content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# -*- coding: utf-8 - # # This file is part of dj-webmachine released under the MIT license. # See the NOTICE for more information. from django.template import loader, RequestContext from django.utils.encoding import iri_to_uri try: from restkit import oauth2 except ImportError: raise ImportError("restkit>=3.0.2 package is needed for auth.") from webmachine.auth.oauth import OAuthServer, load_oauth_datastore from webmachine.forms import OAuthAuthenticationForm from webmachine.resource import Resource
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 42625, 12, 12384, 30243, 2716, 739, 262, 17168, 5964, 13, 198, 2, 4091, 262, 28536, 329, 517, 1321, 13, 198, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 11, 19390, 21947, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 4173, 72, 62, 1462, 62, 9900, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 1334, 15813, 1330, 267, 18439, 17, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 5298, 17267, 12331, 7203, 2118, 15813, 29, 28, 18, 13, 15, 13, 17, 5301, 318, 2622, 329, 6284, 19570, 198, 198, 6738, 3992, 30243, 13, 18439, 13, 12162, 1071, 1330, 440, 30515, 10697, 11, 3440, 62, 12162, 1071, 62, 19608, 459, 382, 198, 6738, 3992, 30243, 13, 23914, 1330, 440, 30515, 47649, 3299, 8479, 198, 6738, 3992, 30243, 13, 31092, 1330, 20857, 628 ]
3.363636
154
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from commands.basecommand import BaseCommand import re
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 198, 198, 6738, 9729, 13, 8692, 21812, 1330, 7308, 21575, 198, 11748, 302, 628, 628, 628, 628 ]
4.121212
33
# stdlib import re from typing import Union, no_type_check # 3rd party import click import pytest from _pytest.capture import CaptureResult from coincidence.regressions import AdvancedDataRegressionFixture, AdvancedFileRegressionFixture from coincidence.selectors import max_version, min_version, not_pypy, only_pypy from consolekit.terminal_colours import strip_ansi from consolekit.testing import CliRunner, Result from domdf_python_tools.paths import PathPlus, in_directory # this package from formate import Reformatter, reformat_file from formate.__main__ import main from formate.config import load_toml path_sub = re.compile(rf" .*/pytest-of-.*/pytest-\d+") @no_type_check @pytest.fixture() @pytest.fixture() @max_version("3.9.9", reason="Output differs on Python 3.10+") @not_pypy("Output differs on PyPy") @only_pypy("Output differs on PyPy") @min_version("3.10", reason="Output differs on Python 3.10+") @pytest.mark.skipif(click.__version__.split('.')[0] != '7', reason="Output differs on Click 8") @pytest.mark.skipif(click.__version__.split('.')[0] == '7', reason="Output differs on Click 8")
[ 2, 14367, 8019, 198, 11748, 302, 198, 6738, 19720, 1330, 4479, 11, 645, 62, 4906, 62, 9122, 198, 198, 2, 513, 4372, 2151, 198, 11748, 3904, 198, 11748, 12972, 9288, 198, 6738, 4808, 9078, 9288, 13, 27144, 495, 1330, 31793, 23004, 198, 6738, 21083, 13, 2301, 601, 507, 1330, 13435, 6601, 8081, 2234, 37, 9602, 11, 13435, 8979, 8081, 2234, 37, 9602, 198, 6738, 21083, 13, 19738, 669, 1330, 3509, 62, 9641, 11, 949, 62, 9641, 11, 407, 62, 79, 4464, 88, 11, 691, 62, 79, 4464, 88, 198, 6738, 8624, 15813, 13, 23705, 282, 62, 4033, 4662, 1330, 10283, 62, 504, 72, 198, 6738, 8624, 15813, 13, 33407, 1330, 1012, 72, 49493, 11, 25414, 198, 6738, 2401, 7568, 62, 29412, 62, 31391, 13, 6978, 82, 1330, 10644, 17860, 11, 287, 62, 34945, 198, 198, 2, 428, 5301, 198, 6738, 1296, 378, 1330, 17893, 1436, 11, 4975, 265, 62, 7753, 198, 6738, 1296, 378, 13, 834, 12417, 834, 1330, 1388, 198, 6738, 1296, 378, 13, 11250, 1330, 3440, 62, 39532, 75, 198, 198, 6978, 62, 7266, 796, 302, 13, 5589, 576, 7, 41871, 1, 764, 16208, 9078, 9288, 12, 1659, 12, 15885, 14, 9078, 9288, 12, 59, 67, 10, 4943, 628, 198, 31, 3919, 62, 4906, 62, 9122, 628, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 628, 628, 628, 198, 198, 31, 9806, 62, 9641, 7203, 18, 13, 24, 13, 24, 1600, 1738, 2625, 26410, 24242, 319, 11361, 513, 13, 940, 10, 4943, 198, 31, 1662, 62, 79, 4464, 88, 7203, 26410, 24242, 319, 9485, 20519, 4943, 628, 198, 31, 8807, 62, 79, 4464, 88, 7203, 26410, 24242, 319, 9485, 20519, 4943, 628, 198, 31, 1084, 62, 9641, 7203, 18, 13, 940, 1600, 1738, 2625, 26410, 24242, 319, 11361, 513, 13, 940, 10, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 12976, 13, 834, 9641, 834, 13, 35312, 10786, 2637, 38381, 15, 60, 14512, 705, 22, 3256, 1738, 2625, 26410, 24242, 319, 6914, 807, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 12976, 13, 834, 9641, 834, 13, 35312, 10786, 2637, 38381, 15, 60, 6624, 705, 22, 3256, 1738, 2625, 26410, 24242, 319, 6914, 807, 4943, 198 ]
3.013333
375
import copy import logging import shutil from math import exp import numpy as np from sklearn.preprocessing import StandardScaler, normalize from sklearn.utils import shuffle from tqdm import trange from lib.bqueue import Bqueue from lib.dnn import Dnn from lib.helper import Helper from lib.som import SOM logging.basicConfig(level=logging.INFO) logger = logging.getLogger("Model") terminal_columns = shutil.get_terminal_size().columns // 2
[ 11748, 4866, 198, 11748, 18931, 198, 11748, 4423, 346, 198, 6738, 10688, 1330, 1033, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 11, 3487, 1096, 198, 6738, 1341, 35720, 13, 26791, 1330, 36273, 198, 6738, 256, 80, 36020, 1330, 491, 858, 198, 6738, 9195, 13, 65, 36560, 1330, 347, 36560, 198, 6738, 9195, 13, 67, 20471, 1330, 360, 20471, 198, 6738, 9195, 13, 2978, 525, 1330, 5053, 525, 198, 6738, 9195, 13, 82, 296, 1330, 42121, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 17633, 4943, 198, 23705, 282, 62, 28665, 82, 796, 4423, 346, 13, 1136, 62, 23705, 282, 62, 7857, 22446, 28665, 82, 3373, 362, 628 ]
3.313433
134
from django.conf.urls.defaults import * from views import home urlpatterns = patterns('', url(r'^$', home, name='home'), url('fandjango/', include('fandjango.urls')) )
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12286, 82, 1330, 1635, 198, 198, 6738, 5009, 1330, 1363, 198, 198, 6371, 33279, 82, 796, 7572, 10786, 3256, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 1363, 11, 1438, 11639, 11195, 33809, 628, 220, 220, 220, 19016, 10786, 69, 392, 73, 14208, 14, 3256, 2291, 10786, 69, 392, 73, 14208, 13, 6371, 82, 6, 4008, 198, 8, 198 ]
2.521127
71
from quart import Quart, flask_patch from app.main import main from .extinsions import db
[ 6738, 28176, 1330, 48748, 11, 42903, 62, 17147, 198, 6738, 598, 13, 12417, 1330, 1388, 198, 6738, 764, 2302, 1040, 507, 1330, 20613, 628 ]
3.791667
24
import re import signal import sys from threading import Thread import pychess from pychess.Players.PyChess import PyChess from pychess.System import conf, fident from pychess.Utils.book import getOpenings from pychess.Utils.const import ( NORMALCHESS, FEN_START, BLACK, FISCHERRANDOMCHESS, CRAZYHOUSECHESS, WILDCASTLESHUFFLECHESS, LOSERSCHESS, SUICIDECHESS, ATOMICCHESS, THREECHECKCHESS, KINGOFTHEHILLCHESS, ASEANCHESS, MAKRUKCHESS, CAMBODIANCHESS, SITTUYINCHESS, GIVEAWAYCHESS, HORDECHESS, RACINGKINGSCHESS, PLACEMENTCHESS, WHITE, ) from pychess.Utils.lutils.Benchmark import benchmark from pychess.Utils.lutils.perft import perft from pychess.Utils.lutils.LBoard import LBoard from pychess.Utils.lutils.ldata import MAXPLY from pychess.Utils.lutils import lsearch, leval from pychess.Utils.lutils.lmove import parseSAN, parseAny, toSAN, ParsingError from pychess.Utils.lutils.lmovegen import genAllMoves, genCaptures, genCheckEvasions from pychess.Utils.lutils.validator import validateMove from pychess.System.Log import log from pychess.Variants.horde import HORDESTART from pychess.Variants.placement import PLACEMENTSTART from pychess.Variants.asean import ( ASEANSTART, MAKRUKSTART, KAMBODIANSTART, SITTUYINSTART, ) if sys.platform != "win32": import readline readline.clear_history() ASCII = sys.platform == "win32"
[ 11748, 302, 198, 11748, 6737, 198, 11748, 25064, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 11748, 12972, 2395, 824, 198, 6738, 12972, 2395, 824, 13, 24860, 13, 20519, 7376, 824, 1330, 9485, 7376, 824, 198, 6738, 12972, 2395, 824, 13, 11964, 1330, 1013, 11, 277, 738, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 2070, 1330, 651, 11505, 654, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 9979, 1330, 357, 198, 220, 220, 220, 25273, 42126, 3398, 7597, 11, 198, 220, 220, 220, 376, 1677, 62, 2257, 7227, 11, 198, 220, 220, 220, 31963, 11, 198, 220, 220, 220, 376, 1797, 3398, 1137, 49, 6981, 2662, 3398, 7597, 11, 198, 220, 220, 220, 33416, 57, 56, 39, 20958, 25994, 7597, 11, 198, 220, 220, 220, 370, 4146, 9697, 11262, 28378, 39, 47588, 2538, 3398, 7597, 11, 198, 220, 220, 220, 406, 2640, 4877, 3398, 7597, 11, 198, 220, 220, 220, 13558, 2149, 2389, 25994, 7597, 11, 198, 220, 220, 220, 5161, 2662, 2149, 3398, 7597, 11, 198, 220, 220, 220, 2320, 2200, 25994, 25171, 3398, 7597, 11, 198, 220, 220, 220, 32957, 19238, 10970, 39, 8267, 3398, 7597, 11, 198, 220, 220, 220, 317, 5188, 1565, 3398, 7597, 11, 198, 220, 220, 220, 8779, 30758, 15039, 3398, 7597, 11, 198, 220, 220, 220, 32421, 33, 3727, 16868, 3398, 7597, 11, 198, 220, 220, 220, 311, 22470, 52, 56, 1268, 3398, 7597, 11, 198, 220, 220, 220, 402, 9306, 12298, 4792, 3398, 7597, 11, 198, 220, 220, 220, 367, 12532, 25994, 7597, 11, 198, 220, 220, 220, 371, 2246, 2751, 42, 20754, 3398, 7597, 11, 198, 220, 220, 220, 9297, 2246, 12529, 3398, 7597, 11, 198, 220, 220, 220, 44925, 11, 198, 8, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 44199, 4102, 1330, 18335, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 525, 701, 1330, 583, 701, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 43, 29828, 1330, 22199, 11953, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 335, 1045, 1330, 25882, 6489, 56, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 1330, 300, 12947, 11, 443, 2100, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 75, 21084, 1330, 21136, 36753, 11, 21136, 7149, 11, 284, 36753, 11, 23042, 278, 12331, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 75, 21084, 5235, 1330, 2429, 3237, 44, 5241, 11, 2429, 19209, 942, 11, 2429, 9787, 36, 11017, 507, 198, 6738, 12972, 2395, 824, 13, 18274, 4487, 13, 75, 26791, 13, 12102, 1352, 1330, 26571, 21774, 198, 6738, 12972, 2395, 824, 13, 11964, 13, 11187, 1330, 2604, 198, 6738, 12972, 2395, 824, 13, 23907, 1187, 13, 71, 17531, 1330, 367, 12532, 6465, 7227, 198, 6738, 12972, 2395, 824, 13, 23907, 1187, 13, 489, 5592, 1330, 9297, 2246, 12529, 2257, 7227, 198, 6738, 12972, 2395, 824, 13, 23907, 1187, 13, 589, 272, 1330, 357, 198, 220, 220, 220, 317, 5188, 1565, 2257, 7227, 11, 198, 220, 220, 220, 8779, 30758, 15039, 2257, 7227, 11, 198, 220, 220, 220, 509, 2390, 33, 3727, 16868, 2257, 7227, 11, 198, 220, 220, 220, 311, 22470, 52, 56, 38604, 7227, 11, 198, 8, 198, 198, 361, 25064, 13, 24254, 14512, 366, 5404, 2624, 1298, 198, 220, 220, 220, 1330, 1100, 1370, 628, 220, 220, 220, 1100, 1370, 13, 20063, 62, 23569, 3419, 198, 198, 42643, 3978, 796, 25064, 13, 24254, 6624, 366, 5404, 2624, 1, 628, 198 ]
2.432203
590
#!/usr/bin/env python # -*- encoding: utf-8 -*-
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198 ]
2.083333
24
print(Class2.get_user("test"))
[ 4798, 7, 9487, 17, 13, 1136, 62, 7220, 7203, 9288, 48774, 628 ]
2.666667
12
# -*- coding: utf-8 -*- import unittest from cwr.parser.encoder.dictionary import IPIBaseDictionaryEncoder """ Acknowledgement to dictionary encoding tests. The following cases are tested: """ __author__ = 'Bernardo Martínez Garrido' __license__ = 'MIT' __status__ = 'Development'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 269, 18351, 13, 48610, 13, 12685, 12342, 13, 67, 14188, 1330, 6101, 9865, 589, 35, 14188, 27195, 12342, 198, 198, 37811, 198, 39482, 16025, 284, 22155, 21004, 5254, 13, 198, 198, 464, 1708, 2663, 389, 6789, 25, 198, 37811, 198, 198, 834, 9800, 834, 796, 705, 23927, 13109, 3981, 8836, 710, 89, 46619, 17305, 6, 198, 834, 43085, 834, 796, 705, 36393, 6, 198, 834, 13376, 834, 796, 705, 41206, 6, 628 ]
3.053191
94
# Create example plots for README import numpy as np import matplotlib.pyplot as plt import os.path create_plot('asu-dark') create_plot('asu-light')
[ 2, 13610, 1672, 21528, 329, 20832, 11682, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 28686, 13, 6978, 198, 198, 17953, 62, 29487, 10786, 27345, 12, 21953, 11537, 198, 17953, 62, 29487, 10786, 27345, 12, 2971, 11537, 628 ]
3.04
50
# Ultroid - UserBot # Copyright (C) 2020 TeamUltroid # # This file is a part of < https://github.com/TeamUltroid/Ultroid/ > # PLease read the GNU Affero General Public License in # <https://www.github.com/TeamUltroid/Ultroid/blob/main/LICENSE/>. """ ✘ Commands Available - • `{i}grey <reply to any media>` To make it black nd white. • `{i}color <reply to any Black nd White media>` To make it Colorfull. • `{i}toon <reply to any media>` To make it toon. • `{i}danger <reply to any media>` To make it look Danger. • `{i}negative <reply to any media>` To make negative image. • `{i}blur <reply to any media>` To make it blurry. • `{i}quad <reply to any media>` create a Vortex. • `{i}mirror <reply to any media>` To create mirror pic. • `{i}flip <reply to any media>` To make it flip. • `{i}sketch <reply to any media>` To draw its sketch. • `{i}blue <reply to any media>` just cool. • `{i}csample <color name /color code>` example : `{i}csample red` `{i}csample #ffffff` """ import asyncio import os import cv2 import numpy as np from PIL import Image from telegraph import upload_file as upf from telethon.errors.rpcerrorlist import ( ChatSendMediaForbiddenError, MessageDeleteForbiddenError, ) from validators.url import url from . import * @ultroid_cmd( pattern="sketch$", ) @ultroid_cmd(pattern="color$") @ultroid_cmd( pattern="grey$", ) @ultroid_cmd( pattern="blur$", ) @ultroid_cmd( pattern="negative$", ) @ultroid_cmd( pattern="mirror$", ) @ultroid_cmd( pattern="flip$", ) @ultroid_cmd( pattern="quad$", ) @ultroid_cmd( pattern="toon$", ) @ultroid_cmd( pattern="danger$", ) @ultroid_cmd(pattern="csample (.*)") @ultroid_cmd( pattern="blue$", ) HELP.update({f"{__name__.split('.')[1]}": f"{__doc__.format(i=HNDLR)}"})
[ 2, 6172, 3882, 532, 11787, 20630, 198, 2, 15069, 357, 34, 8, 12131, 4816, 16301, 3882, 198, 2, 198, 2, 770, 2393, 318, 257, 636, 286, 1279, 3740, 1378, 12567, 13, 785, 14, 15592, 16301, 3882, 14, 16301, 3882, 14, 1875, 198, 2, 350, 3123, 589, 1100, 262, 22961, 6708, 3529, 3611, 5094, 13789, 287, 198, 2, 1279, 5450, 1378, 2503, 13, 12567, 13, 785, 14, 15592, 16301, 3882, 14, 16301, 3882, 14, 2436, 672, 14, 12417, 14, 43, 2149, 24290, 15913, 13, 198, 198, 37811, 198, 26486, 246, 49505, 14898, 532, 198, 198, 3581, 4600, 90, 72, 92, 49502, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 2042, 299, 67, 2330, 13, 198, 198, 3581, 4600, 90, 72, 92, 8043, 1279, 47768, 284, 597, 2619, 299, 67, 2635, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 5315, 12853, 13, 198, 198, 3581, 4600, 90, 72, 92, 1462, 261, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 284, 261, 13, 198, 198, 3581, 4600, 90, 72, 92, 38537, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 804, 20419, 13, 198, 198, 3581, 4600, 90, 72, 92, 31591, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 4633, 2939, 13, 198, 198, 3581, 4600, 90, 72, 92, 2436, 333, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 44701, 13, 198, 198, 3581, 4600, 90, 72, 92, 47003, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 2251, 257, 49790, 13, 198, 198, 3581, 4600, 90, 72, 92, 10793, 1472, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 2251, 10162, 8301, 13, 198, 198, 3581, 4600, 90, 72, 92, 2704, 541, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 787, 340, 14283, 13, 198, 198, 3581, 4600, 90, 72, 92, 82, 7126, 354, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 1675, 3197, 663, 17548, 13, 198, 198, 3581, 4600, 90, 72, 92, 17585, 1279, 47768, 284, 597, 2056, 29, 63, 198, 220, 220, 220, 655, 3608, 13, 198, 198, 3581, 4600, 90, 72, 92, 6359, 1403, 1279, 8043, 1438, 1220, 8043, 2438, 29, 63, 198, 220, 220, 1672, 1058, 4600, 90, 72, 92, 6359, 1403, 2266, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 90, 72, 92, 6359, 1403, 1303, 12927, 487, 63, 198, 37811, 198, 198, 11748, 30351, 952, 198, 11748, 28686, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 573, 16606, 1330, 9516, 62, 7753, 355, 510, 69, 198, 6738, 5735, 400, 261, 13, 48277, 13, 81, 79, 2189, 1472, 4868, 1330, 357, 198, 220, 220, 220, 24101, 25206, 13152, 1890, 37978, 12331, 11, 198, 220, 220, 220, 16000, 38727, 1890, 37978, 12331, 11, 198, 8, 198, 6738, 4938, 2024, 13, 6371, 1330, 19016, 198, 198, 6738, 764, 1330, 1635, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 82, 7126, 354, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 33279, 2625, 8043, 3, 4943, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 49502, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 2436, 333, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 31591, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 10793, 1472, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 2704, 541, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 47003, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 1462, 261, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 38537, 3, 1600, 198, 8, 628, 198, 31, 586, 3882, 62, 28758, 7, 33279, 2625, 6359, 1403, 357, 15885, 8, 4943, 628, 198, 31, 586, 3882, 62, 28758, 7, 198, 220, 220, 220, 3912, 2625, 17585, 3, 1600, 198, 8, 628, 198, 39, 3698, 47, 13, 19119, 15090, 69, 1, 90, 834, 3672, 834, 13, 35312, 10786, 2637, 38381, 16, 48999, 1298, 277, 1, 90, 834, 15390, 834, 13, 18982, 7, 72, 28, 39, 8575, 35972, 38165, 20662, 8, 198 ]
2.407455
778
from clpy.math.misc import * # NOQA
[ 6738, 537, 9078, 13, 11018, 13, 44374, 1330, 1635, 220, 1303, 8005, 48, 32, 198 ]
2.466667
15
x1 = 2.0 x2 = 3.0 ReLu = lambda x: max(0.0, x) ReLuDer = lambda x: 1 if x > 0 else 0 error_fn = lambda prediction, target: 0.5 * (target - prediction) ** 2 # input a1 = x1 a2 = x2 w11 = 0.11 w12 = 0.21 w21 = 0.12 w22 = 0.08 w1o = 0.14 w2o = 0.15 y = 1 n = 0.5 # foward # layer 1 zh1 = (w11 * a1) + (w12 * a2) zh2 = (w21 * a1) + (w22 * a2) #print(f"zh1 = {zh1}") #print(f"zh2 = {zh2}") h0 = 1 h1 = ReLu(zh1) h2 = ReLu(zh2) #print(f"h1 = {h1}") #print(f"h2 = {h2}") # layer 2 zo1 = (w1o * h1) + (w2o * h2) o1 = ReLu(zo1) error = error_fn(o1, y) #print(f"zo1 = {zo1}") print(f"o1 = {o1}") print(f"error = {error}") # Back # Last layer d_Etotal_d_out = (o1 - y) #print(f"d_Etotal_d_out = {d_Etotal_d_out}") d_out_d_zo1 = ReLuDer(o1) #print(f"d_out_d_zo1 = {d_out_d_zo1}") d_zo1_d_w1o = h1 #print(f"d_zo1_d_w1o = {d_zo1_d_w1o}") d_zo1_d_w2o = h2 #print(f"d_zo1_d_w2o = {d_zo1_d_w2o}") d_Etotal_d_w1o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w1o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w1o}") d_Etotal_d_w2o = d_Etotal_d_out * d_out_d_zo1 * d_zo1_d_w2o #print(f"d_Etotal_d_w1o = {d_Etotal_d_w2o}") # Previous layer d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w11 = a1 d_Etotal_d_w11 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w11 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w11}") d_w1o_d_h1 = w1o d_h1_d_zh1 = 1 d_zh1_d_w12 = a2 d_Etotal_d_w12 = d_Etotal_d_w1o * d_w1o_d_h1 * d_h1_d_zh1 * d_zh1_d_w12 #print(f"d_Etotal_d_w11 = {d_Etotal_d_w12}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w21 = a1 d_Etotal_d_w21 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w21 #print(f"d_Etotal_d_w21 = {d_Etotal_d_w21}") d_w2o_d_h2 = w2o d_h2_d_zh2 = 1 d_zh2_d_w22 = a2 d_Etotal_d_w22 = d_Etotal_d_w1o * d_w2o_d_h2 * d_h2_d_zh2 * d_zh2_d_w22 #print(f"d_Etotal_d_w22 = {d_Etotal_d_w22}") w1o = w1o - n * d_Etotal_d_w1o w2o = w1o - n * d_Etotal_d_w2o w11 = w11 - n * d_Etotal_d_w11 w12 = w12 - n * d_Etotal_d_w12 w21 = w21 - n * d_Etotal_d_w21 w22 = w22 - n * d_Etotal_d_w22
[ 198, 87, 16, 796, 362, 13, 15, 198, 87, 17, 796, 513, 13, 15, 198, 198, 3041, 25596, 796, 37456, 2124, 25, 3509, 7, 15, 13, 15, 11, 2124, 8, 198, 3041, 25596, 28532, 796, 37456, 2124, 25, 352, 611, 2124, 1875, 657, 2073, 657, 198, 18224, 62, 22184, 796, 37456, 17724, 11, 2496, 25, 657, 13, 20, 1635, 357, 16793, 532, 17724, 8, 12429, 362, 198, 198, 2, 5128, 198, 64, 16, 796, 2124, 16, 198, 64, 17, 796, 2124, 17, 198, 198, 86, 1157, 796, 657, 13, 1157, 198, 86, 1065, 796, 657, 13, 2481, 198, 198, 86, 2481, 796, 657, 13, 1065, 198, 86, 1828, 796, 657, 13, 2919, 198, 198, 86, 16, 78, 796, 657, 13, 1415, 198, 86, 17, 78, 796, 657, 13, 1314, 198, 198, 88, 796, 352, 198, 77, 796, 657, 13, 20, 198, 198, 2, 277, 46138, 220, 198, 2, 7679, 352, 198, 23548, 16, 796, 357, 86, 1157, 1635, 257, 16, 8, 1343, 357, 86, 1065, 1635, 257, 17, 8, 198, 23548, 17, 796, 357, 86, 2481, 1635, 257, 16, 8, 1343, 357, 86, 1828, 1635, 257, 17, 8, 198, 2, 4798, 7, 69, 1, 23548, 16, 796, 1391, 23548, 16, 92, 4943, 198, 2, 4798, 7, 69, 1, 23548, 17, 796, 1391, 23548, 17, 92, 4943, 198, 198, 71, 15, 796, 352, 198, 71, 16, 796, 797, 25596, 7, 23548, 16, 8, 198, 71, 17, 796, 797, 25596, 7, 23548, 17, 8, 198, 2, 4798, 7, 69, 1, 71, 16, 796, 1391, 71, 16, 92, 4943, 198, 2, 4798, 7, 69, 1, 71, 17, 796, 1391, 71, 17, 92, 4943, 198, 198, 2, 7679, 362, 198, 10872, 16, 796, 357, 86, 16, 78, 1635, 289, 16, 8, 1343, 357, 86, 17, 78, 1635, 289, 17, 8, 198, 78, 16, 796, 797, 25596, 7, 10872, 16, 8, 198, 18224, 796, 4049, 62, 22184, 7, 78, 16, 11, 331, 8, 198, 198, 2, 4798, 7, 69, 1, 10872, 16, 796, 1391, 10872, 16, 92, 4943, 198, 4798, 7, 69, 1, 78, 16, 796, 1391, 78, 16, 92, 4943, 198, 4798, 7, 69, 1, 18224, 796, 1391, 18224, 92, 4943, 198, 198, 2, 5157, 198, 198, 2, 4586, 7679, 198, 67, 62, 36, 23350, 62, 67, 62, 448, 796, 357, 78, 16, 532, 331, 8, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 448, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 448, 92, 4943, 198, 198, 67, 62, 448, 62, 67, 62, 10872, 16, 796, 797, 25596, 28532, 7, 78, 16, 8, 198, 2, 4798, 7, 69, 1, 67, 62, 448, 62, 67, 62, 10872, 16, 796, 1391, 67, 62, 448, 62, 67, 62, 10872, 16, 92, 4943, 198, 198, 67, 62, 10872, 16, 62, 67, 62, 86, 16, 78, 796, 289, 16, 198, 2, 4798, 7, 69, 1, 67, 62, 10872, 16, 62, 67, 62, 86, 16, 78, 796, 1391, 67, 62, 10872, 16, 62, 67, 62, 86, 16, 78, 92, 4943, 198, 198, 67, 62, 10872, 16, 62, 67, 62, 86, 17, 78, 796, 289, 17, 198, 2, 4798, 7, 69, 1, 67, 62, 10872, 16, 62, 67, 62, 86, 17, 78, 796, 1391, 67, 62, 10872, 16, 62, 67, 62, 86, 17, 78, 92, 4943, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 796, 288, 62, 36, 23350, 62, 67, 62, 448, 1635, 288, 62, 448, 62, 67, 62, 10872, 16, 1635, 288, 62, 10872, 16, 62, 67, 62, 86, 16, 78, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 92, 4943, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 17, 78, 796, 288, 62, 36, 23350, 62, 67, 62, 448, 1635, 288, 62, 448, 62, 67, 62, 10872, 16, 1635, 288, 62, 10872, 16, 62, 67, 62, 86, 17, 78, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 17, 78, 92, 4943, 628, 198, 2, 21801, 7679, 198, 67, 62, 86, 16, 78, 62, 67, 62, 71, 16, 796, 266, 16, 78, 198, 67, 62, 71, 16, 62, 67, 62, 23548, 16, 796, 352, 198, 67, 62, 23548, 16, 62, 67, 62, 86, 1157, 796, 257, 16, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 1157, 796, 288, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 1635, 288, 62, 86, 16, 78, 62, 67, 62, 71, 16, 1635, 288, 62, 71, 16, 62, 67, 62, 23548, 16, 1635, 288, 62, 23548, 16, 62, 67, 62, 86, 1157, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 1157, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 1157, 92, 4943, 198, 198, 67, 62, 86, 16, 78, 62, 67, 62, 71, 16, 796, 266, 16, 78, 198, 67, 62, 71, 16, 62, 67, 62, 23548, 16, 796, 352, 198, 67, 62, 23548, 16, 62, 67, 62, 86, 1065, 796, 257, 17, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 1065, 796, 288, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 1635, 288, 62, 86, 16, 78, 62, 67, 62, 71, 16, 1635, 288, 62, 71, 16, 62, 67, 62, 23548, 16, 1635, 288, 62, 23548, 16, 62, 67, 62, 86, 1065, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 1157, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 1065, 92, 4943, 198, 198, 67, 62, 86, 17, 78, 62, 67, 62, 71, 17, 796, 266, 17, 78, 198, 67, 62, 71, 17, 62, 67, 62, 23548, 17, 796, 352, 198, 67, 62, 23548, 17, 62, 67, 62, 86, 2481, 796, 257, 16, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 2481, 796, 288, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 1635, 288, 62, 86, 17, 78, 62, 67, 62, 71, 17, 1635, 288, 62, 71, 17, 62, 67, 62, 23548, 17, 1635, 288, 62, 23548, 17, 62, 67, 62, 86, 2481, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 2481, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 2481, 92, 4943, 198, 198, 67, 62, 86, 17, 78, 62, 67, 62, 71, 17, 796, 266, 17, 78, 198, 67, 62, 71, 17, 62, 67, 62, 23548, 17, 796, 352, 198, 67, 62, 23548, 17, 62, 67, 62, 86, 1828, 796, 257, 17, 198, 198, 67, 62, 36, 23350, 62, 67, 62, 86, 1828, 796, 288, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 1635, 288, 62, 86, 17, 78, 62, 67, 62, 71, 17, 1635, 288, 62, 71, 17, 62, 67, 62, 23548, 17, 1635, 288, 62, 23548, 17, 62, 67, 62, 86, 1828, 198, 2, 4798, 7, 69, 1, 67, 62, 36, 23350, 62, 67, 62, 86, 1828, 796, 1391, 67, 62, 36, 23350, 62, 67, 62, 86, 1828, 92, 4943, 628, 198, 198, 86, 16, 78, 796, 266, 16, 78, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 16, 78, 198, 86, 17, 78, 796, 266, 16, 78, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 17, 78, 198, 198, 86, 1157, 796, 266, 1157, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 1157, 198, 86, 1065, 796, 266, 1065, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 1065, 198, 198, 86, 2481, 796, 266, 2481, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 2481, 198, 86, 1828, 796, 266, 1828, 532, 299, 1635, 288, 62, 36, 23350, 62, 67, 62, 86, 1828, 198 ]
1.53668
1,295
""" Representation class for CDB data """ import pickle import numpy as np from scipy.sparse import dok_matrix #from gensim.matutils import unitvec from medcat.utils.matutils import unitvec, sigmoid from medcat.utils.attr_dict import AttrDict from medcat.utils.loggers import basic_logger import os import pandas as pd log = basic_logger("cdb") class CDB(object): """ Holds all the CDB data required for annotation """ MAX_COO_DICT_SIZE = int(os.getenv('MAX_COO_DICT_SIZE', 10000000)) MIN_COO_COUNT = int(os.getenv('MIN_COO_COUNT', 100)) def add_concept(self, cui, name, onto, tokens, snames, isupper=False, is_pref_name=False, tui=None, pretty_name='', desc=None, tokens_vocab=None, original_name=None, is_unique=None, tui_name=None): r''' Add a concept to internal Concept Database (CDB). Depending on what you are providing this will add a large number of properties for each concept. Args: cui (str): Concept ID or unique identifer in this database, all concepts that have the same CUI will be merged internally. name (str): Name for this concept, or the value that if found in free text can be linked to this concept. onto (str): Ontology from which the concept is taken (e.g. SNOMEDCT) tokens (str, list of str): Tokenized version of the name. Usually done vai spacy snames (str, list of str): Subnames of this name, have a look at medcat.prepare_cdb.PrepareCDB for details on how to provide `snames`.Example: if name is "heart attack" snames is ['heart', 'heart attack'] isupper (boolean, optional): If name in the original ontology is upper_cased is_pref_name (boolean, optional): If this is the prefered name for this CUI tui (str, optional): Semantic type identifier (have a look at TUIs in UMLS or SNOMED-CT) pretty_name (str, optional): Pretty name for this concept, really just the pretty name for the concept if it exists. desc (str, optinal): Description of this concept. tokens_vocab (list of str, optional): Tokens that should be added to the vocabulary, usually not normalized version of tokens. original_name (str, optinal): The orignal name from the source vocabulary, without any normalization. is_unique (boolean, optional): If set to False - you can require disambiguation for a name even if it is unique inside of the current CDB. If set to True - you are forcing medcat to make a decision without disambiguation even if it is required. Do not set this arg unless you are sure. tui_name (str, optional): The name for the TUI ''' # Add the info property if cui not in self.cui2info: self.cui2info[cui] = {} # Add is name upper if name in self.name_isupper: self.name_isupper[name] = self.name_isupper[name] or isupper self.name_isupper[name] = self.name_isupper[name] or isupper else: self.name_isupper[name] = isupper # Add original name if original_name is not None: self.name2original_name[name] = original_name if original_name in self.original_name2cuis: self.original_name2cuis[original_name].add(cui) else: self.original_name2cuis[original_name] = {cui} if cui in self.cui2original_names: self.cui2original_names[cui].add(original_name) else: self.cui2original_names[cui] = {original_name} # Add prefered name if is_pref_name: self.cui2pref_name[cui] = name if pretty_name: self.cui2pretty_name[cui] = pretty_name if cui not in self.cui2pretty_name and pretty_name: self.cui2pretty_name[cui] = pretty_name if tui is not None: self.cui2tui[cui] = tui if tui in self.tui2cuis: self.tui2cuis[tui].add(cui) else: self.tui2cuis[tui] = set([cui]) if tui_name is not None: self.tui2name[tui] = tui_name if is_unique is not None: self.name_isunique[name] = is_unique # Add name to cnt if name not in self.name2cnt: self.name2cnt[name] = {} if cui in self.name2cnt[name]: self.name2cnt[name][cui] += 1 else: self.name2cnt[name][cui] = 1 # Add description if desc is not None: if cui not in self.cui2desc: self.cui2desc[cui] = str(desc) elif str(desc) not in str(self.cui2desc[cui]): self.cui2desc[cui] = str(self.cui2desc[cui]) + "\n\n" + str(desc) # Add cui to a list of cuis if cui not in self.index2cui: self.index2cui.append(cui) self.cui2index[cui] = len(self.index2cui) - 1 # Expand coo matrix if it is used if self._coo_matrix is not None: s = self._coo_matrix.shape[0] + 1 self._coo_matrix.resize((s, s)) # Add words to vocab for token in tokens_vocab: if token in self.vocab: self.vocab[token] += 1 else: self.vocab[token] = 1 # Add also the normalized tokens, why not for token in tokens: if token in self.vocab: self.vocab[token] += 1 else: self.vocab[token] = 1 # Add number of tokens for this name if name in self.name2ntkns: self.name2ntkns[name].add(len(tokens)) else: self.name2ntkns[name] = {len(tokens)} # Add mappings to onto2cuis if onto not in self.onto2cuis: self.onto2cuis[onto] = set([cui]) else: self.onto2cuis[onto].add(cui) if cui in self.cui2ontos: self.cui2ontos[cui].add(onto) else: self.cui2ontos[cui] = {onto} # Add mappings to name2cui if name not in self.name2cui: self.name2cui[name] = set([cui]) else: self.name2cui[name].add(cui) # Add snames to set self.sname2name.update(snames) # Add mappings to cui2names if cui not in self.cui2names: self.cui2names[cui] = {name} else: self.cui2names[cui].add(name) # Add mappings to cui2words if cui not in self.cui2words: self.cui2words[cui] = {} for token in tokens: if not token.isdigit() and len(token) > 1: if token in self.cui2words[cui]: self.cui2words[cui][token] += 1 else: self.cui2words[cui][token] = 1 def add_tui_names(self, csv_path, sep="|"): """ Fils the tui2name dict """ df = pd.read_csv(csv_path, sep=sep) for index, row in df.iterrows(): tui = row['tui'] name = row['name'] if tui not in self.tui2name: self.tui2name[tui] = name def add_context_vec(self, cui, context_vec, negative=False, cntx_type='LONG', inc_cui_count=True, anneal=True, lr=0.5): """ Add the vector representation of a context for this CUI cui: The concept in question context_vec: Vector represenation of the context negative: Is this negative context of positive cntx_type: Currently only two supported LONG and SHORT pretty much just based on the window size inc_cui_count: should this be counted """ if cui not in self.cui_count: self.increase_cui_count(cui, True) # Ignore very similar context prob = 0.95 # Set the right context if cntx_type == 'MED': cui2context_vec = self.cui2context_vec elif cntx_type == 'SHORT': cui2context_vec = self.cui2context_vec_short elif cntx_type == 'LONG': cui2context_vec = self.cui2context_vec_long sim = 0 cv = context_vec if cui in cui2context_vec: sim = np.dot(unitvec(cv), unitvec(cui2context_vec[cui])) if anneal: lr = max(lr / self.cui_count[cui], 0.0005) if negative: b = max(0, sim) * lr cui2context_vec[cui] = cui2context_vec[cui]*(1-b) - cv*b #cui2context_vec[cui] = cui2context_vec[cui] - cv*b else: if sim < prob: b = (1 - max(0, sim)) * lr cui2context_vec[cui] = cui2context_vec[cui]*(1-b) + cv*b #cui2context_vec[cui] = cui2context_vec[cui] + cv*b # Increase cui count self.increase_cui_count(cui, inc_cui_count) else: if negative: cui2context_vec[cui] = -1 * cv else: cui2context_vec[cui] = cv self.increase_cui_count(cui, inc_cui_count) return sim def add_coo(self, cui1, cui2): """ Add one cooccurrence cui1: Base CUI cui2: Coocured with CUI """ key = (self.cui2index[cui1], self.cui2index[cui2]) if key in self.coo_dict: self.coo_dict[key] += 1 else: self.coo_dict[key] = 1 def add_coos(self, cuis): """ Given a list of CUIs it will add them to the coo matrix saying that each CUI cooccurred with each one cuis: List of CUIs """ # We use done to ignore multiple occ of same concept d_cui1 = set() pairs = set() for i, cui1 in enumerate(cuis): if cui1 not in d_cui1: for cui2 in cuis[i+1:]: t = cui1+cui2 if t not in pairs: self.add_coo(cui1, cui2) pairs.add(t) t = cui2+cui1 if t not in pairs: self.add_coo(cui2, cui1) pairs.add(t) d_cui1.add(cui1) if len(self.coo_dict) > self.MAX_COO_DICT_SIZE: log.info("Starting the clean of COO_DICT, parameters are\n \ MAX_COO_DICT_SIZE: {}\n \ MIN_COO_COUNT: {}".format(self.MAX_COO_DICT_SIZE, self.MIN_COO_COUNT)) # Remove entries from coo_dict if too many old_size = len(self.coo_dict) to_del = [] for key in self.coo_dict.keys(): if self.coo_dict[key] < self.MIN_COO_COUNT: to_del.append(key) for key in to_del: del self.coo_dict[key] new_size = len(self.coo_dict) log.info("COO_DICT cleaned, size was: {} and now is {}. In total \ {} items were removed".format(old_size, new_size, old_size-new_size)) @property def coo_matrix(self): """ Get the COO Matrix as scikit dok_matrix """ if self._coo_matrix is None: s = len(self.cui2index) self._coo_matrix = dok_matrix((s, s), dtype=np.uint32) self._coo_matrix._update(self.coo_dict) return self._coo_matrix @coo_matrix.setter def coo_matrix(self, val): """ Imposible to set, it is built internally """ raise AttributeError("Can not set attribute coo_matrix") def reset_coo_matrix(self): """ Remove the COO-Matrix """ self.cui_count_ext = {} self.coo_dict = {} self._coo_matrix = None @classmethod def save_dict(self, path): """ Saves variables of this object """ with open(path, 'wb') as f: pickle.dump(self.__dict__, f) def load_dict(self, path): """ Loads variables of this object """ with open(path, 'rb') as f: self.__dict__ = pickle.load(f) def import_training(self, cdb, overwrite=True): r''' This will import vector embeddings from another CDB. No new concept swill be added. IMPORTANT it will not import name maps (cui2name or name2cui or ...). Args: cdb (medcat.cdb.CDB): Concept database from which to import training vectors overwrite (boolean): If True all training data in the existing CDB will be overwritten, else the average between the two training vectors will be taken. Examples: >>> new_cdb.import_traininig(cdb=old_cdb, owerwrite=True) ''' # Import vectors and counts for cui in self.cui2names: if cui in cdb.cui_count: if overwrite or cui not in self.cui_count: self.cui_count[cui] = cdb.cui_count[cui] else: self.cui_count[cui] = (self.cui_count[cui] + cdb.cui_count[cui]) / 2 if cui in cdb.cui2context_vec: if overwrite or cui not in self.cui2context_vec: self.cui2context_vec[cui] = cdb.cui2context_vec[cui] else: self.cui2context_vec[cui] = (cdb.cui2context_vec[cui] + self.cui2context_vec[cui]) / 2 if cui in cdb.cui2context_vec_short: if overwrite or cui not in self.cui2context_vec_short: self.cui2context_vec_short[cui] = cdb.cui2context_vec_short[cui] else: self.cui2context_vec_short[cui] = (cdb.cui2context_vec_short[cui] + self.cui2context_vec_short[cui]) / 2 if cui in cdb.cui2context_vec_long: if overwrite or cui not in self.cui2context_vec_long: self.cui2context_vec_long[cui] = cdb.cui2context_vec_long[cui] else: self.cui2context_vec_long[cui] = (cdb.cui2context_vec_long[cui] + self.cui2context_vec_long[cui]) / 2 if cui in cdb.cui_disamb_always: self.cui_disamb_always[cui] = cdb.cui_disamb_always def reset_cui_count(self, n=10): r''' Reset the CUI count for all concepts that received training, used when starting new unsupervised training or for suppervised with annealing. Args: n (int, optional): This will be set as the CUI count for all cuis in this CDB. Examples: >>> cdb.reset_cui_count() ''' for cui in self.cui_count.keys(): self.cui_count[cui] = n def reset_training(self): r''' Will remove all training efforts - in other words all embeddings that are learnt for concepts in the current CDB. Please note that this does not remove synonyms (names) that were potentially added during supervised/online learning. ''' self.cui_count = {} self.cui2context_vec = {} self.cui2context_vec_short = {} self.cui2context_vec_long = {} self.coo_dict = {} self.cui_disamb_always = {} self.reset_coo_matrix() self.reset_similarity_matrix() def print_stats(self): """ Print basic statistics on the database """ print("Number of concepts: {:,}".format(len(self.cui2names))) print("Number of names: {:,}".format(len(self.name2cui))) print("Number of concepts that received training: {:,}".format(len(self.cui2context_vec))) print("Number of seen training examples in total: {:,}".format(sum(self.cui_count.values()))) print("Average training examples per concept: {:.1f}".format(np.average(list(self.cui_count.values())))) def most_similar(self, cui, tui_filter=[], min_cnt=0, topn=50): r''' Given a concept it will calculat what other concepts in this CDB have the most similar embedding. Args: cui (str): The concept ID for the base concept for which you want to get the most similar concepts. tui_filter (list): A list of TUIs that will be used to filterout the returned results. Using this it is possible to limit the similarity calculation to only disorders/symptoms/drugs/... min_cnt (int): Minimum training examples (unsupervised+supervised) that a concept must have to be considered for the similarity calculation. topn (int): How many results to return Return: results (dict): A dictionary with topn results like: {<cui>: {'name': <name>, 'sim': <similarity>, 'tui_name': <tui_name>, 'tui': <tui>, 'cnt': <number of training examples the concept has seen>}, ...} ''' # Create the matrix if necessary if not hasattr(self, 'sim_vectors') or self.sim_vectors is None or len(self.sim_vectors) < len(self.cui2context_vec): print("Building similarity matrix") log.info("Building similarity matrix") sim_vectors = [] sim_vectors_counts = [] sim_vectors_tuis = [] sim_vectors_cuis = [] for _cui in self.cui2context_vec: sim_vectors.append(unitvec(self.cui2context_vec[_cui])) sim_vectors_counts.append(self.cui_count[_cui]) sim_vectors_tuis.append(self.cui2tui.get(_cui, 'unk')) sim_vectors_cuis.append(_cui) self.sim_vectors = np.array(sim_vectors) self.sim_vectors_counts = np.array(sim_vectors_counts) self.sim_vectors_tuis = np.array(sim_vectors_tuis) self.sim_vectors_cuis = np.array(sim_vectors_cuis) # Select appropirate concepts tui_inds = np.arange(0, len(self.sim_vectors_tuis)) if len(tui_filter) > 0: tui_inds = np.array([], dtype=np.int32) for tui in tui_filter: tui_inds = np.union1d(np.where(self.sim_vectors_tuis == tui)[0], tui_inds) cnt_inds = np.arange(0, len(self.sim_vectors_counts)) if min_cnt > 0: cnt_inds = np.where(self.sim_vectors_counts >= min_cnt)[0] # Intersect cnt and tui inds = np.intersect1d(tui_inds, cnt_inds) mtrx = self.sim_vectors[inds] cuis = self.sim_vectors_cuis[inds] sims = np.dot(mtrx, unitvec(self.cui2context_vec[cui])) sims_srt = np.argsort(-1*sims) # Create the return dict res = {} for ind, _cui in enumerate(cuis[sims_srt[0:topn]]): res[_cui] = {'name': self.cui2pretty_name[_cui], 'sim': sims[sims_srt][ind], 'tui_name': self.tui2name.get(self.cui2tui.get(_cui, 'unk'), 'unk'), 'tui': self.cui2tui.get(_cui, 'unk'), 'cnt': self.cui_count[_cui]} return res
[ 37811, 10858, 341, 1398, 329, 6458, 33, 1366, 198, 37811, 198, 11748, 2298, 293, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 466, 74, 62, 6759, 8609, 198, 2, 6738, 308, 641, 320, 13, 6759, 26791, 1330, 4326, 35138, 198, 6738, 1117, 9246, 13, 26791, 13, 6759, 26791, 1330, 4326, 35138, 11, 264, 17225, 1868, 198, 6738, 1117, 9246, 13, 26791, 13, 35226, 62, 11600, 1330, 3460, 81, 35, 713, 198, 6738, 1117, 9246, 13, 26791, 13, 6404, 5355, 1330, 4096, 62, 6404, 1362, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6404, 796, 4096, 62, 6404, 1362, 7203, 66, 9945, 4943, 198, 4871, 6458, 33, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9340, 82, 477, 262, 6458, 33, 1366, 2672, 329, 23025, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25882, 62, 34, 6684, 62, 35, 18379, 62, 33489, 796, 493, 7, 418, 13, 1136, 24330, 10786, 22921, 62, 34, 6684, 62, 35, 18379, 62, 33489, 3256, 1802, 20483, 4008, 198, 220, 220, 220, 20625, 62, 34, 6684, 62, 34, 28270, 796, 493, 7, 418, 13, 1136, 24330, 10786, 23678, 62, 34, 6684, 62, 34, 28270, 3256, 1802, 4008, 628, 198, 220, 220, 220, 825, 751, 62, 43169, 7, 944, 11, 269, 9019, 11, 1438, 11, 4291, 11, 16326, 11, 3013, 1047, 11, 318, 45828, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 3866, 69, 62, 3672, 28, 25101, 11, 256, 9019, 28, 14202, 11, 2495, 62, 3672, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1715, 28, 14202, 11, 16326, 62, 18893, 397, 28, 14202, 11, 2656, 62, 3672, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 34642, 28, 14202, 11, 256, 9019, 62, 3672, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 3721, 284, 5387, 26097, 24047, 357, 8610, 33, 737, 23591, 319, 644, 345, 389, 4955, 198, 220, 220, 220, 220, 220, 220, 220, 428, 481, 751, 257, 1588, 1271, 286, 6608, 329, 1123, 3721, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26097, 4522, 393, 3748, 1852, 7087, 287, 428, 6831, 11, 477, 10838, 326, 423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 976, 327, 10080, 481, 307, 23791, 20947, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 329, 428, 3721, 11, 393, 262, 1988, 326, 611, 1043, 287, 1479, 2420, 460, 307, 6692, 284, 428, 3721, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4291, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9463, 1435, 422, 543, 262, 3721, 318, 2077, 357, 68, 13, 70, 13, 11346, 2662, 1961, 4177, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 357, 2536, 11, 1351, 286, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29130, 1143, 2196, 286, 262, 1438, 13, 19672, 1760, 410, 1872, 599, 1590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 1047, 357, 2536, 11, 1351, 286, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3834, 14933, 286, 428, 1438, 11, 423, 257, 804, 379, 1117, 9246, 13, 46012, 533, 62, 66, 9945, 13, 37534, 533, 8610, 33, 329, 3307, 319, 703, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2148, 4600, 82, 14933, 44646, 16281, 25, 611, 1438, 318, 366, 11499, 1368, 1, 3013, 1047, 318, 37250, 11499, 3256, 705, 11499, 1368, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 45828, 357, 2127, 21052, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 1438, 287, 262, 2656, 39585, 1435, 318, 6727, 62, 66, 839, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 3866, 69, 62, 3672, 357, 2127, 21052, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 428, 318, 262, 7694, 1068, 1438, 329, 428, 327, 10080, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 357, 2536, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12449, 5109, 2099, 27421, 357, 14150, 257, 804, 379, 309, 52, 3792, 287, 471, 5805, 50, 393, 11346, 2662, 1961, 12, 4177, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 62, 3672, 357, 2536, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20090, 1438, 329, 428, 3721, 11, 1107, 655, 262, 2495, 1438, 329, 262, 3721, 611, 340, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1715, 357, 2536, 11, 2172, 1292, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 286, 428, 3721, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 62, 18893, 397, 357, 4868, 286, 965, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47365, 326, 815, 307, 2087, 284, 262, 25818, 11, 3221, 407, 39279, 2196, 286, 16326, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 3672, 357, 2536, 11, 2172, 1292, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 393, 570, 282, 1438, 422, 262, 2723, 25818, 11, 1231, 597, 3487, 1634, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 34642, 357, 2127, 21052, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 900, 284, 10352, 532, 345, 460, 2421, 595, 4131, 328, 2288, 329, 257, 1438, 772, 611, 340, 318, 3748, 2641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 1459, 6458, 33, 13, 1002, 900, 284, 6407, 532, 345, 389, 10833, 1117, 9246, 284, 787, 257, 2551, 1231, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 595, 4131, 328, 2288, 772, 611, 340, 318, 2672, 13, 2141, 407, 900, 428, 1822, 4556, 345, 389, 1654, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 62, 3672, 357, 2536, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 329, 262, 309, 10080, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 7508, 3119, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 10951, 58, 66, 9019, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 318, 1438, 6727, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 2116, 13, 3672, 62, 271, 45828, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 271, 45828, 58, 3672, 60, 796, 2116, 13, 3672, 62, 271, 45828, 58, 3672, 60, 393, 318, 45828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 271, 45828, 58, 3672, 60, 796, 2116, 13, 3672, 62, 271, 45828, 58, 3672, 60, 393, 318, 45828, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 271, 45828, 58, 3672, 60, 796, 318, 45828, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2656, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2656, 62, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 14986, 62, 3672, 58, 3672, 60, 796, 2656, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2656, 62, 3672, 287, 2116, 13, 14986, 62, 3672, 17, 27399, 271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14986, 62, 3672, 17, 27399, 271, 58, 14986, 62, 3672, 4083, 2860, 7, 66, 9019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14986, 62, 3672, 17, 27399, 271, 58, 14986, 62, 3672, 60, 796, 1391, 66, 9019, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 2116, 13, 66, 9019, 17, 14986, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 14986, 62, 14933, 58, 66, 9019, 4083, 2860, 7, 14986, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 14986, 62, 14933, 58, 66, 9019, 60, 796, 1391, 14986, 62, 3672, 92, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 7694, 1068, 1438, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 3866, 69, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 3866, 69, 62, 3672, 58, 66, 9019, 60, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2495, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 37784, 62, 3672, 58, 66, 9019, 60, 796, 2495, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 37784, 62, 3672, 290, 2495, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 37784, 62, 3672, 58, 66, 9019, 60, 796, 2495, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 611, 256, 9019, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 83, 9019, 58, 66, 9019, 60, 796, 256, 9019, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 9019, 287, 2116, 13, 83, 9019, 17, 27399, 271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 9019, 17, 27399, 271, 58, 83, 9019, 4083, 2860, 7, 66, 9019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 9019, 17, 27399, 271, 58, 83, 9019, 60, 796, 900, 26933, 66, 9019, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 9019, 62, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 9019, 17, 3672, 58, 83, 9019, 60, 796, 256, 9019, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 34642, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 271, 34642, 58, 3672, 60, 796, 318, 62, 34642, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1438, 284, 269, 429, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 2116, 13, 3672, 17, 66, 429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 66, 429, 58, 3672, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 2116, 13, 3672, 17, 66, 429, 58, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 66, 429, 58, 3672, 7131, 66, 9019, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 66, 429, 58, 3672, 7131, 66, 9019, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 6764, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1715, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 20147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 20147, 58, 66, 9019, 60, 796, 965, 7, 20147, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 965, 7, 20147, 8, 407, 287, 965, 7, 944, 13, 66, 9019, 17, 20147, 58, 66, 9019, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 20147, 58, 66, 9019, 60, 796, 965, 7, 944, 13, 66, 9019, 17, 20147, 58, 66, 9019, 12962, 1343, 37082, 77, 59, 77, 1, 1343, 965, 7, 20147, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 269, 9019, 284, 257, 1351, 286, 18912, 271, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 9630, 17, 66, 9019, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9630, 17, 66, 9019, 13, 33295, 7, 66, 9019, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 9630, 58, 66, 9019, 60, 796, 18896, 7, 944, 13, 9630, 17, 66, 9019, 8, 532, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49368, 763, 78, 17593, 611, 340, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 1073, 78, 62, 6759, 8609, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 2116, 13557, 1073, 78, 62, 6759, 8609, 13, 43358, 58, 15, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1073, 78, 62, 6759, 8609, 13, 411, 1096, 19510, 82, 11, 264, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2456, 284, 12776, 397, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 287, 16326, 62, 18893, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 287, 2116, 13, 18893, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18893, 397, 58, 30001, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18893, 397, 58, 30001, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 635, 262, 39279, 16326, 11, 1521, 407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 287, 16326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 287, 2116, 13, 18893, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18893, 397, 58, 30001, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18893, 397, 58, 30001, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1271, 286, 16326, 329, 428, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 2116, 13, 3672, 17, 429, 74, 5907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 429, 74, 5907, 58, 3672, 4083, 2860, 7, 11925, 7, 83, 482, 641, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 429, 74, 5907, 58, 3672, 60, 796, 1391, 11925, 7, 83, 482, 641, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 285, 39242, 284, 4291, 17, 27399, 271, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4291, 407, 287, 2116, 13, 5957, 17, 27399, 271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5957, 17, 27399, 271, 58, 5957, 60, 796, 900, 26933, 66, 9019, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5957, 17, 27399, 271, 58, 5957, 4083, 2860, 7, 66, 9019, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 2116, 13, 66, 9019, 17, 756, 418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 756, 418, 58, 66, 9019, 4083, 2860, 7, 5957, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 756, 418, 58, 66, 9019, 60, 796, 1391, 5957, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 285, 39242, 284, 1438, 17, 66, 9019, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 2116, 13, 3672, 17, 66, 9019, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 66, 9019, 58, 3672, 60, 796, 900, 26933, 66, 9019, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 17, 66, 9019, 58, 3672, 4083, 2860, 7, 66, 9019, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3013, 1047, 284, 900, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 3672, 17, 3672, 13, 19119, 7, 82, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 285, 39242, 284, 269, 9019, 17, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 14933, 58, 66, 9019, 60, 796, 1391, 3672, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 14933, 58, 66, 9019, 4083, 2860, 7, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 285, 39242, 284, 269, 9019, 17, 10879, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 10879, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 10879, 58, 66, 9019, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 287, 16326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11241, 13, 9409, 328, 270, 3419, 290, 18896, 7, 30001, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11241, 287, 2116, 13, 66, 9019, 17, 10879, 58, 66, 9019, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 10879, 58, 66, 9019, 7131, 30001, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 10879, 58, 66, 9019, 7131, 30001, 60, 796, 352, 628, 198, 220, 220, 220, 825, 751, 62, 83, 9019, 62, 14933, 7, 944, 11, 269, 21370, 62, 6978, 11, 41767, 2625, 91, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 376, 4487, 262, 256, 9019, 17, 3672, 8633, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 40664, 62, 6978, 11, 41767, 28, 325, 79, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 5752, 287, 47764, 13, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 796, 5752, 17816, 83, 9019, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 5752, 17816, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 9019, 407, 287, 2116, 13, 83, 9019, 17, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 9019, 17, 3672, 58, 83, 9019, 60, 796, 1438, 628, 198, 220, 220, 220, 825, 751, 62, 22866, 62, 35138, 7, 944, 11, 269, 9019, 11, 4732, 62, 35138, 11, 4633, 28, 25101, 11, 269, 429, 87, 62, 4906, 11639, 43, 18494, 3256, 753, 62, 66, 9019, 62, 9127, 28, 17821, 11, 281, 710, 282, 28, 17821, 11, 300, 81, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3060, 262, 15879, 10552, 286, 257, 4732, 329, 428, 327, 10080, 628, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 25, 220, 383, 3721, 287, 1808, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 35138, 25, 220, 20650, 1128, 411, 268, 341, 286, 262, 4732, 198, 220, 220, 220, 220, 220, 220, 220, 4633, 25, 220, 1148, 428, 4633, 4732, 286, 3967, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 87, 62, 4906, 25, 220, 16888, 691, 734, 4855, 44533, 290, 6006, 9863, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2495, 881, 655, 1912, 319, 262, 4324, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 753, 62, 66, 9019, 62, 9127, 25, 220, 815, 428, 307, 14789, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 407, 287, 2116, 13, 66, 9019, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24988, 589, 62, 66, 9019, 62, 9127, 7, 66, 9019, 11, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 845, 2092, 4732, 198, 220, 220, 220, 220, 220, 220, 220, 1861, 796, 657, 13, 3865, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 826, 4732, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 429, 87, 62, 4906, 6624, 705, 30733, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 796, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 269, 429, 87, 62, 4906, 6624, 705, 9693, 9863, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 796, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 269, 429, 87, 62, 4906, 6624, 705, 43, 18494, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 796, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 628, 220, 220, 220, 220, 220, 220, 220, 985, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 796, 4732, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9019, 17, 22866, 62, 35138, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 796, 45941, 13, 26518, 7, 20850, 35138, 7, 33967, 828, 4326, 35138, 7, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 281, 710, 282, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 3509, 7, 14050, 1220, 2116, 13, 66, 9019, 62, 9127, 58, 66, 9019, 4357, 657, 13, 830, 20, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 3509, 7, 15, 11, 985, 8, 1635, 300, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 9, 7, 16, 12, 65, 8, 532, 269, 85, 9, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 532, 269, 85, 9, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 985, 1279, 1861, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 357, 16, 532, 3509, 7, 15, 11, 985, 4008, 1635, 300, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 9, 7, 16, 12, 65, 8, 1343, 269, 85, 9, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 1343, 269, 85, 9, 65, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25285, 269, 9019, 954, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24988, 589, 62, 66, 9019, 62, 9127, 7, 66, 9019, 11, 753, 62, 66, 9019, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 532, 16, 1635, 269, 85, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 85, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24988, 589, 62, 66, 9019, 62, 9127, 7, 66, 9019, 11, 753, 62, 66, 9019, 62, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 985, 628, 628, 220, 220, 220, 825, 751, 62, 1073, 78, 7, 944, 11, 269, 9019, 16, 11, 269, 9019, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3060, 530, 763, 13966, 33928, 628, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 16, 25, 220, 7308, 327, 10080, 198, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 17, 25, 220, 1766, 420, 1522, 351, 327, 10080, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 357, 944, 13, 66, 9019, 17, 9630, 58, 66, 9019, 16, 4357, 2116, 13, 66, 9019, 17, 9630, 58, 66, 9019, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 2116, 13, 1073, 78, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1073, 78, 62, 11600, 58, 2539, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1073, 78, 62, 11600, 58, 2539, 60, 796, 352, 628, 198, 220, 220, 220, 825, 751, 62, 1073, 418, 7, 944, 11, 18912, 271, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11259, 257, 1351, 286, 29369, 3792, 340, 481, 751, 606, 284, 262, 763, 78, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 2282, 326, 1123, 327, 10080, 763, 13966, 12808, 351, 1123, 530, 628, 220, 220, 220, 220, 220, 220, 220, 18912, 271, 25, 220, 7343, 286, 29369, 3792, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 779, 1760, 284, 8856, 3294, 1609, 286, 976, 3721, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 66, 9019, 16, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 14729, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 269, 9019, 16, 287, 27056, 378, 7, 27399, 271, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 16, 407, 287, 288, 62, 66, 9019, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 9019, 17, 287, 18912, 271, 58, 72, 10, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 269, 9019, 16, 10, 66, 9019, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 407, 287, 14729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1073, 78, 7, 66, 9019, 16, 11, 269, 9019, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14729, 13, 2860, 7, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 269, 9019, 17, 10, 66, 9019, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 407, 287, 14729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 1073, 78, 7, 66, 9019, 17, 11, 269, 9019, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14729, 13, 2860, 7, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 66, 9019, 16, 13, 2860, 7, 66, 9019, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 1073, 78, 62, 11600, 8, 1875, 2116, 13, 22921, 62, 34, 6684, 62, 35, 18379, 62, 33489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 22851, 262, 3424, 286, 327, 6684, 62, 35, 18379, 11, 10007, 389, 59, 77, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25882, 62, 34, 6684, 62, 35, 18379, 62, 33489, 25, 23884, 59, 77, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20625, 62, 34, 6684, 62, 34, 28270, 25, 23884, 1911, 18982, 7, 944, 13, 22921, 62, 34, 6684, 62, 35, 18379, 62, 33489, 11, 2116, 13, 23678, 62, 34, 6684, 62, 34, 28270, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 12784, 422, 763, 78, 62, 11600, 611, 1165, 867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 7857, 796, 18896, 7, 944, 13, 1073, 78, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 12381, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 1073, 78, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1073, 78, 62, 11600, 58, 2539, 60, 1279, 2116, 13, 23678, 62, 34, 6684, 62, 34, 28270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 12381, 13, 33295, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 284, 62, 12381, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13, 1073, 78, 62, 11600, 58, 2539, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7857, 796, 18896, 7, 944, 13, 1073, 78, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 34, 6684, 62, 35, 18379, 20750, 11, 2546, 373, 25, 23884, 290, 783, 318, 23884, 13, 554, 2472, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23884, 3709, 547, 4615, 1911, 18982, 7, 727, 62, 7857, 11, 649, 62, 7857, 11, 1468, 62, 7857, 12, 3605, 62, 7857, 4008, 628, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 763, 78, 62, 6759, 8609, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 262, 327, 6684, 24936, 355, 629, 1134, 270, 466, 74, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 1073, 78, 62, 6759, 8609, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 18896, 7, 944, 13, 66, 9019, 17, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1073, 78, 62, 6759, 8609, 796, 466, 74, 62, 6759, 8609, 19510, 82, 11, 264, 828, 288, 4906, 28, 37659, 13, 28611, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1073, 78, 62, 6759, 8609, 13557, 19119, 7, 944, 13, 1073, 78, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1073, 78, 62, 6759, 8609, 628, 198, 220, 220, 220, 2488, 1073, 78, 62, 6759, 8609, 13, 2617, 353, 198, 220, 220, 220, 825, 763, 78, 62, 6759, 8609, 7, 944, 11, 1188, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1846, 1930, 856, 284, 900, 11, 340, 318, 3170, 20947, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7203, 6090, 407, 900, 11688, 763, 78, 62, 6759, 8609, 4943, 628, 198, 220, 220, 220, 825, 13259, 62, 1073, 78, 62, 6759, 8609, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 327, 6684, 12, 46912, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 9127, 62, 2302, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1073, 78, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1073, 78, 62, 6759, 8609, 796, 6045, 628, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 825, 3613, 62, 11600, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 311, 3080, 9633, 286, 428, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 944, 13, 834, 11600, 834, 11, 277, 8, 628, 198, 220, 220, 220, 825, 3440, 62, 11600, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8778, 82, 9633, 286, 428, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11600, 834, 796, 2298, 293, 13, 2220, 7, 69, 8, 628, 198, 220, 220, 220, 825, 1330, 62, 34409, 7, 944, 11, 269, 9945, 11, 49312, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 770, 481, 1330, 15879, 11525, 67, 654, 422, 1194, 6458, 33, 13, 1400, 649, 3721, 1509, 359, 307, 2087, 13, 198, 220, 220, 220, 220, 220, 220, 220, 30023, 9863, 8643, 340, 481, 407, 1330, 1438, 8739, 357, 66, 9019, 17, 3672, 393, 1438, 17, 66, 9019, 393, 2644, 737, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9945, 357, 1150, 9246, 13, 66, 9945, 13, 8610, 33, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26097, 6831, 422, 543, 284, 1330, 3047, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49312, 357, 2127, 21052, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 477, 3047, 1366, 287, 262, 4683, 6458, 33, 481, 307, 6993, 9108, 11, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2811, 1022, 262, 734, 3047, 30104, 481, 307, 2077, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 649, 62, 66, 9945, 13, 11748, 62, 27432, 259, 328, 7, 66, 9945, 28, 727, 62, 66, 9945, 11, 12334, 263, 13564, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17267, 30104, 290, 9853, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 9019, 287, 2116, 13, 66, 9019, 17, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9945, 13, 66, 9019, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 49312, 393, 269, 9019, 407, 287, 2116, 13, 66, 9019, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 9127, 58, 66, 9019, 60, 796, 269, 9945, 13, 66, 9019, 62, 9127, 58, 66, 9019, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 9127, 58, 66, 9019, 60, 796, 357, 944, 13, 66, 9019, 62, 9127, 58, 66, 9019, 60, 1343, 269, 9945, 13, 66, 9019, 62, 9127, 58, 66, 9019, 12962, 1220, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 49312, 393, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 796, 357, 66, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 1343, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 12962, 1220, 362, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 49312, 393, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 58, 66, 9019, 60, 796, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 58, 66, 9019, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 58, 66, 9019, 60, 796, 357, 66, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 58, 66, 9019, 60, 1343, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 58, 66, 9019, 12962, 1220, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 49312, 393, 269, 9019, 407, 287, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 58, 66, 9019, 60, 796, 269, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 58, 66, 9019, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 58, 66, 9019, 60, 796, 357, 66, 9945, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 58, 66, 9019, 60, 1343, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 58, 66, 9019, 12962, 1220, 362, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 9019, 287, 269, 9945, 13, 66, 9019, 62, 6381, 4131, 62, 33770, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 6381, 4131, 62, 33770, 58, 66, 9019, 60, 796, 269, 9945, 13, 66, 9019, 62, 6381, 4131, 62, 33770, 628, 198, 220, 220, 220, 825, 13259, 62, 66, 9019, 62, 9127, 7, 944, 11, 299, 28, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 30027, 262, 327, 10080, 954, 329, 477, 10838, 326, 2722, 3047, 11, 973, 618, 3599, 649, 555, 16668, 16149, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 393, 329, 802, 712, 1417, 351, 281, 710, 4272, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 357, 600, 11, 11902, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 481, 307, 900, 355, 262, 327, 10080, 954, 329, 477, 18912, 271, 287, 428, 6458, 33, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 269, 9945, 13, 42503, 62, 66, 9019, 62, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 9019, 287, 2116, 13, 66, 9019, 62, 9127, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 9127, 58, 66, 9019, 60, 796, 299, 628, 198, 220, 220, 220, 825, 13259, 62, 34409, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2561, 4781, 477, 3047, 4040, 532, 287, 584, 2456, 477, 11525, 67, 654, 326, 389, 26338, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10838, 287, 262, 1459, 6458, 33, 13, 4222, 3465, 326, 428, 857, 407, 4781, 6171, 43612, 357, 14933, 8, 326, 547, 198, 220, 220, 220, 220, 220, 220, 220, 6196, 2087, 1141, 28679, 14, 25119, 4673, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 9127, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 19509, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 62, 6511, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1073, 78, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 9019, 62, 6381, 4131, 62, 33770, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42503, 62, 1073, 78, 62, 6759, 8609, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42503, 62, 38610, 414, 62, 6759, 8609, 3419, 628, 628, 198, 220, 220, 220, 825, 3601, 62, 34242, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12578, 4096, 7869, 319, 262, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15057, 286, 10838, 25, 1391, 45299, 92, 1911, 18982, 7, 11925, 7, 944, 13, 66, 9019, 17, 14933, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15057, 286, 3891, 25, 220, 220, 220, 1391, 45299, 92, 1911, 18982, 7, 11925, 7, 944, 13, 3672, 17, 66, 9019, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15057, 286, 10838, 326, 2722, 3047, 25, 1391, 45299, 92, 1911, 18982, 7, 11925, 7, 944, 13, 66, 9019, 17, 22866, 62, 35138, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15057, 286, 1775, 3047, 6096, 287, 2472, 25, 1391, 45299, 92, 1911, 18982, 7, 16345, 7, 944, 13, 66, 9019, 62, 9127, 13, 27160, 3419, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 26287, 3047, 6096, 583, 3721, 25, 220, 220, 220, 220, 46110, 13, 16, 69, 92, 1911, 18982, 7, 37659, 13, 23913, 7, 4868, 7, 944, 13, 66, 9019, 62, 9127, 13, 27160, 3419, 35514, 628, 628, 220, 220, 220, 825, 749, 62, 38610, 7, 944, 11, 269, 9019, 11, 256, 9019, 62, 24455, 41888, 4357, 949, 62, 66, 429, 28, 15, 11, 1353, 77, 28, 1120, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 3721, 340, 481, 5204, 265, 644, 584, 10838, 287, 428, 6458, 33, 423, 262, 749, 2092, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 9019, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3721, 4522, 329, 262, 2779, 3721, 329, 543, 345, 765, 284, 651, 262, 749, 2092, 10838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 62, 24455, 357, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 309, 52, 3792, 326, 481, 307, 973, 284, 8106, 448, 262, 4504, 2482, 13, 8554, 428, 340, 318, 1744, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 4179, 262, 26789, 17952, 284, 691, 11916, 14, 37047, 35533, 14, 30349, 82, 14, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 66, 429, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26265, 3047, 6096, 357, 403, 16668, 16149, 10, 16668, 16149, 8, 326, 257, 3721, 1276, 423, 284, 307, 3177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 26789, 17952, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 77, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1374, 867, 2482, 284, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 357, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 22155, 351, 1353, 77, 2482, 588, 25, 1391, 27, 66, 9019, 31175, 1391, 6, 3672, 10354, 1279, 3672, 22330, 705, 14323, 10354, 1279, 38610, 414, 22330, 705, 83, 9019, 62, 3672, 10354, 1279, 83, 9019, 62, 3672, 22330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 9019, 10354, 1279, 83, 9019, 22330, 705, 66, 429, 10354, 1279, 17618, 286, 3047, 6096, 262, 3721, 468, 1775, 29, 5512, 2644, 92, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 17593, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 35226, 7, 944, 11, 705, 14323, 62, 303, 5217, 11537, 393, 2116, 13, 14323, 62, 303, 5217, 318, 6045, 393, 18896, 7, 944, 13, 14323, 62, 303, 5217, 8, 1279, 18896, 7, 944, 13, 66, 9019, 17, 22866, 62, 35138, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 25954, 26789, 17593, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 25954, 26789, 17593, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 9127, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 28047, 271, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 27399, 271, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 66, 9019, 287, 2116, 13, 66, 9019, 17, 22866, 62, 35138, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 13, 33295, 7, 20850, 35138, 7, 944, 13, 66, 9019, 17, 22866, 62, 35138, 29795, 66, 9019, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 9127, 82, 13, 33295, 7, 944, 13, 66, 9019, 62, 9127, 29795, 66, 9019, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 28047, 271, 13, 33295, 7, 944, 13, 66, 9019, 17, 83, 9019, 13, 1136, 28264, 66, 9019, 11, 705, 2954, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 303, 5217, 62, 27399, 271, 13, 33295, 28264, 66, 9019, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 62, 303, 5217, 796, 45941, 13, 18747, 7, 14323, 62, 303, 5217, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 62, 303, 5217, 62, 9127, 82, 796, 45941, 13, 18747, 7, 14323, 62, 303, 5217, 62, 9127, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 62, 303, 5217, 62, 28047, 271, 796, 45941, 13, 18747, 7, 14323, 62, 303, 5217, 62, 28047, 271, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 62, 303, 5217, 62, 27399, 271, 796, 45941, 13, 18747, 7, 14323, 62, 303, 5217, 62, 27399, 271, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 1331, 4063, 378, 10838, 198, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 62, 521, 82, 796, 45941, 13, 283, 858, 7, 15, 11, 18896, 7, 944, 13, 14323, 62, 303, 5217, 62, 28047, 271, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 83, 9019, 62, 24455, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 62, 521, 82, 796, 45941, 13, 18747, 26933, 4357, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 9019, 287, 256, 9019, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 9019, 62, 521, 82, 796, 45941, 13, 24592, 16, 67, 7, 37659, 13, 3003, 7, 944, 13, 14323, 62, 303, 5217, 62, 28047, 271, 6624, 256, 9019, 38381, 15, 4357, 256, 9019, 62, 521, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 62, 521, 82, 796, 45941, 13, 283, 858, 7, 15, 11, 18896, 7, 944, 13, 14323, 62, 303, 5217, 62, 9127, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 949, 62, 66, 429, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 429, 62, 521, 82, 796, 45941, 13, 3003, 7, 944, 13, 14323, 62, 303, 5217, 62, 9127, 82, 18189, 949, 62, 66, 429, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4225, 8831, 269, 429, 290, 256, 9019, 198, 220, 220, 220, 220, 220, 220, 220, 773, 82, 796, 45941, 13, 3849, 8831, 16, 67, 7, 83, 9019, 62, 521, 82, 11, 269, 429, 62, 521, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 285, 2213, 87, 796, 2116, 13, 14323, 62, 303, 5217, 58, 521, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 18912, 271, 796, 2116, 13, 14323, 62, 303, 5217, 62, 27399, 271, 58, 521, 82, 60, 628, 220, 220, 220, 220, 220, 220, 220, 985, 82, 796, 45941, 13, 26518, 7, 76, 2213, 87, 11, 4326, 35138, 7, 944, 13, 66, 9019, 17, 22866, 62, 35138, 58, 66, 9019, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 985, 82, 62, 82, 17034, 796, 45941, 13, 22046, 419, 32590, 16, 9, 82, 12078, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 1441, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 773, 11, 4808, 66, 9019, 287, 27056, 378, 7, 27399, 271, 58, 82, 12078, 62, 82, 17034, 58, 15, 25, 4852, 77, 11907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 29795, 66, 9019, 60, 796, 1391, 6, 3672, 10354, 2116, 13, 66, 9019, 17, 37784, 62, 3672, 29795, 66, 9019, 4357, 705, 14323, 10354, 985, 82, 58, 82, 12078, 62, 82, 17034, 7131, 521, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 9019, 62, 3672, 10354, 2116, 13, 83, 9019, 17, 3672, 13, 1136, 7, 944, 13, 66, 9019, 17, 83, 9019, 13, 1136, 28264, 66, 9019, 11, 705, 2954, 33809, 705, 2954, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 9019, 10354, 2116, 13, 66, 9019, 17, 83, 9019, 13, 1136, 28264, 66, 9019, 11, 705, 2954, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 429, 10354, 2116, 13, 66, 9019, 62, 9127, 29795, 66, 9019, 48999, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198 ]
1.940701
10,017
from .scope import Scope import socket import json
[ 6738, 764, 29982, 1330, 41063, 198, 11748, 17802, 198, 11748, 33918, 628 ]
4.333333
12
# Copyright 2016 Ifwe Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sqlalchemy import ForeignKey from sqlalchemy.dialects.mysql import INTEGER, SMALLINT from sqlalchemy.orm import relationship from .meta import Base, Column
[ 2, 15069, 1584, 1002, 732, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 44161, 282, 26599, 1330, 8708, 9218, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 28744, 13976, 1330, 17828, 7156, 1137, 11, 9447, 7036, 12394, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 198, 6738, 764, 28961, 1330, 7308, 11, 29201, 628 ]
3.741117
197
#!/usr/bin/python3 import sys import os import argparse import traceback import random import math import time import re import logging import colorsys import json import tensorflow as tf import numpy as np from board import Board from model import Model import common description = """ Play go with a trained neural net! Implements a basic GTP engine that uses the neural net directly to play moves. """ parser = argparse.ArgumentParser(description=description) common.add_model_load_args(parser) parser.add_argument('-name-scope', help='Name scope for model variables', required=False) args = vars(parser.parse_args()) (model_variables_prefix, model_config_json) = common.load_model_paths(args) name_scope = args["name_scope"] #Hardcoded max board size pos_len = 6 # Model ---------------------------------------------------------------- with open(model_config_json) as f: model_config = json.load(f) if name_scope is not None: with tf.compat.v1.variable_scope(name_scope): model = Model(model_config,pos_len,{}) else: model = Model(model_config,pos_len,{}) policy0_output = tf.nn.softmax(model.policy_output[:,:,0]) policy1_output = tf.nn.softmax(model.policy_output[:,:,1]) value_output = tf.nn.softmax(model.value_output) scoremean_output = 20.0 * model.miscvalues_output[:,0] scorestdev_output = 20.0 * tf.math.softplus(model.miscvalues_output[:,1]) lead_output = 20.0 * model.miscvalues_output[:,2] vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) estv_output = tf.sqrt(0.25 * tf.math.softplus(model.moremiscvalues_output[:,0])) ests_output = tf.sqrt(30.0 * tf.math.softplus(model.moremiscvalues_output[:,1])) td_value_output = tf.nn.softmax(model.miscvalues_output[:,4:7]) td_value_output2 = tf.nn.softmax(model.miscvalues_output[:,7:10]) td_value_output3 = tf.nn.softmax(model.moremiscvalues_output[:,2:5]) td_score_output = model.moremiscvalues_output[:,5:8] * 20.0 vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) vtime_output = 40.0 * tf.math.softplus(model.miscvalues_output[:,3]) ownership_output = tf.tanh(model.ownership_output) scoring_output = model.scoring_output futurepos_output = tf.tanh(model.futurepos_output) seki_output = tf.nn.softmax(model.seki_output[:,:,:,0:3]) seki_output = seki_output[:,:,:,1] - seki_output[:,:,:,2] seki_output2 = tf.sigmoid(model.seki_output[:,:,:,3]) scorebelief_output = tf.nn.softmax(model.scorebelief_output) sbscale_output = model.sbscale3_layer # Moves ---------------------------------------------------------------- # Basic parsing -------------------------------------------------------- colstr = 'ABCDEFGHJKLMNOPQRST' # GTP Implementation ----------------------------------------------------- #Adapted from https://github.com/pasky/michi/blob/master/michi.py, which is distributed under MIT license #https://opensource.org/licenses/MIT saver = tf.compat.v1.train.Saver( max_to_keep = 10000, save_relative_paths = True, ) # session_config = tf.compat.v1.ConfigProto(allow_soft_placement=True) # session_config.gpu_options.per_process_gpu_memory_fraction = 0.3 with tf.compat.v1.Session() as session: saver.restore(session, model_variables_prefix) run_gtp(session)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 12854, 1891, 198, 11748, 4738, 198, 11748, 10688, 198, 11748, 640, 198, 11748, 302, 198, 11748, 18931, 198, 11748, 7577, 893, 198, 11748, 33918, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 3096, 1330, 5926, 198, 6738, 2746, 1330, 9104, 198, 11748, 2219, 198, 198, 11213, 796, 37227, 198, 11002, 467, 351, 257, 8776, 17019, 2010, 0, 198, 3546, 1154, 902, 257, 4096, 402, 7250, 3113, 326, 3544, 262, 17019, 2010, 3264, 284, 711, 6100, 13, 198, 37811, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 28, 11213, 8, 198, 11321, 13, 2860, 62, 19849, 62, 2220, 62, 22046, 7, 48610, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 3672, 12, 29982, 3256, 1037, 11639, 5376, 8354, 329, 2746, 9633, 3256, 2672, 28, 25101, 8, 198, 22046, 796, 410, 945, 7, 48610, 13, 29572, 62, 22046, 28955, 198, 198, 7, 19849, 62, 25641, 2977, 62, 40290, 11, 2746, 62, 11250, 62, 17752, 8, 796, 2219, 13, 2220, 62, 19849, 62, 6978, 82, 7, 22046, 8, 198, 3672, 62, 29982, 796, 26498, 14692, 3672, 62, 29982, 8973, 198, 198, 2, 17309, 40976, 3509, 3096, 2546, 198, 1930, 62, 11925, 796, 718, 198, 198, 2, 9104, 16529, 198, 198, 4480, 1280, 7, 19849, 62, 11250, 62, 17752, 8, 355, 277, 25, 198, 220, 2746, 62, 11250, 796, 33918, 13, 2220, 7, 69, 8, 198, 198, 361, 1438, 62, 29982, 318, 407, 6045, 25, 198, 220, 351, 48700, 13, 5589, 265, 13, 85, 16, 13, 45286, 62, 29982, 7, 3672, 62, 29982, 2599, 198, 220, 220, 220, 2746, 796, 9104, 7, 19849, 62, 11250, 11, 1930, 62, 11925, 11, 90, 30072, 198, 17772, 25, 198, 220, 2746, 796, 9104, 7, 19849, 62, 11250, 11, 1930, 62, 11925, 11, 90, 30072, 198, 30586, 15, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 30586, 62, 22915, 58, 45299, 45299, 15, 12962, 198, 30586, 16, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 30586, 62, 22915, 58, 45299, 45299, 16, 12962, 198, 8367, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 8367, 62, 22915, 8, 198, 26675, 32604, 62, 22915, 796, 1160, 13, 15, 1635, 2746, 13, 44374, 27160, 62, 22915, 58, 45299, 15, 60, 198, 1416, 26522, 7959, 62, 22915, 796, 1160, 13, 15, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 16, 12962, 198, 28230, 62, 22915, 796, 1160, 13, 15, 1635, 2746, 13, 44374, 27160, 62, 22915, 58, 45299, 17, 60, 198, 85, 2435, 62, 22915, 796, 2319, 13, 15, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 18, 12962, 198, 395, 85, 62, 22915, 796, 48700, 13, 31166, 17034, 7, 15, 13, 1495, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 3549, 44374, 27160, 62, 22915, 58, 45299, 15, 60, 4008, 198, 3558, 62, 22915, 796, 48700, 13, 31166, 17034, 7, 1270, 13, 15, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 3549, 44374, 27160, 62, 22915, 58, 45299, 16, 60, 4008, 198, 8671, 62, 8367, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 19, 25, 22, 12962, 198, 8671, 62, 8367, 62, 22915, 17, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 22, 25, 940, 12962, 198, 8671, 62, 8367, 62, 22915, 18, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 3549, 44374, 27160, 62, 22915, 58, 45299, 17, 25, 20, 12962, 198, 8671, 62, 26675, 62, 22915, 796, 2746, 13, 3549, 44374, 27160, 62, 22915, 58, 45299, 20, 25, 23, 60, 1635, 1160, 13, 15, 198, 85, 2435, 62, 22915, 796, 2319, 13, 15, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 18, 12962, 198, 85, 2435, 62, 22915, 796, 2319, 13, 15, 1635, 48700, 13, 11018, 13, 4215, 9541, 7, 19849, 13, 44374, 27160, 62, 22915, 58, 45299, 18, 12962, 198, 15605, 1056, 62, 22915, 796, 48700, 13, 38006, 71, 7, 19849, 13, 15605, 1056, 62, 22915, 8, 198, 46536, 62, 22915, 796, 2746, 13, 46536, 62, 22915, 198, 37443, 1930, 62, 22915, 796, 48700, 13, 38006, 71, 7, 19849, 13, 37443, 1930, 62, 22915, 8, 198, 325, 4106, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 325, 4106, 62, 22915, 58, 45299, 45299, 45299, 15, 25, 18, 12962, 198, 325, 4106, 62, 22915, 796, 384, 4106, 62, 22915, 58, 45299, 45299, 45299, 16, 60, 532, 384, 4106, 62, 22915, 58, 45299, 45299, 45299, 17, 60, 198, 325, 4106, 62, 22915, 17, 796, 48700, 13, 82, 17225, 1868, 7, 19849, 13, 325, 4106, 62, 22915, 58, 45299, 45299, 45299, 18, 12962, 198, 26675, 6667, 2086, 62, 22915, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 19849, 13, 26675, 6667, 2086, 62, 22915, 8, 198, 36299, 9888, 62, 22915, 796, 2746, 13, 36299, 9888, 18, 62, 29289, 628, 198, 2, 38213, 16529, 628, 198, 198, 2, 14392, 32096, 20368, 22369, 198, 4033, 2536, 796, 705, 24694, 32988, 17511, 41, 42, 31288, 45, 3185, 48, 49, 2257, 6, 628, 198, 2, 402, 7250, 46333, 20368, 19351, 12, 198, 198, 2, 48003, 276, 422, 3740, 1378, 12567, 13, 785, 14, 79, 2093, 88, 14, 76, 16590, 14, 2436, 672, 14, 9866, 14, 76, 16590, 13, 9078, 11, 543, 318, 9387, 739, 17168, 5964, 198, 2, 5450, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 82, 8770, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 27432, 13, 50, 8770, 7, 198, 220, 3509, 62, 1462, 62, 14894, 796, 33028, 11, 198, 220, 3613, 62, 43762, 62, 6978, 82, 796, 6407, 11, 198, 8, 628, 198, 2, 6246, 62, 11250, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 16934, 2964, 1462, 7, 12154, 62, 4215, 62, 489, 5592, 28, 17821, 8, 198, 2, 6246, 62, 11250, 13, 46999, 62, 25811, 13, 525, 62, 14681, 62, 46999, 62, 31673, 62, 69, 7861, 796, 657, 13, 18, 198, 4480, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 3419, 355, 6246, 25, 198, 220, 473, 332, 13, 2118, 382, 7, 29891, 11, 2746, 62, 25641, 2977, 62, 40290, 8, 198, 220, 1057, 62, 13655, 79, 7, 29891, 8, 198 ]
2.948435
1,086
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.rcParams['pdf.fonttype'] = 42 import bluepy variances = ['0p001', '0p01', '0p05', '0p1', '0p5', '1p0', '1p5', '2p0', '10p0'] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd_stim/seed170/variance%s/BlueConfig' % s for s in variances[1:]] bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/variability/spontaneous/base_seeds_abcd/seed170/BlueConfig'] + bcs # bcs = ['/gpfs/bbp.cscs.ch/project/proj9/simulations/nolte/ei-balance/' \ # 'scan_layer5/Ca%s/BlueConfig' % s for s in cas] sim = bluepy.Simulation(bcs[0]) gids = np.array(list(sim.get_circuit_target())) gids_exc = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Excitatory'))), gids)) gids_inh = np.random.permutation(np.intersect1d(np.array(list(sim.circuit.get_target('Inhibitory'))), gids)) # bcs = bcs_0 names = ['MVR', 'det_syns'] fig, axs = plt.subplots(len(bcs), 2, figsize=(14, 14)) for i, bc in enumerate(bcs): print bc sim = bluepy.Simulation(bc) ax = axs[i, 0] spikes = bluepy.Simulation(bc).v2.reports['spikes'] df = spikes.data(t_start=1000.0) gids_spiking = np.abs(np.array(df.axes[0]) - gids.max()) times = np.array(df) ax.vlines(times, gids_spiking, gids_spiking + 200, rasterized=True, lw=0.3) ax2 = ax.twinx() ax2.hist(times, bins=np.linspace(1000, 2000, 101), histtype='step', weights=np.zeros(times.size) + (1000.0/10.0)/gids.size) ax2.set_ylabel('FR (Hz)') # ax2.set_ylim([0, 3]) # ax2.set_yticks([0, 1, 2, 3]) ax.set_xlabel('t (ms)') ax.set_ylabel('Neurons') ax.set_title('variance in percent: %s' % variances[i]) plt.tight_layout() plt.savefig('figures/variance_raster.pdf', dpi=300)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 12315, 13, 10331, 4906, 20520, 796, 5433, 198, 198, 11748, 4171, 9078, 628, 198, 85, 3699, 728, 796, 37250, 15, 79, 8298, 3256, 705, 15, 79, 486, 3256, 705, 15, 79, 2713, 3256, 705, 15, 79, 16, 3256, 705, 15, 79, 20, 3256, 705, 16, 79, 15, 3256, 705, 16, 79, 20, 3256, 705, 17, 79, 15, 3256, 705, 940, 79, 15, 20520, 198, 198, 65, 6359, 796, 685, 26488, 31197, 9501, 14, 11848, 79, 13, 66, 1416, 82, 13, 354, 14, 16302, 14, 1676, 73, 24, 14, 14323, 5768, 14, 77, 349, 660, 14, 25641, 1799, 14, 2777, 756, 11655, 14, 8692, 62, 325, 5379, 62, 397, 10210, 62, 42003, 14, 28826, 17279, 14, 25641, 590, 4, 82, 14, 14573, 16934, 6, 4064, 264, 329, 264, 287, 1401, 16097, 58, 16, 25, 11907, 198, 65, 6359, 796, 685, 26488, 31197, 9501, 14, 11848, 79, 13, 66, 1416, 82, 13, 354, 14, 16302, 14, 1676, 73, 24, 14, 14323, 5768, 14, 77, 349, 660, 14, 25641, 1799, 14, 2777, 756, 11655, 14, 8692, 62, 325, 5379, 62, 397, 10210, 14, 28826, 17279, 14, 14573, 16934, 20520, 1343, 275, 6359, 198, 198, 2, 275, 6359, 796, 685, 26488, 31197, 9501, 14, 11848, 79, 13, 66, 1416, 82, 13, 354, 14, 16302, 14, 1676, 73, 24, 14, 14323, 5768, 14, 77, 349, 660, 14, 20295, 12, 20427, 14, 6, 3467, 198, 2, 220, 220, 220, 220, 220, 220, 220, 705, 35836, 62, 29289, 20, 14, 24334, 4, 82, 14, 14573, 16934, 6, 4064, 264, 329, 264, 287, 6124, 60, 198, 198, 14323, 796, 4171, 9078, 13, 8890, 1741, 7, 65, 6359, 58, 15, 12962, 198, 70, 2340, 796, 45941, 13, 18747, 7, 4868, 7, 14323, 13, 1136, 62, 21170, 5013, 62, 16793, 3419, 4008, 198, 70, 2340, 62, 41194, 796, 45941, 13, 25120, 13, 16321, 7094, 7, 37659, 13, 3849, 8831, 16, 67, 7, 37659, 13, 18747, 7, 4868, 7, 14323, 13, 21170, 5013, 13, 1136, 62, 16793, 10786, 40127, 270, 2870, 6, 4008, 828, 308, 2340, 4008, 198, 70, 2340, 62, 259, 71, 796, 45941, 13, 25120, 13, 16321, 7094, 7, 37659, 13, 3849, 8831, 16, 67, 7, 37659, 13, 18747, 7, 4868, 7, 14323, 13, 21170, 5013, 13, 1136, 62, 16793, 10786, 818, 26964, 652, 6, 4008, 828, 308, 2340, 4008, 198, 198, 2, 275, 6359, 796, 275, 6359, 62, 15, 198, 14933, 796, 37250, 44, 13024, 3256, 705, 15255, 62, 1837, 5907, 20520, 198, 5647, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 11925, 7, 65, 6359, 828, 362, 11, 2336, 7857, 16193, 1415, 11, 1478, 4008, 198, 198, 1640, 1312, 11, 47125, 287, 27056, 378, 7, 65, 6359, 2599, 198, 220, 220, 220, 3601, 47125, 198, 220, 220, 220, 985, 796, 4171, 9078, 13, 8890, 1741, 7, 15630, 8, 628, 198, 220, 220, 220, 7877, 796, 7877, 82, 58, 72, 11, 657, 60, 628, 220, 220, 220, 27198, 796, 4171, 9078, 13, 8890, 1741, 7, 15630, 737, 85, 17, 13, 48922, 17816, 2777, 7938, 20520, 198, 220, 220, 220, 47764, 796, 27198, 13, 7890, 7, 83, 62, 9688, 28, 12825, 13, 15, 8, 198, 220, 220, 220, 308, 2340, 62, 2777, 14132, 796, 45941, 13, 8937, 7, 37659, 13, 18747, 7, 7568, 13, 897, 274, 58, 15, 12962, 532, 308, 2340, 13, 9806, 28955, 198, 220, 220, 220, 1661, 796, 45941, 13, 18747, 7, 7568, 8, 198, 220, 220, 220, 7877, 13, 85, 6615, 7, 22355, 11, 308, 2340, 62, 2777, 14132, 11, 308, 2340, 62, 2777, 14132, 1343, 939, 11, 374, 1603, 1143, 28, 17821, 11, 300, 86, 28, 15, 13, 18, 8, 198, 220, 220, 220, 7877, 17, 796, 7877, 13, 4246, 28413, 3419, 198, 220, 220, 220, 7877, 17, 13, 10034, 7, 22355, 11, 41701, 28, 37659, 13, 21602, 10223, 7, 12825, 11, 4751, 11, 8949, 828, 1554, 4906, 11639, 9662, 3256, 19590, 28, 37659, 13, 9107, 418, 7, 22355, 13, 7857, 8, 1343, 357, 12825, 13, 15, 14, 940, 13, 15, 20679, 70, 2340, 13, 7857, 8, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 2645, 9608, 10786, 10913, 357, 7399, 8, 11537, 198, 1303, 220, 220, 7877, 17, 13, 2617, 62, 88, 2475, 26933, 15, 11, 513, 12962, 198, 1303, 220, 220, 7877, 17, 13, 2617, 62, 20760, 3378, 26933, 15, 11, 352, 11, 362, 11, 513, 12962, 628, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 83, 357, 907, 8, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 8199, 333, 684, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 10786, 25641, 590, 287, 1411, 25, 4064, 82, 6, 4064, 1401, 16097, 58, 72, 12962, 628, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 5647, 942, 14, 25641, 590, 62, 81, 1603, 13, 12315, 3256, 288, 14415, 28, 6200, 8 ]
2.157833
849
import os import json import shutil from urllib import request from .utils import PACKAGE_ROOT from . import __folder_structure_version__ def init_database(database_dir: str = None) -> None: """ Creates a basic OpenGenomeBrowser folders structure. Result: database ├── organisms ├── annotations.json ├── annotation-descriptions │ ├── SL.tsv │ ├── KO.tsv │ ├── KR.tsv │ ├── EC.tsv │ └── GO.tsv ├── orthologs └── pathway-maps ├── type_dictionary.json └── svg :param database_dir: Path to the root of the OpenGenomeBrowser folder structure. (Will contain 'organisms' folder.) """ if database_dir is None: assert 'GENOMIC_DATABASE' in os.environ, f'Cannot find the database. Please set --database_dir or environment variable GENOMIC_DATABASE' database_dir = os.environ['GENOMIC_DATABASE'] assert os.path.isdir(os.path.dirname(database_dir)), f'Parent dir of {database_dir=} does not exist!' assert not os.path.exists(database_dir), f'Error: {database_dir=} already exist!' # make main dir os.makedirs(database_dir) # set version with open(f'{database_dir}/version.json', 'w') as f: json.dump({'folder_structure_version': __folder_structure_version__}, f, indent=4) # make organisms dir (empty) os.makedirs(f'{database_dir}/organisms') # make orthologs dir (empty) os.makedirs(f'{database_dir}/orthologs') # make pathway maps dir and content os.makedirs(f'{database_dir}/pathway-maps') os.makedirs(f'{database_dir}/pathway-maps/svg') with open(f'{database_dir}/pathway-maps/type_dictionary.json', 'w') as f: f.write('{}') # Create annotations.json shutil.copy(src=f'{PACKAGE_ROOT}/data/annotations.json', dst=f'{database_dir}/annotations.json') # download annotation descriptions annotation_descriptions_dir = f'{database_dir}/annotation-descriptions' os.makedirs(annotation_descriptions_dir) download_sl_data(out=f'{annotation_descriptions_dir}/SL.tsv') download_kegg_data(src='rn', out=f'{annotation_descriptions_dir}/KR.tsv', remove_prefix='rn:') download_kegg_data(src='ko', out=f'{annotation_descriptions_dir}/KG.tsv', remove_prefix='ko:') download_kegg_data(src='enzyme', out=f'{annotation_descriptions_dir}/EC.tsv', remove_prefix='ec:', add_prefix='EC:') download_go_data(out=f'{annotation_descriptions_dir}/GO.tsv') if __name__ == '__main__': main()
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 4423, 346, 198, 6738, 2956, 297, 571, 1330, 2581, 198, 6738, 764, 26791, 1330, 47035, 11879, 62, 13252, 2394, 198, 6738, 764, 1330, 11593, 43551, 62, 301, 5620, 62, 9641, 834, 628, 628, 198, 198, 4299, 2315, 62, 48806, 7, 48806, 62, 15908, 25, 965, 796, 6045, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 4096, 4946, 13746, 462, 46532, 24512, 4645, 13, 628, 220, 220, 220, 25414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 35306, 20296, 198, 220, 220, 220, 220, 220, 220, 220, 35306, 37647, 13, 17752, 198, 220, 220, 220, 220, 220, 220, 220, 35306, 23025, 12, 20147, 1968, 507, 198, 220, 220, 220, 220, 220, 220, 220, 19421, 220, 220, 35306, 12419, 13, 912, 85, 198, 220, 220, 220, 220, 220, 220, 220, 19421, 220, 220, 35306, 21054, 13, 912, 85, 198, 220, 220, 220, 220, 220, 220, 220, 19421, 220, 220, 35306, 29430, 13, 912, 85, 198, 220, 220, 220, 220, 220, 220, 220, 19421, 220, 220, 35306, 13182, 13, 912, 85, 198, 220, 220, 220, 220, 220, 220, 220, 19421, 220, 220, 13305, 242, 8418, 10351, 13, 912, 85, 198, 220, 220, 220, 220, 220, 220, 220, 35306, 29617, 928, 82, 198, 220, 220, 220, 220, 220, 220, 220, 13305, 242, 8418, 21182, 12, 31803, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35306, 2099, 62, 67, 14188, 13, 17752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13305, 242, 8418, 38487, 70, 628, 198, 220, 220, 220, 1058, 17143, 6831, 62, 15908, 25, 10644, 284, 262, 6808, 286, 262, 4946, 13746, 462, 46532, 9483, 4645, 13, 357, 8743, 3994, 705, 45165, 6, 9483, 2014, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 6831, 62, 15908, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 705, 35353, 2662, 2149, 62, 35, 1404, 6242, 11159, 6, 287, 28686, 13, 268, 2268, 11, 277, 6, 34, 34574, 1064, 262, 6831, 13, 4222, 900, 1377, 48806, 62, 15908, 393, 2858, 7885, 24700, 2662, 2149, 62, 35, 1404, 6242, 11159, 6, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 62, 15908, 796, 28686, 13, 268, 2268, 17816, 35353, 2662, 2149, 62, 35, 1404, 6242, 11159, 20520, 628, 220, 220, 220, 6818, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 15908, 3672, 7, 48806, 62, 15908, 36911, 277, 6, 24546, 26672, 286, 1391, 48806, 62, 15908, 28, 92, 857, 407, 2152, 13679, 198, 220, 220, 220, 6818, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 48806, 62, 15908, 828, 277, 6, 12331, 25, 1391, 48806, 62, 15908, 28, 92, 1541, 2152, 13679, 628, 220, 220, 220, 1303, 787, 1388, 26672, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 48806, 62, 15908, 8, 628, 220, 220, 220, 1303, 900, 2196, 198, 220, 220, 220, 351, 1280, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 9641, 13, 17752, 3256, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 15090, 6, 43551, 62, 301, 5620, 62, 9641, 10354, 11593, 43551, 62, 301, 5620, 62, 9641, 834, 5512, 277, 11, 33793, 28, 19, 8, 628, 220, 220, 220, 1303, 787, 20296, 26672, 357, 28920, 8, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 45165, 11537, 628, 220, 220, 220, 1303, 787, 29617, 928, 82, 26672, 357, 28920, 8, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 1506, 928, 82, 11537, 628, 220, 220, 220, 1303, 787, 21182, 8739, 26672, 290, 2695, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 6978, 1014, 12, 31803, 11537, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 6978, 1014, 12, 31803, 14, 21370, 70, 11537, 198, 220, 220, 220, 351, 1280, 7, 69, 6, 90, 48806, 62, 15908, 92, 14, 6978, 1014, 12, 31803, 14, 4906, 62, 67, 14188, 13, 17752, 3256, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 90, 92, 11537, 628, 220, 220, 220, 1303, 13610, 37647, 13, 17752, 198, 220, 220, 220, 4423, 346, 13, 30073, 7, 10677, 28, 69, 6, 90, 47, 8120, 11879, 62, 13252, 2394, 92, 14, 7890, 14, 34574, 602, 13, 17752, 3256, 29636, 28, 69, 6, 90, 48806, 62, 15908, 92, 14, 34574, 602, 13, 17752, 11537, 628, 220, 220, 220, 1303, 4321, 23025, 16969, 198, 220, 220, 220, 23025, 62, 20147, 1968, 507, 62, 15908, 796, 277, 6, 90, 48806, 62, 15908, 92, 14, 1236, 14221, 12, 20147, 1968, 507, 6, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 8, 198, 220, 220, 220, 4321, 62, 6649, 62, 7890, 7, 448, 28, 69, 6, 90, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 92, 14, 8634, 13, 912, 85, 11537, 198, 220, 220, 220, 4321, 62, 365, 1130, 62, 7890, 7, 10677, 11639, 35906, 3256, 503, 28, 69, 6, 90, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 92, 14, 30758, 13, 912, 85, 3256, 4781, 62, 40290, 11639, 35906, 25, 11537, 198, 220, 220, 220, 4321, 62, 365, 1130, 62, 7890, 7, 10677, 11639, 7204, 3256, 503, 28, 69, 6, 90, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 92, 14, 42, 38, 13, 912, 85, 3256, 4781, 62, 40290, 11639, 7204, 25, 11537, 198, 220, 220, 220, 4321, 62, 365, 1130, 62, 7890, 7, 10677, 11639, 268, 24266, 3256, 503, 28, 69, 6, 90, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 92, 14, 2943, 13, 912, 85, 3256, 4781, 62, 40290, 11639, 721, 25, 3256, 751, 62, 40290, 11639, 2943, 25, 11537, 198, 220, 220, 220, 4321, 62, 2188, 62, 7890, 7, 448, 28, 69, 6, 90, 1236, 14221, 62, 20147, 1968, 507, 62, 15908, 92, 14, 11230, 13, 912, 85, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.426261
1,051
from .base_dataset import BaseADDataset from torch.utils.data import DataLoader class TorchvisionDataset(BaseADDataset): """TorchvisionDataset class for datasets already implemented in torchvision.datasets."""
[ 6738, 764, 8692, 62, 19608, 292, 316, 1330, 7308, 2885, 27354, 292, 316, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 628, 198, 4871, 34868, 10178, 27354, 292, 316, 7, 14881, 2885, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 15884, 354, 10178, 27354, 292, 316, 1398, 329, 40522, 1541, 9177, 287, 28034, 10178, 13, 19608, 292, 1039, 526, 15931, 198 ]
3.375
64
import os import glob from pathlib import Path from .helpers import cached_property from . import helpers from . import config # NOTE: # For better detection we can add an argument allowing metadata reading # Exact set of file types needs to be reviewed class File: """File representation""" @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property @cached_property # Detect
[ 11748, 28686, 198, 11748, 15095, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 764, 16794, 364, 1330, 39986, 62, 26745, 198, 6738, 764, 1330, 49385, 198, 6738, 764, 1330, 4566, 628, 198, 2, 24550, 25, 198, 2, 1114, 1365, 13326, 356, 460, 751, 281, 4578, 5086, 20150, 3555, 198, 2, 1475, 529, 900, 286, 2393, 3858, 2476, 284, 307, 11765, 628, 198, 4871, 9220, 25, 198, 220, 220, 220, 37227, 8979, 10552, 37811, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 2488, 66, 2317, 62, 26745, 628, 220, 220, 220, 1303, 35874, 198 ]
2.995349
215
import sys import requests import csv import io from datetime import datetime from collections import defaultdict from .utils import store_data, stoi # ------------------------------------------------------------------------ # Globals deaths_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_fallecidos.csv" cases_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_casos.csv" hospitalized_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_hospitalizados.csv" icu_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_uci.csv" recovered_URL = "https://raw.githubusercontent.com/datadista/datasets/master/COVID%2019/ccaa_covid19_altas.csv" cols = ['time', 'cases', 'deaths', 'hospitalized', 'icu', 'recovered'] # ------------------------------------------------------------------------ # Main point of entry
[ 11748, 25064, 198, 11748, 7007, 198, 11748, 269, 21370, 198, 11748, 33245, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 764, 26791, 1330, 3650, 62, 7890, 11, 3995, 72, 198, 198, 2, 16529, 982, 198, 2, 40713, 874, 198, 198, 22595, 82, 62, 21886, 796, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 324, 12523, 14, 19608, 292, 1039, 14, 9866, 14, 8220, 11008, 4, 23344, 14, 535, 7252, 62, 66, 709, 312, 1129, 62, 69, 6765, 66, 312, 418, 13, 40664, 1, 198, 33964, 62, 21886, 796, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 324, 12523, 14, 19608, 292, 1039, 14, 9866, 14, 8220, 11008, 4, 23344, 14, 535, 7252, 62, 66, 709, 312, 1129, 62, 34004, 418, 13, 40664, 1, 198, 49257, 1143, 62, 21886, 796, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 324, 12523, 14, 19608, 292, 1039, 14, 9866, 14, 8220, 11008, 4, 23344, 14, 535, 7252, 62, 66, 709, 312, 1129, 62, 49257, 528, 22484, 13, 40664, 1, 198, 291, 84, 62, 21886, 796, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 324, 12523, 14, 19608, 292, 1039, 14, 9866, 14, 8220, 11008, 4, 23344, 14, 535, 7252, 62, 66, 709, 312, 1129, 62, 42008, 13, 40664, 1, 198, 8344, 2557, 62, 21886, 796, 220, 220, 220, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 324, 12523, 14, 19608, 292, 1039, 14, 9866, 14, 8220, 11008, 4, 23344, 14, 535, 7252, 62, 66, 709, 312, 1129, 62, 2501, 292, 13, 40664, 1, 198, 4033, 82, 796, 37250, 2435, 3256, 705, 33964, 3256, 705, 22595, 82, 3256, 705, 49257, 1143, 3256, 705, 291, 84, 3256, 705, 8344, 2557, 20520, 198, 198, 2, 16529, 982, 198, 2, 8774, 966, 286, 5726, 198 ]
2.993976
332
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import numpy as np from pymor.algorithms.timestepping import ExplicitEulerTimeStepper from pymor.analyticalproblems.advection import InstationaryAdvectionProblem from pymor.discretizations.basic import InstationaryDiscretization from pymor.domaindiscretizers.default import discretize_domain_default from pymor.gui.qt import PatchVisualizer, Matplotlib1DVisualizer from pymor.operators.numpy import NumpyGenericOperator from pymor.operators.fv import (nonlinear_advection_lax_friedrichs_operator, nonlinear_advection_engquist_osher_operator, nonlinear_advection_simplified_engquist_osher_operator, L2Product, L2ProductFunctional) from pymor.vectorarrays.numpy import NumpyVectorArray def discretize_nonlinear_instationary_advection_fv(analytical_problem, diameter=None, nt=100, num_flux='lax_friedrichs', lxf_lambda=1., eo_gausspoints=5, eo_intervals=1, num_values=None, domain_discretizer=None, grid=None, boundary_info=None): """Discretizes an |InstationaryAdvectionProblem| using the finite volume method. Explicit Euler time-stepping is used for time discretization. Parameters ---------- analytical_problem The |InstationaryAdvectionProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. nt The number of time steps. num_flux The numerical flux to use in the finite volume formulation. Allowed values are `'lax_friedrichs'`, `'engquist_osher'`, `'simplified_engquist_osher'` (see :mod:`pymor.operators.fv`). lxf_lambda The stabilization parameter for the Lax-Friedrichs numerical flux (ignored, if different flux is chosen). eo_gausspoints Number of Gauss points for the Engquist-Osher numerical flux (ignored, if different flux is chosen). eo_intervals Number of sub-intervals to use for integration when using Engquist-Osher numerical flux (ignored, if different flux is chosen). num_values The number of returned vectors of the solution trajectory. If `None`, each intermediate vector that is calculated is returned. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter)`. If `None`, |discretize_domain_default| is used. grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. Returns ------- discretization The |Discretization| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. """ assert isinstance(analytical_problem, InstationaryAdvectionProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert num_flux in ('lax_friedrichs', 'engquist_osher', 'simplified_engquist_osher') if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if diameter is None: grid, boundary_info = domain_discretizer(analytical_problem.domain) else: grid, boundary_info = domain_discretizer(analytical_problem.domain, diameter=diameter) p = analytical_problem if num_flux == 'lax_friedrichs': L = nonlinear_advection_lax_friedrichs_operator(grid, boundary_info, p.flux_function, dirichlet_data=p.dirichlet_data, lxf_lambda=lxf_lambda) elif num_flux == 'engquist_osher': L = nonlinear_advection_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, gausspoints=eo_gausspoints, intervals=eo_intervals, dirichlet_data=p.dirichlet_data) else: L = nonlinear_advection_simplified_engquist_osher_operator(grid, boundary_info, p.flux_function, p.flux_function_derivative, dirichlet_data=p.dirichlet_data) F = None if p.rhs is None else L2ProductFunctional(grid, p.rhs) if p.initial_data.parametric: I = NumpyGenericOperator(initial_projection, dim_range=grid.size(0), linear=True, parameter_type=p.initial_data.parameter_type) else: I = p.initial_data.evaluate(grid.quadrature_points(0, order=2)).squeeze() I = np.sum(I * grid.reference_element.quadrature(order=2)[1], axis=1) * (1. / grid.reference_element.volume) I = NumpyVectorArray(I, copy=False) products = {'l2': L2Product(grid, boundary_info)} if grid.dim == 2: visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=0) elif grid.dim == 1: visualizer = Matplotlib1DVisualizer(grid, codim=0) else: visualizer = None parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None time_stepper = ExplicitEulerTimeStepper(nt=nt) discretization = InstationaryDiscretization(operator=L, rhs=F, initial_data=I, T=p.T, products=products, time_stepper=time_stepper, parameter_space=parameter_space, visualizer=visualizer, num_values=num_values, name='{}_FV'.format(p.name)) return discretization, {'grid': grid, 'boundary_info': boundary_info}
[ 2, 770, 2393, 318, 636, 286, 262, 12972, 44, 1581, 1628, 357, 4023, 1378, 2503, 13, 9078, 4491, 13, 2398, 737, 198, 2, 15069, 2211, 12, 5304, 12972, 44, 1581, 6505, 290, 20420, 13, 1439, 2489, 10395, 13, 198, 2, 13789, 25, 347, 10305, 362, 12, 2601, 682, 13789, 357, 4023, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 21800, 12, 17, 12, 2601, 682, 8, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 12972, 4491, 13, 282, 7727, 907, 13, 16514, 29872, 2105, 1330, 11884, 36, 18173, 7575, 7447, 2848, 198, 6738, 12972, 4491, 13, 38200, 22869, 1676, 22143, 13, 324, 303, 596, 1330, 2262, 341, 560, 2782, 303, 596, 40781, 198, 6738, 12972, 4491, 13, 15410, 1186, 4582, 13, 35487, 1330, 2262, 341, 560, 15642, 1186, 1634, 198, 6738, 12972, 4491, 13, 27830, 15410, 1186, 11341, 13, 12286, 1330, 1221, 1186, 1096, 62, 27830, 62, 12286, 198, 6738, 12972, 4491, 13, 48317, 13, 39568, 1330, 17106, 36259, 7509, 11, 6550, 29487, 8019, 16, 35, 36259, 7509, 198, 6738, 12972, 4491, 13, 3575, 2024, 13, 77, 32152, 1330, 399, 32152, 46189, 18843, 1352, 198, 6738, 12972, 4491, 13, 3575, 2024, 13, 69, 85, 1330, 357, 13159, 29127, 62, 324, 303, 596, 62, 75, 897, 62, 25520, 7527, 82, 62, 46616, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 29127, 62, 324, 303, 596, 62, 1516, 30062, 62, 38321, 62, 46616, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 29127, 62, 324, 303, 596, 62, 14323, 489, 1431, 62, 1516, 30062, 62, 38321, 62, 46616, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 17, 15667, 11, 406, 17, 15667, 22203, 282, 8, 198, 6738, 12972, 4491, 13, 31364, 3258, 592, 13, 77, 32152, 1330, 399, 32152, 38469, 19182, 628, 198, 4299, 1221, 1186, 1096, 62, 13159, 29127, 62, 8625, 341, 560, 62, 324, 303, 596, 62, 69, 85, 7, 38200, 22869, 62, 45573, 11, 14753, 28, 14202, 11, 299, 83, 28, 3064, 11, 997, 62, 69, 22564, 11639, 75, 897, 62, 25520, 7527, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 26152, 62, 50033, 28, 16, 1539, 304, 78, 62, 4908, 1046, 13033, 28, 20, 11, 304, 78, 62, 3849, 12786, 28, 16, 11, 997, 62, 27160, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7386, 62, 15410, 1186, 7509, 28, 14202, 11, 10706, 28, 14202, 11, 18645, 62, 10951, 28, 14202, 2599, 198, 220, 220, 220, 37227, 15642, 1186, 4340, 281, 930, 6310, 341, 560, 2782, 303, 596, 40781, 91, 1262, 262, 27454, 6115, 2446, 13, 628, 220, 220, 220, 11884, 412, 18173, 640, 12, 4169, 2105, 318, 973, 329, 640, 1221, 1186, 1634, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 30063, 62, 45573, 198, 220, 220, 220, 220, 220, 220, 220, 383, 930, 6310, 341, 560, 2782, 303, 596, 40781, 91, 284, 1221, 1186, 1096, 13, 198, 220, 220, 220, 14753, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 4600, 14202, 47671, 4600, 67, 13173, 63, 318, 3804, 355, 281, 4578, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27830, 62, 15410, 1186, 7509, 44646, 198, 220, 220, 220, 299, 83, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 640, 4831, 13, 198, 220, 220, 220, 997, 62, 69, 22564, 198, 220, 220, 220, 220, 220, 220, 220, 383, 29052, 28462, 284, 779, 287, 262, 27454, 6115, 31760, 13, 1439, 6972, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 4600, 6, 75, 897, 62, 25520, 7527, 82, 6, 47671, 4600, 6, 1516, 30062, 62, 38321, 6, 47671, 4600, 6, 14323, 489, 1431, 62, 1516, 30062, 62, 38321, 6, 63, 198, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 1058, 4666, 25, 63, 9078, 4491, 13, 3575, 2024, 13, 69, 85, 63, 737, 198, 220, 220, 220, 300, 26152, 62, 50033, 198, 220, 220, 220, 220, 220, 220, 220, 383, 43200, 11507, 329, 262, 406, 897, 12, 37, 2228, 7527, 82, 29052, 28462, 198, 220, 220, 220, 220, 220, 220, 220, 357, 570, 1850, 11, 611, 1180, 28462, 318, 7147, 737, 198, 220, 220, 220, 304, 78, 62, 4908, 1046, 13033, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 12822, 1046, 2173, 329, 262, 1985, 30062, 12, 16748, 372, 29052, 28462, 198, 220, 220, 220, 220, 220, 220, 220, 357, 570, 1850, 11, 611, 1180, 28462, 318, 7147, 737, 198, 220, 220, 220, 304, 78, 62, 3849, 12786, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 850, 12, 3849, 12786, 284, 779, 329, 11812, 618, 1262, 1985, 30062, 12, 16748, 372, 198, 220, 220, 220, 220, 220, 220, 220, 29052, 28462, 357, 570, 1850, 11, 611, 1180, 28462, 318, 7147, 737, 198, 220, 220, 220, 997, 62, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 4504, 30104, 286, 262, 4610, 22942, 13, 1002, 4600, 14202, 47671, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 19898, 15879, 326, 318, 10488, 318, 4504, 13, 198, 220, 220, 220, 7386, 62, 15410, 1186, 7509, 198, 220, 220, 220, 220, 220, 220, 220, 8444, 1186, 7509, 284, 307, 973, 329, 1221, 1186, 2890, 262, 30063, 7386, 13, 770, 468, 198, 220, 220, 220, 220, 220, 220, 220, 284, 307, 257, 2163, 4600, 27830, 62, 15410, 1186, 7509, 7, 27830, 62, 11213, 11, 14753, 8, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 14202, 47671, 930, 15410, 1186, 1096, 62, 27830, 62, 12286, 91, 318, 973, 13, 198, 220, 220, 220, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 5455, 286, 1262, 257, 7386, 1221, 1186, 7509, 11, 262, 930, 41339, 91, 460, 635, 307, 3804, 3264, 198, 220, 220, 220, 220, 220, 220, 220, 1262, 428, 11507, 13, 198, 220, 220, 220, 18645, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 317, 930, 49646, 560, 12360, 91, 31577, 262, 18645, 3858, 286, 262, 10706, 18645, 12066, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 2810, 611, 4600, 25928, 63, 318, 7368, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1221, 1186, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 383, 930, 15642, 1186, 1634, 91, 326, 468, 587, 7560, 13, 198, 220, 220, 220, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 28261, 351, 262, 1708, 12784, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 25928, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 7560, 930, 41339, 91, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 7784, 560, 62, 10951, 25, 220, 383, 7560, 930, 49646, 560, 12360, 91, 13, 628, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6818, 318, 39098, 7, 38200, 22869, 62, 45573, 11, 2262, 341, 560, 2782, 303, 596, 40781, 8, 198, 220, 220, 220, 6818, 10706, 318, 6045, 393, 18645, 62, 10951, 318, 407, 6045, 198, 220, 220, 220, 6818, 18645, 62, 10951, 318, 6045, 393, 10706, 318, 407, 6045, 198, 220, 220, 220, 6818, 10706, 318, 6045, 393, 7386, 62, 15410, 1186, 7509, 318, 6045, 198, 220, 220, 220, 6818, 997, 62, 69, 22564, 287, 19203, 75, 897, 62, 25520, 7527, 82, 3256, 705, 1516, 30062, 62, 38321, 3256, 705, 14323, 489, 1431, 62, 1516, 30062, 62, 38321, 11537, 628, 220, 220, 220, 611, 10706, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7386, 62, 15410, 1186, 7509, 796, 7386, 62, 15410, 1186, 7509, 393, 1221, 1186, 1096, 62, 27830, 62, 12286, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 11, 18645, 62, 10951, 796, 7386, 62, 15410, 1186, 7509, 7, 38200, 22869, 62, 45573, 13, 27830, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 11, 18645, 62, 10951, 796, 7386, 62, 15410, 1186, 7509, 7, 38200, 22869, 62, 45573, 13, 27830, 11, 14753, 28, 67, 13173, 8, 628, 220, 220, 220, 279, 796, 30063, 62, 45573, 628, 220, 220, 220, 611, 997, 62, 69, 22564, 6624, 705, 75, 897, 62, 25520, 7527, 82, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 406, 796, 1729, 29127, 62, 324, 303, 596, 62, 75, 897, 62, 25520, 7527, 82, 62, 46616, 7, 25928, 11, 18645, 62, 10951, 11, 279, 13, 69, 22564, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 488, 1616, 62, 7890, 28, 79, 13, 15908, 488, 1616, 62, 7890, 11, 300, 26152, 62, 50033, 28, 75, 26152, 62, 50033, 8, 198, 220, 220, 220, 1288, 361, 997, 62, 69, 22564, 6624, 705, 1516, 30062, 62, 38321, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 406, 796, 1729, 29127, 62, 324, 303, 596, 62, 1516, 30062, 62, 38321, 62, 46616, 7, 25928, 11, 18645, 62, 10951, 11, 279, 13, 69, 22564, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 69, 22564, 62, 8818, 62, 1082, 452, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31986, 1046, 13033, 28, 68, 78, 62, 4908, 1046, 13033, 11, 20016, 28, 68, 78, 62, 3849, 12786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 488, 1616, 62, 7890, 28, 79, 13, 15908, 488, 1616, 62, 7890, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 406, 796, 1729, 29127, 62, 324, 303, 596, 62, 14323, 489, 1431, 62, 1516, 30062, 62, 38321, 62, 46616, 7, 25928, 11, 18645, 62, 10951, 11, 279, 13, 69, 22564, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 69, 22564, 62, 8818, 62, 1082, 452, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 488, 1616, 62, 7890, 28, 79, 13, 15908, 488, 1616, 62, 7890, 8, 198, 220, 220, 220, 376, 796, 6045, 611, 279, 13, 81, 11994, 318, 6045, 2073, 406, 17, 15667, 22203, 282, 7, 25928, 11, 279, 13, 81, 11994, 8, 628, 220, 220, 220, 611, 279, 13, 36733, 62, 7890, 13, 17143, 19482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 314, 796, 399, 32152, 46189, 18843, 1352, 7, 36733, 62, 16302, 295, 11, 5391, 62, 9521, 28, 25928, 13, 7857, 7, 15, 828, 14174, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 4906, 28, 79, 13, 36733, 62, 7890, 13, 17143, 2357, 62, 4906, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 314, 796, 279, 13, 36733, 62, 7890, 13, 49786, 7, 25928, 13, 421, 41909, 1300, 62, 13033, 7, 15, 11, 1502, 28, 17, 29720, 16485, 1453, 2736, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 314, 796, 45941, 13, 16345, 7, 40, 1635, 10706, 13, 35790, 62, 30854, 13, 421, 41909, 1300, 7, 2875, 28, 17, 38381, 16, 4357, 16488, 28, 16, 8, 1635, 357, 16, 13, 1220, 10706, 13, 35790, 62, 30854, 13, 29048, 8, 198, 220, 220, 220, 220, 220, 220, 220, 314, 796, 399, 32152, 38469, 19182, 7, 40, 11, 4866, 28, 25101, 8, 628, 220, 220, 220, 3186, 796, 1391, 6, 75, 17, 10354, 406, 17, 15667, 7, 25928, 11, 18645, 62, 10951, 38165, 198, 220, 220, 220, 611, 10706, 13, 27740, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5874, 7509, 796, 17106, 36259, 7509, 7, 25928, 28, 25928, 11, 5421, 278, 62, 3524, 28, 25928, 13, 7784, 278, 62, 3524, 22784, 14873, 320, 28, 15, 8, 198, 220, 220, 220, 1288, 361, 10706, 13, 27740, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5874, 7509, 796, 6550, 29487, 8019, 16, 35, 36259, 7509, 7, 25928, 11, 14873, 320, 28, 15, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5874, 7509, 796, 6045, 198, 220, 220, 220, 11507, 62, 13200, 796, 279, 13, 17143, 2357, 62, 13200, 611, 468, 35226, 7, 79, 11, 705, 17143, 2357, 62, 13200, 11537, 2073, 6045, 198, 220, 220, 220, 640, 62, 4169, 2848, 796, 11884, 36, 18173, 7575, 7447, 2848, 7, 429, 28, 429, 8, 628, 220, 220, 220, 1221, 1186, 1634, 796, 2262, 341, 560, 15642, 1186, 1634, 7, 46616, 28, 43, 11, 9529, 82, 28, 37, 11, 4238, 62, 7890, 28, 40, 11, 309, 28, 79, 13, 51, 11, 3186, 28, 29498, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 4169, 2848, 28, 2435, 62, 4169, 2848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 62, 13200, 28, 17143, 2357, 62, 13200, 11, 5874, 7509, 28, 41464, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 27160, 28, 22510, 62, 27160, 11, 1438, 11639, 90, 92, 62, 37, 53, 4458, 18982, 7, 79, 13, 3672, 4008, 628, 220, 220, 220, 1441, 1221, 1186, 1634, 11, 1391, 6, 25928, 10354, 10706, 11, 705, 7784, 560, 62, 10951, 10354, 18645, 62, 10951, 92, 198 ]
2.282562
2,810
""" object_adventure.py A text adventure with objects you can pick up and put down. """ # data setup rooms = { 'empty': {'name': 'an empty room', 'east': 'bedroom', 'north': 'temple', 'contents': [], 'text': 'The stone floors and walls are cold and damp.'}, 'temple': {'name': 'a small temple', 'east': 'torture', 'south': 'empty', 'contents': ['bench', 'bench', 'bench', 'statue'], 'text': 'This seems to be a place of worship and deep contemplation.'}, 'torture': {'name': 'a torture chamber', 'west': 'temple', 'south': 'bedroom', 'contents': ['chains', 'thumbscrews'], 'text': 'There is a rack and an iron maiden against the wall\naand some dark stains on the floor.'}, 'bedroom': {'name': 'a bedroom', 'north': 'torture', 'west': 'empty', 'contents': ['sheets', 'bed'], 'text': 'This is clearly a bedroom, but no one has slept\nhere in a long time.'} } directions = ['north', 'south', 'east', 'west'] current_room = rooms['empty'] carrying = [] # game loop while True: # display current location print() print('You are in {}.'.format(current_room['name'])) print(current_room['text']) # display movable objects if current_room['contents']: print('In the room are: {}'.format(', '.join(current_room['contents']))) # get user input command = input('\nWhat do you do? ').strip() # movement if command in directions: if command in current_room: current_room = rooms[current_room[command]] else: # bad movement print("You can't go that way.") # quit game elif command.lower() in ('q', 'quit'): break # gather objects elif command.lower().split()[0] == 'get': item = command.lower().split()[1] if item in current_room['contents']: current_room['contents'].remove(item) carrying.append(item) else: print("I don't see that here.") # get rid of objects elif command.lower().split()[0] == 'drop': item = command.lower().split()[1] if item in carrying: current_room['contents'].append(item) carrying.remove(item) else: print("You aren't carrying that.") # bad command else: print("I don't understand that command.")
[ 37811, 198, 15252, 62, 324, 5388, 13, 9078, 198, 220, 198, 32, 2420, 8855, 351, 5563, 345, 460, 2298, 510, 290, 1234, 866, 13, 198, 37811, 198, 220, 198, 2, 1366, 9058, 198, 9649, 796, 1391, 198, 220, 220, 220, 705, 28920, 10354, 1391, 6, 3672, 10354, 705, 272, 6565, 2119, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 23316, 10354, 705, 36269, 3256, 705, 43588, 10354, 705, 11498, 1154, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3642, 658, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 464, 7815, 18570, 290, 7714, 389, 4692, 290, 21151, 2637, 5512, 198, 220, 220, 220, 705, 11498, 1154, 10354, 1391, 6, 3672, 10354, 705, 64, 1402, 12505, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 23316, 10354, 705, 83, 419, 495, 3256, 705, 35782, 10354, 705, 28920, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3642, 658, 10354, 37250, 26968, 3256, 705, 26968, 3256, 705, 26968, 3256, 705, 14269, 518, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 1212, 2331, 284, 307, 257, 1295, 286, 11892, 290, 2769, 50152, 2637, 5512, 198, 220, 220, 220, 705, 83, 419, 495, 10354, 1391, 6, 3672, 10354, 705, 64, 11543, 11847, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7038, 10354, 705, 11498, 1154, 3256, 705, 35782, 10354, 705, 36269, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3642, 658, 10354, 37250, 38861, 3256, 705, 400, 2178, 1416, 1809, 82, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 1858, 318, 257, 19127, 290, 281, 6953, 34827, 1028, 262, 3355, 59, 2616, 392, 617, 3223, 43329, 319, 262, 4314, 2637, 5512, 198, 220, 220, 220, 705, 36269, 10354, 1391, 6, 3672, 10354, 705, 64, 14043, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 43588, 10354, 705, 83, 419, 495, 3256, 705, 7038, 10354, 705, 28920, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3642, 658, 10354, 37250, 42011, 3256, 705, 3077, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5239, 10354, 705, 1212, 318, 4084, 257, 14043, 11, 475, 645, 530, 468, 21256, 59, 77, 1456, 287, 257, 890, 640, 2637, 92, 198, 220, 220, 220, 1782, 198, 198, 12942, 507, 796, 37250, 43588, 3256, 705, 35782, 3256, 705, 23316, 3256, 705, 7038, 20520, 198, 198, 14421, 62, 3823, 796, 9519, 17816, 28920, 20520, 198, 198, 34993, 278, 796, 17635, 198, 220, 198, 2, 983, 9052, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 3359, 1459, 4067, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 10786, 1639, 389, 287, 23884, 2637, 13, 18982, 7, 14421, 62, 3823, 17816, 3672, 20520, 4008, 198, 220, 220, 220, 3601, 7, 14421, 62, 3823, 17816, 5239, 6, 12962, 198, 220, 220, 220, 1303, 3359, 1409, 540, 5563, 198, 220, 220, 220, 611, 1459, 62, 3823, 17816, 3642, 658, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 818, 262, 2119, 389, 25, 23884, 4458, 18982, 7, 3256, 45302, 22179, 7, 14421, 62, 3823, 17816, 3642, 658, 20520, 22305, 198, 220, 220, 220, 1303, 651, 2836, 5128, 198, 220, 220, 220, 3141, 796, 5128, 10786, 59, 77, 2061, 466, 345, 466, 30, 705, 737, 36311, 3419, 198, 220, 220, 220, 1303, 3356, 198, 220, 220, 220, 611, 3141, 287, 11678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3141, 287, 1459, 62, 3823, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 3823, 796, 9519, 58, 14421, 62, 3823, 58, 21812, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2089, 3356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1639, 460, 470, 467, 326, 835, 19570, 198, 220, 220, 220, 1303, 11238, 983, 198, 220, 220, 220, 1288, 361, 3141, 13, 21037, 3419, 287, 19203, 80, 3256, 705, 47391, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1303, 6431, 5563, 198, 220, 220, 220, 1288, 361, 3141, 13, 21037, 22446, 35312, 3419, 58, 15, 60, 6624, 705, 1136, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 3141, 13, 21037, 22446, 35312, 3419, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 1459, 62, 3823, 17816, 3642, 658, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 3823, 17816, 3642, 658, 6, 4083, 28956, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6872, 13, 33295, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 40, 836, 470, 766, 326, 994, 19570, 198, 220, 220, 220, 1303, 651, 5755, 286, 5563, 198, 220, 220, 220, 1288, 361, 3141, 13, 21037, 22446, 35312, 3419, 58, 15, 60, 6624, 705, 14781, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 3141, 13, 21037, 22446, 35312, 3419, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 287, 6872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 3823, 17816, 3642, 658, 6, 4083, 33295, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6872, 13, 28956, 7, 9186, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1639, 3588, 470, 6872, 326, 19570, 198, 220, 220, 220, 1303, 2089, 3141, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 40, 836, 470, 1833, 326, 3141, 19570 ]
2.417505
994
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import concurrent.futures import io from functools import lru_cache import msgpack import simdjson from graphscope.framework import dag_utils from graphscope.nx.utils.misc import clear_mutation_cache from graphscope.proto import graph_def_pb2 from graphscope.proto import types_pb2 __all__ = ["Cache"] class Cache: """A adhoc cache for graphscope.nx Graph. The Cache is consists of two kind of cache: the iteration batch cache for __iter__ and the LRU cache for cache miss. """ def warmup(self): """Warm up the iteration cache.""" self._len = self._graph.number_of_nodes() if self._len > 1000: # avoid much small graphs to compete thread resource self.enable_iter_cache = True self._async_fetch_node_id_cache(0) self._async_fetch_succ_cache(0) self._async_fetch_node_attr_cache(0) self._async_fetch_succ_attr_cache(0) # LRU Caches @lru_cache(1000000) @lru_cache(1000000) @lru_cache(1000000) @lru_cache(1000000) @lru_cache(1000000) def align_node_attr_cache(self): """Check and align the node attr cache with node id cache""" if self.enable_iter_cache and self.node_attr_align is False: f = self.futures["node_attr"] if f is not None: start_gid, self.node_attr_cache = f.result() if start_gid == self.iter_pre_gid: # align to current node_id_cache if self.iter_gid != self.iter_pre_gid: self._async_fetch_node_attr_cache(self.iter_gid) self.node_attr_align = True else: # not align to current node_id_cache, should fetch again self._async_fetch_node_attr_cache(self.iter_pre_gid) return self.node_attr_align def align_succ_cache(self): """Check and align the succ neighbor cache with node id cache""" if self.enable_iter_cache and self.succ_align is False: f = self.futures["succ"] start_gid, self.succ_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_succ_cache(self.iter_gid) self.succ_align = True else: self._async_fetch_succ_cache(self.iter_pre_gid) return self.succ_align def align_succ_attr_cache(self): """Check and align the succ neighbor attr cache with node id cache""" if self.enable_iter_cache and self.succ_attr_align is False: f = self.futures["succ_attr"] if f is not None: start_gid, self.succ_attr_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_succ_attr_cache(self.iter_gid) self.succ_attr_align = True else: self._async_fetch_succ_attr_cache(self.iter_pre_gid) return self.succ_attr_align def align_pred_cache(self): """Check and align the pred neighbor cache with node id cache""" if self.enable_iter_cache and self.pred_align is False: if self.futures["pred"] is None: self._async_fetch_pred_cache(self.iter_pre_gid) f = self.futures["pred"] start_gid, self.pred_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_pred_cache(self.iter_gid) self.pred_align = True else: print("pred not align", start_gid, self.iter_pre_gid) self._async_fetch_pred_cache(self.iter_pre_gid) return self.pred_align def align_pred_attr_cache(self): """Check and align the pred neighbor attr cache with node id cache""" if self.enable_iter_cache and self.pred_attr_align is False: if self.futures["pred_attr"] is None: self._async_fetch_pred_attr_cache(self.iter_pre_gid) f = self.futures["pred_attr"] start_gid, self.pred_attr_cache = f.result() if start_gid == self.iter_pre_gid: if self.iter_gid != self.iter_pre_gid: self._async_fetch_pred_attr_cache(self.iter_gid) self.pred_attr_align = True else: self._async_fetch_pred_attr_cache(self.iter_pre_gid) return self.pred_attr_align @clear_mutation_cache @clear_mutation_cache @clear_mutation_cache def clear(self): """Clear batch cache and lru cache, reset the status and warmup again""" if self.enable_iter_cache: self.shutdown() self.enable_iter_cache = False self.iter_gid = 0 self.iter_pre_gid = 0 self.id2i.clear() self.node_id_cache = () self.node_attr_cache = () self.succ_cache = () self.succ_attr_cache = () self.pred_cache = () self.pred_attr_cache = () self.node_attr_align = ( self.succ_align ) = self.succ_attr_align = self.pred_align = self.pred_attr_align = False self.get_node_attr.cache_clear() self.get_successors.cache_clear() self.get_succ_attr.cache_clear() self.get_predecessors.cache_clear() self.get_pred_attr.cache_clear() self.warmup() def clear_node_attr_cache(self): """Clear the node attr cache""" if self.futures["node_attr"] is not None: self.futures["node_attr"].cancel() if self.futures["node_attr"] is not None: try: self.futures["node_attr"].result() except concurrent.futures.CancelledError: pass self.futures["node_attr"] = None self.node_attr_cache = () self.get_node_attr.cache_clear() self.node_attr_align = False def clear_neighbor_attr_cache(self): """Clear the neighbor attr cache""" if self.futures["succ_attr"] is not None: self.futures["succ_attr"].cancel() if self.futures["pred_attr"] is not None: self.futures["pred_attr"].cancel() if self.futures["succ_attr"] is not None: try: self.futures["succ_attr"].result() except concurrent.futures.CancelledError: pass if self.futures["pred_attr"] is not None: try: self.futures["pred_attr"].result() except concurrent.futures.CancelledError: pass self.futures["succ_attr"] = None self.futures["pred_attr"] = None self.succ_attr_cache = () self.pred_attr_cache = () self.get_succ_attr.cache_clear() self.get_pred_attr.cache_clear() self.succ_attr_align = False self.pred_attr_align = False def get_neighbors(graph, n, pred=False): """Get the neighbors of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCCS_BY_NODE: get the successors of node, types_pb2.PREDS_BY_NODE: get the predecessors of node, """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PREDS_BY_NODE if pred else types_pb2.SUCCS_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return msgpack.unpackb(archive.get_bytes(), use_list=False) def get_neighbors_attr(graph, n, pred=False): """Get the neighbors attr of node in graph. Parameters ---------- graph: the graph to query. n: node the node to get neighbors. report_type: the report type of report graph operation, types_pb2.SUCC_ATTR_BY_NODE: get the successors attr of node, types_pb2.PRED_ATTR_BY_NODE: get the predecessors attr of node, Returns ------- attr: tuple """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) report_t = types_pb2.PRED_ATTR_BY_NODE if pred else types_pb2.SUCC_ATTR_BY_NODE op = dag_utils.report_graph(graph, report_t, node=simdjson.dumps(n).encode("utf-8")) archive = op.eval() return simdjson.loads(archive.get_bytes()) def get_node_data(graph, n): """Returns the attribute dictionary of node n. This is identical to `G[n]`. Parameters ---------- n : nodes Returns ------- node_dict : dictionary The node attribute dictionary. Examples -------- >>> G = nx.path_graph(4) # or DiGraph etc >>> G[0] {} Warning: Assigning to `G[n]` is not permitted. But it is safe to assign attributes `G[n]['foo']` >>> G[0]['weight'] = 7 >>> G[0]['weight'] 7 >>> G = nx.path_graph(4) # or DiGraph etc >>> G.get_node_data(0, 1) {} """ if graph.graph_type == graph_def_pb2.ARROW_PROPERTY: n = graph._convert_to_label_id_tuple(n) op = dag_utils.report_graph( graph, types_pb2.NODE_DATA, node=simdjson.dumps(n).encode("utf-8") ) archive = op.eval() return msgpack.loads(archive.get_bytes(), use_list=False)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 12131, 41992, 4912, 31703, 15302, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 24580, 13, 69, 315, 942, 198, 11748, 33245, 198, 6738, 1257, 310, 10141, 1330, 300, 622, 62, 23870, 198, 198, 11748, 31456, 8002, 198, 11748, 985, 67, 17752, 198, 198, 6738, 4823, 29982, 13, 30604, 1330, 48924, 62, 26791, 198, 6738, 4823, 29982, 13, 77, 87, 13, 26791, 13, 44374, 1330, 1598, 62, 76, 7094, 62, 23870, 198, 6738, 4823, 29982, 13, 1676, 1462, 1330, 4823, 62, 4299, 62, 40842, 17, 198, 6738, 4823, 29982, 13, 1676, 1462, 1330, 3858, 62, 40842, 17, 198, 198, 834, 439, 834, 796, 14631, 30562, 8973, 628, 198, 4871, 34088, 25, 198, 220, 220, 220, 37227, 32, 512, 71, 420, 12940, 329, 4823, 29982, 13, 77, 87, 29681, 13, 198, 220, 220, 220, 383, 34088, 318, 10874, 286, 734, 1611, 286, 12940, 25, 262, 24415, 15458, 12940, 329, 198, 220, 220, 220, 11593, 2676, 834, 290, 262, 37491, 52, 12940, 329, 12940, 2051, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5814, 929, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 54, 1670, 510, 262, 24415, 12940, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11925, 796, 2116, 13557, 34960, 13, 17618, 62, 1659, 62, 77, 4147, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11925, 1875, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3368, 881, 1402, 28770, 284, 9320, 4704, 8271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21633, 62, 2676, 62, 23870, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 17440, 62, 312, 62, 23870, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 23870, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 17440, 62, 35226, 62, 23870, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 35226, 62, 23870, 7, 15, 8, 628, 220, 220, 220, 1303, 37491, 52, 327, 3694, 198, 220, 220, 220, 2488, 75, 622, 62, 23870, 7, 16, 10535, 8, 628, 220, 220, 220, 2488, 75, 622, 62, 23870, 7, 16, 10535, 8, 628, 220, 220, 220, 2488, 75, 622, 62, 23870, 7, 16, 10535, 8, 628, 220, 220, 220, 2488, 75, 622, 62, 23870, 7, 16, 10535, 8, 628, 220, 220, 220, 2488, 75, 622, 62, 23870, 7, 16, 10535, 8, 628, 220, 220, 220, 825, 10548, 62, 17440, 62, 35226, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 290, 10548, 262, 10139, 708, 81, 12940, 351, 10139, 4686, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 290, 2116, 13, 17440, 62, 35226, 62, 31494, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 70, 312, 11, 2116, 13, 17440, 62, 35226, 62, 23870, 796, 277, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 70, 312, 6624, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10548, 284, 1459, 10139, 62, 312, 62, 23870, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2676, 62, 70, 312, 14512, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 17440, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 35226, 62, 31494, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 10548, 284, 1459, 10139, 62, 312, 62, 23870, 11, 815, 21207, 757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 17440, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17440, 62, 35226, 62, 31494, 628, 220, 220, 220, 825, 10548, 62, 2385, 535, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 290, 10548, 262, 17458, 4780, 12940, 351, 10139, 4686, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 290, 2116, 13, 2385, 535, 62, 31494, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 69, 315, 942, 14692, 2385, 535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 70, 312, 11, 2116, 13, 2385, 535, 62, 23870, 796, 277, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 70, 312, 6624, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2676, 62, 70, 312, 14512, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 23870, 7, 944, 13, 2676, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 31494, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 2385, 535, 62, 31494, 628, 220, 220, 220, 825, 10548, 62, 2385, 535, 62, 35226, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 290, 10548, 262, 17458, 4780, 708, 81, 12940, 351, 10139, 4686, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 290, 2116, 13, 2385, 535, 62, 35226, 62, 31494, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 70, 312, 11, 2116, 13, 2385, 535, 62, 35226, 62, 23870, 796, 277, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 70, 312, 6624, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2676, 62, 70, 312, 14512, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 35226, 62, 31494, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 2385, 535, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 2385, 535, 62, 35226, 62, 31494, 628, 220, 220, 220, 825, 10548, 62, 28764, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 290, 10548, 262, 2747, 4780, 12940, 351, 10139, 4686, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 290, 2116, 13, 28764, 62, 31494, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 28764, 8973, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 69, 315, 942, 14692, 28764, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 70, 312, 11, 2116, 13, 28764, 62, 23870, 796, 277, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 70, 312, 6624, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2676, 62, 70, 312, 14512, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 23870, 7, 944, 13, 2676, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 31494, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28764, 407, 10548, 1600, 923, 62, 70, 312, 11, 2116, 13, 2676, 62, 3866, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 28764, 62, 31494, 628, 220, 220, 220, 825, 10548, 62, 28764, 62, 35226, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 290, 10548, 262, 2747, 4780, 708, 81, 12940, 351, 10139, 4686, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 290, 2116, 13, 28764, 62, 35226, 62, 31494, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 8973, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 70, 312, 11, 2116, 13, 28764, 62, 35226, 62, 23870, 796, 277, 13, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 70, 312, 6624, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2676, 62, 70, 312, 14512, 2116, 13, 2676, 62, 3866, 62, 70, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 70, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 35226, 62, 31494, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 292, 13361, 62, 69, 7569, 62, 28764, 62, 35226, 62, 23870, 7, 944, 13, 2676, 62, 3866, 62, 70, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 28764, 62, 35226, 62, 31494, 628, 220, 220, 220, 2488, 20063, 62, 76, 7094, 62, 23870, 628, 220, 220, 220, 2488, 20063, 62, 76, 7094, 62, 23870, 628, 220, 220, 220, 2488, 20063, 62, 76, 7094, 62, 23870, 628, 220, 220, 220, 825, 1598, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19856, 15458, 12940, 290, 300, 622, 12940, 11, 13259, 262, 3722, 290, 5814, 929, 757, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 21633, 62, 2676, 62, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 49625, 2902, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21633, 62, 2676, 62, 23870, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2676, 62, 70, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2676, 62, 3866, 62, 70, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 17, 72, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 312, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 35226, 62, 31494, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 31494, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 796, 2116, 13, 2385, 535, 62, 35226, 62, 31494, 796, 2116, 13, 28764, 62, 31494, 796, 2116, 13, 28764, 62, 35226, 62, 31494, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 17440, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 13138, 669, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 2385, 535, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 28764, 721, 23295, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 28764, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31975, 929, 3419, 628, 220, 220, 220, 825, 1598, 62, 17440, 62, 35226, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19856, 262, 10139, 708, 81, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 1, 4083, 66, 21130, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 1, 4083, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24580, 13, 69, 315, 942, 13, 34, 590, 3353, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 17440, 62, 35226, 8973, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 17440, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17440, 62, 35226, 62, 31494, 796, 10352, 628, 220, 220, 220, 825, 1598, 62, 710, 394, 2865, 62, 35226, 62, 23870, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19856, 262, 4780, 708, 81, 12940, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 1, 4083, 66, 21130, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 1, 4083, 66, 21130, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 1, 4083, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24580, 13, 69, 315, 942, 13, 34, 590, 3353, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 8973, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 1, 4083, 20274, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24580, 13, 69, 315, 942, 13, 34, 590, 3353, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 2385, 535, 62, 35226, 8973, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 315, 942, 14692, 28764, 62, 35226, 8973, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 35226, 62, 23870, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 2385, 535, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 28764, 62, 35226, 13, 23870, 62, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2385, 535, 62, 35226, 62, 31494, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 62, 35226, 62, 31494, 796, 10352, 628, 198, 4299, 651, 62, 710, 394, 32289, 7, 34960, 11, 299, 11, 2747, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 262, 12020, 286, 10139, 287, 4823, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4823, 25, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4823, 284, 12405, 13, 198, 220, 220, 220, 299, 25, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 262, 10139, 284, 651, 12020, 13, 198, 220, 220, 220, 989, 62, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 262, 989, 2099, 286, 989, 4823, 4905, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 62, 40842, 17, 13, 12564, 4093, 50, 62, 17513, 62, 45, 16820, 25, 651, 262, 41491, 286, 10139, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 62, 40842, 17, 13, 4805, 1961, 50, 62, 17513, 62, 45, 16820, 25, 651, 262, 27677, 286, 10139, 11, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4823, 13, 34960, 62, 4906, 6624, 4823, 62, 4299, 62, 40842, 17, 13, 26465, 3913, 62, 4805, 31054, 9936, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 4823, 13557, 1102, 1851, 62, 1462, 62, 18242, 62, 312, 62, 83, 29291, 7, 77, 8, 198, 220, 220, 220, 989, 62, 83, 796, 3858, 62, 40842, 17, 13, 4805, 1961, 50, 62, 17513, 62, 45, 16820, 611, 2747, 2073, 3858, 62, 40842, 17, 13, 12564, 4093, 50, 62, 17513, 62, 45, 16820, 198, 220, 220, 220, 1034, 796, 48924, 62, 26791, 13, 13116, 62, 34960, 7, 34960, 11, 989, 62, 83, 11, 10139, 28, 14323, 67, 17752, 13, 67, 8142, 7, 77, 737, 268, 8189, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 15424, 796, 1034, 13, 18206, 3419, 198, 220, 220, 220, 1441, 31456, 8002, 13, 403, 8002, 65, 7, 17474, 13, 1136, 62, 33661, 22784, 779, 62, 4868, 28, 25101, 8, 628, 198, 4299, 651, 62, 710, 394, 32289, 62, 35226, 7, 34960, 11, 299, 11, 2747, 28, 25101, 2599, 198, 220, 220, 220, 37227, 3855, 262, 12020, 708, 81, 286, 10139, 287, 4823, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4823, 25, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4823, 284, 12405, 13, 198, 220, 220, 220, 299, 25, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 262, 10139, 284, 651, 12020, 13, 198, 220, 220, 220, 989, 62, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 262, 989, 2099, 286, 989, 4823, 4905, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 62, 40842, 17, 13, 12564, 4093, 62, 1404, 5446, 62, 17513, 62, 45, 16820, 25, 651, 262, 41491, 708, 81, 286, 10139, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 62, 40842, 17, 13, 4805, 1961, 62, 1404, 5446, 62, 17513, 62, 45, 16820, 25, 651, 262, 27677, 708, 81, 286, 10139, 11, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 708, 81, 25, 46545, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4823, 13, 34960, 62, 4906, 6624, 4823, 62, 4299, 62, 40842, 17, 13, 26465, 3913, 62, 4805, 31054, 9936, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 4823, 13557, 1102, 1851, 62, 1462, 62, 18242, 62, 312, 62, 83, 29291, 7, 77, 8, 198, 220, 220, 220, 989, 62, 83, 796, 3858, 62, 40842, 17, 13, 4805, 1961, 62, 1404, 5446, 62, 17513, 62, 45, 16820, 611, 2747, 2073, 3858, 62, 40842, 17, 13, 12564, 4093, 62, 1404, 5446, 62, 17513, 62, 45, 16820, 198, 220, 220, 220, 1034, 796, 48924, 62, 26791, 13, 13116, 62, 34960, 7, 34960, 11, 989, 62, 83, 11, 10139, 28, 14323, 67, 17752, 13, 67, 8142, 7, 77, 737, 268, 8189, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 15424, 796, 1034, 13, 18206, 3419, 198, 220, 220, 220, 1441, 985, 67, 17752, 13, 46030, 7, 17474, 13, 1136, 62, 33661, 28955, 628, 198, 4299, 651, 62, 17440, 62, 7890, 7, 34960, 11, 299, 2599, 198, 220, 220, 220, 37227, 35561, 262, 11688, 22155, 286, 10139, 299, 13, 628, 220, 220, 220, 770, 318, 10411, 284, 4600, 38, 58, 77, 60, 44646, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 1058, 13760, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10139, 62, 11600, 1058, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 383, 10139, 11688, 22155, 13, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 402, 796, 299, 87, 13, 6978, 62, 34960, 7, 19, 8, 220, 1303, 393, 6031, 37065, 3503, 198, 220, 220, 220, 13163, 402, 58, 15, 60, 198, 220, 220, 220, 23884, 628, 220, 220, 220, 15932, 25, 2195, 38944, 284, 4600, 38, 58, 77, 60, 63, 318, 407, 10431, 13, 198, 220, 220, 220, 887, 340, 318, 3338, 284, 8333, 12608, 4600, 38, 58, 77, 7131, 6, 21943, 20520, 63, 628, 220, 220, 220, 13163, 402, 58, 15, 7131, 6, 6551, 20520, 796, 767, 198, 220, 220, 220, 13163, 402, 58, 15, 7131, 6, 6551, 20520, 198, 220, 220, 220, 767, 628, 220, 220, 220, 13163, 402, 796, 299, 87, 13, 6978, 62, 34960, 7, 19, 8, 220, 1303, 393, 6031, 37065, 3503, 198, 220, 220, 220, 13163, 402, 13, 1136, 62, 17440, 62, 7890, 7, 15, 11, 352, 8, 198, 220, 220, 220, 23884, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4823, 13, 34960, 62, 4906, 6624, 4823, 62, 4299, 62, 40842, 17, 13, 26465, 3913, 62, 4805, 31054, 9936, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 4823, 13557, 1102, 1851, 62, 1462, 62, 18242, 62, 312, 62, 83, 29291, 7, 77, 8, 198, 220, 220, 220, 1034, 796, 48924, 62, 26791, 13, 13116, 62, 34960, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4823, 11, 3858, 62, 40842, 17, 13, 45, 16820, 62, 26947, 11, 10139, 28, 14323, 67, 17752, 13, 67, 8142, 7, 77, 737, 268, 8189, 7203, 40477, 12, 23, 4943, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 15424, 796, 1034, 13, 18206, 3419, 198, 220, 220, 220, 1441, 31456, 8002, 13, 46030, 7, 17474, 13, 1136, 62, 33661, 22784, 779, 62, 4868, 28, 25101, 8, 198 ]
2.134876
4,797
"""Example of assigning a variable.""" user_name = input("What is your name? ")
[ 37811, 16281, 286, 38875, 257, 7885, 526, 15931, 198, 7220, 62, 3672, 796, 5128, 7203, 2061, 318, 534, 1438, 30, 366, 8, 198 ]
3.478261
23
# See LICENSE for licensing information. # # Copyright (c) 2021 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import os import datetime from shutil import copyfile from subprocess import call, DEVNULL, STDOUT from re import findall from .core import core from .test_bench import test_bench from .test_data import test_data from .sim_cache import sim_cache import debug from globals import OPTS, print_time class verification: """ Class to generate files for verification and verify the design by running EDA tools. """ def verify(self): """ Run the verifier. """ debug.print_raw("Initializing verification...") self.prepare_files() if OPTS.simulate: self.simulate() if OPTS.synthesize: self.synthesize() debug.print_raw("Verification completed.") def simulate(self): """ Save required files and simulate the design by running an EDA tool's simulator. """ debug.info(1, "Initializing simulation...") debug.info(1, "Writing simulation files...") start_time = datetime.datetime.now() # Write the DRAM file dram_path = OPTS.temp_path + "dram.v" debug.info(1, "Verilog (DRAM): Writing to {}".format(dram_path)) self.sim_cache.dram.sim_dram_write(dram_path) # Write the test bench file tb_path = OPTS.temp_path + "test_bench.v" debug.info(1, "Verilog (Test bench): Writing to {}".format(tb_path)) self.tb.test_bench_write(tb_path) # Write the test data file data_path = OPTS.temp_path + "test_data.v" debug.info(1, "Verilog (Test data): Writing to {}".format(data_path)) self.data.generate_data(OPTS.sim_size) self.data.test_data_write(data_path) # Run FuseSoc for simulation debug.info(1, "Running FuseSoC for simulation...") self.run_fusesoc(self.name, self.core.core_name, OPTS.temp_path, True) # Check the result of the simulation self.check_sim_result(OPTS.temp_path, "icarus.log") print_time("Simulation", datetime.datetime.now(), start_time) def synthesize(self): """ Save required files and synthesize the design by running an EDA tool's synthesizer. """ debug.info(1, "Initializing synthesis...") start_time = datetime.datetime.now() # Convert SRAM modules to blackbox debug.info(1, "Converting OpenRAM modules to blackbox...") self.convert_to_blacbox(OPTS.temp_path + OPTS.tag_array_name + ".v") self.convert_to_blacbox(OPTS.temp_path + OPTS.data_array_name + ".v") if OPTS.replacement_policy.has_sram_array(): self.convert_to_blacbox(OPTS.temp_path + OPTS.use_array_name + ".v") # Run FuseSoc for synthesis debug.info(1, "Running FuseSoC for synthesis...") self.run_fusesoc(self.name, self.core.core_name, OPTS.temp_path, False) # Check the result of the synthesis self.check_synth_result(OPTS.temp_path, "yosys.log") print_time("Synthesis", datetime.datetime.now(), start_time) def prepare_files(self): """ Prepare common files among simulation and synthesis. """ # Write the CORE file core_path = OPTS.temp_path + "verify.core" debug.info(1, "CORE: Writing to {}".format(core_path)) self.core.core_write(core_path) # Copy the generated cache Verilog file cache_path = OPTS.temp_path + self.name + ".v" debug.info(1, "Copying the cache design file to the temp subfolder") copyfile(OPTS.output_path + self.name + ".v", cache_path) if OPTS.run_openram: # Copy the configuration files debug.info(1, "Copying the config files to the temp subfolder") self.copy_config_file(OPTS.data_array_name + "_config.py", OPTS.temp_path) self.copy_config_file(OPTS.tag_array_name + "_config.py", OPTS.temp_path) # Random replacement policy doesn't need a separate SRAM array if OPTS.replacement_policy.has_sram_array(): self.copy_config_file(OPTS.use_array_name + "_config.py", OPTS.temp_path) # Run OpenRAM to generate Verilog files of SRAMs debug.info(1, "Running OpenRAM for the data array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.data_array_name)) debug.info(1, "Running OpenRAM for the tag array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.tag_array_name)) # Random replacement policy doesn't need a separate SRAM array if OPTS.replacement_policy.has_sram_array(): debug.info(1, "Running OpenRAM for the use array...") self.run_openram("{}_config.py".format(OPTS.temp_path + OPTS.use_array_name)) else: debug.info(1, "Skipping to run OpenRAM") def run_openram(self, config_path): """ Run OpenRAM to generate Verilog modules. """ openram_command = "python3 $OPENRAM_HOME/openram.py" if call("{0} {1}".format(openram_command, config_path), cwd=OPTS.temp_path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("OpenRAM failed!", -1) if not OPTS.keep_openram_files: for file in os.listdir(OPTS.temp_path): file_path = OPTS.temp_path + file if not os.path.isdir(file_path) and all([x not in file for x in [".v", ".py", ".core"]]): os.remove(file_path) def run_fusesoc(self, library_name, core_name, path, is_sim): """ Run FuseSoC for simulation or synthesis. """ fusesoc_library_command = "fusesoc library add {0} {1}".format(library_name, path) fusesoc_run_command = "fusesoc run --target={0} --no-export {1}".format("sim" if is_sim else "syn", core_name) debug.info(1, "Adding {} core as library...".format("simulation" if is_sim else "synthesis")) debug.info(1, "Running the {}...".format("simulation" if is_sim else "synthesis")) # Add the CORE file as a library if call(fusesoc_library_command, cwd=path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("FuseSoC failed to add library!", -1) # Run the library for simulation or synthesis if call(fusesoc_run_command, cwd=path, shell=True, stdout=self.stdout, stderr=self.stderr) != 0: debug.error("FuseSoC failed to run!", -1) # Delete the temporary CONF file. # If this file is not deleted, it can cause syntheses to fail in the # future. os.remove(path + "fusesoc.conf") def copy_config_file(self, file_name, dest): """ Copy and modify the config file for simulation and synthesis. """ new_file = open(dest + file_name, "w") with open(OPTS.output_path + file_name) as f: for line in f: if line.startswith("output_path"): new_file.write("output_path = \"{}\"\n".format(dest)) else: new_file.write(line) # Verification needs only the Verilog files. # This option will decrease OpenRAM's runtime (hopefully). new_file.write("netlist_only = True\n") new_file.close() def convert_to_blacbox(self, file_path): """ Convert the given Verilog module file to blackbox. """ keep = [] # Save blackbox file as "filename_bb.v" bb_file_path = file_path[:-2] + "_bb.v" with open(file_path, "r") as f: delete = False for line in f: if line.lstrip().startswith("reg"): delete = True if not delete: keep.append(line) keep.append("endmodule\n") f = open(bb_file_path, "w") f.writelines(keep) f.close() def check_synth_result(self, path, file_name): """ Read the log file of the simulation. """ error_prefix = "found and reported" # Check the error count lines with open("{0}build/{1}/syn-yosys/{2}".format(path, self.core.core_name.replace(":", "_"), file_name)) as f: for line in f: # TODO: How to check whether the synthesis was successful? # Check if error count is nonzero if line.find(error_prefix) != -1 and int(findall(r"\d+", line)[0]) != 0: debug.error("Synthesis failed!", -1) # Check if there is an "ERROR" if line.find("ERROR") != -1: debug.error("Synthesis failed!", -1) debug.info(1, "Synthesis successful.") def check_sim_result(self, path, file_name): """ Read the log file of the simulation. """ # Result of the simulation is supposed to be at the end of the log file with open("{0}build/{1}/sim-icarus/{2}".format(path, self.core.core_name.replace(":", "_"), file_name)) as f: for line in f: pass if line.rstrip() == self.tb.success_message: debug.info(1, "Simulation successful.") else: debug.error("Simulation failed!", -1)
[ 2, 4091, 38559, 24290, 329, 15665, 1321, 13, 198, 2, 198, 2, 15069, 357, 66, 8, 33448, 3310, 658, 286, 262, 2059, 286, 3442, 290, 383, 5926, 198, 2, 286, 3310, 658, 329, 262, 10433, 36694, 290, 19663, 5535, 198, 2, 357, 27362, 329, 290, 319, 8378, 286, 10433, 1812, 2059, 8, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 11748, 28686, 198, 11748, 4818, 8079, 198, 6738, 4423, 346, 1330, 4866, 7753, 198, 6738, 850, 14681, 1330, 869, 11, 5550, 53, 33991, 11, 48571, 12425, 198, 6738, 302, 1330, 1064, 439, 198, 6738, 764, 7295, 1330, 4755, 198, 6738, 764, 9288, 62, 26968, 1330, 1332, 62, 26968, 198, 6738, 764, 9288, 62, 7890, 1330, 1332, 62, 7890, 198, 6738, 764, 14323, 62, 23870, 1330, 985, 62, 23870, 198, 11748, 14257, 198, 6738, 15095, 874, 1330, 13349, 4694, 11, 3601, 62, 2435, 628, 198, 4871, 19637, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 284, 7716, 3696, 329, 19637, 290, 11767, 262, 1486, 416, 2491, 198, 220, 220, 220, 412, 5631, 4899, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 11767, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5660, 262, 3326, 7483, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 4798, 62, 1831, 7203, 24243, 2890, 19637, 9313, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46012, 533, 62, 16624, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 14323, 5039, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 5039, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 1837, 429, 956, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1837, 429, 956, 1096, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 4798, 62, 1831, 7203, 13414, 2649, 5668, 19570, 628, 198, 220, 220, 220, 825, 29308, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12793, 2672, 3696, 290, 29308, 262, 1486, 416, 2491, 281, 412, 5631, 2891, 338, 198, 220, 220, 220, 220, 220, 220, 220, 35375, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 24243, 2890, 18640, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 33874, 18640, 3696, 9313, 8, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 262, 10560, 2390, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 4850, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 366, 67, 859, 13, 85, 1, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13414, 346, 519, 357, 7707, 2390, 2599, 22183, 284, 23884, 1911, 18982, 7, 67, 859, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14323, 62, 23870, 13, 67, 859, 13, 14323, 62, 67, 859, 62, 13564, 7, 67, 859, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 262, 1332, 7624, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 256, 65, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 366, 9288, 62, 26968, 13, 85, 1, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13414, 346, 519, 357, 14402, 7624, 2599, 22183, 284, 23884, 1911, 18982, 7, 83, 65, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 65, 13, 9288, 62, 26968, 62, 13564, 7, 83, 65, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 262, 1332, 1366, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 366, 9288, 62, 7890, 13, 85, 1, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13414, 346, 519, 357, 14402, 1366, 2599, 22183, 284, 23884, 1911, 18982, 7, 7890, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 13, 8612, 378, 62, 7890, 7, 3185, 4694, 13, 14323, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 13, 9288, 62, 7890, 62, 13564, 7, 7890, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 376, 1904, 37949, 329, 18640, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 376, 1904, 2396, 34, 329, 18640, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 69, 2664, 420, 7, 944, 13, 3672, 11, 2116, 13, 7295, 13, 7295, 62, 3672, 11, 13349, 4694, 13, 29510, 62, 6978, 11, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 1255, 286, 262, 18640, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 14323, 62, 20274, 7, 3185, 4694, 13, 29510, 62, 6978, 11, 366, 291, 20272, 13, 6404, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 2435, 7203, 8890, 1741, 1600, 4818, 8079, 13, 19608, 8079, 13, 2197, 22784, 923, 62, 2435, 8, 628, 198, 220, 220, 220, 825, 24983, 1096, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12793, 2672, 3696, 290, 24983, 1096, 262, 1486, 416, 2491, 281, 412, 5631, 2891, 338, 198, 220, 220, 220, 220, 220, 220, 220, 24983, 7509, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 24243, 2890, 21263, 9313, 8, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 16808, 2390, 13103, 284, 2042, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 3103, 48820, 4946, 24115, 13103, 284, 2042, 3524, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 1851, 62, 1462, 62, 2436, 330, 3524, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 12985, 62, 18747, 62, 3672, 1343, 27071, 85, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 1851, 62, 1462, 62, 2436, 330, 3524, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 7890, 62, 18747, 62, 3672, 1343, 27071, 85, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 35666, 5592, 62, 30586, 13, 10134, 62, 82, 859, 62, 18747, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 1851, 62, 1462, 62, 2436, 330, 3524, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 1904, 62, 18747, 62, 3672, 1343, 27071, 85, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 376, 1904, 37949, 329, 21263, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 376, 1904, 2396, 34, 329, 21263, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 69, 2664, 420, 7, 944, 13, 3672, 11, 2116, 13, 7295, 13, 7295, 62, 3672, 11, 13349, 4694, 13, 29510, 62, 6978, 11, 10352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 1255, 286, 262, 21263, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 28869, 400, 62, 20274, 7, 3185, 4694, 13, 29510, 62, 6978, 11, 366, 88, 418, 893, 13, 6404, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 2435, 7203, 13940, 429, 8497, 1600, 4818, 8079, 13, 19608, 8079, 13, 2197, 22784, 923, 62, 2435, 8, 628, 198, 220, 220, 220, 825, 8335, 62, 16624, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43426, 2219, 3696, 1871, 18640, 290, 21263, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 262, 327, 6965, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 4755, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 366, 332, 1958, 13, 7295, 1, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 34, 6965, 25, 22183, 284, 23884, 1911, 18982, 7, 7295, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7295, 13, 7295, 62, 13564, 7, 7295, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17393, 262, 7560, 12940, 4643, 346, 519, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 2116, 13, 3672, 1343, 27071, 85, 1, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13379, 1112, 262, 12940, 1486, 2393, 284, 262, 20218, 850, 43551, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4866, 7753, 7, 3185, 4694, 13, 22915, 62, 6978, 1343, 2116, 13, 3672, 1343, 27071, 85, 1600, 12940, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 5143, 62, 9654, 859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17393, 262, 8398, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13379, 1112, 262, 4566, 3696, 284, 262, 20218, 850, 43551, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30073, 62, 11250, 62, 7753, 7, 3185, 4694, 13, 7890, 62, 18747, 62, 3672, 1343, 45434, 11250, 13, 9078, 1600, 13349, 4694, 13, 29510, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30073, 62, 11250, 62, 7753, 7, 3185, 4694, 13, 12985, 62, 18747, 62, 3672, 1343, 45434, 11250, 13, 9078, 1600, 13349, 4694, 13, 29510, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 9014, 2450, 1595, 470, 761, 257, 4553, 16808, 2390, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 35666, 5592, 62, 30586, 13, 10134, 62, 82, 859, 62, 18747, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30073, 62, 11250, 62, 7753, 7, 3185, 4694, 13, 1904, 62, 18747, 62, 3672, 1343, 45434, 11250, 13, 9078, 1600, 13349, 4694, 13, 29510, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 4946, 24115, 284, 7716, 4643, 346, 519, 3696, 286, 16808, 2390, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 4946, 24115, 329, 262, 1366, 7177, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 9654, 859, 7203, 90, 92, 62, 11250, 13, 9078, 1911, 18982, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 7890, 62, 18747, 62, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 4946, 24115, 329, 262, 7621, 7177, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 9654, 859, 7203, 90, 92, 62, 11250, 13, 9078, 1911, 18982, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 12985, 62, 18747, 62, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 9014, 2450, 1595, 470, 761, 257, 4553, 16808, 2390, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13349, 4694, 13, 35666, 5592, 62, 30586, 13, 10134, 62, 82, 859, 62, 18747, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 4946, 24115, 329, 262, 779, 7177, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 9654, 859, 7203, 90, 92, 62, 11250, 13, 9078, 1911, 18982, 7, 3185, 4694, 13, 29510, 62, 6978, 1343, 13349, 4694, 13, 1904, 62, 18747, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 50, 4106, 2105, 284, 1057, 4946, 24115, 4943, 628, 198, 220, 220, 220, 825, 1057, 62, 9654, 859, 7, 944, 11, 4566, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5660, 4946, 24115, 284, 7716, 4643, 346, 519, 13103, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1280, 859, 62, 21812, 796, 366, 29412, 18, 720, 3185, 1677, 24115, 62, 39069, 14, 9654, 859, 13, 9078, 1, 628, 220, 220, 220, 220, 220, 220, 220, 611, 869, 7203, 90, 15, 92, 1391, 16, 92, 1911, 18982, 7, 9654, 859, 62, 21812, 11, 4566, 62, 6978, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16993, 28, 3185, 4694, 13, 29510, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 944, 13, 19282, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 944, 13, 301, 1082, 81, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 11505, 24115, 4054, 40754, 532, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 13349, 4694, 13, 14894, 62, 9654, 859, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 28686, 13, 4868, 15908, 7, 3185, 4694, 13, 29510, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 13349, 4694, 13, 29510, 62, 6978, 1343, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 7753, 62, 6978, 8, 290, 477, 26933, 87, 407, 287, 2393, 329, 2124, 287, 685, 1911, 85, 1600, 27071, 9078, 1600, 27071, 7295, 8973, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 7753, 62, 6978, 8, 628, 198, 220, 220, 220, 825, 1057, 62, 69, 2664, 420, 7, 944, 11, 5888, 62, 3672, 11, 4755, 62, 3672, 11, 3108, 11, 318, 62, 14323, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5660, 376, 1904, 2396, 34, 329, 18640, 393, 21263, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 277, 2664, 420, 62, 32016, 62, 21812, 796, 366, 69, 2664, 420, 5888, 751, 1391, 15, 92, 1391, 16, 92, 1911, 18982, 7, 32016, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 2664, 420, 62, 5143, 62, 21812, 796, 366, 69, 2664, 420, 1057, 1377, 16793, 34758, 15, 92, 1377, 3919, 12, 39344, 1391, 16, 92, 1911, 18982, 7203, 14323, 1, 611, 318, 62, 14323, 2073, 366, 28869, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4755, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 32901, 23884, 4755, 355, 5888, 9313, 13, 18982, 7203, 14323, 1741, 1, 611, 318, 62, 14323, 2073, 366, 1837, 429, 8497, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 28768, 262, 23884, 9313, 13, 18982, 7203, 14323, 1741, 1, 611, 318, 62, 14323, 2073, 366, 1837, 429, 8497, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 327, 6965, 2393, 355, 257, 5888, 198, 220, 220, 220, 220, 220, 220, 220, 611, 869, 7, 69, 2664, 420, 62, 32016, 62, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16993, 28, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 944, 13, 19282, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 944, 13, 301, 1082, 81, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 37, 1904, 2396, 34, 4054, 284, 751, 5888, 40754, 532, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5660, 262, 5888, 329, 18640, 393, 21263, 198, 220, 220, 220, 220, 220, 220, 220, 611, 869, 7, 69, 2664, 420, 62, 5143, 62, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16993, 28, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 944, 13, 19282, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 944, 13, 301, 1082, 81, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 37, 1904, 2396, 34, 4054, 284, 1057, 40754, 532, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23520, 262, 8584, 7102, 37, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 428, 2393, 318, 407, 13140, 11, 340, 460, 2728, 24983, 274, 284, 2038, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2003, 13, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 6978, 1343, 366, 69, 2664, 420, 13, 10414, 4943, 628, 198, 220, 220, 220, 825, 4866, 62, 11250, 62, 7753, 7, 944, 11, 2393, 62, 3672, 11, 2244, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17393, 290, 13096, 262, 4566, 2393, 329, 18640, 290, 21263, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 796, 1280, 7, 16520, 1343, 2393, 62, 3672, 11, 366, 86, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 3185, 4694, 13, 22915, 62, 6978, 1343, 2393, 62, 3672, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 22915, 62, 6978, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 13, 13564, 7203, 22915, 62, 6978, 796, 19990, 90, 92, 7879, 59, 77, 1911, 18982, 7, 16520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 13, 13564, 7, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4643, 2649, 2476, 691, 262, 4643, 346, 519, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 3038, 481, 10070, 4946, 24115, 338, 19124, 357, 8548, 7549, 737, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 13, 13564, 7203, 3262, 4868, 62, 8807, 796, 6407, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 13, 19836, 3419, 628, 198, 220, 220, 220, 825, 10385, 62, 1462, 62, 2436, 330, 3524, 7, 944, 11, 2393, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38240, 262, 1813, 4643, 346, 519, 8265, 2393, 284, 2042, 3524, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1394, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 2042, 3524, 2393, 355, 366, 34345, 62, 11848, 13, 85, 1, 198, 220, 220, 220, 220, 220, 220, 220, 275, 65, 62, 7753, 62, 6978, 796, 2393, 62, 6978, 58, 21912, 17, 60, 1343, 45434, 11848, 13, 85, 1, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 6978, 11, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12233, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 75, 36311, 22446, 9688, 2032, 342, 7203, 2301, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12233, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 12233, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 13, 33295, 7, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1394, 13, 33295, 7203, 437, 21412, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1280, 7, 11848, 62, 7753, 62, 6978, 11, 366, 86, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 8933, 20655, 7, 14894, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 19836, 3419, 628, 198, 220, 220, 220, 825, 2198, 62, 28869, 400, 62, 20274, 7, 944, 11, 3108, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4149, 262, 2604, 2393, 286, 262, 18640, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 40290, 796, 366, 9275, 290, 2098, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 4049, 954, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 90, 15, 92, 11249, 14, 90, 16, 92, 14, 28869, 12, 88, 418, 893, 14, 90, 17, 92, 1911, 18982, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7295, 13, 7295, 62, 3672, 13, 33491, 7, 1298, 1600, 45434, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 4008, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 1374, 284, 2198, 1771, 262, 21263, 373, 4388, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 4049, 954, 318, 1729, 22570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 19796, 7, 18224, 62, 40290, 8, 14512, 532, 16, 290, 493, 7, 19796, 439, 7, 81, 1, 59, 67, 10, 1600, 1627, 38381, 15, 12962, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 13940, 429, 8497, 4054, 40754, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 612, 318, 281, 366, 24908, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 19796, 7203, 24908, 4943, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 13940, 429, 8497, 4054, 40754, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 13940, 429, 8497, 4388, 19570, 628, 198, 220, 220, 220, 825, 2198, 62, 14323, 62, 20274, 7, 944, 11, 3108, 11, 2393, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4149, 262, 2604, 2393, 286, 262, 18640, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 25414, 286, 262, 18640, 318, 4385, 284, 307, 379, 262, 886, 286, 262, 2604, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 90, 15, 92, 11249, 14, 90, 16, 92, 14, 14323, 12, 291, 20272, 14, 90, 17, 92, 1911, 18982, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7295, 13, 7295, 62, 3672, 13, 33491, 7, 1298, 1600, 45434, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 4008, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 81, 36311, 3419, 6624, 2116, 13, 83, 65, 13, 13138, 62, 20500, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 10951, 7, 16, 11, 366, 8890, 1741, 4388, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 18224, 7203, 8890, 1741, 4054, 40754, 532, 16, 8 ]
2.130776
4,718
import os import time import logging import numpy from . import unittest from sarpy.io.complex.sentinel import SentinelReader from sarpy.deprecated.io.complex.sentinel import Reader as DepReader
[ 11748, 28686, 198, 11748, 640, 198, 11748, 18931, 198, 11748, 299, 32152, 198, 198, 6738, 764, 1330, 555, 715, 395, 198, 198, 6738, 264, 5117, 88, 13, 952, 13, 41887, 13, 34086, 20538, 1330, 26716, 33634, 198, 6738, 264, 5117, 88, 13, 10378, 31023, 13, 952, 13, 41887, 13, 34086, 20538, 1330, 25342, 355, 2129, 33634, 628, 198 ]
3.431034
58
from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Embedding from keras.preprocessing.sequence import pad_sequences from keras.utils import plot_model # model summary ##train model ## save models ## generate return_sequences
[ 6738, 41927, 292, 13, 3866, 36948, 13, 5239, 1330, 29130, 7509, 198, 6738, 41927, 292, 13, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 406, 2257, 44, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 13302, 6048, 278, 198, 6738, 41927, 292, 13, 3866, 36948, 13, 43167, 1330, 14841, 62, 3107, 3007, 198, 6738, 41927, 292, 13, 26791, 1330, 7110, 62, 19849, 628, 628, 198, 220, 220, 220, 1303, 2746, 10638, 628, 198, 220, 220, 220, 22492, 27432, 2746, 628, 220, 220, 220, 22492, 3613, 4981, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 7716, 1441, 62, 3107, 3007, 198 ]
3.136364
132
import argparse
[ 11748, 1822, 29572, 198 ]
4
4
# -*- coding: utf-8 -*- from collections import defaultdict import re import numpy as np from pyfr.readers import BaseReader, NodalMeshAssembler from pyfr.readers.nodemaps import GmshNodeMaps
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 302, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 12972, 8310, 13, 961, 364, 1330, 7308, 33634, 11, 399, 375, 282, 37031, 1722, 4428, 1754, 198, 6738, 12972, 8310, 13, 961, 364, 13, 77, 375, 368, 1686, 1330, 402, 907, 71, 19667, 47010, 628, 198 ]
2.855072
69
# -*- encoding: utf-8 -*- # Copyright (c) 2019 Stephen Bunn <[email protected]> # ISC License <https://opensource.org/licenses/isc> """ """ import pytest from tomlark.parser import Parser @pytest.fixture
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 13130, 7970, 347, 20935, 1279, 9662, 831, 31, 65, 20935, 13, 952, 29, 198, 2, 3180, 34, 13789, 1279, 5450, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 2304, 29, 198, 198, 37811, 198, 37811, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 284, 4029, 668, 13, 48610, 1330, 23042, 263, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.5875
80
VERSION = 1 # The version number of the format SECTION_COUNT = 14
[ 43717, 796, 352, 220, 1303, 383, 2196, 1271, 286, 262, 5794, 198, 50, 24565, 62, 34, 28270, 796, 1478, 198 ]
3.35
20
import subprocess as sp
[ 11748, 850, 14681, 355, 599, 628, 628 ]
3.857143
7
#!/usr/bin/python # -*- coding: utf-8 -*-
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198 ]
1.909091
22
"""A decorator that allows users to run SQL queries natively in Airflow.""" __version__ = "0.9.1" # The following line is an import work-around to avoid raising a circular dependency issue related to `create_database` # Without this, if we run the following imports, in this specific order: # from astro.databases import create_database # from astro.sql.table import Metadata, Table, create_unique_table_name # We face ImportError, as it happened in: # https://github.com/astronomer/astro-sdk/pull/396/commits/fbe73bdbe46d65777258a5f79f461ef69f08a673 # https://github.com/astronomer/astro-sdk/actions/runs/2378526135 # Although astro.database does not depend on astro.sql, it depends on astro.sql.table - and, unless astro.sql was # imported beforehand, it will also load astro.sql. In astro.sql we import lots of operators which depend on # astro.database, and this is what leads to the circular dependency. import astro.sql # noqa: F401 # This is needed to allow Airflow to pick up specific metadata fields it needs # for certain features. We recognize it's a bit unclean to define these in # multiple places, but at this point it's the only workaround if you'd like # your custom conn type to show up in the Airflow UI.
[ 37811, 32, 11705, 1352, 326, 3578, 2985, 284, 1057, 16363, 20743, 6868, 306, 287, 3701, 11125, 526, 15931, 198, 198, 834, 9641, 834, 796, 366, 15, 13, 24, 13, 16, 1, 198, 198, 2, 383, 1708, 1627, 318, 281, 1330, 670, 12, 14145, 284, 3368, 8620, 257, 18620, 20203, 2071, 3519, 284, 4600, 17953, 62, 48806, 63, 198, 2, 9170, 428, 11, 611, 356, 1057, 262, 1708, 17944, 11, 287, 428, 2176, 1502, 25, 198, 2, 220, 220, 422, 6468, 305, 13, 19608, 18826, 1330, 2251, 62, 48806, 198, 2, 220, 220, 422, 6468, 305, 13, 25410, 13, 11487, 1330, 3395, 14706, 11, 8655, 11, 2251, 62, 34642, 62, 11487, 62, 3672, 198, 2, 775, 1986, 17267, 12331, 11, 355, 340, 3022, 287, 25, 198, 2, 3740, 1378, 12567, 13, 785, 14, 459, 1313, 12057, 14, 459, 305, 12, 21282, 74, 14, 31216, 14, 34107, 14, 9503, 896, 14, 69, 1350, 4790, 17457, 1350, 3510, 67, 2996, 29331, 25600, 64, 20, 69, 3720, 69, 40652, 891, 3388, 69, 2919, 64, 45758, 198, 2, 3740, 1378, 12567, 13, 785, 14, 459, 1313, 12057, 14, 459, 305, 12, 21282, 74, 14, 4658, 14, 48381, 14, 1954, 41172, 2075, 17059, 198, 2, 4900, 6468, 305, 13, 48806, 857, 407, 4745, 319, 6468, 305, 13, 25410, 11, 340, 8338, 319, 6468, 305, 13, 25410, 13, 11487, 532, 290, 11, 4556, 6468, 305, 13, 25410, 373, 198, 2, 17392, 27091, 11, 340, 481, 635, 3440, 6468, 305, 13, 25410, 13, 554, 6468, 305, 13, 25410, 356, 1330, 6041, 286, 12879, 543, 4745, 319, 198, 2, 6468, 305, 13, 48806, 11, 290, 428, 318, 644, 5983, 284, 262, 18620, 20203, 13, 198, 11748, 6468, 305, 13, 25410, 220, 1303, 645, 20402, 25, 376, 21844, 628, 198, 2, 770, 318, 2622, 284, 1249, 3701, 11125, 284, 2298, 510, 2176, 20150, 7032, 340, 2476, 198, 2, 329, 1728, 3033, 13, 775, 7564, 340, 338, 257, 1643, 7711, 272, 284, 8160, 777, 287, 198, 2, 3294, 4113, 11, 475, 379, 428, 966, 340, 338, 262, 691, 46513, 611, 345, 1549, 588, 198, 2, 534, 2183, 48260, 2099, 284, 905, 510, 287, 262, 3701, 11125, 12454, 13, 198 ]
3.441341
358
# This sample tests the case where a variadic TypeVar is used in # conjunction with a keyword-only parameter. It also tests protocol # invariance validation when a TypeVarTuple is used in the protocol # along with a non-variadic TypeVar. # pyright: strict from typing import Protocol, TypeVar from typing_extensions import TypeVarTuple, Unpack T = TypeVar("T") Ts = TypeVarTuple("Ts") a: CallbackA[int, str, bool] = example reveal_type(a, expected_text="(a: int, b: str, *, keyed: bool) -> tuple[int, str, bool]")
[ 2, 770, 6291, 5254, 262, 1339, 810, 257, 5553, 23876, 5994, 19852, 318, 973, 287, 198, 2, 17856, 351, 257, 21179, 12, 8807, 11507, 13, 632, 635, 5254, 8435, 198, 2, 25275, 590, 21201, 618, 257, 5994, 19852, 51, 29291, 318, 973, 287, 262, 8435, 198, 2, 1863, 351, 257, 1729, 12, 25641, 23876, 5994, 19852, 13, 198, 198, 2, 279, 4766, 25, 7646, 198, 198, 6738, 19720, 1330, 20497, 11, 5994, 19852, 198, 6738, 19720, 62, 2302, 5736, 1330, 5994, 19852, 51, 29291, 11, 791, 8002, 198, 198, 51, 796, 5994, 19852, 7203, 51, 4943, 198, 33758, 796, 5994, 19852, 51, 29291, 7203, 33758, 4943, 628, 628, 198, 64, 25, 4889, 1891, 32, 58, 600, 11, 965, 11, 20512, 60, 796, 1672, 198, 198, 36955, 282, 62, 4906, 7, 64, 11, 2938, 62, 5239, 2625, 7, 64, 25, 493, 11, 275, 25, 965, 11, 1635, 11, 1994, 276, 25, 20512, 8, 4613, 46545, 58, 600, 11, 965, 11, 20512, 60, 4943, 198 ]
3.202454
163
import unittest import responses from dnsimple import DNSimpleException from dnsimple.response import Pagination from dnsimple.struct import Contact from tests.helpers import DNSimpleMockResponse, DNSimpleTest if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 198, 11748, 9109, 198, 198, 6738, 288, 5907, 320, 1154, 1330, 18538, 320, 1154, 16922, 198, 6738, 288, 5907, 320, 1154, 13, 26209, 1330, 31525, 1883, 198, 6738, 288, 5907, 320, 1154, 13, 7249, 1330, 14039, 198, 6738, 5254, 13, 16794, 364, 1330, 18538, 320, 1154, 44, 735, 31077, 11, 18538, 320, 1154, 14402, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.156627
83
# -*- coding: utf-8 -*- from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns( 'replacedata.views', # url(r'^$', 'oms.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^repair/history/$', 'repairHistoryData', name='repair_data'), url(r'^api/history/$', 'repairHistoryDataAPI', name='repair_data_api'), )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 2291, 11, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 7572, 7, 198, 220, 220, 220, 705, 260, 21820, 1045, 13, 33571, 3256, 198, 220, 220, 220, 1303, 19016, 7, 81, 6, 61, 3, 3256, 705, 3150, 13, 33571, 13, 11195, 3256, 1438, 11639, 11195, 33809, 198, 220, 220, 220, 1303, 19016, 7, 81, 6, 61, 14036, 14, 3256, 2291, 10786, 14036, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 49932, 14, 23569, 32624, 3256, 705, 49932, 18122, 6601, 3256, 1438, 11639, 49932, 62, 7890, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 23569, 32624, 3256, 705, 49932, 18122, 6601, 17614, 3256, 1438, 11639, 49932, 62, 7890, 62, 15042, 33809, 198, 8, 198 ]
2.595092
163
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Zoneout regularization.""" import torch.nn as nn
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 13130, 36298, 2059, 357, 39, 7058, 69, 12994, 554, 363, 7487, 8, 198, 2, 220, 24843, 362, 13, 15, 220, 357, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 8, 198, 198, 37811, 26961, 448, 3218, 1634, 526, 15931, 198, 198, 11748, 28034, 13, 20471, 355, 299, 77, 628, 198 ]
2.477273
88
##Problem Description ##The program takes in a number and finds the sum of digits in a number. print("-------------------Method 1----------------------------------") temp=n=int(input("Enter a number: ")) total = 0 while n>0 : total = total+(n%10) n=n//10 print("The total sum of digits in the number {0} is: {1} ".format(temp,total)) print("--------------------------------------------------------------") print("-------------------Method 2----------------------------------") l=[] temp=n=int(input("Enter a number: ")) sum_digits(n) print("The total sum of digits in the number {0} is: {1} ".format(temp,sum(l))) print("--------------------------------------------------------------")
[ 2235, 40781, 12489, 201, 198, 2235, 464, 1430, 2753, 287, 257, 1271, 290, 7228, 262, 2160, 286, 19561, 287, 257, 1271, 13, 201, 198, 4798, 7203, 1783, 6329, 17410, 352, 3880, 438, 4943, 201, 198, 29510, 28, 77, 28, 600, 7, 15414, 7203, 17469, 257, 1271, 25, 366, 4008, 201, 198, 23350, 796, 657, 201, 198, 4514, 299, 29, 15, 1058, 201, 198, 220, 220, 220, 2472, 796, 2472, 33747, 77, 4, 940, 8, 201, 198, 220, 220, 220, 299, 28, 77, 1003, 940, 201, 198, 4798, 7203, 464, 2472, 2160, 286, 19561, 287, 262, 1271, 1391, 15, 92, 318, 25, 1391, 16, 92, 27071, 18982, 7, 29510, 11, 23350, 4008, 201, 198, 4798, 7203, 47232, 26171, 4943, 201, 198, 201, 198, 4798, 7203, 1783, 6329, 17410, 362, 3880, 438, 4943, 201, 198, 75, 28, 21737, 201, 198, 29510, 28, 77, 28, 600, 7, 15414, 7203, 17469, 257, 1271, 25, 366, 4008, 201, 198, 16345, 62, 12894, 896, 7, 77, 8, 201, 198, 4798, 7203, 464, 2472, 2160, 286, 19561, 287, 262, 1271, 1391, 15, 92, 318, 25, 1391, 16, 92, 27071, 18982, 7, 29510, 11, 16345, 7, 75, 22305, 201, 198, 4798, 7203, 47232, 26171, 4943, 201, 198, 201, 198 ]
3.552239
201
from rest_framework import exceptions, filters
[ 6738, 1334, 62, 30604, 1330, 13269, 11, 16628, 628 ]
5.333333
9
""" AML writer module. """ from pymarlin.utils.logger.logging_utils import getlogger from .base import Writer class Aml(Writer): """ This class implements the Azure ML writer for stats. """ def log_scalar(self, k, v, step): """ Log metric to AML. """ kwargs = { 'global_step': step, k: v } if self.run is not None: self.run.log_row(k, **kwargs) def log_multi(self, k, v, step): """ Log metrics to stdout. """ for key, val in v.items(): key = k+'/'+key self.log_scalar(key, val, step)
[ 37811, 198, 2390, 43, 6260, 8265, 13, 198, 37811, 198, 6738, 12972, 3876, 2815, 13, 26791, 13, 6404, 1362, 13, 6404, 2667, 62, 26791, 1330, 651, 6404, 1362, 198, 6738, 764, 8692, 1330, 26606, 198, 198, 4871, 1703, 75, 7, 34379, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 23986, 262, 22134, 10373, 6260, 329, 9756, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2604, 62, 1416, 282, 283, 7, 944, 11, 479, 11, 410, 11, 2239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5972, 18663, 284, 3001, 43, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20541, 62, 9662, 10354, 2239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 25, 410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5143, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 13, 6404, 62, 808, 7, 74, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 2604, 62, 41684, 7, 944, 11, 479, 11, 410, 11, 2239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5972, 20731, 284, 14367, 448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 410, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 479, 10, 26488, 6, 10, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 62, 1416, 282, 283, 7, 2539, 11, 1188, 11, 2239, 8, 198 ]
1.960843
332
# Definition for singly-linked list.
[ 2, 30396, 329, 1702, 306, 12, 25614, 1351, 13, 628 ]
3.8
10
for _ in range(int(input())): n = int(input()) temp = (n - 1) // 26 temp2 = n % 26 ans = 2**temp if n == 0: print(1,0,0) elif temp2 > 0 and temp2 < 3: print(ans,0,0) elif temp2 > 2 and temp2 < 11: print(0,ans,0) else: print(0,0,ans)
[ 1640, 4808, 287, 2837, 7, 600, 7, 15414, 28955, 2599, 198, 197, 77, 796, 493, 7, 15414, 28955, 198, 197, 29510, 796, 357, 77, 532, 352, 8, 3373, 2608, 198, 197, 29510, 17, 796, 299, 4064, 2608, 198, 197, 504, 796, 362, 1174, 29510, 198, 197, 361, 299, 6624, 657, 25, 3601, 7, 16, 11, 15, 11, 15, 8, 198, 197, 417, 361, 20218, 17, 1875, 657, 290, 20218, 17, 1279, 513, 25, 3601, 7, 504, 11, 15, 11, 15, 8, 198, 197, 417, 361, 20218, 17, 1875, 362, 290, 20218, 17, 1279, 1367, 25, 3601, 7, 15, 11, 504, 11, 15, 8, 198, 197, 17772, 25, 3601, 7, 15, 11, 15, 11, 504, 8 ]
2.086957
115
# The problem to be solved: # We have trucks located in different cities and each truck brings a profit or loss. We have the historical data and determined that the profit depends on the city's population. We want to find this relation. import numpy as np print('Welcome to Machine Learning with Python!') print('Lesson 1: Linear regression') print('\n'+40*'=') # data contains the city population (in 10,000s) in the first column # and the profit/loss (in 10,000$) in the second columns # the data was rescaled to save on calculations and resources consumption # Based on the first entry, a truck in a city of population of 61,101 brought a profit of $175,920 data =\ [ [6.1101,17.592], [5.5277,9.1302], [8.5186,13.662], [7.0032,11.854], [5.8598,6.8233], [8.3829,11.886], [7.4764,4.3483], [8.5781,12], [6.4862,6.5987], [5.0546,3.8166], [5.7107,3.2522], [14.164,15.505], [5.734,3.1551], [8.4084,7.2258], [5.6407,0.71618], [5.3794,3.5129], [6.3654,5.3048], [5.1301,0.56077], [6.4296,3.6518], [7.0708,5.3893], [6.1891,3.1386], [20.27,21.767], [5.4901,4.263], [6.3261,5.1875], [5.5649,3.0825], [18.945,22.638], [12.828,13.501], [10.957,7.0467], [13.176,14.692], [22.203,24.147], [5.2524,-1.22], [6.5894,5.9966], [9.2482,12.134], [5.8918,1.8495], [8.2111,6.5426], [7.9334,4.5623], [8.0959,4.1164], [5.6063,3.3928], [12.836,10.117], [6.3534,5.4974], [5.4069,0.55657], [6.8825,3.9115], [11.708,5.3854], [5.7737,2.4406], [7.8247,6.7318], [7.0931,1.0463], [5.0702,5.1337], [5.8014,1.844], [11.7,8.0043], [5.5416,1.0179], [7.5402,6.7504], [5.3077,1.8396], [7.4239,4.2885], [7.6031,4.9981], [6.3328,1.4233], [6.3589,-1.4211], [6.2742,2.4756], [5.6397,4.6042], [9.3102,3.9624], [9.4536,5.4141], [8.8254,5.1694], [5.1793,-0.74279], [21.279,17.929], [14.908,12.054], [18.959,17.054], [7.2182,4.8852], [8.2951,5.7442], [10.236,7.7754], [5.4994,1.0173], [20.341,20.992], [10.136,6.6799], [7.3345,4.0259], [6.0062,1.2784], [7.2259,3.3411], [5.0269,-2.6807], [6.5479,0.29678], [7.5386,3.8845], [5.0365,5.7014], [10.274,6.7526], [5.1077,2.0576], [5.7292,0.47953], [5.1884,0.20421], [6.3557,0.67861], [9.7687,7.5435], [6.5159,5.3436], [8.5172,4.2415], [9.1802,6.7981], [6.002,0.92695], [5.5204,0.152], [5.0594,2.8214], [5.7077,1.8451], [7.6366,4.2959], [5.8707,7.2029], [5.3054,1.9869], [8.2934,0.14454], [13.394,9.0551], [5.4369,0.61705] ] # We want to make a model able to predict the profit/loss, based on a given population. In order to do some machine learning, the data has to be of a matrix type. # X matrix will hold city population X = np.matrix(data)[:,0] # y matrix will hold the profit/loss information y = np.matrix(data)[:,1] ''' Basically, we are looking for a function f(x) returning the _output_ value y based on its _input_ x. We assume a linear y = ax + b dependence, but it as well might have been a polynominal or any other function. So, we are looking for such a and b values that give us a function that will somehow reflect the profit based on the population. Like this: predicted_profit = a * city_population + b A quick look at the data shows that it is impossible to find a line which would cross all the datapoints. So, we want to have the best possible fit. How do we measure the quality of it? The best possible fit is such that makes the smallest prediction error on the whole dataset. The single error is calculated as the square of the difference between the real and predicted value, so the total error will simply be the sum of all single ones. We thus need a so-called cost function which would return the average error of a given f(x) when trying to explain the datapoints and make predictions. In order to make things quicker, we will look for a vector 'theta', containing the 'a' and 'b' (or more, for more complicated models - theta0, theta1, theta2,...) parameters. ''' print('\nLooking for y=a*x+b function (a,b=theta)') # function J calculates the cost under a given set of theta parameters # the transformation below adds a column of ones to the left of the X matrix, for calculation reasons dataX = np.matrix(data)[:,0:1] X = np.ones((len(dataX),2)) X[:,1:] = dataX # let's check the cost if we would assume theta at two different values print('\nChecking two example cases of theta:') for t in [0,0], [-1,2]: print('Assuming theta vector at {}, the cost would be {:.2f}'.format(t, J(X, y, t).item())) # 32.073, 54.242 ''' Now, how to find the optimal theta vector for our model to predict with the smallest possible error? Assuming that J is a cost function, this is an optimization problem - we need to find the minimum of J. We will use a technique called gradient descent - we will initialize theta at all-zeros and gradually move along the J curve updating all thetas (simultaneously) by small fractions. If J increases - we are going the wrong way, if it decreases - we are moving along this way. ''' # gradient descent function will iteratively update theta by a small fraction alpha (also called the learning rate) for a number of iterations print('\n'+40*'=') # we have the function ready, let's do some machine learning! theta = np.matrix([np.random.random(),np.random.random()]) # we initialize theta at random values alpha = 0.01 # learning rate - if too low, the algorithm will not converge, if too high, it can "explode" iters = 2000 # number of iterations - reduce if "Time limit exceeded" print('\n== Model summary ==\nLearning rate: {}\nIterations: {}\nInitial theta: {}\nInitial J: {:.2f}\n'.format(alpha, iters, theta, J(X,y,theta).item())) print('Training the model... ') # this actually trains our model and finds the optimal theta value J_history, theta_min = gradient(X, y, alpha, theta, iters) print('Done.') print('\nFinal theta: {}\nFinal J: {:.2f}'.format(theta_min.T, J(X,y,theta_min.T).item())) ''' Now that we have the model trained, we can use it to predict the profit/loss Usually, since we want to solve a real problem, we define our function to accept real numbers, not rescaled ones. However, we have to remember, that the model itself is trained on rescaled data, so we have to provide it. ''' # This function will calculate the predicted profit # Now, let's check for a random city p = 50000 + 100000 * np.random.random() print('\n'+40*'=') print('\nBased on learned data, predicted profit for a city of population of {:,.0f} is ${:,.2f}.\n'.format(p, predict_profit(p).item())) # For the business decision, it would also be good to know what is the minimal population of a city to start the profitable business (predicted value is at least positive) p_min = -theta_min[0].item() / theta_min[1].item() * 10000 print('In order for the business to be profitable, it has to be started in a city with population greater than {:,.0f}.'.format(p_min)) print('\n'+40*'=') print('\nNOTE: The code initializes the model with different theta each time, thus the model predicts different minimal viable population at each runtime.')
[ 198, 2, 383, 1917, 284, 307, 16019, 25, 198, 2, 775, 423, 13960, 5140, 287, 1180, 4736, 290, 1123, 7779, 6774, 257, 7630, 393, 2994, 13, 775, 423, 262, 6754, 1366, 290, 5295, 326, 262, 7630, 8338, 319, 262, 1748, 338, 3265, 13, 775, 765, 284, 1064, 428, 8695, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 4798, 10786, 14618, 284, 10850, 18252, 351, 11361, 0, 11537, 198, 4798, 10786, 22058, 261, 352, 25, 44800, 20683, 11537, 198, 4798, 10786, 59, 77, 6, 10, 1821, 9, 6, 28, 11537, 198, 198, 2, 1366, 4909, 262, 1748, 3265, 357, 259, 838, 11, 830, 82, 8, 287, 262, 717, 5721, 198, 2, 290, 262, 7630, 14, 22462, 357, 259, 838, 11, 830, 3, 8, 287, 262, 1218, 15180, 198, 2, 262, 1366, 373, 6811, 3021, 284, 3613, 319, 16765, 290, 4133, 7327, 198, 198, 2, 13403, 319, 262, 717, 5726, 11, 257, 7779, 287, 257, 1748, 286, 3265, 286, 8454, 11, 8784, 3181, 257, 7630, 286, 720, 17430, 11, 37128, 198, 7890, 796, 59, 198, 58, 198, 58, 21, 13, 1157, 486, 11, 1558, 13, 45839, 4357, 198, 58, 20, 13, 20, 27019, 11, 24, 13, 12952, 17, 4357, 198, 58, 23, 13, 20, 25096, 11, 1485, 13, 39380, 4357, 198, 58, 22, 13, 405, 2624, 11, 1157, 13, 23, 4051, 4357, 198, 58, 20, 13, 23, 41292, 11, 21, 13, 23, 25429, 4357, 198, 58, 23, 13, 2548, 1959, 11, 1157, 13, 44980, 4357, 198, 58, 22, 13, 2857, 2414, 11, 19, 13, 2682, 5999, 4357, 198, 58, 23, 13, 3553, 6659, 11, 1065, 4357, 198, 58, 21, 13, 2780, 5237, 11, 21, 13, 3270, 5774, 4357, 198, 58, 20, 13, 2713, 3510, 11, 18, 13, 23, 23055, 4357, 198, 58, 20, 13, 22, 15982, 11, 18, 13, 1495, 1828, 4357, 198, 58, 1415, 13, 23237, 11, 1314, 13, 31654, 4357, 198, 58, 20, 13, 22, 2682, 11, 18, 13, 1314, 4349, 4357, 198, 58, 23, 13, 1821, 5705, 11, 22, 13, 18182, 23, 4357, 198, 58, 20, 13, 21, 30120, 11, 15, 13, 22, 1433, 1507, 4357, 198, 58, 20, 13, 2718, 5824, 11, 18, 13, 20, 18741, 4357, 198, 58, 21, 13, 2623, 4051, 11, 20, 13, 1270, 2780, 4357, 198, 58, 20, 13, 1485, 486, 11, 15, 13, 34135, 3324, 4357, 198, 58, 21, 13, 11785, 21, 11, 18, 13, 2996, 1507, 4357, 198, 58, 22, 13, 15, 32583, 11, 20, 13, 2548, 6052, 4357, 198, 58, 21, 13, 1507, 6420, 11, 18, 13, 1485, 4521, 4357, 198, 58, 1238, 13, 1983, 11, 2481, 13, 32059, 4357, 198, 58, 20, 13, 2920, 486, 11, 19, 13, 29558, 4357, 198, 58, 21, 13, 18, 30057, 11, 20, 13, 1507, 2425, 4357, 198, 58, 20, 13, 20, 33300, 11, 18, 13, 2919, 1495, 4357, 198, 58, 1507, 13, 24, 2231, 11, 1828, 13, 21, 2548, 4357, 198, 58, 1065, 13, 23, 2078, 11, 1485, 13, 33548, 4357, 198, 58, 940, 13, 24, 3553, 11, 22, 13, 3023, 3134, 4357, 198, 58, 1485, 13, 24096, 11, 1415, 13, 46589, 4357, 198, 58, 1828, 13, 22416, 11, 1731, 13, 20198, 4357, 198, 58, 20, 13, 1495, 1731, 12095, 16, 13, 1828, 4357, 198, 58, 21, 13, 3365, 5824, 11, 20, 13, 2079, 2791, 4357, 198, 58, 24, 13, 1731, 6469, 11, 1065, 13, 19880, 4357, 198, 58, 20, 13, 4531, 1507, 11, 16, 13, 23, 33781, 4357, 198, 58, 23, 13, 17, 16243, 11, 21, 13, 4051, 2075, 4357, 198, 58, 22, 13, 24, 31380, 11, 19, 13, 3980, 1954, 4357, 198, 58, 23, 13, 2931, 3270, 11, 19, 13, 1157, 2414, 4357, 198, 58, 20, 13, 1899, 5066, 11, 18, 13, 2670, 2078, 4357, 198, 58, 1065, 13, 23, 2623, 11, 940, 13, 17657, 4357, 198, 58, 21, 13, 2327, 2682, 11, 20, 13, 2920, 4524, 4357, 198, 58, 20, 13, 1821, 3388, 11, 15, 13, 2816, 37680, 4357, 198, 58, 21, 13, 3459, 1495, 11, 18, 13, 24, 15363, 4357, 198, 58, 1157, 13, 32583, 11, 20, 13, 2548, 4051, 4357, 198, 58, 20, 13, 3324, 2718, 11, 17, 13, 25644, 21, 4357, 198, 58, 22, 13, 23, 23753, 11, 21, 13, 4790, 1507, 4357, 198, 58, 22, 13, 2931, 3132, 11, 16, 13, 3023, 5066, 4357, 198, 58, 20, 13, 15, 36680, 11, 20, 13, 1485, 2718, 4357, 198, 58, 20, 13, 23, 28645, 11, 16, 13, 23, 2598, 4357, 198, 58, 1157, 13, 22, 11, 23, 13, 405, 3559, 4357, 198, 58, 20, 13, 4051, 1433, 11, 16, 13, 486, 3720, 4357, 198, 58, 22, 13, 20, 32531, 11, 21, 13, 15426, 19, 4357, 198, 58, 20, 13, 1270, 3324, 11, 16, 13, 23, 34107, 4357, 198, 58, 22, 13, 19, 23516, 11, 19, 13, 2078, 5332, 4357, 198, 58, 22, 13, 1899, 3132, 11, 19, 13, 2079, 6659, 4357, 198, 58, 21, 13, 2091, 2078, 11, 16, 13, 19, 25429, 4357, 198, 58, 21, 13, 2327, 4531, 12095, 16, 13, 3682, 1157, 4357, 198, 58, 21, 13, 1983, 3682, 11, 17, 13, 32576, 21, 4357, 198, 58, 20, 13, 21, 33372, 11, 19, 13, 1899, 3682, 4357, 198, 58, 24, 13, 18, 15377, 11, 18, 13, 4846, 1731, 4357, 198, 58, 24, 13, 2231, 2623, 11, 20, 13, 19, 23756, 4357, 198, 58, 23, 13, 23, 24970, 11, 20, 13, 1433, 5824, 4357, 198, 58, 20, 13, 1558, 6052, 12095, 15, 13, 4524, 26050, 4357, 198, 58, 2481, 13, 26050, 11, 1558, 13, 24, 1959, 4357, 198, 58, 1415, 13, 24, 2919, 11, 1065, 13, 2713, 19, 4357, 198, 58, 1507, 13, 24, 3270, 11, 1558, 13, 2713, 19, 4357, 198, 58, 22, 13, 17, 24294, 11, 19, 13, 3459, 4309, 4357, 198, 58, 23, 13, 1959, 4349, 11, 20, 13, 22, 39506, 4357, 198, 58, 940, 13, 24940, 11, 22, 13, 34483, 19, 4357, 198, 58, 20, 13, 28324, 19, 11, 16, 13, 486, 4790, 4357, 198, 58, 1238, 13, 33660, 11, 1238, 13, 41561, 4357, 198, 58, 940, 13, 20809, 11, 21, 13, 3134, 2079, 4357, 198, 58, 22, 13, 2091, 2231, 11, 19, 13, 15, 25191, 4357, 198, 58, 21, 13, 405, 5237, 11, 16, 13, 1983, 5705, 4357, 198, 58, 22, 13, 18182, 24, 11, 18, 13, 2682, 1157, 4357, 198, 58, 20, 13, 15, 26276, 12095, 17, 13, 21, 36928, 4357, 198, 58, 21, 13, 20, 31714, 11, 15, 13, 1959, 30924, 4357, 198, 58, 22, 13, 20, 21734, 11, 18, 13, 3459, 2231, 4357, 198, 58, 20, 13, 15, 24760, 11, 20, 13, 22, 28645, 4357, 198, 58, 940, 13, 28857, 11, 21, 13, 2425, 2075, 4357, 198, 58, 20, 13, 940, 3324, 11, 17, 13, 2713, 4304, 4357, 198, 58, 20, 13, 22, 32759, 11, 15, 13, 2857, 49649, 4357, 198, 58, 20, 13, 1507, 5705, 11, 15, 13, 18638, 2481, 4357, 198, 58, 21, 13, 2327, 3553, 11, 15, 13, 3134, 4521, 16, 4357, 198, 58, 24, 13, 30610, 22, 11, 22, 13, 4051, 2327, 4357, 198, 58, 21, 13, 20, 19707, 11, 20, 13, 2682, 2623, 4357, 198, 58, 23, 13, 20, 23628, 11, 19, 13, 1731, 1314, 4357, 198, 58, 24, 13, 1507, 2999, 11, 21, 13, 3720, 6659, 4357, 198, 58, 21, 13, 21601, 11, 15, 13, 24, 2075, 3865, 4357, 198, 58, 20, 13, 20, 18638, 11, 15, 13, 17827, 4357, 198, 58, 20, 13, 2713, 5824, 11, 17, 13, 6469, 1415, 4357, 198, 58, 20, 13, 2154, 3324, 11, 16, 13, 23, 36330, 4357, 198, 58, 22, 13, 21, 32459, 11, 19, 13, 1959, 3270, 4357, 198, 58, 20, 13, 23, 24038, 11, 22, 13, 1238, 1959, 4357, 198, 58, 20, 13, 1270, 4051, 11, 16, 13, 4089, 3388, 4357, 198, 58, 23, 13, 1959, 2682, 11, 15, 13, 1415, 34229, 4357, 198, 58, 1485, 13, 34626, 11, 24, 13, 2713, 4349, 4357, 198, 58, 20, 13, 19, 30803, 11, 15, 13, 47941, 2713, 60, 198, 60, 198, 198, 2, 775, 765, 284, 787, 257, 2746, 1498, 284, 4331, 262, 7630, 14, 22462, 11, 1912, 319, 257, 1813, 3265, 13, 554, 1502, 284, 466, 617, 4572, 4673, 11, 262, 1366, 468, 284, 307, 286, 257, 17593, 2099, 13, 198, 198, 2, 1395, 17593, 481, 1745, 1748, 3265, 198, 55, 796, 45941, 13, 6759, 8609, 7, 7890, 38381, 45299, 15, 60, 198, 198, 2, 331, 17593, 481, 1745, 262, 7630, 14, 22462, 1321, 198, 88, 796, 45941, 13, 6759, 8609, 7, 7890, 38381, 45299, 16, 60, 198, 198, 7061, 6, 198, 31524, 11, 356, 389, 2045, 329, 257, 2163, 277, 7, 87, 8, 8024, 262, 4808, 22915, 62, 1988, 331, 1912, 319, 663, 4808, 15414, 62, 2124, 13, 775, 7048, 257, 14174, 331, 796, 7877, 1343, 275, 21403, 11, 475, 340, 355, 880, 1244, 423, 587, 257, 745, 6213, 296, 1292, 393, 597, 584, 2163, 13, 1406, 11, 356, 389, 2045, 329, 884, 257, 290, 275, 3815, 326, 1577, 514, 257, 2163, 326, 481, 7599, 4079, 262, 7630, 1912, 319, 262, 3265, 13, 4525, 428, 25, 628, 220, 220, 220, 11001, 62, 9183, 796, 257, 1635, 1748, 62, 39748, 1343, 275, 198, 198, 32, 2068, 804, 379, 262, 1366, 2523, 326, 340, 318, 5340, 284, 1064, 257, 1627, 543, 561, 3272, 477, 262, 4818, 499, 1563, 82, 13, 1406, 11, 356, 765, 284, 423, 262, 1266, 1744, 4197, 13, 1374, 466, 356, 3953, 262, 3081, 286, 340, 30, 383, 1266, 1744, 4197, 318, 884, 326, 1838, 262, 18197, 17724, 4049, 319, 262, 2187, 27039, 13, 383, 2060, 4049, 318, 10488, 355, 262, 6616, 286, 262, 3580, 1022, 262, 1103, 290, 11001, 1988, 11, 523, 262, 2472, 4049, 481, 2391, 307, 262, 2160, 286, 477, 2060, 3392, 13, 198, 198, 1135, 4145, 761, 257, 523, 12, 7174, 1575, 2163, 543, 561, 1441, 262, 2811, 4049, 286, 257, 1813, 277, 7, 87, 8, 618, 2111, 284, 4727, 262, 4818, 499, 1563, 82, 290, 787, 16277, 13, 554, 1502, 284, 787, 1243, 20061, 11, 356, 481, 804, 329, 257, 15879, 705, 1169, 8326, 3256, 7268, 262, 705, 64, 6, 290, 705, 65, 6, 357, 273, 517, 11, 329, 517, 8253, 4981, 532, 262, 8326, 15, 11, 262, 8326, 16, 11, 262, 8326, 17, 11, 23029, 10007, 13, 198, 7061, 6, 198, 198, 4798, 10786, 59, 77, 15784, 329, 331, 28, 64, 9, 87, 10, 65, 2163, 357, 64, 11, 65, 28, 1169, 8326, 8, 11537, 198, 198, 2, 2163, 449, 43707, 262, 1575, 739, 257, 1813, 900, 286, 262, 8326, 10007, 628, 198, 2, 262, 13389, 2174, 6673, 257, 5721, 286, 3392, 284, 262, 1364, 286, 262, 1395, 17593, 11, 329, 17952, 3840, 198, 7890, 55, 796, 45941, 13, 6759, 8609, 7, 7890, 38381, 45299, 15, 25, 16, 60, 198, 55, 796, 45941, 13, 1952, 19510, 11925, 7, 7890, 55, 828, 17, 4008, 198, 55, 58, 45299, 16, 47715, 796, 1366, 55, 198, 198, 2, 1309, 338, 2198, 262, 1575, 611, 356, 561, 7048, 262, 8326, 379, 734, 1180, 3815, 198, 4798, 10786, 59, 77, 9787, 278, 734, 1672, 2663, 286, 262, 8326, 25, 11537, 198, 1640, 256, 287, 685, 15, 11, 15, 4357, 25915, 16, 11, 17, 5974, 198, 220, 220, 220, 3601, 10786, 48142, 262, 8326, 15879, 379, 1391, 5512, 262, 1575, 561, 307, 46110, 13, 17, 69, 92, 4458, 18982, 7, 83, 11, 449, 7, 55, 11, 331, 11, 256, 737, 9186, 3419, 4008, 220, 1303, 3933, 13, 2998, 18, 11, 7175, 13, 27877, 198, 198, 7061, 6, 198, 3844, 11, 703, 284, 1064, 262, 16586, 262, 8326, 15879, 329, 674, 2746, 284, 4331, 351, 262, 18197, 1744, 4049, 30, 198, 48142, 326, 449, 318, 257, 1575, 2163, 11, 428, 318, 281, 23989, 1917, 532, 356, 761, 284, 1064, 262, 5288, 286, 449, 13, 198, 1135, 481, 779, 257, 8173, 1444, 31312, 18598, 532, 356, 481, 41216, 262, 8326, 379, 477, 12, 9107, 418, 290, 11835, 1445, 1863, 262, 449, 12133, 19698, 477, 262, 83, 292, 357, 14323, 9560, 3481, 8, 416, 1402, 49876, 13, 1002, 449, 5732, 532, 356, 389, 1016, 262, 2642, 835, 11, 611, 340, 20638, 532, 356, 389, 3867, 1863, 428, 835, 13, 198, 7061, 6, 198, 198, 2, 31312, 18598, 2163, 481, 11629, 9404, 4296, 262, 8326, 416, 257, 1402, 13390, 17130, 357, 14508, 1444, 262, 4673, 2494, 8, 329, 257, 1271, 286, 34820, 198, 198, 4798, 10786, 59, 77, 6, 10, 1821, 9, 6, 28, 11537, 198, 198, 2, 356, 423, 262, 2163, 3492, 11, 1309, 338, 466, 617, 4572, 4673, 0, 198, 1169, 8326, 796, 45941, 13, 6759, 8609, 26933, 37659, 13, 25120, 13, 25120, 22784, 37659, 13, 25120, 13, 25120, 3419, 12962, 1303, 356, 41216, 262, 8326, 379, 4738, 3815, 198, 26591, 796, 657, 13, 486, 1303, 4673, 2494, 532, 611, 1165, 1877, 11, 262, 11862, 481, 407, 47873, 11, 611, 1165, 1029, 11, 340, 460, 366, 20676, 1098, 1, 198, 270, 364, 796, 4751, 1303, 1271, 286, 34820, 532, 4646, 611, 366, 7575, 4179, 20672, 1, 628, 198, 198, 4798, 10786, 59, 77, 855, 9104, 10638, 6624, 59, 77, 41730, 2494, 25, 23884, 59, 77, 29993, 602, 25, 23884, 59, 77, 24243, 262, 8326, 25, 23884, 59, 77, 24243, 449, 25, 46110, 13, 17, 69, 32239, 77, 4458, 18982, 7, 26591, 11, 340, 364, 11, 262, 8326, 11, 449, 7, 55, 11, 88, 11, 1169, 8326, 737, 9186, 3419, 4008, 198, 198, 4798, 10786, 44357, 262, 2746, 986, 705, 8, 198, 2, 428, 1682, 13404, 674, 2746, 290, 7228, 262, 16586, 262, 8326, 1988, 198, 41, 62, 23569, 11, 262, 8326, 62, 1084, 796, 31312, 7, 55, 11, 331, 11, 17130, 11, 262, 8326, 11, 340, 364, 8, 198, 4798, 10786, 45677, 2637, 8, 198, 198, 4798, 10786, 59, 77, 19006, 262, 8326, 25, 23884, 59, 77, 19006, 449, 25, 46110, 13, 17, 69, 92, 4458, 18982, 7, 1169, 8326, 62, 1084, 13, 51, 11, 449, 7, 55, 11, 88, 11, 1169, 8326, 62, 1084, 13, 51, 737, 9186, 3419, 4008, 198, 198, 7061, 6, 198, 3844, 326, 356, 423, 262, 2746, 8776, 11, 356, 460, 779, 340, 284, 4331, 262, 7630, 14, 22462, 198, 198, 37887, 11, 1201, 356, 765, 284, 8494, 257, 1103, 1917, 11, 356, 8160, 674, 2163, 284, 2453, 1103, 3146, 11, 407, 6811, 3021, 3392, 13, 2102, 11, 356, 423, 284, 3505, 11, 326, 262, 2746, 2346, 318, 8776, 319, 6811, 3021, 1366, 11, 523, 356, 423, 284, 2148, 340, 13, 198, 7061, 6, 198, 198, 2, 770, 2163, 481, 15284, 262, 11001, 7630, 198, 198, 2, 2735, 11, 1309, 338, 2198, 329, 257, 4738, 1748, 198, 79, 796, 642, 2388, 1343, 1802, 830, 1635, 45941, 13, 25120, 13, 25120, 3419, 198, 4798, 10786, 59, 77, 6, 10, 1821, 9, 6, 28, 11537, 198, 4798, 10786, 59, 77, 15001, 319, 4499, 1366, 11, 11001, 7630, 329, 257, 1748, 286, 3265, 286, 46110, 38508, 15, 69, 92, 318, 25597, 25, 38508, 17, 69, 27422, 59, 77, 4458, 18982, 7, 79, 11, 4331, 62, 9183, 7, 79, 737, 9186, 3419, 4008, 198, 198, 2, 1114, 262, 1597, 2551, 11, 340, 561, 635, 307, 922, 284, 760, 644, 318, 262, 10926, 3265, 286, 257, 1748, 284, 923, 262, 17967, 1597, 357, 28764, 5722, 1988, 318, 379, 1551, 3967, 8, 198, 79, 62, 1084, 796, 532, 1169, 8326, 62, 1084, 58, 15, 4083, 9186, 3419, 1220, 262, 8326, 62, 1084, 58, 16, 4083, 9186, 3419, 1635, 33028, 198, 4798, 10786, 818, 1502, 329, 262, 1597, 284, 307, 17967, 11, 340, 468, 284, 307, 2067, 287, 257, 1748, 351, 3265, 3744, 621, 46110, 38508, 15, 69, 92, 2637, 13, 18982, 7, 79, 62, 1084, 4008, 198, 4798, 10786, 59, 77, 6, 10, 1821, 9, 6, 28, 11537, 198, 4798, 10786, 59, 77, 16580, 25, 383, 2438, 4238, 4340, 262, 2746, 351, 1180, 262, 8326, 1123, 640, 11, 4145, 262, 2746, 26334, 1180, 10926, 13971, 3265, 379, 1123, 19124, 2637, 8, 198 ]
2.63671
2,626
import os import sys import colorama from . import metadata # project metadata METADATA = metadata # paths PATHS = {} PATHS["home"] = os.path.expanduser("~") PATHS["db_file"] = os.path.join(PATHS["home"], ".remindme.db") PATHS["config_file"] = os.path.join(PATHS["home"], ".remindme") # colors colorama.init() COLORS = {} COLORS["default"] = colorama.Fore.WHITE COLORS["error"] = colorama.Fore.RED COLORS["info"] = colorama.Fore.MAGENTA COLORS["reset"] = colorama.Style.RESET_ALL COLORS["success"] = colorama.Fore.GREEN # python version PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 # cryptography settings CRYPTO = {} CRYPTO["kdf_iterations"] = 100000 CRYPTO["kdf_length"] = 32 # default user settings USER_SETTINGS = {} USER_SETTINGS["editor"] = None USER_SETTINGS["disable_encryption"] = False USER_SETTINGS["encrypt_by_default"] = True USER_SETTINGS["retry_password_match"] = True USER_SETTINGS["retry_decryption"] = False USER_SETTINGS["end_line"] = ":end"
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 3124, 1689, 198, 6738, 764, 1330, 20150, 628, 198, 2, 1628, 20150, 198, 47123, 2885, 13563, 796, 20150, 628, 198, 2, 13532, 198, 47, 1404, 7998, 796, 23884, 198, 47, 1404, 7998, 14692, 11195, 8973, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 4943, 198, 47, 1404, 7998, 14692, 9945, 62, 7753, 8973, 796, 28686, 13, 6978, 13, 22179, 7, 47, 1404, 7998, 14692, 11195, 33116, 27071, 2787, 521, 1326, 13, 9945, 4943, 198, 47, 1404, 7998, 14692, 11250, 62, 7753, 8973, 796, 28686, 13, 6978, 13, 22179, 7, 47, 1404, 7998, 14692, 11195, 33116, 27071, 2787, 521, 1326, 4943, 628, 198, 2, 7577, 198, 8043, 1689, 13, 15003, 3419, 198, 25154, 20673, 796, 23884, 198, 25154, 20673, 14692, 12286, 8973, 796, 3124, 1689, 13, 16351, 13, 12418, 12709, 198, 25154, 20673, 14692, 18224, 8973, 796, 3124, 1689, 13, 16351, 13, 22083, 198, 25154, 20673, 14692, 10951, 8973, 796, 3124, 1689, 13, 16351, 13, 45820, 3525, 32, 198, 25154, 20673, 14692, 42503, 8973, 796, 3124, 1689, 13, 21466, 13, 19535, 2767, 62, 7036, 198, 25154, 20673, 14692, 13138, 8973, 796, 3124, 1689, 13, 16351, 13, 43016, 628, 198, 2, 21015, 2196, 198, 47, 56, 17, 796, 25064, 13, 9641, 62, 10951, 58, 15, 60, 6624, 362, 198, 47, 56, 18, 796, 25064, 13, 9641, 62, 10951, 58, 15, 60, 6624, 513, 628, 198, 2, 45898, 6460, 198, 9419, 48232, 10468, 796, 23884, 198, 9419, 48232, 10468, 14692, 74, 7568, 62, 2676, 602, 8973, 796, 1802, 830, 198, 9419, 48232, 10468, 14692, 74, 7568, 62, 13664, 8973, 796, 3933, 198, 198, 2, 4277, 2836, 6460, 198, 29904, 62, 28480, 51, 20754, 796, 23884, 198, 29904, 62, 28480, 51, 20754, 14692, 35352, 8973, 796, 6045, 198, 29904, 62, 28480, 51, 20754, 14692, 40223, 62, 12685, 13168, 8973, 796, 10352, 198, 29904, 62, 28480, 51, 20754, 14692, 12685, 6012, 62, 1525, 62, 12286, 8973, 796, 6407, 198, 29904, 62, 28480, 51, 20754, 14692, 1186, 563, 62, 28712, 62, 15699, 8973, 796, 6407, 198, 29904, 62, 28480, 51, 20754, 14692, 1186, 563, 62, 12501, 13168, 8973, 796, 10352, 198, 29904, 62, 28480, 51, 20754, 14692, 437, 62, 1370, 8973, 796, 366, 25, 437, 1, 198 ]
2.672973
370
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import import unittest import mock from telemetry.core import platform as platform_module from telemetry.internal.platform import platform_backend from telemetry.internal.browser import possible_browser
[ 2, 15069, 1946, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 555, 715, 395, 198, 11748, 15290, 198, 198, 6738, 5735, 41935, 13, 7295, 1330, 3859, 355, 3859, 62, 21412, 198, 6738, 5735, 41935, 13, 32538, 13, 24254, 1330, 3859, 62, 1891, 437, 198, 6738, 5735, 41935, 13, 32538, 13, 40259, 1330, 1744, 62, 40259, 628 ]
4.123711
97
#!/usr/bin/env python import pprint import os from django.conf.locale import LANG_INFO from django.utils import translation HORIZON_DIR = '/opt/stack/horizon' langs_horizon = os.listdir(os.path.join(HORIZON_DIR, 'horizon', 'locale')) langs_dashboard = os.listdir(os.path.join(HORIZON_DIR, 'openstack_dashboard', 'locale')) # Pick up languages with both horizon and openstack_dashboard translations langs = set(langs_horizon) & set(langs_dashboard) lang_list = [get_django_lang_name(l, langs) for l in sorted(langs)] print 'LANGUAGES = ', pprint.pprint(tuple(lang_list))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 279, 4798, 198, 11748, 28686, 198, 198, 6738, 42625, 14208, 13, 10414, 13, 17946, 1000, 1330, 406, 15567, 62, 10778, 198, 6738, 42625, 14208, 13, 26791, 1330, 11059, 628, 198, 198, 39, 1581, 14887, 1340, 62, 34720, 796, 31051, 8738, 14, 25558, 14, 17899, 8637, 6, 198, 198, 17204, 82, 62, 17899, 8637, 796, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 39, 1581, 14887, 1340, 62, 34720, 11, 705, 17899, 8637, 3256, 705, 17946, 1000, 6, 4008, 198, 17204, 82, 62, 42460, 3526, 796, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 39, 1581, 14887, 1340, 62, 34720, 11, 705, 9654, 25558, 62, 42460, 3526, 3256, 705, 17946, 1000, 6, 4008, 198, 2, 12346, 510, 8950, 351, 1111, 17810, 290, 1280, 25558, 62, 42460, 3526, 25231, 198, 17204, 82, 796, 900, 7, 17204, 82, 62, 17899, 8637, 8, 1222, 900, 7, 17204, 82, 62, 42460, 3526, 8, 198, 198, 17204, 62, 4868, 796, 685, 1136, 62, 28241, 14208, 62, 17204, 62, 3672, 7, 75, 11, 300, 27725, 8, 329, 300, 287, 23243, 7, 17204, 82, 15437, 198, 4798, 705, 43, 15567, 52, 25552, 796, 46083, 198, 381, 22272, 13, 381, 22272, 7, 83, 29291, 7, 17204, 62, 4868, 4008, 198 ]
2.646789
218
_ = input() m = map(int, input().split()) m = sorted(m) #print(m) l=[] for i in range(len(m)): if(i%2==0): l.append(str(m[i])) for i in range(len(m)-1,0,-1): if(i%2!=0): l.append(str(m[i])) print(' '.join(l))
[ 62, 796, 5128, 3419, 198, 76, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 76, 796, 23243, 7, 76, 8, 198, 2, 4798, 7, 76, 8, 198, 198, 75, 28, 21737, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 76, 8, 2599, 198, 220, 220, 220, 611, 7, 72, 4, 17, 855, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 300, 13, 33295, 7, 2536, 7, 76, 58, 72, 60, 4008, 198, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 76, 13219, 16, 11, 15, 12095, 16, 2599, 198, 220, 220, 220, 611, 7, 72, 4, 17, 0, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 300, 13, 33295, 7, 2536, 7, 76, 58, 72, 60, 4008, 198, 198, 4798, 10786, 45302, 22179, 7, 75, 4008 ]
1.766917
133
#!/usr/bin/env python3 import os import numpy as np import pygsp as gsp import matplotlib.pyplot as plt from matplotlib.patches import Arc # plt.rc('font', family='Latin Modern Roman') plt.rc('text', usetex=True) plt.rc('text.latex', preamble=r'\usepackage{lmodern}') fig = plt.figure(figsize = (3, 3)) ax = fig.add_subplot(1, 1, 1) G = gsp.graphs.ring.Ring(8) G.plot(edges=True, ax=ax, title='', vertex_color='r', edge_color='b') circle = plt.Circle((0, 0), radius=1, color='g', fill=False, LineWidth=3) ax.add_artist(circle) angle = 45*1.5 line_1 = plt.Line2D([1, 0], [0, 0], linewidth=2, linestyle="-", color="black") line_2 = plt.Line2D([np.cos(angle/360*2*np.pi), 0], [np.sin(angle/360*2*np.pi), 0], linewidth=2, linestyle = "--", color="black") ax.add_line(line_1) ax.add_line(line_2) angle_plot = Arc((0,0), 0.8, 0.8, 0, 0, angle, color='black', linewidth=2) ax.add_patch(angle_plot) ax.text(0.5*np.cos(angle/2/360*2*np.pi), 0.5*np.sin(angle/2/360*2*np.pi), r"$\theta$", fontsize=18) ax.axis('off') ax.axis('equal') fig.tight_layout() filename = os.path.splitext(os.path.basename(__file__))[0] + '.pdf' fig.savefig(filename)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 70, 2777, 355, 308, 2777, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 8071, 2052, 1330, 10173, 198, 198, 2, 458, 83, 13, 6015, 10786, 10331, 3256, 1641, 11639, 49022, 12495, 7993, 11537, 198, 489, 83, 13, 6015, 10786, 5239, 3256, 514, 316, 1069, 28, 17821, 8, 198, 489, 83, 13, 6015, 10786, 5239, 13, 17660, 87, 3256, 662, 321, 903, 28, 81, 6, 59, 1904, 26495, 90, 75, 23922, 92, 11537, 198, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 796, 357, 18, 11, 513, 4008, 198, 897, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16, 11, 352, 11, 352, 8, 198, 198, 38, 796, 308, 2777, 13, 34960, 82, 13, 1806, 13, 39687, 7, 23, 8, 198, 38, 13, 29487, 7, 276, 3212, 28, 17821, 11, 7877, 28, 897, 11, 3670, 11639, 3256, 37423, 62, 8043, 11639, 81, 3256, 5743, 62, 8043, 11639, 65, 11537, 198, 198, 45597, 796, 458, 83, 13, 31560, 293, 19510, 15, 11, 657, 828, 16874, 28, 16, 11, 3124, 11639, 70, 3256, 6070, 28, 25101, 11, 6910, 30916, 28, 18, 8, 198, 897, 13, 2860, 62, 49016, 7, 45597, 8, 198, 198, 9248, 796, 4153, 9, 16, 13, 20, 198, 198, 1370, 62, 16, 796, 458, 83, 13, 13949, 17, 35, 26933, 16, 11, 657, 4357, 685, 15, 11, 657, 4357, 9493, 413, 5649, 28, 17, 11, 9493, 10992, 2625, 12, 1600, 3124, 2625, 13424, 4943, 198, 1370, 62, 17, 796, 458, 83, 13, 13949, 17, 35, 26933, 37659, 13, 6966, 7, 9248, 14, 15277, 9, 17, 9, 37659, 13, 14415, 828, 657, 4357, 685, 37659, 13, 31369, 7, 9248, 14, 15277, 9, 17, 9, 37659, 13, 14415, 828, 657, 4357, 9493, 413, 5649, 28, 17, 11, 9493, 10992, 796, 366, 438, 1600, 3124, 2625, 13424, 4943, 198, 897, 13, 2860, 62, 1370, 7, 1370, 62, 16, 8, 198, 897, 13, 2860, 62, 1370, 7, 1370, 62, 17, 8, 198, 198, 9248, 62, 29487, 796, 10173, 19510, 15, 11, 15, 828, 657, 13, 23, 11, 657, 13, 23, 11, 657, 11, 657, 11, 9848, 11, 3124, 11639, 13424, 3256, 9493, 413, 5649, 28, 17, 8, 198, 897, 13, 2860, 62, 17147, 7, 9248, 62, 29487, 8, 198, 198, 897, 13, 5239, 7, 15, 13, 20, 9, 37659, 13, 6966, 7, 9248, 14, 17, 14, 15277, 9, 17, 9, 37659, 13, 14415, 828, 657, 13, 20, 9, 37659, 13, 31369, 7, 9248, 14, 17, 14, 15277, 9, 17, 9, 37659, 13, 14415, 828, 374, 1, 3, 59, 1169, 8326, 3, 1600, 10369, 7857, 28, 1507, 8, 198, 198, 897, 13, 22704, 10786, 2364, 11537, 198, 897, 13, 22704, 10786, 40496, 11537, 198, 198, 5647, 13, 33464, 62, 39786, 3419, 198, 34345, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 418, 13, 6978, 13, 12093, 12453, 7, 834, 7753, 834, 4008, 58, 15, 60, 1343, 45302, 12315, 6, 198, 5647, 13, 21928, 5647, 7, 34345, 8, 198 ]
2.208494
518
# By Justin Walgran # Copyright (c) 2012 Azavea, Inc. # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import unittest from blend import Configuration from blend import Analyzer from blend.Resource import Resource from blend.SizeAnalyzer import SizeAnalyzer from blend import Minifier from blend.YUICompressorMinifier import YUICompressorMinifier import os import shutil import tempfile from helpers import clean_output, create_file_with_content
[ 2, 2750, 10799, 6445, 46324, 198, 2, 15069, 357, 66, 8, 2321, 7578, 1015, 64, 11, 3457, 13, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 198, 2, 16727, 257, 4866, 286, 428, 3788, 290, 3917, 10314, 198, 2, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 287, 262, 10442, 1231, 198, 2, 17504, 11, 1390, 1231, 17385, 262, 2489, 284, 779, 11, 198, 2, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 198, 2, 10442, 318, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 198, 2, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 198, 2, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 198, 2, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 198, 2, 3963, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 198, 2, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 198, 2, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 198, 2, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 198, 2, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 198, 2, 25401, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 13516, 1330, 28373, 198, 6738, 13516, 1330, 16213, 9107, 198, 6738, 13516, 13, 26198, 1330, 20857, 198, 6738, 13516, 13, 10699, 37702, 9107, 1330, 12849, 37702, 9107, 198, 6738, 13516, 1330, 1855, 7483, 198, 6738, 13516, 13, 56, 52, 2149, 3361, 44292, 9452, 7483, 1330, 575, 52, 2149, 3361, 44292, 9452, 7483, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 198, 6738, 49385, 1330, 3424, 62, 22915, 11, 2251, 62, 7753, 62, 4480, 62, 11299, 628 ]
3.795337
386
class EditorAttribute(Attribute,_Attribute): """ Specifies the editor to use to change a property. This class cannot be inherited. EditorAttribute() EditorAttribute(typeName: str,baseTypeName: str) EditorAttribute(typeName: str,baseType: Type) EditorAttribute(type: Type,baseType: Type) """ def Equals(self,obj): """ Equals(self: EditorAttribute,obj: object) -> bool Returns whether the value of the given object is equal to the current System.ComponentModel.EditorAttribute. obj: The object to test the value equality of. Returns: true if the value of the given object is equal to that of the current object; otherwise,false. """ pass def GetHashCode(self): """ GetHashCode(self: EditorAttribute) -> int """ pass def __eq__(self,*args): """ x.__eq__(y) <==> x==y """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,*__args): """ __new__(cls: type) __new__(cls: type,typeName: str,baseTypeName: str) __new__(cls: type,typeName: str,baseType: Type) __new__(cls: type,type: Type,baseType: Type) """ pass EditorBaseTypeName=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name of the base class or interface serving as a lookup key for this editor. Get: EditorBaseTypeName(self: EditorAttribute) -> str """ EditorTypeName=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the name of the editor class in the System.Type.AssemblyQualifiedName format. Get: EditorTypeName(self: EditorAttribute) -> str """ TypeId=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets a unique ID for this attribute type. Get: TypeId(self: EditorAttribute) -> object """
[ 4871, 12058, 33682, 7, 33682, 11, 62, 33682, 2599, 201, 198, 37227, 201, 198, 18291, 6945, 262, 5464, 284, 779, 284, 1487, 257, 3119, 13, 770, 1398, 2314, 307, 19552, 13, 201, 198, 201, 198, 220, 201, 198, 201, 198, 12058, 33682, 3419, 201, 198, 201, 198, 12058, 33682, 7, 4906, 5376, 25, 965, 11, 8692, 6030, 5376, 25, 965, 8, 201, 198, 201, 198, 12058, 33682, 7, 4906, 5376, 25, 965, 11, 8692, 6030, 25, 5994, 8, 201, 198, 201, 198, 12058, 33682, 7, 4906, 25, 5994, 11, 8692, 6030, 25, 5994, 8, 201, 198, 37227, 201, 198, 825, 7889, 874, 7, 944, 11, 26801, 2599, 201, 198, 220, 37227, 201, 198, 220, 7889, 874, 7, 944, 25, 12058, 33682, 11, 26801, 25, 2134, 8, 4613, 20512, 201, 198, 201, 198, 220, 220, 201, 198, 201, 198, 220, 220, 16409, 1771, 262, 1988, 286, 262, 1813, 2134, 318, 4961, 284, 262, 1459, 220, 201, 198, 201, 198, 220, 220, 220, 4482, 13, 21950, 17633, 13, 17171, 33682, 13, 201, 198, 201, 198, 220, 220, 201, 198, 201, 198, 220, 220, 201, 198, 201, 198, 220, 220, 26181, 25, 383, 2134, 284, 1332, 262, 1988, 10537, 286, 13, 201, 198, 201, 198, 220, 220, 16409, 25, 2081, 611, 262, 1988, 286, 262, 1813, 2134, 318, 4961, 284, 326, 286, 262, 1459, 2134, 26, 4306, 11, 9562, 13, 201, 198, 220, 37227, 201, 198, 220, 1208, 201, 198, 825, 3497, 26257, 10669, 7, 944, 2599, 201, 198, 220, 37227, 3497, 26257, 10669, 7, 944, 25, 12058, 33682, 8, 4613, 493, 37227, 201, 198, 220, 1208, 201, 198, 825, 11593, 27363, 834, 7, 944, 11, 9, 22046, 2599, 201, 198, 220, 37227, 2124, 13, 834, 27363, 834, 7, 88, 8, 1279, 855, 29, 2124, 855, 88, 37227, 201, 198, 220, 1208, 201, 198, 825, 11593, 15003, 834, 7, 944, 11, 9, 22046, 2599, 201, 198, 220, 37227, 2124, 13, 834, 15003, 834, 7, 23029, 4238, 4340, 2124, 26, 766, 2124, 13, 834, 4871, 834, 13, 834, 15390, 834, 329, 9877, 87, 13, 834, 15003, 834, 7, 23029, 4238, 4340, 2124, 26, 766, 2124, 13, 834, 4871, 834, 13, 834, 15390, 834, 329, 9877, 87, 13, 834, 15003, 834, 7, 23029, 4238, 4340, 2124, 26, 766, 2124, 13, 834, 4871, 834, 13, 834, 15390, 834, 329, 9877, 37227, 201, 198, 220, 1208, 201, 198, 2488, 12708, 24396, 201, 198, 825, 11593, 3605, 834, 7, 944, 11, 9, 834, 22046, 2599, 201, 198, 220, 37227, 201, 198, 220, 11593, 3605, 834, 7, 565, 82, 25, 2099, 8, 201, 198, 201, 198, 220, 11593, 3605, 834, 7, 565, 82, 25, 2099, 11, 4906, 5376, 25, 965, 11, 8692, 6030, 5376, 25, 965, 8, 201, 198, 201, 198, 220, 11593, 3605, 834, 7, 565, 82, 25, 2099, 11, 4906, 5376, 25, 965, 11, 8692, 6030, 25, 5994, 8, 201, 198, 201, 198, 220, 11593, 3605, 834, 7, 565, 82, 25, 2099, 11, 4906, 25, 5994, 11, 8692, 6030, 25, 5994, 8, 201, 198, 220, 37227, 201, 198, 220, 1208, 201, 198, 12058, 14881, 6030, 5376, 28, 26745, 7, 50033, 2116, 25, 2134, 22784, 50033, 2116, 11, 85, 25, 6045, 11, 50033, 2116, 25, 6045, 8, 201, 198, 37227, 38, 1039, 262, 1438, 286, 262, 2779, 1398, 393, 7071, 7351, 355, 257, 35847, 1994, 329, 428, 5464, 13, 201, 198, 201, 198, 201, 198, 201, 198, 3855, 25, 12058, 14881, 6030, 5376, 7, 944, 25, 12058, 33682, 8, 4613, 965, 201, 198, 201, 198, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 12058, 6030, 5376, 28, 26745, 7, 50033, 2116, 25, 2134, 22784, 50033, 2116, 11, 85, 25, 6045, 11, 50033, 2116, 25, 6045, 8, 201, 198, 37227, 38, 1039, 262, 1438, 286, 262, 5464, 1398, 287, 262, 4482, 13, 6030, 13, 49670, 46181, 1431, 5376, 5794, 13, 201, 198, 201, 198, 201, 198, 201, 198, 3855, 25, 12058, 6030, 5376, 7, 944, 25, 12058, 33682, 8, 4613, 965, 201, 198, 201, 198, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 5994, 7390, 28, 26745, 7, 50033, 2116, 25, 2134, 22784, 50033, 2116, 11, 85, 25, 6045, 11, 50033, 2116, 25, 6045, 8, 201, 198, 37227, 38, 1039, 257, 3748, 4522, 329, 428, 11688, 2099, 13, 201, 198, 201, 198, 201, 198, 201, 198, 3855, 25, 5994, 7390, 7, 944, 25, 12058, 33682, 8, 4613, 2134, 201, 198, 201, 198, 201, 198, 201, 198, 37811, 201, 198, 201, 198, 201, 198 ]
2.811141
736
#!/usr/bin/python3 import math def mysqrt(a): """Compute the square root of a using Newton's method: start with an approximate answer and iteratively improving it """ estimate = a / 2 + 1 # Arbitrary estimae of the square root of a epsilon = 0.0000001 while True: approx = (estimate + a / estimate)/2 if abs(approx-estimate) < epsilon: return approx estimate = approx def test_square_root(a): """Print a table that, for all the numbers in the range a, compares the square roots calculated with the Newton's method with those calculated with the built in function math.sqrt() and display the absolute error between the two. """ n = float(1) print('n', ' '*10, 'mysqrt(n)', ' '*10, 'math.swrt(n)', ' '*10, 'diff') print('-', ' '*10, '---------', ' '*10, '------------', ' '*10, '----') for i in range(a): my_square = mysqrt(n) math_square = math.sqrt(n) abs_error = abs(math_square - my_square) x = str(n) if (len(x) >= 4): val = x + (' '*(9-(len(x)-3))) else: val = x + ' '*9 perfect_square = math_square*math_square == n my_square = format(my_square, '.12f') math_square = format(math_square, '.12f') abs_error = format(abs_error, '.12g') if (perfect_square): my_square = my_square[:3] math_square = math_square[:3] space1 = ' '*16 space2 = ' '*19 else: space1 = ' '*5 space2 = ' '*8 print(val, my_square, space1, math_square, space2, abs_error) n += 1 def ask_user(): """Prompt the user to enter how many numbers to be calculated""" a = int(input('Enter how many numbers you want to calculate: ')) test_square_root(a) ask_user()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 10688, 198, 198, 4299, 616, 31166, 17034, 7, 64, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 262, 6616, 6808, 286, 257, 1262, 17321, 338, 2446, 25, 923, 351, 281, 198, 220, 220, 220, 27665, 3280, 290, 11629, 9404, 10068, 340, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8636, 796, 257, 1220, 362, 1343, 352, 1303, 33619, 11619, 3959, 3609, 286, 262, 6616, 6808, 286, 257, 198, 220, 220, 220, 304, 862, 33576, 796, 657, 13, 2388, 8298, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5561, 796, 357, 395, 1920, 1343, 257, 1220, 8636, 20679, 17, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 1324, 13907, 12, 395, 1920, 8, 1279, 304, 862, 33576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5561, 198, 220, 220, 220, 220, 220, 220, 220, 8636, 796, 5561, 198, 198, 4299, 1332, 62, 23415, 62, 15763, 7, 64, 2599, 198, 220, 220, 220, 37227, 18557, 257, 3084, 326, 11, 329, 477, 262, 3146, 287, 262, 2837, 257, 11, 220, 198, 220, 220, 220, 23008, 262, 6616, 11135, 10488, 351, 262, 220, 198, 220, 220, 220, 17321, 338, 2446, 351, 883, 10488, 351, 262, 3170, 287, 2163, 10688, 13, 31166, 17034, 3419, 198, 220, 220, 220, 290, 3359, 262, 4112, 4049, 1022, 262, 734, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 796, 12178, 7, 16, 8, 198, 220, 220, 220, 3601, 10786, 77, 3256, 705, 705, 9, 940, 11, 705, 28744, 80, 17034, 7, 77, 8, 3256, 705, 705, 9, 940, 11, 705, 11018, 13, 2032, 17034, 7, 77, 8, 3256, 705, 705, 9, 940, 11, 705, 26069, 11537, 198, 220, 220, 220, 3601, 10786, 12, 3256, 705, 705, 9, 940, 11, 705, 45537, 3256, 705, 705, 9, 940, 11, 705, 10541, 3256, 705, 705, 9, 940, 11, 705, 650, 11537, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 64, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 616, 62, 23415, 796, 616, 31166, 17034, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10688, 62, 23415, 796, 10688, 13, 31166, 17034, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 18224, 796, 2352, 7, 11018, 62, 23415, 532, 616, 62, 23415, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 965, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 11925, 7, 87, 8, 18189, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 2124, 1343, 19203, 705, 9, 7, 24, 30420, 11925, 7, 87, 13219, 18, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 2124, 1343, 705, 705, 9, 24, 628, 220, 220, 220, 220, 220, 220, 220, 2818, 62, 23415, 796, 10688, 62, 23415, 9, 11018, 62, 23415, 6624, 299, 198, 220, 220, 220, 220, 220, 220, 220, 616, 62, 23415, 796, 5794, 7, 1820, 62, 23415, 11, 45302, 1065, 69, 11537, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10688, 62, 23415, 796, 5794, 7, 11018, 62, 23415, 11, 45302, 1065, 69, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 18224, 796, 5794, 7, 8937, 62, 18224, 11, 45302, 1065, 70, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 25833, 62, 23415, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 62, 23415, 796, 616, 62, 23415, 58, 25, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 62, 23415, 796, 10688, 62, 23415, 58, 25, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 16, 796, 705, 705, 9, 1433, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 17, 796, 705, 705, 9, 1129, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 16, 796, 705, 705, 9, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2272, 17, 796, 705, 705, 9, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2100, 11, 616, 62, 23415, 11, 2272, 16, 11, 10688, 62, 23415, 11, 2272, 17, 11, 2352, 62, 18224, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15853, 352, 198, 198, 4299, 1265, 62, 7220, 33529, 198, 220, 220, 220, 37227, 24129, 457, 262, 2836, 284, 3802, 703, 867, 3146, 284, 307, 10488, 37811, 198, 220, 220, 220, 257, 796, 493, 7, 15414, 10786, 17469, 703, 867, 3146, 345, 765, 284, 15284, 25, 705, 4008, 198, 220, 220, 220, 1332, 62, 23415, 62, 15763, 7, 64, 8, 198, 198, 2093, 62, 7220, 3419, 198 ]
2.212264
848
from utils import log from utils import correlate import random
[ 6738, 3384, 4487, 1330, 2604, 198, 198, 6738, 3384, 4487, 1330, 39684, 198, 11748, 4738, 198 ]
4.0625
16
from pathlib import Path from tests.simulations import BaseSimulationTest from src.epjson_handler import EPJSON test_dir = Path(__file__).parent.parent.parent hot_water_objects = { "HVACTemplate:Plant:Boiler": { "Main Boiler": { "boiler_type": "HotWaterBoiler", "capacity": "Autosize", "efficiency": 0.8, "fuel_type": "NaturalGas", "priority": "1" } }, "HVACTemplate:Plant:HotWaterLoop": { "Hot Water Loop": { "hot_water_design_setpoint": 82, "hot_water_plant_operation_scheme_type": "Default", "hot_water_pump_configuration": "ConstantFlow", "hot_water_pump_rated_head": 179352, "hot_water_reset_outdoor_dry_bulb_high": 10, "hot_water_reset_outdoor_dry_bulb_low": -6.7, "hot_water_setpoint_at_outdoor_dry_bulb_high": 65.6, "hot_water_setpoint_at_outdoor_dry_bulb_low": 82.2, "hot_water_setpoint_reset_type": "OutdoorAirTemperatureReset", "pump_control_type": "Intermittent" } } } schedule_objects = { "Schedule:Compact": { "Always0.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 0.8 } ], "schedule_type_limits_name": "Any Number" }, "Always6.8": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 6.8 } ], "schedule_type_limits_name": "Any Number" }, "Always12.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 12.5 } ], "schedule_type_limits_name": "Any Number" }, "Always15.5": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 15.5 } ], "schedule_type_limits_name": "Any Number" }, "Always62": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 62.0 } ], "schedule_type_limits_name": "Any Number" }, "Always29": { "data": [ { "field": "Through: 12/31" }, { "field": "For: AllDays" }, { "field": "Until: 24:00" }, { "field": 29.0 } ], "schedule_type_limits_name": "Any Number" } } }
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 5254, 13, 14323, 5768, 1330, 7308, 8890, 1741, 14402, 198, 6738, 12351, 13, 538, 17752, 62, 30281, 1330, 14724, 40386, 198, 198, 9288, 62, 15908, 796, 10644, 7, 834, 7753, 834, 737, 8000, 13, 8000, 13, 8000, 198, 198, 8940, 62, 7050, 62, 48205, 796, 1391, 198, 220, 220, 220, 366, 39, 53, 10659, 368, 6816, 25, 3646, 415, 25, 16635, 5329, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13383, 3248, 5329, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2127, 5329, 62, 4906, 1298, 366, 21352, 19184, 16635, 5329, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 42404, 1298, 366, 16541, 418, 1096, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45888, 1298, 657, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25802, 62, 4906, 1298, 366, 35364, 39699, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49336, 1298, 366, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 39, 53, 10659, 368, 6816, 25, 3646, 415, 25, 21352, 19184, 39516, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21352, 5638, 26304, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 26124, 62, 2617, 4122, 1298, 9415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 15060, 62, 27184, 62, 15952, 1326, 62, 4906, 1298, 366, 19463, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 79, 931, 62, 11250, 3924, 1298, 366, 3103, 18797, 37535, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 79, 931, 62, 4111, 62, 2256, 1298, 27228, 33394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 42503, 62, 448, 9424, 62, 39140, 62, 15065, 65, 62, 8929, 1298, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 42503, 62, 448, 9424, 62, 39140, 62, 15065, 65, 62, 9319, 1298, 532, 21, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 2617, 4122, 62, 265, 62, 448, 9424, 62, 39140, 62, 15065, 65, 62, 8929, 1298, 6135, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 2617, 4122, 62, 265, 62, 448, 9424, 62, 39140, 62, 15065, 65, 62, 9319, 1298, 9415, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8940, 62, 7050, 62, 2617, 4122, 62, 42503, 62, 4906, 1298, 366, 7975, 9424, 16170, 42492, 4965, 316, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 931, 62, 13716, 62, 4906, 1298, 366, 818, 4354, 715, 298, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 15952, 5950, 62, 48205, 796, 1391, 198, 220, 220, 220, 366, 27054, 5950, 25, 7293, 529, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 15, 13, 23, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 657, 13, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 21, 13, 23, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 718, 13, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 1065, 13, 20, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 1105, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 1314, 13, 20, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 1315, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 5237, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 8190, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30374, 1959, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 15046, 25, 1105, 14, 3132, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 1890, 25, 1439, 38770, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 366, 18273, 25, 1987, 25, 405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 1298, 2808, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 62, 4906, 62, 49196, 62, 3672, 1298, 366, 7149, 7913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 92, 628 ]
1.487881
2,558
# Generated by Django 2.0 on 2019-01-31 07:28 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 319, 13130, 12, 486, 12, 3132, 8753, 25, 2078, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.892857
28
""" Test suite for BibKey formatting sequences. Tests the generation of key contents based on the author entry """ from zotero_bibtize.bibkey_formatter import KeyFormatter # # Test lower author formatting # # # Test upper author formatting # # # Test capitalized author formatting # # # Test abbreviated author formatting # def test_missing_author(): """Test editor is used if author is missing""" key_format = '[author]' # check that editor is used if author not present editors = 'Surname, Firstname and Prefix Surname, Firstname' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Surname' # check authors take precedence over editors editors = 'Editor, Firstname and Prefix Author, Firstname' authors = 'Author, Firstname and Prefix Author, Firstname' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'Author' # check No Name author is used if none is present editors = '' authors = '' key_formatter = KeyFormatter({'author': authors, 'editor': editors}) assert key_formatter.generate_key(key_format) == 'NoName' def test_author_list_split_for_name_containing_and(): """Test that author lists are only split at and that is not part of a name""" key_format = '[author]' authors = 'Ackland, G. J. and Bacon, D. J. and Calder, A. F.' key_formatter = KeyFormatter({'author': authors}) assert key_formatter.generate_key(key_format) == 'Ackland'
[ 37811, 198, 14402, 18389, 329, 43278, 9218, 33313, 16311, 13, 198, 198, 51, 3558, 262, 5270, 286, 1994, 10154, 1912, 319, 262, 1772, 5726, 198, 37811, 198, 198, 6738, 1976, 313, 3529, 62, 65, 571, 83, 1096, 13, 65, 571, 2539, 62, 687, 1436, 1330, 7383, 8479, 1436, 198, 198, 2, 198, 2, 6208, 2793, 1772, 33313, 198, 2, 628, 628, 198, 198, 2, 198, 2, 6208, 6727, 1772, 33313, 198, 2, 628, 628, 198, 198, 2, 198, 2, 6208, 3139, 1143, 1772, 33313, 198, 2, 628, 628, 198, 198, 2, 198, 2, 6208, 37640, 515, 1772, 33313, 198, 2, 628, 628, 198, 198, 4299, 1332, 62, 45688, 62, 9800, 33529, 198, 220, 220, 220, 37227, 14402, 5464, 318, 973, 611, 1772, 318, 4814, 37811, 198, 220, 220, 220, 1994, 62, 18982, 796, 44438, 9800, 49946, 198, 220, 220, 220, 1303, 2198, 326, 5464, 318, 973, 611, 1772, 407, 1944, 198, 220, 220, 220, 15719, 796, 705, 50, 700, 480, 11, 3274, 3672, 290, 3771, 13049, 311, 700, 480, 11, 3274, 3672, 6, 198, 220, 220, 220, 7035, 796, 10148, 220, 198, 220, 220, 220, 1994, 62, 687, 1436, 796, 7383, 8479, 1436, 15090, 6, 9800, 10354, 7035, 11, 705, 35352, 10354, 15719, 30072, 198, 220, 220, 220, 6818, 1994, 62, 687, 1436, 13, 8612, 378, 62, 2539, 7, 2539, 62, 18982, 8, 6624, 705, 50, 700, 480, 6, 198, 220, 220, 220, 1303, 2198, 7035, 1011, 38177, 625, 15719, 198, 220, 220, 220, 15719, 796, 705, 17171, 11, 3274, 3672, 290, 3771, 13049, 6434, 11, 3274, 3672, 6, 198, 220, 220, 220, 7035, 796, 705, 13838, 11, 3274, 3672, 290, 3771, 13049, 6434, 11, 3274, 3672, 6, 198, 220, 220, 220, 1994, 62, 687, 1436, 796, 7383, 8479, 1436, 15090, 6, 9800, 10354, 7035, 11, 705, 35352, 10354, 15719, 30072, 198, 220, 220, 220, 6818, 1994, 62, 687, 1436, 13, 8612, 378, 62, 2539, 7, 2539, 62, 18982, 8, 6624, 705, 13838, 6, 198, 220, 220, 220, 1303, 2198, 1400, 6530, 1772, 318, 973, 611, 4844, 318, 1944, 198, 220, 220, 220, 15719, 796, 10148, 198, 220, 220, 220, 7035, 796, 10148, 220, 198, 220, 220, 220, 1994, 62, 687, 1436, 796, 7383, 8479, 1436, 15090, 6, 9800, 10354, 7035, 11, 705, 35352, 10354, 15719, 30072, 198, 220, 220, 220, 6818, 1994, 62, 687, 1436, 13, 8612, 378, 62, 2539, 7, 2539, 62, 18982, 8, 6624, 705, 2949, 5376, 6, 628, 198, 4299, 1332, 62, 9800, 62, 4868, 62, 35312, 62, 1640, 62, 3672, 62, 38301, 62, 392, 33529, 198, 220, 220, 220, 37227, 14402, 326, 1772, 8341, 389, 691, 6626, 379, 290, 326, 318, 407, 636, 286, 257, 1438, 37811, 198, 220, 220, 220, 1994, 62, 18982, 796, 44438, 9800, 49946, 198, 220, 220, 220, 7035, 796, 705, 32, 694, 1044, 11, 402, 13, 449, 13, 290, 28548, 11, 360, 13, 449, 13, 290, 36468, 11, 317, 13, 376, 2637, 198, 220, 220, 220, 1994, 62, 687, 1436, 796, 7383, 8479, 1436, 15090, 6, 9800, 10354, 7035, 30072, 198, 220, 220, 220, 6818, 1994, 62, 687, 1436, 13, 8612, 378, 62, 2539, 7, 2539, 62, 18982, 8, 6624, 705, 32, 694, 1044, 6, 198 ]
3.058935
526
""" Classes for exporting entities. So far only one implementation """ import re external_taxon = re.compile("taxon:([0-9]+)") internal_taxon = re.compile("NCBITaxon:([0-9]+)") class EntityWriter(): """ Abstract superclass of all association writer objects (Gpad, GAF) """ # TODO: add to superclass # TODO: add to superclass # TODO: add to superclass def write_entity(self, e): """ Write a single entity """ pass ## Implemented in subclasses def write(self, entities, meta=None): """ Write a complete set of entities to a file Arguments --------- entities: list[dict] A list of entity dict objects meta: Meta metadata about association set (not yet implemented) """ for e in entities: self.write_entity(e) class GpiWriter(EntityWriter): """ Writes entities in GPI format Takes an entity dictionary: { 'id': id, (String) 'label': db_object_symbol, (String) 'full_name': db_object_name, (String) 'synonyms': synonyms, (List[str]) 'type': db_object_type, (String) 'parents': parents, (List[Str]) 'xrefs': xref_ids, (List[Str]) 'taxon': { 'id': self._taxon_id(taxon) (String) } } """ def write_entity(self, entity): """ Write a single entity to a line in the output file """ db, db_object_id = self._split_prefix(entity) taxon = normalize_taxon(entity["taxon"]["id"]) vals = [ db, db_object_id, entity.get('label'), entity.get('full_name'), entity.get('synonyms'), entity.get('type'), taxon, entity.get('parents'), entity.get('xrefs'), entity.get('properties') ] self._write_row(vals)
[ 37811, 198, 9487, 274, 329, 39133, 12066, 13, 198, 198, 2396, 1290, 691, 530, 7822, 198, 37811, 198, 11748, 302, 198, 198, 22615, 62, 19290, 261, 796, 302, 13, 5589, 576, 7203, 19290, 261, 25, 26933, 15, 12, 24, 60, 28988, 4943, 198, 32538, 62, 19290, 261, 796, 302, 13, 5589, 576, 7203, 7792, 26094, 897, 261, 25, 26933, 15, 12, 24, 60, 28988, 4943, 628, 198, 4871, 20885, 34379, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 2208, 4871, 286, 477, 8112, 6260, 5563, 357, 38, 15636, 11, 402, 8579, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 16926, 46, 25, 751, 284, 2208, 4871, 628, 220, 220, 220, 1303, 16926, 46, 25, 751, 284, 2208, 4871, 628, 220, 220, 220, 1303, 16926, 46, 25, 751, 284, 2208, 4871, 198, 220, 220, 220, 825, 3551, 62, 26858, 7, 944, 11, 304, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 257, 2060, 9312, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 220, 22492, 1846, 1154, 12061, 287, 850, 37724, 628, 220, 220, 220, 825, 3551, 7, 944, 11, 12066, 11, 13634, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 257, 1844, 900, 286, 12066, 284, 257, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 198, 220, 220, 220, 220, 220, 220, 220, 45337, 198, 220, 220, 220, 220, 220, 220, 220, 12066, 25, 1351, 58, 11600, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 9312, 8633, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 25, 30277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20150, 546, 8112, 900, 357, 1662, 1865, 9177, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 304, 287, 12066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 62, 26858, 7, 68, 8, 198, 198, 4871, 402, 14415, 34379, 7, 32398, 34379, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12257, 274, 12066, 287, 402, 11901, 5794, 628, 220, 220, 220, 33687, 281, 9312, 22155, 25, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 4686, 11, 357, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18242, 10354, 20613, 62, 15252, 62, 1837, 23650, 11, 357, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12853, 62, 3672, 10354, 20613, 62, 15252, 62, 3672, 11, 357, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28869, 43612, 10354, 6171, 43612, 11, 357, 8053, 58, 2536, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 20613, 62, 15252, 62, 4906, 11, 357, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 705, 23743, 10354, 3397, 11, 357, 8053, 58, 13290, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 705, 87, 5420, 82, 10354, 2124, 5420, 62, 2340, 11, 357, 8053, 58, 13290, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19290, 261, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 2116, 13557, 19290, 261, 62, 312, 7, 19290, 261, 8, 357, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3551, 62, 26858, 7, 944, 11, 9312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 257, 2060, 9312, 284, 257, 1627, 287, 262, 5072, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 11, 20613, 62, 15252, 62, 312, 796, 2116, 13557, 35312, 62, 40290, 7, 26858, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1687, 261, 796, 3487, 1096, 62, 19290, 261, 7, 26858, 14692, 19290, 261, 1, 7131, 1, 312, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 15252, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 18242, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 12853, 62, 3672, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 28869, 43612, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 4906, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 261, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 23743, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 87, 5420, 82, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9312, 13, 1136, 10786, 48310, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13564, 62, 808, 7, 12786, 8, 198 ]
2.129489
919
"""Train a network.""" from .args import Args from .stats import Stats from .main import main, train
[ 37811, 44077, 257, 3127, 526, 15931, 198, 6738, 764, 22046, 1330, 943, 14542, 198, 6738, 764, 34242, 1330, 20595, 198, 6738, 764, 12417, 1330, 1388, 11, 4512, 198 ]
3.607143
28
# Generated by Django 2.2.4 on 2019-10-09 13:20 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 19, 319, 13130, 12, 940, 12, 2931, 1511, 25, 1238, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
#!/usr/bin/python3 if __name__ == '__main__': run()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 1057, 3419, 198 ]
2.304348
23
#Copyright (C) 2020 Xiao Wang #License: MIT for academic use. #Contact: Xiao Wang ([email protected], [email protected]) #Some codes adopted from https://github.com/facebookresearch/moco import os from ops.argparser import argparser from ops.Config_Environment import Config_Environment import torch.multiprocessing as mp from training.main_worker import main_worker if __name__ == '__main__': #use_cuda = torch.cuda.is_available() #print("starting check cuda status",use_cuda) #if use_cuda: parser = argparser() args = parser.parse_args() main(args)
[ 2, 15269, 357, 34, 8, 12131, 28249, 15233, 198, 2, 34156, 25, 17168, 329, 8233, 779, 13, 198, 2, 17829, 25, 28249, 15233, 357, 47562, 20167, 17, 31, 79, 30345, 13, 15532, 11, 2124, 544, 322, 648, 4967, 18005, 31, 14816, 13, 785, 8, 198, 198, 2, 4366, 12416, 8197, 422, 3740, 1378, 12567, 13, 785, 14, 19024, 34033, 14, 76, 25634, 198, 11748, 28686, 198, 6738, 39628, 13, 853, 48610, 1330, 220, 1822, 48610, 198, 6738, 39628, 13, 16934, 62, 31441, 1330, 17056, 62, 31441, 198, 11748, 28034, 13, 16680, 541, 305, 919, 278, 355, 29034, 198, 6738, 3047, 13, 12417, 62, 28816, 1330, 1388, 62, 28816, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 1904, 62, 66, 15339, 796, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 198, 220, 220, 220, 1303, 4798, 7203, 38690, 2198, 269, 15339, 3722, 1600, 1904, 62, 66, 15339, 8, 198, 220, 220, 220, 1303, 361, 779, 62, 66, 15339, 25, 198, 220, 220, 220, 30751, 796, 1822, 48610, 3419, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 8, 198 ]
2.979798
198
import hashlib import hmac from time import time from typing import Optional, Union
[ 11748, 12234, 8019, 198, 11748, 289, 20285, 198, 6738, 640, 1330, 640, 198, 6738, 19720, 1330, 32233, 11, 4479, 628, 198 ]
4.095238
21
"""Image parser module. """ import os import base64 def parse_image(image) -> str: """Check whether the image is a string or a file path or a file-like object. :param image: A base64 string or a file path or a file-like object representing an image. :return: Image as a base64 string. """ data = None if hasattr(image, 'read'): # When image is a file-like object. data = image.read() elif os.path.isfile(image): # When image is a file path. with open(image, 'rb') as file: data = file.read() return base64.b64encode(data).decode('utf-8') if data else image
[ 37811, 5159, 30751, 8265, 13, 198, 37811, 198, 11748, 28686, 198, 11748, 2779, 2414, 628, 198, 4299, 21136, 62, 9060, 7, 9060, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 9787, 1771, 262, 2939, 318, 257, 4731, 393, 257, 2393, 3108, 393, 257, 2393, 12, 2339, 2134, 13, 198, 220, 220, 220, 1058, 17143, 2939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2779, 2414, 4731, 393, 257, 2393, 3108, 393, 257, 2393, 12, 2339, 2134, 10200, 281, 2939, 13, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7412, 355, 257, 2779, 2414, 4731, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 6045, 198, 220, 220, 220, 611, 468, 35226, 7, 9060, 11, 705, 961, 6, 2599, 220, 1303, 1649, 2939, 318, 257, 2393, 12, 2339, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2939, 13, 961, 3419, 198, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 4468, 576, 7, 9060, 2599, 220, 1303, 1649, 2939, 318, 257, 2393, 3108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9060, 11, 705, 26145, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2393, 13, 961, 3419, 628, 220, 220, 220, 1441, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 7890, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 611, 1366, 2073, 2939, 198 ]
2.614754
244
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # ------------------------------------------------------------------------------- # # This file is intended to provide the same functions as # https://github.com/carla-simulator/driving-benchmarks/blob/master/version084/benchmark_tools/experiment_suites/experiment_suite.py # but working with CARLA 0.9.11 and gym import abc from collections import OrderedDict from gym_carla.converters.observations.sensors.camera.rgb import RGBCameraSensorObservations from carla import Transform, Location, Rotation
[ 2, 15069, 357, 66, 8, 2177, 13851, 19009, 3337, 357, 34, 15922, 8, 379, 262, 26986, 270, 265, 5231, 261, 6086, 390, 198, 2, 15142, 357, 52, 6242, 737, 198, 2, 198, 2, 770, 670, 318, 11971, 739, 262, 2846, 286, 262, 17168, 5964, 13, 198, 2, 1114, 257, 4866, 11, 766, 1279, 5450, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 28401, 198, 2, 198, 2, 16529, 24305, 198, 2, 198, 2, 770, 2393, 318, 5292, 284, 2148, 262, 976, 5499, 355, 198, 2, 3740, 1378, 12567, 13, 785, 14, 7718, 5031, 12, 14323, 8927, 14, 24255, 12, 26968, 14306, 14, 2436, 672, 14, 9866, 14, 9641, 2919, 19, 14, 26968, 4102, 62, 31391, 14, 23100, 3681, 62, 2385, 2737, 14, 23100, 3681, 62, 2385, 578, 13, 9078, 198, 2, 475, 1762, 351, 17368, 13534, 657, 13, 24, 13, 1157, 290, 11550, 198, 198, 11748, 450, 66, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 11550, 62, 7718, 5031, 13, 1102, 332, 1010, 13, 672, 3168, 602, 13, 82, 641, 669, 13, 25695, 13, 81, 22296, 1330, 34359, 2749, 18144, 47864, 31310, 712, 602, 198, 6738, 1097, 5031, 1330, 26981, 11, 13397, 11, 371, 14221, 628 ]
3.606965
201
import argparse import json from os.path import basename, join, split, splitext import sys from w4_tiled_converter import converters # Convert a tiled tmx tilemap to source files if __name__ == "__main__": main()
[ 11748, 1822, 29572, 198, 11748, 33918, 198, 6738, 28686, 13, 6978, 1330, 1615, 12453, 11, 4654, 11, 6626, 11, 4328, 578, 742, 198, 11748, 25064, 198, 198, 6738, 266, 19, 62, 83, 3902, 62, 1102, 332, 353, 1330, 6718, 1010, 198, 198, 2, 38240, 257, 256, 3902, 256, 36802, 17763, 8899, 284, 2723, 3696, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.986667
75
# Generated by Django 2.1.1 on 2018-10-05 22:33 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 16, 319, 2864, 12, 940, 12, 2713, 2534, 25, 2091, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from flask import Blueprint db_manage_bp = Blueprint('db_manage_cmd', __name__, cli_group=None) from book_library_app.commands import db_manage_commands
[ 6738, 42903, 1330, 39932, 198, 198, 9945, 62, 805, 496, 62, 46583, 796, 39932, 10786, 9945, 62, 805, 496, 62, 28758, 3256, 11593, 3672, 834, 11, 537, 72, 62, 8094, 28, 14202, 8, 198, 198, 6738, 1492, 62, 32016, 62, 1324, 13, 9503, 1746, 1330, 20613, 62, 805, 496, 62, 9503, 1746 ]
2.961538
52
#importing the library #nn requires matrix2d.py and the math module and random module for dependencies import nn import random #create the neural network to solve the XOR problem #takes an array of arrays for argument #the 2, 4 and 1 represent two nodes in the input and 4 nodes in the hidden layer and 1 node in the output layer #you can add more layers by adding an array to the larger array with a number in it for the number of nodes you want like [[2],[3],[3],[4]] #you can set the learning rate and the network's weights and biases after you give it its shape (0.1 is default for learning rate) example_neural_network = nn.NeuralNetwork([[2],[4],[1]], learning_rate = 0.2) #have your inputs and targets in an array which match the number of inputs and outputs specificed in the initialization of the neural network #if you want to use backpropagation and gradient descent in supervised learning inputs = [[1,0.01],[0.01,1],[1,1],[0.01,0.01]] targets = [[0.99],[0.99],[0.01],[0.01]] #train the network on the inputs and the targets for i in range(20000): index = random.randint(0,3) example_neural_network.train(inputs[index], targets[index]) #check what the network outputs after it has been trained #this should be close to the targets print(example_neural_network.feedforward(inputs[0])) print(example_neural_network.feedforward(inputs[1])) print(example_neural_network.feedforward(inputs[2])) print(example_neural_network.feedforward(inputs[3])) #print out some of the information in the network example_neural_network.print()
[ 2, 11748, 278, 262, 5888, 198, 2, 20471, 4433, 17593, 17, 67, 13, 9078, 290, 262, 10688, 8265, 290, 4738, 8265, 329, 20086, 198, 11748, 299, 77, 198, 11748, 4738, 198, 198, 2, 17953, 262, 17019, 3127, 284, 8494, 262, 1395, 1581, 1917, 198, 2, 83, 1124, 281, 7177, 286, 26515, 329, 4578, 198, 2, 1169, 362, 11, 604, 290, 352, 2380, 734, 13760, 287, 262, 5128, 290, 604, 13760, 287, 262, 7104, 7679, 290, 352, 10139, 287, 262, 5072, 7679, 198, 2, 5832, 460, 751, 517, 11685, 416, 4375, 281, 7177, 284, 262, 4025, 7177, 351, 257, 1271, 287, 340, 329, 262, 1271, 286, 13760, 345, 765, 588, 16410, 17, 38430, 18, 38430, 18, 38430, 19, 11907, 198, 2, 5832, 460, 900, 262, 4673, 2494, 290, 262, 3127, 338, 19590, 290, 29275, 706, 345, 1577, 340, 663, 5485, 357, 15, 13, 16, 318, 4277, 329, 4673, 2494, 8, 198, 20688, 62, 710, 1523, 62, 27349, 796, 299, 77, 13, 8199, 1523, 26245, 26933, 58, 17, 38430, 19, 38430, 16, 60, 4357, 4673, 62, 4873, 796, 657, 13, 17, 8, 198, 198, 2, 14150, 534, 17311, 290, 6670, 287, 281, 7177, 543, 2872, 262, 1271, 286, 17311, 290, 23862, 2176, 276, 287, 262, 37588, 286, 262, 17019, 3127, 198, 2, 361, 345, 765, 284, 779, 736, 22930, 363, 341, 290, 31312, 18598, 287, 28679, 4673, 198, 15414, 82, 796, 16410, 16, 11, 15, 13, 486, 38430, 15, 13, 486, 11, 16, 38430, 16, 11, 16, 38430, 15, 13, 486, 11, 15, 13, 486, 11907, 198, 83, 853, 1039, 796, 16410, 15, 13, 2079, 38430, 15, 13, 2079, 38430, 15, 13, 486, 38430, 15, 13, 486, 11907, 198, 198, 2, 27432, 262, 3127, 319, 262, 17311, 290, 262, 6670, 198, 1640, 1312, 287, 2837, 7, 2167, 405, 2599, 198, 220, 220, 220, 6376, 796, 4738, 13, 25192, 600, 7, 15, 11, 18, 8, 198, 220, 220, 220, 1672, 62, 710, 1523, 62, 27349, 13, 27432, 7, 15414, 82, 58, 9630, 4357, 6670, 58, 9630, 12962, 198, 198, 2, 9122, 644, 262, 3127, 23862, 706, 340, 468, 587, 8776, 198, 2, 5661, 815, 307, 1969, 284, 262, 6670, 198, 4798, 7, 20688, 62, 710, 1523, 62, 27349, 13, 12363, 11813, 7, 15414, 82, 58, 15, 60, 4008, 198, 4798, 7, 20688, 62, 710, 1523, 62, 27349, 13, 12363, 11813, 7, 15414, 82, 58, 16, 60, 4008, 198, 4798, 7, 20688, 62, 710, 1523, 62, 27349, 13, 12363, 11813, 7, 15414, 82, 58, 17, 60, 4008, 198, 4798, 7, 20688, 62, 710, 1523, 62, 27349, 13, 12363, 11813, 7, 15414, 82, 58, 18, 60, 4008, 198, 198, 2, 4798, 503, 617, 286, 262, 1321, 287, 262, 3127, 198, 20688, 62, 710, 1523, 62, 27349, 13, 4798, 3419, 198 ]
3.404396
455
from django.db import models from django.core.exceptions import ObjectDoesNotExist from rest_framework import status from guilds.models import Guild from dmessages.models import Message from users.models import User from channels.models import Channel from .utils import create_error_response from .utils import create_success_response # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 9515, 13921, 3673, 3109, 396, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 198, 6738, 19806, 82, 13, 27530, 1330, 16446, 198, 6738, 288, 37348, 1095, 13, 27530, 1330, 16000, 198, 6738, 2985, 13, 27530, 1330, 11787, 198, 6738, 9619, 13, 27530, 1330, 11102, 198, 6738, 764, 26791, 1330, 2251, 62, 18224, 62, 26209, 198, 6738, 764, 26791, 1330, 2251, 62, 13138, 62, 26209, 198, 198, 2, 13610, 534, 4981, 994, 13, 628 ]
4.066667
90
from urllib.parse import urlencode from urllib.request import Request, urlopen import json import argparse import configparser main()
[ 6738, 2956, 297, 571, 13, 29572, 1330, 2956, 11925, 8189, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19390, 11, 19016, 9654, 198, 11748, 33918, 198, 11748, 1822, 29572, 198, 11748, 4566, 48610, 198, 198, 12417, 3419, 198 ]
3.552632
38
# -*- coding: utf-8 -*- """ Copyright (C) 2015, MuChu Hsu Contributed by Muchu Hsu ([email protected]) This file is part of BSD license <https://opensource.org/licenses/BSD-3-Clause> """ import json from flask import Flask from flask import request from flask import render_template from flask import jsonify from story_chain.localdb import LocalDbForStoryChain app = Flask(__name__.split(".")[0]) #啟動 server #建立 jsonp response #在指定的段落之後 加入新的故事段落 (return 新段落 id) @app.route("/story_chain/api_post/story", methods=["GET"]) #取得指定段落內容 @app.route("/story_chain/api_get/story/<int:intStoryId>", methods=["GET"]) #修改指定段落內容 (按贊/按噓) @app.route("/story_chain/api_put/story/<int:intStoryId>", methods=["GET"]) #取得 前 or 後 故事段 列表 (return 段落 id list) @app.route("/story_chain/api_get/story", methods=["GET"]) #讀取書籤 @app.route("/story_chain/api_get/tag/<strTagName>", methods=["GET"]) #新增書籤 (書籤有時限) @app.route("/story_chain/api_post/tag", methods=["GET"]) #= Flask 範例 = #GET POST參數範例 @app.route("/hello/<username>/<int:num>", methods=["GET", "POST"]) #template範例 @app.route("/template/") @app.route("/template/<name>") #post json範例 @app.route("/jsonpapi", methods=["GET"]) if __name__ == "__main__": start_flask_server()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 15269, 357, 34, 8, 1853, 11, 8252, 1925, 84, 367, 2385, 198, 4264, 6169, 416, 13111, 84, 367, 2385, 357, 29482, 84, 29279, 31, 14816, 13, 785, 8, 198, 1212, 2393, 318, 636, 286, 347, 10305, 5964, 198, 198, 27, 5450, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 21800, 12, 18, 12, 2601, 682, 29, 198, 37811, 198, 11748, 33918, 198, 6738, 42903, 1330, 46947, 198, 6738, 42903, 1330, 2581, 198, 6738, 42903, 1330, 8543, 62, 28243, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 1621, 62, 7983, 13, 17946, 1940, 65, 1330, 10714, 43832, 1890, 11605, 35491, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 13, 35312, 7203, 19570, 58, 15, 12962, 198, 198, 2, 161, 243, 253, 47947, 243, 4382, 198, 220, 220, 220, 220, 198, 2, 161, 119, 118, 44165, 233, 33918, 79, 2882, 198, 220, 220, 220, 220, 198, 2, 28839, 101, 162, 234, 229, 22522, 248, 21410, 162, 106, 113, 164, 238, 121, 45298, 36181, 234, 10263, 232, 254, 17739, 98, 23877, 108, 21410, 46763, 227, 12859, 233, 162, 106, 113, 164, 238, 121, 357, 7783, 10545, 244, 108, 162, 106, 113, 164, 238, 121, 4686, 8, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 7353, 14, 13571, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 220, 220, 220, 220, 198, 2, 20998, 244, 36181, 245, 162, 234, 229, 22522, 248, 162, 106, 113, 164, 238, 121, 17739, 100, 22522, 117, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 1136, 14, 13571, 14, 27, 600, 25, 600, 11605, 7390, 29, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 220, 220, 220, 220, 198, 2, 46479, 106, 162, 242, 117, 162, 234, 229, 22522, 248, 162, 106, 113, 164, 238, 121, 17739, 100, 22522, 117, 357, 162, 234, 231, 164, 112, 232, 14, 162, 234, 231, 161, 247, 241, 8, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 1996, 14, 13571, 14, 27, 600, 25, 600, 11605, 7390, 29, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 220, 220, 220, 220, 198, 2, 20998, 244, 36181, 245, 10263, 231, 235, 393, 10263, 122, 234, 10545, 243, 227, 12859, 233, 162, 106, 113, 10263, 230, 245, 26193, 101, 357, 7783, 10545, 106, 113, 164, 238, 121, 4686, 1351, 8, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 1136, 14, 13571, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 2, 164, 106, 222, 20998, 244, 162, 249, 116, 163, 109, 97, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 1136, 14, 12985, 14, 27, 2536, 24835, 5376, 29, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 220, 220, 220, 220, 198, 198, 2, 23877, 108, 161, 95, 252, 162, 249, 116, 163, 109, 97, 357, 162, 249, 116, 163, 109, 97, 17312, 231, 162, 25081, 165, 247, 238, 8, 198, 31, 1324, 13, 38629, 7203, 14, 13571, 62, 7983, 14, 15042, 62, 7353, 14, 12985, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 198, 2, 28, 46947, 13328, 107, 226, 160, 122, 233, 796, 198, 2, 18851, 24582, 20998, 225, 46763, 116, 163, 107, 226, 160, 122, 233, 198, 31, 1324, 13, 38629, 7203, 14, 31373, 14, 27, 29460, 29, 14, 27, 600, 25, 22510, 29, 1600, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 198, 220, 220, 220, 220, 198, 2, 28243, 163, 107, 226, 160, 122, 233, 198, 31, 1324, 13, 38629, 7203, 14, 28243, 14, 4943, 198, 31, 1324, 13, 38629, 7203, 14, 28243, 14, 27, 3672, 29, 4943, 198, 220, 220, 220, 220, 198, 2, 7353, 33918, 163, 107, 226, 160, 122, 233, 198, 31, 1324, 13, 38629, 7203, 14, 17752, 79, 15042, 1600, 5050, 28, 14692, 18851, 8973, 8, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 923, 62, 2704, 2093, 62, 15388, 3419 ]
1.861357
678
# coding: utf-8 """ Xero Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class ReportFields(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"field_id": "str", "description": "str", "value": "str"} attribute_map = { "field_id": "FieldID", "description": "Description", "value": "Value", } def __init__(self, field_id=None, description=None, value=None): # noqa: E501 """ReportFields - a model defined in OpenAPI""" # noqa: E501 self._field_id = None self._description = None self._value = None self.discriminator = None if field_id is not None: self.field_id = field_id if description is not None: self.description = description if value is not None: self.value = value @property def field_id(self): """Gets the field_id of this ReportFields. # noqa: E501 :return: The field_id of this ReportFields. # noqa: E501 :rtype: str """ return self._field_id @field_id.setter def field_id(self, field_id): """Sets the field_id of this ReportFields. :param field_id: The field_id of this ReportFields. # noqa: E501 :type: str """ self._field_id = field_id @property def description(self): """Gets the description of this ReportFields. # noqa: E501 :return: The description of this ReportFields. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this ReportFields. :param description: The description of this ReportFields. # noqa: E501 :type: str """ self._description = description @property def value(self): """Gets the value of this ReportFields. # noqa: E501 :return: The value of this ReportFields. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this ReportFields. :param value: The value of this ReportFields. # noqa: E501 :type: str """ self._value = value
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 1395, 3529, 40964, 7824, 628, 220, 220, 220, 1400, 6764, 2810, 357, 27568, 416, 4946, 15042, 35986, 3740, 1378, 12567, 13, 785, 14, 9654, 499, 270, 10141, 14, 9654, 15042, 12, 8612, 1352, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 14039, 25, 40391, 31, 87, 3529, 13, 785, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 6738, 2124, 3529, 62, 29412, 13, 27530, 1330, 7308, 17633, 628, 198, 4871, 6358, 15878, 82, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 13, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1280, 15042, 62, 19199, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 11688, 2099, 13, 198, 220, 220, 220, 220, 220, 11688, 62, 8899, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 33918, 1994, 287, 6770, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1280, 15042, 62, 19199, 796, 19779, 3245, 62, 312, 1298, 366, 2536, 1600, 366, 11213, 1298, 366, 2536, 1600, 366, 8367, 1298, 366, 2536, 20662, 628, 220, 220, 220, 11688, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3245, 62, 312, 1298, 366, 15878, 2389, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 11828, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8367, 1298, 366, 11395, 1600, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2214, 62, 312, 28, 14202, 11, 6764, 28, 14202, 11, 1988, 28, 14202, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19100, 15878, 82, 532, 257, 2746, 5447, 287, 4946, 17614, 37811, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3245, 62, 312, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11213, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15410, 3036, 20900, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3245, 62, 312, 796, 2214, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6764, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11213, 796, 6764, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2214, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 2214, 62, 312, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 2214, 62, 312, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3245, 62, 312, 628, 220, 220, 220, 2488, 3245, 62, 312, 13, 2617, 353, 198, 220, 220, 220, 825, 2214, 62, 312, 7, 944, 11, 2214, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 2214, 62, 312, 286, 428, 6358, 15878, 82, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2214, 62, 312, 25, 383, 2214, 62, 312, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3245, 62, 312, 796, 2214, 62, 312, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6764, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 6764, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 6764, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 11213, 628, 220, 220, 220, 2488, 11213, 13, 2617, 353, 198, 220, 220, 220, 825, 6764, 7, 944, 11, 6764, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 6764, 286, 428, 6358, 15878, 82, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6764, 25, 383, 6764, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11213, 796, 6764, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1988, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1988, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1988, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 8367, 628, 220, 220, 220, 2488, 8367, 13, 2617, 353, 198, 220, 220, 220, 825, 1988, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1988, 286, 428, 6358, 15878, 82, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 383, 1988, 286, 428, 6358, 15878, 82, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 796, 1988, 198 ]
2.37602
1,226
from scipy import stats import numpy as np ############################ # CALCULATING CORRELATIONS # ############################ array_1 = np.array([1,2,3,4,5,6]) # Create a numpy array from a list array_2 = array_1 # Create another array with the same values print(stats.pearsonr(array_1, array_2)) # Calculate the correlation which will be 1 since the values are the same ####################### # NORMAL DISTRIBUTION # ####################### x = stats.norm.rvs(loc=0, scale=10, size=10) # Generate 10 values randomly sampled from a normal distribution with mean 0 and standard deviation of 10 print(x) ################################ # PROBABILITY DENSITY FUNCTION # ################################ p1 = stats.norm.pdf(x=-100, loc=0, scale=10) # Get probability of sampling a value of -100 p2 = stats.norm.pdf(x=0, loc=0, scale=10) # Get probability of sampling a value of 0 print(p1) print(p2) #################################### # CUMULATIVE DISTRIBUTION FUNCTION # #################################### p1 = stats.norm.cdf(x=0, loc=0, scale=10) # Get probability of sampling a value less than or equal to 0 print(p1) ###################################### # CALCULATING DESCRIPTIVE STATISTICS # ###################################### print(stats.describe(stats.norm.rvs(loc=0, scale=1, size=500))) # Calculate descriptive statistics for 500 data points sampled from normal distribution with mean 0 and standard deviation of 1
[ 6738, 629, 541, 88, 1330, 9756, 198, 11748, 299, 32152, 355, 45941, 198, 198, 14468, 7804, 4242, 198, 2, 33290, 34, 6239, 33881, 23929, 16448, 18421, 1303, 198, 14468, 7804, 4242, 198, 198, 18747, 62, 16, 796, 45941, 13, 18747, 26933, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 12962, 220, 1303, 13610, 257, 299, 32152, 7177, 422, 257, 1351, 198, 18747, 62, 17, 796, 7177, 62, 16, 220, 1303, 13610, 1194, 7177, 351, 262, 976, 3815, 198, 198, 4798, 7, 34242, 13, 431, 12613, 81, 7, 18747, 62, 16, 11, 7177, 62, 17, 4008, 220, 1303, 27131, 378, 262, 16096, 543, 481, 307, 352, 1201, 262, 3815, 389, 262, 976, 220, 198, 198, 14468, 4242, 21017, 198, 2, 25273, 42126, 34957, 9865, 35354, 1303, 198, 14468, 4242, 21017, 198, 87, 796, 9756, 13, 27237, 13, 81, 14259, 7, 17946, 28, 15, 11, 5046, 28, 940, 11, 2546, 28, 940, 8, 220, 1303, 2980, 378, 838, 3815, 15456, 35846, 422, 257, 3487, 6082, 351, 1612, 657, 290, 3210, 28833, 286, 838, 198, 198, 4798, 7, 87, 8, 198, 198, 29113, 198, 2, 21965, 4339, 25382, 360, 16938, 9050, 29397, 4177, 2849, 1303, 198, 29113, 198, 79, 16, 796, 9756, 13, 27237, 13, 12315, 7, 87, 10779, 3064, 11, 1179, 28, 15, 11, 5046, 28, 940, 8, 220, 1303, 3497, 12867, 286, 19232, 257, 1988, 286, 532, 3064, 198, 79, 17, 796, 9756, 13, 27237, 13, 12315, 7, 87, 28, 15, 11, 1179, 28, 15, 11, 5046, 28, 940, 8, 220, 220, 220, 220, 1303, 3497, 12867, 286, 19232, 257, 1988, 286, 657, 198, 198, 4798, 7, 79, 16, 8, 198, 4798, 7, 79, 17, 8, 198, 198, 29113, 4242, 198, 2, 327, 5883, 6239, 37045, 34957, 9865, 35354, 29397, 4177, 2849, 1303, 198, 29113, 4242, 198, 79, 16, 796, 9756, 13, 27237, 13, 66, 7568, 7, 87, 28, 15, 11, 1179, 28, 15, 11, 5046, 28, 940, 8, 220, 1303, 3497, 12867, 286, 19232, 257, 1988, 1342, 621, 393, 4961, 284, 657, 198, 198, 4798, 7, 79, 16, 8, 198, 198, 29113, 4242, 2235, 198, 2, 33290, 34, 6239, 33881, 22196, 36584, 51, 9306, 15486, 8808, 19505, 1303, 198, 29113, 4242, 2235, 198, 4798, 7, 34242, 13, 20147, 4892, 7, 34242, 13, 27237, 13, 81, 14259, 7, 17946, 28, 15, 11, 5046, 28, 16, 11, 2546, 28, 4059, 22305, 220, 1303, 27131, 378, 35644, 7869, 329, 5323, 1366, 2173, 35846, 422, 3487, 6082, 351, 1612, 657, 290, 3210, 28833, 286, 352, 198 ]
3.513253
415
from PySide.QtCore import * from PySide.QtGui import * from PySide.QtSql import * import DarunGrimDatabase import DiffEngine from Graphs import * import FlowGrapher import FileStoreBrowser import FileStoreDatabase import DarunGrimEngine import pprint from multiprocessing import Process from multiprocessing import Queue import time import os import operator import subprocess from Log import * RedirectStdOutErr=True if __name__=='__main__': multiprocessing.freeze_support() import sys import time if len(sys.argv)>1: database_name=sys.argv[1] else: database_name='' app=QApplication(sys.argv) pixmap=QPixmap('DarunGrimSplash.png') splash=QSplashScreen(pixmap) splash.show() app.processEvents() time.sleep(0.5) window=MainWindow(database_name) window.show() splash.finish(window) sys.exit(app.exec_())
[ 6738, 9485, 24819, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 24819, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 24819, 13, 48, 83, 50, 13976, 1330, 1635, 198, 198, 11748, 7491, 403, 38, 3036, 38105, 198, 11748, 10631, 13798, 198, 6738, 29681, 82, 1330, 1635, 198, 11748, 27782, 38, 2416, 372, 198, 11748, 9220, 22658, 46532, 198, 11748, 9220, 22658, 38105, 198, 11748, 7491, 403, 38, 3036, 13798, 198, 198, 11748, 279, 4798, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 6738, 18540, 305, 919, 278, 1330, 4670, 518, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 10088, 198, 11748, 850, 14681, 198, 198, 6738, 5972, 1330, 1635, 198, 198, 7738, 1060, 1273, 67, 7975, 9139, 81, 28, 17821, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 197, 16680, 541, 305, 919, 278, 13, 5787, 2736, 62, 11284, 3419, 198, 197, 11748, 25064, 198, 197, 11748, 640, 628, 197, 361, 18896, 7, 17597, 13, 853, 85, 8, 29, 16, 25, 198, 197, 197, 48806, 62, 3672, 28, 17597, 13, 853, 85, 58, 16, 60, 198, 197, 17772, 25, 198, 197, 197, 48806, 62, 3672, 28, 7061, 628, 197, 1324, 28, 48, 23416, 7, 17597, 13, 853, 85, 8, 198, 197, 79, 844, 8899, 28, 48, 47, 844, 8899, 10786, 32708, 403, 38, 3036, 26568, 1077, 13, 11134, 11537, 198, 197, 22018, 1077, 28, 48, 26568, 1077, 23901, 7, 79, 844, 8899, 8, 198, 197, 22018, 1077, 13, 12860, 3419, 198, 197, 1324, 13, 14681, 37103, 3419, 198, 197, 2435, 13, 42832, 7, 15, 13, 20, 8, 198, 197, 17497, 28, 13383, 27703, 7, 48806, 62, 3672, 8, 198, 197, 17497, 13, 12860, 3419, 198, 197, 22018, 1077, 13, 15643, 680, 7, 17497, 8, 198, 197, 17597, 13, 37023, 7, 1324, 13, 18558, 62, 28955, 198 ]
2.718033
305
import asyncio import logging from Esipraisal.Esipraisal import Esipraisal ep_log = logging.getLogger("Esipraisal") ep_log.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) ep_log.addHandler(ch) ep = Esipraisal() region_ids=[10000002, 10000043, 10000032, 10000016, 10000042, 10000030, 10000064, 10000033, 10000068, 10000020, 10000040, 10000013, 10000039, 10000058] app = asyncio.run(ep.appraise(29988, region_ids)) print(app)
[ 11748, 30351, 952, 198, 11748, 18931, 198, 6738, 8678, 541, 430, 28456, 13, 23041, 541, 430, 28456, 1330, 8678, 541, 430, 28456, 198, 198, 538, 62, 6404, 796, 18931, 13, 1136, 11187, 1362, 7203, 23041, 541, 430, 28456, 4943, 198, 538, 62, 6404, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 354, 796, 18931, 13, 12124, 25060, 3419, 198, 354, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 11537, 198, 354, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 538, 62, 6404, 13, 2860, 25060, 7, 354, 8, 628, 198, 538, 796, 8678, 541, 430, 28456, 3419, 198, 36996, 62, 2340, 41888, 16, 10535, 17, 11, 1802, 830, 3559, 11, 1802, 830, 2624, 11, 1802, 18005, 21, 11, 1802, 830, 3682, 11, 1802, 830, 1270, 11, 1802, 830, 2414, 11, 1802, 830, 2091, 11, 1802, 830, 3104, 11, 1802, 830, 1238, 11, 1802, 830, 1821, 11, 1802, 18005, 18, 11, 1802, 830, 2670, 11, 1802, 830, 3365, 60, 198, 1324, 796, 30351, 952, 13, 5143, 7, 538, 13, 1324, 40225, 7, 22579, 3459, 11, 3814, 62, 2340, 4008, 198, 198, 4798, 7, 1324, 8 ]
2.556054
223
#encoding:utf-8 subreddit = 'goodanimemes' t_channel = '@r_goodanimemes'
[ 2, 12685, 7656, 25, 40477, 12, 23, 198, 198, 7266, 10748, 796, 705, 11274, 11227, 368, 274, 6, 198, 83, 62, 17620, 796, 705, 31, 81, 62, 11274, 11227, 368, 274, 6, 628 ]
2.272727
33
import numpy as np import matplotlib.pyplot as plt plt.rc('font', family='serif') X1 , X2 = np.meshgrid(np.linspace(-2,2,500),np.linspace(-2,2,500)) F1 = X1**2 + X2**2 F2 = (X1-1)**2+X2**2 G = X1**2 - X1 + 3/16 G1 = 2 * (X1[0] - 0.1) * (X1[0] - 0.9) G2 = 20 * (X1[0] - 0.4) * (X1[0] - 0.6) levels = [0.02, 0.1 , 0.25 , 0.5 , 0.8] plt.figure(figsize=(7,5)) CS = plt.contour(X1,X2,F1,levels,linestyles="dashed",color="black", alpha = 0.5) CS.collections[0].set_label("$f_1(x)$") CS = plt.contour(X1, X2, F2, levels, linestyles="dashed", colors='black', alpha=0.5) CS.collections[0].set_label("$f_2(x)$") plt.plot(X1[0], G1, linewidth=2.0, color="green", linestyle='dotted') plt.plot(X1[0][G1<0], G1[G1<0], label="$g_1(x)$", linewidth=2.0, color="green") plt.plot(X1[0], G2, linewidth=2.0, color="blue", linestyle='dotted') plt.plot(X1[0][X1[0]>0.6], G2[X1[0]>0.6], label="$g_2(x)$",linewidth=2.0, color="blue") plt.plot(X1[0][X1[0]<0.4], G2[X1[0]<0.4], linewidth=2.0, color="blue") plt.plot(np.linspace(0.1,0.4,100), np.zeros(100),linewidth=3.0, color="orange") plt.plot(np.linspace(0.6,0.9,100), np.zeros(100),linewidth=3.0, color="orange") plt.xlim(-0.5, 1.5) plt.ylim(-0.5, 1) plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.12), ncol=4, fancybox=True, shadow=False) plt.tight_layout() plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 489, 83, 13, 6015, 10786, 10331, 3256, 1641, 11639, 2655, 361, 11537, 628, 198, 55, 16, 837, 1395, 17, 796, 45941, 13, 76, 5069, 25928, 7, 37659, 13, 21602, 10223, 32590, 17, 11, 17, 11, 4059, 828, 37659, 13, 21602, 10223, 32590, 17, 11, 17, 11, 4059, 4008, 198, 198, 37, 16, 796, 1395, 16, 1174, 17, 1343, 1395, 17, 1174, 17, 198, 37, 17, 796, 357, 55, 16, 12, 16, 8, 1174, 17, 10, 55, 17, 1174, 17, 198, 38, 796, 1395, 16, 1174, 17, 532, 1395, 16, 1343, 513, 14, 1433, 198, 198, 38, 16, 796, 362, 1635, 357, 55, 16, 58, 15, 60, 532, 657, 13, 16, 8, 1635, 357, 55, 16, 58, 15, 60, 532, 657, 13, 24, 8, 198, 198, 38, 17, 796, 1160, 1635, 357, 55, 16, 58, 15, 60, 532, 657, 13, 19, 8, 1635, 357, 55, 16, 58, 15, 60, 532, 657, 13, 21, 8, 198, 198, 46170, 796, 685, 15, 13, 2999, 11, 657, 13, 16, 837, 657, 13, 1495, 837, 657, 13, 20, 837, 657, 13, 23, 60, 198, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 22, 11, 20, 4008, 198, 198, 7902, 796, 458, 83, 13, 3642, 454, 7, 55, 16, 11, 55, 17, 11, 37, 16, 11, 46170, 11, 2815, 42530, 2625, 67, 5263, 1600, 8043, 2625, 13424, 1600, 17130, 796, 657, 13, 20, 8, 198, 7902, 13, 4033, 26448, 58, 15, 4083, 2617, 62, 18242, 7203, 3, 69, 62, 16, 7, 87, 8, 3, 4943, 198, 198, 7902, 796, 458, 83, 13, 3642, 454, 7, 55, 16, 11, 1395, 17, 11, 376, 17, 11, 2974, 11, 9493, 42530, 2625, 67, 5263, 1600, 7577, 11639, 13424, 3256, 17130, 28, 15, 13, 20, 8, 198, 7902, 13, 4033, 26448, 58, 15, 4083, 2617, 62, 18242, 7203, 3, 69, 62, 17, 7, 87, 8, 3, 4943, 198, 198, 489, 83, 13, 29487, 7, 55, 16, 58, 15, 4357, 402, 16, 11, 9493, 413, 5649, 28, 17, 13, 15, 11, 3124, 2625, 14809, 1600, 9493, 10992, 11639, 67, 8426, 11537, 198, 489, 83, 13, 29487, 7, 55, 16, 58, 15, 7131, 38, 16, 27, 15, 4357, 402, 16, 58, 38, 16, 27, 15, 4357, 6167, 2625, 3, 70, 62, 16, 7, 87, 8, 3, 1600, 9493, 413, 5649, 28, 17, 13, 15, 11, 3124, 2625, 14809, 4943, 198, 198, 489, 83, 13, 29487, 7, 55, 16, 58, 15, 4357, 402, 17, 11, 9493, 413, 5649, 28, 17, 13, 15, 11, 3124, 2625, 17585, 1600, 9493, 10992, 11639, 67, 8426, 11537, 198, 489, 83, 13, 29487, 7, 55, 16, 58, 15, 7131, 55, 16, 58, 15, 60, 29, 15, 13, 21, 4357, 402, 17, 58, 55, 16, 58, 15, 60, 29, 15, 13, 21, 4357, 6167, 2625, 3, 70, 62, 17, 7, 87, 8, 3, 1600, 2815, 413, 5649, 28, 17, 13, 15, 11, 3124, 2625, 17585, 4943, 198, 489, 83, 13, 29487, 7, 55, 16, 58, 15, 7131, 55, 16, 58, 15, 60, 27, 15, 13, 19, 4357, 402, 17, 58, 55, 16, 58, 15, 60, 27, 15, 13, 19, 4357, 9493, 413, 5649, 28, 17, 13, 15, 11, 3124, 2625, 17585, 4943, 198, 198, 489, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 13, 16, 11, 15, 13, 19, 11, 3064, 828, 45941, 13, 9107, 418, 7, 3064, 828, 2815, 413, 5649, 28, 18, 13, 15, 11, 3124, 2625, 43745, 4943, 198, 489, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 13, 21, 11, 15, 13, 24, 11, 3064, 828, 45941, 13, 9107, 418, 7, 3064, 828, 2815, 413, 5649, 28, 18, 13, 15, 11, 3124, 2625, 43745, 4943, 198, 198, 489, 83, 13, 87, 2475, 32590, 15, 13, 20, 11, 352, 13, 20, 8, 198, 489, 83, 13, 88, 2475, 32590, 15, 13, 20, 11, 352, 8, 198, 489, 83, 13, 87, 18242, 7203, 3, 87, 62, 16, 3, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 3, 87, 62, 17, 3, 4943, 198, 198, 489, 83, 13, 1455, 437, 7, 17946, 11639, 45828, 3641, 3256, 275, 3524, 62, 1462, 62, 3702, 273, 16193, 15, 13, 20, 11, 352, 13, 1065, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 4033, 28, 19, 11, 14996, 3524, 28, 17821, 11, 9082, 28, 25101, 8, 198, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 12860, 3419 ]
1.835121
746
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TransactionTestCase from django.utils.translation import ugettext_lazy as _ from test_addon.models import Complex, Simple, Unconventional
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 45389, 14402, 20448, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 1332, 62, 48078, 13, 27530, 1330, 19157, 11, 17427, 11, 791, 1102, 20405, 628 ]
3.285714
70
from core.model import ModelWrapper from flask_restplus import fields, abort from werkzeug.datastructures import FileStorage from maxfw.core import MAX_API, PredictAPI input_parser = MAX_API.parser() input_parser.add_argument('image', type=FileStorage, location='files', required=True, help='An image file encoded as PNG with the size 64*64') label_prediction = MAX_API.model('LabelPrediction', { 'probability': fields.Float(required=True, description='Probability of the image containing mitosis') }) predict_response = MAX_API.model('ModelPredictResponse', { 'status': fields.String(required=True, description='Response status message'), 'predictions': fields.List(fields.Nested(label_prediction), description='Predicted labels and probabilities') })
[ 6738, 4755, 13, 19849, 1330, 9104, 36918, 2848, 198, 6738, 42903, 62, 2118, 9541, 1330, 7032, 11, 15614, 198, 6738, 266, 9587, 2736, 1018, 13, 19608, 459, 1356, 942, 1330, 9220, 31425, 198, 6738, 3509, 44482, 13, 7295, 1330, 25882, 62, 17614, 11, 49461, 17614, 198, 198, 15414, 62, 48610, 796, 25882, 62, 17614, 13, 48610, 3419, 198, 15414, 62, 48610, 13, 2860, 62, 49140, 10786, 9060, 3256, 2099, 28, 8979, 31425, 11, 4067, 11639, 16624, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 2025, 2939, 2393, 30240, 355, 36182, 351, 262, 2546, 5598, 9, 2414, 11537, 198, 198, 18242, 62, 28764, 2867, 796, 25882, 62, 17614, 13, 19849, 10786, 33986, 39156, 2867, 3256, 1391, 198, 220, 220, 220, 705, 1676, 65, 1799, 10354, 7032, 13, 43879, 7, 35827, 28, 17821, 11, 6764, 11639, 2964, 65, 1799, 286, 262, 2939, 7268, 10255, 5958, 11537, 198, 30072, 198, 198, 79, 17407, 62, 26209, 796, 25882, 62, 17614, 13, 19849, 10786, 17633, 47, 17407, 31077, 3256, 1391, 198, 220, 220, 220, 705, 13376, 10354, 7032, 13, 10100, 7, 35827, 28, 17821, 11, 6764, 11639, 31077, 3722, 3275, 33809, 198, 220, 220, 220, 705, 28764, 9278, 10354, 7032, 13, 8053, 7, 25747, 13, 45, 7287, 7, 18242, 62, 28764, 2867, 828, 6764, 11639, 39156, 5722, 14722, 290, 39522, 11537, 198, 30072, 628 ]
3.258197
244
# Add the upper directory (where the nodebox module is) to the search path. import os, sys; sys.path.insert(0, os.path.join("..","..")) from nodebox.graphics import * img = Image("creature.png") # The image.quad property describes the four-sided polygon # on which an image texture is "mounted". # This is not necessarily a rectangle, the corners can be distorted: img.quad.dx1 = 200 img.quad.dy1 = 100 img.quad.dx2 = 100 img.quad.dy2 = -100 # This flushes the image cache, so it is a costly operation. canvas.size = 500, 500 canvas.run(draw)
[ 2, 3060, 262, 6727, 8619, 357, 3003, 262, 10139, 3524, 8265, 318, 8, 284, 262, 2989, 3108, 13, 198, 11748, 28686, 11, 25064, 26, 25064, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 22179, 7203, 492, 2430, 492, 48774, 198, 198, 6738, 10139, 3524, 13, 70, 11549, 1330, 1635, 198, 198, 9600, 796, 7412, 7203, 20123, 495, 13, 11134, 4943, 198, 198, 2, 383, 2939, 13, 47003, 3119, 8477, 262, 1440, 12, 22339, 7514, 14520, 220, 198, 2, 319, 543, 281, 2939, 11743, 318, 366, 29728, 1911, 198, 2, 770, 318, 407, 6646, 257, 35991, 11, 262, 14371, 460, 307, 26987, 25, 198, 9600, 13, 47003, 13, 34350, 16, 796, 220, 939, 198, 9600, 13, 47003, 13, 9892, 16, 796, 220, 1802, 198, 9600, 13, 47003, 13, 34350, 17, 796, 220, 1802, 198, 9600, 13, 47003, 13, 9892, 17, 796, 532, 3064, 198, 198, 2, 770, 781, 17237, 262, 2939, 12940, 11, 523, 340, 318, 257, 16378, 4905, 13, 198, 220, 220, 220, 220, 198, 5171, 11017, 13, 7857, 796, 5323, 11, 5323, 198, 5171, 11017, 13, 5143, 7, 19334, 8 ]
3.016304
184
############################################################################# # # Copyright (c) 2008 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from five.grok import components, interfaces from grokcore.view.meta.directoryresource import _get_resource_path from zope import interface from zope.publisher.interfaces.browser import IDefaultBrowserLayer import five.grok import grokcore.component import grokcore.security import grokcore.view import martian from AccessControl.security import protectClass, protectName from App.class_init import InitializeClass as initializeClass if interfaces.HAVE_FORMLIB: from five.grok import formlib if interfaces.HAVE_LAYOUT: import grokcore.layout
[ 29113, 29113, 7804, 4242, 2, 198, 2, 198, 2, 15069, 357, 66, 8, 3648, 1168, 3008, 5693, 290, 25767, 669, 13, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 3788, 318, 2426, 284, 262, 8617, 286, 262, 1168, 3008, 5094, 13789, 11, 198, 2, 10628, 362, 13, 16, 357, 57, 6489, 737, 220, 317, 4866, 286, 262, 1168, 6489, 815, 13873, 428, 6082, 13, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1, 5357, 15529, 5357, 11096, 7788, 32761, 6375, 8959, 49094, 198, 2, 34764, 11015, 15986, 13954, 48778, 1961, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 37977, 2538, 11, 34482, 3398, 1565, 5603, 25382, 11, 36218, 38604, 3268, 10913, 2751, 12529, 11, 5357, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 198, 2, 198, 29113, 29113, 7804, 4242, 2235, 198, 198, 6738, 1936, 13, 27333, 74, 1330, 6805, 11, 20314, 198, 6738, 7128, 74, 7295, 13, 1177, 13, 28961, 13, 34945, 31092, 1330, 4808, 1136, 62, 31092, 62, 6978, 198, 6738, 1976, 3008, 1330, 7071, 198, 6738, 1976, 3008, 13, 12984, 8191, 13, 3849, 32186, 13, 40259, 1330, 4522, 891, 1721, 46532, 49925, 198, 198, 11748, 1936, 13, 27333, 74, 198, 11748, 7128, 74, 7295, 13, 42895, 198, 11748, 7128, 74, 7295, 13, 12961, 198, 11748, 7128, 74, 7295, 13, 1177, 198, 11748, 11277, 666, 198, 198, 6738, 8798, 15988, 13, 12961, 1330, 1805, 9487, 11, 1805, 5376, 198, 6738, 2034, 13, 4871, 62, 15003, 1330, 20768, 1096, 9487, 355, 41216, 9487, 628, 198, 361, 20314, 13, 7801, 6089, 62, 13775, 5805, 9865, 25, 198, 220, 220, 220, 422, 1936, 13, 27333, 74, 1330, 1296, 8019, 628, 198, 198, 361, 20314, 13, 7801, 6089, 62, 43, 4792, 12425, 25, 198, 220, 220, 220, 1330, 7128, 74, 7295, 13, 39786, 628, 628, 198 ]
3.824281
313
""" configure jax at startup """ from jax.config import config
[ 37811, 198, 11250, 495, 474, 897, 379, 13693, 198, 37811, 198, 198, 6738, 474, 897, 13, 11250, 1330, 4566, 628, 198 ]
3.142857
21
from enum import Enum, unique Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')) for name, member in Month.__members__.items(): print(name, '=>', member, ',', member.value) # Jan => Month.Jan , 1 # Feb => Month.Feb , 2 # Mar => Month.Mar , 3 # Apr => Month.Apr , 4 # May => Month.May , 5 # Jun => Month.Jun , 6 # Jul => Month.Jul , 7 # Aug => Month.Aug , 8 # Sep => Month.Sep , 9 # Oct => Month.Oct , 10 # Nov => Month.Nov , 11 # Dec => Month.Dec , 12 # 自定义枚举类 @unique day1 = Weekday.Mon print(day1) print(Weekday.Tue) print(Weekday['Tue']) print(Weekday.Tue.value) print(day1 == Weekday.Mon) for name, member in Weekday.__members__.items(): print(name, '=>', member) # Sun => Weekday.Sun # Mon => Weekday.Mon # Tue => Weekday.Tue # Wed => Weekday.Wed # Thu => Weekday.Thu # Fri => Weekday.Fri # Sat => Weekday.Sat
[ 198, 6738, 33829, 1330, 2039, 388, 11, 3748, 198, 198, 31948, 796, 2039, 388, 10786, 31948, 3256, 19203, 12128, 3256, 705, 15146, 3256, 705, 7676, 3256, 705, 13680, 3256, 705, 6747, 3256, 705, 22396, 3256, 705, 16980, 3256, 705, 12512, 3256, 705, 19117, 3256, 705, 12349, 3256, 705, 20795, 3256, 705, 10707, 6, 4008, 198, 198, 1640, 1438, 11, 2888, 287, 16061, 13, 834, 30814, 834, 13, 23814, 33529, 198, 197, 4798, 7, 3672, 11, 705, 14804, 3256, 2888, 11, 46083, 3256, 2888, 13, 8367, 8, 198, 198, 2, 2365, 5218, 16061, 13, 12128, 837, 352, 198, 2, 3158, 5218, 16061, 13, 15146, 837, 362, 198, 2, 1526, 5218, 16061, 13, 7676, 837, 513, 198, 2, 2758, 5218, 16061, 13, 13680, 837, 604, 198, 2, 1737, 5218, 16061, 13, 6747, 837, 642, 198, 2, 7653, 5218, 16061, 13, 22396, 837, 718, 198, 2, 5979, 5218, 16061, 13, 16980, 837, 767, 198, 2, 2447, 5218, 16061, 13, 12512, 837, 807, 198, 2, 8621, 5218, 16061, 13, 19117, 837, 860, 198, 2, 2556, 5218, 16061, 13, 12349, 837, 838, 198, 2, 5267, 5218, 16061, 13, 20795, 837, 1367, 198, 2, 4280, 5218, 16061, 13, 10707, 837, 1105, 198, 198, 2, 5525, 229, 103, 22522, 248, 20046, 231, 162, 252, 248, 10310, 122, 163, 109, 119, 198, 31, 34642, 198, 198, 820, 16, 796, 6119, 820, 13, 9069, 198, 4798, 7, 820, 16, 8, 198, 198, 4798, 7, 20916, 820, 13, 41392, 8, 198, 198, 4798, 7, 20916, 820, 17816, 41392, 6, 12962, 198, 198, 4798, 7, 20916, 820, 13, 41392, 13, 8367, 8, 198, 4798, 7, 820, 16, 6624, 6119, 820, 13, 9069, 8, 198, 198, 1640, 1438, 11, 2888, 287, 6119, 820, 13, 834, 30814, 834, 13, 23814, 33529, 198, 197, 4798, 7, 3672, 11, 705, 14804, 3256, 2888, 8, 198, 198, 2, 3825, 5218, 6119, 820, 13, 16012, 198, 2, 2892, 5218, 6119, 820, 13, 9069, 198, 2, 30030, 5218, 6119, 820, 13, 41392, 198, 2, 3300, 5218, 6119, 820, 13, 19864, 198, 2, 26223, 5218, 6119, 820, 13, 39902, 198, 2, 19480, 5218, 6119, 820, 13, 30214, 198, 2, 7031, 5218, 6119, 820, 13, 20245 ]
2.483146
356
import os import cv2
[ 11748, 28686, 198, 11748, 269, 85, 17, 628, 198 ]
2.555556
9
# (C) Copyright 2010-2020 Enthought, Inc., Austin, TX # All rights reserved. from envisage.core_plugin import CorePlugin from envisage.ui.tasks.tasks_plugin import TasksPlugin from force_wfmanager.tests.dummy_classes.dummy_data_view import ( DummyExtensionPluginWithDataView ) from force_wfmanager.tests.dummy_classes.dummy_contributed_ui import ( DummyUIPlugin, DummyUIPluginOld ) from force_wfmanager.wfmanager import WfManager class DummyUIWfManager(WfManager): """A workflow manager with a plugin contributing a UI"""
[ 2, 220, 357, 34, 8, 15069, 3050, 12, 42334, 2039, 28895, 11, 3457, 1539, 9533, 11, 15326, 198, 2, 220, 1439, 2489, 10395, 13, 198, 198, 6738, 45633, 496, 13, 7295, 62, 33803, 1330, 7231, 37233, 198, 6738, 45633, 496, 13, 9019, 13, 83, 6791, 13, 83, 6791, 62, 33803, 1330, 309, 6791, 37233, 198, 198, 6738, 2700, 62, 86, 35826, 3536, 13, 41989, 13, 67, 13513, 62, 37724, 13, 67, 13513, 62, 7890, 62, 1177, 1330, 357, 198, 220, 220, 220, 360, 13513, 11627, 3004, 37233, 3152, 6601, 7680, 198, 8, 198, 6738, 2700, 62, 86, 35826, 3536, 13, 41989, 13, 67, 13513, 62, 37724, 13, 67, 13513, 62, 3642, 6169, 62, 9019, 1330, 357, 198, 220, 220, 220, 360, 13513, 10080, 37233, 11, 360, 13513, 10080, 37233, 19620, 198, 8, 198, 6738, 2700, 62, 86, 35826, 3536, 13, 86, 35826, 3536, 1330, 370, 69, 13511, 628, 628, 198, 4871, 360, 13513, 10080, 54, 69, 13511, 7, 54, 69, 13511, 2599, 198, 220, 220, 220, 37227, 32, 30798, 4706, 351, 257, 13877, 14329, 257, 12454, 37811, 198 ]
3.044944
178
from unittest import TestCase from ...services.remote import get_broker_address, send_internal_signal from pika import BlockingConnection, ConnectionParameters from simplejson import loads
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 2644, 30416, 13, 47960, 1330, 651, 62, 7957, 6122, 62, 21975, 11, 3758, 62, 32538, 62, 12683, 282, 198, 6738, 279, 9232, 1330, 1086, 8629, 32048, 11, 26923, 48944, 198, 6738, 2829, 17752, 1330, 15989, 628, 198 ]
4.152174
46
from __future__ import division, print_function, unicode_literals from liberapay.testing import EUR, USD, Harness
[ 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 3655, 499, 323, 13, 33407, 1330, 27526, 11, 11403, 11, 2113, 1108, 628 ]
3.625
32
from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy import ForeignKey from sqlalchemy.sql import select from sqlalchemy.orm import relationship from sqlalchemy.dialects.postgresql import JSON, TEXT db = SQLAlchemy() #Column('user_id', Integer, ForeignKey("user.user_id"), nullable=False),
[ 6738, 42903, 13, 2302, 13, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 44161, 282, 26599, 1330, 8708, 9218, 198, 6738, 44161, 282, 26599, 13, 25410, 1330, 2922, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 7353, 34239, 13976, 1330, 19449, 11, 40383, 198, 198, 9945, 796, 16363, 2348, 26599, 3419, 198, 198, 2, 39470, 10786, 7220, 62, 312, 3256, 34142, 11, 8708, 9218, 7203, 7220, 13, 7220, 62, 312, 12340, 9242, 540, 28, 25101, 828, 198 ]
3.359551
89
# lista de dicionario dado listDict = [ {1 : 1, 2 : "oi", "nome" : "obrigado"}, {"Bolo" : "Cenoura", "Camarão" : "Verde", "nome" : "Sagrado"}, {1 : 10, "nome" : "oi", "caracol" : "obrigado"}, {"nome":"obrigado"} ] # a chave que será procurada nome = "nome" # inicializando a lista vazia lista = [] # verifico para cada nome se ele está ou não no dicionário for dict1 in listDict: # se a chave nome estiver no dicionário # e o valor dela não tiver sido adicionado a lista, só adicionar na lista if nome in dict1 and dict1[nome] not in lista: lista.append(dict1[nome]) # printa a lista print(lista)
[ 2, 1351, 64, 390, 288, 47430, 4982, 288, 4533, 198, 4868, 35, 713, 796, 685, 198, 220, 220, 220, 1391, 16, 1058, 352, 11, 362, 1058, 366, 23013, 1600, 366, 77, 462, 1, 1058, 366, 672, 4359, 4533, 25719, 198, 220, 220, 220, 19779, 33, 14057, 1, 1058, 366, 34, 268, 280, 430, 1600, 366, 21701, 283, 28749, 1, 1058, 366, 13414, 2934, 1600, 366, 77, 462, 1, 1058, 366, 50, 363, 81, 4533, 25719, 198, 220, 220, 220, 1391, 16, 1058, 838, 11, 366, 77, 462, 1, 1058, 366, 23013, 1600, 366, 7718, 330, 349, 1, 1058, 366, 672, 4359, 4533, 25719, 198, 220, 220, 220, 19779, 77, 462, 2404, 672, 4359, 4533, 20662, 198, 60, 198, 198, 2, 257, 442, 1015, 8358, 1055, 6557, 13834, 333, 4763, 198, 77, 462, 796, 366, 77, 462, 1, 198, 198, 2, 287, 6652, 528, 25440, 257, 1351, 64, 410, 1031, 544, 220, 198, 4868, 64, 796, 17635, 198, 198, 2, 3326, 811, 78, 31215, 269, 4763, 299, 462, 384, 9766, 1556, 6557, 267, 84, 299, 28749, 645, 288, 47430, 6557, 27250, 198, 1640, 8633, 16, 287, 1351, 35, 713, 25, 198, 220, 220, 220, 1303, 384, 257, 442, 1015, 299, 462, 1556, 1428, 645, 288, 47430, 6557, 27250, 198, 220, 220, 220, 1303, 304, 267, 1188, 273, 1619, 64, 299, 28749, 256, 1428, 9785, 78, 512, 47430, 4533, 257, 1351, 64, 11, 264, 10205, 512, 47430, 283, 12385, 1351, 64, 198, 220, 220, 220, 611, 299, 462, 287, 8633, 16, 290, 8633, 16, 58, 77, 462, 60, 407, 287, 1351, 64, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 13, 33295, 7, 11600, 16, 58, 77, 462, 12962, 198, 198, 2, 3601, 64, 257, 1351, 64, 198, 4798, 7, 4868, 64, 8 ]
2.166667
294
from rest_framework import status, exceptions from rest_framework.generics import RetrieveUpdateAPIView from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from django.conf import settings from .models import User from itsdangerous import URLSafeTimedSerializer, exc from django.core.mail import send_mail import os, re from rest_framework import exceptions from .renderers import UserJSONRenderer from .serializers import ( LoginSerializer, RegistrationSerializer, UserSerializer, ResetPasswordSerializer, SetNewPasswordSerializer, FacebookAndGoogleSerializer, TwitterSerializer ) import facebook import twitter from google.auth.transport import requests from google.oauth2 import id_token from drf_yasg.utils import swagger_auto_schema from .backends import ( AccountVerification ) from authors.apps.profiles.models import Profile from .social_auth import ValidateSocialUser check_user = ValidateSocialUser() class UserRetrieveUpdateAPIView(RetrieveUpdateAPIView): """ retrieve: Get User Details Update: Update User Details """ permission_classes = (IsAuthenticated,) renderer_classes = (UserJSONRenderer,) serializer_class = UserSerializer @swagger_auto_schema( operation_id='Retrieve User Details', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, ) @swagger_auto_schema( operation_id='Update User Details', request_body=serializer_class, responses={201: serializer_class(many=False), 400: 'BAD REQUEST'}, )
[ 6738, 1334, 62, 30604, 1330, 3722, 11, 13269, 198, 6738, 1334, 62, 30604, 13, 8612, 873, 1330, 4990, 30227, 10260, 2969, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 22507, 7149, 11, 1148, 47649, 3474, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 764, 27530, 1330, 11787, 198, 198, 6738, 663, 38537, 516, 1330, 37902, 6561, 8635, 14967, 276, 32634, 7509, 11, 2859, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 3758, 62, 4529, 198, 198, 11748, 28686, 11, 302, 198, 6738, 1334, 62, 30604, 1330, 13269, 198, 198, 6738, 764, 10920, 19288, 1330, 11787, 40386, 49, 437, 11882, 198, 6738, 764, 46911, 11341, 1330, 357, 198, 220, 220, 220, 23093, 32634, 7509, 11, 24610, 32634, 7509, 11, 11787, 32634, 7509, 11, 198, 220, 220, 220, 30027, 35215, 32634, 7509, 11, 5345, 3791, 35215, 32634, 7509, 11, 198, 220, 220, 220, 3203, 1870, 11708, 32634, 7509, 11, 3009, 32634, 7509, 198, 8, 198, 198, 11748, 23960, 198, 11748, 17044, 198, 6738, 23645, 13, 18439, 13, 7645, 634, 1330, 7007, 198, 6738, 23645, 13, 12162, 1071, 17, 1330, 4686, 62, 30001, 198, 6738, 1553, 69, 62, 88, 292, 70, 13, 26791, 1330, 1509, 7928, 62, 23736, 62, 15952, 2611, 198, 198, 6738, 764, 1891, 2412, 1330, 357, 198, 220, 220, 220, 10781, 13414, 2649, 198, 8, 198, 6738, 7035, 13, 18211, 13, 5577, 2915, 13, 27530, 1330, 13118, 198, 6738, 764, 14557, 62, 18439, 1330, 3254, 20540, 20636, 12982, 628, 198, 9122, 62, 7220, 796, 3254, 20540, 20636, 12982, 3419, 628, 198, 198, 4871, 11787, 9781, 30227, 10260, 2969, 3824, 769, 7, 9781, 30227, 10260, 2969, 3824, 769, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 19818, 25, 3497, 11787, 14890, 198, 220, 220, 220, 10133, 25, 10133, 11787, 14890, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 7170, 62, 37724, 796, 357, 3792, 47649, 3474, 35751, 198, 220, 220, 220, 9851, 11882, 62, 37724, 796, 357, 12982, 40386, 49, 437, 11882, 35751, 198, 220, 220, 220, 11389, 7509, 62, 4871, 796, 11787, 32634, 7509, 628, 220, 220, 220, 2488, 2032, 7928, 62, 23736, 62, 15952, 2611, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4905, 62, 312, 11639, 9781, 30227, 11787, 14890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 2618, 28, 46911, 7509, 62, 4871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9109, 34758, 1264, 25, 11389, 7509, 62, 4871, 7, 21834, 28, 25101, 828, 7337, 25, 705, 33, 2885, 4526, 35780, 6, 5512, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 2032, 7928, 62, 23736, 62, 15952, 2611, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4905, 62, 312, 11639, 10260, 11787, 14890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 2618, 28, 46911, 7509, 62, 4871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9109, 34758, 1264, 25, 11389, 7509, 62, 4871, 7, 21834, 28, 25101, 828, 7337, 25, 705, 33, 2885, 4526, 35780, 6, 5512, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
3.086486
555
""" Calculate additional parameters or recalculate parameters. """ from visual_phenomics_py.parameters import * from visual_phenomics_py.parameters_additional import * def calculate(df=None, param='', *, fm='fm', f0='f0', fmp='fmp', f0p='f0p', fs='fs', fmpp='fmpp', f0pp='f0pp', fmf0=4.88, alias=None): """Calculate photosynthetic parameters Calculate photosynthetic parameters from basic fluorescence parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('Fvfm','NPQ', 'NPQt','Phi2','PhiNO','PhiNPQ','qE','qEsv','qEt','qI','qIt','qL','qP') :param fm: fm column name (default 'fm') :param f0: f0 column name (default 'f0') :param fmp: fmp column name (default 'fmp') :param f0p: f0p column name (default 'f0p') :param fs: fs column name (default 'fs') :param fmpp: fmpp column name (default 'fmpp') :param f0pp: f0pp column name (default 'f0pp') :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['Fvfm', 'NPQ', 'NPQt', 'Phi2', 'PhiNO', 'PhiNOt', 'PhiNPQ', 'PhiNPQt', 'qE', 'qEsv', 'qEt', 'qI', 'qIt', 'qL', 'qP'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'Fvfm': if {fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = fvfm( getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fm and f0') elif param == 'NPQ': if {fm, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = npq( getattr(row, fm), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmp') elif param == 'NPQt': if {fmp, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = npqt( getattr(row, fmp), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp and f0p') elif param == 'Phi2': if {fmp, fs}.issubset(df.columns): df.at[row.Index, alias or param] = phi2( getattr(row, fmp), getattr(row, fs)) else: raise Exception( 'Missing parameter(s). Define columns for fmp and fs') elif param == 'PhiNO': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phino(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, fm, and f0') elif param == 'PhiNOt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinot( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'PhiNPQ': if {fmp, fs, f0p, fm, f0}.issubset(df.columns): df.at[row.Index, alias or param] = phinpq(getattr(row, fmp), getattr( row, fs), getattr(row, f0p), getattr(row, fm), getattr(row, f0)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, f0p, fm, and f0') elif param == 'PhiNPQt': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = phinpqt( getattr(row, fmp), getattr(row, fs), getattr(row, f0p), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qE': if {fmpp, fmp}.issubset(df.columns): df.at[row.Index, alias or param] = qe( getattr(row, fmpp), getattr(row, fmp)) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and fmp') elif param == 'qEsv': if {fm, fmp, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qesv( getattr(row, fm), getattr(row, fmp), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm, fmp, and fmpp') elif param == 'qEt': if {fmp, f0p, fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qet(getattr(row, fmp), getattr( row, f0p), getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmp, f0p, fmpp, and f0pp') elif param == 'qI': if {fm, fmpp}.issubset(df.columns): df.at[row.Index, alias or param] = qi( getattr(row, fm), getattr(row, fmpp)) else: raise Exception( 'Missing parameter(s). Define columns for fm and fmpp') elif param == 'qIt': if {fmpp, f0pp}.issubset(df.columns): df.at[row.Index, alias or param] = qit( getattr(row, fmpp), getattr(row, f0pp), fmf0) else: raise Exception( 'Missing parameter(s). Define columns for fmpp and f0pp') elif param == 'qL': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = ql( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') elif param == 'qP': if {fmp, fs, f0p}.issubset(df.columns): df.at[row.Index, alias or param] = qp( getattr(row, fmp), getattr(row, fs), getattr(row, f0p)) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_additional(df=None, param='', *, v_phino='PhiNOt', v_phi2='Phi2', v_ql='qL', v_par='light_intensity', phinoopt=0.2, absorptivity=0.5, fmf0=4.88, alias=None): """Calculate additional Parameters Calculate additional photosynthetic parameters based on calculated standard parameters :param df: The DataFrame to add the calculated parameters to. :param param: Parameter to calculate ('LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ') :param v_phino: PhiNO column name (default 'PhiNOt') :param v_phi2: Phi2 column name (default 'Phi2') :param v_ql: qL column name (default 'qL') :param phinoopt: Optimal PhiNO (default 0.2) :param absorptivity: Absorptivity for Vx parameter (default 0.5) :param fmf0: Fm/F0 for t parameter (default 4.88) :param alias: rename the selected parameter (default None) :returns: a dataframe column for the calculated parameter """ # Parameter Names parameters = ['LEF', 'Vx', 'SPhi2', 'SNPQ', 'deltaNPQ'] if df is None: raise Exception('No DataFrame selected.') if (param in parameters): alias_txt = "" if alias is not None: alias_txt = " as {0}".format(alias) print('Calculating {0}{1}'.format(param, alias_txt)) for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): if param == 'LEF': if {v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = lef( getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phi2 and v_par') elif param == 'Vx': if {v_phino, v_phi2, v_par}.issubset(df.columns): df.at[row.Index, alias or param] = vx( getattr(row, v_phino), getattr(row, v_phi2), getattr(row, v_par), absorptivity) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_par') elif param == 'SPhi2': if {v_phino, v_phi2, v_ql}.issubset(df.columns): df.at[row.Index, alias or param] = sphi2( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'SNPQ': if {v_phino, v_phi2}.issubset(df.columns): df.at[row.Index, alias or param] = sphinpq( getattr(row, v_phi2), getattr(row, v_phino), getattr(row, v_ql), phinoopt, fmf0) else: raise Exception( 'Missing parameter(s). Define columns for v_phino, v_phi2, and v_ql') elif param == 'deltaNPQ': if {v_phino}.issubset(df.columns): df.at[row.Index, alias or param] = deltanpq( getattr(row, v_phino), phinoopt) else: raise Exception( 'Missing parameter(s). Define columns for fmp, fs, and f0p') else: raise Exception("No matching parameter found.") else: raise Exception('Unknown parameter. Available parameters are: {0}'.format( ", ".join(parameters))) def calculate_custom(df=None, name='', fn=None, *, cols=[], params={}): """Calculate additional Parameters Use a custom function to calculate a custom parameter. :param df: The DataFrame to add the calculated parameters to. :param name: Parameter name :param fn: Function name for the calculation :param cols: Column names for parameters passed to function. (*args) :param params: Parameters passed on to the function (**kwargs) :returns: a dataframe column for the custom calculated parameter """ if df is None: raise Exception('No DataFrame selected.') if name == '' or name is None: raise Exception('No parameter name defined.') if (fn is None): raise Exception('No function defined.') if hasattr(fn, '__call__'): for row in df.sort_values(by=['sample', 'time'], ascending=True).fillna(method="ffill").itertuples(): df.at[row.Index, name] = fn( *[getattr(row, n) for n in cols], **params) else: raise Exception('No function defined.')
[ 37811, 198, 9771, 3129, 378, 3224, 10007, 393, 42653, 3129, 378, 10007, 13, 198, 37811, 198, 198, 6738, 5874, 62, 31024, 31994, 62, 9078, 13, 17143, 7307, 1330, 1635, 198, 6738, 5874, 62, 31024, 31994, 62, 9078, 13, 17143, 7307, 62, 2860, 1859, 1330, 1635, 628, 198, 4299, 15284, 7, 7568, 28, 14202, 11, 5772, 11639, 3256, 1635, 11, 277, 76, 11639, 38353, 3256, 277, 15, 11639, 69, 15, 3256, 277, 3149, 11639, 69, 3149, 3256, 277, 15, 79, 11639, 69, 15, 79, 3256, 43458, 11639, 9501, 3256, 277, 76, 381, 11639, 38353, 381, 3256, 277, 15, 381, 11639, 69, 15, 381, 3256, 277, 76, 69, 15, 28, 19, 13, 3459, 11, 16144, 28, 14202, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 5205, 33567, 6587, 10007, 628, 220, 220, 220, 27131, 378, 5205, 33567, 6587, 10007, 422, 4096, 6562, 48699, 10007, 628, 220, 220, 220, 1058, 17143, 47764, 25, 383, 6060, 19778, 284, 751, 262, 10488, 10007, 284, 13, 198, 220, 220, 220, 1058, 17143, 5772, 25, 25139, 2357, 284, 15284, 19203, 37, 85, 38353, 41707, 22182, 48, 3256, 705, 22182, 48, 83, 41707, 2725, 72, 17, 41707, 2725, 72, 15285, 41707, 2725, 72, 22182, 48, 41707, 80, 36, 41707, 80, 36, 21370, 41707, 80, 36, 83, 41707, 80, 40, 41707, 80, 1026, 41707, 80, 43, 41707, 80, 47, 11537, 198, 220, 220, 220, 1058, 17143, 277, 76, 25, 277, 76, 5721, 1438, 357, 12286, 705, 38353, 11537, 198, 220, 220, 220, 1058, 17143, 277, 15, 25, 277, 15, 5721, 1438, 357, 12286, 705, 69, 15, 11537, 198, 220, 220, 220, 1058, 17143, 277, 3149, 25, 277, 3149, 5721, 1438, 357, 12286, 705, 69, 3149, 11537, 198, 220, 220, 220, 1058, 17143, 277, 15, 79, 25, 277, 15, 79, 5721, 1438, 357, 12286, 705, 69, 15, 79, 11537, 198, 220, 220, 220, 1058, 17143, 43458, 25, 43458, 5721, 1438, 357, 12286, 705, 9501, 11537, 198, 220, 220, 220, 1058, 17143, 277, 76, 381, 25, 277, 76, 381, 5721, 1438, 357, 12286, 705, 38353, 381, 11537, 198, 220, 220, 220, 1058, 17143, 277, 15, 381, 25, 277, 15, 381, 5721, 1438, 357, 12286, 705, 69, 15, 381, 11537, 198, 220, 220, 220, 1058, 17143, 277, 76, 69, 15, 25, 376, 76, 14, 37, 15, 329, 256, 11507, 357, 12286, 604, 13, 3459, 8, 198, 220, 220, 220, 1058, 17143, 16144, 25, 36265, 262, 6163, 11507, 357, 12286, 6045, 8, 198, 220, 220, 220, 1058, 7783, 82, 25, 257, 1366, 14535, 5721, 329, 262, 10488, 11507, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25139, 2357, 28531, 198, 220, 220, 220, 10007, 796, 37250, 37, 85, 38353, 3256, 705, 22182, 48, 3256, 705, 22182, 48, 83, 3256, 705, 2725, 72, 17, 3256, 705, 2725, 72, 15285, 3256, 705, 2725, 72, 15285, 83, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2725, 72, 22182, 48, 3256, 705, 2725, 72, 22182, 48, 83, 3256, 705, 80, 36, 3256, 705, 80, 36, 21370, 3256, 705, 80, 36, 83, 3256, 705, 80, 40, 3256, 705, 80, 1026, 3256, 705, 80, 43, 3256, 705, 80, 47, 20520, 628, 220, 220, 220, 611, 47764, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 6060, 19778, 6163, 2637, 8, 198, 220, 220, 220, 611, 357, 17143, 287, 10007, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 16144, 62, 14116, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16144, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16144, 62, 14116, 796, 366, 355, 1391, 15, 92, 1911, 18982, 7, 26011, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9771, 3129, 803, 1391, 15, 18477, 16, 92, 4458, 18982, 7, 17143, 11, 16144, 62, 14116, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 47764, 13, 30619, 62, 27160, 7, 1525, 28, 17816, 39873, 3256, 705, 2435, 6, 4357, 41988, 28, 17821, 737, 20797, 2616, 7, 24396, 2625, 487, 359, 11074, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 6624, 705, 37, 85, 38353, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 11, 277, 15, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 277, 85, 38353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 290, 277, 15, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 22182, 48, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 11, 277, 3149, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 45941, 80, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 3149, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 290, 277, 3149, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 22182, 48, 83, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 277, 15, 79, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 45941, 39568, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 828, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 2725, 72, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 872, 72, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 43458, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 290, 43458, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 2725, 72, 15285, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 11, 277, 76, 11, 277, 15, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 872, 2879, 7, 1136, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 828, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 277, 76, 11, 290, 277, 15, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 2725, 72, 15285, 83, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 872, 259, 313, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 220, 651, 35226, 7, 808, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 828, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 2725, 72, 22182, 48, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 11, 277, 76, 11, 277, 15, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 872, 259, 79, 80, 7, 1136, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 828, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 277, 15, 79, 11, 277, 76, 11, 290, 277, 15, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 2725, 72, 22182, 48, 83, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 872, 259, 79, 39568, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 828, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 36, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 381, 11, 277, 3149, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 68, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 381, 828, 651, 35226, 7, 808, 11, 277, 3149, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 381, 290, 277, 3149, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 36, 21370, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 11, 277, 3149, 11, 277, 76, 381, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 274, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 277, 76, 381, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 11, 277, 3149, 11, 290, 277, 76, 381, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 36, 83, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 277, 15, 79, 11, 277, 76, 381, 11, 277, 15, 381, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 316, 7, 1136, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 11, 277, 15, 79, 828, 651, 35226, 7, 808, 11, 277, 76, 381, 828, 651, 35226, 7, 808, 11, 277, 15, 381, 828, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 277, 15, 79, 11, 277, 76, 381, 11, 290, 277, 15, 381, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 40, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 11, 277, 76, 381, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 72, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 828, 651, 35226, 7, 808, 11, 277, 76, 381, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 290, 277, 76, 381, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 1026, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 38353, 381, 11, 277, 15, 381, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 270, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 76, 381, 828, 651, 35226, 7, 808, 11, 277, 15, 381, 828, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 76, 381, 290, 277, 15, 381, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 43, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 75, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 80, 47, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 69, 3149, 11, 43458, 11, 277, 15, 79, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 10662, 79, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 277, 3149, 828, 651, 35226, 7, 808, 11, 43458, 828, 651, 35226, 7, 808, 11, 277, 15, 79, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 2949, 12336, 11507, 1043, 19570, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 20035, 11507, 13, 14898, 10007, 389, 25, 1391, 15, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 27071, 22179, 7, 17143, 7307, 22305, 628, 198, 4299, 15284, 62, 2860, 1859, 7, 7568, 28, 14202, 11, 5772, 11639, 3256, 1635, 11, 410, 62, 746, 2879, 11639, 2725, 72, 15285, 83, 3256, 410, 62, 34846, 17, 11639, 2725, 72, 17, 3256, 410, 62, 13976, 11639, 80, 43, 3256, 410, 62, 1845, 11639, 2971, 62, 47799, 3256, 872, 2879, 8738, 28, 15, 13, 17, 11, 8256, 457, 3458, 28, 15, 13, 20, 11, 277, 76, 69, 15, 28, 19, 13, 3459, 11, 16144, 28, 14202, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 3224, 40117, 628, 220, 220, 220, 27131, 378, 3224, 5205, 33567, 6587, 10007, 1912, 319, 10488, 3210, 10007, 628, 220, 220, 220, 1058, 17143, 47764, 25, 383, 6060, 19778, 284, 751, 262, 10488, 10007, 284, 13, 198, 220, 220, 220, 1058, 17143, 5772, 25, 25139, 2357, 284, 15284, 19203, 2538, 37, 3256, 705, 53, 87, 3256, 705, 50, 2725, 72, 17, 3256, 705, 15571, 47, 48, 3256, 705, 67, 12514, 22182, 48, 11537, 198, 220, 220, 220, 1058, 17143, 410, 62, 746, 2879, 25, 47256, 15285, 5721, 1438, 357, 12286, 705, 2725, 72, 15285, 83, 11537, 198, 220, 220, 220, 1058, 17143, 410, 62, 34846, 17, 25, 47256, 17, 5721, 1438, 357, 12286, 705, 2725, 72, 17, 11537, 198, 220, 220, 220, 1058, 17143, 410, 62, 13976, 25, 10662, 43, 5721, 1438, 357, 12286, 705, 80, 43, 11537, 198, 220, 220, 220, 1058, 17143, 872, 2879, 8738, 25, 13123, 4402, 47256, 15285, 357, 12286, 657, 13, 17, 8, 198, 220, 220, 220, 1058, 17143, 8256, 457, 3458, 25, 13051, 273, 457, 3458, 329, 569, 87, 11507, 357, 12286, 657, 13, 20, 8, 198, 220, 220, 220, 1058, 17143, 277, 76, 69, 15, 25, 376, 76, 14, 37, 15, 329, 256, 11507, 357, 12286, 604, 13, 3459, 8, 198, 220, 220, 220, 1058, 17143, 16144, 25, 36265, 262, 6163, 11507, 357, 12286, 6045, 8, 198, 220, 220, 220, 1058, 7783, 82, 25, 257, 1366, 14535, 5721, 329, 262, 10488, 11507, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 25139, 2357, 28531, 198, 220, 220, 220, 10007, 796, 37250, 2538, 37, 3256, 705, 53, 87, 3256, 705, 50, 2725, 72, 17, 3256, 705, 15571, 47, 48, 3256, 705, 67, 12514, 22182, 48, 20520, 628, 220, 220, 220, 611, 47764, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 6060, 19778, 6163, 2637, 8, 628, 220, 220, 220, 611, 357, 17143, 287, 10007, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 16144, 62, 14116, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16144, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16144, 62, 14116, 796, 366, 355, 1391, 15, 92, 1911, 18982, 7, 26011, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9771, 3129, 803, 1391, 15, 18477, 16, 92, 4458, 18982, 7, 17143, 11, 16144, 62, 14116, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 47764, 13, 30619, 62, 27160, 7, 1525, 28, 17816, 39873, 3256, 705, 2435, 6, 4357, 41988, 28, 17821, 737, 20797, 2616, 7, 24396, 2625, 487, 359, 11074, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5772, 6624, 705, 2538, 37, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 85, 62, 34846, 17, 11, 410, 62, 1845, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 443, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 410, 62, 34846, 17, 828, 651, 35226, 7, 808, 11, 410, 62, 1845, 828, 8256, 457, 3458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 410, 62, 34846, 17, 290, 410, 62, 1845, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 53, 87, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 85, 62, 746, 2879, 11, 410, 62, 34846, 17, 11, 410, 62, 1845, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 410, 87, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 410, 62, 746, 2879, 828, 651, 35226, 7, 808, 11, 410, 62, 34846, 17, 828, 651, 35226, 7, 808, 11, 410, 62, 1845, 828, 8256, 457, 3458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 410, 62, 746, 2879, 11, 410, 62, 34846, 17, 11, 290, 410, 62, 1845, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 50, 2725, 72, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 85, 62, 746, 2879, 11, 410, 62, 34846, 17, 11, 410, 62, 13976, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 599, 5303, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 410, 62, 34846, 17, 828, 651, 35226, 7, 808, 11, 410, 62, 746, 2879, 828, 651, 35226, 7, 808, 11, 410, 62, 13976, 828, 872, 2879, 8738, 11, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 410, 62, 746, 2879, 11, 410, 62, 34846, 17, 11, 290, 410, 62, 13976, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 15571, 47, 48, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 85, 62, 746, 2879, 11, 410, 62, 34846, 17, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 599, 20079, 79, 80, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 410, 62, 34846, 17, 828, 651, 35226, 7, 808, 11, 410, 62, 746, 2879, 828, 651, 35226, 7, 808, 11, 410, 62, 13976, 828, 872, 2879, 8738, 11, 277, 76, 69, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 410, 62, 746, 2879, 11, 410, 62, 34846, 17, 11, 290, 410, 62, 13976, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5772, 6624, 705, 67, 12514, 22182, 48, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1391, 85, 62, 746, 2879, 27422, 747, 549, 2617, 7, 7568, 13, 28665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 16144, 393, 5772, 60, 796, 1619, 38006, 79, 80, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 808, 11, 410, 62, 746, 2879, 828, 872, 2879, 8738, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43730, 11507, 7, 82, 737, 2896, 500, 15180, 329, 277, 3149, 11, 43458, 11, 290, 277, 15, 79, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 2949, 12336, 11507, 1043, 19570, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 20035, 11507, 13, 14898, 10007, 389, 25, 1391, 15, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 27071, 22179, 7, 17143, 7307, 22305, 628, 198, 4299, 15284, 62, 23144, 7, 7568, 28, 14202, 11, 1438, 11639, 3256, 24714, 28, 14202, 11, 1635, 11, 951, 82, 41888, 4357, 42287, 34758, 92, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 3224, 40117, 628, 220, 220, 220, 5765, 257, 2183, 2163, 284, 15284, 257, 2183, 11507, 13, 628, 220, 220, 220, 1058, 17143, 47764, 25, 383, 6060, 19778, 284, 751, 262, 10488, 10007, 284, 13, 198, 220, 220, 220, 1058, 17143, 1438, 25, 25139, 2357, 1438, 198, 220, 220, 220, 1058, 17143, 24714, 25, 15553, 1438, 329, 262, 17952, 198, 220, 220, 220, 1058, 17143, 951, 82, 25, 29201, 3891, 329, 10007, 3804, 284, 2163, 13, 20789, 22046, 8, 198, 220, 220, 220, 1058, 17143, 42287, 25, 40117, 3804, 319, 284, 262, 2163, 357, 1174, 46265, 22046, 8, 198, 220, 220, 220, 1058, 7783, 82, 25, 257, 1366, 14535, 5721, 329, 262, 2183, 10488, 11507, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 47764, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 6060, 19778, 6163, 2637, 8, 628, 220, 220, 220, 611, 1438, 6624, 10148, 393, 1438, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 11507, 1438, 5447, 2637, 8, 628, 220, 220, 220, 611, 357, 22184, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 2163, 5447, 2637, 8, 628, 220, 220, 220, 611, 468, 35226, 7, 22184, 11, 705, 834, 13345, 834, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 47764, 13, 30619, 62, 27160, 7, 1525, 28, 17816, 39873, 3256, 705, 2435, 6, 4357, 41988, 28, 17821, 737, 20797, 2616, 7, 24396, 2625, 487, 359, 11074, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 1438, 60, 796, 24714, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 58, 1136, 35226, 7, 808, 11, 299, 8, 329, 299, 287, 951, 82, 4357, 12429, 37266, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 2949, 2163, 5447, 2637, 8, 198 ]
1.914304
6,348
from peewee import * db = SqliteDatabase(':memory:') db.create_tables([Node]) tree = ('root', ( ('n1', ( ('c11', ()), ('c12', ()))), ('n2', ( ('c21', ()), ('c22', ( ('g221', ()), ('g222', ()))), ('c23', ()), ('c24', ( ('g241', ()), ('g242', ()), ('g243', ()))))))) stack = [(None, tree)] while stack: parent, (name, children) = stack.pop() node = Node.create(name=name, parent=parent) for child_tree in children: stack.insert(0, (node, child_tree)) # Now that we have created the stack, let's eagerly load 4 levels of children. # To show that it works, we'll turn on the query debugger so you can see which # queries are executed. import logging; logger = logging.getLogger('peewee') logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.DEBUG) C = Node.alias('c') G = Node.alias('g') GG = Node.alias('gg') GGG = Node.alias('ggg') roots = Node.select().where(Node.parent.is_null()) pf = prefetch(roots, C, (G, C), (GG, G), (GGG, GG)) for root in pf: print(root.dump())
[ 6738, 613, 413, 1453, 1330, 1635, 628, 198, 9945, 796, 311, 13976, 578, 38105, 7, 10354, 31673, 25, 11537, 198, 198, 9945, 13, 17953, 62, 83, 2977, 26933, 19667, 12962, 198, 198, 21048, 796, 19203, 15763, 3256, 357, 198, 220, 220, 220, 19203, 77, 16, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 1157, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 1065, 3256, 357, 22305, 828, 198, 220, 220, 220, 19203, 77, 17, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 2481, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 1828, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 70, 26115, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 70, 23148, 3256, 357, 22305, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 1954, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 1731, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 70, 28872, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 70, 27877, 3256, 7499, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 70, 26660, 3256, 32865, 35514, 4008, 198, 25558, 796, 47527, 14202, 11, 5509, 15437, 198, 4514, 8931, 25, 198, 220, 220, 220, 2560, 11, 357, 3672, 11, 1751, 8, 796, 8931, 13, 12924, 3419, 198, 220, 220, 220, 10139, 796, 19081, 13, 17953, 7, 3672, 28, 3672, 11, 2560, 28, 8000, 8, 198, 220, 220, 220, 329, 1200, 62, 21048, 287, 1751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 28463, 7, 15, 11, 357, 17440, 11, 1200, 62, 21048, 4008, 198, 198, 2, 2735, 326, 356, 423, 2727, 262, 8931, 11, 1309, 338, 30130, 3440, 604, 2974, 286, 1751, 13, 198, 2, 1675, 905, 326, 340, 2499, 11, 356, 1183, 1210, 319, 262, 12405, 49518, 523, 345, 460, 766, 543, 198, 2, 20743, 389, 10945, 13, 198, 11748, 18931, 26, 49706, 796, 18931, 13, 1136, 11187, 1362, 10786, 431, 413, 1453, 11537, 198, 6404, 1362, 13, 2860, 25060, 7, 6404, 2667, 13, 12124, 25060, 28955, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 198, 34, 796, 19081, 13, 26011, 10786, 66, 11537, 198, 38, 796, 19081, 13, 26011, 10786, 70, 11537, 198, 11190, 796, 19081, 13, 26011, 10786, 1130, 11537, 198, 11190, 38, 796, 19081, 13, 26011, 10786, 1130, 70, 11537, 198, 198, 19150, 796, 19081, 13, 19738, 22446, 3003, 7, 19667, 13, 8000, 13, 271, 62, 8423, 28955, 198, 79, 69, 796, 7694, 7569, 7, 19150, 11, 327, 11, 357, 38, 11, 327, 828, 357, 11190, 11, 402, 828, 357, 11190, 38, 11, 37442, 4008, 198, 1640, 6808, 287, 279, 69, 25, 198, 220, 220, 220, 3601, 7, 15763, 13, 39455, 28955, 198 ]
2.267068
498
# -*- coding: utf-8 import numpy as np import wx from ihna.kozhukhov.imageanalysis import ImagingMap from ihna.kozhukhov.imageanalysis.mapprocessing import spatial_filter from ihna.kozhukhov.imageanalysis.gui.complexmapviewerdlg import ComplexMapViewerDlg from .datatodataprocessor import DataToDataProcessor
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 266, 87, 198, 6738, 1312, 71, 2616, 13, 7204, 23548, 2724, 28026, 13, 9060, 20930, 1330, 48656, 13912, 198, 6738, 1312, 71, 2616, 13, 7204, 23548, 2724, 28026, 13, 9060, 20930, 13, 76, 21064, 919, 278, 1330, 21739, 62, 24455, 198, 6738, 1312, 71, 2616, 13, 7204, 23548, 2724, 28026, 13, 9060, 20930, 13, 48317, 13, 41887, 8899, 1177, 263, 25404, 70, 1330, 19157, 13912, 7680, 263, 35, 75, 70, 198, 6738, 764, 19608, 265, 375, 265, 499, 305, 919, 273, 1330, 6060, 2514, 6601, 18709, 273, 628 ]
2.906542
107
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628 ]
3.75
8
# PyAlgoTrade # # Copyright 2011 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <[email protected]> """ from pyalgotrade import technical # This is the formula I'm using to calculate the averages based on previous ones. # 1 2 3 4 # x x x # x x x # # avg0 = (a + b + c) / 3 # avg1 = (b + c + d) / 3 # # avg0 = avg1 + x # (a + b + c) / 3 = (b + c + d) / 3 + x # a/3 + b/3 + c/3 = b/3 + c/3 + d/3 + x # a/3 = d/3 + x # x = a/3 - d/3 # avg1 = avg0 - x # avg1 = avg0 + d/3 - a/3 class SMA(technical.DataSeriesFilter): """Simple Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param period: The number of values to use to calculate the SMA. :type period: int. """ class EMA(technical.DataSeriesFilter): """Exponential Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param period: The number of values to use to calculate the EMA. :type period: int. """ # Finds the last available (value, position) starting from pos. class WMA(technical.DataSeriesFilter): """Weighted Moving Average filter. :param dataSeries: The DataSeries instance being filtered. :type dataSeries: :class:`pyalgotrade.dataseries.DataSeries`. :param weights: A list of int/float with the weights. :type weights: list. """
[ 2, 9485, 2348, 2188, 35965, 198, 2, 198, 2, 15069, 2813, 17371, 5780, 15780, 276, 25314, 11667, 528, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 492, 8265, 9800, 3712, 17371, 5780, 15780, 276, 25314, 11667, 528, 1279, 70, 397, 11719, 13, 9423, 276, 25314, 31, 14816, 13, 785, 29, 198, 37811, 198, 198, 6738, 12972, 14016, 313, 27585, 1330, 6276, 198, 198, 2, 770, 318, 262, 10451, 314, 1101, 1262, 284, 15284, 262, 25694, 1912, 319, 2180, 3392, 13, 198, 2, 352, 362, 513, 604, 198, 2, 2124, 2124, 2124, 198, 2, 220, 220, 2124, 2124, 2124, 198, 2, 198, 2, 42781, 15, 796, 357, 64, 1343, 275, 1343, 269, 8, 1220, 513, 198, 2, 42781, 16, 796, 357, 65, 1343, 269, 1343, 288, 8, 1220, 513, 198, 2, 198, 2, 42781, 15, 796, 42781, 16, 1343, 2124, 198, 2, 357, 64, 1343, 275, 1343, 269, 8, 1220, 513, 796, 357, 65, 1343, 269, 1343, 288, 8, 1220, 513, 1343, 2124, 198, 2, 257, 14, 18, 1343, 275, 14, 18, 1343, 269, 14, 18, 796, 275, 14, 18, 1343, 269, 14, 18, 1343, 288, 14, 18, 1343, 2124, 198, 2, 257, 14, 18, 796, 288, 14, 18, 1343, 2124, 198, 2, 2124, 796, 257, 14, 18, 532, 288, 14, 18, 198, 198, 2, 42781, 16, 796, 42781, 15, 532, 2124, 198, 2, 42781, 16, 796, 42781, 15, 1343, 288, 14, 18, 532, 257, 14, 18, 198, 198, 4871, 311, 5673, 7, 47944, 13, 6601, 27996, 22417, 2599, 198, 220, 220, 220, 37227, 26437, 26768, 13475, 8106, 13, 628, 220, 220, 220, 1058, 17143, 1366, 27996, 25, 383, 6060, 27996, 4554, 852, 29083, 13, 198, 220, 220, 220, 1058, 4906, 1366, 27996, 25, 1058, 4871, 25, 63, 9078, 14016, 313, 27585, 13, 19608, 6005, 444, 13, 6601, 27996, 44646, 198, 220, 220, 220, 1058, 17143, 2278, 25, 383, 1271, 286, 3815, 284, 779, 284, 15284, 262, 311, 5673, 13, 198, 220, 220, 220, 1058, 4906, 2278, 25, 493, 13, 198, 220, 220, 220, 37227, 198, 198, 4871, 412, 5673, 7, 47944, 13, 6601, 27996, 22417, 2599, 198, 220, 220, 220, 37227, 16870, 35470, 26768, 13475, 8106, 13, 628, 220, 220, 220, 1058, 17143, 1366, 27996, 25, 383, 6060, 27996, 4554, 852, 29083, 13, 198, 220, 220, 220, 1058, 4906, 1366, 27996, 25, 1058, 4871, 25, 63, 9078, 14016, 313, 27585, 13, 19608, 6005, 444, 13, 6601, 27996, 44646, 198, 220, 220, 220, 1058, 17143, 2278, 25, 383, 1271, 286, 3815, 284, 779, 284, 15284, 262, 412, 5673, 13, 198, 220, 220, 220, 1058, 4906, 2278, 25, 493, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 9938, 82, 262, 938, 1695, 357, 8367, 11, 2292, 8, 3599, 422, 1426, 13, 198, 198, 4871, 370, 5673, 7, 47944, 13, 6601, 27996, 22417, 2599, 198, 220, 220, 220, 37227, 25844, 276, 26768, 13475, 8106, 13, 628, 220, 220, 220, 1058, 17143, 1366, 27996, 25, 383, 6060, 27996, 4554, 852, 29083, 13, 198, 220, 220, 220, 1058, 4906, 1366, 27996, 25, 1058, 4871, 25, 63, 9078, 14016, 313, 27585, 13, 19608, 6005, 444, 13, 6601, 27996, 44646, 198, 220, 220, 220, 1058, 17143, 19590, 25, 317, 1351, 286, 493, 14, 22468, 351, 262, 19590, 13, 198, 220, 220, 220, 1058, 4906, 19590, 25, 1351, 13, 628, 220, 220, 220, 37227, 198 ]
3.004373
686
from typing import Any
[ 6738, 19720, 1330, 4377, 628, 628, 198 ]
3.857143
7
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from nninst import mode from nninst.backend.tensorflow.dataset.config import ( CIFAR10_TRAIN, IMAGENET_RAW_TRAIN, IMAGENET_TRAIN, ) from nninst.backend.tensorflow.model.config import RESNET_18_CIFAR10, RESNET_50 from nninst.backend.tensorflow.trace.common import ( class_trace, class_trace_compact, class_trace_growth, full_trace, save_class_traces, save_class_traces_low_latency, save_full_trace_growth, self_similarity, ) from nninst.utils.ray import ray_init __all__ = ["resnet_18_cifar10_class_trace", "resnet_18_cifar10_self_similarity"] name = "resnet_18_cifar10" resnet_18_cifar10_class_trace = class_trace( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_growth = class_trace_growth( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_class_trace_compact = class_trace_compact( resnet_18_cifar10_class_trace, name=name, model_config=RESNET_18_CIFAR10 ) save_resnet_18_cifar10_class_traces_low_latency = save_class_traces_low_latency( name=name, model_config=RESNET_18_CIFAR10, data_config=CIFAR10_TRAIN ) resnet_18_cifar10_trace = full_trace( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) save_resnet_18_cifar10_trace_growth = save_full_trace_growth( name=name, class_trace_fn=resnet_18_cifar10_class_trace ) resnet_18_cifar10_self_similarity = self_similarity( name=name, trace_fn=resnet_18_cifar10_class_trace, class_ids=range(0, 10) ) if __name__ == "__main__": # mode.check(False) # mode.debug() # mode.local() mode.distributed() # ray_init("dell") # ray_init("gpu") ray_init() threshold = 0.5 # threshold = 1 # threshold = 0.8 label = None # label = "train_50" # label = "train_start" # label = "train_start_more" # save_class_traces(resnet_18_cifar10_class_trace, range(0, 10), threshold=threshold, label=label, # example_num=5000, example_upperbound=5000, # ) save_resnet_18_cifar10_class_traces_low_latency( range(0, 10), threshold=threshold, label=label, example_num=5000, batch_size=8 ) save_class_traces( resnet_18_cifar10_class_trace_compact, range(0, 10), threshold=threshold, label=label, ) resnet_18_cifar10_self_similarity(threshold=threshold, label=label).save()
[ 2, 220, 15069, 2177, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 37811, 3103, 85, 2122, 282, 47986, 7311, 10062, 320, 1352, 329, 29060, 8808, 11, 3170, 351, 48700, 13, 75, 6962, 526, 15931, 198, 198, 6738, 299, 77, 8625, 1330, 4235, 198, 6738, 299, 77, 8625, 13, 1891, 437, 13, 83, 22854, 11125, 13, 19608, 292, 316, 13, 11250, 1330, 357, 198, 220, 220, 220, 327, 5064, 1503, 940, 62, 51, 3861, 1268, 11, 198, 220, 220, 220, 8959, 4760, 1677, 2767, 62, 20530, 62, 51, 3861, 1268, 11, 198, 220, 220, 220, 8959, 4760, 1677, 2767, 62, 51, 3861, 1268, 11, 198, 8, 198, 6738, 299, 77, 8625, 13, 1891, 437, 13, 83, 22854, 11125, 13, 19849, 13, 11250, 1330, 15731, 12884, 62, 1507, 62, 34, 5064, 1503, 940, 11, 15731, 12884, 62, 1120, 198, 6738, 299, 77, 8625, 13, 1891, 437, 13, 83, 22854, 11125, 13, 40546, 13, 11321, 1330, 357, 198, 220, 220, 220, 1398, 62, 40546, 11, 198, 220, 220, 220, 1398, 62, 40546, 62, 5589, 529, 11, 198, 220, 220, 220, 1398, 62, 40546, 62, 27922, 11, 198, 220, 220, 220, 1336, 62, 40546, 11, 198, 220, 220, 220, 3613, 62, 4871, 62, 2213, 2114, 11, 198, 220, 220, 220, 3613, 62, 4871, 62, 2213, 2114, 62, 9319, 62, 15460, 1387, 11, 198, 220, 220, 220, 3613, 62, 12853, 62, 40546, 62, 27922, 11, 198, 220, 220, 220, 2116, 62, 38610, 414, 11, 198, 8, 198, 6738, 299, 77, 8625, 13, 26791, 13, 2433, 1330, 26842, 62, 15003, 198, 198, 834, 439, 834, 796, 14631, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 1600, 366, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 944, 62, 38610, 414, 8973, 198, 198, 3672, 796, 366, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 1, 198, 198, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 796, 1398, 62, 40546, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 2746, 62, 11250, 28, 19535, 12884, 62, 1507, 62, 34, 5064, 1503, 940, 11, 1366, 62, 11250, 28, 34, 5064, 1503, 940, 62, 51, 3861, 1268, 198, 8, 198, 198, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 62, 27922, 796, 1398, 62, 40546, 62, 27922, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 2746, 62, 11250, 28, 19535, 12884, 62, 1507, 62, 34, 5064, 1503, 940, 11, 1366, 62, 11250, 28, 34, 5064, 1503, 940, 62, 51, 3861, 1268, 198, 8, 198, 198, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 62, 5589, 529, 796, 1398, 62, 40546, 62, 5589, 529, 7, 198, 220, 220, 220, 581, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 11, 1438, 28, 3672, 11, 2746, 62, 11250, 28, 19535, 12884, 62, 1507, 62, 34, 5064, 1503, 940, 198, 8, 198, 198, 21928, 62, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 2213, 2114, 62, 9319, 62, 15460, 1387, 796, 3613, 62, 4871, 62, 2213, 2114, 62, 9319, 62, 15460, 1387, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 2746, 62, 11250, 28, 19535, 12884, 62, 1507, 62, 34, 5064, 1503, 940, 11, 1366, 62, 11250, 28, 34, 5064, 1503, 940, 62, 51, 3861, 1268, 198, 8, 198, 198, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 40546, 796, 1336, 62, 40546, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 1398, 62, 40546, 62, 22184, 28, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 198, 8, 198, 198, 21928, 62, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 40546, 62, 27922, 796, 3613, 62, 12853, 62, 40546, 62, 27922, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 1398, 62, 40546, 62, 22184, 28, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 198, 8, 198, 198, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 944, 62, 38610, 414, 796, 2116, 62, 38610, 414, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 12854, 62, 22184, 28, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 11, 1398, 62, 2340, 28, 9521, 7, 15, 11, 838, 8, 198, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 4235, 13, 9122, 7, 25101, 8, 198, 220, 220, 220, 1303, 4235, 13, 24442, 3419, 198, 220, 220, 220, 1303, 4235, 13, 12001, 3419, 198, 220, 220, 220, 4235, 13, 17080, 6169, 3419, 198, 220, 220, 220, 1303, 26842, 62, 15003, 7203, 67, 695, 4943, 198, 220, 220, 220, 1303, 26842, 62, 15003, 7203, 46999, 4943, 198, 220, 220, 220, 26842, 62, 15003, 3419, 628, 220, 220, 220, 11387, 796, 657, 13, 20, 198, 220, 220, 220, 1303, 11387, 796, 352, 198, 220, 220, 220, 1303, 11387, 796, 657, 13, 23, 628, 220, 220, 220, 6167, 796, 6045, 198, 220, 220, 220, 1303, 6167, 796, 366, 27432, 62, 1120, 1, 198, 220, 220, 220, 1303, 6167, 796, 366, 27432, 62, 9688, 1, 198, 220, 220, 220, 1303, 6167, 796, 366, 27432, 62, 9688, 62, 3549, 1, 628, 220, 220, 220, 1303, 3613, 62, 4871, 62, 2213, 2114, 7, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 11, 2837, 7, 15, 11, 838, 828, 11387, 28, 400, 10126, 11, 6167, 28, 18242, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1672, 62, 22510, 28, 27641, 11, 1672, 62, 45828, 7784, 28, 27641, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 3613, 62, 411, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 2213, 2114, 62, 9319, 62, 15460, 1387, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 7, 15, 11, 838, 828, 11387, 28, 400, 10126, 11, 6167, 28, 18242, 11, 1672, 62, 22510, 28, 27641, 11, 15458, 62, 7857, 28, 23, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3613, 62, 4871, 62, 2213, 2114, 7, 198, 220, 220, 220, 220, 220, 220, 220, 581, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 4871, 62, 40546, 62, 5589, 529, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 7, 15, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 400, 10126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 18242, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 581, 3262, 62, 1507, 62, 66, 361, 283, 940, 62, 944, 62, 38610, 414, 7, 400, 10126, 28, 400, 10126, 11, 6167, 28, 18242, 737, 21928, 3419, 198 ]
2.411222
1,301