 45381, 3740, 1378, 20688, 13, 785, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2188, 14, 324, 1415, 70, 69, 732, 628, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 2183, 7464, 11, 611, 7464, 1541, 7160, 836, 470, 1441, 4049, 11, 1441, 2792, 351, 326, 7464, 13, 198, 220, 220, 220, 220, 220, 220, 220, 720, 755, 81, 45381, 3740, 1378, 20688, 13, 785, 532, 68, 616, 12, 23144, 12, 1571, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2188, 14, 1820, 12, 23144, 12, 1571, 628, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 2183, 7464, 11, 1441, 4049, 611, 340, 1541, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 755, 81, 45381, 3740, 1378, 20688, 13, 785, 532, 68, 616, 12, 23144, 12, 1571, 532, 69, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 5456, 796, 651, 62, 16366, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 34464, 796, 5456, 13, 19509, 268, 7, 6371, 11, 7464, 28, 1571, 11, 5298, 62, 261, 62, 1069, 1023, 28, 40225, 62, 261, 62, 1069, 1023, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 19509, 2945, 8, 198, 220, 220, 220, 2845, 5456, 13, 16438, 877, 16922, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3384, 4487, 13, 4798, 62, 18224, 62, 392, 62, 37023, 7, 69, 1, 90, 8056, 92, 4943, 628, 198, 31, 16104, 81, 13, 21812, 7, 3672, 2625, 19509, 268, 12, 65, 12171, 4943, 198, 31, 12976, 13, 49140, 7203, 28751, 4943, 628, 198, 31, 16104, 81, 13, 21812, 7, 3672, 2625, 1069, 1023, 1600, 1037, 2625, 9787, 284, 766, 611, 257, 2792, 351, 262, 1813, 7464, 1541, 7160, 19570, 198, 31, 12976, 13, 49140, 7203, 1571, 4943, 628, 198, 31, 16104, 81, 13, 21812, 7, 3672, 2625, 5460, 929, 4943, 198, 31, 12976, 13, 49140, 7203, 1571, 4943, 628, 198, 31, 16104, 81, 13, 21812, 7, 3672, 2625, 7890, 4943, 198, 31, 12976, 13, 49140, 7203, 1571, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 16104, 81, 28955, 220, 1303, 23864, 2611, 25, 645, 3002, 198 ]
2.655673
758
from unittest import TestCase from src.pynwb.ndx_franklab_novela.associated_files import AssociatedFiles
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 12351, 13, 79, 2047, 39346, 13, 358, 87, 62, 8310, 962, 23912, 62, 3919, 626, 64, 13, 32852, 62, 16624, 1330, 10575, 25876, 628 ]
3.147059
34
import functools import requests from dbt.events.functions import fire_event from dbt.events.types import ( RegistryProgressMakingGETRequest, RegistryProgressGETResponse ) from dbt.utils import memoized, _connection_exception_retry as connection_exception_retry from dbt import deprecations import os if os.getenv('DBT_PACKAGE_HUB_URL'): DEFAULT_REGISTRY_BASE_URL = os.getenv('DBT_PACKAGE_HUB_URL') else: DEFAULT_REGISTRY_BASE_URL = 'https://hub.getdbt.com/' index_cached = memoized(index)
[ 11748, 1257, 310, 10141, 198, 11748, 7007, 198, 6738, 288, 18347, 13, 31534, 13, 12543, 2733, 1330, 2046, 62, 15596, 198, 6738, 288, 18347, 13, 31534, 13, 19199, 1330, 357, 198, 220, 220, 220, 33432, 32577, 23874, 18851, 18453, 11, 198, 220, 220, 220, 33432, 32577, 18851, 31077, 198, 8, 198, 6738, 288, 18347, 13, 26791, 1330, 16155, 1143, 11, 4808, 38659, 62, 1069, 4516, 62, 1186, 563, 355, 4637, 62, 1069, 4516, 62, 1186, 563, 198, 6738, 288, 18347, 1330, 1207, 8344, 602, 198, 11748, 28686, 198, 198, 361, 28686, 13, 1136, 24330, 10786, 11012, 51, 62, 47, 8120, 11879, 62, 39, 10526, 62, 21886, 6, 2599, 198, 220, 220, 220, 5550, 38865, 62, 31553, 1797, 40405, 62, 33, 11159, 62, 21886, 796, 28686, 13, 1136, 24330, 10786, 11012, 51, 62, 47, 8120, 11879, 62, 39, 10526, 62, 21886, 11537, 198, 17772, 25, 198, 220, 220, 220, 5550, 38865, 62, 31553, 1797, 40405, 62, 33, 11159, 62, 21886, 796, 705, 5450, 1378, 40140, 13, 1136, 9945, 83, 13, 785, 14, 6, 628, 628, 628, 198, 9630, 62, 66, 2317, 796, 16155, 1143, 7, 9630, 8, 628, 628, 198 ]
2.73545
189
#from https://stackoverflow.com/questions/726549/algorithm-for-additive-color-mixing-for-rgb-values/726578 rgb_scale = 255 cmyk_scale = 100 def cmyk_to_rgb(c, m, y, k): """ """ r = rgb_scale*(1.0 - (c + k) / float(cmyk_scale)) g = rgb_scale*(1.0 - (m + k) / float(cmyk_scale)) b = rgb_scale*(1.0 - (y + k) / float(cmyk_scale)) return int(r), int(g), int(b) def ink_add_for_rgb(list_of_colors): """input: list of rgb, opacity (r,g,b,o) colors to be added, o acts as weights. output (r,g,b) """ C = 0 M = 0 Y = 0 K = 0 for (r, g, b, o) in list_of_colors: c, m, y, k = rgb_to_cmyk(r, g, b) C += o * c M += o * m Y += o * y K += o * k return cmyk_to_rgb(C, M, Y, K)
[ 2, 6738, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 22, 22980, 2920, 14, 282, 42289, 12, 1640, 12, 2860, 1800, 12, 8043, 12, 19816, 278, 12, 1640, 12, 81, 22296, 12, 27160, 14, 22, 2075, 38907, 198, 198, 81, 22296, 62, 9888, 796, 14280, 198, 66, 1820, 74, 62, 9888, 796, 1802, 198, 198, 4299, 269, 1820, 74, 62, 1462, 62, 81, 22296, 7, 66, 11, 285, 11, 331, 11, 479, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 374, 796, 46140, 62, 9888, 9, 7, 16, 13, 15, 532, 357, 66, 1343, 479, 8, 1220, 12178, 7, 66, 1820, 74, 62, 9888, 4008, 198, 220, 220, 220, 308, 796, 46140, 62, 9888, 9, 7, 16, 13, 15, 532, 357, 76, 1343, 479, 8, 1220, 12178, 7, 66, 1820, 74, 62, 9888, 4008, 198, 220, 220, 220, 275, 796, 46140, 62, 9888, 9, 7, 16, 13, 15, 532, 357, 88, 1343, 479, 8, 1220, 12178, 7, 66, 1820, 74, 62, 9888, 4008, 198, 220, 220, 220, 1441, 493, 7, 81, 828, 493, 7, 70, 828, 493, 7, 65, 8, 198, 198, 4299, 16882, 62, 2860, 62, 1640, 62, 81, 22296, 7, 4868, 62, 1659, 62, 4033, 669, 2599, 198, 220, 220, 220, 37227, 15414, 25, 1351, 286, 46140, 11, 45912, 357, 81, 11, 70, 11, 65, 11, 78, 8, 7577, 284, 307, 2087, 11, 267, 6529, 355, 19590, 13, 198, 220, 220, 220, 5072, 357, 81, 11, 70, 11, 65, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 796, 657, 198, 220, 220, 220, 337, 796, 657, 198, 220, 220, 220, 575, 796, 657, 198, 220, 220, 220, 509, 796, 657, 628, 220, 220, 220, 329, 357, 81, 11, 308, 11, 275, 11, 267, 8, 287, 1351, 62, 1659, 62, 4033, 669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 11, 285, 11, 331, 11, 479, 796, 46140, 62, 1462, 62, 66, 1820, 74, 7, 81, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 15853, 267, 1635, 269, 198, 220, 220, 220, 220, 220, 220, 220, 337, 15853, 267, 1635, 285, 198, 220, 220, 220, 220, 220, 220, 220, 575, 15853, 267, 1635, 331, 198, 220, 220, 220, 220, 220, 220, 220, 509, 15853, 267, 1635, 479, 628, 220, 220, 220, 1441, 269, 1820, 74, 62, 1462, 62, 81, 22296, 7, 34, 11, 337, 11, 575, 11, 509, 8, 628 ]
1.864078
412
""" Convert txt files of ApolloCar3D into json file with COCO format """ import glob import os import time from shutil import copyfile import json import argparse import numpy as np from PIL import Image # Packages for data processing, crowd annotations and histograms try: import matplotlib.pyplot as plt # pylint: disable=import-error except ModuleNotFoundError as err: if err.name != 'matplotlib': raise err plt = None try: import cv2 # pylint: disable=import-error except ModuleNotFoundError as err: if err.name != 'cv2': raise err cv2 = None # pylint: disable=invalid-name from .constants import CAR_KEYPOINTS_24, CAR_SKELETON_24,\ CAR_KEYPOINTS_66, CAR_SKELETON_66, KPS_MAPPING from .transforms import skeleton_mapping if __name__ == "__main__": main()
[ 37811, 198, 3103, 1851, 256, 742, 3696, 286, 17508, 9914, 18, 35, 656, 33918, 2393, 351, 327, 4503, 46, 5794, 198, 37811, 198, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 640, 198, 6738, 4423, 346, 1330, 4866, 7753, 198, 11748, 33918, 198, 11748, 1822, 29572, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 2, 6400, 1095, 329, 1366, 7587, 11, 4315, 37647, 290, 1554, 26836, 198, 28311, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 1303, 279, 2645, 600, 25, 15560, 28, 11748, 12, 18224, 198, 16341, 19937, 3673, 21077, 12331, 355, 11454, 25, 198, 220, 220, 220, 611, 11454, 13, 3672, 14512, 705, 6759, 29487, 8019, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11454, 198, 220, 220, 220, 458, 83, 796, 6045, 198, 28311, 25, 198, 220, 220, 220, 1330, 269, 85, 17, 220, 1303, 279, 2645, 600, 25, 15560, 28, 11748, 12, 18224, 198, 16341, 19937, 3673, 21077, 12331, 355, 11454, 25, 198, 220, 220, 220, 611, 11454, 13, 3672, 14512, 705, 33967, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11454, 198, 220, 220, 220, 269, 85, 17, 796, 6045, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 198, 6738, 764, 9979, 1187, 1330, 17368, 62, 20373, 16402, 1268, 4694, 62, 1731, 11, 17368, 62, 50, 7336, 2538, 11357, 62, 1731, 11, 59, 198, 220, 220, 220, 17368, 62, 20373, 16402, 1268, 4694, 62, 2791, 11, 17368, 62, 50, 7336, 2538, 11357, 62, 2791, 11, 509, 3705, 62, 44, 24805, 2751, 198, 6738, 764, 7645, 23914, 1330, 18328, 62, 76, 5912, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.715232
302
#!/usr/bin/env python import os import sys import ci_lib batches = [] if 0 and os.uname()[0] == 'Linux': batches += [ [ "sudo chown `whoami`: ~", "chmod u=rwx,g=rx,o= ~", "sudo mkdir /var/run/sshd", "sudo /etc/init.d/ssh start", "mkdir -p ~/.ssh", "chmod u=rwx,go= ~/.ssh", "ssh-keyscan -H localhost >> ~/.ssh/known_hosts", "chmod u=rw,go= ~/.ssh/known_hosts", "cat tests/data/docker/mitogen__has_sudo_pubkey.key > ~/.ssh/id_rsa", "chmod u=rw,go= ~/.ssh/id_rsa", "cat tests/data/docker/mitogen__has_sudo_pubkey.key.pub > ~/.ssh/authorized_keys", "chmod u=rw,go=r ~/.ssh/authorized_keys", ] ] if ci_lib.have_apt(): batches.append([ 'echo force-unsafe-io | sudo tee /etc/dpkg/dpkg.cfg.d/nosync', 'sudo add-apt-repository ppa:deadsnakes/ppa', 'sudo apt-get update', 'sudo apt-get -y install ' 'python{pv} ' 'python{pv}-dev ' 'libsasl2-dev ' 'libldap2-dev ' .format(pv=os.environ['PYTHONVERSION']) ]) ci_lib.run_batches(batches)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 269, 72, 62, 8019, 198, 198, 8664, 2052, 796, 17635, 198, 198, 361, 657, 290, 28686, 13, 403, 480, 3419, 58, 15, 60, 6624, 705, 19314, 10354, 198, 220, 220, 220, 37830, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24032, 442, 593, 4600, 8727, 6277, 63, 25, 5299, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 4666, 334, 28, 31653, 87, 11, 70, 28, 40914, 11, 78, 28, 5299, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24032, 33480, 15908, 1220, 7785, 14, 5143, 14, 824, 31298, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24032, 1220, 14784, 14, 15003, 13, 67, 14, 45824, 923, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28015, 15908, 532, 79, 39763, 45824, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 4666, 334, 28, 31653, 87, 11, 2188, 28, 39763, 45824, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45824, 12, 13083, 5171, 532, 39, 1957, 4774, 9609, 39763, 45824, 14, 4002, 62, 4774, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 4666, 334, 28, 31653, 11, 2188, 28, 39763, 45824, 14, 4002, 62, 4774, 82, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9246, 5254, 14, 7890, 14, 45986, 14, 2781, 6644, 834, 10134, 62, 24032, 62, 12984, 2539, 13, 2539, 1875, 39763, 45824, 14, 312, 62, 3808, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 4666, 334, 28, 31653, 11, 2188, 28, 39763, 45824, 14, 312, 62, 3808, 64, 1600, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9246, 5254, 14, 7890, 14, 45986, 14, 2781, 6644, 834, 10134, 62, 24032, 62, 12984, 2539, 13, 2539, 13, 12984, 1875, 39763, 45824, 14, 19721, 62, 13083, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 4666, 334, 28, 31653, 11, 2188, 28, 81, 39763, 45824, 14, 19721, 62, 13083, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2361, 198, 198, 361, 269, 72, 62, 8019, 13, 14150, 62, 2373, 33529, 198, 220, 220, 220, 37830, 13, 33295, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30328, 2700, 12, 13271, 8635, 12, 952, 930, 21061, 30479, 1220, 14784, 14, 26059, 10025, 14, 26059, 10025, 13, 37581, 13, 67, 14, 39369, 13361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24032, 751, 12, 2373, 12, 260, 1930, 37765, 279, 8957, 25, 25124, 16184, 1124, 14, 44989, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24032, 15409, 12, 1136, 4296, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24032, 15409, 12, 1136, 532, 88, 2721, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 90, 79, 85, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 90, 79, 85, 92, 12, 7959, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8019, 82, 292, 75, 17, 12, 7959, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8019, 335, 499, 17, 12, 7959, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 79, 85, 28, 418, 13, 268, 2268, 17816, 47, 56, 4221, 1340, 43717, 6, 12962, 198, 220, 220, 220, 33761, 198, 198, 979, 62, 8019, 13, 5143, 62, 8664, 2052, 7, 8664, 2052, 8, 198 ]
1.821483
661
from django.shortcuts import render, redirect from django.http import HttpResponse, Http404 from .models import Order, _get_all_order from .forms import DriverModelForm, OrderModelForm, StoreModelForm
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 11, 367, 29281, 26429, 198, 6738, 764, 27530, 1330, 8284, 11, 4808, 1136, 62, 439, 62, 2875, 198, 6738, 764, 23914, 1330, 12434, 17633, 8479, 11, 8284, 17633, 8479, 11, 9363, 17633, 8479, 628, 628, 628, 628 ]
3.649123
57
# a simple Ngram finder # only feasible for 3.x version # original text file must be plain text n=1 # min N howmany = 5 # max N outlength = 200 white_list = [] white_punc = [',','。','“','”','—','?','!','…','"',"'",':','?','!','.',','] file_raw = open('put full path to youre text file here','r',encoding='utf-8') file_out = open('output file with or without full path','w',encoding='utf-8') full_text = '' for line in file_raw: #read and remove punctuation _ = line[:-1].strip().replace(' ','') for ch in white_punc: if ch in _: _ = _.replace(ch, '') full_text+=_ file_raw.close() while n<=howmany: file_out.write('====='+str(n)+'=====\n') d = search_ngram(n, full_text) values = list(d.values()) values.sort(key=lambda x:x[0], reverse=True) outcount = 0 for element in values: if element[1] not in white_list: countp = 0 for p in white_punc: if p not in element[1]: countp+=1 if countp==len(white_punc): file_out.write(element[1]+'\t'+str(element[0])+'\n') outcount+=1 if outcount>outlength: break n+=1 file_out.flush() file_out.close()
[ 2, 257, 2829, 399, 4546, 1064, 263, 198, 2, 691, 23498, 329, 513, 13, 87, 2196, 198, 2, 2656, 2420, 2393, 1276, 307, 8631, 2420, 220, 198, 198, 77, 28, 16, 220, 1303, 949, 399, 198, 4919, 21834, 796, 642, 220, 1303, 3509, 399, 198, 448, 13664, 796, 939, 198, 11186, 62, 4868, 796, 17635, 198, 11186, 62, 79, 19524, 796, 37250, 171, 120, 234, 41707, 16764, 41707, 447, 250, 41707, 447, 251, 41707, 960, 41707, 171, 120, 253, 41707, 171, 120, 223, 41707, 1399, 3256, 29653, 40264, 6, 1600, 6, 171, 120, 248, 3256, 30960, 41707, 0, 41707, 2637, 11, 3256, 20520, 198, 7753, 62, 1831, 796, 1280, 10786, 1996, 1336, 3108, 284, 345, 260, 2420, 2393, 994, 41707, 81, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 198, 7753, 62, 448, 796, 1280, 10786, 22915, 2393, 351, 393, 1231, 1336, 3108, 41707, 86, 3256, 12685, 7656, 11639, 40477, 12, 23, 11537, 198, 12853, 62, 5239, 796, 10148, 198, 198, 1640, 1627, 287, 2393, 62, 1831, 25, 220, 1303, 961, 290, 4781, 21025, 2288, 198, 220, 220, 220, 4808, 796, 1627, 58, 21912, 16, 4083, 36311, 22446, 33491, 10786, 705, 4032, 11537, 198, 220, 220, 220, 329, 442, 287, 2330, 62, 79, 19524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 442, 287, 4808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 4808, 13, 33491, 7, 354, 11, 10148, 8, 198, 220, 220, 220, 1336, 62, 5239, 47932, 62, 198, 7753, 62, 1831, 13, 19836, 3419, 628, 198, 198, 4514, 299, 27, 28, 4919, 21834, 25, 198, 220, 220, 220, 2393, 62, 448, 13, 13564, 10786, 1421, 11639, 10, 2536, 7, 77, 47762, 6, 1421, 28, 59, 77, 11537, 198, 220, 220, 220, 288, 796, 2989, 62, 782, 859, 7, 77, 11, 1336, 62, 5239, 8, 198, 220, 220, 220, 3815, 796, 1351, 7, 67, 13, 27160, 28955, 198, 220, 220, 220, 3815, 13, 30619, 7, 2539, 28, 50033, 2124, 25, 87, 58, 15, 4357, 9575, 28, 17821, 8, 198, 220, 220, 220, 503, 9127, 796, 657, 198, 220, 220, 220, 329, 5002, 287, 3815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 58, 16, 60, 407, 287, 2330, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 79, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2330, 62, 79, 19524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 407, 287, 5002, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 79, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 79, 855, 11925, 7, 11186, 62, 79, 19524, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 13, 13564, 7, 30854, 58, 16, 48688, 6, 59, 83, 6, 10, 2536, 7, 30854, 58, 15, 12962, 10, 6, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 9127, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 9127, 29, 448, 13664, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 299, 47932, 16, 198, 220, 220, 220, 2393, 62, 448, 13, 25925, 3419, 628, 198, 7753, 62, 448, 13, 19836, 3419, 198 ]
2.08194
598
#=========================================================================== # # Report functions # #=========================================================================== import time from ..util import Data from .Link import Link #=========================================================================== def power( *args, **kwargs ): """Return instantaneous AC and DC power generation. Inputs are the same as Link() constructor: obj = report.instant( '192.168.1.15' ) print obj """ with Link( *args, **kwargs ) as link: link.decode = False link.raw = False dcBytes, dc = link.dcPower() acBytes, ac = link.acTotalPower() now = time.time() obj = dc.decode( dcBytes ) obj.update( ac.decode( acBytes ) ) obj.time = now obj.dcPower = obj.dcPower1 + obj.dcPower2 return obj #=========================================================================== def energy( *args, **kwargs ): """Return instantaneous power and total energy status. Get instantaneous AC and DC power generation and energy created for the day. Inputs are the same as Link() constructor: obj = report.energy( '192.168.1.15' ) print obj """ with Link( *args, **kwargs ) as link: link.decode = False dcBytes, dc = link.dcPower() acBytes, ac = link.acTotalPower() totBytes, total = link.acTotalEnergy() now = time.time() obj = dc.decode( dcBytes ) obj.update( ac.decode( acBytes ) ) obj.update( total.decode( totBytes ) ) obj.time = now obj.dcPower = obj.dcPower1 + obj.dcPower2 return obj #=========================================================================== def full( *args, **kwargs ): """Return all possible fields. Inputs are the same as Link() constructor: obj = report.full( '192.168.1.15' ) print obj """ funcs = [ Link.info, Link.status, Link.gridRelayStatus, Link.temperature, Link.version, Link.acTotalEnergy, Link.acTotalPower, Link.acPower, Link.acMaxPower, Link.operationTime, Link.dcPower, Link.dcVoltage, Link.acVoltage, Link.gridFrequency, ] with Link( *args, **kwargs ) as link: link.decode = False results = [ f( link ) for f in funcs ] now = time.time() obj = Data() for bytes, decoder in results: obj.update( decoder.decode( bytes ) ) obj.time = now obj.dcPower = obj.dcPower1 + obj.dcPower2 return obj #===========================================================================
[ 2, 23926, 2559, 18604, 198, 2, 198, 2, 6358, 5499, 198, 2, 198, 2, 23926, 2559, 18604, 198, 11748, 640, 198, 6738, 11485, 22602, 1330, 6060, 198, 6738, 764, 11280, 1330, 7502, 198, 198, 2, 23926, 2559, 18604, 198, 4299, 1176, 7, 1635, 22046, 11, 12429, 46265, 22046, 15179, 198, 220, 220, 37227, 13615, 47707, 7125, 290, 6257, 1176, 5270, 13, 628, 220, 220, 23412, 82, 389, 262, 976, 355, 7502, 3419, 23772, 25, 628, 220, 220, 26181, 796, 989, 13, 8625, 415, 7, 705, 17477, 13, 14656, 13, 16, 13, 1314, 6, 1267, 198, 220, 220, 3601, 26181, 198, 220, 220, 37227, 198, 220, 220, 351, 7502, 7, 1635, 22046, 11, 12429, 46265, 22046, 1267, 355, 2792, 25, 198, 220, 220, 220, 220, 220, 2792, 13, 12501, 1098, 796, 10352, 198, 220, 220, 220, 220, 220, 2792, 13, 1831, 796, 10352, 198, 220, 220, 220, 220, 220, 30736, 45992, 11, 30736, 796, 2792, 13, 17896, 13434, 3419, 198, 220, 220, 220, 220, 220, 936, 45992, 11, 936, 796, 2792, 13, 330, 14957, 13434, 3419, 628, 220, 220, 783, 796, 640, 13, 2435, 3419, 198, 220, 220, 26181, 796, 30736, 13, 12501, 1098, 7, 30736, 45992, 1267, 198, 220, 220, 26181, 13, 19119, 7, 936, 13, 12501, 1098, 7, 936, 45992, 1267, 1267, 628, 220, 220, 26181, 13, 2435, 796, 783, 198, 220, 220, 26181, 13, 17896, 13434, 796, 26181, 13, 17896, 13434, 16, 1343, 26181, 13, 17896, 13434, 17, 198, 220, 220, 1441, 26181, 198, 198, 2, 23926, 2559, 18604, 198, 4299, 2568, 7, 1635, 22046, 11, 12429, 46265, 22046, 15179, 198, 220, 220, 37227, 13615, 47707, 1176, 290, 2472, 2568, 3722, 13, 628, 220, 220, 3497, 47707, 7125, 290, 6257, 1176, 5270, 290, 2568, 2727, 329, 198, 220, 220, 262, 1110, 13, 628, 220, 220, 23412, 82, 389, 262, 976, 355, 7502, 3419, 23772, 25, 628, 220, 220, 26181, 796, 989, 13, 22554, 7, 705, 17477, 13, 14656, 13, 16, 13, 1314, 6, 1267, 198, 220, 220, 3601, 26181, 198, 220, 220, 37227, 198, 220, 220, 351, 7502, 7, 1635, 22046, 11, 12429, 46265, 22046, 1267, 355, 2792, 25, 198, 220, 220, 220, 220, 220, 2792, 13, 12501, 1098, 796, 10352, 198, 220, 220, 220, 220, 220, 30736, 45992, 11, 30736, 796, 2792, 13, 17896, 13434, 3419, 198, 220, 220, 220, 220, 220, 936, 45992, 11, 936, 796, 2792, 13, 330, 14957, 13434, 3419, 198, 220, 220, 220, 220, 220, 2006, 45992, 11, 2472, 796, 2792, 13, 330, 14957, 28925, 3419, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 783, 796, 640, 13, 2435, 3419, 198, 220, 220, 26181, 796, 30736, 13, 12501, 1098, 7, 30736, 45992, 1267, 198, 220, 220, 26181, 13, 19119, 7, 936, 13, 12501, 1098, 7, 936, 45992, 1267, 1267, 198, 220, 220, 26181, 13, 19119, 7, 2472, 13, 12501, 1098, 7, 2006, 45992, 1267, 1267, 628, 220, 220, 26181, 13, 2435, 796, 783, 198, 220, 220, 26181, 13, 17896, 13434, 796, 26181, 13, 17896, 13434, 16, 1343, 26181, 13, 17896, 13434, 17, 198, 220, 220, 1441, 26181, 198, 220, 220, 220, 198, 2, 23926, 2559, 18604, 198, 4299, 1336, 7, 1635, 22046, 11, 12429, 46265, 22046, 15179, 198, 220, 220, 37227, 13615, 477, 1744, 7032, 13, 198, 220, 220, 220, 198, 220, 220, 23412, 82, 389, 262, 976, 355, 7502, 3419, 23772, 25, 628, 220, 220, 26181, 796, 989, 13, 12853, 7, 705, 17477, 13, 14656, 13, 16, 13, 1314, 6, 1267, 198, 220, 220, 3601, 26181, 198, 220, 220, 37227, 198, 220, 220, 1257, 6359, 796, 685, 198, 220, 220, 220, 220, 220, 7502, 13, 10951, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 13376, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 25928, 6892, 323, 19580, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 11498, 21069, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 9641, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 330, 14957, 28925, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 330, 14957, 13434, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 330, 13434, 11, 220, 198, 220, 220, 220, 220, 220, 7502, 13, 330, 11518, 13434, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 27184, 7575, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 17896, 13434, 11, 220, 198, 220, 220, 220, 220, 220, 7502, 13, 17896, 53, 5978, 496, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 330, 53, 5978, 496, 11, 198, 220, 220, 220, 220, 220, 7502, 13, 25928, 37, 28707, 11, 198, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 351, 7502, 7, 1635, 22046, 11, 12429, 46265, 22046, 1267, 355, 2792, 25, 198, 220, 220, 220, 220, 220, 2792, 13, 12501, 1098, 796, 10352, 198, 220, 220, 220, 220, 220, 2482, 796, 685, 277, 7, 2792, 1267, 329, 277, 287, 1257, 6359, 2361, 628, 220, 220, 783, 796, 640, 13, 2435, 3419, 198, 220, 220, 26181, 796, 6060, 3419, 198, 220, 220, 329, 9881, 11, 875, 12342, 287, 2482, 25, 198, 220, 220, 220, 220, 220, 26181, 13, 19119, 7, 875, 12342, 13, 12501, 1098, 7, 9881, 1267, 1267, 628, 220, 220, 26181, 13, 2435, 796, 783, 198, 220, 220, 26181, 13, 17896, 13434, 796, 26181, 13, 17896, 13434, 16, 1343, 26181, 13, 17896, 13434, 17, 198, 220, 220, 1441, 26181, 198, 198, 2, 23926, 2559, 18604, 198 ]
2.907762
889
from test.integration.base import DBTIntegrationTest, use_profile
[ 6738, 1332, 13, 18908, 1358, 13, 8692, 1330, 360, 19313, 34500, 1358, 14402, 11, 779, 62, 13317, 628 ]
3.722222
18
import endpoints import graylogapi
[ 11748, 886, 13033, 198, 11748, 12768, 6404, 15042, 198 ]
3.888889
9
""" Install API Endpoint """ # Third Party Library from django.views import View from django.http import JsonResponse from django.utils.translation import gettext as _ # Local Library from pyvalitron.form import Form from app.modules.util.helpers import Helpers from app.modules.core.request import Request from app.modules.core.response import Response from app.modules.validation.extension import ExtraRules from app.modules.core.install import Install as InstallModule from app.modules.core.decorators import stop_request_if_installed from app.modules.core.notification import Notification as NotificationModule
[ 37811, 198, 15798, 7824, 5268, 4122, 198, 37811, 198, 198, 2, 10467, 3615, 10074, 198, 6738, 42625, 14208, 13, 33571, 1330, 3582, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 355, 4808, 198, 198, 2, 10714, 10074, 198, 6738, 12972, 2100, 270, 1313, 13, 687, 1330, 5178, 198, 6738, 598, 13, 18170, 13, 22602, 13, 16794, 364, 1330, 10478, 364, 198, 6738, 598, 13, 18170, 13, 7295, 13, 25927, 1330, 19390, 198, 6738, 598, 13, 18170, 13, 7295, 13, 26209, 1330, 18261, 198, 6738, 598, 13, 18170, 13, 12102, 341, 13, 2302, 3004, 1330, 17221, 37766, 198, 6738, 598, 13, 18170, 13, 7295, 13, 17350, 1330, 15545, 355, 15545, 26796, 198, 6738, 598, 13, 18170, 13, 7295, 13, 12501, 273, 2024, 1330, 2245, 62, 25927, 62, 361, 62, 37050, 198, 6738, 598, 13, 18170, 13, 7295, 13, 1662, 2649, 1330, 42808, 355, 42808, 26796, 628 ]
3.911392
158
import pytest from crawler.core import Downloader, Config, UrlManager import os from shutil import rmtree DEFAULT_INI_PATH = "./tests/config/default.ini" CONFIG_DIR_PATH = "./tests/config" test_failed_urls = ["http://www.google.com"] test_finished_urls = ["http://www.baidu.com"] test_repeated_urls = [] for i in range(10): test_repeated_urls.append("http://www.baidu.com") test_repeated_urls.append("http://www.hubianluanzao2131231231.com")
[ 11748, 12972, 9288, 198, 6738, 27784, 1754, 13, 7295, 1330, 10472, 263, 11, 17056, 11, 8799, 75, 13511, 198, 11748, 28686, 198, 6738, 4423, 346, 1330, 374, 16762, 631, 198, 198, 7206, 38865, 62, 1268, 40, 62, 34219, 796, 366, 19571, 41989, 14, 11250, 14, 12286, 13, 5362, 1, 198, 10943, 16254, 62, 34720, 62, 34219, 796, 366, 19571, 41989, 14, 11250, 1, 198, 198, 9288, 62, 47904, 62, 6371, 82, 796, 14631, 4023, 1378, 2503, 13, 13297, 13, 785, 8973, 198, 9288, 62, 43952, 62, 6371, 82, 796, 14631, 4023, 1378, 2503, 13, 65, 1698, 84, 13, 785, 8973, 198, 9288, 62, 45956, 515, 62, 6371, 82, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 1332, 62, 45956, 515, 62, 6371, 82, 13, 33295, 7203, 4023, 1378, 2503, 13, 65, 1698, 84, 13, 785, 4943, 198, 220, 220, 220, 1332, 62, 45956, 515, 62, 6371, 82, 13, 33295, 7203, 4023, 1378, 2503, 13, 40140, 666, 2290, 35819, 78, 26427, 10163, 1065, 3132, 13, 785, 4943, 628 ]
2.618497
173
# Generated by Django 3.0.7 on 2020-07-01 17:59 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 22, 319, 12131, 12, 2998, 12, 486, 1596, 25, 3270, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import pytest from cogctl.cli.relay import relay import responses @pytest.fixture(autouse=True)
[ 11748, 12972, 9288, 198, 6738, 43072, 34168, 13, 44506, 13, 2411, 323, 1330, 24248, 198, 11748, 9109, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 2306, 1076, 28, 17821, 8, 628, 628, 628, 628, 628, 628 ]
2.945946
37
from abc import ABC, abstractmethod from typing import Callable, Generic, Iterable, List, Optional, Tuple, TypeVar, Union from helpers.utils import CacheContainer, with_cache # S and A are used for generic typing where S represents the state type and A represents the action type S = TypeVar("S") A = TypeVar("A") # Game is a generic abstract class for game definitions # It also implements 'CacheContainer' which allows you to call the "cache" method # which returns a dictionary in which you can store any data you want to cache # A heuristic function which estimates the value of a given state for a certain agent within a certain game. # E.g. if the heuristic function returns a high value for a certain agent, it should return low values for their enemies. HeuristicFunction = Callable[[Game[S, A], S, int], float]
[ 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 19720, 1330, 4889, 540, 11, 42044, 11, 40806, 540, 11, 7343, 11, 32233, 11, 309, 29291, 11, 5994, 19852, 11, 4479, 198, 6738, 49385, 13, 26791, 1330, 34088, 29869, 11, 351, 62, 23870, 198, 198, 2, 311, 290, 317, 389, 973, 329, 14276, 19720, 810, 311, 6870, 262, 1181, 2099, 290, 317, 6870, 262, 2223, 2099, 198, 50, 796, 5994, 19852, 7203, 50, 4943, 198, 32, 796, 5994, 19852, 7203, 32, 4943, 198, 198, 2, 3776, 318, 257, 14276, 12531, 1398, 329, 983, 17336, 198, 2, 632, 635, 23986, 705, 30562, 29869, 6, 543, 3578, 345, 284, 869, 262, 366, 23870, 1, 2446, 198, 2, 543, 5860, 257, 22155, 287, 543, 345, 460, 3650, 597, 1366, 345, 765, 284, 12940, 198, 198, 2, 317, 339, 27915, 2163, 543, 7746, 262, 1988, 286, 257, 1813, 1181, 329, 257, 1728, 5797, 1626, 257, 1728, 983, 13, 198, 2, 412, 13, 70, 13, 611, 262, 339, 27915, 2163, 5860, 257, 1029, 1988, 329, 257, 1728, 5797, 11, 340, 815, 1441, 1877, 3815, 329, 511, 5775, 13, 198, 1544, 27915, 22203, 796, 4889, 540, 30109, 8777, 58, 50, 11, 317, 4357, 311, 11, 493, 4357, 12178, 60 ]
4.049261
203
from models.constants import CONFIGURATION_FILE_PATH, CONFIGURATION_FILENAME from os import path import json try: config = path.join(CONFIGURATION_FILE_PATH, CONFIGURATION_FILENAME) with open(config) as configuration_file: config = json.load(configuration_file) except FileNotFoundError: config = dict()
[ 6738, 4981, 13, 9979, 1187, 1330, 25626, 4261, 6234, 62, 25664, 62, 34219, 11, 25626, 4261, 6234, 62, 46700, 1677, 10067, 198, 6738, 28686, 1330, 3108, 198, 11748, 33918, 198, 198, 28311, 25, 198, 220, 220, 220, 4566, 796, 3108, 13, 22179, 7, 10943, 16254, 4261, 6234, 62, 25664, 62, 34219, 11, 25626, 4261, 6234, 62, 46700, 1677, 10067, 8, 198, 220, 220, 220, 351, 1280, 7, 11250, 8, 355, 8398, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 33918, 13, 2220, 7, 11250, 3924, 62, 7753, 8, 198, 16341, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 4566, 796, 8633, 3419, 198 ]
2.981651
109
from pymongo.cursor import Cursor import bson.objectid import datetime import json import pytz from ..jobs.jobs import Job def sse_pack(d): """ Format a map with Server-Sent-Event-meaningful keys into a string for transport. Happily borrowed from: http://taoofmac.com/space/blog/2014/11/16/1940 For reading on web usage: http://www.html5rocks.com/en/tutorials/eventsource/basics For reading on the format: https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format """ buffer_ = '' for k in ['retry', 'id', 'event', 'data']: if k in d.keys(): buffer_ += '%s: %s\n' % (k, d[k]) return buffer_ + '\n' def json_sse_pack(d): """ Variant of sse_pack that will json-encode your data blob. """ d['data'] = json.dumps(d['data'], default=custom_json_serializer) return sse_pack(d) def pseudo_consistent_json_encode(d): """ Some parts of our system rely upon consistently-produced JSON encoding. This implementation is not guaranteed to be consistent, but it's good enough for now. """ return json.dumps(d, sort_keys=True, indent=4, separators=(',', ': ')) + '\n'
[ 6738, 279, 4948, 25162, 13, 66, 21471, 1330, 327, 21471, 198, 11748, 275, 1559, 13, 15252, 312, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 12972, 22877, 198, 198, 6738, 11485, 43863, 13, 43863, 1330, 15768, 628, 198, 4299, 264, 325, 62, 8002, 7, 67, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18980, 257, 3975, 351, 9652, 12, 31837, 12, 9237, 12, 24815, 913, 8251, 656, 257, 4731, 329, 4839, 13, 628, 220, 220, 220, 18321, 813, 22546, 422, 25, 220, 220, 220, 220, 220, 2638, 1378, 83, 5488, 1659, 20285, 13, 785, 14, 13200, 14, 14036, 14, 4967, 14, 1157, 14, 1433, 14, 1129, 1821, 198, 220, 220, 220, 1114, 3555, 319, 3992, 8748, 25, 220, 220, 2638, 1378, 2503, 13, 6494, 20, 305, 4657, 13, 785, 14, 268, 14, 83, 44917, 82, 14, 31534, 1668, 14, 12093, 873, 198, 220, 220, 220, 1114, 3555, 319, 262, 5794, 25, 220, 3740, 1378, 16244, 263, 13, 5908, 16496, 13, 2398, 14, 268, 12, 2937, 14, 31628, 14, 13908, 14, 17614, 14, 10697, 12, 34086, 62, 31534, 14, 12814, 62, 15388, 12, 34086, 62, 31534, 2, 9237, 62, 5532, 62, 18982, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11876, 62, 796, 10148, 628, 220, 220, 220, 329, 479, 287, 37250, 1186, 563, 3256, 705, 312, 3256, 705, 15596, 3256, 705, 7890, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 288, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11876, 62, 15853, 705, 4, 82, 25, 4064, 82, 59, 77, 6, 4064, 357, 74, 11, 288, 58, 74, 12962, 628, 220, 220, 220, 1441, 11876, 62, 1343, 705, 59, 77, 6, 198, 198, 4299, 33918, 62, 82, 325, 62, 8002, 7, 67, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38215, 286, 264, 325, 62, 8002, 326, 481, 33918, 12, 268, 8189, 534, 1366, 44812, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 288, 17816, 7890, 20520, 796, 33918, 13, 67, 8142, 7, 67, 17816, 7890, 6, 4357, 4277, 28, 23144, 62, 17752, 62, 46911, 7509, 8, 628, 220, 220, 220, 1441, 264, 325, 62, 8002, 7, 67, 8, 198, 198, 4299, 24543, 62, 5936, 7609, 62, 17752, 62, 268, 8189, 7, 67, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2773, 3354, 286, 674, 1080, 8814, 2402, 9835, 12, 32783, 19449, 21004, 13, 198, 220, 220, 220, 770, 7822, 318, 407, 11462, 284, 307, 6414, 11, 475, 340, 338, 922, 1576, 329, 783, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 67, 11, 3297, 62, 13083, 28, 17821, 11, 33793, 28, 19, 11, 2880, 2024, 16193, 3256, 3256, 705, 25, 705, 4008, 1343, 705, 59, 77, 6, 198 ]
2.609808
469
# -*- coding: utf-8 -*- from django.core import mail from nose.tools import eq_ from kitsune.sumo.tests import post from kitsune.users.tests import add_permission, user from kitsune.wiki.config import ( SIGNIFICANCES, MEDIUM_SIGNIFICANCE, TYPO_SIGNIFICANCE) from kitsune.wiki.events import ( ReadyRevisionEvent, ApproveRevisionInLocaleEvent) from kitsune.wiki.models import Revision from kitsune.wiki.tests import revision, TestCaseBase def _set_up_ready_watcher(): """Make a user who watches for revision readiness.""" ready_watcher = user(email='[email protected]', save=True) ReadyRevisionEvent.notify(ready_watcher) return ready_watcher class ReviewTests(TestCaseBase): """Tests for notifications sent during revision review""" def setUp(self): """Have a user watch for revision approval. Log in.""" self.approved_watcher = user(email='[email protected]', save=True) ApproveRevisionInLocaleEvent.notify(self.approved_watcher, locale='en-US') approver = user(save=True) add_permission(approver, Revision, 'review_revision') add_permission(approver, Revision, 'mark_ready_for_l10n') self.client.login(username=approver.username, password='testpass') def _review_revision(self, is_approved=True, is_ready=False, significance=SIGNIFICANCES[0][0], r=None, comment=None): """Make a revision, and approve or reject it through the view.""" if not r: r = revision(is_approved=False, is_ready_for_localization=False, significance=significance, save=True) # Figure out POST data: data = {'comment': 'đSome comment'} if is_approved: data['approve'] = 'Approve Revision' data['significance'] = significance if is_ready: data['is_ready_for_localization'] = 'on' if comment: data['comment'] = comment else: data['reject'] = 'Reject Revision' response = post(self.client, 'wiki.review_revision', data, args=[r.document.slug, r.id]) eq_(200, response.status_code) def test_ready(self): """Show that a ready(-and-approved) rev mails Ready watchers a Ready notification and Approved watchers an Approved one.""" _set_up_ready_watcher() self._review_revision(is_ready=True, significance=MEDIUM_SIGNIFICANCE) # 1 mail to each watcher, 1 to the creator, and one to the reviewer eq_(4, len(mail.outbox)) _assert_ready_mail(mail.outbox[0]) _assert_approved_mail(mail.outbox[1]) _assert_creator_mail(mail.outbox[2]) def test_approved(self): """Show that an approved rev mails Ready watchers nothing and Approved watchers an Approved notification.""" _set_up_ready_watcher() self._review_revision(is_ready=False) # 1 mail to Approved watcher, 1 to creator, 1 for reviewer eq_(3, len(mail.outbox)) assert 'new approved revision' in mail.outbox[0].subject assert 'Your revision has been approved' in mail.outbox[1].subject def test_neither(self): """Show that neither an Approved nor a Ready mail is sent if a rev is rejected.""" _set_up_ready_watcher() self._review_revision(is_approved=False) eq_(2, len(mail.outbox)) # 1 mail to creator, one to the reviewer. assert mail.outbox[0].subject.startswith( 'Your revision has been reviewed') def test_user_watching_both(self): """If a single person is watching ready and approved revisions and a revision becomes ready, send only the readiness email, not the approval one.""" # Have the Approved watcher watch Ready as well: ReadyRevisionEvent.notify(self.approved_watcher) self._review_revision(is_ready=True, significance=MEDIUM_SIGNIFICANCE) # 1 mail to watcher, 1 to creator, 1 to reviewer eq_(3, len(mail.outbox)) _assert_ready_mail(mail.outbox[0]) _assert_creator_mail(mail.outbox[1]) def test_new_lines_in_review_message(self): """Test that newlines in a review message are properly displayed.""" _set_up_ready_watcher() self._review_revision(comment='foo\n\nbar\nbaz') assert 'foo<br><br>bar<br>baz' in mail.outbox[1].alternatives[0][0] class ReadyForL10nTests(TestCaseBase): """Tests for notifications sent during ready for l10n""" def setUp(self): """Have a user watch for revision approval. Log in.""" self.ready_watcher = user(email='[email protected]', save=True) ReadyRevisionEvent.notify(self.ready_watcher) readyer = user(save=True) add_permission(readyer, Revision, 'mark_ready_for_l10n') self.client.login(username=readyer.username, password='testpass') def _mark_as_ready_revision(self): """Make a revision, and approve or reject it through the view.""" r = revision(is_approved=True, is_ready_for_localization=False, significance=MEDIUM_SIGNIFICANCE, save=True) # Figure out POST data: data = {'comment': 'something'} response = post(self.client, 'wiki.mark_ready_for_l10n_revision', data, args=[r.document.slug, r.id]) eq_(200, response.status_code) def test_ready(self): """Show that a ready(-and-approved) rev mails Ready watchers a Ready notification and Approved watchers an Approved one.""" _set_up_ready_watcher() self._mark_as_ready_revision() eq_(2, len(mail.outbox)) # 1 mail to each watcher, none to marker _assert_ready_mail(mail.outbox[0]) _assert_ready_mail(mail.outbox[1])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 7295, 1330, 6920, 198, 198, 6738, 9686, 13, 31391, 1330, 37430, 62, 198, 198, 6738, 19183, 1726, 13, 16345, 78, 13, 41989, 1330, 1281, 198, 6738, 19183, 1726, 13, 18417, 13, 41989, 1330, 751, 62, 525, 3411, 11, 2836, 198, 6738, 19183, 1726, 13, 15466, 13, 11250, 1330, 357, 198, 220, 220, 220, 36771, 30643, 20940, 1546, 11, 26112, 41796, 62, 46224, 30643, 19240, 11, 24412, 16402, 62, 46224, 30643, 19240, 8, 198, 6738, 19183, 1726, 13, 15466, 13, 31534, 1330, 357, 198, 220, 220, 220, 23432, 18009, 1166, 9237, 11, 20010, 303, 18009, 1166, 818, 33711, 1000, 9237, 8, 198, 6738, 19183, 1726, 13, 15466, 13, 27530, 1330, 46604, 198, 6738, 19183, 1726, 13, 15466, 13, 41989, 1330, 18440, 11, 6208, 20448, 14881, 628, 628, 198, 198, 4299, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 33529, 198, 220, 220, 220, 37227, 12050, 257, 2836, 508, 16860, 329, 18440, 30618, 526, 15931, 198, 220, 220, 220, 3492, 62, 86, 34734, 796, 2836, 7, 12888, 11639, 1493, 31, 20688, 13, 785, 3256, 3613, 28, 17821, 8, 198, 220, 220, 220, 23432, 18009, 1166, 9237, 13, 1662, 1958, 7, 1493, 62, 86, 34734, 8, 198, 220, 220, 220, 1441, 3492, 62, 86, 34734, 628, 198, 4871, 6602, 51, 3558, 7, 14402, 20448, 14881, 2599, 198, 220, 220, 220, 37227, 51, 3558, 329, 19605, 1908, 1141, 18440, 2423, 37811, 628, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11980, 257, 2836, 2342, 329, 18440, 7546, 13, 5972, 287, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29137, 62, 86, 34734, 796, 2836, 7, 12888, 11639, 29137, 31, 20688, 13, 785, 3256, 3613, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20010, 303, 18009, 1166, 818, 33711, 1000, 9237, 13, 1662, 1958, 7, 944, 13, 29137, 62, 86, 34734, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36693, 11639, 268, 12, 2937, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1331, 332, 796, 2836, 7, 21928, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 525, 3411, 7, 21064, 332, 11, 46604, 11, 705, 19023, 62, 260, 10178, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 525, 3411, 7, 21064, 332, 11, 46604, 11, 705, 4102, 62, 1493, 62, 1640, 62, 75, 940, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16366, 13, 38235, 7, 29460, 28, 21064, 332, 13, 29460, 11, 9206, 11639, 9288, 6603, 11537, 628, 220, 220, 220, 825, 4808, 19023, 62, 260, 10178, 7, 944, 11, 318, 62, 29137, 28, 17821, 11, 318, 62, 1493, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12085, 28, 46224, 30643, 20940, 1546, 58, 15, 7131, 15, 4357, 374, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2912, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 257, 18440, 11, 290, 14762, 393, 4968, 340, 832, 262, 1570, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 18440, 7, 271, 62, 29137, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1493, 62, 1640, 62, 12001, 1634, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12085, 28, 12683, 811, 590, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 24582, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 23893, 10354, 705, 128, 239, 4366, 2912, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 29137, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 21064, 303, 20520, 796, 705, 4677, 305, 303, 46604, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 12683, 811, 590, 20520, 796, 12085, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 1493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 271, 62, 1493, 62, 1640, 62, 12001, 1634, 20520, 796, 705, 261, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2912, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 23893, 20520, 796, 2912, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 260, 752, 20520, 796, 705, 3041, 752, 46604, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 1281, 7, 944, 13, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15466, 13, 19023, 62, 260, 10178, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 41888, 81, 13, 22897, 13, 6649, 1018, 11, 374, 13, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 2167, 11, 2882, 13, 13376, 62, 8189, 8, 628, 220, 220, 220, 825, 1332, 62, 1493, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 257, 3492, 32590, 392, 12, 29137, 8, 2710, 285, 1768, 23432, 4383, 3533, 257, 23432, 198, 220, 220, 220, 220, 220, 220, 220, 14483, 290, 20010, 1079, 4383, 3533, 281, 20010, 1079, 530, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19023, 62, 260, 10178, 7, 271, 62, 1493, 28, 17821, 11, 12085, 28, 30733, 41796, 62, 46224, 30643, 19240, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 6920, 284, 1123, 4383, 2044, 11, 352, 284, 262, 13172, 11, 290, 530, 284, 262, 37823, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 19, 11, 18896, 7, 4529, 13, 448, 3524, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 1493, 62, 4529, 7, 4529, 13, 448, 3524, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 29137, 62, 4529, 7, 4529, 13, 448, 3524, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 45382, 62, 4529, 7, 4529, 13, 448, 3524, 58, 17, 12962, 628, 220, 220, 220, 825, 1332, 62, 29137, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 281, 6325, 2710, 285, 1768, 23432, 4383, 3533, 2147, 290, 20010, 1079, 198, 220, 220, 220, 220, 220, 220, 220, 4383, 3533, 281, 20010, 1079, 14483, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19023, 62, 260, 10178, 7, 271, 62, 1493, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 6920, 284, 20010, 1079, 4383, 2044, 11, 352, 284, 13172, 11, 352, 329, 37823, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 18, 11, 18896, 7, 4529, 13, 448, 3524, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 3605, 6325, 18440, 6, 287, 6920, 13, 448, 3524, 58, 15, 4083, 32796, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 7120, 18440, 468, 587, 6325, 6, 287, 6920, 13, 448, 3524, 58, 16, 4083, 32796, 628, 220, 220, 220, 825, 1332, 62, 710, 1555, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 6159, 281, 20010, 1079, 4249, 257, 23432, 6920, 318, 1908, 611, 257, 2710, 318, 198, 220, 220, 220, 220, 220, 220, 220, 8606, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19023, 62, 260, 10178, 7, 271, 62, 29137, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 17, 11, 18896, 7, 4529, 13, 448, 3524, 4008, 220, 1303, 352, 6920, 284, 13172, 11, 530, 284, 262, 37823, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 6920, 13, 448, 3524, 58, 15, 4083, 32796, 13, 9688, 2032, 342, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7120, 18440, 468, 587, 11765, 11537, 628, 220, 220, 220, 825, 1332, 62, 7220, 62, 50042, 62, 16885, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1532, 257, 2060, 1048, 318, 4964, 3492, 290, 6325, 33315, 290, 257, 198, 220, 220, 220, 220, 220, 220, 220, 18440, 4329, 3492, 11, 3758, 691, 262, 30618, 3053, 11, 407, 262, 7546, 198, 220, 220, 220, 220, 220, 220, 220, 530, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8192, 262, 20010, 1079, 4383, 2044, 2342, 23432, 355, 880, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23432, 18009, 1166, 9237, 13, 1662, 1958, 7, 944, 13, 29137, 62, 86, 34734, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19023, 62, 260, 10178, 7, 271, 62, 1493, 28, 17821, 11, 12085, 28, 30733, 41796, 62, 46224, 30643, 19240, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 6920, 284, 4383, 2044, 11, 352, 284, 13172, 11, 352, 284, 37823, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 18, 11, 18896, 7, 4529, 13, 448, 3524, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 1493, 62, 4529, 7, 4529, 13, 448, 3524, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 45382, 62, 4529, 7, 4529, 13, 448, 3524, 58, 16, 12962, 628, 220, 220, 220, 825, 1332, 62, 3605, 62, 6615, 62, 259, 62, 19023, 62, 20500, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 326, 649, 6615, 287, 257, 2423, 3275, 389, 6105, 9066, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19023, 62, 260, 10178, 7, 23893, 11639, 21943, 59, 77, 59, 77, 5657, 59, 46803, 1031, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 21943, 27, 1671, 6927, 1671, 29, 5657, 27, 1671, 29, 65, 1031, 6, 287, 6920, 13, 448, 3524, 58, 16, 4083, 33645, 2929, 58, 15, 7131, 15, 60, 628, 198, 4871, 23432, 1890, 43, 940, 77, 51, 3558, 7, 14402, 20448, 14881, 2599, 198, 220, 220, 220, 37227, 51, 3558, 329, 19605, 1908, 1141, 3492, 329, 300, 940, 77, 37811, 628, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11980, 257, 2836, 2342, 329, 18440, 7546, 13, 5972, 287, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1493, 62, 86, 34734, 796, 2836, 7, 12888, 11639, 29137, 31, 20688, 13, 785, 3256, 3613, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23432, 18009, 1166, 9237, 13, 1662, 1958, 7, 944, 13, 1493, 62, 86, 34734, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3492, 263, 796, 2836, 7, 21928, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 525, 3411, 7, 1493, 263, 11, 46604, 11, 705, 4102, 62, 1493, 62, 1640, 62, 75, 940, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16366, 13, 38235, 7, 29460, 28, 1493, 263, 13, 29460, 11, 9206, 11639, 9288, 6603, 11537, 628, 220, 220, 220, 825, 4808, 4102, 62, 292, 62, 1493, 62, 260, 10178, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 257, 18440, 11, 290, 14762, 393, 4968, 340, 832, 262, 1570, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 18440, 7, 271, 62, 29137, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1493, 62, 1640, 62, 12001, 1634, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12085, 28, 30733, 41796, 62, 46224, 30643, 19240, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11291, 503, 24582, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 23893, 10354, 705, 18927, 6, 92, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 1281, 7, 944, 13, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15466, 13, 4102, 62, 1493, 62, 1640, 62, 75, 940, 77, 62, 260, 10178, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 41888, 81, 13, 22897, 13, 6649, 1018, 11, 374, 13, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 2167, 11, 2882, 13, 13376, 62, 8189, 8, 628, 220, 220, 220, 825, 1332, 62, 1493, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15307, 326, 257, 3492, 32590, 392, 12, 29137, 8, 2710, 285, 1768, 23432, 4383, 3533, 257, 23432, 198, 220, 220, 220, 220, 220, 220, 220, 14483, 290, 20010, 1079, 4383, 3533, 281, 20010, 1079, 530, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 929, 62, 1493, 62, 86, 34734, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4102, 62, 292, 62, 1493, 62, 260, 10178, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 37430, 41052, 17, 11, 18896, 7, 4529, 13, 448, 3524, 4008, 220, 1303, 352, 6920, 284, 1123, 4383, 2044, 11, 4844, 284, 18364, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 1493, 62, 4529, 7, 4529, 13, 448, 3524, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 30493, 62, 1493, 62, 4529, 7, 4529, 13, 448, 3524, 58, 16, 12962, 198 ]
2.308974
2,641
from sys import version_info import inspect from weakref import WeakSet, WeakKeyDictionary from collections import deque from functools import partial class Signal(object): """ basic signal emitter fired signals are added to this object's calling frame - if this becomes excessive, this also includes mode to add function calls to queue instead of directly firing connnected functions queue support not complete yet, as nothing I use needs it. """ queues = {"default" : deque()} def __init__(self, queue="", useQueue=False): """:param queue : name of queue to use, or external queue object """ self._functions = WeakSet() self._methods = WeakKeyDictionary() # is signal active self._active = True # event queue support self._useQueue = useQueue self._queue = queue or "default" def getQueue(self, name="default", create=True): """return one of the event queues attended by signal objects""" name = name or self._queue or "default" if not name in self.queues and create: self.queues[name] = deque() return self.queues[name] def setQueue(self, queueName): """ set signal to use given queue """ self._queue = queueName def emit(self, *args, **kwargs): """ brings this object up to rough parity with qt signals """ self(*args, **kwargs)
[ 198, 6738, 25064, 1330, 2196, 62, 10951, 628, 198, 11748, 10104, 198, 6738, 4939, 5420, 1330, 28788, 7248, 11, 28788, 9218, 35, 14188, 198, 6738, 17268, 1330, 390, 4188, 198, 6738, 1257, 310, 10141, 1330, 13027, 628, 198, 4871, 26484, 7, 15252, 2599, 198, 197, 37811, 4096, 6737, 795, 1967, 198, 197, 26803, 10425, 389, 2087, 284, 428, 2134, 338, 4585, 5739, 532, 198, 197, 361, 428, 4329, 13181, 11, 428, 198, 197, 14508, 3407, 4235, 284, 751, 2163, 3848, 284, 16834, 198, 197, 38070, 286, 3264, 9645, 48260, 1606, 276, 5499, 628, 197, 36560, 1104, 407, 1844, 1865, 11, 355, 2147, 314, 779, 2476, 340, 13, 198, 197, 37811, 198, 197, 198, 197, 4188, 947, 796, 19779, 12286, 1, 1058, 390, 4188, 3419, 92, 198, 197, 198, 197, 4299, 11593, 15003, 834, 7, 944, 11, 16834, 2625, 1600, 779, 34991, 28, 25101, 2599, 198, 197, 197, 15931, 1298, 17143, 16834, 1058, 1438, 286, 16834, 284, 779, 11, 393, 7097, 16834, 2134, 37227, 198, 197, 197, 944, 13557, 12543, 2733, 796, 28788, 7248, 3419, 198, 197, 197, 944, 13557, 24396, 82, 796, 28788, 9218, 35, 14188, 3419, 628, 197, 197, 2, 318, 6737, 4075, 198, 197, 197, 944, 13557, 5275, 796, 6407, 628, 197, 197, 2, 1785, 16834, 1104, 198, 197, 197, 944, 13557, 1904, 34991, 796, 779, 34991, 198, 197, 197, 944, 13557, 36560, 796, 16834, 393, 366, 12286, 1, 628, 197, 4299, 651, 34991, 7, 944, 11, 1438, 2625, 12286, 1600, 2251, 28, 17821, 2599, 198, 197, 197, 37811, 7783, 530, 286, 262, 1785, 43359, 9141, 416, 6737, 5563, 37811, 198, 197, 197, 3672, 796, 1438, 393, 2116, 13557, 36560, 393, 366, 12286, 1, 198, 197, 197, 361, 407, 1438, 287, 2116, 13, 4188, 947, 290, 2251, 25, 198, 197, 197, 197, 944, 13, 4188, 947, 58, 3672, 60, 796, 390, 4188, 3419, 198, 197, 197, 7783, 2116, 13, 4188, 947, 58, 3672, 60, 628, 197, 4299, 900, 34991, 7, 944, 11, 16834, 5376, 2599, 198, 197, 197, 37811, 900, 6737, 284, 779, 1813, 16834, 37227, 198, 197, 197, 944, 13557, 36560, 796, 16834, 5376, 628, 197, 4299, 27588, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 197, 197, 37811, 6774, 428, 2134, 510, 284, 5210, 34383, 351, 10662, 83, 10425, 37227, 198, 197, 197, 944, 46491, 22046, 11, 12429, 46265, 22046, 8 ]
3.335052
388
from json import JSONEncoder import json
[ 6738, 33918, 1330, 19449, 27195, 12342, 198, 11748, 33918, 628, 198 ]
3.909091
11
from xivdb.sql import DB, Base, Weapon, Repair, Materia, Stats from xivdb.importCsv import importCsv from typing import List from sqlalchemy.orm import sessionmaker from XivDbReader import Reader import sqlalchemy.orm d = DB(Base) session: sessionmaker = d.newSession() w = d.newWeapon() read: Reader = Reader(job='whm') whm = read.getArms(recordLimit=1) for i in whm: try: res: Weapon = session.query(Weapon).filter(Weapon.name == i.name).one() except Exception as e: #print(f"{i.name} was not found in the DB.") ic = importCsv() counter: int = 1 weapons: List[Weapon] = ic.getAllWeapons() stats: List[Stats] = ic.getAllStats() repairs: List[Repair] = ic.getAllRepairs() materias: List[Materia] = ic.getAllMateria() counter: int = 0 for i in weapons: try: res: Weapon = session.query(Weapon).filter(Weapon.name == i.name).one() counter = counter + 1 if res.name != None: print(f"Skiped - {i.name}") continue except: w: Weapon = i s: Stats = stats[counter] r: Repair = repairs[counter] m: Materia = materias[counter] w.stats = s w.repair = r w.materia = m session.add(w) counter = counter + 1 try: session.commit() print(f"Added - {w.name}") except Exception as e: print(e) session.close()
[ 198, 6738, 2124, 452, 9945, 13, 25410, 1330, 20137, 11, 7308, 11, 13072, 11, 28912, 11, 337, 729, 544, 11, 20595, 198, 6738, 2124, 452, 9945, 13, 11748, 34, 21370, 1330, 1330, 34, 21370, 198, 6738, 19720, 1330, 7343, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 6246, 10297, 198, 6738, 1395, 452, 43832, 33634, 1330, 25342, 198, 11748, 44161, 282, 26599, 13, 579, 198, 198, 67, 796, 20137, 7, 14881, 8, 198, 29891, 25, 6246, 10297, 796, 288, 13, 3605, 36044, 3419, 198, 86, 796, 288, 13, 3605, 27632, 3419, 198, 198, 961, 25, 25342, 796, 25342, 7, 21858, 11639, 1929, 76, 11537, 198, 1929, 76, 796, 1100, 13, 1136, 3163, 907, 7, 22105, 39184, 28, 16, 8, 198, 198, 1640, 1312, 287, 348, 76, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 25, 13072, 796, 6246, 13, 22766, 7, 27632, 737, 24455, 7, 27632, 13, 3672, 6624, 1312, 13, 3672, 737, 505, 3419, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 69, 1, 90, 72, 13, 3672, 92, 373, 407, 1043, 287, 262, 20137, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 291, 796, 1330, 34, 21370, 3419, 198, 24588, 25, 493, 796, 352, 198, 198, 33999, 25, 7343, 58, 27632, 60, 796, 14158, 13, 1136, 3237, 41818, 3419, 220, 198, 34242, 25, 7343, 58, 29668, 60, 796, 14158, 13, 1136, 3237, 29668, 3419, 198, 7856, 3468, 25, 7343, 58, 6207, 958, 60, 796, 14158, 13, 1136, 3237, 6207, 3468, 3419, 198, 76, 729, 4448, 25, 7343, 58, 44, 729, 544, 60, 796, 14158, 13, 1136, 3237, 44, 729, 544, 3419, 198, 24588, 25, 493, 796, 657, 198, 1640, 1312, 287, 3777, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 25, 13072, 796, 6246, 13, 22766, 7, 27632, 737, 24455, 7, 27632, 13, 3672, 6624, 1312, 13, 3672, 737, 505, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 796, 3753, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 581, 13, 3672, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 15739, 46647, 532, 1391, 72, 13, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 266, 25, 13072, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 264, 25, 20595, 796, 9756, 58, 24588, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 25, 28912, 796, 20097, 58, 24588, 60, 198, 220, 220, 220, 220, 220, 220, 220, 285, 25, 337, 729, 544, 796, 26910, 4448, 58, 24588, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 13, 34242, 796, 264, 198, 220, 220, 220, 220, 220, 220, 220, 266, 13, 49932, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 266, 13, 76, 729, 544, 796, 285, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 2860, 7, 86, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 796, 3753, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 13003, 532, 1391, 86, 13, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 29891, 13, 19836, 3419, 628 ]
2.236677
638
""" Python implementation of the LiNGAM algorithms. The LiNGAM Project: https://sites.google.com/site/sshimizu06/lingam """ import itertools import numbers import warnings import numpy as np from sklearn.utils import check_array, resample from .bootstrap import BootstrapResult from .direct_lingam import DirectLiNGAM from .hsic import hsic_test_gamma from .utils import predict_adaptive_lasso class MultiGroupDirectLiNGAM(DirectLiNGAM): """Implementation of DirectLiNGAM Algorithm with multiple groups [1]_ References ---------- .. [1] S. Shimizu. Joint estimation of linear non-Gaussian acyclic models. Neurocomputing, 81: 104-107, 2012. """ def __init__(self, random_state=None, prior_knowledge=None, apply_prior_knowledge_softly=False): """Construct a model. Parameters ---------- random_state : int, optional (default=None) ``random_state`` is the seed used by the random number generator. prior_knowledge : array-like, shape (n_features, n_features), optional (default=None) Prior background_knowledge used for causal discovery, where ``n_features`` is the number of features. The elements of prior background_knowledge matrix are defined as follows [1]_: * ``0`` : :math:`x_i` does not have a directed path to :math:`x_j` * ``1`` : :math:`x_i` has a directed path to :math:`x_j` * ``-1`` : No prior background_knowledge is available to know if either of the two cases above (0 or 1) is true. apply_prior_knowledge_softly : boolean, optional (default=False) If True, apply prior background_knowledge softly. """ super().__init__(random_state, prior_knowledge, apply_prior_knowledge_softly) def fit(self, X_list): """Fit the model to multiple datasets. Parameters ---------- X_list : list, shape [X, ...] Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : object Returns the instance itself. """ # Check parameters X_list = self._check_X_list(X_list) if self._Aknw is not None: if (self._n_features, self._n_features) != self._Aknw.shape: raise ValueError( 'The shape of prior background_knowledge must be (n_features, n_features)') # Causal discovery U = np.arange(self._n_features) K = [] X_list_ = [np.copy(X) for X in X_list] for _ in range(self._n_features): m = self._search_causal_order(X_list_, U) for i in U: if i != m: for d in range(len(X_list_)): X_list_[d][:, i] = self._residual( X_list_[d][:, i], X_list_[d][:, m]) K.append(m) U = U[U != m] if (self._Aknw is not None) and (not self._apply_prior_knowledge_softly): self._partial_orders = self._partial_orders[self._partial_orders[:, 0] != m] self._causal_order = K self._adjacency_matrices = [] for X in X_list: self._estimate_adjacency_matrix(X, prior_knowledge=self._Aknw) self._adjacency_matrices.append(self._adjacency_matrix) return self def bootstrap(self, X_list, n_sampling): """Evaluate the statistical reliability of DAG based on the bootstrapping. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. n_sampling : int Number of bootstrapping samples. Returns ------- results : array-like, shape (BootstrapResult, ...) Returns the results of bootstrapping for multiple datasets. """ # Check parameters X_list = self._check_X_list(X_list) if isinstance(n_sampling, (numbers.Integral, np.integer)): if not 0 < n_sampling: raise ValueError( 'n_sampling must be an integer greater than 0.') else: raise ValueError('n_sampling must be an integer greater than 0.') # Bootstrapping adjacency_matrices_list = np.zeros( [len(X_list), n_sampling, self._n_features, self._n_features]) total_effects_list = np.zeros( [len(X_list), n_sampling, self._n_features, self._n_features]) for n in range(n_sampling): resampled_X_list = [resample(X) for X in X_list] self.fit(resampled_X_list) for i, am in enumerate(self._adjacency_matrices): adjacency_matrices_list[i][n] = am # Calculate total effects for c, from_ in enumerate(self._causal_order): for to in self._causal_order[c + 1:]: effects = self.estimate_total_effect( resampled_X_list, from_, to) for i, effect in enumerate(effects): total_effects_list[i, n, to, from_] = effect result_list = [] for am, te in zip(adjacency_matrices_list, total_effects_list): result_list.append(BootstrapResult(am, te)) return result_list def estimate_total_effect(self, X_list, from_index, to_index): """Estimate total effect using causal model. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. from_index : Index of source variable to estimate total effect. to_index : Index of destination variable to estimate total effect. Returns ------- total_effect : float Estimated total effect. """ # Check parameters X_list = self._check_X_list(X_list) # Check from/to causal order from_order = self._causal_order.index(from_index) to_order = self._causal_order.index(to_index) if from_order > to_order: warnings.warn(f'The estimated causal effect may be incorrect because ' f'the causal order of the destination variable (to_index={to_index}) ' f'is earlier than the source variable (from_index={from_index}).') effects = [] for X, am in zip(X_list, self._adjacency_matrices): # from_index + parents indices parents = np.where(np.abs(am[from_index]) > 0)[0] predictors = [from_index] predictors.extend(parents) # Estimate total effect coefs = predict_adaptive_lasso(X, predictors, to_index) effects.append(coefs[0]) return effects def get_error_independence_p_values(self, X_list): """Calculate the p-value matrix of independence between error variables. Parameters ---------- X_list : array-like, shape (X, ...) Multiple datasets for training, where ``X`` is an dataset. The shape of ''X'' is (n_samples, n_features), where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- independence_p_values : array-like, shape (n_datasets, n_features, n_features) p-value matrix of independence between error variables. """ # Check parameters X_list = self._check_X_list(X_list) p_values = np.zeros([len(X_list), self._n_features, self._n_features]) for d, (X, am) in enumerate(zip(X_list, self._adjacency_matrices)): n_samples = X.shape[0] E = X - np.dot(am, X.T).T for i, j in itertools.combinations(range(self._n_features), 2): _, p_value = hsic_test_gamma(np.reshape(E[:, i], [n_samples, 1]), np.reshape(E[:, j], [n_samples, 1])) p_values[d, i, j] = p_value p_values[d, j, i] = p_value return p_values def _check_X_list(self, X_list): """Check input X list.""" if not isinstance(X_list, list): raise ValueError('X_list must be a list.') if len(X_list) < 2: raise ValueError( 'X_list must be a list containing at least two items') self._n_features = check_array(X_list[0]).shape[1] X_list_ = [] for X in X_list: X_ = check_array(X) if X_.shape[1] != self._n_features: raise ValueError( 'X_list must be a list with the same number of features') X_list_.append(X_) return np.array(X_list_) def _search_causal_order(self, X_list, U): """Search the causal ordering.""" Uc, Vj = self._search_candidate(U) if len(Uc) == 1: return Uc[0] total_size = 0 for X in X_list: total_size += len(X) MG_list = [] for i in Uc: MG = 0 for X in X_list: M = 0 for j in U: if i != j: xi_std = (X[:, i] - np.mean(X[:, i])) / np.std(X[:, i]) xj_std = (X[:, j] - np.mean(X[:, j])) / np.std(X[:, j]) ri_j = xi_std if i in Vj and j in Uc else self._residual( xi_std, xj_std) rj_i = xj_std if j in Vj and i in Uc else self._residual( xj_std, xi_std) M += np.min([0, self._diff_mutual_info(xi_std, xj_std, ri_j, rj_i)]) ** 2 MG += M * (len(X) / total_size) MG_list.append(-1.0 * MG) return Uc[np.argmax(MG_list)] @property def adjacency_matrices_(self): """Estimated adjacency matrices. Returns ------- adjacency_matrices_ : array-like, shape (B, ...) The list of adjacency matrix B for multiple datasets. The shape of B is (n_features, n_features), where n_features is the number of features. """ return self._adjacency_matrices
[ 37811, 198, 37906, 7822, 286, 262, 7455, 10503, 2390, 16113, 13, 198, 464, 7455, 10503, 2390, 4935, 25, 3740, 1378, 49315, 13, 13297, 13, 785, 14, 15654, 14, 824, 38400, 47775, 3312, 14, 1359, 321, 198, 37811, 198, 11748, 340, 861, 10141, 198, 11748, 3146, 198, 11748, 14601, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 26791, 1330, 2198, 62, 18747, 11, 581, 1403, 198, 198, 6738, 764, 18769, 26418, 1330, 18892, 26418, 23004, 198, 6738, 764, 12942, 62, 1359, 321, 1330, 4128, 32304, 10503, 2390, 198, 6738, 764, 11994, 291, 1330, 289, 21383, 62, 9288, 62, 28483, 2611, 198, 6738, 764, 26791, 1330, 4331, 62, 42552, 425, 62, 75, 28372, 628, 198, 4871, 15237, 13247, 13470, 32304, 10503, 2390, 7, 13470, 32304, 10503, 2390, 2599, 198, 220, 220, 220, 37227, 3546, 32851, 286, 4128, 32304, 10503, 2390, 978, 42289, 351, 3294, 2628, 685, 16, 60, 62, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 311, 13, 31698, 47775, 13, 16798, 31850, 286, 14174, 1729, 12, 35389, 31562, 936, 88, 565, 291, 4981, 13, 13782, 785, 48074, 11, 9773, 25, 14436, 12, 15982, 11, 2321, 13, 220, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4738, 62, 5219, 28, 14202, 11, 3161, 62, 45066, 28, 14202, 11, 4174, 62, 3448, 273, 62, 45066, 62, 4215, 306, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 257, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 1058, 493, 11, 11902, 357, 12286, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 25120, 62, 5219, 15506, 318, 262, 9403, 973, 416, 262, 4738, 1271, 17301, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3161, 62, 45066, 1058, 7177, 12, 2339, 11, 5485, 357, 77, 62, 40890, 11, 299, 62, 40890, 828, 11902, 357, 12286, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14481, 4469, 62, 45066, 973, 329, 26558, 9412, 11, 810, 7559, 77, 62, 40890, 15506, 318, 262, 1271, 286, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4847, 286, 3161, 4469, 62, 45066, 17593, 389, 5447, 355, 5679, 685, 16, 60, 62, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 15, 15506, 1058, 1058, 11018, 25, 63, 87, 62, 72, 63, 857, 407, 423, 257, 7924, 3108, 284, 1058, 11018, 25, 63, 87, 62, 73, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 16, 15506, 1058, 1058, 11018, 25, 63, 87, 62, 72, 63, 468, 257, 7924, 3108, 284, 1058, 11018, 25, 63, 87, 62, 73, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 12, 16, 15506, 1058, 1400, 3161, 4469, 62, 45066, 318, 1695, 284, 760, 611, 2035, 286, 262, 734, 2663, 2029, 357, 15, 393, 352, 8, 318, 2081, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 3448, 273, 62, 45066, 62, 4215, 306, 1058, 25131, 11, 11902, 357, 12286, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 4174, 3161, 4469, 62, 45066, 26625, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 25120, 62, 5219, 11, 3161, 62, 45066, 11, 4174, 62, 3448, 273, 62, 45066, 62, 4215, 306, 8, 628, 220, 220, 220, 825, 4197, 7, 944, 11, 1395, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31805, 262, 2746, 284, 3294, 40522, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 1058, 1351, 11, 5485, 685, 55, 11, 2644, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20401, 40522, 329, 3047, 11, 810, 7559, 55, 15506, 318, 281, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 10148, 55, 7061, 318, 357, 77, 62, 82, 12629, 11, 299, 62, 40890, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 7559, 77, 62, 82, 12629, 15506, 318, 262, 1271, 286, 8405, 290, 7559, 77, 62, 40890, 15506, 318, 262, 1271, 286, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 1058, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 4554, 2346, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 796, 2116, 13557, 9122, 62, 55, 62, 4868, 7, 55, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 32, 15418, 86, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13557, 77, 62, 40890, 11, 2116, 13557, 77, 62, 40890, 8, 14512, 2116, 13557, 32, 15418, 86, 13, 43358, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 464, 5485, 286, 3161, 4469, 62, 45066, 1276, 307, 357, 77, 62, 40890, 11, 299, 62, 40890, 8, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6488, 6775, 9412, 198, 220, 220, 220, 220, 220, 220, 220, 471, 796, 45941, 13, 283, 858, 7, 944, 13557, 77, 62, 40890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 509, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 62, 796, 685, 37659, 13, 30073, 7, 55, 8, 329, 1395, 287, 1395, 62, 4868, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 944, 13557, 77, 62, 40890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 2116, 13557, 12947, 62, 6888, 6775, 62, 2875, 7, 55, 62, 4868, 62, 11, 471, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 471, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 14512, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 2837, 7, 11925, 7, 55, 62, 4868, 62, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 62, 58, 67, 7131, 45299, 1312, 60, 796, 2116, 13557, 411, 312, 723, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 62, 58, 67, 7131, 45299, 1312, 4357, 1395, 62, 4868, 62, 58, 67, 7131, 45299, 285, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 13, 33295, 7, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 471, 796, 471, 58, 52, 14512, 285, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13557, 32, 15418, 86, 318, 407, 6045, 8, 290, 357, 1662, 2116, 13557, 39014, 62, 3448, 273, 62, 45066, 62, 4215, 306, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 47172, 62, 6361, 796, 2116, 13557, 47172, 62, 6361, 58, 944, 13557, 47172, 62, 6361, 58, 45299, 657, 60, 14512, 285, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6888, 6775, 62, 2875, 796, 509, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 324, 30482, 1387, 62, 6759, 45977, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1395, 287, 1395, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 395, 1920, 62, 324, 30482, 1387, 62, 6759, 8609, 7, 55, 11, 3161, 62, 45066, 28, 944, 13557, 32, 15418, 86, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 324, 30482, 1387, 62, 6759, 45977, 13, 33295, 7, 944, 13557, 324, 30482, 1387, 62, 6759, 8609, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 6297, 26418, 7, 944, 11, 1395, 62, 4868, 11, 299, 62, 37687, 11347, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 36, 2100, 4985, 262, 13905, 17843, 286, 360, 4760, 1912, 319, 262, 6297, 12044, 2105, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 1058, 7177, 12, 2339, 11, 5485, 357, 55, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20401, 40522, 329, 3047, 11, 810, 7559, 55, 15506, 318, 281, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 10148, 55, 7061, 318, 357, 77, 62, 82, 12629, 11, 299, 62, 40890, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 7559, 77, 62, 82, 12629, 15506, 318, 262, 1271, 286, 8405, 290, 7559, 77, 62, 40890, 15506, 318, 262, 1271, 286, 3033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 37687, 11347, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 6297, 12044, 2105, 8405, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 1058, 7177, 12, 2339, 11, 5485, 357, 36476, 26418, 23004, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2482, 286, 6297, 12044, 2105, 329, 3294, 40522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 796, 2116, 13557, 9122, 62, 55, 62, 4868, 7, 55, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 77, 62, 37687, 11347, 11, 357, 77, 17024, 13, 34500, 1373, 11, 45941, 13, 41433, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 657, 1279, 299, 62, 37687, 11347, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 62, 37687, 11347, 1276, 307, 281, 18253, 3744, 621, 657, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 77, 62, 37687, 11347, 1276, 307, 281, 18253, 3744, 621, 657, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 18892, 12044, 2105, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 62, 6759, 45977, 62, 4868, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11925, 7, 55, 62, 4868, 828, 299, 62, 37687, 11347, 11, 2116, 13557, 77, 62, 40890, 11, 2116, 13557, 77, 62, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 34435, 62, 4868, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11925, 7, 55, 62, 4868, 828, 299, 62, 37687, 11347, 11, 2116, 13557, 77, 62, 40890, 11, 2116, 13557, 77, 62, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 77, 62, 37687, 11347, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 321, 10137, 62, 55, 62, 4868, 796, 685, 411, 1403, 7, 55, 8, 329, 1395, 287, 1395, 62, 4868, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11147, 7, 411, 321, 10137, 62, 55, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 716, 287, 27056, 378, 7, 944, 13557, 324, 30482, 1387, 62, 6759, 45977, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 62, 6759, 45977, 62, 4868, 58, 72, 7131, 77, 60, 796, 716, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 2472, 3048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 11, 422, 62, 287, 27056, 378, 7, 944, 13557, 6888, 6775, 62, 2875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 284, 287, 2116, 13557, 6888, 6775, 62, 2875, 58, 66, 1343, 352, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3048, 796, 2116, 13, 395, 1920, 62, 23350, 62, 10760, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 321, 10137, 62, 55, 62, 4868, 11, 422, 62, 11, 284, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1245, 287, 27056, 378, 7, 34435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 34435, 62, 4868, 58, 72, 11, 299, 11, 284, 11, 422, 62, 60, 796, 1245, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 716, 11, 573, 287, 19974, 7, 324, 30482, 1387, 62, 6759, 45977, 62, 4868, 11, 2472, 62, 34435, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4868, 13, 33295, 7, 36476, 26418, 23004, 7, 321, 11, 573, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 62, 4868, 628, 220, 220, 220, 825, 8636, 62, 23350, 62, 10760, 7, 944, 11, 1395, 62, 4868, 11, 422, 62, 9630, 11, 284, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 2472, 1245, 1262, 26558, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 1058, 7177, 12, 2339, 11, 5485, 357, 55, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20401, 40522, 329, 3047, 11, 810, 7559, 55, 15506, 318, 281, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 10148, 55, 7061, 318, 357, 77, 62, 82, 12629, 11, 299, 62, 40890, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 7559, 77, 62, 82, 12629, 15506, 318, 262, 1271, 286, 8405, 290, 7559, 77, 62, 40890, 15506, 318, 262, 1271, 286, 3033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 9630, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 2723, 7885, 284, 8636, 2472, 1245, 13, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 9630, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 10965, 7885, 284, 8636, 2472, 1245, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 10760, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47737, 2472, 1245, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 796, 2116, 13557, 9122, 62, 55, 62, 4868, 7, 55, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 422, 14, 1462, 26558, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 2875, 796, 2116, 13557, 6888, 6775, 62, 2875, 13, 9630, 7, 6738, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 2875, 796, 2116, 13557, 6888, 6775, 62, 2875, 13, 9630, 7, 1462, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 422, 62, 2875, 1875, 284, 62, 2875, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 69, 6, 464, 6108, 26558, 1245, 743, 307, 11491, 780, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 470, 258, 26558, 1502, 286, 262, 10965, 7885, 357, 1462, 62, 9630, 34758, 1462, 62, 9630, 30072, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 271, 2961, 621, 262, 2723, 7885, 357, 6738, 62, 9630, 34758, 6738, 62, 9630, 92, 737, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 3048, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1395, 11, 716, 287, 19974, 7, 55, 62, 4868, 11, 2116, 13557, 324, 30482, 1387, 62, 6759, 45977, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 422, 62, 9630, 1343, 3397, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3397, 796, 45941, 13, 3003, 7, 37659, 13, 8937, 7, 321, 58, 6738, 62, 9630, 12962, 1875, 657, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 669, 796, 685, 6738, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 669, 13, 2302, 437, 7, 23743, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10062, 1920, 2472, 1245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 891, 82, 796, 4331, 62, 42552, 425, 62, 75, 28372, 7, 55, 11, 4331, 669, 11, 284, 62, 9630, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3048, 13, 33295, 7, 1073, 891, 82, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3048, 628, 220, 220, 220, 825, 651, 62, 18224, 62, 39894, 62, 79, 62, 27160, 7, 944, 11, 1395, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 262, 279, 12, 8367, 17593, 286, 10404, 1022, 4049, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 1058, 7177, 12, 2339, 11, 5485, 357, 55, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20401, 40522, 329, 3047, 11, 810, 7559, 55, 15506, 318, 281, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 10148, 55, 7061, 318, 357, 77, 62, 82, 12629, 11, 299, 62, 40890, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 7559, 77, 62, 82, 12629, 15506, 318, 262, 1271, 286, 8405, 290, 7559, 77, 62, 40890, 15506, 318, 262, 1271, 286, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 10404, 62, 79, 62, 27160, 1058, 7177, 12, 2339, 11, 5485, 357, 77, 62, 19608, 292, 1039, 11, 299, 62, 40890, 11, 299, 62, 40890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 12, 8367, 17593, 286, 10404, 1022, 4049, 9633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 796, 2116, 13557, 9122, 62, 55, 62, 4868, 7, 55, 62, 4868, 8, 628, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27160, 796, 45941, 13, 9107, 418, 26933, 11925, 7, 55, 62, 4868, 828, 2116, 13557, 77, 62, 40890, 11, 2116, 13557, 77, 62, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 11, 357, 55, 11, 716, 8, 287, 27056, 378, 7, 13344, 7, 55, 62, 4868, 11, 2116, 13557, 324, 30482, 1387, 62, 6759, 45977, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 82, 12629, 796, 1395, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 796, 1395, 532, 45941, 13, 26518, 7, 321, 11, 1395, 13, 51, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 474, 287, 340, 861, 10141, 13, 24011, 7352, 7, 9521, 7, 944, 13557, 77, 62, 40890, 828, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 279, 62, 8367, 796, 289, 21383, 62, 9288, 62, 28483, 2611, 7, 37659, 13, 3447, 1758, 7, 36, 58, 45299, 1312, 4357, 685, 77, 62, 82, 12629, 11, 352, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 3447, 1758, 7, 36, 58, 45299, 474, 4357, 685, 77, 62, 82, 12629, 11, 352, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27160, 58, 67, 11, 1312, 11, 474, 60, 796, 279, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27160, 58, 67, 11, 474, 11, 1312, 60, 796, 279, 62, 8367, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 62, 27160, 628, 220, 220, 220, 825, 4808, 9122, 62, 55, 62, 4868, 7, 944, 11, 1395, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 5128, 1395, 1351, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 55, 62, 4868, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 55, 62, 4868, 1276, 307, 257, 1351, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 55, 62, 4868, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 55, 62, 4868, 1276, 307, 257, 1351, 7268, 379, 1551, 734, 3709, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 77, 62, 40890, 796, 2198, 62, 18747, 7, 55, 62, 4868, 58, 15, 35944, 43358, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 62, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1395, 287, 1395, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 796, 2198, 62, 18747, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1395, 44807, 43358, 58, 16, 60, 14512, 2116, 13557, 77, 62, 40890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 55, 62, 4868, 1276, 307, 257, 1351, 351, 262, 976, 1271, 286, 3033, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 4868, 44807, 33295, 7, 55, 62, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 55, 62, 4868, 62, 8, 628, 220, 220, 220, 825, 4808, 12947, 62, 6888, 6775, 62, 2875, 7, 944, 11, 1395, 62, 4868, 11, 471, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18243, 262, 26558, 16216, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 471, 66, 11, 569, 73, 796, 2116, 13557, 12947, 62, 46188, 20540, 7, 52, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 52, 66, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 471, 66, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 7857, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1395, 287, 1395, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 7857, 15853, 18896, 7, 55, 8, 628, 220, 220, 220, 220, 220, 220, 220, 34809, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 471, 66, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34809, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1395, 287, 1395, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 471, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 14512, 474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 62, 19282, 796, 357, 55, 58, 45299, 1312, 60, 532, 45941, 13, 32604, 7, 55, 58, 45299, 1312, 60, 4008, 1220, 45941, 13, 19282, 7, 55, 58, 45299, 1312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 73, 62, 19282, 796, 357, 55, 58, 45299, 474, 60, 532, 45941, 13, 32604, 7, 55, 58, 45299, 474, 60, 4008, 1220, 45941, 13, 19282, 7, 55, 58, 45299, 474, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 72, 62, 73, 796, 2124, 72, 62, 19282, 611, 1312, 287, 569, 73, 290, 474, 287, 471, 66, 2073, 2116, 13557, 411, 312, 723, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 62, 19282, 11, 2124, 73, 62, 19282, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 73, 62, 72, 796, 2124, 73, 62, 19282, 611, 474, 287, 569, 73, 290, 1312, 287, 471, 66, 2073, 2116, 13557, 411, 312, 723, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 73, 62, 19282, 11, 2124, 72, 62, 19282, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 15853, 45941, 13, 1084, 26933, 15, 11, 2116, 13557, 26069, 62, 21973, 723, 62, 10951, 7, 29992, 62, 19282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 73, 62, 19282, 11, 374, 72, 62, 73, 11, 374, 73, 62, 72, 8, 12962, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34809, 15853, 337, 1635, 357, 11925, 7, 55, 8, 1220, 2472, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34809, 62, 4868, 13, 33295, 32590, 16, 13, 15, 1635, 34809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 471, 66, 58, 37659, 13, 853, 9806, 7, 20474, 62, 4868, 15437, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9224, 330, 1387, 62, 6759, 45977, 41052, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 15655, 9224, 330, 1387, 2603, 45977, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 9224, 330, 1387, 62, 6759, 45977, 62, 1058, 7177, 12, 2339, 11, 5485, 357, 33, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 9224, 330, 1387, 17593, 347, 329, 3294, 40522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 286, 347, 318, 357, 77, 62, 40890, 11, 299, 62, 40890, 828, 810, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40890, 318, 262, 1271, 286, 3033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 324, 30482, 1387, 62, 6759, 45977, 198 ]
2.095771
5,179
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
# -*- coding: utf-8 -*- """ The :class:`SwaggerClient` provides an interface for making API calls based on a swagger spec, and returns responses of python objects which build from the API response. Structure Diagram:: +---------------------+ | | | SwaggerClient | | | +------+--------------+ | | has many | +------v--------------+ | | | Resource +------------------+ | | | +------+--------------+ has many | | | | has many | | | +------v--------------+ +------v--------------+ | | | | | Operation | | SwaggerModel | | | | | +------+--------------+ +---------------------+ | | uses | +------v--------------+ | | | HttpClient | | | +---------------------+ To get a client .. code-block:: python client = bravado.client.SwaggerClient.from_url(swagger_spec_url) """ import logging from bravado_core.docstring import create_operation_docstring from bravado_core.exception import SwaggerMappingError from bravado_core.formatter import SwaggerFormat # noqa from bravado_core.param import marshal_param from bravado_core.spec import Spec from six import iteritems, itervalues from bravado.docstring_property import docstring_property from bravado.requests_client import RequestsClient from bravado.swagger_model import Loader from bravado.warning import warn_for_deprecated_op log = logging.getLogger(__name__) CONFIG_DEFAULTS = { # See the constructor of :class:`bravado.http_future.HttpFuture` for an # in depth explanation of what this means. 'also_return_response': False, } REQUEST_OPTIONS_DEFAULTS = { # List of callbacks that are executed after the incoming response has been # validated and the swagger_result has been unmarshalled. # # The callback should expect two arguments: # param : incoming_response # type : subclass of class:`bravado_core.response.IncomingResponse` # param : operation # type : class:`bravado_core.operation.Operation` 'response_callbacks': [], } class SwaggerClient(object): """A client for accessing a Swagger-documented RESTful service. :type swagger_spec: :class:`bravado_core.spec.Spec` """ @classmethod def from_url(cls, spec_url, http_client=None, request_headers=None, config=None): """Build a :class:`SwaggerClient` from a url to the Swagger specification for a RESTful API. :param spec_url: url pointing at the swagger API specification :type spec_url: str :param http_client: an HTTP client used to perform requests :type http_client: :class:`bravado.http_client.HttpClient` :param request_headers: Headers to pass with http requests :type request_headers: dict :param config: Config dict for bravado and bravado_core. See CONFIG_DEFAULTS in :module:`bravado_core.spec`. See CONFIG_DEFAULTS in :module:`bravado.client`. :rtype: :class:`bravado_core.spec.Spec` """ log.debug(u"Loading from %s" % spec_url) http_client = http_client or RequestsClient() loader = Loader(http_client, request_headers=request_headers) spec_dict = loader.load_spec(spec_url) # RefResolver may have to download additional json files (remote refs) # via http. Wrap http_client's request() so that request headers are # passed along with the request transparently. Yeah, this is not ideal, # but since RefResolver has new found responsibilities, it is # functional. if request_headers is not None: http_client.request = inject_headers_for_remote_refs( http_client.request, request_headers) return cls.from_spec(spec_dict, spec_url, http_client, config) @classmethod def from_spec(cls, spec_dict, origin_url=None, http_client=None, config=None): """ Build a :class:`SwaggerClient` from a Swagger spec in dict form. :param spec_dict: a dict with a Swagger spec in json-like form :param origin_url: the url used to retrieve the spec_dict :type origin_url: str :param config: Configuration dict - see spec.CONFIG_DEFAULTS :rtype: :class:`bravado_core.spec.Spec` """ http_client = http_client or RequestsClient() # Apply bravado config defaults config = dict(CONFIG_DEFAULTS, **(config or {})) swagger_spec = Spec.from_dict( spec_dict, origin_url, http_client, config) return cls(swagger_spec) def __getattr__(self, item): """ :param item: name of the resource to return :return: :class:`Resource` """ resource = self.swagger_spec.resources.get(item) if not resource: raise AttributeError( 'Resource {0} not found. Available resources: {1}' .format(item, ', '.join(dir(self)))) # Wrap bravado-core's Resource and Operation objects in order to # execute a service call via the http_client. return ResourceDecorator(resource) def inject_headers_for_remote_refs(request_callable, request_headers): """Inject request_headers only when the request is to retrieve the remote refs in the swagger spec (vs being a request for a service call). :param request_callable: method on http_client to make a http request :param request_headers: headers to inject when retrieving remote refs """ return request_wrapper class ResourceDecorator(object): """ Wraps :class:`bravado_core.resource.Resource` so that accesses to contained operations can be instrumented. """ def __init__(self, resource): """ :type resource: :class:`bravado_core.resource.Resource` """ self.resource = resource def __getattr__(self, name): """ :rtype: :class:`CallableOperation` """ return CallableOperation(getattr(self.resource, name)) def __dir__(self): """ Exposes correct attrs on resource when tab completing in a REPL """ return self.resource.__dir__() class CallableOperation(object): """Wraps an operation to make it callable and provides a docstring. Calling the operation uses the configured http_client. :type operation: :class:`bravado_core.operation.Operation` """ @docstring_property(__doc__) def __getattr__(self, name): """Forward requests for attrs not found on this decorator to the delegate. """ return getattr(self.operation, name) def __call__(self, **op_kwargs): """Invoke the actual HTTP request and return a future. :rtype: :class:`bravado.http_future.HTTPFuture` """ log.debug(u"%s(%s)" % (self.operation.operation_id, op_kwargs)) warn_for_deprecated_op(self.operation) # Apply request_options defaults request_options = dict( REQUEST_OPTIONS_DEFAULTS, **(op_kwargs.pop('_request_options', {}))) request_params = construct_request( self.operation, request_options, **op_kwargs) config = self.operation.swagger_spec.config http_client = self.operation.swagger_spec.http_client # Per-request config overrides client wide config also_return_response = request_options.get( 'also_return_response', config['also_return_response']) return http_client.request( request_params, operation=self.operation, response_callbacks=request_options['response_callbacks'], also_return_response=also_return_response) def construct_request(operation, request_options, **op_kwargs): """Construct the outgoing request dict. :type operation: :class:`bravado_core.operation.Operation` :param request_options: _request_options passed into the operation invocation. :param op_kwargs: parameter name/value pairs to passed to the invocation of the operation. :return: request in dict form """ url = operation.swagger_spec.api_url.rstrip('/') + operation.path_name request = { 'method': operation.http_method.upper(), 'url': url, 'params': {}, # filled in downstream 'headers': request_options.get('headers', {}), } # Copy over optional request options for request_option in ('connect_timeout', 'timeout'): if request_option in request_options: request[request_option] = request_options[request_option] construct_params(operation, request, op_kwargs) return request def construct_params(operation, request, op_kwargs): """Given the parameters passed to the operation invocation, validates and marshals the parameters into the provided request dict. :type operation: :class:`bravado_core.operation.Operation` :type request: dict :param op_kwargs: the kwargs passed to the operation invocation :raises: SwaggerMappingError on extra parameters or when a required parameter is not supplied. """ current_params = operation.params.copy() for param_name, param_value in iteritems(op_kwargs): param = current_params.pop(param_name, None) if param is None: raise SwaggerMappingError( "{0} does not have parameter {1}" .format(operation.operation_id, param_name)) marshal_param(param, param_value, request) # Check required params and non-required params with a 'default' value for remaining_param in itervalues(current_params): if remaining_param.required: raise SwaggerMappingError( '{0} is a required parameter'.format(remaining_param.name)) if not remaining_param.required and remaining_param.has_default(): marshal_param(remaining_param, None, request)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 464, 1058, 4871, 25, 63, 10462, 7928, 11792, 63, 3769, 281, 7071, 329, 1642, 7824, 3848, 1912, 319, 198, 64, 1509, 7928, 1020, 11, 290, 5860, 9109, 286, 21015, 5563, 543, 1382, 422, 262, 198, 17614, 2882, 13, 198, 198, 1273, 5620, 6031, 6713, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1343, 19351, 19529, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 2451, 7928, 11792, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 10, 26171, 10, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 468, 867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 85, 26171, 10, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 20857, 220, 220, 220, 220, 220, 220, 220, 1343, 1783, 44785, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 10, 26171, 10, 220, 220, 220, 220, 220, 220, 220, 220, 468, 867, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 468, 867, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 85, 26171, 10, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 85, 26171, 10, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 14680, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 2451, 7928, 17633, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 10, 26171, 10, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 19351, 19529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 3544, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 23031, 85, 26171, 10, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 367, 29281, 11792, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 19351, 19529, 628, 198, 2514, 651, 257, 5456, 198, 198, 492, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 5456, 796, 49025, 4533, 13, 16366, 13, 10462, 7928, 11792, 13, 6738, 62, 6371, 7, 2032, 7928, 62, 16684, 62, 6371, 8, 198, 37811, 198, 11748, 18931, 198, 198, 6738, 49025, 4533, 62, 7295, 13, 15390, 8841, 1330, 2251, 62, 27184, 62, 15390, 8841, 198, 6738, 49025, 4533, 62, 7295, 13, 1069, 4516, 1330, 2451, 7928, 44, 5912, 12331, 198, 6738, 49025, 4533, 62, 7295, 13, 687, 1436, 1330, 2451, 7928, 26227, 220, 1303, 645, 20402, 198, 6738, 49025, 4533, 62, 7295, 13, 17143, 1330, 22397, 282, 62, 17143, 198, 6738, 49025, 4533, 62, 7295, 13, 16684, 1330, 18291, 198, 6738, 2237, 1330, 11629, 23814, 11, 340, 712, 282, 947, 198, 198, 6738, 49025, 4533, 13, 15390, 8841, 62, 26745, 1330, 2205, 8841, 62, 26745, 198, 6738, 49025, 4533, 13, 8897, 3558, 62, 16366, 1330, 9394, 3558, 11792, 198, 6738, 49025, 4533, 13, 2032, 7928, 62, 19849, 1330, 8778, 263, 198, 6738, 49025, 4533, 13, 43917, 1330, 9828, 62, 1640, 62, 10378, 31023, 62, 404, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 10943, 16254, 62, 7206, 7708, 35342, 796, 1391, 198, 220, 220, 220, 1303, 4091, 262, 23772, 286, 1058, 4871, 25, 63, 65, 4108, 4533, 13, 4023, 62, 37443, 13, 43481, 29783, 63, 329, 281, 198, 220, 220, 220, 1303, 287, 6795, 7468, 286, 644, 428, 1724, 13, 198, 220, 220, 220, 705, 14508, 62, 7783, 62, 26209, 10354, 10352, 11, 198, 92, 198, 198, 2200, 35780, 62, 3185, 51, 11053, 62, 7206, 7708, 35342, 796, 1391, 198, 220, 220, 220, 1303, 7343, 286, 869, 10146, 326, 389, 10945, 706, 262, 15619, 2882, 468, 587, 198, 220, 220, 220, 1303, 31031, 290, 262, 1509, 7928, 62, 20274, 468, 587, 21303, 5406, 4262, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 383, 23838, 815, 1607, 734, 7159, 25, 198, 220, 220, 220, 1303, 220, 220, 5772, 1058, 15619, 62, 26209, 198, 220, 220, 220, 1303, 220, 220, 2099, 220, 1058, 47611, 286, 1398, 25, 63, 65, 4108, 4533, 62, 7295, 13, 26209, 13, 818, 4976, 31077, 63, 198, 220, 220, 220, 1303, 220, 220, 5772, 1058, 4905, 198, 220, 220, 220, 1303, 220, 220, 2099, 220, 1058, 1398, 25, 63, 65, 4108, 4533, 62, 7295, 13, 27184, 13, 32180, 63, 198, 220, 220, 220, 705, 26209, 62, 13345, 10146, 10354, 685, 4357, 198, 92, 628, 198, 4871, 2451, 7928, 11792, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 5456, 329, 22534, 257, 2451, 7928, 12, 47045, 30617, 913, 2139, 13, 628, 220, 220, 220, 1058, 4906, 1509, 7928, 62, 16684, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 16684, 13, 22882, 63, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 6371, 7, 565, 82, 11, 1020, 62, 6371, 11, 2638, 62, 16366, 28, 14202, 11, 2581, 62, 50145, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 257, 1058, 4871, 25, 63, 10462, 7928, 11792, 63, 422, 257, 19016, 284, 262, 2451, 7928, 198, 220, 220, 220, 220, 220, 220, 220, 20855, 329, 257, 30617, 913, 7824, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1020, 62, 6371, 25, 19016, 10609, 379, 262, 1509, 7928, 7824, 20855, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1020, 62, 6371, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2638, 62, 16366, 25, 281, 14626, 5456, 973, 284, 1620, 7007, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 2638, 62, 16366, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 13, 4023, 62, 16366, 13, 43481, 11792, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2581, 62, 50145, 25, 7123, 364, 284, 1208, 351, 2638, 7007, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 2581, 62, 50145, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4566, 25, 17056, 8633, 329, 49025, 4533, 290, 49025, 4533, 62, 7295, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 25626, 62, 7206, 7708, 35342, 287, 1058, 21412, 25, 63, 65, 4108, 4533, 62, 7295, 13, 16684, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 25626, 62, 7206, 7708, 35342, 287, 1058, 21412, 25, 63, 65, 4108, 4533, 13, 16366, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 16684, 13, 22882, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 84, 1, 19031, 422, 4064, 82, 1, 4064, 1020, 62, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 16366, 796, 2638, 62, 16366, 393, 9394, 3558, 11792, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 40213, 796, 8778, 263, 7, 4023, 62, 16366, 11, 2581, 62, 50145, 28, 25927, 62, 50145, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1020, 62, 11600, 796, 40213, 13, 2220, 62, 16684, 7, 16684, 62, 6371, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6524, 4965, 14375, 743, 423, 284, 4321, 3224, 33918, 3696, 357, 47960, 1006, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2884, 2638, 13, 41028, 2638, 62, 16366, 338, 2581, 3419, 523, 326, 2581, 24697, 389, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3804, 1863, 351, 262, 2581, 13245, 306, 13, 9425, 11, 428, 318, 407, 7306, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 475, 1201, 6524, 4965, 14375, 468, 649, 1043, 15171, 11, 340, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10345, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 62, 50145, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 16366, 13, 25927, 796, 8677, 62, 50145, 62, 1640, 62, 47960, 62, 5420, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 16366, 13, 25927, 11, 2581, 62, 50145, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 6738, 62, 16684, 7, 16684, 62, 11600, 11, 1020, 62, 6371, 11, 2638, 62, 16366, 11, 4566, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 16684, 7, 565, 82, 11, 1020, 62, 11600, 11, 8159, 62, 6371, 28, 14202, 11, 2638, 62, 16366, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10934, 257, 1058, 4871, 25, 63, 10462, 7928, 11792, 63, 422, 257, 2451, 7928, 1020, 287, 8633, 1296, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1020, 62, 11600, 25, 257, 8633, 351, 257, 2451, 7928, 1020, 287, 33918, 12, 2339, 1296, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8159, 62, 6371, 25, 262, 19016, 973, 284, 19818, 262, 1020, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 220, 8159, 62, 6371, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4566, 25, 28373, 8633, 532, 766, 1020, 13, 10943, 16254, 62, 7206, 7708, 35342, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 16684, 13, 22882, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 16366, 796, 2638, 62, 16366, 393, 9394, 3558, 11792, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 49025, 4533, 4566, 26235, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 8633, 7, 10943, 16254, 62, 7206, 7708, 35342, 11, 12429, 7, 11250, 393, 23884, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1509, 7928, 62, 16684, 796, 18291, 13, 6738, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1020, 62, 11600, 11, 8159, 62, 6371, 11, 2638, 62, 16366, 11, 4566, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 2032, 7928, 62, 16684, 8, 628, 220, 220, 220, 825, 11593, 1136, 35226, 834, 7, 944, 11, 2378, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2378, 25, 1438, 286, 262, 8271, 284, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1058, 4871, 25, 63, 26198, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8271, 796, 2116, 13, 2032, 7928, 62, 16684, 13, 37540, 13, 1136, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26198, 1391, 15, 92, 407, 1043, 13, 14898, 4133, 25, 1391, 16, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 9186, 11, 46083, 45302, 22179, 7, 15908, 7, 944, 35514, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41028, 49025, 4533, 12, 7295, 338, 20857, 290, 14680, 5563, 287, 1502, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12260, 257, 2139, 869, 2884, 262, 2638, 62, 16366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20857, 10707, 273, 1352, 7, 31092, 8, 628, 198, 4299, 8677, 62, 50145, 62, 1640, 62, 47960, 62, 5420, 82, 7, 25927, 62, 13345, 540, 11, 2581, 62, 50145, 2599, 198, 220, 220, 220, 37227, 818, 752, 2581, 62, 50145, 691, 618, 262, 2581, 318, 284, 19818, 262, 198, 220, 220, 220, 6569, 1006, 82, 287, 262, 1509, 7928, 1020, 357, 14259, 852, 257, 2581, 329, 257, 2139, 869, 737, 628, 220, 220, 220, 1058, 17143, 2581, 62, 13345, 540, 25, 2446, 319, 2638, 62, 16366, 284, 787, 257, 2638, 2581, 198, 220, 220, 220, 1058, 17143, 2581, 62, 50145, 25, 24697, 284, 8677, 618, 50122, 6569, 1006, 82, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 2581, 62, 48553, 628, 198, 4871, 20857, 10707, 273, 1352, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 862, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 31092, 13, 26198, 63, 523, 326, 1895, 274, 284, 7763, 198, 220, 220, 220, 4560, 460, 307, 8875, 276, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8271, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 8271, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 31092, 13, 26198, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31092, 796, 8271, 628, 220, 220, 220, 825, 11593, 1136, 35226, 834, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 14134, 540, 32180, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4889, 540, 32180, 7, 1136, 35226, 7, 944, 13, 31092, 11, 1438, 4008, 628, 220, 220, 220, 825, 11593, 15908, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1475, 4832, 3376, 708, 3808, 319, 8271, 618, 7400, 14339, 287, 257, 45285, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 31092, 13, 834, 15908, 834, 3419, 628, 198, 4871, 4889, 540, 32180, 7, 15252, 2599, 198, 220, 220, 220, 37227, 36918, 862, 281, 4905, 284, 787, 340, 869, 540, 290, 3769, 257, 2205, 8841, 13, 32677, 198, 220, 220, 220, 262, 4905, 3544, 262, 17839, 2638, 62, 16366, 13, 628, 220, 220, 220, 1058, 4906, 4905, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 27184, 13, 32180, 63, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 15390, 8841, 62, 26745, 7, 834, 15390, 834, 8, 628, 220, 220, 220, 825, 11593, 1136, 35226, 834, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39746, 7007, 329, 708, 3808, 407, 1043, 319, 428, 11705, 1352, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 23191, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 13, 27184, 11, 1438, 8, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 12429, 404, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19904, 2088, 262, 4036, 14626, 2581, 290, 1441, 257, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 13, 4023, 62, 37443, 13, 40717, 29783, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 84, 1, 4, 82, 7, 4, 82, 16725, 4064, 357, 944, 13, 27184, 13, 27184, 62, 312, 11, 1034, 62, 46265, 22046, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9828, 62, 1640, 62, 10378, 31023, 62, 404, 7, 944, 13, 27184, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 2581, 62, 25811, 26235, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 25811, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4526, 35780, 62, 3185, 51, 11053, 62, 7206, 7708, 35342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 7, 404, 62, 46265, 22046, 13, 12924, 10786, 62, 25927, 62, 25811, 3256, 23884, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 37266, 796, 5678, 62, 25927, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27184, 11, 2581, 62, 25811, 11, 12429, 404, 62, 46265, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 2116, 13, 27184, 13, 2032, 7928, 62, 16684, 13, 11250, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 62, 16366, 796, 2116, 13, 27184, 13, 2032, 7928, 62, 16684, 13, 4023, 62, 16366, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2448, 12, 25927, 4566, 23170, 1460, 5456, 3094, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 635, 62, 7783, 62, 26209, 796, 2581, 62, 25811, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14508, 62, 7783, 62, 26209, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 17816, 14508, 62, 7783, 62, 26209, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2638, 62, 16366, 13, 25927, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4905, 28, 944, 13, 27184, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 13345, 10146, 28, 25927, 62, 25811, 17816, 26209, 62, 13345, 10146, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 635, 62, 7783, 62, 26209, 28, 14508, 62, 7783, 62, 26209, 8, 628, 198, 4299, 5678, 62, 25927, 7, 27184, 11, 2581, 62, 25811, 11, 12429, 404, 62, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 42316, 262, 28181, 2581, 8633, 13, 628, 220, 220, 220, 1058, 4906, 4905, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 27184, 13, 32180, 63, 198, 220, 220, 220, 1058, 17143, 2581, 62, 25811, 25, 4808, 25927, 62, 25811, 3804, 656, 262, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 43219, 13, 198, 220, 220, 220, 1058, 17143, 1034, 62, 46265, 22046, 25, 11507, 1438, 14, 8367, 14729, 284, 3804, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 43219, 286, 262, 4905, 13, 628, 220, 220, 220, 1058, 7783, 25, 2581, 287, 8633, 1296, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19016, 796, 4905, 13, 2032, 7928, 62, 16684, 13, 15042, 62, 6371, 13, 81, 36311, 10786, 14, 11537, 1343, 4905, 13, 6978, 62, 3672, 198, 220, 220, 220, 2581, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24396, 10354, 4905, 13, 4023, 62, 24396, 13, 45828, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 19016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37266, 10354, 1391, 5512, 220, 1303, 5901, 287, 33218, 198, 220, 220, 220, 220, 220, 220, 220, 705, 50145, 10354, 2581, 62, 25811, 13, 1136, 10786, 50145, 3256, 23884, 828, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1303, 17393, 625, 11902, 2581, 3689, 198, 220, 220, 220, 329, 2581, 62, 18076, 287, 19203, 8443, 62, 48678, 3256, 705, 48678, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 62, 18076, 287, 2581, 62, 25811, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 58, 25927, 62, 18076, 60, 796, 2581, 62, 25811, 58, 25927, 62, 18076, 60, 628, 220, 220, 220, 5678, 62, 37266, 7, 27184, 11, 2581, 11, 1034, 62, 46265, 22046, 8, 198, 220, 220, 220, 1441, 2581, 628, 198, 4299, 5678, 62, 37266, 7, 27184, 11, 2581, 11, 1034, 62, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 15056, 262, 10007, 3804, 284, 262, 4905, 43219, 11, 4938, 689, 290, 198, 220, 220, 220, 22397, 874, 262, 10007, 656, 262, 2810, 2581, 8633, 13, 628, 220, 220, 220, 1058, 4906, 4905, 25, 1058, 4871, 25, 63, 65, 4108, 4533, 62, 7295, 13, 27184, 13, 32180, 63, 198, 220, 220, 220, 1058, 4906, 2581, 25, 8633, 198, 220, 220, 220, 1058, 17143, 1034, 62, 46265, 22046, 25, 262, 479, 86, 22046, 3804, 284, 262, 4905, 43219, 628, 220, 220, 220, 1058, 430, 2696, 25, 2451, 7928, 44, 5912, 12331, 319, 3131, 10007, 393, 618, 257, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 318, 407, 14275, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1459, 62, 37266, 796, 4905, 13, 37266, 13, 30073, 3419, 198, 220, 220, 220, 329, 5772, 62, 3672, 11, 5772, 62, 8367, 287, 11629, 23814, 7, 404, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5772, 796, 1459, 62, 37266, 13, 12924, 7, 17143, 62, 3672, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 2451, 7928, 44, 5912, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 15, 92, 857, 407, 423, 11507, 1391, 16, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 27184, 13, 27184, 62, 312, 11, 5772, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 22397, 282, 62, 17143, 7, 17143, 11, 5772, 62, 8367, 11, 2581, 8, 628, 220, 220, 220, 1303, 6822, 2672, 42287, 290, 1729, 12, 35827, 42287, 351, 257, 705, 12286, 6, 1988, 198, 220, 220, 220, 329, 5637, 62, 17143, 287, 340, 712, 282, 947, 7, 14421, 62, 37266, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5637, 62, 17143, 13, 35827, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 2451, 7928, 44, 5912, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 15, 92, 318, 257, 2672, 11507, 4458, 18982, 7, 2787, 1397, 62, 17143, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5637, 62, 17143, 13, 35827, 290, 5637, 62, 17143, 13, 10134, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22397, 282, 62, 17143, 7, 2787, 1397, 62, 17143, 11, 6045, 11, 2581, 8, 198 ]
2.429392
4,355
# coding:utf-8 import json import pickle import requests import os import re from io import BytesIO BASE_DIR = os.path.dirname(__file__) # LOGIN_URL = 'http://grdms.bit.edu.cn/yjs/login_cas.jsp' # LOGIN_URL = 'https://login.bit.edu.cn/cas/login?service=https://login.bit.edu.cn/campus-account/shiro-cas' LOGIN_URL = 'https://login.bit.edu.cn/cas/login?service=http%3A%2F%2Fgrdms.bit.edu.cn%2Fyjs%2Flogin_cas.jsp' # LOGIN_INDEX_URL = 'https://login.bit.edu.cn/cas/login?service=https://login.bit.edu.cn/campus-account/shiro-cas' LOGIN_INDEX_URL = LOGIN_URL # 验证码 CAPTCHA_URL = 'https://login.bit.edu.cn/cas/captcha.html' NEED_CAPTCHA_URL = 'https://login.bit.edu.cn/cas/needCaptcha.html?username=%s'
[ 2, 19617, 25, 40477, 12, 23, 198, 11748, 33918, 198, 11748, 2298, 293, 198, 198, 11748, 7007, 198, 11748, 28686, 198, 11748, 302, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 2, 41605, 1268, 62, 21886, 796, 705, 4023, 1378, 2164, 67, 907, 13, 2545, 13, 15532, 13, 31522, 14, 88, 8457, 14, 38235, 62, 34004, 13, 73, 2777, 6, 198, 2, 41605, 1268, 62, 21886, 796, 705, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 34004, 14, 38235, 30, 15271, 28, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 43842, 12, 23317, 14, 1477, 7058, 12, 34004, 6, 198, 25294, 1268, 62, 21886, 796, 705, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 34004, 14, 38235, 30, 15271, 28, 4023, 4, 18, 32, 4, 17, 37, 4, 17, 37, 2164, 67, 907, 13, 2545, 13, 15532, 13, 31522, 4, 17, 37, 88, 8457, 4, 17, 37, 38235, 62, 34004, 13, 73, 2777, 6, 198, 2, 41605, 1268, 62, 12115, 6369, 62, 21886, 796, 705, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 34004, 14, 38235, 30, 15271, 28, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 43842, 12, 23317, 14, 1477, 7058, 12, 34004, 6, 198, 25294, 1268, 62, 12115, 6369, 62, 21886, 796, 41605, 1268, 62, 21886, 198, 2, 16268, 103, 234, 46237, 223, 163, 254, 223, 198, 33177, 51, 49285, 62, 21886, 796, 705, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 34004, 14, 27144, 11693, 13, 6494, 6, 198, 12161, 1961, 62, 33177, 51, 49285, 62, 21886, 796, 705, 5450, 1378, 38235, 13, 2545, 13, 15532, 13, 31522, 14, 34004, 14, 31227, 19209, 11693, 13, 6494, 30, 29460, 28, 4, 82, 6, 198 ]
2.283388
307
import discord, requests, os from discord.ext import commands, tasks from discord_components import DiscordComponents from config import token, db from typing import Union from help_ import CustomHelpCommand config = db["config"] links = db["linked"] presence_count = 0 intents = discord.Intents.all() bot = commands.Bot( command_prefix="/", intents=intents, help_command=CustomHelpCommand(), case_insensitive=True, ) DiscordComponents(bot) @tasks.loop(seconds=20) @bot.event if __name__ == "__main__": bot.load_extension("cogs.commands") bot.load_extension("cogs.news") bot.run(token)
[ 11748, 36446, 11, 7007, 11, 28686, 201, 198, 6738, 36446, 13, 2302, 1330, 9729, 11, 8861, 201, 198, 6738, 36446, 62, 5589, 3906, 1330, 39462, 7293, 3906, 201, 198, 6738, 4566, 1330, 11241, 11, 20613, 201, 198, 6738, 19720, 1330, 4479, 201, 198, 6738, 1037, 62, 1330, 8562, 22087, 21575, 201, 198, 201, 198, 201, 198, 11250, 796, 20613, 14692, 11250, 8973, 201, 198, 28751, 796, 20613, 14692, 25614, 8973, 201, 198, 201, 198, 18302, 594, 62, 9127, 796, 657, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 600, 658, 796, 36446, 13, 5317, 658, 13, 439, 3419, 201, 198, 201, 198, 13645, 796, 9729, 13, 20630, 7, 201, 198, 220, 220, 220, 3141, 62, 40290, 35922, 1600, 201, 198, 220, 220, 220, 493, 658, 28, 600, 658, 11, 201, 198, 220, 220, 220, 1037, 62, 21812, 28, 15022, 22087, 21575, 22784, 201, 198, 220, 220, 220, 1339, 62, 1040, 18464, 28, 17821, 11, 201, 198, 8, 201, 198, 15642, 585, 7293, 3906, 7, 13645, 8, 201, 198, 201, 198, 201, 198, 31, 83, 6791, 13, 26268, 7, 43012, 28, 1238, 8, 201, 198, 201, 198, 201, 198, 31, 13645, 13, 15596, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 10214, 13, 2220, 62, 2302, 3004, 7203, 66, 18463, 13, 9503, 1746, 4943, 201, 198, 220, 220, 220, 10214, 13, 2220, 62, 2302, 3004, 7203, 66, 18463, 13, 10827, 4943, 201, 198, 201, 198, 220, 220, 220, 10214, 13, 5143, 7, 30001, 8, 201, 198 ]
2.553435
262
from vtk import * source = vtkRandomGraphSource() source.DirectedOff() source.SetNumberOfVertices(50) source.SetEdgeProbability(0.01) source.SetUseEdgeProbability(True) source.AllowParallelEdgesOn() source.AllowSelfLoopsOn() source.SetStartWithTree(True) # Connect to the Boost centrality filter. centrality = vtkBoostBrandesCentrality () centrality.SetInputConnection(source.GetOutputPort()) view = vtkGraphLayoutView() view.AddRepresentationFromInputConnection(centrality.GetOutputPort()) view.SetVertexLabelArrayName("centrality") view.SetVertexLabelVisibility(True) view.SetVertexColorArrayName("centrality") view.SetColorVertices(True) view.SetEdgeLabelArrayName("centrality") #view.SetEdgeLabelVisibility(True) view.SetEdgeColorArrayName("centrality") view.SetColorEdges(True) view.SetLayoutStrategyToSimple2D() theme = vtkViewTheme.CreateMellowTheme() theme.SetLineWidth(5) theme.SetPointSize(10) theme.SetCellOpacity(1) theme.SetVertexLabelColor(0, 0, 0) view.ApplyViewTheme(theme) theme.FastDelete() view.GetRenderWindow().SetSize(600, 600) view.ResetCamera() view.Render() view.GetInteractor().Start()
[ 6738, 410, 30488, 1330, 1635, 198, 198, 10459, 796, 410, 30488, 29531, 37065, 7416, 3419, 198, 10459, 13, 13470, 276, 9362, 3419, 198, 10459, 13, 7248, 15057, 5189, 42369, 1063, 7, 1120, 8, 198, 10459, 13, 7248, 37021, 2964, 65, 1799, 7, 15, 13, 486, 8, 198, 10459, 13, 7248, 11041, 37021, 2964, 65, 1799, 7, 17821, 8, 198, 10459, 13, 35265, 10044, 29363, 7407, 3212, 2202, 3419, 198, 10459, 13, 35265, 24704, 27654, 2840, 2202, 3419, 198, 10459, 13, 7248, 10434, 3152, 27660, 7, 17821, 8, 628, 198, 2, 8113, 284, 262, 19835, 4318, 414, 8106, 13, 198, 31463, 414, 796, 410, 30488, 45686, 38416, 274, 30645, 414, 7499, 198, 31463, 414, 13, 7248, 20560, 32048, 7, 10459, 13, 3855, 26410, 13924, 28955, 628, 198, 1177, 796, 410, 30488, 37065, 32517, 7680, 3419, 198, 1177, 13, 4550, 40171, 341, 4863, 20560, 32048, 7, 31463, 414, 13, 3855, 26410, 13924, 28955, 198, 1177, 13, 7248, 13414, 16886, 33986, 19182, 5376, 7203, 31463, 414, 4943, 198, 1177, 13, 7248, 13414, 16886, 33986, 15854, 2247, 7, 17821, 8, 198, 1177, 13, 7248, 13414, 16886, 10258, 19182, 5376, 7203, 31463, 414, 4943, 198, 1177, 13, 7248, 10258, 42369, 1063, 7, 17821, 8, 198, 1177, 13, 7248, 37021, 33986, 19182, 5376, 7203, 31463, 414, 4943, 198, 2, 1177, 13, 7248, 37021, 33986, 15854, 2247, 7, 17821, 8, 198, 1177, 13, 7248, 37021, 10258, 19182, 5376, 7203, 31463, 414, 4943, 198, 1177, 13, 7248, 10258, 7407, 3212, 7, 17821, 8, 198, 1177, 13, 7248, 32517, 13290, 4338, 2514, 26437, 17, 35, 3419, 198, 198, 43810, 796, 410, 30488, 7680, 47863, 13, 16447, 44, 5037, 47863, 3419, 198, 43810, 13, 7248, 13949, 30916, 7, 20, 8, 198, 43810, 13, 7248, 12727, 10699, 7, 940, 8, 198, 43810, 13, 7248, 28780, 18257, 4355, 7, 16, 8, 198, 43810, 13, 7248, 13414, 16886, 33986, 10258, 7, 15, 11, 657, 11, 657, 8, 198, 1177, 13, 44836, 7680, 47863, 7, 43810, 8, 198, 43810, 13, 22968, 38727, 3419, 198, 198, 1177, 13, 3855, 45819, 27703, 22446, 7248, 10699, 7, 8054, 11, 10053, 8, 198, 1177, 13, 4965, 316, 35632, 3419, 198, 1177, 13, 45819, 3419, 198, 198, 1177, 13, 3855, 9492, 11218, 22446, 10434, 3419, 628 ]
3.054496
367
import input_data #input import BLOSUM52=input_data.BLOSUM52 seq2=input_data.seq2 seq1=input_data.seq1 matrix=NW_matrix(seq1,seq2,BLOSUM52,-2) #compute 2 matrix, gap penality is set to -2 result=allign(matrix[0],matrix[1],seq1,seq2) #use matrix obtained before to get the alignment print(result[0],result[1]) #and print it with it's score
[ 11748, 5128, 62, 7890, 220, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 2, 15414, 1330, 198, 9148, 2640, 5883, 4309, 28, 15414, 62, 7890, 13, 9148, 2640, 5883, 4309, 198, 41068, 17, 28, 15414, 62, 7890, 13, 41068, 17, 198, 41068, 16, 28, 15414, 62, 7890, 13, 41068, 16, 198, 198, 6759, 8609, 28, 27605, 62, 6759, 8609, 7, 41068, 16, 11, 41068, 17, 11, 9148, 2640, 5883, 4309, 12095, 17, 8, 220, 1303, 5589, 1133, 362, 17593, 11, 7625, 3112, 1483, 318, 900, 284, 532, 17, 198, 20274, 28, 439, 570, 7, 6759, 8609, 58, 15, 4357, 6759, 8609, 58, 16, 4357, 41068, 16, 11, 41068, 17, 8, 1303, 1904, 17593, 6492, 878, 284, 651, 262, 19114, 198, 4798, 7, 20274, 58, 15, 4357, 20274, 58, 16, 12962, 1303, 392, 3601, 340, 351, 340, 338, 4776 ]
2.5
140
directions = open('input', 'r').read().strip().split(', ') x = 0 y = 0 facing = 0 #North visited = {} visited[(x, y)] = True for direction in directions: if direction[0] == 'R': facing += 1 else: facing -= 1 if facing < 0: facing = 3 elif facing > 3: facing = 0 count = int(direction[1:]) for i in range(count): if facing == 0: # North y += 1 elif facing == 1: # East x += 1 elif facing == 2: # South y -= 1 elif facing == 3: # West x -= 1 position = (x, y) if visited.get(position, False): # Absolute values because direction isn't relevant, just distance x = abs(x) y = abs(y) print(x + y) exit() visited[position] = True
[ 12942, 507, 796, 1280, 10786, 15414, 3256, 705, 81, 27691, 961, 22446, 36311, 22446, 35312, 7, 3256, 705, 8, 198, 87, 796, 657, 198, 88, 796, 657, 198, 29532, 796, 657, 1303, 14157, 198, 4703, 863, 796, 23884, 198, 4703, 863, 58, 7, 87, 11, 331, 15437, 796, 6407, 198, 198, 1640, 4571, 287, 11678, 25, 198, 220, 220, 220, 611, 4571, 58, 15, 60, 6624, 705, 49, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 6476, 15853, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6476, 48185, 352, 628, 220, 220, 220, 611, 6476, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6476, 796, 513, 198, 220, 220, 220, 1288, 361, 6476, 1875, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6476, 796, 657, 628, 220, 220, 220, 954, 796, 493, 7, 37295, 58, 16, 25, 12962, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 9127, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6476, 6624, 657, 25, 1303, 2258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 15853, 352, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6476, 6624, 352, 25, 1303, 3687, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6476, 6624, 362, 25, 1303, 2520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6476, 6624, 513, 25, 1303, 2688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 796, 357, 87, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8672, 13, 1136, 7, 9150, 11, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 36532, 3815, 780, 4571, 2125, 470, 5981, 11, 655, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2352, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2352, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 87, 1343, 331, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8672, 58, 9150, 60, 796, 6407, 198 ]
2
425
from ..broker import Broker
[ 6738, 11485, 7957, 6122, 1330, 2806, 6122, 628 ]
3.625
8