content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import discord cooldownEmbed = discord.Embed.from_dict({"type": "rich", "title": "Cooldown", "description": ":x: That command is currently on cooldown :x:", "color": 15158332, "author": {"name": "Error", "icon_url": "https://discordemoji.com/assets/" "emoji/5316_Error_512x512_by_DW" ".png"}}) rateLimitEmbed = discord.Embed.from_dict({"type": "rich", "title": "Rate Limit", "description": ":x: The Minecraft API is currently on cooldown :x:", "color": 15158332, "author": {"name": "Error", "icon_url": "https://discordemoji.com/assets/" "emoji/5316_Error_512x512_by_DW" ".png"}}) invalidCategory = discord.Embed.from_dict({"type": "rich", "title": "Invalid Category", "description": ":x: The category you provided is invalid :x:", "color": 15158332, "author": {"name": "Error", "icon_url": "https://" "discordemoji.com" "/assets/emoji/" "5316_Error_" "512x512_by_DW" ".png"}}) invalidIdentifier = discord.Embed.from_dict({"type": "rich", "title": "Invalid Identifier", "description": ":x: The identifier you provided is invalid :x:", "color": 15158332, "author": {"name": "Error", "icon_url": "https://discordemoji.com/" "assets/emoji/" "5316_Error_512x512_by_DW.png"}})
[ 11748, 36446, 198, 198, 1073, 15041, 31567, 276, 796, 36446, 13, 31567, 276, 13, 6738, 62, 11600, 7, 4895, 4906, 1298, 366, 7527, 1600, 366, 7839, 1298, 366, 45953, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 25, 87, 25, 1320, 3141, 318, 3058, 319, 20869, 1058, 87, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8043, 1298, 1315, 21273, 32148, 11, 366, 9800, 1298, 19779, 3672, 1298, 366, 12331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4749, 62, 6371, 1298, 366, 5450, 1378, 15410, 585, 368, 31370, 13, 785, 14, 19668, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 368, 31370, 14, 4310, 1433, 62, 12331, 62, 25836, 87, 25836, 62, 1525, 62, 42955, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 11134, 1, 11709, 8, 198, 198, 4873, 39184, 31567, 276, 796, 36446, 13, 31567, 276, 13, 6738, 62, 11600, 7, 4895, 4906, 1298, 366, 7527, 1600, 366, 7839, 1298, 366, 32184, 27272, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 25, 87, 25, 383, 24609, 7824, 318, 3058, 319, 20869, 1058, 87, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8043, 1298, 1315, 21273, 32148, 11, 366, 9800, 1298, 19779, 3672, 1298, 366, 12331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4749, 62, 6371, 1298, 366, 5450, 1378, 15410, 585, 368, 31370, 13, 785, 14, 19668, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 368, 31370, 14, 4310, 1433, 62, 12331, 62, 25836, 87, 25836, 62, 1525, 62, 42955, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 11134, 1, 11709, 8, 198, 198, 259, 12102, 27313, 796, 36446, 13, 31567, 276, 13, 6738, 62, 11600, 7, 4895, 4906, 1298, 366, 7527, 1600, 366, 7839, 1298, 366, 44651, 21743, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 25, 87, 25, 383, 6536, 345, 2810, 318, 12515, 1058, 87, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8043, 1298, 1315, 21273, 32148, 11, 366, 9800, 1298, 19779, 3672, 1298, 366, 12331, 1600, 366, 4749, 62, 6371, 1298, 366, 5450, 1378, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15410, 585, 368, 31370, 13, 785, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12813, 19668, 14, 368, 31370, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4310, 1433, 62, 12331, 62, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25836, 87, 25836, 62, 1525, 62, 42955, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 11134, 1, 11709, 8, 198, 198, 259, 12102, 33234, 7483, 796, 36446, 13, 31567, 276, 13, 6738, 62, 11600, 7, 4895, 4906, 1298, 366, 7527, 1600, 366, 7839, 1298, 366, 44651, 11440, 7483, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 366, 25, 87, 25, 383, 27421, 345, 2810, 318, 12515, 1058, 87, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8043, 1298, 1315, 21273, 32148, 11, 366, 9800, 1298, 19779, 3672, 1298, 366, 12331, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4749, 62, 6371, 1298, 366, 5450, 1378, 15410, 585, 368, 31370, 13, 785, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19668, 14, 368, 31370, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4310, 1433, 62, 12331, 62, 25836, 87, 25836, 62, 1525, 62, 42955, 13, 11134, 1, 11709, 8, 198 ]
1.38392
1,990
#nombre = input("¿Cual es tu nombre?") #nombre = nombre.upper() #print(nombre) #nombre = input("¿Cual es tu nombre?") #nombre = nombre.capitalize() #print(nombre) #nombre = input("¿Cual es tu nombre?") #nombre = nombre.lower() #print(nombre) nombre = input("¿Cual es tu nombre?") nombre = nombre.strip() print(nombre)
[ 2, 77, 2381, 260, 796, 5128, 7203, 126, 123, 34, 723, 1658, 12777, 299, 2381, 260, 1701, 8, 198, 2, 77, 2381, 260, 796, 299, 2381, 260, 13, 45828, 3419, 198, 198, 2, 4798, 7, 77, 2381, 260, 8, 198, 198, 2, 77, 2381, 260, 796, 5128, 7203, 126, 123, 34, 723, 1658, 12777, 299, 2381, 260, 1701, 8, 198, 2, 77, 2381, 260, 796, 299, 2381, 260, 13, 27544, 1096, 3419, 198, 198, 2, 4798, 7, 77, 2381, 260, 8, 198, 198, 2, 77, 2381, 260, 796, 5128, 7203, 126, 123, 34, 723, 1658, 12777, 299, 2381, 260, 1701, 8, 198, 2, 77, 2381, 260, 796, 299, 2381, 260, 13, 21037, 3419, 198, 198, 2, 4798, 7, 77, 2381, 260, 8, 198, 198, 77, 2381, 260, 796, 5128, 7203, 126, 123, 34, 723, 1658, 12777, 299, 2381, 260, 1701, 8, 198, 77, 2381, 260, 796, 299, 2381, 260, 13, 36311, 3419, 198, 198, 4798, 7, 77, 2381, 260, 8 ]
2.025
160
from tests.package.test_perl import TestPerlBase class TestPerlDBDmysql(TestPerlBase): """ package: DBD-mysql XS direct dependencies: DBI XS """ config = TestPerlBase.config + \ """ BR2_PACKAGE_PERL=y BR2_PACKAGE_PERL_DBD_MYSQL=y """
[ 6738, 5254, 13, 26495, 13, 9288, 62, 525, 75, 1330, 6208, 5990, 75, 14881, 628, 198, 4871, 6208, 5990, 75, 11012, 35, 28744, 13976, 7, 14402, 5990, 75, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5301, 25, 198, 220, 220, 220, 220, 220, 220, 220, 360, 14529, 12, 28744, 13976, 220, 220, 1395, 50, 198, 220, 220, 220, 1277, 20086, 25, 198, 220, 220, 220, 220, 220, 220, 220, 360, 3483, 220, 220, 1395, 50, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4566, 796, 6208, 5990, 75, 14881, 13, 11250, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11177, 17, 62, 47, 8120, 11879, 62, 18973, 43, 28, 88, 198, 220, 220, 220, 220, 220, 220, 220, 11177, 17, 62, 47, 8120, 11879, 62, 18973, 43, 62, 11012, 35, 62, 44, 16309, 9711, 28, 88, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198 ]
1.907407
162
import re from py_pdf_parser.components import PDFDocument from py_pdf_parser.components import PDFElement from tomorrow_pdf_converter.t_parser.statement import Statement from tomorrow_pdf_converter.t_parser.transaction import Transaction closing_element_text = "ZUSAMMENFASSUNG" # This regex matches the headline of each per day transaction section in a Tomorrow Document date_sep_regex = "^(MONTAG|DIENSTAG|MITTWOCH|DONNERSTAG|FREITAG|SAMSTAG|SONNTAG),\s(\d{1,2}\.\s(JANUAR|FEBRUAR|MÄRZ|APRIL|MAI|JUNI|JULI|AUGUST|SEPTEMBER|OKTOBER|NOVEMBER|DEZEMBER)\s\d{4})$" # This regex matches the date string of the above headline. date_regex = "^\D*(\d{1,2})\.\s(JANUAR|FEBRUAR|MÄRZ|APRIL|MAI|JUNI|JULI|AUGUST|SEPTEMBER|OKTOBER|NOVEMBER|DEZEMBER)\s(\d{4})$"
[ 11748, 302, 198, 198, 6738, 12972, 62, 12315, 62, 48610, 13, 5589, 3906, 1330, 12960, 24941, 198, 6738, 12972, 62, 12315, 62, 48610, 13, 5589, 3906, 1330, 12960, 20180, 198, 198, 6738, 9439, 62, 12315, 62, 1102, 332, 353, 13, 83, 62, 48610, 13, 26090, 1330, 21983, 198, 6738, 9439, 62, 12315, 62, 1102, 332, 353, 13, 83, 62, 48610, 13, 7645, 2673, 1330, 45389, 198, 198, 565, 2752, 62, 30854, 62, 5239, 796, 366, 57, 2937, 2390, 49275, 37, 10705, 4944, 38, 1, 198, 198, 2, 770, 40364, 7466, 262, 16534, 286, 1123, 583, 1110, 8611, 2665, 287, 257, 25939, 16854, 198, 4475, 62, 325, 79, 62, 260, 25636, 796, 366, 61, 7, 27857, 42197, 91, 17931, 1677, 2257, 4760, 91, 44, 22470, 54, 46, 3398, 91, 41173, 21479, 2257, 4760, 91, 37, 2200, 2043, 4760, 91, 49302, 2257, 4760, 91, 11782, 11251, 4760, 828, 59, 82, 38016, 67, 90, 16, 11, 17, 92, 17405, 59, 82, 7, 41, 1565, 52, 1503, 91, 15112, 11473, 52, 1503, 91, 44, 127, 226, 49, 57, 91, 2969, 49, 4146, 91, 5673, 40, 91, 41, 4944, 40, 91, 41, 6239, 40, 91, 32, 7340, 7759, 91, 5188, 11571, 28952, 91, 11380, 51, 9864, 1137, 91, 45, 8874, 28952, 91, 7206, 57, 28952, 19415, 82, 59, 67, 90, 19, 30072, 3, 1, 198, 198, 2, 770, 40364, 7466, 262, 3128, 4731, 286, 262, 2029, 16534, 13, 198, 4475, 62, 260, 25636, 796, 366, 61, 59, 35, 9, 38016, 67, 90, 16, 11, 17, 30072, 17405, 59, 82, 7, 41, 1565, 52, 1503, 91, 15112, 11473, 52, 1503, 91, 44, 127, 226, 49, 57, 91, 2969, 49, 4146, 91, 5673, 40, 91, 41, 4944, 40, 91, 41, 6239, 40, 91, 32, 7340, 7759, 91, 5188, 11571, 28952, 91, 11380, 51, 9864, 1137, 91, 45, 8874, 28952, 91, 7206, 57, 28952, 19415, 82, 38016, 67, 90, 19, 30072, 3, 1, 628, 628, 628, 628, 628 ]
2.3875
320
import os import os.path from constant import * __all__ = ['get_id_from_abb', 'get_abb_from_name'] # Helper functions def check_assets_dir() -> None: """This function checks if a directory exists. If not it will create one. """ directories = [PLAYER_BASE_PATH, TEAM_BASE_PATH, PLAYER_SEASON_PATH, PLAYER_RATING_PATH, TEAM_PLAYOFF_PATH, TEAM_SEASON_PATH, GAME_BASE_PATH, SIM_RESULT_PATH] for directory in directories: if not os.path.exists(directory): os.makedirs(directory) def get_id_from_abb(team_abb: str) -> str: """This function return the team ID given a team abbreviation. :param team_abb: the team abbreviation :return: the team ID """ for team_id, abb in TEAM_DICT.items(): if team_abb == abb: return team_id def get_abb_from_name(team_name: str) -> str: """This function return the team abbreviation given a team name. :param team_name: the name of the team :return: the team abbreviation """ for team_abb, name in TEAM_NAME_DICT.items(): if team_name == name[1]: return team_abb
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 198, 6738, 6937, 1330, 1635, 198, 198, 834, 439, 834, 796, 37250, 1136, 62, 312, 62, 6738, 62, 6485, 3256, 705, 1136, 62, 6485, 62, 6738, 62, 3672, 20520, 628, 198, 2, 5053, 525, 5499, 198, 4299, 2198, 62, 19668, 62, 15908, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 1212, 2163, 8794, 611, 257, 8619, 7160, 13, 1002, 407, 340, 481, 2251, 530, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29196, 796, 685, 31519, 1137, 62, 33, 11159, 62, 34219, 11, 33536, 62, 33, 11159, 62, 34219, 11, 28180, 1137, 62, 5188, 36033, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28180, 1137, 62, 49, 33881, 62, 34219, 11, 33536, 62, 31519, 27977, 62, 34219, 11, 33536, 62, 5188, 36033, 62, 34219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30517, 62, 33, 11159, 62, 34219, 11, 23749, 62, 19535, 16724, 62, 34219, 60, 628, 220, 220, 220, 329, 8619, 287, 29196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 34945, 8, 628, 198, 4299, 651, 62, 312, 62, 6738, 62, 6485, 7, 15097, 62, 6485, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 1212, 2163, 1441, 262, 1074, 4522, 1813, 257, 1074, 28873, 47625, 13, 628, 220, 220, 220, 1058, 17143, 1074, 62, 6485, 25, 262, 1074, 28873, 47625, 198, 220, 220, 220, 1058, 7783, 25, 262, 1074, 4522, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1074, 62, 312, 11, 450, 65, 287, 33536, 62, 35, 18379, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1074, 62, 6485, 6624, 450, 65, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1074, 62, 312, 628, 198, 4299, 651, 62, 6485, 62, 6738, 62, 3672, 7, 15097, 62, 3672, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 1212, 2163, 1441, 262, 1074, 28873, 47625, 1813, 257, 1074, 1438, 13, 628, 220, 220, 220, 1058, 17143, 1074, 62, 3672, 25, 262, 1438, 286, 262, 1074, 198, 220, 220, 220, 1058, 7783, 25, 262, 1074, 28873, 47625, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1074, 62, 6485, 11, 1438, 287, 33536, 62, 20608, 62, 35, 18379, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1074, 62, 3672, 6624, 1438, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1074, 62, 6485, 198 ]
2.457447
470
from flask import Flask, flash, render_template, request, redirect, url_for from flask_sqlalchemy import SQLAlchemy from flask_wtf import FlaskForm from wtforms import StringField, SubmitField app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) @app.route('/', methods=['GET', 'POST']) @app.route('/del_book/<book_id>') @app.route('/del_author/<author_id>') if __name__ == "__main__": db.drop_all() # 创建所有表 db.create_all() # 生成数据 au1 = Author(name='老王') au2 = Author(name='老尹') au3 = Author(name='老刘') # 把数据提交给用户会话 db.session.add_all([au1, au2, au3]) db.session.commit() bk1 = Book(name='老王回忆录', author_id=au1.id) bk2 = Book(name='我读书少,你别骗我', author_id=au1.id) bk3 = Book(name='如何才能让自己更骚', author_id=au2.id) bk4 = Book(name='怎样征服美丽少女', author_id=au3.id) bk5 = Book(name='如何征服英俊少男', author_id=au3.id) # 把数据提交给用户会话 db.session.add_all([bk1, bk2, bk3, bk4, bk5]) # 提交会话 db.session.commit() app.run(debug=True)
[ 6738, 42903, 1330, 46947, 11, 7644, 11, 8543, 62, 28243, 11, 2581, 11, 18941, 11, 19016, 62, 1640, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 42903, 62, 86, 27110, 1330, 46947, 8479, 198, 6738, 266, 83, 23914, 1330, 10903, 15878, 11, 39900, 15878, 628, 628, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 16934, 8, 198, 9945, 796, 16363, 2348, 26599, 7, 1324, 8, 628, 628, 198, 31, 1324, 13, 38629, 10786, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 12381, 62, 2070, 14, 27, 2070, 62, 312, 29, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 12381, 62, 9800, 14, 27, 9800, 62, 312, 29, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 20613, 13, 14781, 62, 439, 3419, 198, 220, 220, 220, 1303, 10263, 230, 249, 161, 119, 118, 33699, 222, 17312, 231, 26193, 101, 198, 220, 220, 220, 20613, 13, 17953, 62, 439, 3419, 628, 220, 220, 220, 1303, 13328, 242, 253, 22755, 238, 46763, 108, 162, 235, 106, 198, 220, 220, 220, 35851, 16, 796, 6434, 7, 3672, 11639, 32003, 223, 25581, 11537, 198, 220, 220, 220, 35851, 17, 796, 6434, 7, 3672, 11639, 32003, 223, 22887, 117, 11537, 198, 220, 220, 220, 35851, 18, 796, 6434, 7, 3672, 11639, 32003, 223, 26344, 246, 11537, 198, 220, 220, 220, 1303, 10545, 232, 232, 46763, 108, 162, 235, 106, 162, 237, 238, 12859, 97, 163, 119, 247, 18796, 101, 22755, 115, 27670, 248, 46237, 251, 198, 220, 220, 220, 20613, 13, 29891, 13, 2860, 62, 439, 26933, 559, 16, 11, 35851, 17, 11, 35851, 18, 12962, 198, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 220, 220, 220, 275, 74, 16, 796, 4897, 7, 3672, 11639, 32003, 223, 25581, 32368, 252, 33232, 228, 37605, 243, 3256, 1772, 62, 312, 28, 559, 16, 13, 312, 8, 198, 220, 220, 220, 275, 74, 17, 796, 4897, 7, 3672, 11639, 22755, 239, 46237, 119, 20046, 99, 22887, 239, 171, 120, 234, 19526, 254, 26344, 104, 165, 103, 245, 22755, 239, 3256, 1772, 62, 312, 28, 559, 16, 13, 312, 8, 198, 220, 220, 220, 275, 74, 18, 796, 4897, 7, 3672, 11639, 36685, 224, 19526, 243, 33699, 235, 47797, 121, 164, 106, 102, 164, 229, 103, 32432, 109, 162, 249, 112, 165, 103, 248, 3256, 1772, 62, 312, 28, 559, 17, 13, 312, 8, 198, 220, 220, 220, 275, 74, 19, 796, 4897, 7, 3672, 11639, 45250, 236, 43718, 115, 36181, 223, 17312, 235, 163, 122, 236, 10310, 121, 22887, 239, 42637, 3256, 1772, 62, 312, 28, 559, 18, 13, 312, 8, 198, 220, 220, 220, 275, 74, 20, 796, 4897, 7, 3672, 11639, 36685, 224, 19526, 243, 36181, 223, 17312, 235, 164, 233, 109, 46479, 232, 22887, 239, 18796, 115, 3256, 1772, 62, 312, 28, 559, 18, 13, 312, 8, 198, 220, 220, 220, 1303, 10545, 232, 232, 46763, 108, 162, 235, 106, 162, 237, 238, 12859, 97, 163, 119, 247, 18796, 101, 22755, 115, 27670, 248, 46237, 251, 198, 220, 220, 220, 20613, 13, 29891, 13, 2860, 62, 439, 26933, 65, 74, 16, 11, 275, 74, 17, 11, 275, 74, 18, 11, 275, 74, 19, 11, 275, 74, 20, 12962, 198, 220, 220, 220, 1303, 10545, 237, 238, 12859, 97, 27670, 248, 46237, 251, 198, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
1.710702
598
'''All configs for handshake go here '''
[ 7061, 6, 3237, 4566, 82, 329, 42231, 467, 994, 198, 7061, 6, 198 ]
3.153846
13
""" Dataset setup and loaders This file including the different datasets processing pipelines """ from datasets import cityscapes from datasets import mapillary from datasets import kitti from datasets import camvid from datasets import bdd import torchvision.transforms as standard_transforms import transforms.joint_transforms as joint_transforms import transforms.transforms as extended_transforms from torch.utils.data import DataLoader def setup_loaders(args): """ Setup Data Loaders[Currently supports Cityscapes, Mapillary and ADE20kin] input: argument passed by the user return: training data loader, validation data loader loader, train_set """ if args.dataset == 'cityscapes': args.dataset_cls = cityscapes args.train_batch_size = args.bs_mult * args.ngpu if args.bs_mult_val > 0: args.val_batch_size = args.bs_mult_val * args.ngpu else: args.val_batch_size = args.bs_mult * args.ngpu # args.val_batch_size = 10 elif args.dataset == 'mapillary': args.dataset_cls = mapillary args.train_batch_size = args.bs_mult * args.ngpu args.val_batch_size = 4 elif args.dataset == 'kitti': args.dataset_cls = kitti args.train_batch_size = args.bs_mult * args.ngpu if args.bs_mult_val > 0: args.val_batch_size = args.bs_mult_val * args.ngpu else: args.val_batch_size = args.bs_mult * args.ngpu elif args.dataset == 'camvid': args.dataset_cls = camvid args.train_batch_size = args.bs_mult * args.ngpu if args.bs_mult_val > 0: args.val_batch_size = args.bs_mult_val * args.ngpu else: args.val_batch_size = args.bs_mult * args.ngpu elif args.dataset == 'bdd': args.dataset_cls = bdd args.train_batch_size = args.bs_mult * args.ngpu if args.bs_mult_val > 0: args.val_batch_size = args.bs_mult_val * args.ngpu else: args.val_batch_size = args.bs_mult * args.ngpu else: raise Exception('Dataset {} is not supported'.format(args.dataset)) # Readjust batch size to mini-batch size for apex if args.apex: args.train_batch_size = args.bs_mult args.val_batch_size = args.bs_mult_val args.num_workers = 4 * args.ngpu if args.test_mode: args.num_workers = 1 mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Geometric image transformations train_joint_transform_list = [ joint_transforms.RandomSizeAndCrop(args.crop_size, False, pre_size=args.pre_size, scale_min=args.scale_min, scale_max=args.scale_max, ignore_index=args.dataset_cls.ignore_label), joint_transforms.Resize(args.crop_size), joint_transforms.RandomHorizontallyFlip()] train_joint_transform = joint_transforms.Compose(train_joint_transform_list) # Image appearance transformations train_input_transform = [] if args.color_aug: train_input_transform += [extended_transforms.ColorJitter( brightness=args.color_aug, contrast=args.color_aug, saturation=args.color_aug, hue=args.color_aug)] if args.bblur: train_input_transform += [extended_transforms.RandomBilateralBlur()] elif args.gblur: train_input_transform += [extended_transforms.RandomGaussianBlur()] else: pass train_input_transform += [standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std)] train_input_transform = standard_transforms.Compose(train_input_transform) val_input_transform = standard_transforms.Compose([ standard_transforms.ToTensor(), standard_transforms.Normalize(*mean_std) ]) target_transform = extended_transforms.MaskToTensor() ## relax the segmentation border if args.jointwtborder: target_train_transform = extended_transforms.RelaxedBoundaryLossToTensor(args.dataset_cls.ignore_label, args.dataset_cls.num_classes) else: target_train_transform = extended_transforms.MaskToTensor() edge_map = args.joint_edgeseg_loss if args.dataset == 'cityscapes': # if args.mode == "trainval": # city_mode = 'train' ## Can be trainval, hard code city_mode = 'train' city_quality = 'fine' if args.class_uniform_pct: if args.coarse_boost_classes: coarse_boost_classes = \ [int(c) for c in args.coarse_boost_classes.split(',')] else: coarse_boost_classes = None train_set = args.dataset_cls.CityScapesUniform( city_quality, city_mode, args.maxSkip, joint_transform_list=train_joint_transform_list, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, cv_split=args.cv, class_uniform_pct=args.class_uniform_pct, class_uniform_tile=args.class_uniform_tile, test=args.test_mode, coarse_boost_classes=coarse_boost_classes, edge_map=edge_map ) else: train_set = args.dataset_cls.CityScapes( city_quality, city_mode, 0, joint_transform=train_joint_transform, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, cv_split=args.cv) val_set = args.dataset_cls.CityScapes('fine', 'val', 0, transform=val_input_transform, target_transform=target_transform, cv_split=args.cv) elif args.dataset == 'mapillary': eval_size = 1536 val_joint_transform_list = [ joint_transforms.ResizeHeight(eval_size), joint_transforms.CenterCropPad(eval_size)] train_set = args.dataset_cls.Mapillary( 'semantic', 'train', joint_transform_list=train_joint_transform_list, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, class_uniform_pct=args.class_uniform_pct, class_uniform_tile=args.class_uniform_tile, test=args.test_mode) val_set = args.dataset_cls.Mapillary( 'semantic', 'val', joint_transform_list=val_joint_transform_list, transform=val_input_transform, target_transform=target_transform, test=False) elif args.dataset == 'kitti': train_set = args.dataset_cls.KITTI( 'semantic', 'train', args.maxSkip, joint_transform_list=train_joint_transform_list, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, class_uniform_pct=args.class_uniform_pct, class_uniform_tile=args.class_uniform_tile, test=args.test_mode, cv_split=args.cv, scf=args.scf, hardnm=args.hardnm) val_set = args.dataset_cls.KITTI( 'semantic', 'trainval', 0, joint_transform_list=None, transform=val_input_transform, target_transform=target_transform, test=False, cv_split=args.cv, scf=None) elif args.dataset == 'camvid': train_set = args.dataset_cls.CAMVID( 'semantic', 'trainval', args.maxSkip, joint_transform_list=train_joint_transform_list, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, class_uniform_pct=args.class_uniform_pct, class_uniform_tile=args.class_uniform_tile, test=args.test_mode, cv_split=args.cv, scf=args.scf, hardnm=args.hardnm, edge_map=edge_map ) val_set = args.dataset_cls.CAMVID( 'semantic', 'test', 0, joint_transform_list=None, transform=val_input_transform, target_transform=target_transform, test=False, cv_split=args.cv, scf=None) elif args.dataset == 'bdd': train_set = args.dataset_cls.BDD( 'semantic', 'train', args.maxSkip, joint_transform_list=train_joint_transform_list, transform=train_input_transform, target_transform=target_train_transform, dump_images=args.dump_augmentation_images, class_uniform_pct=args.class_uniform_pct, class_uniform_tile=args.class_uniform_tile, test=args.test_mode, cv_split=args.cv, scf=args.scf, hardnm=args.hardnm, edge_map=edge_map ) val_set = args.dataset_cls.BDD( 'semantic', 'val', 0, joint_transform_list=None, transform=val_input_transform, target_transform=target_transform, test=False, cv_split=args.cv, scf=None) elif args.dataset == 'null_loader': train_set = args.dataset_cls.null_loader(args.crop_size) val_set = args.dataset_cls.null_loader(args.crop_size) else: raise Exception('Dataset {} is not supported'.format(args.dataset)) if args.apex: from datasets.sampler import DistributedSampler train_sampler = DistributedSampler(train_set, pad=True, permutation=True, consecutive_sample=False) val_sampler = DistributedSampler(val_set, pad=False, permutation=False, consecutive_sample=False) else: train_sampler = None val_sampler = None train_loader = DataLoader(train_set, batch_size=args.train_batch_size, num_workers=args.num_workers, shuffle=(train_sampler is None), drop_last=True, sampler = train_sampler) val_loader = DataLoader(val_set, batch_size=args.val_batch_size, num_workers=args.num_workers // 2 , shuffle=False, drop_last=False, sampler = val_sampler) return train_loader, val_loader, train_set
[ 37811, 198, 27354, 292, 316, 9058, 290, 3440, 364, 198, 1212, 2393, 1390, 262, 1180, 40522, 7587, 31108, 198, 37811, 198, 6738, 40522, 1330, 1748, 1416, 7916, 198, 6738, 40522, 1330, 3975, 15856, 198, 6738, 40522, 1330, 479, 715, 72, 198, 6738, 40522, 1330, 12172, 16921, 198, 6738, 40522, 1330, 275, 1860, 198, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 3210, 62, 7645, 23914, 198, 198, 11748, 31408, 13, 73, 1563, 62, 7645, 23914, 355, 6466, 62, 7645, 23914, 198, 11748, 31408, 13, 7645, 23914, 355, 7083, 62, 7645, 23914, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 628, 198, 4299, 9058, 62, 2220, 364, 7, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31122, 6060, 8778, 364, 58, 21327, 6971, 2254, 1416, 7916, 11, 9347, 15856, 290, 5984, 36, 1238, 5116, 60, 198, 220, 220, 220, 5128, 25, 4578, 3804, 416, 262, 2836, 198, 220, 220, 220, 1441, 25, 220, 3047, 1366, 40213, 11, 21201, 1366, 40213, 40213, 11, 220, 4512, 62, 2617, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 26498, 13, 19608, 292, 316, 6624, 705, 19205, 1416, 7916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 796, 1748, 1416, 7916, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1443, 62, 16680, 62, 2100, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 62, 2100, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 838, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 8899, 15856, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 796, 3975, 15856, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 604, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 74, 715, 72, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 796, 479, 715, 72, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1443, 62, 16680, 62, 2100, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 62, 2100, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 20991, 16921, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 796, 12172, 16921, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1443, 62, 16680, 62, 2100, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 62, 2100, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 65, 1860, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 796, 275, 1860, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1443, 62, 16680, 62, 2100, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 62, 2100, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 27354, 292, 316, 23884, 318, 407, 4855, 4458, 18982, 7, 22046, 13, 19608, 292, 316, 4008, 628, 220, 220, 220, 1303, 4149, 3137, 15458, 2546, 284, 9927, 12, 43501, 2546, 329, 40167, 198, 220, 220, 220, 611, 26498, 13, 1758, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 27432, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 2100, 62, 43501, 62, 7857, 796, 26498, 13, 1443, 62, 16680, 62, 2100, 628, 220, 220, 220, 26498, 13, 22510, 62, 22896, 796, 604, 1635, 26498, 13, 782, 19944, 198, 220, 220, 220, 611, 26498, 13, 9288, 62, 14171, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 22510, 62, 22896, 796, 352, 628, 220, 220, 220, 1612, 62, 19282, 796, 29565, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 685, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 628, 220, 220, 220, 1303, 2269, 16996, 2939, 38226, 198, 220, 220, 220, 4512, 62, 73, 1563, 62, 35636, 62, 4868, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 7645, 23914, 13, 29531, 10699, 1870, 34, 1773, 7, 22046, 13, 31476, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 62, 7857, 28, 22046, 13, 3866, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 1084, 28, 22046, 13, 9888, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 62, 9806, 28, 22046, 13, 9888, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 9630, 28, 22046, 13, 19608, 292, 316, 62, 565, 82, 13, 46430, 62, 18242, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 7645, 23914, 13, 4965, 1096, 7, 22046, 13, 31476, 62, 7857, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 7645, 23914, 13, 29531, 27991, 12071, 453, 7414, 541, 3419, 60, 198, 220, 220, 220, 4512, 62, 73, 1563, 62, 35636, 796, 6466, 62, 7645, 23914, 13, 7293, 577, 7, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 8, 628, 220, 220, 220, 1303, 7412, 5585, 38226, 198, 220, 220, 220, 4512, 62, 15414, 62, 35636, 796, 17635, 198, 220, 220, 220, 611, 26498, 13, 8043, 62, 7493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 15414, 62, 35636, 15853, 685, 2302, 1631, 62, 7645, 23914, 13, 10258, 41, 1967, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22204, 28, 22046, 13, 8043, 62, 7493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6273, 28, 22046, 13, 8043, 62, 7493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36275, 28, 22046, 13, 8043, 62, 7493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37409, 28, 22046, 13, 8043, 62, 7493, 15437, 628, 220, 220, 220, 611, 26498, 13, 65, 2436, 333, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 15414, 62, 35636, 15853, 685, 2302, 1631, 62, 7645, 23914, 13, 29531, 33, 14796, 3629, 333, 3419, 60, 198, 220, 220, 220, 1288, 361, 26498, 13, 70, 2436, 333, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 15414, 62, 35636, 15853, 685, 2302, 1631, 62, 7645, 23914, 13, 29531, 35389, 31562, 3629, 333, 3419, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 4512, 62, 15414, 62, 35636, 15853, 685, 20307, 62, 7645, 23914, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3210, 62, 7645, 23914, 13, 26447, 1096, 46491, 32604, 62, 19282, 15437, 198, 220, 220, 220, 4512, 62, 15414, 62, 35636, 796, 3210, 62, 7645, 23914, 13, 7293, 577, 7, 27432, 62, 15414, 62, 35636, 8, 628, 220, 220, 220, 1188, 62, 15414, 62, 35636, 796, 3210, 62, 7645, 23914, 13, 7293, 577, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 62, 7645, 23914, 13, 2514, 51, 22854, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 62, 7645, 23914, 13, 26447, 1096, 46491, 32604, 62, 19282, 8, 198, 220, 220, 220, 33761, 628, 220, 220, 220, 2496, 62, 35636, 796, 7083, 62, 7645, 23914, 13, 45195, 2514, 51, 22854, 3419, 628, 198, 220, 220, 220, 22492, 8960, 262, 10618, 341, 4865, 198, 220, 220, 220, 611, 26498, 13, 73, 1563, 46569, 20192, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 27432, 62, 35636, 796, 7083, 62, 7645, 23914, 13, 6892, 897, 276, 49646, 560, 43, 793, 2514, 51, 22854, 7, 22046, 13, 19608, 292, 316, 62, 565, 82, 13, 46430, 62, 18242, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 22510, 62, 37724, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 27432, 62, 35636, 796, 7083, 62, 7645, 23914, 13, 45195, 2514, 51, 22854, 3419, 628, 220, 220, 220, 5743, 62, 8899, 796, 26498, 13, 73, 1563, 62, 276, 3212, 1533, 62, 22462, 198, 220, 220, 220, 611, 26498, 13, 19608, 292, 316, 6624, 705, 19205, 1416, 7916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 26498, 13, 14171, 6624, 366, 27432, 2100, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1748, 62, 14171, 796, 705, 27432, 6, 220, 22492, 1680, 307, 4512, 2100, 11, 1327, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 14171, 796, 705, 27432, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 13237, 796, 705, 38125, 6, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 4871, 62, 403, 6933, 62, 79, 310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 1073, 17208, 62, 39521, 62, 37724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36076, 62, 39521, 62, 37724, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 600, 7, 66, 8, 329, 269, 287, 26498, 13, 1073, 17208, 62, 39521, 62, 37724, 13, 35312, 7, 3256, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36076, 62, 39521, 62, 37724, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 14941, 3351, 7916, 3118, 6933, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 13237, 11, 1748, 62, 14171, 11, 26498, 13, 9806, 50232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 79, 310, 28, 22046, 13, 4871, 62, 403, 6933, 62, 79, 310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 40927, 28, 22046, 13, 4871, 62, 403, 6933, 62, 40927, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 22046, 13, 9288, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36076, 62, 39521, 62, 37724, 28, 1073, 17208, 62, 39521, 62, 37724, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 8899, 28, 14907, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 14941, 3351, 7916, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 13237, 11, 1748, 62, 14171, 11, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 28, 27432, 62, 73, 1563, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 14941, 3351, 7916, 10786, 38125, 3256, 705, 2100, 3256, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 2100, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 8899, 15856, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 7857, 796, 1315, 2623, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 73, 1563, 62, 35636, 62, 4868, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 7645, 23914, 13, 4965, 1096, 23106, 7, 18206, 62, 7857, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 7645, 23914, 13, 23656, 34, 1773, 26114, 7, 18206, 62, 7857, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 13912, 15856, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 27432, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 79, 310, 28, 22046, 13, 4871, 62, 403, 6933, 62, 79, 310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 40927, 28, 22046, 13, 4871, 62, 403, 6933, 62, 40927, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 22046, 13, 9288, 62, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 13912, 15856, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 2100, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 2100, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 2100, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 25101, 8, 628, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 74, 715, 72, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 42, 22470, 40, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 27432, 3256, 26498, 13, 9806, 50232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 79, 310, 28, 22046, 13, 4871, 62, 403, 6933, 62, 79, 310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 40927, 28, 22046, 13, 4871, 62, 403, 6933, 62, 40927, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 22046, 13, 9288, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 22046, 13, 1416, 69, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1327, 21533, 28, 22046, 13, 10424, 21533, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 42, 22470, 40, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 27432, 2100, 3256, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 2100, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 14202, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 20991, 16921, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 34, 2390, 11008, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 27432, 2100, 3256, 26498, 13, 9806, 50232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 79, 310, 28, 22046, 13, 4871, 62, 403, 6933, 62, 79, 310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 40927, 28, 22046, 13, 4871, 62, 403, 6933, 62, 40927, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 22046, 13, 9288, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 22046, 13, 1416, 69, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1327, 21533, 28, 22046, 13, 10424, 21533, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 8899, 28, 14907, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 34, 2390, 11008, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 9288, 3256, 657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 2100, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 14202, 8, 628, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 65, 1860, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 14529, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 27432, 3256, 26498, 13, 9806, 50232, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 27432, 62, 73, 1563, 62, 35636, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 27432, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 27432, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 62, 17566, 28, 22046, 13, 39455, 62, 559, 5154, 341, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 79, 310, 28, 22046, 13, 4871, 62, 403, 6933, 62, 79, 310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 403, 6933, 62, 40927, 28, 22046, 13, 4871, 62, 403, 6933, 62, 40927, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 22046, 13, 9288, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 22046, 13, 1416, 69, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1327, 21533, 28, 22046, 13, 10424, 21533, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 8899, 28, 14907, 62, 8899, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 14529, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43616, 5109, 3256, 705, 2100, 3256, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 62, 35636, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 2100, 62, 15414, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 35636, 28, 16793, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 35312, 28, 22046, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 69, 28, 14202, 8, 628, 220, 220, 220, 1288, 361, 26498, 13, 19608, 292, 316, 6624, 705, 8423, 62, 29356, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 8423, 62, 29356, 7, 22046, 13, 31476, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 2617, 796, 26498, 13, 19608, 292, 316, 62, 565, 82, 13, 8423, 62, 29356, 7, 22046, 13, 31476, 62, 7857, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 27354, 292, 316, 23884, 318, 407, 4855, 4458, 18982, 7, 22046, 13, 19608, 292, 316, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 26498, 13, 1758, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 40522, 13, 37687, 20053, 1330, 4307, 6169, 16305, 20053, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 37687, 20053, 796, 4307, 6169, 16305, 20053, 7, 27432, 62, 2617, 11, 14841, 28, 17821, 11, 9943, 7094, 28, 17821, 11, 12785, 62, 39873, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 37687, 20053, 796, 4307, 6169, 16305, 20053, 7, 2100, 62, 2617, 11, 14841, 28, 25101, 11, 9943, 7094, 28, 25101, 11, 12785, 62, 39873, 28, 25101, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 37687, 20053, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 37687, 20053, 796, 6045, 628, 220, 220, 220, 4512, 62, 29356, 796, 6060, 17401, 7, 27432, 62, 2617, 11, 15458, 62, 7857, 28, 22046, 13, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 22046, 13, 22510, 62, 22896, 11, 36273, 16193, 27432, 62, 37687, 20053, 318, 6045, 828, 4268, 62, 12957, 28, 17821, 11, 6072, 20053, 796, 4512, 62, 37687, 20053, 8, 198, 220, 220, 220, 1188, 62, 29356, 796, 6060, 17401, 7, 2100, 62, 2617, 11, 15458, 62, 7857, 28, 22046, 13, 2100, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 22046, 13, 22510, 62, 22896, 3373, 362, 837, 36273, 28, 25101, 11, 4268, 62, 12957, 28, 25101, 11, 6072, 20053, 796, 1188, 62, 37687, 20053, 8, 628, 220, 220, 220, 1441, 4512, 62, 29356, 11, 1188, 62, 29356, 11, 4512, 62, 2617 ]
2.038258
5,280
#!/usr/bin/env python3 """tests for mad_lib.py""" import re import os import random import string from subprocess import getstatusoutput prg = './mad.py' no_blanks = 'inputs/no_blanks.txt' fox = 'inputs/fox.txt' hlp = 'inputs/help.txt' verona = 'inputs/romeo_juliet.txt' # -------------------------------------------------- def test_exists(): """exists""" assert os.path.isfile(prg) # -------------------------------------------------- def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert out.lower().startswith('usage') # -------------------------------------------------- def test_bad_file(): """Test bad input file""" bad = random_string() rv, out = getstatusoutput(f'{prg} {bad}') assert rv != 0 assert re.search(f"No such file or directory: '{bad}'", out) # -------------------------------------------------- def test_no_blanks(): """Test no blanks""" rv, out = getstatusoutput(f'{prg} {no_blanks}') assert rv != 0 assert out == f'"{no_blanks}" has no placeholders.' # -------------------------------------------------- def test_fox(): """test fox""" args = f'{fox} -i surly car under bicycle' rv, out = getstatusoutput(f'{prg} {args}') assert rv == 0 assert out.strip() == 'The quick surly car jumps under the lazy bicycle.' # -------------------------------------------------- def test_help(): """test help""" expected = """ Hey! I need tacos! Oi! Not just salsa! Hola! You know I need queso! Arriba! """.strip() args = f'{hlp} -i Hey tacos Oi salsa Hola queso Arriba' rv, out = getstatusoutput(f'{prg} {args}') assert rv == 0 assert out.strip() == expected.strip() # -------------------------------------------------- def test_verona(): """test verona""" expected = """ Two cars, both alike in dignity, In fair Detroit, where we lay our scene, From ancient oil break to new mutiny, Where civil blood makes civil hands unclean. From forth the fatal loins of these two foes A pair of star-cross'd pistons take their life; Whose misadventur'd piteous overthrows Doth with their stick shift bury their parents' strife. The fearful passage of their furious love, And the continuance of their parents' rage, Which, but their children's end, nought could accelerate, Is now the 42 hours' traffic of our stage; The which if you with patient foot attend, What here shall hammer, our toil shall strive to mend. """.strip() args = (f'{verona} --inputs cars Detroit oil pistons ' '"stick shift" furious accelerate 42 foot hammer') rv, out = getstatusoutput(f'{prg} {args}') assert rv == 0 assert out.strip() == expected.strip() # -------------------------------------------------- def random_string(): """generate a random string""" k = random.randint(5, 10) return ''.join(random.choices(string.ascii_letters + string.digits, k=k))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 201, 198, 37811, 41989, 329, 8805, 62, 8019, 13, 9078, 37811, 201, 198, 201, 198, 11748, 302, 201, 198, 11748, 28686, 201, 198, 11748, 4738, 201, 198, 11748, 4731, 201, 198, 6738, 850, 14681, 1330, 651, 13376, 22915, 201, 198, 201, 198, 1050, 70, 796, 705, 19571, 9937, 13, 9078, 6, 201, 198, 3919, 62, 2436, 2283, 796, 705, 15414, 82, 14, 3919, 62, 2436, 2283, 13, 14116, 6, 201, 198, 12792, 796, 705, 15414, 82, 14, 12792, 13, 14116, 6, 201, 198, 18519, 79, 796, 705, 15414, 82, 14, 16794, 13, 14116, 6, 201, 198, 332, 4450, 796, 705, 15414, 82, 14, 5998, 78, 62, 73, 377, 1155, 13, 14116, 6, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 1069, 1023, 33529, 201, 198, 220, 220, 220, 37227, 1069, 1023, 37811, 201, 198, 201, 198, 220, 220, 220, 6818, 28686, 13, 6978, 13, 4468, 576, 7, 1050, 70, 8, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 26060, 33529, 201, 198, 220, 220, 220, 37227, 26060, 37811, 201, 198, 201, 198, 220, 220, 220, 329, 6056, 287, 685, 29001, 71, 3256, 705, 438, 16794, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 32109, 92, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 374, 85, 6624, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 503, 13, 21037, 22446, 9688, 2032, 342, 10786, 26060, 11537, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 14774, 62, 7753, 33529, 201, 198, 220, 220, 220, 37227, 14402, 2089, 5128, 2393, 37811, 201, 198, 201, 198, 220, 220, 220, 2089, 796, 4738, 62, 8841, 3419, 201, 198, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 14774, 92, 11537, 201, 198, 220, 220, 220, 6818, 374, 85, 14512, 657, 201, 198, 220, 220, 220, 6818, 302, 13, 12947, 7, 69, 1, 2949, 884, 2393, 393, 8619, 25, 705, 90, 14774, 92, 6, 1600, 503, 8, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 3919, 62, 2436, 2283, 33529, 201, 198, 220, 220, 220, 37227, 14402, 645, 698, 2283, 37811, 201, 198, 201, 198, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 3919, 62, 2436, 2283, 92, 11537, 201, 198, 220, 220, 220, 6818, 374, 85, 14512, 657, 201, 198, 220, 220, 220, 6818, 503, 6624, 277, 29653, 90, 3919, 62, 2436, 2283, 36786, 468, 645, 1295, 10476, 2637, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 12792, 33529, 201, 198, 220, 220, 220, 37227, 9288, 21831, 37811, 201, 198, 201, 198, 220, 220, 220, 26498, 796, 277, 6, 90, 12792, 92, 532, 72, 969, 306, 1097, 739, 17026, 6, 201, 198, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 22046, 92, 11537, 201, 198, 220, 220, 220, 6818, 374, 85, 6624, 657, 201, 198, 220, 220, 220, 6818, 503, 13, 36311, 3419, 6624, 705, 464, 2068, 969, 306, 1097, 18045, 739, 262, 16931, 17026, 2637, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 16794, 33529, 201, 198, 220, 220, 220, 37227, 9288, 1037, 37811, 201, 198, 201, 198, 220, 220, 220, 2938, 796, 37227, 201, 198, 10814, 0, 314, 761, 44058, 0, 201, 198, 46, 72, 0, 1892, 655, 49529, 0, 201, 198, 39, 5708, 0, 921, 760, 314, 761, 627, 274, 78, 0, 201, 198, 3163, 822, 64, 0, 201, 198, 220, 220, 220, 13538, 1911, 36311, 3419, 201, 198, 201, 198, 220, 220, 220, 26498, 796, 277, 6, 90, 18519, 79, 92, 532, 72, 14690, 44058, 440, 72, 49529, 367, 5708, 627, 274, 78, 943, 822, 64, 6, 201, 198, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 22046, 92, 11537, 201, 198, 220, 220, 220, 6818, 374, 85, 6624, 657, 201, 198, 220, 220, 220, 6818, 503, 13, 36311, 3419, 6624, 2938, 13, 36311, 3419, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 1332, 62, 332, 4450, 33529, 201, 198, 220, 220, 220, 37227, 9288, 3326, 4450, 37811, 201, 198, 201, 198, 220, 220, 220, 2938, 796, 37227, 201, 198, 7571, 5006, 11, 1111, 12936, 287, 16247, 11, 201, 198, 818, 3148, 8488, 11, 810, 356, 3830, 674, 3715, 11, 201, 198, 4863, 6156, 3056, 2270, 284, 649, 4517, 3541, 11, 201, 198, 8496, 3026, 2910, 1838, 3026, 2832, 7711, 272, 13, 201, 198, 4863, 6071, 262, 10800, 2376, 1040, 286, 777, 734, 20822, 201, 198, 32, 5166, 286, 3491, 12, 19692, 1549, 11714, 684, 1011, 511, 1204, 26, 201, 198, 1199, 577, 2984, 324, 1151, 333, 1549, 279, 578, 516, 34514, 8516, 201, 198, 35, 849, 351, 511, 4859, 6482, 30033, 511, 3397, 6, 39809, 13, 201, 198, 464, 26844, 10066, 286, 511, 21799, 1842, 11, 201, 198, 1870, 262, 11143, 590, 286, 511, 3397, 6, 14404, 11, 201, 198, 13828, 11, 475, 511, 1751, 338, 886, 11, 299, 2917, 714, 22636, 11, 201, 198, 3792, 783, 262, 5433, 2250, 6, 4979, 286, 674, 3800, 26, 201, 198, 464, 543, 611, 345, 351, 5827, 2366, 5262, 11, 201, 198, 2061, 994, 2236, 15554, 11, 674, 284, 346, 2236, 22076, 284, 47618, 13, 201, 198, 220, 220, 220, 13538, 1911, 36311, 3419, 201, 198, 201, 198, 220, 220, 220, 26498, 796, 357, 69, 6, 90, 332, 4450, 92, 1377, 15414, 82, 5006, 8488, 3056, 11714, 684, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 13915, 6482, 1, 21799, 22636, 5433, 2366, 15554, 11537, 201, 198, 220, 220, 220, 374, 85, 11, 503, 796, 651, 13376, 22915, 7, 69, 6, 90, 1050, 70, 92, 1391, 22046, 92, 11537, 201, 198, 220, 220, 220, 6818, 374, 85, 6624, 657, 201, 198, 220, 220, 220, 6818, 503, 13, 36311, 3419, 6624, 2938, 13, 36311, 3419, 201, 198, 201, 198, 201, 198, 2, 20368, 1783, 438, 201, 198, 4299, 4738, 62, 8841, 33529, 201, 198, 220, 220, 220, 37227, 8612, 378, 257, 4738, 4731, 37811, 201, 198, 201, 198, 220, 220, 220, 479, 796, 4738, 13, 25192, 600, 7, 20, 11, 838, 8, 201, 198, 220, 220, 220, 1441, 705, 4458, 22179, 7, 25120, 13, 6679, 1063, 7, 8841, 13, 292, 979, 72, 62, 15653, 1343, 4731, 13, 12894, 896, 11, 479, 28, 74, 4008, 201, 198 ]
2.751986
1,133
from chatterbot import ChatBot ''' This is an example showing how to create an export file from an existing chat bot that can then be used to train other bots. ''' chatbot = ChatBot( 'Export Example Bot', trainer='chatterbot.trainers.ChatterBotCorpusTrainer' ) # First, lets train our bot with some data chatbot.train('chatterbot.corpus.english') # Now we can export the data to a file chatbot.trainer.export_for_training('./myfile.json')
[ 6738, 37303, 13645, 1330, 24101, 20630, 198, 198, 7061, 6, 198, 1212, 318, 281, 1672, 4478, 703, 284, 2251, 281, 10784, 2393, 422, 198, 272, 4683, 8537, 10214, 326, 460, 788, 307, 973, 284, 4512, 584, 29641, 13, 198, 7061, 6, 198, 198, 17006, 13645, 796, 24101, 20630, 7, 198, 220, 220, 220, 705, 43834, 17934, 18579, 3256, 198, 220, 220, 220, 21997, 11639, 354, 1436, 13645, 13, 27432, 364, 13, 1925, 1436, 20630, 45680, 385, 2898, 10613, 6, 198, 8, 198, 198, 2, 3274, 11, 8781, 4512, 674, 10214, 351, 617, 1366, 198, 17006, 13645, 13, 27432, 10786, 354, 1436, 13645, 13, 10215, 79, 385, 13, 39126, 11537, 198, 198, 2, 2735, 356, 460, 10784, 262, 1366, 284, 257, 2393, 198, 17006, 13645, 13, 2213, 10613, 13, 39344, 62, 1640, 62, 34409, 7, 4458, 14, 1820, 7753, 13, 17752, 11537, 198 ]
3.176056
142
""" ===================================================== Insert Best Buy website in list, seperated by a comma ===================================================== """ products_list =[#e.g."https://www.bestbuy.com/site/combo/nintendo-switch/", "PASTE LINK HERE BETWEEN QUOTES",]
[ 37811, 201, 198, 10052, 4770, 1421, 28, 201, 198, 44402, 6705, 11763, 3052, 287, 1351, 11, 384, 525, 515, 416, 257, 39650, 201, 198, 10052, 4770, 1421, 28, 220, 201, 198, 37811, 201, 198, 201, 198, 29498, 62, 4868, 796, 58, 2, 68, 13, 70, 526, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 15654, 14, 785, 2127, 14, 77, 8773, 12, 31943, 14, 1600, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 1921, 9328, 34426, 15698, 38651, 8845, 1677, 19604, 2394, 1546, 1600, 60, 201, 198 ]
3.059406
101
from floodsystem import geo from floodsystem.stationdata import build_station_list from floodsystem.geo import stations_within_radius def run(): """Requirements for Task 1C""" # Build list of stations stations = build_station_list() # Build list of stations within certain radius of specified point stations_in_radius = stations_within_radius(stations, (52.2053, 0.1218), 10) print(sorted([s.name for s in stations_in_radius])) if __name__ == "__main__": print("*** Task 1C: CUED Part IA Flood Warning System ***") run()
[ 6738, 6947, 10057, 1330, 40087, 198, 6738, 6947, 10057, 13, 17529, 7890, 1330, 1382, 62, 17529, 62, 4868, 198, 6738, 6947, 10057, 13, 469, 78, 1330, 8985, 62, 33479, 62, 42172, 198, 198, 4299, 1057, 33529, 198, 220, 220, 220, 37227, 42249, 329, 15941, 352, 34, 37811, 628, 220, 220, 220, 1303, 10934, 1351, 286, 8985, 198, 220, 220, 220, 8985, 796, 1382, 62, 17529, 62, 4868, 3419, 628, 220, 220, 220, 1303, 10934, 1351, 286, 8985, 1626, 1728, 16874, 286, 7368, 966, 198, 220, 220, 220, 8985, 62, 259, 62, 42172, 796, 8985, 62, 33479, 62, 42172, 7, 301, 602, 11, 357, 4309, 13, 1238, 4310, 11, 657, 13, 1065, 1507, 828, 838, 8, 628, 220, 220, 220, 3601, 7, 82, 9741, 26933, 82, 13, 3672, 329, 264, 287, 8985, 62, 259, 62, 42172, 60, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 8162, 15941, 352, 34, 25, 29369, 1961, 2142, 35229, 25588, 15932, 4482, 17202, 4943, 198, 220, 220, 220, 1057, 3419 ]
3.188571
175
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"Learner.get_preds": "00_inference.ipynb", "Learner.predict": "00_inference.ipynb", "TabularLearner.predict": "00_inference.ipynb", "Interpret": "01_tabular.core.ipynb", "sv_var": "01_tabular.core.ipynb", "ld_var": "01_tabular.core.ipynb", "list_diff": "01_tabular.core.ipynb", "which_elms": "01_tabular.core.ipynb", "is_in_list": "01_tabular.core.ipynb", "listify": "01_tabular.core.ipynb", "isNone": "01_tabular.core.ipynb", "isNotNone": "01_tabular.core.ipynb", "base_error": "01_tabular.interpretation.ipynb", "TabularLearner.feature_importance": "01_tabular.interpretation.ipynb", "TabularLearner.get_top_corr_dict": "01_tabular.interpretation.ipynb", "TabularLearner.plot_dendrogram": "01_tabular.interpretation.ipynb", "PartDep": "01_tabular.pd.ipynb", "InterpretWaterfall": "01_tabular.waterfall.ipynb", "TabDataLoader.get_losses": "02_class_confusion.ipynb", "TfmdDL.get_losses": "02_class_confusion.ipynb", "ClassConfusion": "02_class_confusion.ipynb", "ShapInterpretation": "02_shap.interp.ipynb", "Learner.to_onnx": "03_onnx.ipynb", "fastONNX": "03_onnx.ipynb", "LMLearner.get_preds": "04_text.inference.ipynb", "TextLearner.get_preds": "04_text.inference.ipynb", "LMLearner.predict": "04_text.inference.ipynb", "TextLearner.intrinsic_attention": "04_text.inference.ipynb"} modules = ["inference/inference.py", "tabular/core.py", "tabular/interpretation.py", "tabular/pd.py", "tabular/waterfall.py", "class_confusion.py", "tabular/shap/core.py", "tabular/shap/interp.py", "onnx.py", "inference/text.py"] doc_url = "https://muellerzr.github.io/fastinference/" git_url = "https://github.com/muellerzr/fastinference/tree/master/"
[ 2, 47044, 7730, 1677, 1137, 11617, 11050, 41354, 39345, 0, 8410, 5626, 48483, 0, 198, 198, 834, 439, 834, 796, 14631, 9630, 1600, 366, 18170, 1600, 366, 23144, 62, 15390, 62, 28751, 1600, 366, 18300, 62, 6371, 8973, 198, 198, 9630, 796, 19779, 14961, 1008, 13, 1136, 62, 28764, 82, 1298, 366, 405, 62, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14961, 1008, 13, 79, 17407, 1298, 366, 405, 62, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33349, 934, 14961, 1008, 13, 79, 17407, 1298, 366, 405, 62, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 5310, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21370, 62, 7785, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 335, 62, 7785, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4868, 62, 26069, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4758, 62, 417, 907, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 259, 62, 4868, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4868, 1958, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 14202, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 3673, 14202, 1298, 366, 486, 62, 8658, 934, 13, 7295, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8692, 62, 18224, 1298, 366, 486, 62, 8658, 934, 13, 27381, 341, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33349, 934, 14961, 1008, 13, 30053, 62, 11748, 590, 1298, 366, 486, 62, 8658, 934, 13, 27381, 341, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33349, 934, 14961, 1008, 13, 1136, 62, 4852, 62, 10215, 81, 62, 11600, 1298, 366, 486, 62, 8658, 934, 13, 27381, 341, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33349, 934, 14961, 1008, 13, 29487, 62, 67, 437, 39529, 1298, 366, 486, 62, 8658, 934, 13, 27381, 341, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7841, 12156, 1298, 366, 486, 62, 8658, 934, 13, 30094, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 5310, 19184, 7207, 1298, 366, 486, 62, 8658, 934, 13, 7050, 7207, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33349, 6601, 17401, 13, 1136, 62, 22462, 274, 1298, 366, 2999, 62, 4871, 62, 10414, 4241, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 51, 69, 9132, 19260, 13, 1136, 62, 22462, 274, 1298, 366, 2999, 62, 4871, 62, 10414, 4241, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9487, 18546, 4241, 1298, 366, 2999, 62, 4871, 62, 10414, 4241, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2484, 499, 9492, 5310, 341, 1298, 366, 2999, 62, 1477, 499, 13, 3849, 79, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14961, 1008, 13, 1462, 62, 261, 77, 87, 1298, 366, 3070, 62, 261, 77, 87, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7217, 1340, 45, 55, 1298, 366, 3070, 62, 261, 77, 87, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 5805, 451, 1008, 13, 1136, 62, 28764, 82, 1298, 366, 3023, 62, 5239, 13, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8206, 14961, 1008, 13, 1136, 62, 28764, 82, 1298, 366, 3023, 62, 5239, 13, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 5805, 451, 1008, 13, 79, 17407, 1298, 366, 3023, 62, 5239, 13, 259, 4288, 13, 541, 2047, 65, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8206, 14961, 1008, 13, 600, 81, 1040, 291, 62, 1078, 1463, 1298, 366, 3023, 62, 5239, 13, 259, 4288, 13, 541, 2047, 65, 20662, 198, 198, 18170, 796, 14631, 259, 4288, 14, 259, 4288, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 7295, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 27381, 341, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 30094, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 7050, 7207, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4871, 62, 10414, 4241, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 1477, 499, 14, 7295, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8658, 934, 14, 1477, 499, 14, 3849, 79, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 77, 87, 13, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 259, 4288, 14, 5239, 13, 9078, 8973, 198, 198, 15390, 62, 6371, 796, 366, 5450, 1378, 76, 16466, 89, 81, 13, 12567, 13, 952, 14, 7217, 259, 4288, 30487, 198, 198, 18300, 62, 6371, 796, 366, 5450, 1378, 12567, 13, 785, 14, 76, 16466, 89, 81, 14, 7217, 259, 4288, 14, 21048, 14, 9866, 30487, 198 ]
1.949767
1,075
"""Module for plotting clusters.""" from pathlib import Path from matplotlib import pyplot as plt import matplotlib.figure import numpy as np import pte_stats def clusterplot_combined( power_a: np.ndarray, power_b: np.ndarray | int | float, extent: tuple | list, alpha: float = 0.05, n_perm: int = 100, title: str | None = None, borderval_cbar: str | int | float = "auto", out_path: Path | str | None = None, show_plot: bool = True, n_jobs: int = 1, ) -> matplotlib.figure.Figure: """Plot power, p-values and significant clusters.""" if isinstance(power_b, (int, float)): power_av = power_a.mean(axis=0) else: power_av = power_a.mean(axis=0) - power_b.mean(axis=0) if isinstance(borderval_cbar, str): if borderval_cbar != "auto": raise ValueError( "`border_val` must be either an int, float or" f" 'auto'. Got: {borderval_cbar}." ) borderval_cbar = min(power_av.max(), np.abs(power_av.min())) fig, axs = plt.subplots( nrows=3, ncols=1, figsize=(3, 6), sharex=True, sharey=True ) # Plot averaged power pos_0 = axs[0].imshow( power_av, extent=extent, cmap="viridis", aspect="auto", origin="lower", vmin=borderval_cbar * -1, vmax=borderval_cbar, ) fig.colorbar( pos_0, ax=axs[0], label="Power (Norm.)", ) # Plot p-values p_values = pte_stats.permutation_2d( data_a=power_a, data_b=power_b, n_perm=n_perm, two_tailed=True, ) pos_1 = axs[1].imshow( p_values, extent=extent, cmap="viridis_r", aspect="auto", origin="lower", ) fig.colorbar(pos_1, ax=axs[1], label="p-values") # Plot significant clusters _, cluster_arr = pte_stats.cluster_analysis_2d( data_a=power_a, data_b=power_b, alpha=alpha, n_perm=n_perm, only_max_cluster=False, n_jobs=n_jobs, ) squared = np.zeros(power_a.shape[1:]) if cluster_arr: for cluster in cluster_arr: squared[cluster] = 1 np.expand_dims(squared, axis=0) pos_2 = axs[2].imshow( squared, extent=extent, cmap="binary", aspect="auto", origin="lower", ) fig.colorbar(pos_2, ax=axs[2], label=f"Signif. Clusters (p ≤ {alpha})") fig.suptitle(title) plt.tight_layout() if out_path: fig.savefig(out_path, bbox_inches="tight", dpi=300) if show_plot: plt.show() return fig
[ 37811, 26796, 329, 29353, 23163, 526, 15931, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 26875, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 279, 660, 62, 34242, 628, 198, 4299, 13946, 29487, 62, 24011, 1389, 7, 198, 220, 220, 220, 1176, 62, 64, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 1176, 62, 65, 25, 45941, 13, 358, 18747, 930, 493, 930, 12178, 11, 198, 220, 220, 220, 6287, 25, 46545, 930, 1351, 11, 198, 220, 220, 220, 17130, 25, 12178, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 299, 62, 16321, 25, 493, 796, 1802, 11, 198, 220, 220, 220, 3670, 25, 965, 930, 6045, 796, 6045, 11, 198, 220, 220, 220, 275, 585, 712, 282, 62, 66, 5657, 25, 965, 930, 493, 930, 12178, 796, 366, 23736, 1600, 198, 220, 220, 220, 503, 62, 6978, 25, 10644, 930, 965, 930, 6045, 796, 6045, 11, 198, 220, 220, 220, 905, 62, 29487, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 299, 62, 43863, 25, 493, 796, 352, 11, 198, 8, 4613, 2603, 29487, 8019, 13, 26875, 13, 11337, 25, 198, 220, 220, 220, 37227, 43328, 1176, 11, 279, 12, 27160, 290, 2383, 23163, 526, 15931, 628, 220, 220, 220, 611, 318, 39098, 7, 6477, 62, 65, 11, 357, 600, 11, 12178, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 615, 796, 1176, 62, 64, 13, 32604, 7, 22704, 28, 15, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 615, 796, 1176, 62, 64, 13, 32604, 7, 22704, 28, 15, 8, 532, 1176, 62, 65, 13, 32604, 7, 22704, 28, 15, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 65, 585, 712, 282, 62, 66, 5657, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 585, 712, 282, 62, 66, 5657, 14512, 366, 23736, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 63, 20192, 62, 2100, 63, 1276, 307, 2035, 281, 493, 11, 12178, 393, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 705, 23736, 4458, 11853, 25, 1391, 65, 585, 712, 282, 62, 66, 5657, 92, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 275, 585, 712, 282, 62, 66, 5657, 796, 949, 7, 6477, 62, 615, 13, 9806, 22784, 45941, 13, 8937, 7, 6477, 62, 615, 13, 1084, 3419, 4008, 628, 220, 220, 220, 2336, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 28, 18, 11, 299, 4033, 82, 28, 16, 11, 2336, 7857, 16193, 18, 11, 718, 828, 2648, 87, 28, 17821, 11, 2648, 88, 28, 17821, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 28114, 16449, 1176, 198, 220, 220, 220, 1426, 62, 15, 796, 7877, 82, 58, 15, 4083, 320, 12860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1176, 62, 615, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6287, 28, 2302, 298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 2625, 37040, 29207, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4843, 2625, 23736, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 8159, 2625, 21037, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 28, 65, 585, 712, 282, 62, 66, 5657, 1635, 532, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 65, 585, 712, 282, 62, 66, 5657, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2336, 13, 8043, 5657, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 28, 897, 82, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 13434, 357, 35393, 2014, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 28114, 279, 12, 27160, 198, 220, 220, 220, 279, 62, 27160, 796, 279, 660, 62, 34242, 13, 16321, 7094, 62, 17, 67, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 64, 28, 6477, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 65, 28, 6477, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16321, 28, 77, 62, 16321, 11, 198, 220, 220, 220, 220, 220, 220, 220, 734, 62, 34966, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1426, 62, 16, 796, 7877, 82, 58, 16, 4083, 320, 12860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6287, 28, 2302, 298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 2625, 37040, 29207, 62, 81, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4843, 2625, 23736, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 8159, 2625, 21037, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2336, 13, 8043, 5657, 7, 1930, 62, 16, 11, 7877, 28, 897, 82, 58, 16, 4357, 6167, 2625, 79, 12, 27160, 4943, 628, 220, 220, 220, 1303, 28114, 2383, 23163, 198, 220, 220, 220, 4808, 11, 13946, 62, 3258, 796, 279, 660, 62, 34242, 13, 565, 5819, 62, 20930, 62, 17, 67, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 64, 28, 6477, 62, 64, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 65, 28, 6477, 62, 65, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16321, 28, 77, 62, 16321, 11, 198, 220, 220, 220, 220, 220, 220, 220, 691, 62, 9806, 62, 565, 5819, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 77, 62, 43863, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 44345, 796, 45941, 13, 9107, 418, 7, 6477, 62, 64, 13, 43358, 58, 16, 25, 12962, 198, 220, 220, 220, 611, 13946, 62, 3258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13946, 287, 13946, 62, 3258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44345, 58, 565, 5819, 60, 796, 352, 198, 220, 220, 220, 45941, 13, 11201, 392, 62, 67, 12078, 7, 16485, 1144, 11, 16488, 28, 15, 8, 628, 220, 220, 220, 1426, 62, 17, 796, 7877, 82, 58, 17, 4083, 320, 12860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6287, 28, 2302, 298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 2625, 39491, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4843, 2625, 23736, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 8159, 2625, 21037, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2336, 13, 8043, 5657, 7, 1930, 62, 17, 11, 7877, 28, 897, 82, 58, 17, 4357, 6167, 28, 69, 1, 11712, 361, 13, 1012, 13654, 357, 79, 41305, 1391, 26591, 30072, 4943, 198, 220, 220, 220, 2336, 13, 2385, 457, 2578, 7, 7839, 8, 198, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 611, 503, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 448, 62, 6978, 11, 275, 3524, 62, 45457, 2625, 33464, 1600, 288, 14415, 28, 6200, 8, 198, 220, 220, 220, 611, 905, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 1441, 2336, 198 ]
1.976727
1,332
import urllib.request, json, re import path with open(path.KEY_PATH, 'r') as data_file: data = json.load(data_file) if __name__ == '__main__': """ 테스트 코드 """ search_keyword_by_naver_dic('백과사전')
[ 11748, 2956, 297, 571, 13, 25927, 11, 33918, 11, 302, 198, 198, 11748, 3108, 198, 198, 4480, 1280, 7, 6978, 13, 20373, 62, 34219, 11, 705, 81, 11537, 355, 1366, 62, 7753, 25, 198, 220, 220, 220, 1366, 796, 33918, 13, 2220, 7, 7890, 62, 7753, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 169, 227, 234, 168, 232, 97, 169, 232, 116, 23821, 121, 242, 167, 241, 250, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2989, 62, 2539, 4775, 62, 1525, 62, 2616, 332, 62, 67, 291, 10786, 167, 108, 109, 166, 111, 120, 168, 8955, 168, 254, 226, 11537, 198 ]
1.825
120
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os from typing import Any, Dict, Generator, cast import pytest from _pytest.fixtures import SubRequest from _pytest.monkeypatch import MonkeyPatch from omegaconf import OmegaConf from torchgeo.datamodules import ChesapeakeCVPRDataModule from torchgeo.trainers import SemanticSegmentationTask from .test_utils import FakeTrainer, mocked_log
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 198, 198, 11748, 28686, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 35986, 11, 3350, 198, 198, 11748, 12972, 9288, 198, 6738, 4808, 9078, 9288, 13, 69, 25506, 1330, 3834, 18453, 198, 6738, 4808, 9078, 9288, 13, 49572, 17147, 1330, 26997, 33952, 198, 6738, 267, 28917, 7807, 69, 1330, 19839, 18546, 198, 198, 6738, 28034, 469, 78, 13, 19608, 321, 375, 5028, 1330, 28250, 49528, 33538, 4805, 6601, 26796, 198, 6738, 28034, 469, 78, 13, 27432, 364, 1330, 12449, 5109, 41030, 14374, 25714, 198, 198, 6738, 764, 9288, 62, 26791, 1330, 33482, 2898, 10613, 11, 29180, 62, 6404, 628 ]
3.716667
120
from django.shortcuts import render from anuncios.models import Anuncio # Create your views here.
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 281, 49652, 418, 13, 27530, 1330, 1052, 19524, 952, 198, 2, 13610, 534, 5009, 994, 13 ]
3.730769
26
"""Example: Plotting cross sections""" from matplotlib.pyplot import show import ebisim as eb # The cross section plot commands accept a number of formats for the element parameter # This example shows the different possibilities # The first option is to provide an instance of the Element class potassium = eb.get_element("Potassium") # This command produces the cross section plot for electron impact ionisation eb.plot_eixs(element=potassium) # If no Element instance is provided, the plot command will generate one internally based # on the provided specifier # This command produces the cross section plot for radiative recombination eb.plot_rrxs(element="Potassium") # Based on name of element # This command produces the cross section plot for dielectronic recombination # In addition to the Element the effective line width (eV) has to be specified. # Typically the natural line width of a DR transition is much smaller than the energy spread # of the electron beam, therefore a gaussian profile with a given line width is assumed for # the transitions. eb.plot_drxs(element="K", fwhm=15) # Based on element symbol # It is also possible to compare all cross sections in a single plot eb.plot_combined_xs(element=19, fwhm=15, xlim=(2200, 3000)) # Based on proton number show()
[ 37811, 16281, 25, 28114, 889, 3272, 9004, 37811, 198, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 905, 198, 11748, 36649, 271, 320, 355, 36649, 198, 198, 2, 383, 3272, 2665, 7110, 9729, 2453, 257, 1271, 286, 17519, 329, 262, 5002, 11507, 198, 2, 770, 1672, 2523, 262, 1180, 12779, 198, 198, 2, 383, 717, 3038, 318, 284, 2148, 281, 4554, 286, 262, 11703, 1398, 198, 13059, 26663, 796, 36649, 13, 1136, 62, 30854, 7203, 25396, 26663, 4943, 198, 198, 2, 770, 3141, 11073, 262, 3272, 2665, 7110, 329, 11538, 2928, 22088, 5612, 198, 1765, 13, 29487, 62, 68, 844, 82, 7, 30854, 28, 13059, 26663, 8, 198, 198, 2, 1002, 645, 11703, 4554, 318, 2810, 11, 262, 7110, 3141, 481, 7716, 530, 20947, 1912, 198, 2, 319, 262, 2810, 1020, 7483, 198, 198, 2, 770, 3141, 11073, 262, 3272, 2665, 7110, 329, 19772, 876, 44759, 1883, 198, 1765, 13, 29487, 62, 21062, 34223, 7, 30854, 2625, 25396, 26663, 4943, 220, 1303, 13403, 319, 1438, 286, 5002, 198, 198, 2, 770, 3141, 11073, 262, 3272, 2665, 7110, 329, 4656, 801, 4565, 44759, 1883, 198, 2, 554, 3090, 284, 262, 11703, 262, 4050, 1627, 9647, 357, 68, 53, 8, 468, 284, 307, 7368, 13, 198, 2, 27095, 262, 3288, 1627, 9647, 286, 257, 10560, 6801, 318, 881, 4833, 621, 262, 2568, 4104, 198, 2, 286, 262, 11538, 15584, 11, 4361, 257, 31986, 31562, 7034, 351, 257, 1813, 1627, 9647, 318, 9672, 329, 198, 2, 262, 27188, 13, 198, 1765, 13, 29487, 62, 7109, 34223, 7, 30854, 2625, 42, 1600, 277, 1929, 76, 28, 1314, 8, 220, 1303, 13403, 319, 5002, 6194, 198, 198, 2, 632, 318, 635, 1744, 284, 8996, 477, 3272, 9004, 287, 257, 2060, 7110, 198, 1765, 13, 29487, 62, 24011, 1389, 62, 34223, 7, 30854, 28, 1129, 11, 277, 1929, 76, 28, 1314, 11, 2124, 2475, 16193, 34294, 11, 20343, 4008, 220, 1303, 13403, 319, 386, 1122, 1271, 198, 198, 12860, 3419, 198 ]
3.97546
326
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628 ]
3.75
8
# ! Desafio 13 # ! Faça um programa que leia o salario de um funcionario e mnostre seu novo salario com 15% de aumento po = int(input('Digite seu salario ')) pa = (15/100) * po x = po + pa print('Seu salario com 15% de aumenta é: {}'.format(x))
[ 198, 2, 5145, 2935, 1878, 952, 1511, 198, 2, 5145, 18350, 50041, 23781, 1430, 64, 8358, 443, 544, 267, 3664, 4982, 390, 23781, 25439, 295, 4982, 304, 285, 77, 455, 260, 384, 84, 645, 13038, 3664, 4982, 401, 1315, 4, 390, 257, 1713, 78, 198, 198, 7501, 796, 493, 7, 15414, 10786, 19511, 578, 384, 84, 3664, 4982, 705, 4008, 198, 8957, 796, 357, 1314, 14, 3064, 8, 1635, 745, 198, 87, 796, 745, 1343, 14187, 198, 4798, 10786, 4653, 84, 3664, 4982, 401, 220, 1315, 4, 390, 257, 1713, 64, 38251, 25, 23884, 4458, 18982, 7, 87, 4008 ]
2.494949
99
SOURCES_CODE = { 'ทุกสื่อ' : 'nAll', 'ข่าวหุ้น' : '01300000', 'ทันหุ้น' : '01600000', }
[ 50, 2606, 7397, 1546, 62, 34, 16820, 796, 1391, 198, 220, 220, 220, 705, 19567, 245, 19567, 116, 19567, 223, 19567, 103, 19567, 115, 31479, 230, 19567, 255, 6, 1058, 705, 77, 3237, 3256, 198, 220, 220, 220, 705, 19567, 224, 31479, 230, 19567, 110, 19567, 100, 19567, 104, 19567, 116, 31479, 231, 19567, 247, 6, 1058, 705, 486, 6200, 830, 3256, 198, 220, 220, 220, 705, 19567, 245, 19567, 109, 19567, 247, 19567, 104, 19567, 116, 31479, 231, 19567, 247, 6, 1058, 705, 486, 8054, 830, 3256, 198, 92 ]
1.1
90
# -*- coding: utf-8 -*- # # Author: Krishna Sunkara (kpsunkara) # # Re-entrant, reusable context manager to store execution context. Introduced # in pmdarima 1.5.0 (see #221), redesigned not to use thread locals in #273 # (see #275 for context). from abc import ABC, abstractmethod from enum import Enum import collections __all__ = ['AbstractContext', 'ContextStore', 'ContextType'] class _CtxSingleton: """Singleton class to store context information""" store = {} _ctx = _CtxSingleton() class ContextType(Enum): """Context Type Enumeration An enumeration of Context Types known to :class:`ContextStore` """ EMPTY = 0 STEPWISE = 1 class AbstractContext(ABC): """An abstract context manager to store execution context. A generic, re-entrant, reusable context manager to store execution context. Has helper methods to iterate over the context info and provide a string representation of the context info. """ def __getattr__(self, item): """Lets us access, e.g., ``ctx.max_steps`` even if not in a context""" return self.props[item] if item in self.props else None @abstractmethod def get_type(self): """Get the ContextType""" class _emptyContext(AbstractContext): """An empty context for convenience use""" def get_type(self): """Indicates we are not in a context manager""" return ContextType.EMPTY class ContextStore: """A class to wrap access to the global context store This class hosts static methods to wrap access to and encapsulate the singleton content store instance """ @staticmethod def get_context(context_type): """Returns most recently added instance of given Context Type Parameters ---------- context_type : ContextType Context type to retrieve from the store Returns ------- res : AbstractContext An instance of AbstractContext subclass or None """ if not isinstance(context_type, ContextType): raise ValueError('context_type must be an instance of ContextType') if context_type in _ctx.store and len(_ctx.store[context_type]) > 0: return _ctx.store[context_type][-1] # If not present return None @staticmethod def get_or_default(context_type, default): """Returns most recent instance of given Context Type or default Parameters ---------- context_type : ContextType Context type to retrieve from the store default : AbstractContext Value to return in case given context does not exist Returns ------- ctx : AbstractContext An instance of AbstractContext subclass or default """ ctx = ContextStore.get_context(context_type) return ctx if ctx else default @staticmethod def get_or_empty(context_type): """Returns recent instance of given Context Type or an empty context Parameters ---------- context_type : ContextType Context type to retrieve from the store Returns ------- res : AbstractContext An instance of AbstractContext subclass """ return ContextStore.get_or_default(context_type, _emptyContext()) @staticmethod def _add_context(ctx): """Add given instance of AbstractContext subclass to context store This private member is only called by ``AbstractContext.__init__()`` if the given ctx is nested, merge parent context, to support following usage: Examples -------- >>> from pmdarima.arima import StepwiseContext, auto_arima >>> with StepwiseContext(max_steps=10): ... with StepwiseContext(max_dur=30): ... auto_arima(samp,...) This is identical to: >>> from contextlib import ExitStack ... stack = ExitStack() ... outer_ctx = StepwiseContext(max_steps=10) ... inner_ctx = StepwiseContext(max_dur=30) ... stack.enter_context(outer_ctx) ... stack.enter_context(inner_ctx) ... with stack: ... auto_arima(samp, ...) However, the nested context can override parent context. In the example below, the effective context for inner most call to ``auto_arima(...)`` is: ``max_steps=15, max_dur=30``. The effective context for the second call to ``auto_arima(..)`` is: ``max_steps=10`` >>> with StepwiseContext(max_steps=10): ... with StepwiseContext(max_steps=15, max_dur=30): ... auto_arima(samp,...) ... ... auto_arima(samp,...) """ if not isinstance(ctx, AbstractContext): raise ValueError('ctx must be be an instance of AbstractContext') # if given Context Type is not present into store, make an entry context_type = ctx.get_type() if context_type not in _ctx.store: _ctx.store[context_type] = collections.deque() # if the context is nested, merge with parent's context if len(_ctx.store[context_type]) > 0: parent = _ctx.store[context_type][-1] ctx.update(parent) _ctx.store[context_type].append(ctx) @staticmethod def _remove_context(ctx): """Removes the most recently added context of given Context Type This private member is only used by ``AbstractContext`` :param ctx: :return: None """ if not isinstance(ctx, AbstractContext): raise ValueError('ctx must be be an instance of AbstractContext') context_type = ctx.get_type() if context_type not in _ctx.store or \ len(_ctx.store[context_type]) == 0: return _ctx.store[context_type].pop()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 6434, 25, 38594, 311, 2954, 3301, 357, 74, 862, 2954, 3301, 8, 198, 2, 198, 2, 797, 12, 298, 5250, 11, 42339, 4732, 4706, 284, 3650, 9706, 4732, 13, 16745, 198, 2, 287, 9114, 27455, 8083, 352, 13, 20, 13, 15, 357, 3826, 1303, 26115, 828, 36240, 407, 284, 779, 4704, 17205, 287, 1303, 27367, 198, 2, 357, 3826, 1303, 23195, 329, 4732, 737, 198, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 33829, 1330, 2039, 388, 198, 11748, 17268, 198, 198, 834, 439, 834, 796, 37250, 23839, 21947, 3256, 705, 21947, 22658, 3256, 705, 21947, 6030, 20520, 628, 198, 4871, 4808, 34, 17602, 29974, 10565, 25, 198, 220, 220, 220, 37227, 29974, 10565, 1398, 284, 3650, 4732, 1321, 37811, 198, 220, 220, 220, 3650, 796, 23884, 628, 198, 62, 49464, 796, 4808, 34, 17602, 29974, 10565, 3419, 628, 198, 4871, 30532, 6030, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 21947, 5994, 2039, 6975, 341, 628, 220, 220, 220, 1052, 27056, 341, 286, 30532, 24897, 1900, 284, 1058, 4871, 25, 63, 21947, 22658, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38144, 9936, 796, 657, 198, 220, 220, 220, 49154, 54, 24352, 796, 352, 628, 198, 4871, 27741, 21947, 7, 24694, 2599, 198, 220, 220, 220, 37227, 2025, 12531, 4732, 4706, 284, 3650, 9706, 4732, 13, 628, 220, 220, 220, 317, 14276, 11, 302, 12, 298, 5250, 11, 42339, 4732, 4706, 284, 3650, 198, 220, 220, 220, 9706, 4732, 13, 7875, 31904, 5050, 284, 11629, 378, 625, 262, 4732, 7508, 198, 220, 220, 220, 290, 2148, 257, 4731, 10552, 286, 262, 4732, 7508, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 1136, 35226, 834, 7, 944, 11, 2378, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43, 1039, 514, 1895, 11, 304, 13, 70, 1539, 7559, 49464, 13, 9806, 62, 20214, 15506, 772, 611, 407, 287, 257, 4732, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1676, 862, 58, 9186, 60, 611, 2378, 287, 2116, 13, 1676, 862, 2073, 6045, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 62, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 30532, 6030, 37811, 628, 198, 4871, 4808, 28920, 21947, 7, 23839, 21947, 2599, 198, 220, 220, 220, 37227, 2025, 6565, 4732, 329, 15607, 779, 37811, 628, 220, 220, 220, 825, 651, 62, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 16856, 356, 389, 407, 287, 257, 4732, 4706, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 30532, 6030, 13, 39494, 9936, 628, 198, 4871, 30532, 22658, 25, 198, 220, 220, 220, 37227, 32, 1398, 284, 14441, 1895, 284, 262, 3298, 4732, 3650, 628, 220, 220, 220, 770, 1398, 11453, 9037, 5050, 284, 14441, 1895, 284, 290, 32652, 5039, 262, 198, 220, 220, 220, 2060, 1122, 2695, 3650, 4554, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 22866, 7, 22866, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 749, 2904, 2087, 4554, 286, 1813, 30532, 5994, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 4906, 1058, 30532, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30532, 2099, 284, 19818, 422, 262, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1058, 27741, 21947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 4554, 286, 27741, 21947, 47611, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 22866, 62, 4906, 11, 30532, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 22866, 62, 4906, 1276, 307, 281, 4554, 286, 30532, 6030, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4732, 62, 4906, 287, 4808, 49464, 13, 8095, 290, 18896, 28264, 49464, 13, 8095, 58, 22866, 62, 4906, 12962, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 49464, 13, 8095, 58, 22866, 62, 4906, 7131, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 407, 1944, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 273, 62, 12286, 7, 22866, 62, 4906, 11, 4277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 749, 2274, 4554, 286, 1813, 30532, 5994, 393, 4277, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 4906, 1058, 30532, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30532, 2099, 284, 19818, 422, 262, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 4277, 1058, 27741, 21947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 284, 1441, 287, 1339, 1813, 4732, 857, 407, 2152, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 1058, 27741, 21947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 4554, 286, 27741, 21947, 47611, 393, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 796, 30532, 22658, 13, 1136, 62, 22866, 7, 22866, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 17602, 611, 269, 17602, 2073, 4277, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 273, 62, 28920, 7, 22866, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2274, 4554, 286, 1813, 30532, 5994, 393, 281, 6565, 4732, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 4906, 1058, 30532, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30532, 2099, 284, 19818, 422, 262, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1058, 27741, 21947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 4554, 286, 27741, 21947, 47611, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 30532, 22658, 13, 1136, 62, 273, 62, 12286, 7, 22866, 62, 4906, 11, 4808, 28920, 21947, 28955, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 2860, 62, 22866, 7, 49464, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 1813, 4554, 286, 27741, 21947, 47611, 284, 4732, 3650, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2839, 2888, 318, 691, 1444, 416, 7559, 23839, 21947, 13, 834, 15003, 834, 3419, 15506, 628, 220, 220, 220, 220, 220, 220, 220, 611, 262, 1813, 269, 17602, 318, 28376, 11, 20121, 2560, 4732, 11, 284, 1104, 198, 220, 220, 220, 220, 220, 220, 220, 1708, 8748, 25, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 9114, 27455, 8083, 13, 283, 8083, 1330, 5012, 3083, 21947, 11, 8295, 62, 283, 8083, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 351, 5012, 3083, 21947, 7, 9806, 62, 20214, 28, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 351, 5012, 3083, 21947, 7, 9806, 62, 67, 333, 28, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 283, 8083, 7, 82, 696, 11, 23029, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 10411, 284, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 4732, 8019, 1330, 29739, 25896, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 8931, 796, 29739, 25896, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 12076, 62, 49464, 796, 5012, 3083, 21947, 7, 9806, 62, 20214, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 8434, 62, 49464, 796, 5012, 3083, 21947, 7, 9806, 62, 67, 333, 28, 1270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 8931, 13, 9255, 62, 22866, 7, 39605, 62, 49464, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 8931, 13, 9255, 62, 22866, 7, 5083, 62, 49464, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 351, 8931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 8295, 62, 283, 8083, 7, 82, 696, 11, 2644, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 2102, 11, 262, 28376, 4732, 460, 20957, 2560, 4732, 13, 554, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1672, 2174, 11, 262, 4050, 4732, 329, 8434, 749, 869, 284, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 23736, 62, 283, 8083, 7, 23029, 15506, 318, 25, 7559, 9806, 62, 20214, 28, 1314, 11, 3509, 62, 67, 333, 28, 1270, 15506, 13, 383, 4050, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 329, 262, 1218, 869, 284, 7559, 23736, 62, 283, 8083, 7, 492, 8, 15506, 318, 25, 7559, 9806, 62, 20214, 28, 940, 15506, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 351, 5012, 3083, 21947, 7, 9806, 62, 20214, 28, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 351, 5012, 3083, 21947, 7, 9806, 62, 20214, 28, 1314, 11, 3509, 62, 67, 333, 28, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 283, 8083, 7, 82, 696, 11, 23029, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 8295, 62, 283, 8083, 7, 82, 696, 11, 23029, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 49464, 11, 27741, 21947, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 49464, 1276, 307, 307, 281, 4554, 286, 27741, 21947, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1813, 30532, 5994, 318, 407, 1944, 656, 3650, 11, 787, 281, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 4906, 796, 269, 17602, 13, 1136, 62, 4906, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4732, 62, 4906, 407, 287, 4808, 49464, 13, 8095, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 49464, 13, 8095, 58, 22866, 62, 4906, 60, 796, 17268, 13, 2934, 4188, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 262, 4732, 318, 28376, 11, 20121, 351, 2560, 338, 4732, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 28264, 49464, 13, 8095, 58, 22866, 62, 4906, 12962, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 4808, 49464, 13, 8095, 58, 22866, 62, 4906, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 19119, 7, 8000, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 49464, 13, 8095, 58, 22866, 62, 4906, 4083, 33295, 7, 49464, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 28956, 62, 22866, 7, 49464, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8413, 5241, 262, 749, 2904, 2087, 4732, 286, 1813, 30532, 5994, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2839, 2888, 318, 691, 973, 416, 7559, 23839, 21947, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 269, 17602, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 49464, 11, 27741, 21947, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 49464, 1276, 307, 307, 281, 4554, 286, 27741, 21947, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 4906, 796, 269, 17602, 13, 1136, 62, 4906, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4732, 62, 4906, 407, 287, 4808, 49464, 13, 8095, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 28264, 49464, 13, 8095, 58, 22866, 62, 4906, 12962, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 49464, 13, 8095, 58, 22866, 62, 4906, 4083, 12924, 3419, 198 ]
2.616608
2,264
''' The heart of Cici ''' import discord import os import json import aiosqlite from functools import lru_cache from aiohttp import ClientSession from discord.ext.commands import Bot enclosing_dir = os.path.dirname(os.path.realpath(__file__)) config = load_config() db_path = f'{enclosing_dir}/data.db' @lru_cache(maxsize=12) bot = Cici( command_prefix=get_prefix, description='Cici', intents=discord.Intents.all() ) @bot.event if __name__ == '__main__': start_cici()
[ 7061, 6, 198, 464, 2612, 286, 37212, 72, 198, 7061, 6, 198, 198, 11748, 36446, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 257, 4267, 13976, 578, 198, 6738, 1257, 310, 10141, 1330, 300, 622, 62, 23870, 198, 6738, 257, 952, 4023, 1330, 20985, 36044, 198, 6738, 36446, 13, 2302, 13, 9503, 1746, 1330, 18579, 198, 198, 268, 565, 2752, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 628, 628, 198, 198, 11250, 796, 3440, 62, 11250, 3419, 198, 9945, 62, 6978, 796, 277, 6, 90, 268, 565, 2752, 62, 15908, 92, 14, 7890, 13, 9945, 6, 628, 198, 198, 31, 75, 622, 62, 23870, 7, 9806, 7857, 28, 1065, 8, 628, 198, 13645, 796, 37212, 72, 7, 198, 220, 220, 220, 3141, 62, 40290, 28, 1136, 62, 40290, 11, 198, 220, 220, 220, 6764, 11639, 34, 44070, 3256, 198, 220, 220, 220, 493, 658, 28, 15410, 585, 13, 5317, 658, 13, 439, 3419, 198, 220, 220, 220, 1267, 628, 198, 31, 13645, 13, 15596, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 923, 62, 66, 44070, 3419, 198 ]
2.512438
201
# O mesmo professor do desafio anterior quer sortear a ordem de apresentação dos alunos. Faça um programa que leia o nome dos quatro alunos e mostre a ordem sorteada from random import shuffle a1 = str(input('Aluno n1: ')) a2 = str(input('Aluno n2: ')) a3 = str(input('Aluno n3: ')) a4 = str(input('Aluno n4: ')) a = [a1, a2, a3, a4] shuffle(a) print('A lista é:\n {}' .format(a))
[ 2, 440, 18842, 5908, 6240, 466, 748, 1878, 952, 32700, 42517, 3297, 451, 257, 2760, 368, 390, 2471, 2028, 64, 16175, 28749, 23430, 435, 403, 418, 13, 18350, 50041, 23781, 1430, 64, 8358, 443, 544, 267, 299, 462, 23430, 627, 47756, 435, 403, 418, 304, 749, 260, 257, 2760, 368, 3297, 1329, 64, 198, 198, 6738, 4738, 1330, 36273, 198, 198, 64, 16, 796, 965, 7, 15414, 10786, 2348, 36909, 299, 16, 25, 705, 4008, 198, 64, 17, 796, 965, 7, 15414, 10786, 2348, 36909, 299, 17, 25, 705, 4008, 198, 64, 18, 796, 965, 7, 15414, 10786, 2348, 36909, 299, 18, 25, 705, 4008, 198, 64, 19, 796, 965, 7, 15414, 10786, 2348, 36909, 299, 19, 25, 705, 4008, 198, 198, 64, 796, 685, 64, 16, 11, 257, 17, 11, 257, 18, 11, 257, 19, 60, 198, 1477, 18137, 7, 64, 8, 198, 198, 4798, 10786, 32, 1351, 64, 38251, 7479, 77, 23884, 6, 764, 18982, 7, 64, 4008 ]
2.4
160
import asyncio import os import socket import tempfile from uvloop import _testbase as tb
[ 11748, 30351, 952, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 20218, 7753, 198, 198, 6738, 334, 85, 26268, 1330, 4808, 9288, 8692, 355, 256, 65, 628, 628, 628, 198 ]
3.233333
30
import numpy import xlsxwriter from pandas import read_excel import xlrd import pandas data = read_excel('data/questions_and_choices.xlsx') print(data.columns[2]) # print(data.head())
[ 11748, 299, 32152, 198, 11748, 2124, 7278, 87, 16002, 198, 6738, 19798, 292, 1330, 1100, 62, 1069, 5276, 198, 11748, 2124, 75, 4372, 198, 11748, 19798, 292, 198, 7890, 796, 1100, 62, 1069, 5276, 10786, 7890, 14, 6138, 507, 62, 392, 62, 6679, 1063, 13, 87, 7278, 87, 11537, 198, 4798, 7, 7890, 13, 28665, 82, 58, 17, 12962, 198, 198, 2, 3601, 7, 7890, 13, 2256, 28955, 198 ]
2.681159
69
from django.db import models from hotels.models import Hotel from users.models import User
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 18505, 13, 27530, 1330, 12696, 198, 6738, 2985, 13, 27530, 1330, 11787, 628 ]
4.043478
23
# TWEEPY DOCUMENTATION - https://docs.tweepy.org/en/latest/ # AUTHENTICATION TUTORIAL - https://docs.tweepy.org/en/latest/auth_tutorial.html import tweepy # YOU MUST HAVE A TWITTER DEVELOPER ACCOUNT TO USE # https://developer.twitter.com/en/apply-for-access # All new developers must apply for a developer account to access the Twitter developer platform. # Once approved, you can begin to use our new Twitter API v2, or our v1.1 standard and premium APIs. # CONSUMER KEYS - available under Projects & Apps > Standalone Apps > Your App > Keys and tokens # Do not commit the tokens to git. These should also be copied to the .env file consumer_key = '' consumer_secret = '' # AUTHENTICATE WITH TWITTER auth = tweepy.OAuthHandler(consumer_key, consumer_secret) # STEP 1 - GET OAUTH TOKENS - enable if we need to get OAuth tokens if False: # Get the URL that we need to visit try: redirect_url = auth.get_authorization_url() except tweepy.TweepError: print('Error! Failed to get request token.') # Token for convenience request_token = auth.request_token['oauth_token'] # Print out both and exit - copy paste them appropriately below and disable print(redirect_url) print(request_token) # Should look something like: # https://api.twitter.com/oauth/authorize?oauth_token=ABC123 # ABC123 # Next, manually visit the redirect_url page and authorize for desired twitter account # After authorizing your app, you can get your oauth_verifier from your address bar # Should look something like: # https://website.com/?oauth_token=ABC123&oauth_verifier=XYZ987 exit() verifier = 'XYZ987' request_token = {'oauth_token': 'ABC123', 'oauth_token_secret': verifier} # STEP 2 - GET OAUTH TOKENS - enable after completing step 1 if False: auth.request_token = request_token try: auth.get_access_token(verifier) except tweepy.TweepError: print('Error! Failed to get access token.') # Print out access_token and access_token_secret print('access_token', auth.access_token) print('access_token_secret', auth.access_token_secret) # Copy the access_token and access_token_secret and place in the .env file exit() # YOU ARE DONE - You should be able to run main.py successfully # Feel free to past tokens below, disable STEP 1 and STEP 2 and play with Tweepy API below # API v1.1 Reference: https://docs.tweepy.org/en/latest/api.html access_token = '' access_token_secret = '' auth.set_access_token(access_token, access_token_secret)
[ 2, 17306, 35238, 56, 37760, 5883, 3525, 6234, 532, 3740, 1378, 31628, 13, 83, 732, 538, 88, 13, 2398, 14, 268, 14, 42861, 14, 198, 2, 37195, 3525, 2149, 6234, 309, 3843, 1581, 12576, 532, 3740, 1378, 31628, 13, 83, 732, 538, 88, 13, 2398, 14, 268, 14, 42861, 14, 18439, 62, 83, 44917, 13, 6494, 198, 11748, 4184, 538, 88, 198, 198, 2, 7013, 17191, 21515, 317, 17306, 2043, 5781, 5550, 18697, 31054, 15859, 28270, 5390, 23210, 198, 2, 3740, 1378, 16244, 263, 13, 6956, 13, 785, 14, 268, 14, 39014, 12, 1640, 12, 15526, 198, 2, 1439, 649, 6505, 1276, 4174, 329, 257, 8517, 1848, 284, 1895, 262, 3009, 8517, 3859, 13, 198, 2, 4874, 6325, 11, 345, 460, 2221, 284, 779, 674, 649, 3009, 7824, 410, 17, 11, 393, 674, 410, 16, 13, 16, 3210, 290, 8683, 23113, 13, 198, 198, 2, 39537, 5883, 1137, 47134, 16309, 532, 1695, 739, 29898, 1222, 27710, 1875, 5751, 17749, 27710, 1875, 3406, 2034, 1875, 26363, 290, 16326, 198, 2, 2141, 407, 4589, 262, 16326, 284, 17606, 13, 2312, 815, 635, 307, 18984, 284, 262, 764, 24330, 2393, 198, 49827, 62, 2539, 796, 10148, 198, 49827, 62, 21078, 796, 10148, 198, 198, 2, 37195, 3525, 2149, 6158, 13315, 17306, 2043, 5781, 198, 18439, 796, 4184, 538, 88, 13, 23621, 1071, 25060, 7, 49827, 62, 2539, 11, 7172, 62, 21078, 8, 198, 198, 2, 49154, 352, 532, 17151, 440, 32, 24318, 5390, 42, 16938, 532, 7139, 611, 356, 761, 284, 651, 440, 30515, 16326, 198, 361, 10352, 25, 198, 220, 220, 220, 1303, 3497, 262, 10289, 326, 356, 761, 284, 3187, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18941, 62, 6371, 796, 6284, 13, 1136, 62, 9800, 1634, 62, 6371, 3419, 198, 220, 220, 220, 2845, 4184, 538, 88, 13, 32665, 538, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12331, 0, 22738, 284, 651, 2581, 11241, 2637, 8, 628, 220, 220, 220, 1303, 29130, 329, 15607, 198, 220, 220, 220, 2581, 62, 30001, 796, 6284, 13, 25927, 62, 30001, 17816, 12162, 1071, 62, 30001, 20520, 628, 220, 220, 220, 1303, 12578, 503, 1111, 290, 8420, 532, 4866, 17008, 606, 20431, 2174, 290, 15560, 628, 220, 220, 220, 3601, 7, 445, 1060, 62, 6371, 8, 198, 220, 220, 220, 3601, 7, 25927, 62, 30001, 8, 628, 220, 220, 220, 1303, 10358, 804, 1223, 588, 25, 198, 220, 220, 220, 1303, 3740, 1378, 15042, 13, 6956, 13, 785, 14, 12162, 1071, 14, 9800, 1096, 30, 12162, 1071, 62, 30001, 28, 24694, 10163, 198, 220, 220, 220, 1303, 9738, 10163, 628, 220, 220, 220, 1303, 7406, 11, 14500, 3187, 262, 18941, 62, 6371, 2443, 290, 29145, 329, 10348, 17044, 1848, 198, 220, 220, 220, 1303, 2293, 42765, 534, 598, 11, 345, 460, 651, 534, 267, 18439, 62, 332, 7483, 422, 534, 2209, 2318, 198, 220, 220, 220, 1303, 10358, 804, 1223, 588, 25, 198, 220, 220, 220, 1303, 3740, 1378, 732, 12485, 13, 785, 20924, 12162, 1071, 62, 30001, 28, 24694, 10163, 5, 12162, 1071, 62, 332, 7483, 28, 34278, 57, 44183, 628, 220, 220, 220, 8420, 3419, 198, 198, 332, 7483, 796, 705, 34278, 57, 44183, 6, 198, 25927, 62, 30001, 796, 1391, 6, 12162, 1071, 62, 30001, 10354, 705, 24694, 10163, 3256, 705, 12162, 1071, 62, 30001, 62, 21078, 10354, 3326, 7483, 92, 198, 198, 2, 49154, 362, 532, 17151, 440, 32, 24318, 5390, 42, 16938, 532, 7139, 706, 14339, 2239, 352, 198, 361, 10352, 25, 198, 220, 220, 220, 6284, 13, 25927, 62, 30001, 796, 2581, 62, 30001, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 13, 1136, 62, 15526, 62, 30001, 7, 332, 7483, 8, 198, 220, 220, 220, 2845, 4184, 538, 88, 13, 32665, 538, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12331, 0, 22738, 284, 651, 1895, 11241, 2637, 8, 628, 220, 220, 220, 1303, 12578, 503, 1895, 62, 30001, 290, 1895, 62, 30001, 62, 21078, 628, 220, 220, 220, 3601, 10786, 15526, 62, 30001, 3256, 6284, 13, 15526, 62, 30001, 8, 198, 220, 220, 220, 3601, 10786, 15526, 62, 30001, 62, 21078, 3256, 6284, 13, 15526, 62, 30001, 62, 21078, 8, 628, 220, 220, 220, 1303, 17393, 262, 1895, 62, 30001, 290, 1895, 62, 30001, 62, 21078, 290, 1295, 287, 262, 764, 24330, 2393, 628, 220, 220, 220, 8420, 3419, 198, 198, 2, 7013, 15986, 360, 11651, 532, 921, 815, 307, 1498, 284, 1057, 1388, 13, 9078, 7675, 198, 2, 18571, 1479, 284, 1613, 16326, 2174, 11, 15560, 49154, 352, 290, 49154, 362, 290, 711, 351, 24205, 538, 88, 7824, 2174, 198, 2, 7824, 410, 16, 13, 16, 20984, 25, 3740, 1378, 31628, 13, 83, 732, 538, 88, 13, 2398, 14, 268, 14, 42861, 14, 15042, 13, 6494, 198, 15526, 62, 30001, 796, 10148, 198, 15526, 62, 30001, 62, 21078, 796, 10148, 198, 18439, 13, 2617, 62, 15526, 62, 30001, 7, 15526, 62, 30001, 11, 1895, 62, 30001, 62, 21078, 8, 198 ]
3.048926
838
from streamlink.plugins.tvtoya import TVToya from tests.plugins import PluginCanHandleUrl
[ 6738, 4269, 8726, 13, 37390, 13, 14981, 83, 23790, 1330, 3195, 51, 23790, 198, 6738, 5254, 13, 37390, 1330, 42636, 6090, 37508, 28165, 628 ]
3.791667
24
''' This code is part of QuTIpy. (c) Copyright Sumeet Khatri, 2021 This code is licensed under the Apache License, Version 2.0. You may obtain a copy of this license in the LICENSE.txt file in the root directory of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. Any modifications or derivative works of this code must retain this copyright notice, and modified files need to carry a notice indicating that they have been altered from the originals. ''' import numpy as np def amplitude_damping_channel(gamma): ''' Generates the amplitude damping channel. ''' A1=np.array([[1,0],[0,np.sqrt(1-gamma)]]) A2=np.array([[0,np.sqrt(gamma)],[0,0]]) return [A1,A2]
[ 7061, 6, 198, 1212, 2438, 318, 636, 286, 2264, 25621, 9078, 13, 198, 198, 7, 66, 8, 15069, 311, 2454, 316, 509, 5183, 380, 11, 33448, 198, 198, 1212, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 672, 3153, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 1659, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 198, 7149, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 22163, 4766, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 5562, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 7061, 6, 628, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 4299, 37188, 62, 67, 37843, 62, 17620, 7, 28483, 2611, 2599, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2980, 689, 262, 37188, 21151, 278, 6518, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 317, 16, 28, 37659, 13, 18747, 26933, 58, 16, 11, 15, 38430, 15, 11, 37659, 13, 31166, 17034, 7, 16, 12, 28483, 2611, 8, 11907, 8, 198, 220, 220, 220, 317, 17, 28, 37659, 13, 18747, 26933, 58, 15, 11, 37659, 13, 31166, 17034, 7, 28483, 2611, 8, 38430, 15, 11, 15, 11907, 8, 628, 220, 220, 220, 1441, 685, 32, 16, 11, 32, 17, 60 ]
2.909836
244
from social.db import create_tables, drop_tables from social.webserver import create_app if True: drop_tables() create_tables() app = create_app()
[ 6738, 1919, 13, 9945, 1330, 2251, 62, 83, 2977, 11, 4268, 62, 83, 2977, 198, 6738, 1919, 13, 732, 1443, 18497, 1330, 2251, 62, 1324, 198, 198, 361, 6407, 25, 198, 220, 220, 220, 4268, 62, 83, 2977, 3419, 198, 17953, 62, 83, 2977, 3419, 198, 1324, 796, 2251, 62, 1324, 3419, 198 ]
2.867925
53
from __future__ import annotations from typing import List from typing import Type from component.exit import Exit from component.role import Role from component.room import Room from event.event import Event from message.message import Message from system.channel import Channel from logcat.logcat import LogCat # cmd_move.py
[ 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 19720, 1330, 7343, 198, 6738, 19720, 1330, 5994, 198, 198, 6738, 7515, 13, 37023, 1330, 29739, 198, 6738, 7515, 13, 18090, 1330, 20934, 198, 6738, 7515, 13, 3823, 1330, 10096, 198, 198, 6738, 1785, 13, 15596, 1330, 8558, 198, 6738, 3275, 13, 20500, 1330, 16000, 198, 6738, 1080, 13, 17620, 1330, 11102, 198, 198, 6738, 2604, 9246, 13, 6404, 9246, 1330, 5972, 21979, 198, 198, 2, 23991, 62, 21084, 13, 9078, 198 ]
4.060976
82
import numpy as np from pbtranscript.Utils import execute from pbtranscript.ice.IceUtils import alignment_has_large_nonmatch, HitItem, eval_blasr_alignment from pbtranscript.io import LA4IceReader, BLASRM5Reader gcon2_py = "ice_pbdagcon2.py" def sanity_check_gcon2(): """Sanity check gcon.""" cmd = gcon2_py + " --help" errmsg = gcon2_py + " is not installed." execute(cmd=cmd, errmsg=errmsg) return gcon2_py def alignment_missed_start_end_less_than_threshold(r, max_missed_start, max_missed_end, full_missed_start, full_missed_end): """ Check that whichever is the shorter one, must be close to fully mapped (subject to full_missed_start/end) and the longer one is allowed to have more missed start/end (subject to max_missed_start/end) """ assert max_missed_start >= full_missed_start and max_missed_end >= full_missed_end # which ever is the shorter one, must be fully mapped missed_start_1 = r.qStart missed_start_2 = r.sStart missed_end_1 = (r.qLength - r.qEnd) missed_end_2 = (r.sLength - r.sEnd) if r.qLength > r.sLength: missed_start_1, missed_start_2 = missed_start_2, missed_start_1 missed_end_1, missed_end_2 = missed_end_2, missed_end_1 # the smaller one must be close to fully mapped if (missed_start_1 > full_missed_start) or \ (missed_end_1 > full_missed_end) or \ (missed_start_2 > max_missed_start) or \ (missed_end_2 > max_missed_end): return False return True def blasr_against_ref2(output_filename, is_FL, sID_starts_with_c, qver_get_func, qvmean_get_func, qv_prob_threshold=.03, ece_penalty=1, ece_min_len=20, same_strand_only=True, max_missed_start=200, max_missed_end=50, full_missed_start=50, full_missed_end=30): """ Excluding criteria: (1) self hit (2) opposite strand hit (should already be in the same orientation; can override with <same_strand_only> set to False) (3) less than 90% aligned or more than 50 bp missed qver_get_func --- should be basQV.basQVcacher.get() or .get_smoothed(), or can just pass in lambda (x, y): 1. to ignore QV """ with BLASRM5Reader(output_filename) as reader: for r in reader: missed_q = r.qStart + r.qLength - r.qEnd missed_t = r.sStart + r.sLength - r.sEnd if sID_starts_with_c: # because all consensus should start with # c<cluster_index> assert r.sID.startswith('c') if r.sID.find('/') > 0: r.sID = r.sID.split('/')[0] if r.sID.endswith('_ref'): # probably c<cid>_ref cID = int(r.sID[1:-4]) else: cID = int(r.sID[1:]) else: cID = r.sID # self hit, useless! # opposite strand not allowed! if (cID == r.qID or (r.strand == '-' and same_strand_only)): yield HitItem(qID=r.qID, cID=cID) continue # regardless if whether is full-length (is_FL) # the query MUST be mapped fully (based on full_missed_start/end) if r.qStart > full_missed_start or (r.qLength-r.qEnd) > full_missed_end: yield HitItem(qID=r.qID, cID=cID) # full-length case: allow up to max_missed_start bp of 5' not aligned # and max_missed_end bp of 3' not aligned # non-full-length case: not really tested...don't use if is_FL and not alignment_missed_start_end_less_than_threshold(r,\ max_missed_start, max_missed_end, full_missed_start, full_missed_end): yield HitItem(qID=r.qID, cID=cID) else: cigar_str, ece_arr = eval_blasr_alignment( record=r, qver_get_func=qver_get_func, qvmean_get_func=qvmean_get_func, sID_starts_with_c=sID_starts_with_c, qv_prob_threshold=qv_prob_threshold) if alignment_has_large_nonmatch(ece_arr, ece_penalty, ece_min_len): yield HitItem(qID=r.qID, cID=cID) else: yield HitItem(qID=r.qID, cID=cID, qStart=r.qStart, qEnd=r.qEnd, missed_q=missed_q * 1. / r.qLength, missed_t=missed_t * 1. / r.sLength, fakecigar=cigar_str, ece_arr=ece_arr) def daligner_against_ref2(query_dazz_handler, target_dazz_handler, la4ice_filename, is_FL, sID_starts_with_c, qver_get_func, qvmean_get_func, qv_prob_threshold=.03, ece_penalty=1, ece_min_len=20, same_strand_only=True, no_qv_or_aln_checking=False, max_missed_start=200, max_missed_end=50, full_missed_start=50, full_missed_end=30): """ Excluding criteria: (1) self hit (2) opposite strand hit (should already be in the same orientation; can override with <same_strand_only> set to False) (3) less than 90% aligned or more than 50 bp missed Parameters: query_dazz_handler - query dazz handler in DalignRunner target_dazz_handler - target dazz handler in DalignRunner la4ice_filename - la4ice output of DalignRunner qver_get_func - returns a list of qvs of (read, qvname) e.g. basQV.basQVcacher.get() or .get_smoothed() qvmean_get_func - which returns mean QV of (read, qvname) """ for r in LA4IceReader(la4ice_filename): missed_q = r.qStart + r.qLength - r.qEnd missed_t = r.sStart + r.sLength - r.sEnd r.qID = query_dazz_handler[r.qID].split(' ')[0] r.sID = target_dazz_handler[r.sID].split(' ')[0] if sID_starts_with_c: # because all consensus should start with # c<cluster_index> assert r.sID.startswith('c') if r.sID.find('/') > 0: r.sID = r.sID.split('/')[0] if r.sID.endswith('_ref'): # probably c<cid>_ref cID = int(r.sID[1:-4]) else: cID = int(r.sID[1:]) else: cID = r.sID # self hit, useless! # opposite strand not allowed! if (cID == r.qID or (r.strand == '-' and same_strand_only)): yield HitItem(qID=r.qID, cID=cID) continue # regardless if whether is full-length (is_FL) # the query MUST be mapped fully (based on full_missed_start/end) #print "r.qStart:", r.qID, r.sID, r.qStart, full_missed_start, (r.qLength-r.qEnd), full_missed_end, r.qStart > full_missed_start or (r.qLength-r.qEnd) > full_missed_end if r.qStart > full_missed_start or (r.qLength-r.qEnd) > full_missed_end: yield HitItem(qID=r.qID, cID=cID) continue # this is used for partial_uc/nFL reads only # simply accepts hits from daligner for the nFL partial hits # testing shows that it does not affect much the Quiver consensus calling if no_qv_or_aln_checking: yield HitItem(qID=r.qID, cID=cID, qStart=r.qStart, qEnd=r.qEnd, missed_q=missed_q * 1. / r.qLength, missed_t=missed_t * 1. / r.sLength, fakecigar=1, ece_arr=1) continue # full-length case: allow up to 200bp of 5' not aligned # and 50bp of 3' not aligned if (is_FL and not alignment_missed_start_end_less_than_threshold(r, \ max_missed_start, max_missed_end, full_missed_start, full_missed_end)): yield HitItem(qID=r.qID, cID=cID) else: cigar_str, ece_arr = eval_blasr_alignment( record=r, qver_get_func=qver_get_func, sID_starts_with_c=sID_starts_with_c, qv_prob_threshold=qv_prob_threshold, qvmean_get_func=qvmean_get_func) #else: # don't use QV, just look at alignment if alignment_has_large_nonmatch(ece_arr, ece_penalty, ece_min_len): yield HitItem(qID=r.qID, cID=cID) else: yield HitItem(qID=r.qID, cID=cID, qStart=r.qStart, qEnd=r.qEnd, missed_q=missed_q * 1. / r.qLength, missed_t=missed_t * 1. / r.sLength, fakecigar=cigar_str, ece_arr=ece_arr) def possible_merge2(r, ece_penalty, ece_min_len, max_missed_start=200, max_missed_end=50, full_missed_start=50, full_missed_end=30): """ r --- BLASRM5Record Criteria: (1) identity >= 90% and same strand (2) check criteria for how much is allowed to differ on the 5' / 3' ends Note: one must be fully mapped (allowing only a small portion to be unmapped) while the other can have <max_missed_start>/<max_missed_end> """ if r.sID == r.qID or r.identity < 90 or r.strand == '-': return False if not alignment_missed_start_end_less_than_threshold(r, max_missed_start, max_missed_end, full_missed_start, full_missed_end): return False arr = np.array([(x == '*') * 1 for x in r.alnStr]) if alignment_has_large_nonmatch(ece_arr=arr, penalty=ece_penalty, min_len=ece_min_len): return False return True def cid_with_annotation2(cid, expected_acc=None): """Given a cluster id, return cluster id with human readable annotation. e.g., c0 --> c0 isoform=c0 c0/89/3888 -> c0/89/3888 isoform=c0;full_length_coverage=89;isoform_length=3888;expected_accuracy=0.99 c0/f89p190/3888 -> c0/f89p190/3888 isoform=c0;full_length_coverage=89;non_full_length_coverage=190;isoform_length=3888;expected_accuracy=0.99 """ fields = cid.split('/') short_id, fl_coverage, nfl_coverage, seq_len = None, None, None, None if len(fields) != 1 and len(fields) != 3: raise ValueError("Not able to process isoform id: {cid}".format(cid=cid)) short_id = fields[0] if len(fields) == 3: seq_len = fields[2] if "f" in fields[1]: if "p" in fields[1]: # f89p190 fl_coverage = fields[1].split('p')[0][1:] nfl_coverage = fields[1].split('p')[1] else: # f89 fl_coverage = fields[1][1:] else: fl_coverage = fields[1] annotations = ["isoform={short_id}".format(short_id=short_id)] if fl_coverage is not None: annotations.append("full_length_coverage={fl}".format(fl=fl_coverage)) if nfl_coverage is not None: annotations.append("non_full_length_coverage={nfl}".format(nfl=nfl_coverage)) if seq_len is not None: annotations.append("isoform_length={l}".format(l=seq_len)) if expected_acc is not None: annotations.append("expected_accuracy={0:.3f}".format(expected_acc)) return "{cid} {annotation}".format(cid=cid, annotation=";".join(annotations))
[ 198, 11748, 299, 32152, 355, 45941, 198, 6738, 279, 65, 7645, 6519, 13, 18274, 4487, 1330, 12260, 198, 6738, 279, 65, 7645, 6519, 13, 501, 13, 23709, 18274, 4487, 1330, 19114, 62, 10134, 62, 11664, 62, 13159, 15699, 11, 7286, 7449, 11, 5418, 62, 2436, 292, 81, 62, 282, 16747, 198, 6738, 279, 65, 7645, 6519, 13, 952, 1330, 9131, 19, 23709, 33634, 11, 9878, 1921, 29138, 20, 33634, 198, 198, 70, 1102, 17, 62, 9078, 796, 366, 501, 62, 79, 17457, 363, 1102, 17, 13, 9078, 1, 198, 198, 4299, 34182, 62, 9122, 62, 70, 1102, 17, 33529, 198, 220, 220, 220, 37227, 15017, 414, 2198, 308, 1102, 526, 15931, 198, 220, 220, 220, 23991, 796, 308, 1102, 17, 62, 9078, 1343, 366, 1377, 16794, 1, 628, 220, 220, 220, 11454, 19662, 796, 308, 1102, 17, 62, 9078, 1343, 366, 318, 407, 6589, 526, 198, 220, 220, 220, 12260, 7, 28758, 28, 28758, 11, 11454, 19662, 28, 8056, 19662, 8, 198, 220, 220, 220, 1441, 308, 1102, 17, 62, 9078, 628, 198, 4299, 19114, 62, 3927, 276, 62, 9688, 62, 437, 62, 1203, 62, 14813, 62, 400, 10126, 7, 81, 11, 3509, 62, 3927, 276, 62, 9688, 11, 3509, 62, 3927, 276, 62, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3927, 276, 62, 9688, 11, 1336, 62, 3927, 276, 62, 437, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 326, 26204, 318, 262, 12238, 530, 11, 1276, 307, 1969, 284, 3938, 27661, 198, 220, 220, 220, 357, 32796, 284, 1336, 62, 3927, 276, 62, 9688, 14, 437, 8, 198, 220, 220, 220, 290, 262, 2392, 530, 318, 3142, 284, 423, 517, 6825, 923, 14, 437, 198, 220, 220, 220, 357, 32796, 284, 3509, 62, 3927, 276, 62, 9688, 14, 437, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 3509, 62, 3927, 276, 62, 9688, 18189, 1336, 62, 3927, 276, 62, 9688, 290, 3509, 62, 3927, 276, 62, 437, 18189, 1336, 62, 3927, 276, 62, 437, 628, 628, 220, 220, 220, 1303, 543, 1683, 318, 262, 12238, 530, 11, 1276, 307, 3938, 27661, 198, 220, 220, 220, 6825, 62, 9688, 62, 16, 796, 374, 13, 80, 10434, 198, 220, 220, 220, 6825, 62, 9688, 62, 17, 796, 374, 13, 82, 10434, 198, 220, 220, 220, 6825, 62, 437, 62, 16, 796, 357, 81, 13, 80, 24539, 532, 374, 13, 80, 12915, 8, 198, 220, 220, 220, 6825, 62, 437, 62, 17, 796, 357, 81, 13, 82, 24539, 532, 374, 13, 82, 12915, 8, 198, 220, 220, 220, 611, 374, 13, 80, 24539, 1875, 374, 13, 82, 24539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 9688, 62, 16, 11, 6825, 62, 9688, 62, 17, 796, 6825, 62, 9688, 62, 17, 11, 6825, 62, 9688, 62, 16, 198, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 437, 62, 16, 11, 6825, 62, 437, 62, 17, 796, 6825, 62, 437, 62, 17, 11, 6825, 62, 437, 62, 16, 198, 220, 220, 220, 1303, 262, 4833, 530, 1276, 307, 1969, 284, 3938, 27661, 198, 220, 220, 220, 611, 357, 3927, 276, 62, 9688, 62, 16, 1875, 1336, 62, 3927, 276, 62, 9688, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3927, 276, 62, 437, 62, 16, 1875, 1336, 62, 3927, 276, 62, 437, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3927, 276, 62, 9688, 62, 17, 1875, 3509, 62, 3927, 276, 62, 9688, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3927, 276, 62, 437, 62, 17, 1875, 3509, 62, 3927, 276, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 1441, 6407, 198, 198, 4299, 698, 292, 81, 62, 32826, 62, 5420, 17, 7, 22915, 62, 34345, 11, 318, 62, 3697, 11, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 11, 10662, 85, 32604, 62, 1136, 62, 20786, 11, 10662, 85, 62, 1676, 65, 62, 400, 10126, 28, 13, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3617, 6017, 28, 16, 11, 304, 344, 62, 1084, 62, 11925, 28, 1238, 11, 976, 62, 2536, 392, 62, 8807, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3927, 276, 62, 9688, 28, 2167, 11, 3509, 62, 3927, 276, 62, 437, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3927, 276, 62, 9688, 28, 1120, 11, 1336, 62, 3927, 276, 62, 437, 28, 1270, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1475, 6360, 9987, 25, 198, 220, 220, 220, 357, 16, 8, 2116, 2277, 198, 220, 220, 220, 357, 17, 8, 6697, 37923, 2277, 220, 357, 21754, 1541, 307, 287, 262, 976, 12852, 26, 198, 220, 220, 220, 220, 220, 220, 220, 460, 20957, 351, 1279, 31642, 62, 2536, 392, 62, 8807, 29, 900, 284, 10352, 8, 198, 220, 220, 220, 357, 18, 8, 1342, 621, 4101, 4, 19874, 393, 517, 621, 2026, 275, 79, 6825, 628, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 11420, 815, 307, 1615, 48, 53, 13, 12093, 48, 53, 66, 3493, 13, 1136, 3419, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1136, 62, 5796, 1025, 704, 22784, 393, 460, 655, 1208, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 357, 87, 11, 331, 2599, 352, 13, 284, 8856, 1195, 53, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 9878, 1921, 29138, 20, 33634, 7, 22915, 62, 34345, 8, 355, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 80, 796, 374, 13, 80, 10434, 1343, 374, 13, 80, 24539, 532, 374, 13, 80, 12915, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 83, 796, 374, 13, 82, 10434, 1343, 374, 13, 82, 24539, 532, 374, 13, 82, 12915, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 780, 477, 11529, 815, 923, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 27, 565, 5819, 62, 9630, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 374, 13, 82, 2389, 13, 9688, 2032, 342, 10786, 66, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 82, 2389, 13, 19796, 10786, 14, 11537, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 82, 2389, 796, 374, 13, 82, 2389, 13, 35312, 10786, 14, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 82, 2389, 13, 437, 2032, 342, 10786, 62, 5420, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2192, 269, 27, 66, 312, 29, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 493, 7, 81, 13, 82, 2389, 58, 16, 21912, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 493, 7, 81, 13, 82, 2389, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 374, 13, 82, 2389, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 2277, 11, 13894, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6697, 37923, 407, 3142, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 2389, 6624, 374, 13, 80, 2389, 393, 357, 81, 13, 2536, 392, 6624, 705, 19355, 290, 976, 62, 2536, 392, 62, 8807, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7692, 611, 1771, 318, 1336, 12, 13664, 357, 271, 62, 3697, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 12405, 17191, 307, 27661, 3938, 357, 3106, 319, 1336, 62, 3927, 276, 62, 9688, 14, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 80, 10434, 1875, 1336, 62, 3927, 276, 62, 9688, 393, 357, 81, 13, 80, 24539, 12, 81, 13, 80, 12915, 8, 1875, 1336, 62, 3927, 276, 62, 437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1336, 12, 13664, 1339, 25, 1249, 510, 284, 3509, 62, 3927, 276, 62, 9688, 275, 79, 286, 642, 6, 407, 19874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 3509, 62, 3927, 276, 62, 437, 275, 79, 286, 513, 6, 407, 19874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1729, 12, 12853, 12, 13664, 1339, 25, 407, 1107, 6789, 986, 9099, 470, 779, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 3697, 290, 407, 19114, 62, 3927, 276, 62, 9688, 62, 437, 62, 1203, 62, 14813, 62, 400, 10126, 7, 81, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3927, 276, 62, 9688, 11, 3509, 62, 3927, 276, 62, 437, 11, 1336, 62, 3927, 276, 62, 9688, 11, 1336, 62, 3927, 276, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24518, 62, 2536, 11, 304, 344, 62, 3258, 796, 5418, 62, 2436, 292, 81, 62, 282, 16747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 28, 80, 332, 62, 1136, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 85, 32604, 62, 1136, 62, 20786, 28, 44179, 32604, 62, 1136, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 28, 82, 2389, 62, 301, 5889, 62, 4480, 62, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 85, 62, 1676, 65, 62, 400, 10126, 28, 44179, 62, 1676, 65, 62, 400, 10126, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19114, 62, 10134, 62, 11664, 62, 13159, 15699, 7, 68, 344, 62, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3617, 6017, 11, 304, 344, 62, 1084, 62, 11925, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 10434, 28, 81, 13, 80, 10434, 11, 10662, 12915, 28, 81, 13, 80, 12915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 80, 28, 3927, 276, 62, 80, 1635, 352, 13, 1220, 374, 13, 80, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 83, 28, 3927, 276, 62, 83, 1635, 352, 13, 1220, 374, 13, 82, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8390, 22683, 283, 28, 22683, 283, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3258, 28, 68, 344, 62, 3258, 8, 198, 198, 4299, 288, 31494, 263, 62, 32826, 62, 5420, 17, 7, 22766, 62, 67, 8101, 62, 30281, 11, 2496, 62, 67, 8101, 62, 30281, 11, 8591, 19, 501, 62, 34345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 3697, 11, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 11, 10662, 85, 32604, 62, 1136, 62, 20786, 11, 10662, 85, 62, 1676, 65, 62, 400, 10126, 28, 13, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3617, 6017, 28, 16, 11, 304, 344, 62, 1084, 62, 11925, 28, 1238, 11, 976, 62, 2536, 392, 62, 8807, 28, 17821, 11, 645, 62, 44179, 62, 273, 62, 282, 77, 62, 41004, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3927, 276, 62, 9688, 28, 2167, 11, 3509, 62, 3927, 276, 62, 437, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3927, 276, 62, 9688, 28, 1120, 11, 1336, 62, 3927, 276, 62, 437, 28, 1270, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1475, 6360, 9987, 25, 198, 220, 220, 220, 357, 16, 8, 2116, 2277, 198, 220, 220, 220, 357, 17, 8, 6697, 37923, 2277, 220, 357, 21754, 1541, 307, 287, 262, 976, 12852, 26, 198, 220, 220, 220, 220, 220, 220, 220, 460, 20957, 351, 1279, 31642, 62, 2536, 392, 62, 8807, 29, 900, 284, 10352, 8, 198, 220, 220, 220, 357, 18, 8, 1342, 621, 4101, 4, 19874, 393, 517, 621, 2026, 275, 79, 6825, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 12405, 62, 67, 8101, 62, 30281, 532, 12405, 32282, 21360, 287, 12348, 570, 49493, 198, 220, 220, 220, 220, 220, 2496, 62, 67, 8101, 62, 30281, 532, 2496, 32282, 21360, 287, 12348, 570, 49493, 198, 220, 220, 220, 220, 220, 8591, 19, 501, 62, 34345, 532, 8591, 19, 501, 5072, 286, 12348, 570, 49493, 198, 220, 220, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 532, 5860, 257, 1351, 286, 10662, 14259, 286, 357, 961, 11, 10662, 85, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 1615, 48, 53, 13, 12093, 48, 53, 66, 3493, 13, 1136, 3419, 393, 764, 1136, 62, 5796, 1025, 704, 3419, 198, 220, 220, 220, 220, 220, 10662, 85, 32604, 62, 1136, 62, 20786, 532, 543, 5860, 1612, 1195, 53, 286, 357, 961, 11, 10662, 85, 3672, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 374, 287, 9131, 19, 23709, 33634, 7, 5031, 19, 501, 62, 34345, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 80, 796, 374, 13, 80, 10434, 1343, 374, 13, 80, 24539, 532, 374, 13, 80, 12915, 198, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 83, 796, 374, 13, 82, 10434, 1343, 374, 13, 82, 24539, 532, 374, 13, 82, 12915, 628, 220, 220, 220, 220, 220, 220, 220, 374, 13, 80, 2389, 796, 12405, 62, 67, 8101, 62, 30281, 58, 81, 13, 80, 2389, 4083, 35312, 10786, 705, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13, 82, 2389, 796, 2496, 62, 67, 8101, 62, 30281, 58, 81, 13, 82, 2389, 4083, 35312, 10786, 705, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 780, 477, 11529, 815, 923, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 27, 565, 5819, 62, 9630, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 374, 13, 82, 2389, 13, 9688, 2032, 342, 10786, 66, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 82, 2389, 13, 19796, 10786, 14, 11537, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 82, 2389, 796, 374, 13, 82, 2389, 13, 35312, 10786, 14, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 82, 2389, 13, 437, 2032, 342, 10786, 62, 5420, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2192, 269, 27, 66, 312, 29, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 493, 7, 81, 13, 82, 2389, 58, 16, 21912, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 493, 7, 81, 13, 82, 2389, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 2389, 796, 374, 13, 82, 2389, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 2277, 11, 13894, 0, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6697, 37923, 407, 3142, 0, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 2389, 6624, 374, 13, 80, 2389, 393, 357, 81, 13, 2536, 392, 6624, 705, 19355, 290, 976, 62, 2536, 392, 62, 8807, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7692, 611, 1771, 318, 1336, 12, 13664, 357, 271, 62, 3697, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 12405, 17191, 307, 27661, 3938, 357, 3106, 319, 1336, 62, 3927, 276, 62, 9688, 14, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 366, 81, 13, 80, 10434, 25, 1600, 374, 13, 80, 2389, 11, 374, 13, 82, 2389, 11, 374, 13, 80, 10434, 11, 1336, 62, 3927, 276, 62, 9688, 11, 357, 81, 13, 80, 24539, 12, 81, 13, 80, 12915, 828, 1336, 62, 3927, 276, 62, 437, 11, 374, 13, 80, 10434, 1875, 1336, 62, 3927, 276, 62, 9688, 393, 357, 81, 13, 80, 24539, 12, 81, 13, 80, 12915, 8, 1875, 1336, 62, 3927, 276, 62, 437, 628, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 80, 10434, 1875, 1336, 62, 3927, 276, 62, 9688, 393, 357, 81, 13, 80, 24539, 12, 81, 13, 80, 12915, 8, 1875, 1336, 62, 3927, 276, 62, 437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 318, 973, 329, 13027, 62, 1229, 14, 77, 3697, 9743, 691, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2391, 18178, 7127, 422, 288, 31494, 263, 329, 262, 299, 3697, 13027, 7127, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4856, 2523, 326, 340, 857, 407, 2689, 881, 262, 2264, 1428, 11529, 4585, 198, 220, 220, 220, 220, 220, 220, 220, 611, 645, 62, 44179, 62, 273, 62, 282, 77, 62, 41004, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 10434, 28, 81, 13, 80, 10434, 11, 10662, 12915, 28, 81, 13, 80, 12915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 80, 28, 3927, 276, 62, 80, 1635, 352, 13, 1220, 374, 13, 80, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 83, 28, 3927, 276, 62, 83, 1635, 352, 13, 1220, 374, 13, 82, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8390, 22683, 283, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3258, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1336, 12, 13664, 1339, 25, 1249, 510, 284, 939, 46583, 286, 642, 6, 407, 19874, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 2026, 46583, 286, 513, 6, 407, 19874, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 271, 62, 3697, 290, 407, 19114, 62, 3927, 276, 62, 9688, 62, 437, 62, 1203, 62, 14813, 62, 400, 10126, 7, 81, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3927, 276, 62, 9688, 11, 3509, 62, 3927, 276, 62, 437, 11, 1336, 62, 3927, 276, 62, 9688, 11, 1336, 62, 3927, 276, 62, 437, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24518, 62, 2536, 11, 304, 344, 62, 3258, 796, 5418, 62, 2436, 292, 81, 62, 282, 16747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 332, 62, 1136, 62, 20786, 28, 80, 332, 62, 1136, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 2389, 62, 301, 5889, 62, 4480, 62, 66, 28, 82, 2389, 62, 301, 5889, 62, 4480, 62, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 85, 62, 1676, 65, 62, 400, 10126, 28, 44179, 62, 1676, 65, 62, 400, 10126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 85, 32604, 62, 1136, 62, 20786, 28, 44179, 32604, 62, 1136, 62, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17772, 25, 1303, 836, 470, 779, 1195, 53, 11, 655, 804, 379, 19114, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19114, 62, 10134, 62, 11664, 62, 13159, 15699, 7, 68, 344, 62, 3258, 11, 304, 344, 62, 3617, 6017, 11, 304, 344, 62, 1084, 62, 11925, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 7286, 7449, 7, 80, 2389, 28, 81, 13, 80, 2389, 11, 269, 2389, 28, 66, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 10434, 28, 81, 13, 80, 10434, 11, 10662, 12915, 28, 81, 13, 80, 12915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 80, 28, 3927, 276, 62, 80, 1635, 352, 13, 1220, 374, 13, 80, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6825, 62, 83, 28, 3927, 276, 62, 83, 1635, 352, 13, 1220, 374, 13, 82, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8390, 22683, 283, 28, 22683, 283, 62, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 344, 62, 3258, 28, 68, 344, 62, 3258, 8, 198, 198, 4299, 1744, 62, 647, 469, 17, 7, 81, 11, 304, 344, 62, 3617, 6017, 11, 304, 344, 62, 1084, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3927, 276, 62, 9688, 28, 2167, 11, 3509, 62, 3927, 276, 62, 437, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3927, 276, 62, 9688, 28, 1120, 11, 1336, 62, 3927, 276, 62, 437, 28, 1270, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 374, 11420, 9878, 1921, 29138, 20, 23739, 198, 220, 220, 220, 10056, 5142, 25, 198, 220, 220, 220, 357, 16, 8, 5369, 18189, 4101, 4, 290, 976, 37923, 198, 220, 220, 220, 357, 17, 8, 2198, 9987, 329, 703, 881, 318, 3142, 284, 13238, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 642, 6, 1220, 513, 6, 5645, 628, 220, 220, 220, 5740, 25, 530, 1276, 307, 3938, 27661, 357, 439, 7855, 691, 257, 1402, 6903, 284, 307, 21303, 6320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 262, 584, 460, 423, 1279, 9806, 62, 3927, 276, 62, 9688, 29, 14, 27, 9806, 62, 3927, 276, 62, 437, 29, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 374, 13, 82, 2389, 6624, 374, 13, 80, 2389, 393, 374, 13, 738, 414, 1279, 4101, 393, 374, 13, 2536, 392, 6624, 705, 12, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 220, 220, 220, 611, 407, 19114, 62, 3927, 276, 62, 9688, 62, 437, 62, 1203, 62, 14813, 62, 400, 10126, 7, 81, 11, 3509, 62, 3927, 276, 62, 9688, 11, 3509, 62, 3927, 276, 62, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 3927, 276, 62, 9688, 11, 1336, 62, 3927, 276, 62, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 5240, 796, 45941, 13, 18747, 26933, 7, 87, 6624, 705, 9, 11537, 1635, 352, 329, 2124, 287, 374, 13, 282, 77, 13290, 12962, 198, 220, 220, 220, 611, 19114, 62, 10134, 62, 11664, 62, 13159, 15699, 7, 68, 344, 62, 3258, 28, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7389, 28, 68, 344, 62, 3617, 6017, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 11925, 28, 68, 344, 62, 1084, 62, 11925, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 6407, 628, 198, 4299, 269, 312, 62, 4480, 62, 1236, 14221, 17, 7, 66, 312, 11, 2938, 62, 4134, 28, 14202, 2599, 198, 220, 220, 220, 37227, 15056, 257, 13946, 4686, 11, 1441, 13946, 4686, 351, 1692, 31744, 23025, 13, 198, 220, 220, 220, 304, 13, 70, 1539, 269, 15, 14610, 269, 15, 47279, 687, 28, 66, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 15, 14, 4531, 14, 2548, 3459, 4613, 269, 15, 14, 4531, 14, 2548, 3459, 47279, 687, 28, 66, 15, 26, 12853, 62, 13664, 62, 1073, 1857, 28, 4531, 26, 26786, 687, 62, 13664, 28, 2548, 3459, 26, 40319, 62, 4134, 23843, 28, 15, 13, 2079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 15, 14, 69, 4531, 79, 19782, 14, 2548, 3459, 4613, 269, 15, 14, 69, 4531, 79, 19782, 14, 2548, 3459, 47279, 687, 28, 66, 15, 26, 12853, 62, 13664, 62, 1073, 1857, 28, 4531, 26, 13159, 62, 12853, 62, 13664, 62, 1073, 1857, 28, 19782, 26, 26786, 687, 62, 13664, 28, 2548, 3459, 26, 40319, 62, 4134, 23843, 28, 15, 13, 2079, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7032, 796, 269, 312, 13, 35312, 10786, 14, 11537, 198, 220, 220, 220, 1790, 62, 312, 11, 781, 62, 1073, 1857, 11, 299, 2704, 62, 1073, 1857, 11, 33756, 62, 11925, 796, 6045, 11, 6045, 11, 6045, 11, 6045, 198, 220, 220, 220, 611, 18896, 7, 25747, 8, 14512, 352, 290, 18896, 7, 25747, 8, 14512, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 3673, 1498, 284, 1429, 47279, 687, 4686, 25, 1391, 66, 312, 92, 1911, 18982, 7, 66, 312, 28, 66, 312, 4008, 198, 220, 220, 220, 1790, 62, 312, 796, 7032, 58, 15, 60, 198, 220, 220, 220, 611, 18896, 7, 25747, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11925, 796, 7032, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 69, 1, 287, 7032, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 79, 1, 287, 7032, 58, 16, 5974, 1303, 277, 4531, 79, 19782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 781, 62, 1073, 1857, 796, 7032, 58, 16, 4083, 35312, 10786, 79, 11537, 58, 15, 7131, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 2704, 62, 1073, 1857, 796, 7032, 58, 16, 4083, 35312, 10786, 79, 11537, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 277, 4531, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 781, 62, 1073, 1857, 796, 7032, 58, 16, 7131, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 781, 62, 1073, 1857, 796, 7032, 58, 16, 60, 628, 220, 220, 220, 37647, 796, 14631, 26786, 687, 34758, 19509, 62, 312, 92, 1911, 18982, 7, 19509, 62, 312, 28, 19509, 62, 312, 15437, 198, 220, 220, 220, 611, 781, 62, 1073, 1857, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37647, 13, 33295, 7203, 12853, 62, 13664, 62, 1073, 1857, 34758, 2704, 92, 1911, 18982, 7, 2704, 28, 2704, 62, 1073, 1857, 4008, 198, 220, 220, 220, 611, 299, 2704, 62, 1073, 1857, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37647, 13, 33295, 7203, 13159, 62, 12853, 62, 13664, 62, 1073, 1857, 34758, 77, 2704, 92, 1911, 18982, 7, 77, 2704, 28, 77, 2704, 62, 1073, 1857, 4008, 198, 220, 220, 220, 611, 33756, 62, 11925, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37647, 13, 33295, 7203, 26786, 687, 62, 13664, 34758, 75, 92, 1911, 18982, 7, 75, 28, 41068, 62, 11925, 4008, 198, 220, 220, 220, 611, 2938, 62, 4134, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37647, 13, 33295, 7203, 40319, 62, 4134, 23843, 34758, 15, 25, 13, 18, 69, 92, 1911, 18982, 7, 40319, 62, 4134, 4008, 628, 220, 220, 220, 1441, 45144, 66, 312, 92, 1391, 1236, 14221, 92, 1911, 18982, 7, 66, 312, 28, 66, 312, 11, 23025, 2625, 26, 1911, 22179, 7, 34574, 602, 4008 ]
1.89233
6,167
# Copyright (c) 2021 Hieu Le and the UCI Networking Group # <https://athinagroup.eng.uci.edu>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import datetime import json import logging from cvinspector.common.dommutation_utils import NODES_ADDED, NODES_REMOVED, \ ATTRIBUTE_CHANGED, TEXT_CHANGED, DOM_CONTENT_LOADED from cvinspector.common.dommutation_utils import get_nodes_added_key, get_nodes_removed_key from cvinspector.common.utils import ABP_BLOCKED_ELEMENT, ERR_BLOCKED_BY_CLIENT, JSON_DOMMUTATION_KEY, \ JSON_WEBREQUEST_KEY from cvinspector.common.utils import ANTICV_ANNOTATION_PREFIX logger = logging.getLogger(__name__) # logger.setLevel("DEBUG") TIME_KEY = "time" TIME_KEY__WR = "requestTime"
[ 2, 220, 15069, 357, 66, 8, 33448, 367, 22304, 1004, 290, 262, 14417, 40, 7311, 278, 4912, 198, 2, 220, 1279, 5450, 1378, 776, 259, 363, 3233, 13, 1516, 13, 42008, 13, 15532, 28401, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 11748, 269, 21370, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 18931, 198, 198, 6738, 269, 85, 1040, 806, 273, 13, 11321, 13, 67, 2002, 7094, 62, 26791, 1330, 399, 3727, 1546, 62, 29266, 1961, 11, 399, 3727, 1546, 62, 40726, 8874, 1961, 11, 3467, 198, 220, 220, 220, 5161, 5446, 9865, 37780, 62, 3398, 15567, 1961, 11, 40383, 62, 3398, 15567, 1961, 11, 24121, 62, 37815, 3525, 62, 35613, 1961, 198, 6738, 269, 85, 1040, 806, 273, 13, 11321, 13, 67, 2002, 7094, 62, 26791, 1330, 651, 62, 77, 4147, 62, 29373, 62, 2539, 11, 651, 62, 77, 4147, 62, 2787, 2668, 62, 2539, 198, 6738, 269, 85, 1040, 806, 273, 13, 11321, 13, 26791, 1330, 9564, 47, 62, 9148, 11290, 1961, 62, 36, 2538, 10979, 11, 13793, 49, 62, 9148, 11290, 1961, 62, 17513, 62, 5097, 28495, 11, 19449, 62, 39170, 44, 3843, 6234, 62, 20373, 11, 3467, 198, 220, 220, 220, 19449, 62, 8845, 40438, 35780, 62, 20373, 198, 6738, 269, 85, 1040, 806, 273, 13, 11321, 13, 26791, 1330, 3537, 51, 2149, 53, 62, 1565, 11929, 6234, 62, 47, 31688, 10426, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 2, 49706, 13, 2617, 4971, 7203, 30531, 4943, 198, 198, 34694, 62, 20373, 796, 366, 2435, 1, 198, 34694, 62, 20373, 834, 18564, 796, 366, 25927, 7575, 1, 628 ]
2.971223
417
from pathlib import Path import numpy as np import pandas as pd from sklearn import mixture from tqdm import tqdm # def save(self): # assert self.gmms is not None, "No results can be saved before fit is ran." # # # Save GMM object # # with self.results_fpath.open("wb") as f: # # pickle.dump(self.gmms, f) # # print(f"Saved successful {self.results_fpath}") # # Save GMM params # params = self.get_params() # params.to_csv(self.params_fpath, index=False) # print(f"Saved successful {self.params_fpath}") # def load(self, fpath=None): # # Load GMM object # fpath = fpath or self.results_fpath # with fpath.open("rb") as f: # self.gmms = pickle.load(f) # def get_results(self): # return self.gmms # def get_params(self): # params = { # "y": [], # "mu_x": [], # "sigma_x": [], # "weights_x": [] # } # for y, gmm in self.gmms.items(): # params["y"].append(y) # params["mu_x"].append(gmm.means_) # params["sigma_x"].append(gmm.covariances_) # params["weights_x"].append(gmm.weights_) # params["mu_x"] = np.array(params["mu_x"]).reshape(-1, self.k) # params["sigma_x"] = np.array(params["sigma_x"]) # params["weights_x"] = np.array(params["sigma_x"]) # params = pd.DataFrame( # np.hstack( # (params["y"], params["mu_x"], params["sigma_x"], params["weights_x"])), # columns=( # "y", # [f"mean{i}" for i in range(1, self.k + 1)] + # [f"sigma{i}" for i in range(1, self.k + 1)] + # [f"weight{i}" for i in range(1, self.k + 1)] # ), # ) # return params # params = np.genfromtxt(self.params_fpath, delimiter=",") # if format == "numpy": # return params # elif format == "dataframe": # k = self.k # # mu_x = params[:, :k] # # sigma_x = params[:, k:2*k] # # weights_x = params[:, 2*k:3*k] # # Save the GMM parameters # params_df = pd.DataFrame(params, ) # return params_df
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 1330, 11710, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 220, 220, 220, 1303, 825, 3613, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 6818, 2116, 13, 39870, 907, 318, 407, 6045, 11, 366, 2949, 2482, 460, 307, 7448, 878, 4197, 318, 4966, 526, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 1303, 12793, 6951, 44, 2134, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 351, 2116, 13, 43420, 62, 69, 6978, 13, 9654, 7203, 39346, 4943, 355, 277, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 944, 13, 39870, 907, 11, 277, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 3601, 7, 69, 1, 50, 9586, 4388, 1391, 944, 13, 43420, 62, 69, 6978, 92, 4943, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 12793, 6951, 44, 42287, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 2116, 13, 1136, 62, 37266, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 13, 1462, 62, 40664, 7, 944, 13, 37266, 62, 69, 6978, 11, 6376, 28, 25101, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7, 69, 1, 50, 9586, 4388, 1391, 944, 13, 37266, 62, 69, 6978, 92, 4943, 628, 220, 220, 220, 1303, 825, 3440, 7, 944, 11, 277, 6978, 28, 14202, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 8778, 6951, 44, 2134, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 6978, 796, 277, 6978, 393, 2116, 13, 43420, 62, 69, 6978, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 351, 277, 6978, 13, 9654, 7203, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39870, 907, 796, 2298, 293, 13, 2220, 7, 69, 8, 628, 220, 220, 220, 1303, 825, 651, 62, 43420, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2116, 13, 39870, 907, 628, 220, 220, 220, 1303, 825, 651, 62, 37266, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 1298, 685, 4357, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30300, 62, 87, 1298, 220, 685, 4357, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 13495, 62, 87, 1298, 220, 685, 4357, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43775, 62, 87, 1298, 220, 17635, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 331, 11, 308, 3020, 287, 2116, 13, 39870, 907, 13, 23814, 33529, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 88, 1, 4083, 33295, 7, 88, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 30300, 62, 87, 1, 4083, 33295, 7, 70, 3020, 13, 1326, 504, 62, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 82, 13495, 62, 87, 1, 4083, 33295, 7, 70, 3020, 13, 66, 709, 3699, 728, 62, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 43775, 62, 87, 1, 4083, 33295, 7, 70, 3020, 13, 43775, 62, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 42287, 14692, 30300, 62, 87, 8973, 796, 45941, 13, 18747, 7, 37266, 14692, 30300, 62, 87, 8973, 737, 3447, 1758, 32590, 16, 11, 2116, 13, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 42287, 14692, 82, 13495, 62, 87, 8973, 796, 45941, 13, 18747, 7, 37266, 14692, 82, 13495, 62, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 42287, 14692, 43775, 62, 87, 8973, 796, 45941, 13, 18747, 7, 37266, 14692, 82, 13495, 62, 87, 8973, 8, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 71, 25558, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 37266, 14692, 88, 33116, 42287, 14692, 30300, 62, 87, 33116, 42287, 14692, 82, 13495, 62, 87, 33116, 42287, 14692, 43775, 62, 87, 8973, 36911, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 16193, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 1600, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 69, 1, 32604, 90, 72, 36786, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 74, 1343, 352, 15437, 1343, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 69, 1, 82, 13495, 90, 72, 36786, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 74, 1343, 352, 15437, 1343, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 69, 1, 6551, 90, 72, 36786, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 74, 1343, 352, 15437, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 42287, 796, 45941, 13, 5235, 6738, 14116, 7, 944, 13, 37266, 62, 69, 6978, 11, 46728, 2676, 28, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 5794, 6624, 366, 77, 32152, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1288, 361, 5794, 6624, 366, 7890, 14535, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 479, 796, 2116, 13, 74, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 38779, 62, 87, 796, 42287, 58, 45299, 1058, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 264, 13495, 62, 87, 796, 42287, 58, 45299, 479, 25, 17, 9, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 19590, 62, 87, 796, 42287, 58, 45299, 362, 9, 74, 25, 18, 9, 74, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 12793, 262, 6951, 44, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 42287, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 37266, 11, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 42287, 62, 7568, 198 ]
1.913223
1,210
import socket addr = ('127.0.0.1', 3001) if __name__ == '__main__': run()
[ 11748, 17802, 628, 198, 198, 29851, 796, 19203, 16799, 13, 15, 13, 15, 13, 16, 3256, 5867, 16, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 3419 ]
2.216216
37
from aws_cdk import aws_ec2 as ec2 from aws_cdk import aws_iam as iam from aws_cdk import core class MLLib(core.Construct): """Install machine learning libraries."""
[ 6738, 3253, 82, 62, 10210, 74, 1330, 3253, 82, 62, 721, 17, 355, 9940, 17, 198, 6738, 3253, 82, 62, 10210, 74, 1330, 3253, 82, 62, 1789, 355, 1312, 321, 198, 6738, 3253, 82, 62, 10210, 74, 1330, 4755, 628, 198, 4871, 337, 3069, 571, 7, 7295, 13, 42316, 2599, 198, 220, 220, 220, 37227, 15798, 4572, 4673, 12782, 526, 15931, 198 ]
2.774194
62
#!/usr/bin/env python # List the process ordered by oom score from __future__ import print_function import argparse from codecs import decode from operator import itemgetter from os import listdir from os.path import join import sys try: from string import maketrans except ImportError: # we are using python3 so this is a str static method maketrans = str.maketrans PROC = '/proc' SCORE = 'oom_score' CMD = 'cmdline' STATUS = 'status' HEADERS = { 'pid': 'PID', 'score': 'SCORE', 'cmd': 'CMD', } if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 7343, 262, 1429, 6149, 416, 267, 296, 4776, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 1822, 29572, 198, 6738, 40481, 82, 1330, 36899, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 6738, 28686, 1330, 1351, 15908, 198, 6738, 28686, 13, 6978, 1330, 4654, 198, 11748, 25064, 198, 28311, 25, 198, 220, 220, 220, 422, 4731, 1330, 285, 461, 21879, 504, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 356, 389, 1262, 21015, 18, 523, 428, 318, 257, 965, 9037, 2446, 198, 220, 220, 220, 285, 461, 21879, 504, 796, 965, 13, 76, 461, 21879, 504, 198, 198, 4805, 4503, 796, 31051, 36942, 6, 198, 6173, 6965, 796, 705, 4207, 62, 26675, 6, 198, 34, 12740, 796, 705, 28758, 1370, 6, 198, 35744, 2937, 796, 705, 13376, 6, 198, 37682, 4877, 796, 1391, 198, 220, 220, 220, 705, 35317, 10354, 705, 47, 2389, 3256, 198, 220, 220, 220, 705, 26675, 10354, 705, 6173, 6965, 3256, 198, 220, 220, 220, 705, 28758, 10354, 705, 34, 12740, 3256, 198, 92, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.763547
203
import os import jinja2 import shutil from . import utils from codecs import open __all__ = ['handle_project'] def copy(src, dst): """Copy file or directory from src to dst""" if os.path.isfile(src): shutil.copy(src, dst) elif os.path.isdir(src): shutil.copytree(src, dst) return dst def expand_template(template_content, template_data): """Expand template using jinja2 template engine""" return jinja2.Template(template_content).render(template_data) def maybe_rename(src, template_data): """Rename file or directory if it's name contains expandable variables Here we use Jinja2 {{%s}} syntax. :return: bool. `True` if rename happend, `False` otherwise. """ new_path = expand_vars_in_file_name(src, template_data) if new_path != src: shutil.move(src, new_path) return True return False def expand_vars_in_file(filepath, template_data, ignore_file_list): """Expand variables in file""" if utils.match(filepath, ignore_file_list): return with open(filepath, encoding='utf8') as fp: file_contents = expand_template(fp.read(), template_data) with open(filepath, 'w', encoding='utf8') as f: f.write(file_contents) def expand_vars_in_file_name(filepath, template_data): """Expand variables in file/directory path""" return expand_template(filepath, template_data) def handle_project(src, dst, template_data, ignore_file_list): """Main templet library function, does all the work. First copy template directory to current working path, renaming it to `PROJECT_NAME`. Then expand variables in directories names. And in the end, expand variables in files names and it's content. """ copy(src, dst) for root, dirs, files in os.walk(dst): for d in dirs: dirpath = os.path.join(root, d) maybe_rename(dirpath, template_data) for f in files: filepath = os.path.join(root, f) if os.path.isfile(filepath): expand_vars_in_file(filepath, template_data, ignore_file_list) maybe_rename(filepath, template_data)
[ 11748, 28686, 198, 11748, 474, 259, 6592, 17, 198, 11748, 4423, 346, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 40481, 82, 1330, 1280, 628, 198, 834, 439, 834, 796, 37250, 28144, 62, 16302, 20520, 628, 198, 4299, 4866, 7, 10677, 11, 29636, 2599, 198, 220, 220, 220, 37227, 29881, 2393, 393, 8619, 422, 12351, 284, 29636, 37811, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 10677, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 9409, 343, 7, 10677, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 21048, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 1441, 29636, 198, 198, 4299, 4292, 62, 28243, 7, 28243, 62, 11299, 11, 11055, 62, 7890, 2599, 198, 220, 220, 220, 37227, 16870, 392, 11055, 1262, 474, 259, 6592, 17, 11055, 3113, 37811, 198, 220, 220, 220, 1441, 474, 259, 6592, 17, 13, 30800, 7, 28243, 62, 11299, 737, 13287, 7, 28243, 62, 7890, 8, 198, 198, 4299, 3863, 62, 918, 480, 7, 10677, 11, 11055, 62, 7890, 2599, 198, 220, 220, 220, 37227, 49, 12453, 2393, 393, 8619, 611, 340, 338, 1438, 4909, 4292, 540, 9633, 198, 220, 220, 220, 3423, 356, 779, 17297, 6592, 17, 22935, 4, 82, 11709, 15582, 13, 628, 220, 220, 220, 1058, 7783, 25, 20512, 13, 4600, 17821, 63, 611, 36265, 1147, 437, 11, 4600, 25101, 63, 4306, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 649, 62, 6978, 796, 4292, 62, 85, 945, 62, 259, 62, 7753, 62, 3672, 7, 10677, 11, 11055, 62, 7890, 8, 198, 220, 220, 220, 611, 649, 62, 6978, 14512, 12351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 21084, 7, 10677, 11, 649, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 1441, 10352, 198, 198, 4299, 4292, 62, 85, 945, 62, 259, 62, 7753, 7, 7753, 6978, 11, 11055, 62, 7890, 11, 8856, 62, 7753, 62, 4868, 2599, 198, 220, 220, 220, 37227, 16870, 392, 9633, 287, 2393, 37811, 198, 220, 220, 220, 611, 3384, 4487, 13, 15699, 7, 7753, 6978, 11, 8856, 62, 7753, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 351, 1280, 7, 7753, 6978, 11, 21004, 11639, 40477, 23, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3642, 658, 796, 4292, 62, 28243, 7, 46428, 13, 961, 22784, 11055, 62, 7890, 8, 198, 220, 220, 220, 351, 1280, 7, 7753, 6978, 11, 705, 86, 3256, 21004, 11639, 40477, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 7753, 62, 3642, 658, 8, 198, 198, 4299, 4292, 62, 85, 945, 62, 259, 62, 7753, 62, 3672, 7, 7753, 6978, 11, 11055, 62, 7890, 2599, 198, 220, 220, 220, 37227, 16870, 392, 9633, 287, 2393, 14, 34945, 3108, 37811, 198, 220, 220, 220, 1441, 4292, 62, 28243, 7, 7753, 6978, 11, 11055, 62, 7890, 8, 198, 198, 4299, 5412, 62, 16302, 7, 10677, 11, 29636, 11, 11055, 62, 7890, 11, 8856, 62, 7753, 62, 4868, 2599, 198, 220, 220, 220, 37227, 13383, 12505, 83, 5888, 2163, 11, 857, 477, 262, 670, 13, 628, 220, 220, 220, 3274, 4866, 11055, 8619, 284, 1459, 1762, 3108, 11, 8851, 3723, 340, 198, 220, 220, 220, 284, 4600, 31190, 23680, 62, 20608, 44646, 198, 220, 220, 220, 3244, 4292, 9633, 287, 29196, 3891, 13, 198, 220, 220, 220, 843, 287, 262, 886, 11, 4292, 9633, 287, 3696, 3891, 290, 340, 338, 2695, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4866, 7, 10677, 11, 29636, 8, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 67, 301, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3863, 62, 918, 480, 7, 15908, 6978, 11, 11055, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15763, 11, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 7753, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 85, 945, 62, 259, 62, 7753, 7, 7753, 6978, 11, 11055, 62, 7890, 11, 8856, 62, 7753, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3863, 62, 918, 480, 7, 7753, 6978, 11, 11055, 62, 7890, 8, 628 ]
2.578069
839
import argparse from tqdm import tqdm import numpy as np # Import in the Clarifai gRPC based objects needed from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc from clarifai_grpc.grpc.api.status import status_code_pb2 from google.protobuf.struct_pb2 import Struct # Construct the communications channel and the object stub to call requests on. channel = ClarifaiChannel.get_json_channel() stub = service_pb2_grpc.V2Stub(channel) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Split inputs into groups for labeling.") parser.add_argument('--api_key', default='', required=True, help="API key of the application.") parser.add_argument('--num_labelers', default=20, type=int, required=True, help="Total number of available labelers.") parser.add_argument('--per_group', default=5, type=int, help="Number of labelers per group") args = parser.parse_args() args.metadata = (('authorization', 'Key {}'.format(args.api_key)),) main(args)
[ 11748, 1822, 29572, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 17267, 287, 262, 15420, 361, 1872, 308, 49, 5662, 1912, 5563, 2622, 198, 6738, 10212, 361, 1872, 62, 2164, 14751, 13, 17620, 13, 565, 283, 361, 1872, 62, 17620, 1330, 15420, 361, 1872, 29239, 198, 6738, 10212, 361, 1872, 62, 2164, 14751, 13, 2164, 14751, 13, 15042, 1330, 4133, 62, 40842, 17, 11, 2139, 62, 40842, 17, 11, 2139, 62, 40842, 17, 62, 2164, 14751, 198, 6738, 10212, 361, 1872, 62, 2164, 14751, 13, 2164, 14751, 13, 15042, 13, 13376, 1330, 3722, 62, 8189, 62, 40842, 17, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 7249, 62, 40842, 17, 1330, 32112, 628, 198, 2, 28407, 262, 8062, 6518, 290, 262, 2134, 17071, 284, 869, 7007, 319, 13, 198, 17620, 796, 15420, 361, 1872, 29239, 13, 1136, 62, 17752, 62, 17620, 3419, 198, 301, 549, 796, 2139, 62, 40842, 17, 62, 2164, 14751, 13, 53, 17, 1273, 549, 7, 17620, 8, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 220, 198, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 41205, 17311, 656, 2628, 329, 27393, 19570, 220, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15042, 62, 2539, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17614, 1994, 286, 262, 3586, 19570, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 18242, 364, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 1238, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14957, 1271, 286, 1695, 6167, 364, 19570, 220, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 525, 62, 8094, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 20, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15057, 286, 6167, 364, 583, 1448, 4943, 220, 628, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 26498, 13, 38993, 796, 357, 10786, 9800, 1634, 3256, 705, 9218, 23884, 4458, 18982, 7, 22046, 13, 15042, 62, 2539, 36911, 8, 628, 220, 1388, 7, 22046, 8 ]
2.25724
587
sx = sy =sxy = sx2 =sy2 = xy = c = 0 vx = [0,0,0] vy = [0,0,0] while(c<3): vx[c] = int(input("Digite um valor de x: ")) c+=1 for x in vx: sx += x c=0 while(c<3): vy[c] = int(input("Digite um valor de y: ")) c+=1 for y in vy: sy += y xy = x*y
[ 82, 87, 796, 827, 796, 82, 5431, 796, 264, 87, 17, 796, 1837, 17, 796, 2124, 88, 796, 269, 796, 657, 198, 85, 87, 796, 685, 15, 11, 15, 11, 15, 60, 198, 7670, 796, 685, 15, 11, 15, 11, 15, 60, 198, 198, 4514, 7, 66, 27, 18, 2599, 198, 220, 220, 220, 410, 87, 58, 66, 60, 796, 493, 7, 15414, 7203, 19511, 578, 23781, 1188, 273, 390, 2124, 25, 366, 4008, 198, 220, 220, 220, 269, 47932, 16, 198, 1640, 2124, 287, 410, 87, 25, 198, 220, 220, 220, 264, 87, 15853, 2124, 198, 198, 66, 28, 15, 198, 4514, 7, 66, 27, 18, 2599, 198, 220, 220, 220, 410, 88, 58, 66, 60, 796, 493, 7, 15414, 7203, 19511, 578, 23781, 1188, 273, 390, 331, 25, 366, 4008, 198, 220, 220, 220, 269, 47932, 16, 198, 1640, 331, 287, 410, 88, 25, 198, 220, 220, 220, 827, 15853, 331, 198, 198, 5431, 796, 2124, 9, 88 ]
1.675
160
""" Simplified imports for the records module. """ from .acc import AccuracyDescription from .dsi import DataSetIdentification from .uhl import UserHeaderLabel
[ 37811, 45157, 1431, 17944, 329, 262, 4406, 8265, 13, 37227, 198, 6738, 764, 4134, 1330, 33222, 11828, 198, 6738, 764, 9310, 72, 1330, 6060, 7248, 33234, 2649, 198, 6738, 764, 7456, 75, 1330, 11787, 39681, 33986, 198 ]
4.324324
37
from typing import List from bigfastapi import db from uuid import uuid4 from bigfastapi.models import subscription_model from bigfastapi.schemas import subscription_schema from bigfastapi.db.database import get_db import sqlalchemy.orm as _orm import fastapi as _fastapi from fastapi import APIRouter from fastapi.responses import JSONResponse from fastapi.param_functions import Depends from fastapi import APIRouter, HTTPException, status import fastapi app = APIRouter(tags=["Subscription"]) @app.get("/subscriptions/{org_Id}", response_model=subscription_schema.ResponseList) @app.post('/subscriptions', response_model=subscription_schema.ResponseSingle) # /// # SERVICE LAYER
[ 6738, 19720, 1330, 7343, 198, 6738, 1263, 7217, 15042, 1330, 20613, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 6738, 1263, 7217, 15042, 13, 27530, 1330, 14569, 62, 19849, 198, 6738, 1263, 7217, 15042, 13, 1416, 4411, 292, 1330, 14569, 62, 15952, 2611, 198, 6738, 1263, 7217, 15042, 13, 9945, 13, 48806, 1330, 651, 62, 9945, 198, 11748, 44161, 282, 26599, 13, 579, 355, 4808, 579, 198, 11748, 3049, 15042, 355, 4808, 7217, 15042, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 198, 6738, 3049, 15042, 13, 16733, 274, 1330, 19449, 31077, 198, 6738, 3049, 15042, 13, 17143, 62, 12543, 2733, 1330, 2129, 2412, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 14626, 16922, 11, 3722, 198, 11748, 3049, 15042, 198, 198, 1324, 796, 3486, 4663, 39605, 7, 31499, 28, 14692, 7004, 33584, 8973, 8, 628, 198, 31, 1324, 13, 1136, 7203, 14, 7266, 12048, 507, 14, 90, 2398, 62, 7390, 92, 1600, 2882, 62, 19849, 28, 7266, 33584, 62, 15952, 2611, 13, 31077, 8053, 8, 628, 198, 31, 1324, 13, 7353, 10786, 14, 7266, 12048, 507, 3256, 2882, 62, 19849, 28, 7266, 33584, 62, 15952, 2611, 13, 31077, 28008, 8, 198, 198, 2, 34013, 198, 2, 47453, 406, 4792, 1137, 628, 628 ]
3.370732
205
from credit_card.ledger import Ledger import luhn import unittest
[ 6738, 3884, 62, 9517, 13, 992, 1362, 1330, 22964, 1362, 198, 11748, 300, 7456, 77, 198, 11748, 555, 715, 395, 628 ]
3.190476
21
# -*- coding: utf-8 -*- import re from csv import writer from datetime import datetime from flask import Blueprint from flask import flash, redirect, render_template, request, url_for, abort, \ session from flask_babel import _ from flask_login import current_user, login_user, logout_user, login_required from io import StringIO from app import db, login_manager, get_locale from app.decorators import require_role, response_headers from app.exceptions.base import ResourceNotFoundException, \ AuthorizationException, ValidationException, BusinessRuleException from app.forms import init_form from app.forms.user import (EditUserForm, EditUserInfoForm, SignUpForm, SignInForm, ResetPasswordForm, RequestPassword, ChangePasswordForm, EditUvALinkingForm) from app.models.activity import Activity from app.models.custom_form import CustomFormResult, CustomForm from app.models.education import Education from app.models.user import User from app.roles import Roles from app.service import password_reset_service, user_service, \ role_service, file_service, saml_service from app.utils import copernica from app.utils.google import HttpError from app.utils.user import UserAPI blueprint = Blueprint('user', __name__) @login_manager.user_loader def view_single(user_id): """ View user for admins and edit for admins and users. User is passed based on routes below. """ user = user_service.get_user_by_id(user_id) user.avatar = UserAPI.avatar(user) user.groups = UserAPI.get_groups_for_user_id(user) user.groups_amount = len(user.groups) if "gravatar" in user.avatar: user.avatar = user.avatar + "&s=341" # Get all activity entrees from these forms, order by start_time of # activity. activities = Activity.query.join(CustomForm).join(CustomFormResult). \ filter(CustomFormResult.owner_id == user_id and CustomForm.id == CustomFormResult.form_id and Activity.form_id == CustomForm.id) user.activities_amount = activities.count() new_activities = activities \ .filter(Activity.end_time > datetime.today()).distinct() \ .order_by(Activity.start_time) old_activities = activities \ .filter(Activity.end_time < datetime.today()).distinct() \ .order_by(Activity.start_time.desc()) can_write = role_service.user_has_role(current_user, Roles.USER_WRITE) return render_template('user/view_single.htm', user=user, new_activities=new_activities, old_activities=old_activities, can_write=can_write) @blueprint.route('/users/view/self/', methods=['GET']) @login_required @blueprint.route('/users/view/<int:user_id>/', methods=['GET']) @require_role(Roles.USER_READ) @login_required @blueprint.route('/users/remove_avatar/<int:user_id>/', methods=['DELETE']) @login_required @require_role(Roles.USER_WRITE) def edit(user_id, form_cls): """ Create user for admins and edit for admins and users. User and form type are passed based on routes below. """ if user_id: user = user_service.get_user_by_id(user_id) user.avatar = user_service.user_has_avatar(user_id) else: user = User() form = init_form(form_cls, obj=user) form.new_user = user.id == 0 # Add education. educations = Education.query.all() form.education_id.choices = [(e.id, e.name) for e in educations] if form.validate_on_submit(): # Only new users need a unique email. query = User.query.filter(User.email == form.email.data) if user_id: query = query.filter(User.id != user_id) if query.count() > 0: flash(_('A user with this e-mail address already exist.'), 'danger') return edit_page() # Because the user model is constructed to have an ID of 0 when it is # initialized without an email adress provided, reinitialize the user # with a default string for email adress, so that it will get a unique # ID when committed to the database. if not user_id: user = User('_') # TODO Move this into the service call. try: user.update_email(form.email.data.strip()) except HttpError as e: if e.resp.status == 404: flash(_('According to Google this email does not exist. ' 'Please use an email that does.'), 'danger') return edit_page() raise e # Note: student id is updated separately. user.first_name = form.first_name.data.strip() user.last_name = form.last_name.data.strip() user.locale = form.locale.data if role_service.user_has_role(current_user, Roles.USER_WRITE): user.has_paid = form.has_paid.data user.honorary_member = form.honorary_member.data user.favourer = form.favourer.data user.disabled = form.disabled.data user.alumnus = form.alumnus.data user.education_id = form.education_id.data user.birth_date = form.birth_date.data user.study_start = form.study_start.data user.receive_information = form.receive_information.data user.phone_nr = form.phone_nr.data.strip() user.address = form.address.data.strip() user.zip = form.zip.data.strip() user.city = form.city.data.strip() user.country = form.country.data.strip() db.session.add(user) db.session.commit() avatar = request.files.get('avatar') if avatar: user_service.set_avatar(user.id, avatar) if user_id: copernica.update_user(user) flash(_('Profile succesfully updated')) else: copernica.update_user(user, subscribe=True) flash(_('Profile succesfully created')) if current_user.id == user_id: return redirect(url_for('user.view_single_self')) else: return redirect(url_for('user.view_single_user', user_id=user.id)) return edit_page() @blueprint.route('/users/edit/<int:user_id>/student-id-linking', methods=['GET', 'POST']) @login_required @require_role(Roles.USER_WRITE) @blueprint.route('/users/edit/self/', methods=['GET', 'POST']) @login_required @blueprint.route('/users/create/', methods=['GET', 'POST']) @blueprint.route('/users/edit/<int:user_id>', methods=['GET', 'POST']) @login_required @require_role(Roles.USER_WRITE) @blueprint.route('/sign-up/', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/sign-up/manual/', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/sign-up/process-saml-response/', methods=['GET', 'POST']) @saml_service.ensure_data_cleared @blueprint.route('/sign-in/', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/sign-in/process-saml-response/', methods=['GET']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/sign-in/confirm-student-id/', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/sign-out/') @blueprint.route('/process-account-linking') @saml_service.ensure_data_cleared @blueprint.route('/request_password/', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) def request_password(): """Create a ticket and send a email with link to reset_password page.""" if current_user.is_authenticated: return redirect(url_for('user.view_single_self')) form = RequestPassword(request.form) if form.validate_on_submit(): try: password_reset_service.create_password_ticket(form.email.data) flash(_('An email has been sent to %(email)s with further ' 'instructions.', email=form.email.data), 'success') return redirect(url_for('home.home')) except ResourceNotFoundException: flash(_('%(email)s is unknown to our system.', email=form.email.data), 'danger') return render_template('user/request_password.htm', form=form) @blueprint.route('/reset_password/<string:hash_>', methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) def reset_password(hash_): """ Reset form existing of two fields, password and password_repeat. Checks if the hash in the url is found in the database and timestamp has not expired. """ try: ticket = password_reset_service.get_valid_ticket(hash_) except ResourceNotFoundException: flash(_('No valid ticket found'), 'danger') return redirect(url_for('user.request_password')) form = ResetPasswordForm(request.form) if form.validate_on_submit(): password_reset_service.reset_password(ticket, form.password.data) flash(_('Your password has been updated.'), 'success') return redirect(url_for('user.sign_in')) return render_template('user/reset_password.htm', form=form) @blueprint.route("/users/<int:user_id>/password/", methods=['GET', 'POST']) @response_headers({"X-Frame-Options": "SAMEORIGIN"}) @blueprint.route('/users/', methods=['GET']) @require_role(Roles.USER_READ) @blueprint.route('/users/export', methods=['GET']) @require_role(Roles.USER_READ) @blueprint.route('/users/avatar/<int:user_id>/', methods=['GET']) @login_required
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 302, 198, 6738, 269, 21370, 1330, 6260, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 42903, 1330, 39932, 198, 6738, 42903, 1330, 7644, 11, 18941, 11, 8543, 62, 28243, 11, 2581, 11, 19016, 62, 1640, 11, 15614, 11, 3467, 198, 220, 220, 220, 6246, 198, 6738, 42903, 62, 65, 9608, 1330, 4808, 198, 6738, 42903, 62, 38235, 1330, 1459, 62, 7220, 11, 17594, 62, 7220, 11, 2604, 448, 62, 7220, 11, 17594, 62, 35827, 198, 6738, 33245, 1330, 10903, 9399, 198, 198, 6738, 598, 1330, 20613, 11, 17594, 62, 37153, 11, 651, 62, 17946, 1000, 198, 6738, 598, 13, 12501, 273, 2024, 1330, 2421, 62, 18090, 11, 2882, 62, 50145, 198, 6738, 598, 13, 1069, 11755, 13, 8692, 1330, 20857, 3673, 21077, 16922, 11, 3467, 198, 220, 220, 220, 35263, 16922, 11, 3254, 24765, 16922, 11, 7320, 31929, 16922, 198, 6738, 598, 13, 23914, 1330, 2315, 62, 687, 198, 6738, 598, 13, 23914, 13, 7220, 1330, 357, 18378, 12982, 8479, 11, 5312, 12982, 12360, 8479, 11, 5865, 4933, 8479, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5865, 818, 8479, 11, 30027, 35215, 8479, 11, 19390, 35215, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9794, 35215, 8479, 11, 5312, 52, 85, 1847, 8040, 8479, 8, 198, 6738, 598, 13, 27530, 13, 21797, 1330, 24641, 198, 6738, 598, 13, 27530, 13, 23144, 62, 687, 1330, 8562, 8479, 23004, 11, 8562, 8479, 198, 6738, 598, 13, 27530, 13, 40796, 1330, 7868, 198, 6738, 598, 13, 27530, 13, 7220, 1330, 11787, 198, 6738, 598, 13, 305, 829, 1330, 371, 4316, 198, 6738, 598, 13, 15271, 1330, 9206, 62, 42503, 62, 15271, 11, 2836, 62, 15271, 11, 3467, 198, 220, 220, 220, 2597, 62, 15271, 11, 2393, 62, 15271, 11, 6072, 75, 62, 15271, 198, 6738, 598, 13, 26791, 1330, 2243, 1142, 3970, 198, 6738, 598, 13, 26791, 13, 13297, 1330, 367, 29281, 12331, 198, 6738, 598, 13, 26791, 13, 7220, 1330, 11787, 17614, 198, 198, 17585, 4798, 796, 39932, 10786, 7220, 3256, 11593, 3672, 834, 8, 628, 198, 31, 38235, 62, 37153, 13, 7220, 62, 29356, 628, 198, 4299, 1570, 62, 29762, 7, 7220, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3582, 2836, 329, 44563, 290, 4370, 329, 44563, 290, 2985, 13, 628, 220, 220, 220, 11787, 318, 3804, 1912, 319, 11926, 2174, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2836, 796, 2836, 62, 15271, 13, 1136, 62, 7220, 62, 1525, 62, 312, 7, 7220, 62, 312, 8, 198, 220, 220, 220, 2836, 13, 615, 9459, 796, 11787, 17614, 13, 615, 9459, 7, 7220, 8, 198, 220, 220, 220, 2836, 13, 24432, 796, 11787, 17614, 13, 1136, 62, 24432, 62, 1640, 62, 7220, 62, 312, 7, 7220, 8, 628, 220, 220, 220, 2836, 13, 24432, 62, 17287, 796, 18896, 7, 7220, 13, 24432, 8, 628, 220, 220, 220, 611, 366, 70, 4108, 9459, 1, 287, 2836, 13, 615, 9459, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 615, 9459, 796, 2836, 13, 615, 9459, 1343, 366, 5, 82, 28, 33660, 1, 628, 220, 220, 220, 1303, 3497, 477, 3842, 920, 6037, 422, 777, 5107, 11, 1502, 416, 923, 62, 2435, 286, 198, 220, 220, 220, 1303, 3842, 13, 198, 220, 220, 220, 4568, 796, 24641, 13, 22766, 13, 22179, 7, 15022, 8479, 737, 22179, 7, 15022, 8479, 23004, 737, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 15022, 8479, 23004, 13, 18403, 62, 312, 6624, 2836, 62, 312, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8562, 8479, 13, 312, 6624, 8562, 8479, 23004, 13, 687, 62, 312, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24641, 13, 687, 62, 312, 6624, 8562, 8479, 13, 312, 8, 628, 220, 220, 220, 2836, 13, 15791, 871, 62, 17287, 796, 4568, 13, 9127, 3419, 628, 220, 220, 220, 649, 62, 15791, 871, 796, 4568, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 16516, 13, 437, 62, 2435, 1875, 4818, 8079, 13, 40838, 3419, 737, 17080, 4612, 3419, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 16516, 13, 9688, 62, 2435, 8, 198, 220, 220, 220, 1468, 62, 15791, 871, 796, 4568, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 16516, 13, 437, 62, 2435, 1279, 4818, 8079, 13, 40838, 3419, 737, 17080, 4612, 3419, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 16516, 13, 9688, 62, 2435, 13, 20147, 28955, 628, 220, 220, 220, 460, 62, 13564, 796, 2597, 62, 15271, 13, 7220, 62, 10134, 62, 18090, 7, 14421, 62, 7220, 11, 371, 4316, 13, 29904, 62, 18564, 12709, 8, 628, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 7220, 14, 1177, 62, 29762, 13, 19211, 3256, 2836, 28, 7220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 15791, 871, 28, 3605, 62, 15791, 871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 15791, 871, 28, 727, 62, 15791, 871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 62, 13564, 28, 5171, 62, 13564, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 1177, 14, 944, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 38235, 62, 35827, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 1177, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 15675, 8, 198, 31, 38235, 62, 35827, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 28956, 62, 615, 9459, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 3256, 5050, 28, 17816, 7206, 2538, 9328, 6, 12962, 198, 31, 38235, 62, 35827, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 18564, 12709, 8, 628, 198, 4299, 4370, 7, 7220, 62, 312, 11, 1296, 62, 565, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 2836, 329, 44563, 290, 4370, 329, 44563, 290, 2985, 13, 628, 220, 220, 220, 11787, 290, 1296, 2099, 389, 3804, 1912, 319, 11926, 2174, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 2836, 62, 15271, 13, 1136, 62, 7220, 62, 1525, 62, 312, 7, 7220, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 615, 9459, 796, 2836, 62, 15271, 13, 7220, 62, 10134, 62, 615, 9459, 7, 7220, 62, 312, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 11787, 3419, 628, 220, 220, 220, 1296, 796, 2315, 62, 687, 7, 687, 62, 565, 82, 11, 26181, 28, 7220, 8, 198, 220, 220, 220, 1296, 13, 3605, 62, 7220, 796, 2836, 13, 312, 6624, 657, 628, 220, 220, 220, 1303, 3060, 3707, 13, 198, 220, 220, 220, 2711, 602, 796, 7868, 13, 22766, 13, 439, 3419, 198, 220, 220, 220, 1296, 13, 40796, 62, 312, 13, 6679, 1063, 796, 47527, 68, 13, 312, 11, 304, 13, 3672, 8, 329, 304, 287, 2711, 602, 60, 628, 220, 220, 220, 611, 1296, 13, 12102, 378, 62, 261, 62, 46002, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 649, 2985, 761, 257, 3748, 3053, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 11787, 13, 22766, 13, 24455, 7, 12982, 13, 12888, 6624, 1296, 13, 12888, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 13, 24455, 7, 12982, 13, 312, 14512, 2836, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 12405, 13, 9127, 3419, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 32, 2836, 351, 428, 304, 12, 4529, 2209, 1541, 2152, 2637, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4370, 62, 7700, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4362, 262, 2836, 2746, 318, 12006, 284, 423, 281, 4522, 286, 657, 618, 340, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23224, 1231, 281, 3053, 512, 601, 2810, 11, 6865, 6847, 1096, 262, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 351, 257, 4277, 4731, 329, 3053, 512, 601, 11, 523, 326, 340, 481, 651, 257, 3748, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4522, 618, 5364, 284, 262, 6831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 11787, 10786, 62, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 10028, 428, 656, 262, 2139, 869, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 19119, 62, 12888, 7, 687, 13, 12888, 13, 7890, 13, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 367, 29281, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 4363, 13, 13376, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 4821, 284, 3012, 428, 3053, 857, 407, 2152, 13, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5492, 779, 281, 3053, 326, 857, 2637, 828, 705, 38537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4370, 62, 7700, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 3710, 4686, 318, 6153, 13869, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 11085, 62, 3672, 796, 1296, 13, 11085, 62, 3672, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 12957, 62, 3672, 796, 1296, 13, 12957, 62, 3672, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 17946, 1000, 796, 1296, 13, 17946, 1000, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2597, 62, 15271, 13, 7220, 62, 10134, 62, 18090, 7, 14421, 62, 7220, 11, 371, 4316, 13, 29904, 62, 18564, 12709, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 10134, 62, 20333, 796, 1296, 13, 10134, 62, 20333, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 24130, 273, 560, 62, 19522, 796, 1296, 13, 24130, 273, 560, 62, 19522, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 69, 615, 280, 11751, 796, 1296, 13, 69, 615, 280, 11751, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 47730, 796, 1296, 13, 47730, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 282, 4182, 385, 796, 1296, 13, 282, 4182, 385, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 40796, 62, 312, 796, 1296, 13, 40796, 62, 312, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 24280, 62, 4475, 796, 1296, 13, 24280, 62, 4475, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 44517, 62, 9688, 796, 1296, 13, 44517, 62, 9688, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 260, 15164, 62, 17018, 796, 1296, 13, 260, 15164, 62, 17018, 13, 7890, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 4862, 62, 48624, 796, 1296, 13, 4862, 62, 48624, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 21975, 796, 1296, 13, 21975, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 13344, 796, 1296, 13, 13344, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 19205, 796, 1296, 13, 19205, 13, 7890, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 19315, 796, 1296, 13, 19315, 13, 7890, 13, 36311, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 7220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 30919, 796, 2581, 13, 16624, 13, 1136, 10786, 615, 9459, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30919, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 15271, 13, 2617, 62, 615, 9459, 7, 7220, 13, 312, 11, 30919, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2243, 1142, 3970, 13, 19119, 62, 7220, 7, 7220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 37046, 17458, 274, 2759, 6153, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2243, 1142, 3970, 13, 19119, 62, 7220, 7, 7220, 11, 12383, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 37046, 17458, 274, 2759, 2727, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 7220, 13, 312, 6624, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 7220, 13, 1177, 62, 29762, 62, 944, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 7220, 13, 1177, 62, 29762, 62, 7220, 3256, 2836, 62, 312, 28, 7220, 13, 312, 4008, 628, 220, 220, 220, 1441, 4370, 62, 7700, 3419, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 19312, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 50139, 12, 312, 12, 75, 8040, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 18564, 12709, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 19312, 14, 944, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 17953, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 19312, 14, 27, 600, 25, 7220, 62, 312, 29, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 18564, 12709, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 929, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 929, 14, 805, 723, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 929, 14, 14681, 12, 37687, 75, 12, 26209, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 37687, 75, 62, 15271, 13, 641, 495, 62, 7890, 62, 2375, 1144, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 259, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 259, 14, 14681, 12, 37687, 75, 12, 26209, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 259, 14, 10414, 2533, 12, 50139, 12, 312, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 12683, 12, 448, 14, 11537, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 14681, 12, 23317, 12, 75, 8040, 11537, 198, 31, 37687, 75, 62, 15271, 13, 641, 495, 62, 7890, 62, 2375, 1144, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 25927, 62, 28712, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 198, 4299, 2581, 62, 28712, 33529, 198, 220, 220, 220, 37227, 16447, 257, 7846, 290, 3758, 257, 3053, 351, 2792, 284, 13259, 62, 28712, 2443, 526, 15931, 198, 220, 220, 220, 611, 1459, 62, 7220, 13, 271, 62, 41299, 3474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 7220, 13, 1177, 62, 29762, 62, 944, 6, 4008, 628, 220, 220, 220, 1296, 796, 19390, 35215, 7, 25927, 13, 687, 8, 628, 220, 220, 220, 611, 1296, 13, 12102, 378, 62, 261, 62, 46002, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 62, 42503, 62, 15271, 13, 17953, 62, 28712, 62, 43350, 7, 687, 13, 12888, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 2025, 3053, 468, 587, 1908, 284, 4064, 7, 12888, 8, 82, 351, 2252, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 259, 7249, 507, 2637, 11, 3053, 28, 687, 13, 12888, 13, 7890, 828, 705, 13138, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 11195, 13, 11195, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 20857, 3673, 21077, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 4, 7, 12888, 8, 82, 318, 6439, 284, 674, 1080, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 28, 687, 13, 12888, 13, 7890, 828, 705, 38537, 11537, 628, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 7220, 14, 25927, 62, 28712, 13, 19211, 3256, 1296, 28, 687, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 42503, 62, 28712, 14, 27, 8841, 25, 17831, 49029, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 198, 4299, 13259, 62, 28712, 7, 17831, 62, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30027, 1296, 4683, 286, 734, 7032, 11, 9206, 290, 9206, 62, 44754, 13, 628, 220, 220, 220, 47719, 611, 262, 12234, 287, 262, 19016, 318, 1043, 287, 262, 6831, 290, 41033, 198, 220, 220, 220, 468, 407, 21350, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7846, 796, 9206, 62, 42503, 62, 15271, 13, 1136, 62, 12102, 62, 43350, 7, 17831, 62, 8, 198, 220, 220, 220, 2845, 20857, 3673, 21077, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 2949, 4938, 7846, 1043, 33809, 705, 38537, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 7220, 13, 25927, 62, 28712, 6, 4008, 628, 220, 220, 220, 1296, 796, 30027, 35215, 8479, 7, 25927, 13, 687, 8, 628, 220, 220, 220, 611, 1296, 13, 12102, 378, 62, 261, 62, 46002, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 62, 42503, 62, 15271, 13, 42503, 62, 28712, 7, 43350, 11, 1296, 13, 28712, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7644, 28264, 10786, 7120, 9206, 468, 587, 6153, 2637, 828, 705, 13138, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 7220, 13, 12683, 62, 259, 6, 4008, 628, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 7220, 14, 42503, 62, 28712, 13, 19211, 3256, 1296, 28, 687, 8, 628, 198, 31, 17585, 4798, 13, 38629, 7203, 14, 18417, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 28712, 14, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 26209, 62, 50145, 7, 4895, 55, 12, 19778, 12, 29046, 1298, 366, 50, 10067, 1581, 3528, 1268, 20662, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 15675, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 39344, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 46115, 62, 18090, 7, 49, 4316, 13, 29904, 62, 15675, 8, 628, 198, 31, 17585, 4798, 13, 38629, 10786, 14, 18417, 14, 615, 9459, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 38235, 62, 35827, 198 ]
2.490683
3,864
from ua_model.functions import z_minus_its_reciprocal from ua_model.utils import validate_branch_point_positions
[ 6738, 334, 64, 62, 19849, 13, 12543, 2733, 1330, 1976, 62, 40191, 62, 896, 62, 8344, 541, 43270, 198, 6738, 334, 64, 62, 19849, 13, 26791, 1330, 26571, 62, 1671, 3702, 62, 4122, 62, 1930, 1756, 628 ]
3.081081
37
from __future__ import unicode_literals from django.apps import AppConfig
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.619048
21
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Introduces differentiation via perturbations. Example of usage: @perturbed def sign_or(x, axis=-1): s = tf.cast((tf.sign(x) + 1) / 2.0, dtype=tf.bool) result = tf.math.reduce_any(s, axis=axis) return tf.cast(result, dtype=x.dtype) * 2.0 - 1.0 Then sign_or is differentiable (unlike what it seems). It is possible to specify the parameters of the perturbations using: @perturbed(num_samples=1000, sigma=0.1, noise='gumbel') ... The decorator can also be used directly as a function, for example: soft_argsort = perturbed(tf.argsort, num_samples=200, sigma=0.01) """ import functools from typing import Tuple import tensorflow.compat.v2 as tf import tensorflow_probability as tfp _GUMBEL = 'gumbel' _NORMAL = 'normal' SUPPORTED_NOISES = (_GUMBEL, _NORMAL) def sample_noise_with_gradients( noise, shape): """Samples a noise tensor according to a distribution with its gradient. Args: noise: (str) a type of supported noise distribution. shape: tf.Tensor<int>, the shape of the tensor to sample. Returns: A tuple Tensor<float>[shape], Tensor<float>[shape] that corresponds to the sampled noise and the gradient of log the underlying probability distribution function. For instance, for a gaussian noise (normal), the gradient is equal to the noise itself. Raises: ValueError in case the requested noise distribution is not supported. See perturbations.SUPPORTED_NOISES for the list of supported distributions. """ if noise not in SUPPORTED_NOISES: raise ValueError('{} noise is not supported. Use one of [{}]'.format( noise, SUPPORTED_NOISES)) if noise == _GUMBEL: sampler = tfp.distributions.Gumbel(0.0, 1.0) samples = sampler.sample(shape) gradients = 1 - tf.math.exp(-samples) elif noise == _NORMAL: sampler = tfp.distributions.Normal(0.0, 1.0) samples = sampler.sample(shape) gradients = samples return samples, gradients def perturbed(func=None, num_samples = 1000, sigma = 0.05, noise = _NORMAL, batched = True): """Turns a function into a differentiable one via perturbations. The input function has to be the solution to a linear program for the trick to work. For instance the maximum function, the logical operators or the ranks can be expressed as solutions to some linear programs on some polytopes. If this condition is violated though, the result would not hold and there is no guarantee on the validity of the obtained gradients. This function can be used directly or as a decorator. Args: func: the function to be turned into a perturbed and differentiable one. Four I/O signatures for func are currently supported: If batched is True, (1) input [B, D1, ..., Dk], output [B, D1, ..., Dk], k >= 1 (2) input [B, D1, ..., Dk], output [B], k >= 1 If batched is False, (3) input [D1, ..., Dk], output [D1, ..., Dk], k >= 1 (4) input [D1, ..., Dk], output [], k >= 1. num_samples: the number of samples to use for the expectation computation. sigma: the scale of the perturbation. noise: a string representing the noise distribution to be used to sample perturbations. batched: whether inputs to the perturbed function will have a leading batch dimension (True) or consist of a single example (False). Defaults to True. Returns: a function has the same signature as func but that can be back propagated. """ # This is a trick to have the decorator work both with and without arguments. if func is None: return functools.partial( perturbed, num_samples=num_samples, sigma=sigma, noise=noise, batched=batched) @functools.wraps(func) return wrapper
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33160, 383, 3012, 4992, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 15005, 728, 32488, 2884, 22146, 5945, 602, 13, 198, 198, 16281, 286, 8748, 25, 628, 220, 2488, 11766, 37694, 198, 220, 825, 1051, 62, 273, 7, 87, 11, 16488, 10779, 16, 2599, 198, 220, 220, 220, 264, 796, 48700, 13, 2701, 19510, 27110, 13, 12683, 7, 87, 8, 1343, 352, 8, 220, 1220, 362, 13, 15, 11, 288, 4906, 28, 27110, 13, 30388, 8, 198, 220, 220, 220, 1255, 796, 48700, 13, 11018, 13, 445, 7234, 62, 1092, 7, 82, 11, 16488, 28, 22704, 8, 198, 220, 220, 220, 1441, 48700, 13, 2701, 7, 20274, 11, 288, 4906, 28, 87, 13, 67, 4906, 8, 1635, 362, 13, 15, 532, 352, 13, 15, 628, 198, 6423, 1051, 62, 273, 318, 1180, 3379, 357, 403, 2339, 644, 340, 2331, 737, 198, 198, 1026, 318, 1744, 284, 11986, 262, 10007, 286, 262, 22146, 5945, 602, 1262, 25, 198, 220, 2488, 11766, 37694, 7, 22510, 62, 82, 12629, 28, 12825, 11, 264, 13495, 28, 15, 13, 16, 11, 7838, 11639, 70, 2178, 417, 11537, 198, 220, 2644, 198, 198, 464, 11705, 1352, 460, 635, 307, 973, 3264, 355, 257, 2163, 11, 329, 1672, 25, 198, 220, 2705, 62, 22046, 419, 796, 22146, 37694, 7, 27110, 13, 22046, 419, 11, 997, 62, 82, 12629, 28, 2167, 11, 264, 13495, 28, 15, 13, 486, 8, 198, 37811, 198, 198, 11748, 1257, 310, 10141, 198, 6738, 19720, 1330, 309, 29291, 198, 11748, 11192, 273, 11125, 13, 5589, 265, 13, 85, 17, 355, 48700, 198, 11748, 11192, 273, 11125, 62, 1676, 65, 1799, 355, 256, 46428, 198, 198, 62, 38, 5883, 33, 3698, 796, 705, 70, 2178, 417, 6, 198, 62, 35510, 42126, 796, 705, 11265, 6, 198, 40331, 15490, 1961, 62, 15285, 1797, 1546, 796, 44104, 38, 5883, 33, 3698, 11, 4808, 35510, 42126, 8, 628, 198, 4299, 6291, 62, 3919, 786, 62, 4480, 62, 9744, 2334, 7, 198, 220, 220, 220, 7838, 11, 5485, 2599, 198, 220, 37227, 50, 12629, 257, 7838, 11192, 273, 1864, 284, 257, 6082, 351, 663, 31312, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 7838, 25, 357, 2536, 8, 257, 2099, 286, 4855, 7838, 6082, 13, 198, 220, 220, 5485, 25, 48700, 13, 51, 22854, 27, 600, 22330, 262, 5485, 286, 262, 11192, 273, 284, 6291, 13, 628, 220, 16409, 25, 198, 220, 220, 317, 46545, 309, 22854, 27, 22468, 36937, 43358, 4357, 309, 22854, 27, 22468, 36937, 43358, 60, 326, 24866, 284, 262, 198, 220, 220, 35846, 7838, 290, 262, 31312, 286, 2604, 262, 10238, 12867, 198, 220, 220, 6082, 2163, 13, 1114, 4554, 11, 329, 257, 31986, 31562, 7838, 357, 11265, 828, 262, 198, 220, 220, 31312, 318, 4961, 284, 262, 7838, 2346, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 11052, 12331, 287, 1339, 262, 9167, 7838, 6082, 318, 407, 4855, 13, 198, 220, 220, 4091, 22146, 5945, 602, 13, 40331, 15490, 1961, 62, 15285, 1797, 1546, 329, 262, 1351, 286, 4855, 24570, 13, 198, 220, 37227, 198, 220, 611, 7838, 407, 287, 43333, 1961, 62, 15285, 1797, 1546, 25, 198, 220, 220, 220, 5298, 11052, 12331, 10786, 90, 92, 7838, 318, 407, 4855, 13, 5765, 530, 286, 685, 90, 92, 60, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7838, 11, 43333, 1961, 62, 15285, 1797, 1546, 4008, 628, 220, 611, 7838, 6624, 4808, 38, 5883, 33, 3698, 25, 198, 220, 220, 220, 6072, 20053, 796, 256, 46428, 13, 17080, 2455, 507, 13, 38, 2178, 417, 7, 15, 13, 15, 11, 352, 13, 15, 8, 198, 220, 220, 220, 8405, 796, 6072, 20053, 13, 39873, 7, 43358, 8, 198, 220, 220, 220, 3915, 2334, 796, 352, 532, 48700, 13, 11018, 13, 11201, 32590, 82, 12629, 8, 198, 220, 1288, 361, 7838, 6624, 4808, 35510, 42126, 25, 198, 220, 220, 220, 6072, 20053, 796, 256, 46428, 13, 17080, 2455, 507, 13, 26447, 7, 15, 13, 15, 11, 352, 13, 15, 8, 198, 220, 220, 220, 8405, 796, 6072, 20053, 13, 39873, 7, 43358, 8, 198, 220, 220, 220, 3915, 2334, 796, 8405, 628, 220, 1441, 8405, 11, 3915, 2334, 628, 198, 4299, 22146, 37694, 7, 20786, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 82, 12629, 796, 8576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7838, 796, 4808, 35510, 42126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7365, 1740, 796, 6407, 2599, 198, 220, 37227, 17278, 82, 257, 2163, 656, 257, 1180, 3379, 530, 2884, 22146, 5945, 602, 13, 628, 220, 383, 5128, 2163, 468, 284, 307, 262, 4610, 284, 257, 14174, 1430, 329, 262, 6908, 198, 220, 284, 670, 13, 1114, 4554, 262, 5415, 2163, 11, 262, 12219, 12879, 393, 262, 9803, 198, 220, 460, 307, 6241, 355, 8136, 284, 617, 14174, 4056, 319, 617, 7514, 4852, 274, 13, 198, 220, 1002, 428, 4006, 318, 13998, 996, 11, 262, 1255, 561, 407, 1745, 290, 612, 318, 198, 220, 645, 9149, 319, 262, 19648, 286, 262, 6492, 3915, 2334, 13, 628, 220, 770, 2163, 460, 307, 973, 3264, 393, 355, 257, 11705, 1352, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 25439, 25, 262, 2163, 284, 307, 2900, 656, 257, 22146, 37694, 290, 1180, 3379, 530, 13, 198, 220, 220, 220, 6675, 314, 14, 46, 17239, 329, 25439, 389, 3058, 4855, 25, 198, 220, 220, 220, 220, 1002, 7365, 1740, 318, 6407, 11, 198, 220, 220, 220, 220, 220, 357, 16, 8, 5128, 685, 33, 11, 360, 16, 11, 2644, 11, 360, 74, 4357, 5072, 685, 33, 11, 360, 16, 11, 2644, 11, 360, 74, 4357, 479, 18189, 352, 198, 220, 220, 220, 220, 220, 357, 17, 8, 5128, 685, 33, 11, 360, 16, 11, 2644, 11, 360, 74, 4357, 5072, 685, 33, 4357, 479, 18189, 352, 198, 220, 220, 220, 220, 1002, 7365, 1740, 318, 10352, 11, 198, 220, 220, 220, 220, 220, 357, 18, 8, 5128, 685, 35, 16, 11, 2644, 11, 360, 74, 4357, 5072, 685, 35, 16, 11, 2644, 11, 360, 74, 4357, 479, 18189, 352, 198, 220, 220, 220, 220, 220, 357, 19, 8, 5128, 685, 35, 16, 11, 2644, 11, 360, 74, 4357, 5072, 685, 4357, 479, 18189, 352, 13, 198, 220, 220, 997, 62, 82, 12629, 25, 262, 1271, 286, 8405, 284, 779, 329, 262, 17507, 29964, 13, 198, 220, 220, 264, 13495, 25, 262, 5046, 286, 262, 22146, 5945, 341, 13, 198, 220, 220, 7838, 25, 257, 4731, 10200, 262, 7838, 6082, 284, 307, 973, 284, 6291, 198, 220, 220, 220, 22146, 5945, 602, 13, 198, 220, 220, 7365, 1740, 25, 1771, 17311, 284, 262, 22146, 37694, 2163, 481, 423, 257, 3756, 15458, 198, 220, 220, 220, 15793, 357, 17821, 8, 393, 3473, 286, 257, 2060, 1672, 357, 25101, 737, 2896, 13185, 284, 6407, 13, 628, 220, 16409, 25, 198, 220, 220, 257, 2163, 468, 262, 976, 9877, 355, 25439, 475, 326, 460, 307, 736, 8928, 515, 13, 198, 220, 37227, 198, 220, 1303, 770, 318, 257, 6908, 284, 423, 262, 11705, 1352, 670, 1111, 351, 290, 1231, 7159, 13, 198, 220, 611, 25439, 318, 6045, 25, 198, 220, 220, 220, 1441, 1257, 310, 10141, 13, 47172, 7, 198, 220, 220, 220, 220, 220, 220, 220, 22146, 37694, 11, 997, 62, 82, 12629, 28, 22510, 62, 82, 12629, 11, 264, 13495, 28, 82, 13495, 11, 7838, 28, 3919, 786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7365, 1740, 28, 8664, 1740, 8, 628, 220, 2488, 12543, 310, 10141, 13, 29988, 862, 7, 20786, 8, 628, 220, 1441, 29908, 198 ]
3.016609
1,445
#!/usr/bin/env python3 import readline import sys if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 1100, 1370, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.5
36
import hashlib import zlib algorithms = [ zlib.crc32, ] try: import xxhash except ImportError: pass else: algorithms.extend( [xxhash.xxh3_64_intdigest, xxhash.xxh64_intdigest, xxhash.xxh3_128_intdigest, xxhash.xxh32_intdigest] ) def get_hashes(key: str, k: int, max_i: int): """ return array with bit indexes for given value (key) [23, 45, 15] """ assert max_i >= k indexes = set() for i in range(k): ii = i % len(algorithms) value = algorithms[ii](f"{key}_{i}".encode()) % max_i while value in indexes: i += 1 value = algorithms[ii](f"{key}_{i}".encode()) % max_i indexes.add(value) return indexes # str_hash = str(_get_string_int_hash(key)) # indexes = set() # for _hash in _split_string_for_chunks(str_hash, k): # value = int(_hash) % max_i # while value in indexes: # value += 1 # indexes.add(value) # return indexes
[ 11748, 12234, 8019, 198, 11748, 1976, 8019, 198, 198, 282, 7727, 907, 796, 685, 198, 220, 220, 220, 1976, 8019, 13, 66, 6015, 2624, 11, 198, 60, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 31383, 17831, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 17772, 25, 198, 220, 220, 220, 16113, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 5324, 17831, 13, 5324, 71, 18, 62, 2414, 62, 600, 12894, 395, 11, 31383, 17831, 13, 5324, 71, 2414, 62, 600, 12894, 395, 11, 31383, 17831, 13, 5324, 71, 18, 62, 12762, 62, 600, 12894, 395, 11, 31383, 17831, 13, 5324, 71, 2624, 62, 600, 12894, 395, 60, 198, 220, 220, 220, 1267, 628, 198, 4299, 651, 62, 71, 7465, 7, 2539, 25, 965, 11, 479, 25, 493, 11, 3509, 62, 72, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 7177, 351, 1643, 39199, 329, 1813, 1988, 357, 2539, 8, 685, 1954, 11, 4153, 11, 1315, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6818, 3509, 62, 72, 18189, 479, 628, 220, 220, 220, 39199, 796, 900, 3419, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21065, 796, 1312, 4064, 18896, 7, 282, 7727, 907, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 16113, 58, 4178, 16151, 69, 1, 90, 2539, 92, 23330, 72, 92, 1911, 268, 8189, 28955, 4064, 3509, 62, 72, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1988, 287, 39199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 16113, 58, 4178, 16151, 69, 1, 90, 2539, 92, 23330, 72, 92, 1911, 268, 8189, 28955, 4064, 3509, 62, 72, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 13, 2860, 7, 8367, 8, 198, 220, 220, 220, 1441, 39199, 198, 220, 220, 220, 1303, 965, 62, 17831, 796, 965, 28264, 1136, 62, 8841, 62, 600, 62, 17831, 7, 2539, 4008, 198, 220, 220, 220, 1303, 39199, 796, 900, 3419, 198, 220, 220, 220, 1303, 329, 4808, 17831, 287, 4808, 35312, 62, 8841, 62, 1640, 62, 354, 14125, 7, 2536, 62, 17831, 11, 479, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1988, 796, 493, 28264, 17831, 8, 4064, 3509, 62, 72, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 981, 1988, 287, 39199, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 15853, 352, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 39199, 13, 2860, 7, 8367, 8, 198, 220, 220, 220, 1303, 1441, 39199, 628, 198 ]
2.146868
463
from __future__ import absolute_import import unittest from main.maincontroller import MainController from tests.xroad_local_group import xroad_local_group class XroadEditDescriptionLocalGroup(unittest.TestCase): """ UC SERVICE_28 Edit the Description of a Local Group RIA URL: https://jira.ria.ee/browse/XT-285, https://jira.ria.ee/browse/XTKB-155 Depends on finishing other test(s): None Requires helper scenarios: None X-Road version: 6.16.0 """ # except: # main.log('XroadEditDescriptionLocalGroup: Failed to edit the description of a local group') # main.save_exception_data() # assert False # finally: # '''Test teardown''' # main.tearDown()
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 1388, 13, 12417, 36500, 1330, 8774, 22130, 198, 6738, 5254, 13, 87, 6344, 62, 12001, 62, 8094, 1330, 2124, 6344, 62, 12001, 62, 8094, 628, 198, 4871, 1395, 6344, 18378, 11828, 14565, 13247, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14417, 47453, 62, 2078, 5312, 262, 12489, 286, 257, 10714, 4912, 198, 220, 220, 220, 371, 3539, 10289, 25, 3740, 1378, 73, 8704, 13, 7496, 13, 1453, 14, 25367, 325, 14, 25010, 12, 26279, 11, 3740, 1378, 73, 8704, 13, 7496, 13, 1453, 14, 25367, 325, 14, 25010, 22764, 12, 18742, 198, 220, 220, 220, 2129, 2412, 319, 12848, 584, 1332, 7, 82, 2599, 6045, 198, 220, 220, 220, 26848, 31904, 13858, 25, 6045, 198, 220, 220, 220, 1395, 12, 29197, 2196, 25, 718, 13, 1433, 13, 15, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2845, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1388, 13, 6404, 10786, 55, 6344, 18378, 11828, 14565, 13247, 25, 22738, 284, 4370, 262, 6764, 286, 257, 1957, 1448, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1388, 13, 21928, 62, 1069, 4516, 62, 7890, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 6818, 10352, 198, 220, 220, 220, 1303, 3443, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 705, 7061, 14402, 573, 446, 593, 7061, 6, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1388, 13, 83, 451, 8048, 3419, 198 ]
2.736842
266
#!/usr/bin/env python import numpy as np import pandas as pd # First example # Win probability vector p = np.array([0.25,0.50,0.25]) # Decimal odds d = np.array([5.0,1.5,2.0]) # Implied probabilities i = np.array([]) for j in range(len(d)): i = np.append(i,1/d[j]) race = pd.DataFrame() race['p'] = p race['d'] = d race['i'] = i r = np.array([]) for j in range(len(p)): r = np.append(r,p[j]*d[j]) race['r'] = r result = race result['bet'] = False R = 1.0 pt = 0.0 it = 0.0 while True: found = False for j, row in result.iterrows(): # Equivalent # if (row['r']>(1-pt-row['p'])/(1-it-row['i'])) and not(row['bet']): if (row['r']>R) and not(row['bet']): result.at[j,'bet'] = True pt = pt+row['p'] it = it+row['i'] R = (1-pt)/(1-it) found = True break if not(found): break #R = (1-pt)/(1-it) result['f'] = 0.0 for j, row in result.iterrows(): if (row['bet']): result.at[j,'f'] = row['p']-R*row['i'] print(result)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 3274, 1672, 198, 198, 2, 7178, 12867, 15879, 198, 198, 79, 796, 45941, 13, 18747, 26933, 15, 13, 1495, 11, 15, 13, 1120, 11, 15, 13, 1495, 12962, 198, 198, 2, 4280, 4402, 10402, 198, 198, 67, 796, 45941, 13, 18747, 26933, 20, 13, 15, 11, 16, 13, 20, 11, 17, 13, 15, 12962, 198, 198, 2, 34347, 798, 39522, 198, 198, 72, 796, 45941, 13, 18747, 26933, 12962, 198, 1640, 474, 287, 2837, 7, 11925, 7, 67, 8, 2599, 198, 220, 220, 220, 1312, 796, 45941, 13, 33295, 7, 72, 11, 16, 14, 67, 58, 73, 12962, 198, 198, 16740, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 16740, 17816, 79, 20520, 796, 279, 198, 16740, 17816, 67, 20520, 796, 288, 198, 16740, 17816, 72, 20520, 796, 1312, 198, 198, 81, 796, 45941, 13, 18747, 26933, 12962, 198, 1640, 474, 287, 2837, 7, 11925, 7, 79, 8, 2599, 198, 220, 220, 220, 374, 796, 45941, 13, 33295, 7, 81, 11, 79, 58, 73, 60, 9, 67, 58, 73, 12962, 198, 198, 16740, 17816, 81, 20520, 796, 374, 198, 198, 20274, 796, 3234, 198, 20274, 17816, 11181, 20520, 796, 10352, 198, 198, 49, 796, 352, 13, 15, 198, 457, 796, 657, 13, 15, 198, 270, 796, 657, 13, 15, 198, 4514, 6407, 25, 198, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 329, 474, 11, 5752, 287, 1255, 13, 2676, 8516, 33529, 198, 2, 7889, 29540, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 17816, 81, 20520, 33994, 16, 12, 457, 12, 808, 17816, 79, 6, 12962, 29006, 16, 12, 270, 12, 808, 17816, 72, 20520, 4008, 290, 407, 7, 808, 17816, 11181, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 17816, 81, 20520, 29, 49, 8, 290, 407, 7, 808, 17816, 11181, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 265, 58, 73, 4032, 11181, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42975, 796, 42975, 10, 808, 17816, 79, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 796, 340, 10, 808, 17816, 72, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 796, 357, 16, 12, 457, 20679, 7, 16, 12, 270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 611, 407, 7, 9275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 2, 49, 796, 357, 16, 12, 457, 20679, 7, 16, 12, 270, 8, 198, 198, 20274, 17816, 69, 20520, 796, 657, 13, 15, 198, 1640, 474, 11, 5752, 287, 1255, 13, 2676, 8516, 33529, 198, 220, 220, 220, 611, 357, 808, 17816, 11181, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 265, 58, 73, 4032, 69, 20520, 796, 5752, 17816, 79, 20520, 12, 49, 9, 808, 17816, 72, 20520, 198, 198, 4798, 7, 20274, 8, 198 ]
1.928571
546
from collections import deque from aoc.util import load_example, load_input def part1(lines): """ >>> part1(load_example(__file__, '22')) 306 """ cards1, cards2 = prepare_data(lines) while True: turn(cards1, cards2) if len(cards1) == 0: return calc_score(cards2) if len(cards2) == 0: return calc_score(cards1) def part2(lines): """ >>> part2(load_example(__file__, '22')) 291 """ cards1, cards2 = prepare_data(lines) winner, cards = game(cards1, cards2) score = calc_score(cards) return score if __name__ == "__main__": data = load_input(__file__, 2020, "22") print(part1(data)) print(part2(data))
[ 6738, 17268, 1330, 390, 4188, 198, 6738, 257, 420, 13, 22602, 1330, 3440, 62, 20688, 11, 3440, 62, 15414, 628, 628, 198, 198, 4299, 636, 16, 7, 6615, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13163, 636, 16, 7, 2220, 62, 20688, 7, 834, 7753, 834, 11, 705, 1828, 6, 4008, 198, 220, 220, 220, 37255, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4116, 16, 11, 4116, 17, 796, 8335, 62, 7890, 7, 6615, 8, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1210, 7, 27761, 16, 11, 4116, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27761, 16, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 42302, 62, 26675, 7, 27761, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27761, 17, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 42302, 62, 26675, 7, 27761, 16, 8, 628, 198, 198, 4299, 636, 17, 7, 6615, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13163, 636, 17, 7, 2220, 62, 20688, 7, 834, 7753, 834, 11, 705, 1828, 6, 4008, 198, 220, 220, 220, 43336, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4116, 16, 11, 4116, 17, 796, 8335, 62, 7890, 7, 6615, 8, 198, 220, 220, 220, 8464, 11, 4116, 796, 983, 7, 27761, 16, 11, 4116, 17, 8, 198, 220, 220, 220, 4776, 796, 42302, 62, 26675, 7, 27761, 8, 198, 220, 220, 220, 1441, 4776, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1366, 796, 3440, 62, 15414, 7, 834, 7753, 834, 11, 12131, 11, 366, 1828, 4943, 198, 220, 220, 220, 3601, 7, 3911, 16, 7, 7890, 4008, 198, 220, 220, 220, 3601, 7, 3911, 17, 7, 7890, 4008, 198 ]
2.227692
325
from smtplib import SMTPException from django.contrib import admin, messages from django.utils.timezone import now from .site import admin_site from .individual_command import IndividualCommandAdmin from .. import models, forms admin_site.register(models.MemberCommand, MemberCommandAdmin)
[ 6738, 895, 83, 489, 571, 1330, 9447, 7250, 16922, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 11, 6218, 198, 6738, 42625, 14208, 13, 26791, 13, 2435, 11340, 1330, 783, 198, 198, 6738, 764, 15654, 1330, 13169, 62, 15654, 198, 6738, 764, 43129, 62, 21812, 1330, 18629, 21575, 46787, 198, 6738, 11485, 1330, 4981, 11, 5107, 628, 198, 198, 28482, 62, 15654, 13, 30238, 7, 27530, 13, 27608, 21575, 11, 10239, 21575, 46787, 8, 198 ]
3.831169
77
"""Leetcode 1. Two Sum Easy URL: https://leetcode.com/problems/two-sum/ Given an array of integers, return indices of the two numbers such that they add up to a specific target. You may assume that each input would have exactly one solution, and you may not use the same element twice. Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. """ if __name__ == '__main__': main()
[ 37811, 3123, 316, 8189, 352, 13, 4930, 5060, 198, 28406, 198, 198, 21886, 25, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 11545, 12, 16345, 14, 198, 198, 15056, 281, 7177, 286, 37014, 11, 1441, 36525, 286, 262, 734, 3146, 884, 326, 220, 198, 9930, 751, 510, 284, 257, 2176, 2496, 13, 198, 198, 1639, 743, 7048, 326, 1123, 5128, 561, 423, 3446, 530, 4610, 11, 290, 345, 220, 198, 11261, 407, 779, 262, 976, 5002, 5403, 13, 198, 198, 16281, 25, 198, 198, 15056, 997, 82, 796, 685, 17, 11, 767, 11, 1367, 11, 1315, 4357, 2496, 796, 860, 11, 198, 198, 8128, 997, 82, 58, 15, 60, 1343, 997, 82, 58, 16, 60, 796, 362, 1343, 767, 796, 860, 11, 198, 7783, 685, 15, 11, 352, 4083, 198, 37811, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 628 ]
2.883871
155
import FWCore.ParameterSet.Config as cms #from HLTrigger.HLTfilters.hltHighLevel_cfi import * #exoticaMuHLT = hltHighLevel #Define the HLT path to be used. #exoticaMuHLT.HLTPaths =['HLT_L1MuOpen'] #exoticaMuHLT.TriggerResultsTag = cms.InputTag("TriggerResults","","HLT8E29") #Define the HLT quality cut #exoticaHLTMuonFilter = cms.EDFilter("HLTSummaryFilter", # summary = cms.InputTag("hltTriggerSummaryAOD","","HLT8E29"), # trigger summary # member = cms.InputTag("hltL3MuonCandidates","","HLT8E29"), # filter or collection # cut = cms.string("pt>0"), # cut on trigger object # minN = cms.int32(0) # min. # of passing objects needed # ) #Define the Reco quality cut from SimGeneral.HepPDTESSource.pythiapdt_cfi import * # Make the charged candidate collections from tracks allTracks = cms.EDProducer("TrackViewCandidateProducer", src = cms.InputTag("generalTracks"), particleType = cms.string('mu+'), cut = cms.string('pt > 0'), filter = cms.bool(True) ) staTracks = cms.EDProducer("TrackViewCandidateProducer", src = cms.InputTag("standAloneMuons","UpdatedAtVtx"), particleType = cms.string('mu+'), cut = cms.string('pt > 0.5 && abs(d0) < 2.0 && abs(vz) < 25.0'), filter = cms.bool(True) ) # Make the input candidate collections tagCands = cms.EDFilter("MuonRefSelector", src = cms.InputTag("muons"), cut = cms.string('isGlobalMuon > 0 && pt > 1.0 && abs(eta) < 2.1'), filter = cms.bool(True) ) # Standalone muon tracks (probes) staCands = cms.EDFilter("RecoChargedCandidateRefSelector", src = cms.InputTag("staTracks"), cut = cms.string('pt > 0.5 && abs(eta) < 2.1'), filter = cms.bool(True) ) # Tracker muons (to be matched) tkProbeCands = cms.EDFilter("RecoChargedCandidateRefSelector", src = cms.InputTag("allTracks"), cut = cms.string('pt > 0.5'), filter = cms.bool(True) ) # Match track and stand alone candidates # to get the passing probe candidates TkStaMap = cms.EDProducer("TrivialDeltaRViewMatcher", src = cms.InputTag("tkProbeCands"), distMin = cms.double(0.15), matched = cms.InputTag("staCands"), filter = cms.bool(True) ) # Use the producer to get a list of matched candidates TkStaMatched = cms.EDProducer("RecoChargedCandidateMatchedProbeMaker", Matched = cms.untracked.bool(True), ReferenceSource = cms.untracked.InputTag("staCands"), ResMatchMapSource = cms.untracked.InputTag("TkStaMap"), CandidateSource = cms.untracked.InputTag("tkProbeCands"), filter = cms.bool(True) ) TkStaUnmatched = cms.EDProducer("RecoChargedCandidateMatchedProbeMaker", Matched = cms.untracked.bool(False), ReferenceSource = cms.untracked.InputTag("staCands"), ResMatchMapSource = cms.untracked.InputTag("TkStaMap"), CandidateSource = cms.untracked.InputTag("tkProbeCands"), filter = cms.bool(True) ) # Make the tag probe association map JPsiMMTagProbeMap = cms.EDProducer("TagProbeMassProducer", MassMaxCut = cms.untracked.double(4.5), TagCollection = cms.InputTag("tagCands"), MassMinCut = cms.untracked.double(1.5), ProbeCollection = cms.InputTag("tkProbeCands"), PassingProbeCollection = cms.InputTag("TkStaMatched") ) JPsiMMTPFilter = cms.EDFilter("TagProbeMassEDMFilter", tpMapName = cms.string('JPsiMMTagProbeMap') ) ZMMTagProbeMap = cms.EDProducer("TagProbeMassProducer", MassMaxCut = cms.untracked.double(120.0), TagCollection = cms.InputTag("tagCands"), MassMinCut = cms.untracked.double(50.0), ProbeCollection = cms.InputTag("tkProbeCands"), PassingProbeCollection = cms.InputTag("TkStaMatched") ) ZMMTPFilter = cms.EDFilter("TagProbeMassEDMFilter", tpMapName = cms.string('ZMMTagProbeMap') ) #Define group sequence, using HLT/Reco quality cut. #exoticaMuHLTQualitySeq = cms.Sequence() tagProbeSeq = cms.Sequence(allTracks+staTracks*tagCands+tkProbeCands+staCands*TkStaMap*TkStaMatched) muonJPsiMMRecoQualitySeq = cms.Sequence( #exoticaMuHLT+ tagProbeSeq+JPsiMMTagProbeMap+JPsiMMTPFilter ) muonZMMRecoQualitySeq = cms.Sequence( #exoticaMuHLT+ tagProbeSeq+ZMMTagProbeMap+ZMMTPFilter )
[ 11748, 48849, 14055, 13, 36301, 7248, 13, 16934, 355, 269, 907, 201, 198, 201, 198, 2, 6738, 38312, 48344, 13, 6581, 51, 10379, 1010, 13, 71, 2528, 11922, 4971, 62, 66, 12463, 1330, 1635, 201, 198, 2, 1069, 313, 3970, 33239, 6581, 51, 796, 289, 2528, 11922, 4971, 201, 198, 2, 7469, 500, 262, 367, 27734, 3108, 284, 307, 973, 13, 201, 198, 2, 1069, 313, 3970, 33239, 6581, 51, 13, 6581, 7250, 33148, 796, 17816, 6581, 51, 62, 43, 16, 33239, 11505, 20520, 201, 198, 2, 1069, 313, 3970, 33239, 6581, 51, 13, 48344, 25468, 24835, 796, 269, 907, 13, 20560, 24835, 7203, 48344, 25468, 2430, 2430, 6581, 51, 23, 36, 1959, 4943, 201, 198, 201, 198, 2, 7469, 500, 262, 367, 27734, 3081, 2005, 220, 201, 198, 2, 1069, 313, 3970, 6581, 15972, 84, 261, 22417, 796, 269, 907, 13, 1961, 22417, 7203, 6581, 4694, 388, 6874, 22417, 1600, 201, 198, 2, 220, 220, 220, 10638, 796, 269, 907, 13, 20560, 24835, 7203, 71, 2528, 48344, 22093, 32, 3727, 2430, 2430, 6581, 51, 23, 36, 1959, 12340, 1303, 7616, 10638, 201, 198, 2, 220, 220, 220, 2888, 220, 796, 269, 907, 13, 20560, 24835, 7203, 71, 2528, 43, 18, 33239, 261, 41572, 37051, 2430, 2430, 6581, 51, 23, 36, 1959, 12340, 220, 220, 220, 220, 220, 1303, 8106, 393, 4947, 197, 197, 197, 197, 197, 197, 197, 197, 197, 201, 198, 2, 220, 220, 220, 2005, 220, 220, 220, 220, 796, 269, 907, 13, 8841, 7203, 457, 29, 15, 12340, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2005, 319, 7616, 2134, 201, 198, 2, 220, 220, 220, 949, 45, 220, 220, 220, 796, 269, 907, 13, 600, 2624, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 949, 13, 1303, 286, 6427, 5563, 2622, 201, 198, 2, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 2, 7469, 500, 262, 3311, 78, 3081, 2005, 201, 198, 6738, 3184, 12218, 13, 39, 538, 5760, 51, 1546, 7416, 13, 79, 5272, 72, 499, 28664, 62, 66, 12463, 1330, 1635, 201, 198, 201, 198, 2, 6889, 262, 5047, 4540, 17268, 422, 8339, 201, 198, 439, 2898, 4595, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 24802, 7680, 41572, 20540, 11547, 2189, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 24622, 2898, 4595, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18758, 6030, 796, 269, 907, 13, 8841, 10786, 30300, 10, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 269, 907, 13, 8841, 10786, 457, 1875, 657, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 38031, 2898, 4595, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 24802, 7680, 41572, 20540, 11547, 2189, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 1481, 2348, 505, 33239, 684, 2430, 17354, 2953, 53, 17602, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18758, 6030, 796, 269, 907, 13, 8841, 10786, 30300, 10, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 269, 907, 13, 8841, 10786, 457, 1875, 657, 13, 20, 11405, 2352, 7, 67, 15, 8, 1279, 362, 13, 15, 11405, 2352, 7, 85, 89, 8, 1279, 1679, 13, 15, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 6889, 262, 5128, 4540, 17268, 201, 198, 12985, 34, 1746, 796, 269, 907, 13, 1961, 22417, 7203, 33239, 261, 8134, 17563, 273, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 30300, 684, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 269, 907, 13, 8841, 10786, 271, 22289, 33239, 261, 1875, 657, 11405, 42975, 1875, 352, 13, 15, 11405, 2352, 7, 17167, 8, 1279, 362, 13, 16, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 5751, 17749, 38779, 261, 8339, 357, 1676, 12636, 8, 201, 198, 38031, 34, 1746, 796, 269, 907, 13, 1961, 22417, 7203, 6690, 78, 28316, 276, 41572, 20540, 8134, 17563, 273, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 38031, 2898, 4595, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 269, 907, 13, 8841, 10786, 457, 1875, 657, 13, 20, 11405, 2352, 7, 17167, 8, 1279, 362, 13, 16, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 26885, 38779, 684, 357, 1462, 307, 14451, 8, 201, 198, 30488, 2964, 1350, 34, 1746, 796, 269, 907, 13, 1961, 22417, 7203, 6690, 78, 28316, 276, 41572, 20540, 8134, 17563, 273, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 439, 2898, 4595, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 269, 907, 13, 8841, 10786, 457, 1875, 657, 13, 20, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 13225, 2610, 290, 1302, 3436, 5871, 201, 198, 2, 284, 651, 262, 6427, 12774, 5871, 201, 198, 51, 74, 1273, 64, 13912, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 14824, 85, 498, 42430, 49, 7680, 19044, 2044, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 269, 907, 13, 20560, 24835, 7203, 30488, 2964, 1350, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 9452, 796, 269, 907, 13, 23352, 7, 15, 13, 1314, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 796, 269, 907, 13, 20560, 24835, 7203, 38031, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 5765, 262, 9920, 284, 651, 257, 1351, 286, 14451, 5871, 201, 198, 51, 74, 1273, 64, 44, 14265, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 6690, 78, 28316, 276, 41572, 20540, 44, 14265, 2964, 1350, 48890, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6550, 1740, 796, 269, 907, 13, 403, 2213, 6021, 13, 30388, 7, 17821, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20984, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 38031, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1874, 23850, 13912, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 51, 74, 1273, 64, 13912, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40327, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 30488, 2964, 1350, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 51, 74, 1273, 64, 3118, 31409, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 6690, 78, 28316, 276, 41572, 20540, 44, 14265, 2964, 1350, 48890, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6550, 1740, 796, 269, 907, 13, 403, 2213, 6021, 13, 30388, 7, 25101, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20984, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 38031, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1874, 23850, 13912, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 51, 74, 1273, 64, 13912, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40327, 7416, 796, 269, 907, 13, 403, 2213, 6021, 13, 20560, 24835, 7203, 30488, 2964, 1350, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 796, 269, 907, 13, 30388, 7, 17821, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 2, 6889, 262, 7621, 12774, 8112, 3975, 201, 198, 41, 12016, 72, 12038, 24835, 2964, 1350, 13912, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 24835, 2964, 1350, 20273, 11547, 2189, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5674, 11518, 26254, 796, 269, 907, 13, 403, 2213, 6021, 13, 23352, 7, 19, 13, 20, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17467, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 12985, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5674, 9452, 26254, 796, 269, 907, 13, 403, 2213, 6021, 13, 23352, 7, 16, 13, 20, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42600, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 30488, 2964, 1350, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46389, 2964, 1350, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 51, 74, 1273, 64, 44, 14265, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 41, 12016, 72, 12038, 7250, 22417, 796, 269, 907, 13, 1961, 22417, 7203, 24835, 2964, 1350, 20273, 1961, 44, 22417, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 79, 13912, 5376, 796, 269, 907, 13, 8841, 10786, 41, 12016, 72, 12038, 24835, 2964, 1350, 13912, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 57, 12038, 24835, 2964, 1350, 13912, 796, 269, 907, 13, 1961, 11547, 2189, 7203, 24835, 2964, 1350, 20273, 11547, 2189, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5674, 11518, 26254, 796, 269, 907, 13, 403, 2213, 6021, 13, 23352, 7, 10232, 13, 15, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17467, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 12985, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5674, 9452, 26254, 796, 269, 907, 13, 403, 2213, 6021, 13, 23352, 7, 1120, 13, 15, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42600, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 30488, 2964, 1350, 34, 1746, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46389, 2964, 1350, 36307, 796, 269, 907, 13, 20560, 24835, 7203, 51, 74, 1273, 64, 44, 14265, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 57, 12038, 7250, 22417, 796, 269, 907, 13, 1961, 22417, 7203, 24835, 2964, 1350, 20273, 1961, 44, 22417, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 79, 13912, 5376, 796, 269, 907, 13, 8841, 10786, 57, 12038, 24835, 2964, 1350, 13912, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 201, 198, 201, 198, 2, 7469, 500, 1448, 8379, 11, 1262, 367, 27734, 14, 6690, 78, 3081, 2005, 13, 220, 201, 198, 2, 1069, 313, 3970, 33239, 6581, 51, 35013, 4653, 80, 796, 269, 907, 13, 44015, 594, 3419, 201, 198, 12985, 2964, 1350, 4653, 80, 796, 269, 907, 13, 44015, 594, 7, 439, 2898, 4595, 10, 38031, 2898, 4595, 9, 12985, 34, 1746, 10, 30488, 2964, 1350, 34, 1746, 10, 38031, 34, 1746, 9, 51, 74, 1273, 64, 13912, 9, 51, 74, 1273, 64, 44, 14265, 8, 201, 198, 201, 198, 30300, 261, 41, 12016, 72, 12038, 6690, 78, 35013, 4653, 80, 796, 269, 907, 13, 44015, 594, 7, 201, 198, 220, 220, 220, 1303, 1069, 313, 3970, 33239, 6581, 51, 10, 201, 198, 220, 220, 220, 7621, 2964, 1350, 4653, 80, 10, 41, 12016, 72, 12038, 24835, 2964, 1350, 13912, 10, 41, 12016, 72, 12038, 7250, 22417, 201, 198, 220, 220, 220, 1267, 201, 198, 201, 198, 30300, 261, 57, 12038, 6690, 78, 35013, 4653, 80, 796, 269, 907, 13, 44015, 594, 7, 201, 198, 220, 220, 220, 1303, 1069, 313, 3970, 33239, 6581, 51, 10, 201, 198, 220, 220, 220, 7621, 2964, 1350, 4653, 80, 10, 57, 12038, 24835, 2964, 1350, 13912, 10, 57, 12038, 7250, 22417, 201, 198, 220, 220, 220, 1267, 201, 198, 201, 198 ]
1.732558
3,354
from utils.BaseFlags import parser as parser parser.add_argument('--dataset', type=str, default='MMNIST', help="name of the dataset") parser.add_argument('--style_dim', type=int, default=0, help="style dimensionality") # TODO: use modality-specific style dimensions? parser.add_argument('--num_classes', type=int, default=10, help="number of classes on which the data set trained") parser.add_argument('--len_sequence', type=int, default=8, help="length of sequence") parser.add_argument('--img_size_m1', type=int, default=28, help="img dimension (width/height)") parser.add_argument('--num_channels_m1', type=int, default=1, help="number of channels in images") parser.add_argument('--img_size_m2', type=int, default=32, help="img dimension (width/height)") parser.add_argument('--num_channels_m2', type=int, default=3, help="number of channels in images") parser.add_argument('--dim', type=int, default=64, help="number of classes on which the data set trained") parser.add_argument('--data_multiplications', type=int, default=1, help="number of pairs per sample") parser.add_argument('--num_hidden_layers', type=int, default=1, help="number of channels in images") parser.add_argument('--likelihood', type=str, default='laplace', help="output distribution") # data parser.add_argument('--unimodal-datapaths-train', nargs="+", type=str, help="directories where training data is stored") parser.add_argument('--unimodal-datapaths-test', nargs="+", type=str, help="directories where test data is stored") parser.add_argument('--pretrained-classifier-paths', nargs="+", type=str, help="paths to pretrained classifiers") # multimodal parser.add_argument('--subsampled_reconstruction', default=True, help="subsample reconstruction path") parser.add_argument('--include_prior_expert', action='store_true', default=False, help="factorized_representation") # weighting of loss terms parser.add_argument('--div_weight', type=float, default=None, help="default weight divergence per modality, if None use 1/(num_mods+1).") parser.add_argument('--div_weight_uniform_content', type=float, default=None, help="default weight divergence term prior, if None use (1/num_mods+1)") # annealing parser.add_argument('--kl_annealing', type=int, default=0, help="number of kl annealing steps; 0 if no annealing should be done")
[ 6738, 3384, 4487, 13, 14881, 40053, 1330, 30751, 355, 30751, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 3256, 2099, 28, 2536, 11, 4277, 11639, 12038, 45, 8808, 3256, 1037, 2625, 3672, 286, 262, 27039, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 7635, 62, 27740, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 2625, 7635, 15793, 1483, 4943, 220, 1303, 16926, 46, 25, 779, 953, 1483, 12, 11423, 3918, 15225, 30, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 37724, 3256, 2099, 28, 600, 11, 4277, 28, 940, 11, 1037, 2625, 17618, 286, 6097, 319, 543, 262, 1366, 900, 8776, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 11925, 62, 43167, 3256, 2099, 28, 600, 11, 4277, 28, 23, 11, 1037, 2625, 13664, 286, 8379, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 9600, 62, 7857, 62, 76, 16, 3256, 2099, 28, 600, 11, 4277, 28, 2078, 11, 1037, 2625, 9600, 15793, 357, 10394, 14, 17015, 8, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 354, 8961, 62, 76, 16, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 2625, 17618, 286, 9619, 287, 4263, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 9600, 62, 7857, 62, 76, 17, 3256, 2099, 28, 600, 11, 4277, 28, 2624, 11, 1037, 2625, 9600, 15793, 357, 10394, 14, 17015, 8, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 354, 8961, 62, 76, 17, 3256, 2099, 28, 600, 11, 4277, 28, 18, 11, 1037, 2625, 17618, 286, 9619, 287, 4263, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 27740, 3256, 2099, 28, 600, 11, 4277, 28, 2414, 11, 1037, 2625, 17618, 286, 6097, 319, 543, 262, 1366, 900, 8776, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 7890, 62, 47945, 3736, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 2625, 17618, 286, 14729, 583, 6291, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 22510, 62, 30342, 62, 75, 6962, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 2625, 17618, 286, 9619, 287, 4263, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 2339, 11935, 3256, 2099, 28, 2536, 11, 4277, 11639, 5031, 5372, 3256, 1037, 2625, 22915, 6082, 4943, 198, 198, 2, 1366, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 403, 320, 375, 282, 12, 19608, 499, 33148, 12, 27432, 3256, 299, 22046, 2625, 10, 1600, 2099, 28, 2536, 11, 1037, 2625, 12942, 1749, 810, 3047, 1366, 318, 8574, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 403, 320, 375, 282, 12, 19608, 499, 33148, 12, 9288, 3256, 299, 22046, 2625, 10, 1600, 2099, 28, 2536, 11, 1037, 2625, 12942, 1749, 810, 1332, 1366, 318, 8574, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 5310, 13363, 12, 4871, 7483, 12, 6978, 82, 3256, 299, 22046, 2625, 10, 1600, 2099, 28, 2536, 11, 1037, 2625, 6978, 82, 284, 2181, 13363, 1398, 13350, 4943, 198, 198, 2, 43104, 375, 282, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 7266, 37687, 10137, 62, 260, 9979, 2762, 3256, 4277, 28, 17821, 11, 1037, 2625, 7266, 39873, 25056, 3108, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 17256, 62, 3448, 273, 62, 1069, 11766, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 2625, 31412, 1143, 62, 15603, 341, 4943, 198, 198, 2, 3463, 278, 286, 2994, 2846, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 7146, 62, 6551, 3256, 2099, 28, 22468, 11, 4277, 28, 14202, 11, 1037, 2625, 12286, 3463, 43366, 583, 953, 1483, 11, 611, 6045, 779, 352, 29006, 22510, 62, 24122, 10, 16, 8, 19570, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 7146, 62, 6551, 62, 403, 6933, 62, 11299, 3256, 2099, 28, 22468, 11, 4277, 28, 14202, 11, 1037, 2625, 12286, 3463, 43366, 3381, 3161, 11, 611, 6045, 779, 357, 16, 14, 22510, 62, 24122, 10, 16, 8, 4943, 198, 198, 2, 281, 710, 4272, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 41582, 62, 21952, 4272, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 2625, 17618, 286, 479, 75, 281, 710, 4272, 4831, 26, 657, 611, 645, 281, 710, 4272, 815, 307, 1760, 4943, 198 ]
3.260563
710
# -*- coding: utf-8 -*- from . import enum from . import vo from .RoleProxy import RoleProxy from .UserProxy import UserProxy
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 764, 1330, 33829, 198, 6738, 764, 1330, 7608, 198, 6738, 764, 47445, 44148, 1330, 20934, 44148, 198, 6738, 764, 12982, 44148, 1330, 11787, 44148, 198 ]
3.097561
41
import numpy as np import matplotlib.pyplot as plt
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628 ]
3.058824
17
from __future__ import print_function, absolute_import, division, unicode_literals import errno import glob import os import re import zipfile from hyp3lib.execute import execute def prepare_files(csv_file): """Download granules and unzip granules Given a CSV file of granule names, download the granules and unzip them, removing the zip files as we go. Note: This will unzip and REMOVE ALL ZIP FILES in the current directory. """ cmd = "get_asf.py %s" % csv_file execute(cmd) os.rmdir("download") for myfile in os.listdir("."): if ".zip" in myfile: try: zip_ref = zipfile.ZipFile(myfile, 'r') zip_ref.extractall(".") zip_ref.close() except: print("Unable to unzip file {}".format(myfile)) else: print("WARNING: {} not recognized as a zip file".format(myfile)) def get_file_list(): """ Return a list of file names and file dates, including all SAFE directories, found in the current directory, sorted by date. """ files = [] filenames = [] filedates = [] # Set up the list of files to process i = 0 for myfile in os.listdir("."): if ".SAFE" in myfile and os.path.isdir(myfile): t = re.split('_+', myfile) m = [myfile, t[4][0:15]] files.append(m) i += 1 print('Found %s files to process' % i) files.sort(key=lambda row: row[1]) print(files) for i in range(len(files)): filenames.append(files[i][0]) filedates.append(files[i][1]) return filenames, filedates def mkdir_p(path): """ Make parent directories as needed and no error if existing. Works like `mkdir -p`. """ try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 4112, 62, 11748, 11, 7297, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 11454, 3919, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 19974, 7753, 198, 198, 6738, 5328, 18, 8019, 13, 41049, 1330, 12260, 628, 198, 4299, 8335, 62, 16624, 7, 40664, 62, 7753, 2599, 198, 220, 220, 220, 37227, 10002, 19468, 5028, 290, 555, 13344, 19468, 5028, 628, 220, 220, 220, 11259, 257, 44189, 2393, 286, 19468, 2261, 3891, 11, 4321, 262, 19468, 5028, 290, 555, 13344, 606, 11, 198, 220, 220, 220, 10829, 262, 19974, 3696, 355, 356, 467, 13, 5740, 25, 770, 481, 555, 13344, 290, 22657, 46, 6089, 11096, 42977, 198, 220, 220, 220, 34020, 1546, 287, 262, 1459, 8619, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23991, 796, 366, 1136, 62, 292, 69, 13, 9078, 4064, 82, 1, 4064, 269, 21370, 62, 7753, 198, 220, 220, 220, 12260, 7, 28758, 8, 198, 220, 220, 220, 28686, 13, 81, 9132, 343, 7203, 15002, 4943, 198, 220, 220, 220, 329, 616, 7753, 287, 28686, 13, 4868, 15908, 7203, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27071, 13344, 1, 287, 616, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 5420, 796, 19974, 7753, 13, 41729, 8979, 7, 1820, 7753, 11, 705, 81, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 5420, 13, 2302, 974, 439, 7203, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 5420, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3118, 540, 284, 555, 13344, 2393, 23884, 1911, 18982, 7, 1820, 7753, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 31502, 25, 23884, 407, 8018, 355, 257, 19974, 2393, 1911, 18982, 7, 1820, 7753, 4008, 628, 198, 4299, 651, 62, 7753, 62, 4868, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 1351, 286, 2393, 3891, 290, 2393, 9667, 11, 1390, 477, 37630, 36, 198, 220, 220, 220, 29196, 11, 1043, 287, 262, 1459, 8619, 11, 23243, 416, 3128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 1226, 268, 1047, 796, 17635, 198, 220, 220, 220, 5717, 689, 796, 17635, 628, 220, 220, 220, 1303, 5345, 510, 262, 1351, 286, 3696, 284, 1429, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 329, 616, 7753, 287, 28686, 13, 4868, 15908, 7203, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27071, 4090, 15112, 1, 287, 616, 7753, 290, 28686, 13, 6978, 13, 9409, 343, 7, 1820, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 302, 13, 35312, 10786, 62, 10, 3256, 616, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 685, 1820, 7753, 11, 256, 58, 19, 7131, 15, 25, 1314, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 7, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 3601, 10786, 21077, 4064, 82, 3696, 284, 1429, 6, 4064, 1312, 8, 198, 220, 220, 220, 3696, 13, 30619, 7, 2539, 28, 50033, 5752, 25, 5752, 58, 16, 12962, 198, 220, 220, 220, 3601, 7, 16624, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 16624, 8, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 13, 33295, 7, 16624, 58, 72, 7131, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5717, 689, 13, 33295, 7, 16624, 58, 72, 7131, 16, 12962, 628, 220, 220, 220, 1441, 1226, 268, 1047, 11, 5717, 689, 628, 198, 198, 4299, 33480, 15908, 62, 79, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6889, 2560, 29196, 355, 2622, 290, 645, 4049, 611, 4683, 13, 10933, 588, 4600, 28015, 15908, 532, 79, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 2859, 25, 220, 1303, 11361, 1875, 17, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2859, 13, 8056, 3919, 6624, 11454, 3919, 13, 36, 6369, 8808, 290, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198 ]
2.276941
863
from django.db import models from django.conf import settings from django.utils.text import slugify import uuid # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 26791, 13, 5239, 1330, 31065, 1958, 198, 11748, 334, 27112, 198, 198, 2, 13610, 534, 4981, 994, 13, 628, 628, 628, 628 ]
3.5
42
""" This module illustrates how to compute Precision at k and Recall at k metrics. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import defaultdict import time import datetime import random import numpy as np import six from tabulate import tabulate from surprise import Dataset from surprise.model_selection import cross_validate from surprise.model_selection import KFold from surprise import NormalPredictor from surprise import BaselineOnly from surprise import KNNBasic from surprise import KNNWithMeans from surprise import KNNBaseline from surprise import SVD from surprise import SVDpp from surprise import NMF from surprise import SlopeOne from surprise import CoClustering from surprise.model_selection import train_test_split classes = (SVD, SVDpp, NMF, SlopeOne, KNNBasic, KNNWithMeans, KNNBaseline, CoClustering, BaselineOnly, NormalPredictor) # ugly dict to map algo names and datasets to their markdown links in the table stable = 'http://surprise.readthedocs.io/en/stable/' LINK = {'SVD': '[{}]({})'.format('SVD', stable + 'matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVD'), 'SVDpp': '[{}]({})'.format('SVD++', stable + 'matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.SVDpp'), 'NMF': '[{}]({})'.format('NMF', stable + 'matrix_factorization.html#surprise.prediction_algorithms.matrix_factorization.NMF'), 'SlopeOne': '[{}]({})'.format('Slope One', stable + 'slope_one.html#surprise.prediction_algorithms.slope_one.SlopeOne'), 'KNNBasic': '[{}]({})'.format('k-NN', stable + 'knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic'), 'KNNWithMeans': '[{}]({})'.format('Centered k-NN', stable + 'knn_inspired.html#surprise.prediction_algorithms.knns.KNNWithMeans'), 'KNNBaseline': '[{}]({})'.format('k-NN Baseline', stable + 'knn_inspired.html#surprise.prediction_algorithms.knns.KNNBaseline'), 'CoClustering': '[{}]({})'.format('Co-Clustering', stable + 'co_clustering.html#surprise.prediction_algorithms.co_clustering.CoClustering'), 'BaselineOnly': '[{}]({})'.format('Baseline', stable + 'basic_algorithms.html#surprise.prediction_algorithms.baseline_only.BaselineOnly'), 'NormalPredictor': '[{}]({})'.format('Random', stable + 'basic_algorithms.html#surprise.prediction_algorithms.random_pred.NormalPredictor'), 'ml-100k': '[{}]({})'.format('Movielens 100k', 'http://grouplens.org/datasets/movielens/100k'), 'ml-1m': '[{}]({})'.format('Movielens 1M', 'http://grouplens.org/datasets/movielens/1m'), } def precision_recall_at_k(predictions, k=10, threshold=3.5): '''Return precision and recall at k metrics for each user.''' # First map the predictions to each user. user_est_true = defaultdict(list) for uid, _, true_r, est, _ in predictions: user_est_true[uid].append((est, true_r)) precisions = dict() recalls = dict() for uid, user_ratings in user_est_true.items(): # Sort user ratings by estimated value user_ratings.sort(key=lambda x: x[0], reverse=True) # Number of relevant items n_rel = sum((true_r >= threshold) for (_, true_r) in user_ratings) # Number of recommended items in top k n_rec_k = sum((est >= threshold) for (est, _) in user_ratings[:k]) # Number of relevant and recommended items in top k n_rel_and_rec_k = sum(((true_r >= threshold) and (est >= threshold)) for (est, true_r) in user_ratings[:k]) # Precision@K: Proportion of recommended items that are relevant precisions[uid] = n_rel_and_rec_k / n_rec_k if n_rec_k != 0 else 1 # Recall@K: Proportion of relevant items that are recommended recalls[uid] = n_rel_and_rec_k / n_rel if n_rel != 0 else 1 return precisions, recalls dataset = 'ml-100k' data = Dataset.load_builtin('ml-100k') kf = KFold(n_splits=5) trainset,testset = train_test_split(data,test_size=.75) ''' for trainset, testset in kf.split(data): algo.fit(trainset) predictions = algo.test(testset) precisions, recalls = precision_recall_at_k(predictions, k=5, threshold=4) # Precision and recall can then be averaged over all users prec = sum(p for p in precisions.values()) / len(precisions) recall = sum(rec for rec in recalls.values()) / len(recalls) f1 = 2 * prec * recall / (prec + recall) print(prec) print(recall) print(f1) ''' table = [] for klass in classes: start = time.time() if klass == 'SVD': algo = SVD() elif klass == 'SVDpp': algo = SVDpp() elif klass == 'NMF': algo = NMF() elif klass == 'SlopeOne': algo = SlopeOne() elif klass == 'KNNBasic': algo = KNNBasic() elif klass == 'KNNWithMeans': algo = KNNWithMeans() elif klass == 'KNNBaseline': algo = KNNBaseline() elif klass == 'CoClustering': algo = CoClustering() elif klass == 'BaselineOnly': algo = BaselineOnly() else : algo = NormalPredictor() #cv_time = str(datetime.timedelta(seconds=int(time.time() - start))) algo.fit(trainset) predictions = algo.test(testset) precisions, recalls = precision_recall_at_k(predictions, k=5, threshold=4) # Precision and recall can then be averaged over all users prec = sum(p for p in precisions.values()) / len(precisions) recall = sum(rec for rec in recalls.values()) / len(recalls) f1 = 2 * prec * recall / (prec + recall) link = LINK[klass.__name__] new_line = [link, prec, recall, f1] print(tabulate([new_line], tablefmt="pipe")) # print current algo perf table.append(new_line) header = [LINK[dataset], 'Precision', 'Recall', 'F1', 'Time' ] print(tabulate(table, header, tablefmt="pipe"))
[ 37811, 201, 198, 1212, 8265, 21290, 703, 284, 24061, 39281, 379, 479, 290, 44536, 379, 479, 20731, 13, 201, 198, 37811, 201, 198, 201, 198, 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28000, 1098, 62, 17201, 874, 8, 201, 198, 6738, 17268, 1330, 4277, 11600, 201, 198, 11748, 640, 201, 198, 11748, 4818, 8079, 201, 198, 11748, 4738, 201, 198, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2237, 201, 198, 6738, 7400, 5039, 1330, 7400, 5039, 201, 198, 201, 198, 6738, 5975, 1330, 16092, 292, 316, 201, 198, 6738, 5975, 13, 19849, 62, 49283, 1330, 3272, 62, 12102, 378, 201, 198, 6738, 5975, 13, 19849, 62, 49283, 1330, 509, 37, 727, 201, 198, 6738, 5975, 1330, 14435, 47, 17407, 273, 201, 198, 6738, 5975, 1330, 6455, 4470, 10049, 201, 198, 6738, 5975, 1330, 509, 6144, 26416, 201, 198, 6738, 5975, 1330, 509, 6144, 3152, 5308, 504, 201, 198, 6738, 5975, 1330, 509, 6144, 15522, 4470, 201, 198, 6738, 5975, 1330, 311, 8898, 201, 198, 6738, 5975, 1330, 311, 8898, 381, 201, 198, 6738, 5975, 1330, 28692, 37, 201, 198, 6738, 5975, 1330, 3454, 3008, 3198, 201, 198, 6738, 5975, 1330, 1766, 2601, 436, 1586, 201, 198, 6738, 5975, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 201, 198, 201, 198, 37724, 796, 357, 50, 8898, 11, 311, 8898, 381, 11, 28692, 37, 11, 3454, 3008, 3198, 11, 509, 6144, 26416, 11, 509, 6144, 3152, 5308, 504, 11, 509, 6144, 15522, 4470, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1766, 2601, 436, 1586, 11, 6455, 4470, 10049, 11, 14435, 47, 17407, 273, 8, 201, 198, 201, 198, 2, 13400, 8633, 284, 3975, 435, 2188, 3891, 290, 40522, 284, 511, 1317, 2902, 6117, 287, 262, 3084, 201, 198, 31284, 796, 705, 4023, 1378, 11793, 7919, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 31284, 14, 6, 201, 198, 43, 17248, 796, 1391, 6, 50, 8898, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 50, 8898, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 8609, 62, 31412, 1634, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 6759, 8609, 62, 31412, 1634, 13, 50, 8898, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 50, 8898, 381, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 50, 8898, 4880, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 8609, 62, 31412, 1634, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 6759, 8609, 62, 31412, 1634, 13, 50, 8898, 381, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32755, 37, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 32755, 37, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 8609, 62, 31412, 1634, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 6759, 8609, 62, 31412, 1634, 13, 32755, 37, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11122, 3008, 3198, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 11122, 3008, 1881, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6649, 3008, 62, 505, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 6649, 3008, 62, 505, 13, 11122, 3008, 3198, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42, 6144, 26416, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 74, 12, 6144, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15418, 77, 62, 24194, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 15418, 5907, 13, 42, 6144, 26416, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42, 6144, 3152, 5308, 504, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 19085, 1068, 479, 12, 6144, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15418, 77, 62, 24194, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 15418, 5907, 13, 42, 6144, 3152, 5308, 504, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42, 6144, 15522, 4470, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 74, 12, 6144, 6455, 4470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15418, 77, 62, 24194, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 15418, 5907, 13, 42, 6144, 15522, 4470, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7222, 2601, 436, 1586, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 7222, 12, 2601, 436, 1586, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1073, 62, 565, 436, 1586, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 1073, 62, 565, 436, 1586, 13, 7222, 2601, 436, 1586, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15522, 4470, 10049, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 15522, 4470, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35487, 62, 282, 7727, 907, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 12093, 4470, 62, 8807, 13, 15522, 4470, 10049, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26447, 47, 17407, 273, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 29531, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8245, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35487, 62, 282, 7727, 907, 13, 6494, 2, 11793, 7919, 13, 28764, 2867, 62, 282, 7727, 907, 13, 25120, 62, 28764, 13, 26447, 47, 17407, 273, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 12, 3064, 74, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 44, 709, 8207, 641, 1802, 74, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4023, 1378, 70, 472, 489, 641, 13, 2398, 14, 19608, 292, 1039, 14, 76, 709, 8207, 641, 14, 3064, 74, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 12, 16, 76, 10354, 44438, 90, 92, 60, 15090, 30072, 4458, 18982, 10786, 44, 709, 8207, 641, 352, 44, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4023, 1378, 70, 472, 489, 641, 13, 2398, 14, 19608, 292, 1039, 14, 76, 709, 8207, 641, 14, 16, 76, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 201, 198, 201, 198, 201, 198, 4299, 15440, 62, 8344, 439, 62, 265, 62, 74, 7, 28764, 9278, 11, 479, 28, 940, 11, 11387, 28, 18, 13, 20, 2599, 201, 198, 220, 220, 220, 705, 7061, 13615, 15440, 290, 10014, 379, 479, 20731, 329, 1123, 2836, 2637, 7061, 201, 198, 201, 198, 220, 220, 220, 1303, 3274, 3975, 262, 16277, 284, 1123, 2836, 13, 201, 198, 220, 220, 220, 2836, 62, 395, 62, 7942, 796, 4277, 11600, 7, 4868, 8, 201, 198, 220, 220, 220, 329, 334, 312, 11, 4808, 11, 2081, 62, 81, 11, 1556, 11, 4808, 287, 16277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 395, 62, 7942, 58, 27112, 4083, 33295, 19510, 395, 11, 2081, 62, 81, 4008, 201, 198, 201, 198, 220, 220, 220, 3718, 3279, 796, 8633, 3419, 201, 198, 220, 220, 220, 16865, 796, 8633, 3419, 201, 198, 220, 220, 220, 329, 334, 312, 11, 2836, 62, 10366, 654, 287, 2836, 62, 395, 62, 7942, 13, 23814, 33529, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33947, 2836, 10109, 416, 6108, 1988, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 10366, 654, 13, 30619, 7, 2539, 28, 50033, 2124, 25, 2124, 58, 15, 4357, 9575, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7913, 286, 5981, 3709, 201, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2411, 796, 2160, 19510, 7942, 62, 81, 18189, 11387, 8, 329, 44104, 11, 2081, 62, 81, 8, 287, 2836, 62, 10366, 654, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7913, 286, 7151, 3709, 287, 1353, 479, 201, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 8344, 62, 74, 796, 2160, 19510, 395, 18189, 11387, 8, 329, 357, 395, 11, 4808, 8, 287, 2836, 62, 10366, 654, 58, 25, 74, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7913, 286, 5981, 290, 7151, 3709, 287, 1353, 479, 201, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2411, 62, 392, 62, 8344, 62, 74, 796, 2160, 19510, 7, 7942, 62, 81, 18189, 11387, 8, 290, 357, 395, 18189, 11387, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 395, 11, 2081, 62, 81, 8, 287, 2836, 62, 10366, 654, 58, 25, 74, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39281, 31, 42, 25, 1041, 16864, 286, 7151, 3709, 326, 389, 5981, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3718, 3279, 58, 27112, 60, 796, 299, 62, 2411, 62, 392, 62, 8344, 62, 74, 1220, 299, 62, 8344, 62, 74, 611, 299, 62, 8344, 62, 74, 14512, 657, 2073, 352, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44536, 31, 42, 25, 1041, 16864, 286, 5981, 3709, 326, 389, 7151, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16865, 58, 27112, 60, 796, 299, 62, 2411, 62, 392, 62, 8344, 62, 74, 1220, 299, 62, 2411, 611, 299, 62, 2411, 14512, 657, 2073, 352, 201, 198, 201, 198, 220, 220, 220, 1441, 3718, 3279, 11, 16865, 201, 198, 201, 198, 19608, 292, 316, 796, 705, 4029, 12, 3064, 74, 6, 201, 198, 7890, 796, 16092, 292, 316, 13, 2220, 62, 18780, 259, 10786, 4029, 12, 3064, 74, 11537, 201, 198, 74, 69, 796, 509, 37, 727, 7, 77, 62, 22018, 896, 28, 20, 8, 201, 198, 2213, 1299, 316, 11, 9288, 2617, 796, 4512, 62, 9288, 62, 35312, 7, 7890, 11, 9288, 62, 7857, 28, 13, 2425, 8, 201, 198, 7061, 6, 201, 198, 1640, 13404, 316, 11, 1332, 2617, 287, 479, 69, 13, 35312, 7, 7890, 2599, 201, 198, 220, 220, 220, 435, 2188, 13, 11147, 7, 2213, 1299, 316, 8, 201, 198, 220, 220, 220, 16277, 796, 435, 2188, 13, 9288, 7, 9288, 2617, 8, 201, 198, 220, 220, 220, 3718, 3279, 11, 16865, 796, 15440, 62, 8344, 439, 62, 265, 62, 74, 7, 28764, 9278, 11, 479, 28, 20, 11, 11387, 28, 19, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 39281, 290, 10014, 460, 788, 307, 16449, 625, 477, 2985, 201, 198, 220, 220, 220, 3718, 796, 2160, 7, 79, 329, 279, 287, 3718, 3279, 13, 27160, 28955, 1220, 18896, 7, 3866, 66, 3279, 8, 201, 198, 220, 220, 220, 10014, 796, 2160, 7, 8344, 329, 664, 287, 16865, 13, 27160, 28955, 1220, 18896, 7, 8344, 5691, 8, 201, 198, 220, 220, 220, 277, 16, 796, 362, 1635, 3718, 1635, 10014, 1220, 357, 3866, 66, 1343, 10014, 8, 201, 198, 220, 220, 220, 3601, 7, 3866, 66, 8, 201, 198, 220, 220, 220, 3601, 7, 8344, 439, 8, 201, 198, 220, 220, 220, 3601, 7, 69, 16, 8, 201, 198, 7061, 6, 201, 198, 11487, 796, 17635, 201, 198, 1640, 479, 31172, 287, 6097, 25, 201, 198, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 611, 479, 31172, 6624, 705, 50, 8898, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 311, 8898, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 50, 8898, 381, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 311, 8898, 381, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 32755, 37, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 28692, 37, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 11122, 3008, 3198, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 3454, 3008, 3198, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 42, 6144, 26416, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 509, 6144, 26416, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 42, 6144, 3152, 5308, 504, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 509, 6144, 3152, 5308, 504, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 42, 6144, 15522, 4470, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 509, 6144, 15522, 4470, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 7222, 2601, 436, 1586, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 1766, 2601, 436, 1586, 3419, 201, 198, 220, 220, 220, 1288, 361, 479, 31172, 6624, 705, 15522, 4470, 10049, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 6455, 4470, 10049, 3419, 201, 198, 220, 220, 220, 2073, 1058, 201, 198, 220, 220, 220, 220, 220, 220, 220, 435, 2188, 796, 14435, 47, 17407, 273, 3419, 201, 198, 220, 220, 220, 1303, 33967, 62, 2435, 796, 965, 7, 19608, 8079, 13, 16514, 276, 12514, 7, 43012, 28, 600, 7, 2435, 13, 2435, 3419, 532, 923, 22305, 201, 198, 220, 220, 220, 435, 2188, 13, 11147, 7, 2213, 1299, 316, 8, 201, 198, 220, 220, 220, 16277, 796, 435, 2188, 13, 9288, 7, 9288, 2617, 8, 201, 198, 220, 220, 220, 3718, 3279, 11, 16865, 796, 15440, 62, 8344, 439, 62, 265, 62, 74, 7, 28764, 9278, 11, 479, 28, 20, 11, 11387, 28, 19, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 39281, 290, 10014, 460, 788, 307, 16449, 625, 477, 2985, 201, 198, 220, 220, 220, 3718, 796, 2160, 7, 79, 329, 279, 287, 3718, 3279, 13, 27160, 28955, 1220, 18896, 7, 3866, 66, 3279, 8, 201, 198, 220, 220, 220, 10014, 796, 2160, 7, 8344, 329, 664, 287, 16865, 13, 27160, 28955, 1220, 18896, 7, 8344, 5691, 8, 201, 198, 220, 220, 220, 277, 16, 796, 362, 1635, 3718, 1635, 10014, 1220, 357, 3866, 66, 1343, 10014, 8, 201, 198, 220, 220, 220, 2792, 796, 34426, 58, 74, 31172, 13, 834, 3672, 834, 60, 201, 198, 201, 198, 220, 220, 220, 649, 62, 1370, 796, 685, 8726, 11, 3718, 11, 10014, 11, 277, 16, 60, 201, 198, 220, 220, 220, 3601, 7, 8658, 5039, 26933, 3605, 62, 1370, 4357, 3084, 69, 16762, 2625, 34360, 48774, 220, 1303, 3601, 1459, 435, 2188, 23035, 201, 198, 220, 220, 220, 3084, 13, 33295, 7, 3605, 62, 1370, 8, 201, 198, 201, 198, 25677, 796, 685, 43, 17248, 58, 19608, 292, 316, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6719, 16005, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6690, 439, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37, 16, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7575, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 4798, 7, 8658, 5039, 7, 11487, 11, 13639, 11, 3084, 69, 16762, 2625, 34360, 48774 ]
2.042678
3,421
from schema_graph.views import Schema try: # Django 2+: from django.urls import path urlpatterns = [path("", Schema.as_view())] except ImportError: # Django < 2: from django.conf.urls import url urlpatterns = [url(r"^$", Schema.as_view())]
[ 6738, 32815, 62, 34960, 13, 33571, 1330, 10011, 2611, 628, 198, 28311, 25, 198, 220, 220, 220, 1303, 37770, 362, 10, 25, 198, 220, 220, 220, 422, 42625, 14208, 13, 6371, 82, 1330, 3108, 628, 220, 220, 220, 19016, 33279, 82, 796, 685, 6978, 7203, 1600, 10011, 2611, 13, 292, 62, 1177, 3419, 15437, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 37770, 1279, 362, 25, 198, 220, 220, 220, 422, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 628, 220, 220, 220, 19016, 33279, 82, 796, 685, 6371, 7, 81, 1, 61, 3, 1600, 10011, 2611, 13, 292, 62, 1177, 3419, 15437, 198 ]
2.504673
107
from classes.threads.AbstractRawThread import AbstractRawThread
[ 6738, 6097, 13, 16663, 82, 13, 23839, 27369, 16818, 1330, 27741, 27369, 16818, 628, 198 ]
4.4
15
import random from torch import tensor from sklearn.model_selection import StratifiedKFold import torch import numpy as np import time import matplotlib.pyplot as plt
[ 11748, 4738, 198, 6738, 28034, 1330, 11192, 273, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628 ]
3.652174
46
from botctl.client import BotClientCommand from botctl.common import command_callback, execute_subcommand class InstallConversationCommand(BotClientCommand): """Usage: $ botmod update-conversation {BOT_NAME} < CONVERSATION_FILE.json """ __commandname__ = 'botmod' expects_input = True @command_callback class InstallIntegrationCommand(BotClientCommand): """Usage: $ botmod install-integration {BOT_NAME} {INTEGRATION_NAME} < CONFIG.json """ __commandname__ = 'botmod' expects_input = True @command_callback class InstallNLP(BotClientCommand): """Usage: $ botmod install-nlp {BOT_NAME} < NLP_CONFIG.json """ __commandname__ = 'botmod' expects_input = True @command_callback class InstallChannelCommand(BotClientCommand): """Usage: $ botmod install-channel {BOT_NAME}.{CHANNEL} < CHANNEL_CONFIG.json """ __commandname__ = 'botmod' expects_input = True @command_callback
[ 6738, 10214, 34168, 13, 16366, 1330, 18579, 11792, 21575, 198, 6738, 10214, 34168, 13, 11321, 1330, 3141, 62, 47423, 11, 12260, 62, 7266, 21812, 628, 198, 4871, 15545, 3103, 690, 341, 21575, 7, 20630, 11792, 21575, 2599, 198, 220, 220, 220, 37227, 28350, 25, 198, 220, 220, 220, 720, 10214, 4666, 4296, 12, 1102, 690, 341, 1391, 33, 2394, 62, 20608, 92, 1279, 7102, 28884, 6234, 62, 25664, 13, 17752, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 21812, 3672, 834, 796, 705, 13645, 4666, 6, 198, 220, 220, 220, 13423, 62, 15414, 796, 6407, 628, 220, 220, 220, 2488, 21812, 62, 47423, 628, 198, 4871, 15545, 34500, 1358, 21575, 7, 20630, 11792, 21575, 2599, 198, 220, 220, 220, 37227, 28350, 25, 198, 220, 220, 220, 720, 10214, 4666, 2721, 12, 18908, 1358, 1391, 33, 2394, 62, 20608, 92, 1391, 12394, 7156, 49, 6234, 62, 20608, 92, 1279, 25626, 13, 17752, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 21812, 3672, 834, 796, 705, 13645, 4666, 6, 198, 220, 220, 220, 13423, 62, 15414, 796, 6407, 628, 220, 220, 220, 2488, 21812, 62, 47423, 628, 198, 4871, 15545, 45, 19930, 7, 20630, 11792, 21575, 2599, 198, 220, 220, 220, 37227, 28350, 25, 198, 220, 220, 220, 720, 10214, 4666, 2721, 12, 21283, 79, 1391, 33, 2394, 62, 20608, 92, 1279, 399, 19930, 62, 10943, 16254, 13, 17752, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 21812, 3672, 834, 796, 705, 13645, 4666, 6, 198, 220, 220, 220, 13423, 62, 15414, 796, 6407, 628, 220, 220, 220, 2488, 21812, 62, 47423, 628, 198, 4871, 15545, 29239, 21575, 7, 20630, 11792, 21575, 2599, 198, 220, 220, 220, 37227, 28350, 25, 198, 220, 220, 220, 720, 10214, 4666, 2721, 12, 17620, 1391, 33, 2394, 62, 20608, 27422, 90, 3398, 22846, 3698, 92, 1279, 5870, 22846, 3698, 62, 10943, 16254, 13, 17752, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 21812, 3672, 834, 796, 705, 13645, 4666, 6, 198, 220, 220, 220, 13423, 62, 15414, 796, 6407, 628, 220, 220, 220, 2488, 21812, 62, 47423, 628 ]
2.797143
350
# -*- coding: utf-8 -*- if __name__ == "__main__": import os import sys # If you run tests in-place (instead of using py.test), ensure local version is tested! sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import greenery.v1 as greenery if __name__ == "__main__": test_v1()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 11748, 28686, 198, 197, 11748, 25064, 198, 197, 2, 1002, 345, 1057, 5254, 287, 12, 5372, 357, 38070, 286, 1262, 12972, 13, 9288, 828, 4155, 1957, 2196, 318, 6789, 0, 198, 197, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 35514, 198, 198, 11748, 10536, 24156, 13, 85, 16, 355, 10536, 24156, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 9288, 62, 85, 16, 3419, 198 ]
2.548387
124
l1 = int ( input ('Primeiro lado : ')) l2 = int ( input('Segundo lado : ')) l3 = int ( input ('Terceiro lado : ')) if l1 + l2 > l3 and l2 + l3 > l1 and l3 + l1 > l2: print('Pode formar triangulo') if l1 == l2 == l3: print('Triangulo Equilatero') elif (l1 == l2 and l2 != l3) or (l2 == l3 and l3 != l1) or (l1 == l3 and l3 != l2): print ('Triangulo Isociles') else: print ('Trinagulo Escaleno') else: print('Não pode formar triangulo')
[ 75, 16, 796, 493, 357, 5128, 19203, 26405, 7058, 300, 4533, 1058, 705, 4008, 198, 75, 17, 796, 493, 357, 5128, 10786, 41030, 41204, 300, 4533, 1058, 705, 4008, 198, 75, 18, 796, 493, 357, 5128, 19203, 15156, 344, 7058, 300, 4533, 1058, 705, 4008, 198, 198, 361, 300, 16, 1343, 300, 17, 1875, 300, 18, 290, 300, 17, 1343, 300, 18, 1875, 300, 16, 290, 300, 18, 1343, 300, 16, 1875, 300, 17, 25, 198, 220, 220, 220, 3601, 10786, 47, 1098, 1296, 283, 1333, 648, 43348, 11537, 628, 220, 220, 220, 611, 300, 16, 6624, 300, 17, 6624, 300, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 14824, 648, 43348, 7889, 38601, 78, 11537, 198, 220, 220, 220, 1288, 361, 357, 75, 16, 6624, 300, 17, 290, 300, 17, 14512, 300, 18, 8, 393, 357, 75, 17, 6624, 300, 18, 290, 300, 18, 14512, 300, 16, 8, 393, 357, 75, 16, 6624, 300, 18, 290, 300, 18, 14512, 300, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 14824, 648, 43348, 1148, 420, 2915, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 2898, 259, 363, 43348, 16319, 282, 23397, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 45, 28749, 279, 1098, 1296, 283, 1333, 648, 43348, 11537, 198, 220, 220, 220, 220 ]
2.090517
232
from serial import Serial,SerialException from serial.tools.list_ports import comports from threading import Lock from queue import Queue import time,random,struct from base64 import b64encode, b64decode from binascii import Error as BAError from mirage.libs.ble_utils.constants import * from mirage.libs.ble_utils.scapy_sniffle_layers import * from mirage.libs import io,utils,wireless class SniffleDevice(wireless.Device): ''' This device allows to communicate with a Sniffle Device in order to sniff Bluetooth Low Energy protocol. The corresponding interfaces are : ``sniffleX`` (e.g. "sniffle0") The following capabilities are actually supported : +-------------------------------------------+----------------+ | Capability | Available ? | +===========================================+================+ | SCANNING | yes | +-------------------------------------------+----------------+ | ADVERTISING | yes | +-------------------------------------------+----------------+ | SNIFFING_ADVERTISEMENTS | yes | +-------------------------------------------+----------------+ | SNIFFING_NEW_CONNECTION | yes | +-------------------------------------------+----------------+ | SNIFFING_EXISTING_CONNECTION | no | +-------------------------------------------+----------------+ | JAMMING_CONNECTIONS | no | +-------------------------------------------+----------------+ | JAMMING_ADVERTISEMENTS | no | +-------------------------------------------+----------------+ | INJECTING | no | +-------------------------------------------+----------------+ | MITMING_EXISTING_CONNECTION | no | +-------------------------------------------+----------------+ | HIJACKING_MASTER | no | +-------------------------------------------+----------------+ | HIJACKING_SLAVE | no | +-------------------------------------------+----------------+ | INITIATING_CONNECTION | yes | +-------------------------------------------+----------------+ | RECEIVING_CONNECTION | no | +-------------------------------------------+----------------+ | COMMUNICATING_AS_MASTER | yes | +-------------------------------------------+----------------+ | COMMUNICATING_AS_SLAVE | no | +-------------------------------------------+----------------+ | HCI_MONITORING | no | +-------------------------------------------+----------------+ ''' sharedMethods = [ "getFirmwareVersion", "getDeviceIndex", "setCRCChecking", "setChannel", "getChannel", "getConnections", "switchConnection", "getCurrentConnection", "getCurrentHandle", "isConnected", "updateConnectionParameters", "setAddress", "getAddress", "setAdvertising", "setAdvertisingParameters", "setScanningParameters", "sniffNewConnections", "sniffAdvertisements", "setSweepingMode", "setScan", "setScanInterval", "isSynchronized", "getAccessAddress", "getCrcInit", "getChannelMap", "getHopInterval", "getHopIncrement", ] @classmethod def findSniffleSniffers(cls,index=None): ''' This class method allows to find a specific Sniffle device, by providing the device's index. If no index is provided, it returns a list of every devices found. If no device has been found, None is returned. :param index: device's index :type index: int :return: string indicating the device :rtype: str :Example: >>> NRFSnifferDevice.findSniffleSniffers(0) '/dev/ttyACM0' >>> NRFSnifferDevice.findSniffleSniffers() ['/dev/ttyACM0','/dev/ttyACM1'] ''' sniffleList = sorted([i[0] for i in comports() if (isinstance(i,tuple) and "VID:PID=0451:BEF3" in port[-1]) or (i.vid == 0x0451 and i.pid == 0xBEF3) ]) if index is None: return sniffleList else: try: sniffle = sniffleList[index] except IndexError: return None return sniffle return None def isConnected(self): ''' This method returns a boolean indicating if the device is connected. :return: boolean indicating if the device is connected :rtype: bool :Example: >>> device.isConnected() True .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.connected def getAccessAddress(self): ''' This method returns the access address actually in use. :return: access address :rtype: int :Example: >>> hex(device.getAccessAddress()) '0xe5e296e9' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.accessAddress def getCrcInit(self): ''' This method returns the CRCInit actually in use. :return: CRCInit :rtype: int :Example: >>> hex(device.getCrcInit()) '0x0bd54a' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.crcInit def getChannelMap(self): ''' This method returns the Channel Map actually in use. :return: Channel Map :rtype: int :Example: >>> hex(device.getChannelMap()) '0x1fffffffff' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.channelMap def getHopInterval(self): ''' This method returns the Hop Interval actually in use. :return: Hop Interval :rtype: int :Example: >>> device.getHopInterval() 36 .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.hopInterval def getHopIncrement(self): ''' This method returns the Hop Increment actually in use. :return: Hop Increment :rtype: int :Example: >>> device.getHopIncrement() 11 .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.hopIncrement def isSynchronized(self): ''' This method indicates if the sniffer is actually synchronized with a connection. :return: boolean indicating if the sniffer is synchronized :rtype: bool :Example: >>> device.isSynchronized() True .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.synchronized def getDeviceIndex(self): ''' This method returns the index of the current Sniffle device. :return: device's index :rtype: int :Example: >>> device.getDeviceIndex() 0 .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.index def getFirmwareVersion(self): ''' This method returns the firmware version of the current Sniffle device. :return: firmware version :rtype: int :Example: >>> device.getFirmwareVersion() (1,5) .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' version = (1,5) return version def setCRCChecking(self,enable=True): ''' This method enables CRC Checking. :param enable: boolean indicating if CRC Checking must be enabled :type enable: bool :Example: >>> device.setCRCChecking(enable=True) # CRC Checking enabled >>> device.setCRCChecking(enable=False) # CRC Checking disabled .. warning:: Sniffle calculates the CRC directly in the firmware, so this command is ignored. It is present in order to provide a similar API to Ubertooth. .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.crcEnabled = enable def setScanInterval(self,seconds=1): ''' This method allows to provide the scan interval (in second). :param seconds: number of seconds to wait between two channels :type seconds: float :Example: >>> device.setScanInterval(seconds=1) .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.scanInterval = seconds def setScan(self,enable=True): ''' This method enables or disables the scanning mode. It allows to change the channel according to the scan interval parameter. :param enable: boolean indicating if the scanning mode must be enabled :type enable: bool :Example: >>> device.setScan(enable=True) # scanning mode enabled >>> device.setScan(enable=False) # scanning mode disabled .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' if enable: self.sniffAdvertisements() if self.scanThreadInstance is None: self.scanThreadInstance = wireless.StoppableThread(target=self._scanThread) self.scanThreadInstance.start() else: self.scanThreadInstance.stop() self.scanThreadInstance = None def getCurrentHandle(self): ''' This method returns the connection Handle actually in use. If no connection is established, its value is equal to -1. :return: connection Handle :rtype: int .. warning:: This method always returns 1, it allows to provides the same API as the HCI Device. .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return 1 def getConnections(self): ''' This method returns a list of couple (connection handle / address) representing the connections actually established. A connection is described by a dictionary containing an handle and an access address : ``{"handle":1, "address":"0x12345678"}`` :return: list of connections established :rtype: list of dict :Example: >>> device.getConnections() [{'handle':1, 'address':'0x12345678'}] .. warning:: The connection handle is always 1, it allows to provides the same API as the HCI Device. .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return [{"address":"0x{:08x}".format(self.accessAddress),"handle":1}] def getCurrentConnection(self): ''' This method returns the access address associated to the current connection. If no connection is established, it returns None. :return: access address of the current connection :rtype: str :Example: >>> device.getCurrentConnection() '0x12345678' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return "0x{:08x}".format(self.accessAddress) def switchConnection(self,address): ''' This method is provided in order to provide the same API as an HCI Device, it actually has no effects. .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' io.fail("Switching connection not allowed with Sniffle Device !") def setAdvertisingParameters(self,type = "ADV_IND",destAddr = "00:00:00:00:00:00",data = b"",intervalMin = 200, intervalMax = 210, daType='public', oaType='public'): ''' This method sets advertising parameters according to the data provided. It will mainly be used by *ADV_IND-like* packets. :param type: type of advertisement (*available values :* "ADV_IND", "ADV_DIRECT_IND", "ADV_SCAN_IND", "ADV_NONCONN_IND", "ADV_DIRECT_IND_LOW") :type type: str :param destAddress: destination address (it will be used if needed) :type destAddress: str :param data: data included in the payload :type data: bytes :param intervalMin: minimal interval :type intervalMin: int :param intervalMax: maximal interval :type intervalMax: int :param daType: string indicating the destination address type ("public" or "random") :type daType: str :param oaType: string indicating the origin address type ("public" or "random") .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' if type == "ADV_IND": self.advType = ADV_IND elif type == "ADV_DIRECT_IND": self.advType = ADV_DIRECT_IND elif type == "ADV_SCAN_IND": self.advType = ADV_SCAN_IND elif type == "ADV_NONCONN_IND": self.advType = ADV_NONCONN_IND elif type == "ADV_DIRECT_IND_LOW": self.advType = ADV_DIRECT_IND_LOW else: io.fail("Advertisements type not recognized, using ADV_IND.") self.advType = ADV_IND self.destAddress = None if destAddr == "00:00:00:00:00:00" else destAddr advData = data self.advDataLength = len(data) if len(data) <= 31 else 31 if isinstance(data,list): advData = b"" for i in data: advData += bytes(i) data = advData if isinstance(data,bytes): advData = b"" if len(data) > 31: advData = data[:31] else: advData = data+(31 - len(data))*b"\x00" self.advData = advData self.destAddressType = daType self.addressType = oaType self.intervalMin = intervalMin self.intervalMax = intervalMax def setScanningParameters(self, data=b""): ''' This method sets scanning parameters according to the data provided. It will mainly be used by *SCAN_RESP* packets. :param data: data to use in *SCAN_RESP* :type data: bytes .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.scanDataLength = len(data) if len(data) <= 31 else 31 advData = data if isinstance(data,list): advData = b"" for i in data: advData += bytes(i) data = advData if isinstance(data,bytes): advData = b"" if len(data) > 31: advData = data[:31] else: advData = data+(31 - len(data))*b"\x00" self.scanData = advData def setSweepingMode(self,enable=True,sequence=[37,38,39]): ''' This method allows to enable or disable the Sweeping mode. It allows to provide a subset of advertising channels to monitor sequentially. :param enable: boolean indicating if the Sweeping mode is enabled. :type enable: bool :param sequence: sequence of channels to use :type sequence: list of int .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.sweepingMode = enable if enable: if 37 not in sequence or 38 not in sequence or 39 not in sequence: io.warning("Sniffle doesn't support the sweeping mode with a subset of channels: all three advertising channels are selected.") self.sweepingSequence = [37,38,39] def sniffAdvertisements(self,address='FF:FF:FF:FF:FF:FF',channel=None): ''' This method starts the advertisement sniffing mode. :param address: selected address - if not provided, no filter is applied (format : "1A:2B:3C:4D:5E:6F") :type address: str :param channel: selected channel - if not provided, channel 37 is selected :type channel: int :Example: >>> device.sniffAdvertisements() >>> device.sniffAdvertisements(channel=38) >>> device.sniffAdvertisements(address="1A:2B:3C:4D:5E:6F") .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.sniffingMode = BLESniffingMode.ADVERTISEMENT self.lastTarget = address self._setFilter(advertisementsOnly=True) if self.sweepingMode: self._enableHop() else: if channel is None: channel = 37 self._setConfiguration(channel = channel, accessAddress = 0x8E89BED6, phyMode = "1M", crcInit=0x555555) if address.upper() == "FF:FF:FF:FF:FF:FF": self._setMACFilter(mac=None) else: self._setMACFilter(mac=address) def sniffNewConnections(self,address='FF:FF:FF:FF:FF:FF',channel=None): ''' This method starts the new connections sniffing mode. :param address: selected address - if not provided, no filter is applied (format : "1A:2B:3C:4D:5E:6F") :type address: str :param channel: selected channel - if not provided, channel 37 is selected :type channel: int :Example: >>> device.sniffNewConnections() >>> device.sniffNewConnections(channel=38) >>> device.sniffNewConnections(address="1A:2B:3C:4D:5E:6F") .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.sniffingMode = BLESniffingMode.NEW_CONNECTION self.lastTarget = address self._setFilter(advertisementsOnly=False) if self.sweepingMode: self._enableHop() else: if channel is None: channel = 37 self._setConfiguration(channel = channel, accessAddress = 0x8E89BED6, phyMode = "1M", crcInit=0x555555) if address.upper() == "FF:FF:FF:FF:FF:FF": self._setMACFilter(mac=None) else: self._setMACFilter(mac=address) def updateConnectionParameters(self,minInterval=0, maxInterval=0, latency=0, timeout=0,minCe=0, maxCe=0xFFFF): ''' This method allows to update connection parameters according to the data provided. It will mainly be used if an incoming BLEConnectionParameterUpdateRequest is received. :param minInterval: minimal interval :type minInterval: int :param maxInterval: maximal interval :type maxInterval: int :param latency: connection latency :type latency: int :param timeout: connection timeout :type timeout: int :param minCe: minimum connection event length :type minCe: int :param maxCe: maximum connection event length :type maxCe: int .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' pass def getAddressMode(self): ''' This method returns the address mode currently in use. :return: address mode ("public" or "random") :rtype: str :Example: >>> device.getAddressMode() 'public' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.addressType def setAddress(self,address,random=False): ''' This method allows to modify the BD address and the BD address type of the device, if it is possible. :param address: new BD address :type address: str :param random: boolean indicating if the address is random :type random: bool :return: boolean indicating if the operation was successful :rtype: bool :Example: >>> device.setAddress("11:22:33:44:55:66") True .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' self.address = address.upper() self.addressType = "random" if random else "public" return True def getAddress(self): ''' This method returns the actual BD address of the device. :return: str indicating the BD address :rtype: str :Example: >>> device.getAddress() '1A:2B:3C:4D:5E:6F' .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.address.upper() def setAdvertising(self,enable=True): ''' This method enables or disables the advertising mode. :param enable: boolean indicating if the advertising mode must be enabled :type enable: bool :Example: >>> device.setAdvertising(enable=True) # advertising mode enabled >>> device.setAdvertising(enable=False) # advertising mode disabled .. warning:: Please note that if no advertising and scanning data has been provided before this function call, nothing will be advertised. You have to set the scanning Parameters and the advertising Parameters before calling this method. .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' if enable: self._setConfiguration(channel = 37, accessAddress = 0x8E89BED6, phyMode = "1M", crcInit=0x555555) self._setPauseWhenDone(True) self._setFilter(advertisementsOnly=True) self._setMACFilter(mac=None) self._setAddress(address=self.address,addressType=0x01 if self.addressType == "random" else 0x00) self._setAdvertisingInterval(interval=self.intervalMin) self._advertise(bytes([self.advDataLength])+self.advData,bytes([self.scanDataLength])+self.scanData) else: self._reset() def getChannel(self): ''' This method returns the channel actually in use. :return: channel in use :rtype: int :Example: >>> device.getChannel() 37 >>> device.setChannel(channel=38) >>> device.getChannel() 38 .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' return self.channel def setChannel(self, channel=37): ''' This method changes the channel actually in use by the provided channel. :param channel: new channel :type channel: int :Example: >>> device.getChannel() 37 >>> device.setChannel(channel=38) >>> device.getChannel() 38 .. note:: This method is a **shared method** and can be called from the corresponding Emitters / Receivers. ''' if channel is not None and channel != self.channel: self._setConfiguration(channel = channel, accessAddress = 0x8E89BED6, phyMode = "1M", crcInit=0x555555)
[ 6738, 11389, 1330, 23283, 11, 32634, 16922, 198, 6738, 11389, 13, 31391, 13, 4868, 62, 3742, 1330, 552, 2096, 198, 6738, 4704, 278, 1330, 13656, 198, 6738, 16834, 1330, 4670, 518, 198, 11748, 640, 11, 25120, 11, 7249, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 11, 275, 2414, 12501, 1098, 198, 6738, 9874, 292, 979, 72, 1330, 13047, 355, 23715, 12331, 198, 6738, 5720, 496, 13, 8019, 82, 13, 903, 62, 26791, 13, 9979, 1187, 1330, 1635, 198, 6738, 5720, 496, 13, 8019, 82, 13, 903, 62, 26791, 13, 1416, 12826, 62, 16184, 733, 293, 62, 75, 6962, 1330, 1635, 198, 6738, 5720, 496, 13, 8019, 82, 1330, 33245, 11, 26791, 11, 21809, 1203, 198, 198, 4871, 5489, 733, 293, 24728, 7, 21809, 1203, 13, 24728, 2599, 198, 197, 7061, 6, 198, 197, 1212, 3335, 3578, 284, 10996, 351, 257, 5489, 733, 293, 16232, 287, 1502, 284, 26300, 19263, 7754, 6682, 8435, 13, 198, 197, 464, 11188, 20314, 389, 1058, 7559, 16184, 733, 293, 55, 15506, 357, 68, 13, 70, 13, 366, 16184, 733, 293, 15, 4943, 628, 197, 464, 1708, 9889, 389, 1682, 4855, 1058, 628, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 4476, 1799, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 14898, 5633, 220, 220, 220, 930, 198, 197, 10, 10052, 2559, 18604, 10, 4770, 10, 198, 197, 91, 6374, 1565, 15871, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 5984, 18000, 2751, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 11346, 29267, 2751, 62, 19053, 50, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 11346, 29267, 2751, 62, 13965, 62, 10943, 45, 24565, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 11346, 29267, 2751, 62, 6369, 8808, 2751, 62, 10943, 45, 24565, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 449, 2390, 44, 2751, 62, 10943, 48842, 11053, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 449, 2390, 44, 2751, 62, 19053, 50, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 3268, 23680, 2751, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 17168, 44, 2751, 62, 6369, 8808, 2751, 62, 10943, 45, 24565, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 367, 23852, 8120, 2751, 62, 31180, 5781, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 367, 23852, 8120, 2751, 62, 8634, 32, 6089, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 3268, 2043, 40, 33881, 62, 10943, 45, 24565, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 19644, 36, 3824, 2751, 62, 10943, 45, 24565, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 48811, 2149, 33881, 62, 1921, 62, 31180, 5781, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 48811, 2149, 33881, 62, 1921, 62, 8634, 32, 6089, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 198, 197, 91, 367, 25690, 62, 27857, 2043, 1581, 2751, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 645, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 197, 10, 3880, 32284, 10, 1783, 10, 628, 197, 7061, 6, 198, 197, 28710, 46202, 796, 685, 198, 197, 197, 197, 1, 1136, 37, 2533, 1574, 14815, 1600, 198, 197, 197, 197, 1, 1136, 24728, 15732, 1600, 198, 197, 197, 197, 1, 2617, 9419, 4093, 258, 44377, 1600, 628, 197, 197, 197, 1, 2617, 29239, 1600, 198, 197, 197, 197, 1, 1136, 29239, 1600, 628, 197, 197, 197, 1, 1136, 13313, 507, 1600, 198, 197, 197, 197, 1, 31943, 32048, 1600, 198, 197, 197, 197, 1, 1136, 11297, 32048, 1600, 198, 197, 197, 197, 1, 1136, 11297, 37508, 1600, 198, 197, 197, 197, 1, 271, 13313, 276, 1600, 198, 197, 197, 197, 1, 19119, 32048, 48944, 1600, 628, 197, 197, 197, 1, 2617, 20231, 1600, 198, 197, 197, 197, 1, 1136, 20231, 1600, 198, 197, 197, 197, 1, 2617, 2782, 31809, 1600, 198, 197, 197, 197, 1, 2617, 2782, 31809, 48944, 1600, 198, 197, 197, 197, 1, 2617, 33351, 768, 48944, 1600, 628, 198, 197, 197, 197, 1, 16184, 733, 3791, 13313, 507, 1600, 198, 197, 197, 197, 1, 16184, 733, 14592, 1600, 628, 197, 197, 197, 1, 2617, 40783, 7213, 19076, 1600, 628, 197, 197, 197, 1, 2617, 33351, 1600, 198, 197, 197, 197, 1, 2617, 33351, 9492, 2100, 1600, 198, 197, 197, 197, 1, 271, 50, 24871, 1143, 1600, 628, 197, 197, 197, 1, 1136, 15457, 20231, 1600, 198, 197, 197, 197, 1, 1136, 34, 6015, 31768, 1600, 198, 197, 197, 197, 1, 1136, 29239, 13912, 1600, 198, 197, 197, 197, 1, 1136, 23483, 9492, 2100, 1600, 198, 197, 197, 197, 1, 1136, 23483, 15562, 434, 1600, 198, 197, 197, 197, 60, 198, 197, 31, 4871, 24396, 198, 197, 4299, 1064, 16501, 733, 293, 16501, 733, 364, 7, 565, 82, 11, 9630, 28, 14202, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 1398, 2446, 3578, 284, 1064, 257, 2176, 5489, 733, 293, 3335, 11, 416, 4955, 262, 3335, 338, 6376, 13, 198, 197, 197, 1532, 645, 6376, 318, 2810, 11, 340, 5860, 257, 1351, 286, 790, 4410, 1043, 13, 198, 197, 197, 1532, 645, 3335, 468, 587, 1043, 11, 6045, 318, 4504, 13, 628, 197, 197, 25, 17143, 6376, 25, 3335, 338, 6376, 198, 197, 197, 25, 4906, 6376, 25, 493, 198, 197, 197, 25, 7783, 25, 4731, 12739, 262, 3335, 198, 197, 197, 25, 81, 4906, 25, 965, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 23057, 10652, 77, 733, 263, 24728, 13, 19796, 16501, 733, 293, 16501, 733, 364, 7, 15, 8, 198, 197, 197, 197, 26488, 7959, 14, 42852, 2246, 44, 15, 6, 198, 197, 197, 197, 33409, 23057, 10652, 77, 733, 263, 24728, 13, 19796, 16501, 733, 293, 16501, 733, 364, 3419, 198, 197, 197, 197, 17816, 14, 7959, 14, 42852, 2246, 44, 15, 3256, 26488, 7959, 14, 42852, 2246, 44, 16, 20520, 198, 197, 197, 7061, 6, 198, 197, 197, 16184, 733, 293, 8053, 796, 23243, 26933, 72, 58, 15, 60, 329, 1312, 287, 552, 2096, 3419, 611, 198, 197, 197, 197, 197, 7, 271, 39098, 7, 72, 11, 83, 29291, 8, 290, 366, 11008, 25, 47, 2389, 28, 15, 36330, 25, 12473, 37, 18, 1, 287, 2493, 58, 12, 16, 12962, 393, 198, 197, 197, 197, 197, 7, 72, 13, 16921, 6624, 657, 87, 15, 36330, 290, 1312, 13, 35317, 6624, 657, 87, 12473, 37, 18, 8, 198, 197, 197, 197, 197, 12962, 198, 197, 197, 361, 6376, 318, 6045, 25, 198, 197, 197, 197, 7783, 26300, 293, 8053, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 28311, 25, 198, 197, 197, 197, 197, 16184, 733, 293, 796, 26300, 293, 8053, 58, 9630, 60, 628, 197, 197, 197, 16341, 12901, 12331, 25, 198, 197, 197, 197, 197, 7783, 6045, 198, 197, 197, 197, 7783, 26300, 293, 198, 197, 197, 7783, 6045, 628, 628, 198, 197, 4299, 318, 13313, 276, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 257, 25131, 12739, 611, 262, 3335, 318, 5884, 13, 628, 197, 197, 25, 7783, 25, 25131, 12739, 611, 262, 3335, 318, 5884, 198, 197, 197, 25, 81, 4906, 25, 20512, 628, 197, 197, 25, 16281, 25, 198, 197, 197, 197, 197, 197, 33409, 3335, 13, 271, 13313, 276, 3419, 198, 197, 197, 197, 197, 197, 17821, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 15236, 628, 198, 197, 4299, 651, 15457, 20231, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 1895, 2209, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 1895, 2209, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 17910, 7, 25202, 13, 1136, 15457, 20231, 28955, 198, 197, 197, 197, 6, 15, 27705, 20, 68, 27137, 68, 24, 6, 628, 198, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 15526, 20231, 628, 197, 4299, 651, 34, 6015, 31768, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 45623, 31768, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 45623, 31768, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 17910, 7, 25202, 13, 1136, 34, 6015, 31768, 28955, 198, 197, 197, 197, 6, 15, 87, 15, 17457, 4051, 64, 6, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 66, 6015, 31768, 628, 197, 4299, 651, 29239, 13912, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 11102, 9347, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 11102, 9347, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 17910, 7, 25202, 13, 1136, 29239, 13912, 28955, 198, 197, 197, 197, 6, 15, 87, 16, 12927, 12927, 69, 6, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 198, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 17620, 13912, 628, 197, 4299, 651, 23483, 9492, 2100, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 9996, 4225, 2100, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 9996, 4225, 2100, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 23483, 9492, 2100, 3419, 198, 197, 197, 197, 2623, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 198, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 8548, 9492, 2100, 628, 197, 4299, 651, 23483, 15562, 434, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 9996, 10791, 434, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 9996, 10791, 434, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 23483, 15562, 434, 3419, 198, 197, 197, 197, 1157, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 8548, 15562, 434, 628, 197, 4299, 318, 50, 24871, 1143, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 9217, 611, 262, 26300, 263, 318, 1682, 47192, 351, 257, 4637, 13, 628, 197, 197, 25, 7783, 25, 25131, 12739, 611, 262, 26300, 263, 318, 47192, 198, 197, 197, 25, 81, 4906, 25, 20512, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 271, 50, 24871, 1143, 3419, 198, 197, 197, 197, 17821, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 28869, 11413, 1143, 628, 198, 197, 4299, 651, 24728, 15732, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 6376, 286, 262, 1459, 5489, 733, 293, 3335, 13, 628, 197, 197, 25, 7783, 25, 3335, 338, 6376, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 24728, 15732, 3419, 198, 197, 197, 197, 15, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 198, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 9630, 628, 198, 197, 4299, 651, 37, 2533, 1574, 14815, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 18779, 2196, 286, 262, 1459, 5489, 733, 293, 3335, 13, 628, 197, 197, 25, 7783, 25, 18779, 2196, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 37, 2533, 1574, 14815, 3419, 198, 197, 197, 197, 7, 16, 11, 20, 8, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 198, 197, 197, 7061, 6, 198, 197, 197, 9641, 796, 357, 16, 11, 20, 8, 198, 197, 197, 7783, 2196, 628, 198, 197, 4299, 900, 9419, 4093, 258, 44377, 7, 944, 11, 21633, 28, 17821, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 13536, 45623, 39432, 13, 628, 197, 197, 25, 17143, 7139, 25, 25131, 12739, 611, 45623, 39432, 1276, 307, 9343, 198, 197, 197, 25, 4906, 7139, 25, 20512, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 2617, 9419, 4093, 258, 44377, 7, 21633, 28, 17821, 8, 1303, 45623, 39432, 9343, 198, 197, 197, 197, 33409, 3335, 13, 2617, 9419, 4093, 258, 44377, 7, 21633, 28, 25101, 8, 1303, 45623, 39432, 10058, 628, 197, 197, 492, 6509, 3712, 628, 197, 197, 197, 16501, 733, 293, 43707, 262, 45623, 3264, 287, 262, 18779, 11, 523, 428, 3141, 318, 9514, 13, 632, 318, 1944, 287, 1502, 284, 2148, 257, 2092, 7824, 284, 12024, 1462, 849, 13, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 66, 6015, 20491, 796, 7139, 628, 197, 4299, 900, 33351, 9492, 2100, 7, 944, 11, 43012, 28, 16, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 3578, 284, 2148, 262, 9367, 16654, 357, 259, 1218, 737, 628, 197, 197, 25, 17143, 4201, 25, 1271, 286, 4201, 284, 4043, 1022, 734, 9619, 198, 197, 197, 25, 4906, 4201, 25, 12178, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 2617, 33351, 9492, 2100, 7, 43012, 28, 16, 8, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 198, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 35836, 9492, 2100, 796, 4201, 628, 197, 4299, 900, 33351, 7, 944, 11, 21633, 28, 17821, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 13536, 393, 595, 2977, 262, 21976, 4235, 13, 632, 3578, 284, 1487, 262, 6518, 1864, 284, 262, 9367, 16654, 11507, 13, 628, 197, 197, 25, 17143, 7139, 25, 25131, 12739, 611, 262, 21976, 4235, 1276, 307, 9343, 198, 197, 197, 25, 4906, 7139, 25, 20512, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 2617, 33351, 7, 21633, 28, 17821, 8, 1303, 21976, 4235, 9343, 198, 220, 197, 197, 197, 33409, 3335, 13, 2617, 33351, 7, 21633, 28, 25101, 8, 1303, 21976, 4235, 10058, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 361, 7139, 25, 198, 197, 197, 197, 944, 13, 16184, 733, 14592, 3419, 198, 197, 197, 197, 361, 2116, 13, 35836, 16818, 33384, 318, 6045, 25, 198, 197, 197, 197, 197, 944, 13, 35836, 16818, 33384, 796, 12521, 13, 1273, 35628, 16818, 7, 16793, 28, 944, 13557, 35836, 16818, 8, 198, 197, 197, 197, 197, 944, 13, 35836, 16818, 33384, 13, 9688, 3419, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 944, 13, 35836, 16818, 33384, 13, 11338, 3419, 198, 197, 197, 197, 944, 13, 35836, 16818, 33384, 796, 6045, 628, 197, 4299, 651, 11297, 37508, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 4637, 33141, 1682, 287, 779, 13, 198, 197, 197, 1532, 645, 4637, 318, 4920, 11, 663, 1988, 318, 4961, 284, 532, 16, 13, 628, 197, 197, 25, 7783, 25, 4637, 33141, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 492, 6509, 3712, 628, 197, 197, 197, 1212, 2446, 1464, 5860, 352, 11, 340, 3578, 284, 3769, 262, 976, 7824, 355, 262, 367, 25690, 16232, 13, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 352, 628, 197, 4299, 651, 13313, 507, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 257, 1351, 286, 3155, 357, 38659, 5412, 1220, 2209, 8, 10200, 262, 8787, 1682, 4920, 13, 198, 197, 197, 32, 4637, 318, 3417, 416, 257, 22155, 7268, 281, 5412, 290, 281, 1895, 2209, 1058, 7559, 4895, 28144, 1298, 16, 11, 366, 21975, 2404, 15, 87, 10163, 2231, 30924, 20662, 15506, 628, 197, 197, 25, 7783, 25, 1351, 286, 8787, 4920, 198, 197, 197, 25, 81, 4906, 25, 1351, 286, 8633, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 13313, 507, 3419, 198, 197, 197, 197, 58, 90, 6, 28144, 10354, 16, 11, 705, 21975, 10354, 6, 15, 87, 10163, 2231, 30924, 6, 92, 60, 628, 197, 197, 492, 6509, 3712, 628, 197, 197, 197, 464, 4637, 5412, 318, 1464, 352, 11, 340, 3578, 284, 3769, 262, 976, 7824, 355, 262, 367, 25690, 16232, 13, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 685, 4895, 21975, 2404, 15, 87, 90, 25, 2919, 87, 92, 1911, 18982, 7, 944, 13, 15526, 20231, 27267, 28144, 1298, 16, 92, 60, 628, 197, 4299, 651, 11297, 32048, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 1895, 2209, 3917, 284, 262, 1459, 4637, 13, 1002, 645, 4637, 318, 4920, 11, 340, 5860, 6045, 13, 628, 197, 197, 25, 7783, 25, 1895, 2209, 286, 262, 1459, 4637, 198, 197, 197, 25, 81, 4906, 25, 965, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 11297, 32048, 3419, 198, 197, 197, 197, 6, 15, 87, 10163, 2231, 30924, 6, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 366, 15, 87, 90, 25, 2919, 87, 92, 1911, 18982, 7, 944, 13, 15526, 20231, 8, 628, 197, 4299, 5078, 32048, 7, 944, 11, 21975, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 318, 2810, 287, 1502, 284, 2148, 262, 976, 7824, 355, 281, 367, 25690, 16232, 11, 340, 1682, 468, 645, 3048, 13, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 952, 13, 32165, 7203, 10462, 19811, 4637, 407, 3142, 351, 5489, 733, 293, 16232, 220, 2474, 8, 628, 197, 4299, 900, 2782, 31809, 48944, 7, 944, 11, 4906, 796, 366, 2885, 53, 62, 12115, 1600, 16520, 4550, 81, 796, 366, 405, 25, 405, 25, 405, 25, 405, 25, 405, 25, 405, 1600, 7890, 796, 275, 1, 1600, 3849, 2100, 9452, 796, 939, 11, 16654, 11518, 796, 20064, 11, 12379, 6030, 11639, 11377, 3256, 267, 64, 6030, 11639, 11377, 6, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5621, 8560, 10007, 1864, 284, 262, 1366, 2810, 13, 198, 197, 197, 1026, 481, 8384, 307, 973, 416, 1635, 2885, 53, 62, 12115, 12, 2339, 9, 24624, 13, 628, 197, 197, 25, 17143, 2099, 25, 2099, 286, 15422, 20789, 15182, 3815, 1058, 9, 366, 2885, 53, 62, 12115, 1600, 366, 2885, 53, 62, 17931, 23988, 62, 12115, 1600, 366, 2885, 53, 62, 6173, 1565, 62, 12115, 1600, 366, 2885, 53, 62, 45, 1340, 10943, 45, 62, 12115, 1600, 366, 2885, 53, 62, 17931, 23988, 62, 12115, 62, 43, 3913, 4943, 198, 197, 197, 25, 4906, 2099, 25, 965, 198, 197, 197, 25, 17143, 2244, 20231, 25, 10965, 2209, 357, 270, 481, 307, 973, 611, 2622, 8, 198, 197, 197, 25, 4906, 2244, 20231, 25, 965, 198, 197, 197, 25, 17143, 1366, 25, 1366, 3017, 287, 262, 21437, 198, 197, 197, 25, 4906, 1366, 25, 9881, 198, 197, 197, 25, 17143, 16654, 9452, 25, 10926, 16654, 198, 197, 197, 25, 4906, 16654, 9452, 25, 493, 198, 197, 197, 25, 17143, 16654, 11518, 25, 40708, 16654, 198, 197, 197, 25, 4906, 16654, 11518, 25, 493, 198, 197, 197, 25, 17143, 12379, 6030, 25, 4731, 12739, 262, 10965, 2209, 2099, 5855, 11377, 1, 393, 366, 25120, 4943, 198, 197, 197, 25, 4906, 12379, 6030, 25, 965, 198, 197, 197, 25, 17143, 267, 64, 6030, 25, 4731, 12739, 262, 8159, 2209, 2099, 5855, 11377, 1, 393, 366, 25120, 4943, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 361, 2099, 6624, 366, 2885, 53, 62, 12115, 1298, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 12115, 198, 197, 197, 417, 361, 2099, 6624, 366, 2885, 53, 62, 17931, 23988, 62, 12115, 1298, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 17931, 23988, 62, 12115, 198, 197, 197, 417, 361, 2099, 6624, 366, 2885, 53, 62, 6173, 1565, 62, 12115, 1298, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 6173, 1565, 62, 12115, 198, 197, 197, 417, 361, 2099, 6624, 366, 2885, 53, 62, 45, 1340, 10943, 45, 62, 12115, 1298, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 45, 1340, 10943, 45, 62, 12115, 198, 197, 197, 417, 361, 2099, 6624, 366, 2885, 53, 62, 17931, 23988, 62, 12115, 62, 43, 3913, 1298, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 17931, 23988, 62, 12115, 62, 43, 3913, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 952, 13, 32165, 7203, 14592, 2099, 407, 8018, 11, 1262, 43685, 62, 12115, 19570, 198, 197, 197, 197, 944, 13, 32225, 6030, 796, 43685, 62, 12115, 198, 197, 197, 944, 13, 16520, 20231, 796, 6045, 611, 2244, 4550, 81, 6624, 366, 405, 25, 405, 25, 405, 25, 405, 25, 405, 25, 405, 1, 2073, 2244, 4550, 81, 198, 197, 197, 32225, 6601, 796, 1366, 198, 197, 197, 944, 13, 32225, 6601, 24539, 796, 18896, 7, 7890, 8, 611, 18896, 7, 7890, 8, 19841, 3261, 2073, 3261, 198, 197, 197, 361, 318, 39098, 7, 7890, 11, 4868, 2599, 198, 197, 197, 197, 32225, 6601, 796, 275, 15931, 198, 197, 197, 197, 1640, 1312, 287, 1366, 25, 198, 197, 197, 197, 197, 32225, 6601, 15853, 9881, 7, 72, 8, 198, 197, 197, 197, 7890, 796, 1354, 6601, 198, 197, 197, 361, 318, 39098, 7, 7890, 11, 33661, 2599, 198, 197, 197, 197, 32225, 6601, 796, 275, 15931, 198, 197, 197, 197, 361, 18896, 7, 7890, 8, 1875, 3261, 25, 198, 197, 197, 197, 197, 32225, 6601, 796, 1366, 58, 25, 3132, 60, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 32225, 6601, 796, 1366, 33747, 3132, 532, 18896, 7, 7890, 4008, 9, 65, 1, 59, 87, 405, 1, 628, 197, 197, 944, 13, 32225, 6601, 796, 1354, 6601, 198, 197, 197, 944, 13, 16520, 20231, 6030, 796, 12379, 6030, 198, 197, 197, 944, 13, 21975, 6030, 796, 267, 64, 6030, 198, 197, 197, 944, 13, 3849, 2100, 9452, 796, 16654, 9452, 198, 197, 197, 944, 13, 3849, 2100, 11518, 796, 16654, 11518, 628, 197, 4299, 900, 33351, 768, 48944, 7, 944, 11, 1366, 28, 65, 15931, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5621, 21976, 10007, 1864, 284, 262, 1366, 2810, 13, 198, 197, 197, 1026, 481, 8384, 307, 973, 416, 1635, 6173, 1565, 62, 19535, 47, 9, 24624, 13, 628, 197, 197, 25, 17143, 1366, 25, 1366, 284, 779, 287, 1635, 6173, 1565, 62, 19535, 47, 9, 198, 197, 197, 25, 4906, 1366, 25, 9881, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 35836, 6601, 24539, 796, 18896, 7, 7890, 8, 611, 18896, 7, 7890, 8, 19841, 3261, 2073, 3261, 198, 197, 197, 32225, 6601, 796, 1366, 198, 197, 197, 361, 318, 39098, 7, 7890, 11, 4868, 2599, 198, 197, 197, 197, 32225, 6601, 796, 275, 15931, 198, 197, 197, 197, 1640, 1312, 287, 1366, 25, 198, 197, 197, 197, 197, 32225, 6601, 15853, 9881, 7, 72, 8, 198, 197, 197, 197, 7890, 796, 1354, 6601, 198, 197, 197, 361, 318, 39098, 7, 7890, 11, 33661, 2599, 198, 197, 197, 197, 32225, 6601, 796, 275, 15931, 198, 197, 197, 197, 361, 18896, 7, 7890, 8, 1875, 3261, 25, 198, 197, 197, 197, 197, 32225, 6601, 796, 1366, 58, 25, 3132, 60, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 32225, 6601, 796, 1366, 33747, 3132, 532, 18896, 7, 7890, 4008, 9, 65, 1, 59, 87, 405, 1, 628, 197, 197, 944, 13, 35836, 6601, 796, 1354, 6601, 628, 628, 197, 4299, 900, 40783, 7213, 19076, 7, 944, 11, 21633, 28, 17821, 11, 43167, 41888, 2718, 11, 2548, 11, 2670, 60, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 3578, 284, 7139, 393, 15560, 262, 19372, 7213, 4235, 13, 632, 3578, 284, 2148, 257, 24637, 286, 8560, 9619, 284, 5671, 4726, 3746, 13, 628, 197, 197, 25, 17143, 7139, 25, 25131, 12739, 611, 262, 19372, 7213, 4235, 318, 9343, 13, 198, 197, 197, 25, 4906, 7139, 25, 20512, 198, 197, 197, 25, 17143, 8379, 25, 8379, 286, 9619, 284, 779, 198, 197, 197, 25, 4906, 8379, 25, 1351, 286, 493, 628, 198, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 46280, 7213, 19076, 796, 7139, 628, 197, 197, 361, 7139, 25, 198, 197, 197, 197, 361, 5214, 407, 287, 8379, 393, 4353, 407, 287, 8379, 393, 5014, 407, 287, 8379, 25, 198, 197, 197, 197, 197, 952, 13, 43917, 7203, 16501, 733, 293, 1595, 470, 1104, 262, 18404, 4235, 351, 257, 24637, 286, 9619, 25, 477, 1115, 8560, 9619, 389, 6163, 19570, 198, 197, 197, 197, 944, 13, 46280, 7213, 44015, 594, 796, 685, 2718, 11, 2548, 11, 2670, 60, 628, 197, 4299, 26300, 14592, 7, 944, 11, 21975, 11639, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 3256, 17620, 28, 14202, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 4940, 262, 15422, 26300, 278, 4235, 13, 628, 197, 197, 25, 17143, 2209, 25, 6163, 2209, 532, 611, 407, 2810, 11, 645, 8106, 318, 5625, 357, 18982, 1058, 366, 16, 32, 25, 17, 33, 25, 18, 34, 25, 19, 35, 25, 20, 36, 25, 21, 37, 4943, 198, 197, 197, 25, 4906, 2209, 25, 965, 198, 197, 197, 25, 17143, 6518, 25, 6163, 6518, 532, 611, 407, 2810, 11, 6518, 5214, 318, 6163, 198, 197, 197, 25, 4906, 6518, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 16184, 733, 14592, 3419, 198, 197, 197, 197, 33409, 3335, 13, 16184, 733, 14592, 7, 17620, 28, 2548, 8, 198, 197, 197, 197, 33409, 3335, 13, 16184, 733, 14592, 7, 21975, 2625, 16, 32, 25, 17, 33, 25, 18, 34, 25, 19, 35, 25, 20, 36, 25, 21, 37, 4943, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 628, 197, 197, 944, 13, 16184, 733, 278, 19076, 796, 9878, 1546, 77, 733, 278, 19076, 13, 19053, 198, 197, 197, 944, 13, 12957, 21745, 796, 2209, 198, 197, 197, 944, 13557, 2617, 22417, 7, 324, 11371, 10049, 28, 17821, 8, 198, 197, 197, 361, 2116, 13, 46280, 7213, 19076, 25, 198, 197, 197, 197, 944, 13557, 21633, 23483, 3419, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 361, 6518, 318, 6045, 25, 198, 197, 197, 197, 197, 17620, 796, 5214, 198, 197, 197, 197, 944, 13557, 2617, 38149, 7, 17620, 796, 6518, 11, 1895, 20231, 796, 657, 87, 23, 36, 4531, 33, 1961, 21, 11, 872, 88, 19076, 796, 366, 16, 44, 1600, 220, 1067, 66, 31768, 28, 15, 87, 2816, 2816, 2816, 8, 198, 197, 197, 361, 2209, 13, 45828, 3419, 6624, 366, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 1298, 198, 197, 197, 197, 944, 13557, 2617, 44721, 22417, 7, 20285, 28, 14202, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 944, 13557, 2617, 44721, 22417, 7, 20285, 28, 21975, 8, 628, 198, 197, 4299, 26300, 3791, 13313, 507, 7, 944, 11, 21975, 11639, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 3256, 17620, 28, 14202, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 4940, 262, 649, 8787, 26300, 278, 4235, 13, 628, 197, 197, 25, 17143, 2209, 25, 6163, 2209, 532, 611, 407, 2810, 11, 645, 8106, 318, 5625, 357, 18982, 1058, 366, 16, 32, 25, 17, 33, 25, 18, 34, 25, 19, 35, 25, 20, 36, 25, 21, 37, 4943, 198, 197, 197, 25, 4906, 2209, 25, 965, 198, 197, 197, 25, 17143, 6518, 25, 6163, 6518, 532, 611, 407, 2810, 11, 6518, 5214, 318, 6163, 198, 197, 197, 25, 4906, 6518, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 16184, 733, 3791, 13313, 507, 3419, 198, 197, 197, 197, 33409, 3335, 13, 16184, 733, 3791, 13313, 507, 7, 17620, 28, 2548, 8, 198, 197, 197, 197, 33409, 3335, 13, 16184, 733, 3791, 13313, 507, 7, 21975, 2625, 16, 32, 25, 17, 33, 25, 18, 34, 25, 19, 35, 25, 20, 36, 25, 21, 37, 4943, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 16184, 733, 278, 19076, 796, 9878, 1546, 77, 733, 278, 19076, 13, 13965, 62, 10943, 45, 24565, 198, 197, 197, 944, 13, 12957, 21745, 796, 2209, 198, 197, 197, 944, 13557, 2617, 22417, 7, 324, 11371, 10049, 28, 25101, 8, 198, 197, 197, 361, 2116, 13, 46280, 7213, 19076, 25, 198, 197, 197, 197, 944, 13557, 21633, 23483, 3419, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 361, 6518, 318, 6045, 25, 198, 197, 197, 197, 197, 17620, 796, 5214, 198, 197, 197, 197, 944, 13557, 2617, 38149, 7, 17620, 796, 6518, 11, 1895, 20231, 796, 657, 87, 23, 36, 4531, 33, 1961, 21, 11, 872, 88, 19076, 796, 366, 16, 44, 1600, 220, 1067, 66, 31768, 28, 15, 87, 2816, 2816, 2816, 8, 198, 197, 197, 361, 2209, 13, 45828, 3419, 6624, 366, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 25, 5777, 1298, 198, 197, 197, 197, 944, 13557, 2617, 44721, 22417, 7, 20285, 28, 14202, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 944, 13557, 2617, 44721, 22417, 7, 20285, 28, 21975, 8, 628, 197, 4299, 4296, 32048, 48944, 7, 944, 11, 1084, 9492, 2100, 28, 15, 11, 3509, 9492, 2100, 28, 15, 11, 24812, 28, 15, 11, 26827, 28, 15, 11, 1084, 34, 68, 28, 15, 11, 3509, 34, 68, 28, 15, 87, 29312, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 3578, 284, 4296, 4637, 10007, 1864, 284, 262, 1366, 2810, 13, 198, 197, 197, 1026, 481, 8384, 307, 973, 611, 281, 15619, 347, 2538, 32048, 36301, 10260, 18453, 318, 2722, 13, 628, 197, 197, 25, 17143, 949, 9492, 2100, 25, 10926, 16654, 198, 197, 197, 25, 4906, 949, 9492, 2100, 25, 493, 198, 197, 197, 25, 17143, 3509, 9492, 2100, 25, 40708, 16654, 198, 197, 197, 25, 4906, 3509, 9492, 2100, 25, 493, 198, 197, 197, 25, 17143, 24812, 25, 4637, 24812, 198, 197, 197, 25, 4906, 24812, 25, 493, 198, 197, 197, 25, 17143, 26827, 25, 4637, 26827, 198, 197, 197, 25, 4906, 26827, 25, 493, 198, 197, 197, 25, 17143, 949, 34, 68, 25, 5288, 4637, 1785, 4129, 198, 197, 197, 25, 4906, 949, 34, 68, 25, 493, 198, 197, 197, 25, 17143, 3509, 34, 68, 25, 5415, 4637, 1785, 4129, 198, 197, 197, 25, 4906, 3509, 34, 68, 25, 493, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 6603, 628, 198, 197, 4299, 651, 20231, 19076, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 2209, 4235, 3058, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 2209, 4235, 5855, 11377, 1, 393, 366, 25120, 4943, 198, 197, 197, 25, 81, 4906, 25, 965, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 20231, 19076, 3419, 198, 197, 197, 197, 6, 11377, 6, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 21975, 6030, 628, 198, 197, 4299, 900, 20231, 7, 944, 11, 21975, 11, 25120, 28, 25101, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 3578, 284, 13096, 262, 28023, 2209, 290, 262, 28023, 2209, 2099, 286, 262, 3335, 11, 611, 340, 318, 1744, 13, 628, 197, 197, 25, 17143, 2209, 25, 649, 28023, 2209, 198, 197, 197, 25, 4906, 2209, 25, 965, 198, 197, 197, 25, 17143, 4738, 25, 25131, 12739, 611, 262, 2209, 318, 4738, 198, 197, 197, 25, 4906, 4738, 25, 20512, 198, 197, 197, 25, 7783, 25, 25131, 12739, 611, 262, 4905, 373, 4388, 198, 197, 197, 25, 81, 4906, 25, 20512, 628, 197, 197, 25, 16281, 25, 198, 197, 197, 197, 33409, 3335, 13, 2617, 20231, 7203, 1157, 25, 1828, 25, 2091, 25, 2598, 25, 2816, 25, 2791, 4943, 198, 197, 197, 197, 17821, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 944, 13, 21975, 796, 2209, 13, 45828, 3419, 198, 197, 197, 944, 13, 21975, 6030, 796, 366, 25120, 1, 611, 4738, 2073, 366, 11377, 1, 198, 197, 197, 7783, 6407, 628, 197, 4299, 651, 20231, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 4036, 28023, 2209, 286, 262, 3335, 13, 628, 197, 197, 25, 7783, 25, 965, 12739, 262, 28023, 2209, 198, 197, 197, 25, 81, 4906, 25, 965, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 20231, 3419, 198, 197, 197, 197, 6, 16, 32, 25, 17, 33, 25, 18, 34, 25, 19, 35, 25, 20, 36, 25, 21, 37, 6, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 21975, 13, 45828, 3419, 628, 198, 197, 4299, 900, 2782, 31809, 7, 944, 11, 21633, 28, 17821, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 13536, 393, 595, 2977, 262, 8560, 4235, 13, 628, 197, 197, 25, 17143, 7139, 25, 25131, 12739, 611, 262, 8560, 4235, 1276, 307, 9343, 198, 197, 197, 25, 4906, 7139, 25, 20512, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 2617, 2782, 31809, 7, 21633, 28, 17821, 8, 1303, 8560, 4235, 9343, 198, 197, 197, 197, 33409, 3335, 13, 2617, 2782, 31809, 7, 21633, 28, 25101, 8, 1303, 8560, 4235, 10058, 628, 197, 197, 492, 6509, 3712, 198, 197, 197, 197, 5492, 3465, 326, 611, 645, 8560, 290, 21976, 1366, 468, 587, 2810, 878, 428, 2163, 869, 11, 2147, 481, 307, 23944, 13, 921, 423, 284, 900, 262, 21976, 40117, 290, 262, 8560, 40117, 878, 4585, 428, 2446, 13, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 361, 7139, 25, 198, 197, 197, 197, 944, 13557, 2617, 38149, 7, 17620, 796, 5214, 11, 1895, 20231, 796, 657, 87, 23, 36, 4531, 33, 1961, 21, 11, 872, 88, 19076, 796, 366, 16, 44, 1600, 220, 1067, 66, 31768, 28, 15, 87, 2816, 2816, 2816, 8, 198, 197, 197, 197, 944, 13557, 2617, 49991, 2215, 45677, 7, 17821, 8, 198, 197, 197, 197, 944, 13557, 2617, 22417, 7, 324, 11371, 10049, 28, 17821, 8, 198, 197, 197, 197, 944, 13557, 2617, 44721, 22417, 7, 20285, 28, 14202, 8, 198, 197, 197, 197, 944, 13557, 2617, 20231, 7, 21975, 28, 944, 13, 21975, 11, 21975, 6030, 28, 15, 87, 486, 611, 2116, 13, 21975, 6030, 6624, 366, 25120, 1, 2073, 657, 87, 405, 8, 198, 197, 197, 197, 944, 13557, 2617, 2782, 31809, 9492, 2100, 7, 3849, 2100, 28, 944, 13, 3849, 2100, 9452, 8, 198, 197, 197, 197, 944, 13557, 17904, 786, 7, 33661, 26933, 944, 13, 32225, 6601, 24539, 12962, 10, 944, 13, 32225, 6601, 11, 33661, 26933, 944, 13, 35836, 6601, 24539, 12962, 10, 944, 13, 35836, 6601, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 944, 13557, 42503, 3419, 628, 197, 4299, 651, 29239, 7, 944, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 5860, 262, 6518, 1682, 287, 779, 13, 628, 197, 197, 25, 7783, 25, 6518, 287, 779, 198, 197, 197, 25, 81, 4906, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 29239, 3419, 198, 197, 197, 197, 2718, 198, 197, 197, 197, 33409, 3335, 13, 2617, 29239, 7, 17620, 28, 2548, 8, 198, 197, 197, 197, 33409, 3335, 13, 1136, 29239, 3419, 198, 197, 197, 197, 2548, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 7783, 2116, 13, 17620, 628, 198, 197, 4299, 900, 29239, 7, 944, 11, 6518, 28, 2718, 2599, 198, 197, 197, 7061, 6, 198, 197, 197, 1212, 2446, 2458, 262, 6518, 1682, 287, 779, 416, 262, 2810, 6518, 13, 628, 197, 197, 25, 17143, 6518, 25, 649, 6518, 198, 197, 197, 25, 4906, 6518, 25, 493, 628, 197, 197, 25, 16281, 25, 628, 197, 197, 197, 33409, 3335, 13, 1136, 29239, 3419, 198, 197, 197, 197, 2718, 198, 197, 197, 197, 33409, 3335, 13, 2617, 29239, 7, 17620, 28, 2548, 8, 198, 197, 197, 197, 33409, 3335, 13, 1136, 29239, 3419, 198, 197, 197, 197, 2548, 628, 197, 197, 492, 3465, 3712, 628, 197, 197, 197, 1212, 2446, 318, 257, 12429, 28710, 2446, 1174, 290, 460, 307, 1444, 422, 262, 11188, 2295, 45512, 1220, 19520, 1191, 13, 628, 197, 197, 7061, 6, 198, 197, 197, 361, 6518, 318, 407, 6045, 290, 6518, 14512, 2116, 13, 17620, 25, 198, 197, 197, 197, 944, 13557, 2617, 38149, 7, 17620, 796, 6518, 11, 1895, 20231, 796, 657, 87, 23, 36, 4531, 33, 1961, 21, 11, 872, 88, 19076, 796, 366, 16, 44, 1600, 220, 1067, 66, 31768, 28, 15, 87, 2816, 2816, 2816, 8, 198 ]
2.865616
7,486
"""Get invoice profile by group name API method.""" from ibsng.handler.handler import Handler class getInvoiceProfileByGroupName(Handler): """Get invoice profile by group name method class.""" def control(self): """Validate inputs after setup method. :return: None :rtype: None """ self.is_valid(self.group_name, str) def setup(self, group_name): """Setup required parameters. :param str group_name: ibsng group name :return: None :rtype: None """ self.group_name = group_name
[ 37811, 3855, 45458, 7034, 416, 1448, 1438, 7824, 2446, 526, 15931, 198, 6738, 24283, 82, 782, 13, 30281, 13, 30281, 1330, 32412, 628, 198, 4871, 651, 19904, 2942, 37046, 3886, 13247, 5376, 7, 25060, 2599, 198, 220, 220, 220, 37227, 3855, 45458, 7034, 416, 1448, 1438, 2446, 1398, 526, 15931, 628, 220, 220, 220, 825, 1630, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 17311, 706, 9058, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 12102, 7, 944, 13, 8094, 62, 3672, 11, 965, 8, 628, 220, 220, 220, 825, 9058, 7, 944, 11, 1448, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 2672, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 1448, 62, 3672, 25, 24283, 82, 782, 1448, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8094, 62, 3672, 796, 1448, 62, 3672, 198 ]
2.550218
229
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, \ with_statement from kivy.app import App from kivy.clock import Clock from kivy.core.text import LabelBase from kivy.core.window import Window from kivy.utils import get_color_from_hex from time import strftime import time from shadowsocks import local import ss_local import threading from multiprocessing import Process if __name__ == '__main__': Window.clearcolor = get_color_from_hex('#45818e') LabelBase.register(name='Roboto', fn_regular='res/Roboto-Thin.ttf', fn_bold='res/Roboto-Medium.ttf') LabelBase.register(name='simsun', fn_regular='res/simsun.ttc') ShadowsocksApp().run()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 3467, 198, 220, 220, 220, 351, 62, 26090, 198, 6738, 479, 452, 88, 13, 1324, 1330, 2034, 198, 6738, 479, 452, 88, 13, 15750, 1330, 21328, 198, 6738, 479, 452, 88, 13, 7295, 13, 5239, 1330, 36052, 14881, 198, 6738, 479, 452, 88, 13, 7295, 13, 17497, 1330, 26580, 198, 6738, 479, 452, 88, 13, 26791, 1330, 651, 62, 8043, 62, 6738, 62, 33095, 198, 6738, 640, 1330, 965, 31387, 198, 11748, 640, 198, 6738, 16187, 3320, 1330, 1957, 198, 11748, 37786, 62, 12001, 198, 11748, 4704, 278, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26580, 13, 20063, 8043, 796, 651, 62, 8043, 62, 6738, 62, 33095, 10786, 2, 29334, 1507, 68, 11537, 198, 220, 220, 220, 36052, 14881, 13, 30238, 7, 3672, 11639, 14350, 2069, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 62, 16338, 11639, 411, 14, 14350, 2069, 12, 817, 259, 13, 926, 69, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 62, 36575, 11639, 411, 14, 14350, 2069, 12, 31205, 13, 926, 69, 11537, 198, 220, 220, 220, 36052, 14881, 13, 30238, 7, 3672, 11639, 82, 12078, 403, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 62, 16338, 11639, 411, 14, 82, 12078, 403, 13, 926, 66, 11537, 628, 220, 220, 220, 18037, 3320, 4677, 22446, 5143, 3419, 198 ]
2.471698
318
import sys import argparse import psutil from cpu_load_generator import load_all_cores, load_single_core, from_profile def parse_args(parser): """Parse input parameters. param parser: ArgumentParser object """ parser.add_argument('-p', '--path_to_profile_json', type=str, default="", help='Path to CPU load profile json file. Using with any other arguments is disallowed!') parser.add_argument('-l', '--cpu_load', type=float, help='Cpu target load.') parser.add_argument('-d', '--duration', type=int, help='Duration of the load in seconds. Should be higher than 0.') parser.add_argument('-c', '--cpu_core', type=int, default=0, help='Select the CPU number on which generate the load. Default is 0.') parser.set_defaults() args = parser.parse_args() return args def input_error_handler(args): """Handle input errors. param args: parsed input arguments type args: object """ cpu_count = psutil.cpu_count() if args.path_to_profile_json == "": if not args.cpu_core < cpu_count: args.print_help() raise ValueError('Core to load should not be higher than {}!'.format(cpu_count - 1)) if args.duration <= 0: args.print_help() raise ValueError('The load duration must be higher then 0!') if not 0 < args.cpu_load <= 1.0: args.print_help() raise ValueError('CPU load time should be the fraction of 1. Range (0; 1].') else: input_arguments = sys.argv[1:] if ('-c' in input_arguments or '--cpu_core' in input_arguments) and \ ('-p' in input_arguments or '--path_to_profile_json' in input_arguments): args.print_help() raise ValueError("Using any of arguments with conjunction with path_to_profile_json is disallowed!") if args.duration is not None or args.cpu_load is not None: args.print_help() raise ValueError("Using any of arguments with conjunction with path_to_profile_json is disallowed!") def main(): """The main package entry point.""" parser = argparse.ArgumentParser() args = parse_args(parser) input_error_handler(args) if args.path_to_profile_json != "": from_profile(args.path_to_profile_json) else: if args.cpu_core >= 0: load_single_core(args.cpu_core, args.duration, args.cpu_load) else: load_all_cores(args.duration, args.cpu_load) if __name__ == "__main__": main()
[ 11748, 25064, 198, 11748, 1822, 29572, 198, 198, 11748, 26692, 22602, 198, 198, 6738, 42804, 62, 2220, 62, 8612, 1352, 1330, 3440, 62, 439, 62, 66, 2850, 11, 3440, 62, 29762, 62, 7295, 11, 422, 62, 13317, 628, 198, 4299, 21136, 62, 22046, 7, 48610, 2599, 198, 220, 220, 220, 37227, 10044, 325, 5128, 10007, 13, 628, 220, 220, 220, 5772, 30751, 25, 45751, 46677, 2134, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 79, 3256, 705, 438, 6978, 62, 1462, 62, 13317, 62, 17752, 3256, 2099, 28, 2536, 11, 4277, 2625, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 284, 9135, 3440, 7034, 33918, 2393, 13, 8554, 351, 597, 584, 7159, 318, 595, 40845, 0, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 75, 3256, 705, 438, 36166, 62, 2220, 3256, 2099, 28, 22468, 11, 1037, 11639, 34, 19944, 2496, 3440, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 67, 3256, 705, 438, 32257, 3256, 2099, 28, 600, 11, 1037, 11639, 26054, 286, 262, 3440, 287, 4201, 13, 10358, 307, 2440, 621, 657, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 705, 438, 36166, 62, 7295, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17563, 262, 9135, 1271, 319, 543, 7716, 262, 3440, 13, 15161, 318, 657, 2637, 8, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 3419, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1441, 26498, 628, 198, 4299, 5128, 62, 18224, 62, 30281, 7, 22046, 2599, 198, 220, 220, 220, 37227, 37508, 5128, 8563, 13, 628, 220, 220, 220, 5772, 26498, 25, 44267, 5128, 7159, 198, 220, 220, 220, 2099, 26498, 25, 2134, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 42804, 62, 9127, 796, 26692, 22602, 13, 36166, 62, 9127, 3419, 628, 220, 220, 220, 611, 26498, 13, 6978, 62, 1462, 62, 13317, 62, 17752, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 36166, 62, 7295, 1279, 42804, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 14055, 284, 3440, 815, 407, 307, 2440, 621, 23884, 0, 4458, 18982, 7, 36166, 62, 9127, 532, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 32257, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 464, 3440, 9478, 1276, 307, 2440, 788, 657, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 657, 1279, 26498, 13, 36166, 62, 2220, 19841, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 36037, 3440, 640, 815, 307, 262, 13390, 286, 352, 13, 13667, 357, 15, 26, 352, 60, 2637, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 853, 2886, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 12, 66, 6, 287, 5128, 62, 853, 2886, 393, 705, 438, 36166, 62, 7295, 6, 287, 5128, 62, 853, 2886, 8, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 12, 79, 6, 287, 5128, 62, 853, 2886, 393, 705, 438, 6978, 62, 1462, 62, 13317, 62, 17752, 6, 287, 5128, 62, 853, 2886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 12814, 597, 286, 7159, 351, 17856, 351, 3108, 62, 1462, 62, 13317, 62, 17752, 318, 595, 40845, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 32257, 318, 407, 6045, 393, 26498, 13, 36166, 62, 2220, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 12814, 597, 286, 7159, 351, 17856, 351, 3108, 62, 1462, 62, 13317, 62, 17752, 318, 595, 40845, 2474, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 464, 1388, 5301, 5726, 966, 526, 15931, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 26498, 796, 21136, 62, 22046, 7, 48610, 8, 628, 220, 220, 220, 5128, 62, 18224, 62, 30281, 7, 22046, 8, 628, 220, 220, 220, 611, 26498, 13, 6978, 62, 1462, 62, 13317, 62, 17752, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 13317, 7, 22046, 13, 6978, 62, 1462, 62, 13317, 62, 17752, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 36166, 62, 7295, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 29762, 62, 7295, 7, 22046, 13, 36166, 62, 7295, 11, 26498, 13, 32257, 11, 26498, 13, 36166, 62, 2220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 439, 62, 66, 2850, 7, 22046, 13, 32257, 11, 26498, 13, 36166, 62, 2220, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.489816
1,031
from random import random import math import numpy as np import binascii import struct num_vectors = 100 f = open("test_vectors.txt", "w") i = 0 while (i < num_vectors): a = np.uint16(math.floor(random() * (2**16 - 1))) b = np.uint16(math.floor(random() * (2**16 - 1))) if (a != 0) and (b != 0): c = math.gcd(a, b) f.write(str(get_hex(c)) + '_' + str(get_hex(a)) + '_' + str(get_hex(b)) + '\n') i = i + 1 f.close()
[ 6738, 4738, 1330, 4738, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 9874, 292, 979, 72, 198, 11748, 2878, 198, 198, 22510, 62, 303, 5217, 796, 1802, 198, 198, 69, 796, 1280, 7203, 9288, 62, 303, 5217, 13, 14116, 1600, 366, 86, 4943, 198, 198, 72, 796, 657, 198, 198, 4514, 357, 72, 1279, 997, 62, 303, 5217, 2599, 198, 220, 257, 796, 45941, 13, 28611, 1433, 7, 11018, 13, 28300, 7, 25120, 3419, 1635, 357, 17, 1174, 1433, 532, 352, 22305, 198, 220, 275, 796, 45941, 13, 28611, 1433, 7, 11018, 13, 28300, 7, 25120, 3419, 1635, 357, 17, 1174, 1433, 532, 352, 22305, 198, 220, 611, 357, 64, 14512, 657, 8, 290, 357, 65, 14512, 657, 2599, 198, 220, 220, 220, 269, 796, 10688, 13, 70, 10210, 7, 64, 11, 275, 8, 198, 220, 220, 220, 277, 13, 13564, 7, 2536, 7, 1136, 62, 33095, 7, 66, 4008, 1343, 705, 62, 6, 1343, 965, 7, 1136, 62, 33095, 7, 64, 4008, 1343, 705, 62, 6, 1343, 965, 7, 1136, 62, 33095, 7, 65, 4008, 1343, 705, 59, 77, 11537, 220, 198, 220, 220, 220, 1312, 796, 1312, 1343, 352, 198, 69, 13, 19836, 3419, 198 ]
2.19
200
import json import pandas as pd import time import matplotlib.pyplot as plt ylabels = [ "CPU Utilization (%)", "Disk I/O Utilization (%)", "Process CPU Threads In Use", "Network Traffic (bytes)", "System Memory Utilization (%)", "Process Memory Available (non-swap) (MB)", "Process Memory In Use (non-swap) (MB)", "Process Memory \n In Use (non-swap) (%)", "GPU Utilization (%)", "GPU Memory Allocated (%)", "GPU Time Spent Accessing Memory (%)", "GPU Temp (℃)", ] columns = [ "system.cpu", "system.disk", "system.proc.cpu.threads", ["network.sent", "system.network.recv"], "system.memory", "system.proc.memory.availableMB", "system.proc.memory.rssMB", "system.proc.memory.percent", "system.gpu.0.gpu", "system.gpu.0.memory", "system.gpu.0.memoryAllocated", "system.gpu.0.temp", ] filenames = [ "CPU_Utilization.png", "Disk_IO_Utilization.png", "CPU_Threads.png", "Network_Traffic.png", "Memory_Utilization.png", "Proc_Memory_available.png", "Proc_Memory_MB.png", "Proc_Memory_Percent.png", "GPU_Utilization.png", "GPU_Memory_Allocated.png", "GPU_Memory_Time.png", "GPU_Temp.png", ]
[ 11748, 33918, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 640, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2645, 397, 1424, 796, 685, 198, 220, 220, 220, 366, 36037, 7273, 346, 1634, 11509, 1600, 198, 220, 220, 220, 366, 40961, 314, 14, 46, 7273, 346, 1634, 11509, 1600, 198, 220, 220, 220, 366, 18709, 9135, 14122, 82, 554, 5765, 1600, 198, 220, 220, 220, 366, 26245, 23624, 357, 33661, 42501, 198, 220, 220, 220, 366, 11964, 14059, 7273, 346, 1634, 11509, 1600, 198, 220, 220, 220, 366, 18709, 14059, 14898, 357, 13159, 12, 2032, 499, 8, 357, 10744, 42501, 198, 220, 220, 220, 366, 18709, 14059, 554, 5765, 357, 13159, 12, 2032, 499, 8, 357, 10744, 42501, 198, 220, 220, 220, 366, 18709, 14059, 3467, 77, 554, 5765, 357, 13159, 12, 2032, 499, 8, 11509, 1600, 198, 220, 220, 220, 366, 33346, 7273, 346, 1634, 11509, 1600, 198, 220, 220, 220, 366, 33346, 14059, 1439, 10533, 11509, 1600, 198, 220, 220, 220, 366, 33346, 3862, 1338, 298, 8798, 278, 14059, 11509, 1600, 198, 220, 220, 220, 366, 33346, 24189, 357, 158, 226, 225, 42501, 198, 60, 198, 28665, 82, 796, 685, 198, 220, 220, 220, 366, 10057, 13, 36166, 1600, 198, 220, 220, 220, 366, 10057, 13, 39531, 1600, 198, 220, 220, 220, 366, 10057, 13, 36942, 13, 36166, 13, 16663, 82, 1600, 198, 220, 220, 220, 14631, 27349, 13, 34086, 1600, 366, 10057, 13, 27349, 13, 8344, 85, 33116, 198, 220, 220, 220, 366, 10057, 13, 31673, 1600, 198, 220, 220, 220, 366, 10057, 13, 36942, 13, 31673, 13, 15182, 10744, 1600, 198, 220, 220, 220, 366, 10057, 13, 36942, 13, 31673, 13, 42216, 10744, 1600, 198, 220, 220, 220, 366, 10057, 13, 36942, 13, 31673, 13, 25067, 1600, 198, 220, 220, 220, 366, 10057, 13, 46999, 13, 15, 13, 46999, 1600, 198, 220, 220, 220, 366, 10057, 13, 46999, 13, 15, 13, 31673, 1600, 198, 220, 220, 220, 366, 10057, 13, 46999, 13, 15, 13, 31673, 3237, 10533, 1600, 198, 220, 220, 220, 366, 10057, 13, 46999, 13, 15, 13, 29510, 1600, 198, 60, 198, 10379, 268, 1047, 796, 685, 198, 220, 220, 220, 366, 36037, 62, 18274, 346, 1634, 13, 11134, 1600, 198, 220, 220, 220, 366, 40961, 62, 9399, 62, 18274, 346, 1634, 13, 11134, 1600, 198, 220, 220, 220, 366, 36037, 62, 16818, 82, 13, 11134, 1600, 198, 220, 220, 220, 366, 26245, 62, 15721, 2108, 13, 11134, 1600, 198, 220, 220, 220, 366, 30871, 62, 18274, 346, 1634, 13, 11134, 1600, 198, 220, 220, 220, 366, 2964, 66, 62, 30871, 62, 15182, 13, 11134, 1600, 198, 220, 220, 220, 366, 2964, 66, 62, 30871, 62, 10744, 13, 11134, 1600, 198, 220, 220, 220, 366, 2964, 66, 62, 30871, 62, 31905, 13, 11134, 1600, 198, 220, 220, 220, 366, 33346, 62, 18274, 346, 1634, 13, 11134, 1600, 198, 220, 220, 220, 366, 33346, 62, 30871, 62, 3237, 10533, 13, 11134, 1600, 198, 220, 220, 220, 366, 33346, 62, 30871, 62, 7575, 13, 11134, 1600, 198, 220, 220, 220, 366, 33346, 62, 30782, 13, 11134, 1600, 198, 60, 628, 628, 628, 198 ]
2.359465
523
from flask import Flask, request from flask import Flask, request, session, g, jsonify, \ redirect, url_for, abort, render_template, flash import sqlite3 import json app=Flask(__name__) app.config.from_object(__name__) app.config.update(DATABASE=app.root_path + '/data/textpile.db') # log errors in production to uwsgi.log app.config.update(PROPAGATE_EXCEPTIONS=True) app.config.from_pyfile(app.root_path + '/config/flask-server.conf') @app.route('/') @app.route('/stats') @app.route('/most_relevant') @app.route('/tagged/<tag>') @app.route('/random') @app.route('/doc/<int:doc_id>', methods=['GET', 'POST']) @app.route('/login', methods=['GET', 'POST']) @app.route('/logout') @app.teardown_appcontext if __name__=='__main__': app.run(host='0.0.0.0')
[ 6738, 42903, 1330, 46947, 11, 2581, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 6246, 11, 308, 11, 33918, 1958, 11, 3467, 198, 220, 220, 220, 18941, 11, 19016, 62, 1640, 11, 15614, 11, 8543, 62, 28243, 11, 7644, 198, 11748, 44161, 578, 18, 198, 11748, 33918, 198, 198, 1324, 28, 7414, 2093, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 19119, 7, 35, 1404, 6242, 11159, 28, 1324, 13, 15763, 62, 6978, 1343, 31051, 7890, 14, 5239, 79, 576, 13, 9945, 11537, 198, 2, 2604, 8563, 287, 3227, 284, 334, 18504, 12397, 13, 6404, 198, 1324, 13, 11250, 13, 19119, 7, 4805, 3185, 4760, 6158, 62, 6369, 42006, 11053, 28, 17821, 8, 198, 1324, 13, 11250, 13, 6738, 62, 9078, 7753, 7, 1324, 13, 15763, 62, 6978, 1343, 31051, 11250, 14, 2704, 2093, 12, 15388, 13, 10414, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 34242, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 1712, 62, 49659, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 12985, 2004, 14, 27, 12985, 29, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 25120, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 15390, 14, 27, 600, 25, 15390, 62, 312, 29, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 38235, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 6404, 448, 11537, 198, 198, 31, 1324, 13, 660, 446, 593, 62, 1324, 22866, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 11537, 198 ]
2.491909
309
from datetime import datetime from typing import Generic, Optional from rx.core import typing from rx.disposable import SingleAssignmentDisposable from .schedulerbase import SchedulerBase
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 42044, 11, 32233, 198, 198, 6738, 374, 87, 13, 7295, 1330, 19720, 198, 6738, 374, 87, 13, 6381, 1930, 540, 1330, 14206, 8021, 16747, 7279, 1930, 540, 198, 198, 6738, 764, 1416, 704, 18173, 8692, 1330, 27774, 18173, 14881, 628 ]
3.82
50
import datetime from dateutil import parser from itertools import tee from jinja2 import Template, Environment, FileSystemLoader import os import re import shutil import time import warnings import yaml DEFAULT_TIME = datetime.time(9, 0) MAX_SLUG_LENGTH = 30 def ComputePermalink(type_name, slug, created_date, permalink_template='{{slug}}'): """Returns the permalink for the given item.""" permalink_data = {'slug': slug} # If there's date information associated, include it in the permalink data. if created_date: permalink_data = dict(permalink_data.items()) permalink_data.update(created_date.GetDict().items()) return RenderTemplateString(permalink_template, permalink_data) def ParseSnip(content): """Return the snippet based on the content.""" found = content.find('<!--more-->') if found >= 0: return content[:found] def ParseDate(date): """Gets the permalink parameters based on the item's info.""" try: if type(date) == str: date_string = date date = parser.parse(date_string) #warnings.warn('Parsed %s into %s.' % (date_string, date)) dt = datetime.datetime.combine(date, DEFAULT_TIME) return Date(dt) except TypeError as e: warnings.warn('Failed to parse date: %s.' % e) return None def GuessDate(path): """Based on the filesystem structure (eg. blah/2014/09/20/foo-bar.md), extracts the date.""" regex = '.*\/([0-9]{4})\/([0-9]{2})\/([0-9]{2})\/.*' match = re.match(regex, path) if match: date_tuple = map(int, match.groups()) date = datetime.datetime(*date_tuple) return ParseDate(date) def GuessType(path, mappings): """Return the type based on the path. The site config provides automatic mappings based on path.""" for type_path, type_name in mappings.items(): if path.find(type_path) >= 0: return type_name def GuessSlugFromPath(path): """Returns the slug.""" if path.endswith('index.md'): # If it ends with index, get the second last path component. return path.split('/')[-2] else: # Otherwise, just get the filename. return path.split('/')[-1].split('.')[0] def GuessSlugFromTitle(title): """Return an automatically generated slug from title. Turn spaces into dashes, lowercase everything, limit length.""" lower = title.lower() slug = lower.replace(' ', '-') slug = ''.join([c for c in slug if IsValidChar(c)]) slug = re.sub("-+", "-", slug) return slug def FindSplitIndices(lines): """Given some lines representing a markdown file with multiple entries in it, find each split point.""" # Code lines: T if any text, N if new line, D if divider. coded_lines = [CodeLine(line) for line in lines] coded = ''.join(coded_lines) #warnings.warn(coded) # Look for patterns of NTDN in the coded lines string. If such a pattern is # found, output the index. return [m.start() for m in re.finditer('NTD', coded)] def Pairwise(iterable): """Returns a pairwise iterated list.""" a, b = tee(iterable) next(b, None) return list(zip(a, b)) def DeletePath(path): """Remove file or directory at path.""" if os.path.isfile(path): os.unlink(path) else: shutil.rmtree(path) def FixBrokenLinks(content, permalink): """Given content (HTML or RSS), this will make all relative links into absolute ones referring to the permalink.""" links = re.findall(r'<a href="(.+?)"', content, re.DOTALL) + \ re.findall(r'<img src="(.+?)"', content, re.DOTALL) + \ re.findall(r'<audio src="(.+?)"', content, re.DOTALL) + \ re.findall(r'<video src="(.+?)"', content, re.DOTALL) # If the links are relative, make them absolute. for link in links: # If it doesn't have http or / at the beginning, it's a relative URL. if not link.startswith('/') and not link.startswith('http') and not \ link.startswith('mailto'): # If they are relative, rewrite them using the permalink absolute_link = os.path.join(permalink, link) content = content.replace(link, absolute_link) #warnings.warn('Making relative link %s into absolute %s.' % (link, # absolute_link)) return content def FormatWikiLinks(html): """Given an html file, convert [[WikiLinks]] into *WikiLinks* just to ease readability.""" wikilink = re.compile(r'\[\[(?:[^|\]]*\|)?([^\]]+)\]\]') return wikilink.sub(r'*\1*', html) def ResolveWikiLinks(html): """Given an html file, convert [[WikiLinks]] into links to the personal wiki: <a href="https://z3.ca/WikiLinks">WikiLinks</a>""" wikilink = re.compile(r'\[\[(?:[^|\]]*\|)?([^\]]+)\]\]') return wikilink.sub(linkify, html)
[ 11748, 4818, 8079, 198, 6738, 3128, 22602, 1330, 30751, 198, 6738, 340, 861, 10141, 1330, 30479, 198, 6738, 474, 259, 6592, 17, 1330, 37350, 11, 9344, 11, 9220, 11964, 17401, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4423, 346, 198, 11748, 640, 198, 11748, 14601, 198, 11748, 331, 43695, 198, 198, 7206, 38865, 62, 34694, 796, 4818, 8079, 13, 2435, 7, 24, 11, 657, 8, 198, 22921, 62, 8634, 7340, 62, 43, 49494, 796, 1542, 628, 628, 198, 4299, 3082, 1133, 5990, 31000, 7, 4906, 62, 3672, 11, 31065, 11, 2727, 62, 4475, 11, 583, 31000, 62, 28243, 11639, 27007, 6649, 1018, 11709, 6, 2599, 198, 220, 37227, 35561, 262, 583, 31000, 329, 262, 1813, 2378, 526, 15931, 198, 220, 583, 31000, 62, 7890, 796, 1391, 6, 6649, 1018, 10354, 31065, 92, 198, 220, 1303, 1002, 612, 338, 3128, 1321, 3917, 11, 2291, 340, 287, 262, 583, 31000, 1366, 13, 198, 220, 611, 2727, 62, 4475, 25, 198, 220, 220, 220, 583, 31000, 62, 7890, 796, 8633, 7, 525, 31000, 62, 7890, 13, 23814, 28955, 198, 220, 220, 220, 583, 31000, 62, 7890, 13, 19119, 7, 25598, 62, 4475, 13, 3855, 35, 713, 22446, 23814, 28955, 198, 220, 1441, 46722, 30800, 10100, 7, 525, 31000, 62, 28243, 11, 583, 31000, 62, 7890, 8, 628, 198, 4299, 2547, 325, 16501, 541, 7, 11299, 2599, 198, 220, 37227, 13615, 262, 39442, 1912, 319, 262, 2695, 526, 15931, 198, 220, 1043, 796, 2695, 13, 19796, 10786, 27, 28112, 3549, 46904, 11537, 198, 220, 611, 1043, 18189, 657, 25, 198, 220, 220, 220, 1441, 2695, 58, 25, 9275, 60, 628, 198, 4299, 2547, 325, 10430, 7, 4475, 2599, 198, 220, 37227, 38, 1039, 262, 583, 31000, 10007, 1912, 319, 262, 2378, 338, 7508, 526, 15931, 198, 220, 1949, 25, 198, 220, 220, 220, 611, 2099, 7, 4475, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 3128, 62, 8841, 796, 3128, 198, 220, 220, 220, 220, 220, 3128, 796, 30751, 13, 29572, 7, 4475, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 1303, 40539, 654, 13, 40539, 10786, 47, 945, 276, 4064, 82, 656, 4064, 82, 2637, 4064, 357, 4475, 62, 8841, 11, 3128, 4008, 628, 220, 220, 220, 288, 83, 796, 4818, 8079, 13, 19608, 8079, 13, 24011, 500, 7, 4475, 11, 5550, 38865, 62, 34694, 8, 198, 220, 220, 220, 1441, 7536, 7, 28664, 8, 198, 220, 2845, 5994, 12331, 355, 304, 25, 198, 220, 220, 220, 14601, 13, 40539, 10786, 37, 6255, 284, 21136, 3128, 25, 4064, 82, 2637, 4064, 304, 8, 198, 220, 220, 220, 1441, 6045, 628, 198, 4299, 37571, 10430, 7, 6978, 2599, 198, 220, 37227, 15001, 319, 262, 29905, 4645, 357, 1533, 13, 33367, 14, 4967, 14, 2931, 14, 1238, 14, 21943, 12, 5657, 13, 9132, 828, 198, 220, 32139, 262, 3128, 526, 15931, 198, 220, 40364, 796, 705, 15885, 11139, 26933, 15, 12, 24, 60, 90, 19, 30072, 11139, 26933, 15, 12, 24, 60, 90, 17, 30072, 11139, 26933, 15, 12, 24, 60, 90, 17, 30072, 11139, 15885, 6, 198, 220, 2872, 796, 302, 13, 15699, 7, 260, 25636, 11, 3108, 8, 198, 220, 611, 2872, 25, 198, 220, 220, 220, 3128, 62, 83, 29291, 796, 3975, 7, 600, 11, 2872, 13, 24432, 28955, 198, 220, 220, 220, 3128, 796, 4818, 8079, 13, 19608, 8079, 46491, 4475, 62, 83, 29291, 8, 198, 220, 220, 220, 1441, 2547, 325, 10430, 7, 4475, 8, 628, 198, 4299, 37571, 6030, 7, 6978, 11, 285, 39242, 2599, 198, 220, 37227, 13615, 262, 2099, 1912, 319, 262, 3108, 13, 383, 2524, 4566, 3769, 11353, 198, 220, 285, 39242, 1912, 319, 3108, 526, 15931, 198, 220, 329, 2099, 62, 6978, 11, 2099, 62, 3672, 287, 285, 39242, 13, 23814, 33529, 198, 220, 220, 220, 611, 3108, 13, 19796, 7, 4906, 62, 6978, 8, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 1441, 2099, 62, 3672, 628, 198, 4299, 37571, 11122, 1018, 4863, 15235, 7, 6978, 2599, 198, 220, 37227, 35561, 262, 31065, 526, 15931, 198, 220, 611, 3108, 13, 437, 2032, 342, 10786, 9630, 13, 9132, 6, 2599, 198, 220, 220, 220, 1303, 1002, 340, 5645, 351, 6376, 11, 651, 262, 1218, 938, 3108, 7515, 13, 198, 220, 220, 220, 1441, 3108, 13, 35312, 10786, 14, 11537, 58, 12, 17, 60, 198, 220, 2073, 25, 198, 220, 220, 220, 1303, 15323, 11, 655, 651, 262, 29472, 13, 198, 220, 220, 220, 1441, 3108, 13, 35312, 10786, 14, 11537, 58, 12, 16, 4083, 35312, 10786, 2637, 38381, 15, 60, 628, 198, 4299, 37571, 11122, 1018, 4863, 19160, 7, 7839, 2599, 198, 220, 37227, 13615, 281, 6338, 7560, 31065, 422, 3670, 13, 6756, 9029, 656, 288, 7465, 11, 198, 220, 2793, 7442, 2279, 11, 4179, 4129, 526, 15931, 628, 220, 2793, 796, 3670, 13, 21037, 3419, 198, 220, 31065, 796, 2793, 13, 33491, 10786, 46083, 705, 12, 11537, 198, 220, 31065, 796, 705, 4458, 22179, 26933, 66, 329, 269, 287, 31065, 611, 1148, 47139, 12441, 7, 66, 8, 12962, 198, 220, 31065, 796, 302, 13, 7266, 7203, 19529, 1600, 27444, 1600, 31065, 8, 198, 220, 1441, 31065, 628, 628, 198, 4299, 9938, 41205, 5497, 1063, 7, 6615, 2599, 198, 220, 37227, 15056, 617, 3951, 10200, 257, 1317, 2902, 2393, 351, 3294, 12784, 287, 340, 11, 198, 220, 1064, 1123, 6626, 966, 526, 15931, 628, 220, 1303, 6127, 3951, 25, 309, 611, 597, 2420, 11, 399, 611, 649, 1627, 11, 360, 611, 2659, 1304, 13, 198, 220, 30817, 62, 6615, 796, 685, 10669, 13949, 7, 1370, 8, 329, 1627, 287, 3951, 60, 198, 220, 30817, 796, 705, 4458, 22179, 7, 40976, 62, 6615, 8, 628, 220, 1303, 40539, 654, 13, 40539, 7, 40976, 8, 628, 220, 1303, 6803, 329, 7572, 286, 399, 21016, 45, 287, 262, 30817, 3951, 4731, 13, 1002, 884, 257, 3912, 318, 198, 220, 1303, 1043, 11, 5072, 262, 6376, 13, 198, 220, 1441, 685, 76, 13, 9688, 3419, 329, 285, 287, 302, 13, 19796, 2676, 10786, 11251, 35, 3256, 30817, 15437, 628, 198, 198, 4299, 39645, 3083, 7, 2676, 540, 2599, 198, 220, 37227, 35561, 257, 5166, 3083, 11629, 515, 1351, 526, 15931, 198, 220, 257, 11, 275, 796, 30479, 7, 2676, 540, 8, 198, 220, 1306, 7, 65, 11, 6045, 8, 198, 220, 1441, 1351, 7, 13344, 7, 64, 11, 275, 4008, 628, 198, 198, 4299, 23520, 15235, 7, 6978, 2599, 198, 220, 37227, 27914, 2393, 393, 8619, 379, 3108, 526, 15931, 198, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 28686, 13, 403, 8726, 7, 6978, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 6978, 8, 628, 198, 4299, 13268, 15783, 3464, 31815, 7, 11299, 11, 583, 31000, 2599, 198, 220, 37227, 15056, 2695, 357, 28656, 393, 25012, 828, 428, 481, 787, 477, 3585, 6117, 656, 198, 220, 4112, 3392, 9759, 284, 262, 583, 31000, 526, 15931, 198, 220, 6117, 796, 302, 13, 19796, 439, 7, 81, 6, 27, 64, 13291, 2625, 7, 13, 10, 10091, 1, 3256, 2695, 11, 302, 13, 35, 2394, 7036, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 13, 19796, 439, 7, 81, 6, 27, 9600, 12351, 2625, 7, 13, 10, 10091, 1, 3256, 2695, 11, 302, 13, 35, 2394, 7036, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 13, 19796, 439, 7, 81, 6, 27, 24051, 12351, 2625, 7, 13, 10, 10091, 1, 3256, 2695, 11, 302, 13, 35, 2394, 7036, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 13, 19796, 439, 7, 81, 6, 27, 15588, 12351, 2625, 7, 13, 10, 10091, 1, 3256, 2695, 11, 302, 13, 35, 2394, 7036, 8, 628, 220, 1303, 1002, 262, 6117, 389, 3585, 11, 787, 606, 4112, 13, 198, 220, 329, 2792, 287, 6117, 25, 198, 220, 220, 220, 1303, 1002, 340, 1595, 470, 423, 2638, 393, 1220, 379, 262, 3726, 11, 340, 338, 257, 3585, 10289, 13, 198, 220, 220, 220, 611, 407, 2792, 13, 9688, 2032, 342, 10786, 14, 11537, 290, 407, 2792, 13, 9688, 2032, 342, 10786, 4023, 11537, 290, 407, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 2792, 13, 9688, 2032, 342, 10786, 4529, 1462, 6, 2599, 198, 220, 220, 220, 220, 220, 1303, 1002, 484, 389, 3585, 11, 28183, 606, 1262, 262, 583, 31000, 198, 220, 220, 220, 220, 220, 4112, 62, 8726, 796, 28686, 13, 6978, 13, 22179, 7, 525, 31000, 11, 2792, 8, 198, 220, 220, 220, 220, 220, 2695, 796, 2695, 13, 33491, 7, 8726, 11, 4112, 62, 8726, 8, 628, 220, 220, 220, 220, 220, 1303, 40539, 654, 13, 40539, 10786, 23874, 3585, 2792, 4064, 82, 656, 4112, 4064, 82, 2637, 4064, 357, 8726, 11, 198, 220, 220, 220, 220, 220, 1303, 220, 4112, 62, 8726, 4008, 628, 220, 1441, 2695, 198, 198, 4299, 18980, 32603, 31815, 7, 6494, 2599, 198, 220, 37227, 15056, 281, 27711, 2393, 11, 10385, 16410, 32603, 31815, 11907, 656, 1635, 32603, 31815, 9, 655, 284, 10152, 198, 220, 1100, 1799, 526, 15931, 198, 220, 47145, 346, 676, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 59, 58, 7, 27514, 58, 61, 91, 59, 11907, 9, 59, 91, 19427, 26933, 61, 59, 11907, 10, 19415, 60, 59, 60, 11537, 198, 220, 1441, 47145, 346, 676, 13, 7266, 7, 81, 6, 9, 59, 16, 9, 3256, 27711, 8, 198, 198, 4299, 1874, 6442, 32603, 31815, 7, 6494, 2599, 198, 220, 37227, 15056, 281, 27711, 2393, 11, 10385, 16410, 32603, 31815, 11907, 656, 6117, 284, 262, 2614, 22719, 25, 198, 220, 1279, 64, 13291, 2625, 5450, 1378, 89, 18, 13, 6888, 14, 32603, 31815, 5320, 32603, 31815, 3556, 64, 29, 37811, 198, 220, 47145, 346, 676, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 58, 59, 58, 7, 27514, 58, 61, 91, 59, 11907, 9, 59, 91, 19427, 26933, 61, 59, 11907, 10, 19415, 60, 59, 60, 11537, 198, 220, 1441, 47145, 346, 676, 13, 7266, 7, 8726, 1958, 11, 27711, 8, 628 ]
2.775583
1,671
"""Top-level package for TensorFlow PhaseSpace.""" import sys if sys.version_info < (3, 8): from importlib_metadata import PackageNotFoundError, version else: from importlib.metadata import PackageNotFoundError, version try: __version__ = version("phasespace") except PackageNotFoundError: pass __author__ = """Albert Puig Navarro""" __email__ = "[email protected]" __maintainer__ = "zfit" __credits__ = ["Jonas Eschle <[email protected]>"] __all__ = ["nbody_decay", "GenParticle", "random"] import tensorflow as tf from . import random from .phasespace import GenParticle, nbody_decay _set_eager_mode()
[ 37811, 9126, 12, 5715, 5301, 329, 309, 22854, 37535, 18983, 14106, 526, 15931, 198, 11748, 25064, 198, 198, 361, 25064, 13, 9641, 62, 10951, 1279, 357, 18, 11, 807, 2599, 198, 220, 220, 220, 422, 1330, 8019, 62, 38993, 1330, 15717, 3673, 21077, 12331, 11, 2196, 198, 17772, 25, 198, 220, 220, 220, 422, 1330, 8019, 13, 38993, 1330, 15717, 3673, 21077, 12331, 11, 2196, 198, 198, 28311, 25, 198, 220, 220, 220, 11593, 9641, 834, 796, 2196, 7203, 746, 1386, 10223, 4943, 198, 16341, 15717, 3673, 21077, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 834, 9800, 834, 796, 37227, 42590, 11634, 328, 13244, 34852, 37811, 198, 834, 12888, 834, 796, 366, 499, 84, 570, 615, 31, 14816, 13, 785, 1, 198, 834, 76, 2913, 10613, 834, 796, 366, 89, 11147, 1, 198, 198, 834, 66, 20696, 834, 796, 14631, 18219, 292, 8678, 354, 293, 1279, 18219, 292, 13, 36, 20601, 293, 31, 30903, 13, 354, 29, 8973, 198, 198, 834, 439, 834, 796, 14631, 77, 2618, 62, 12501, 323, 1600, 366, 13746, 7841, 1548, 1600, 366, 25120, 8973, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 764, 1330, 4738, 198, 6738, 764, 746, 1386, 10223, 1330, 5215, 7841, 1548, 11, 299, 2618, 62, 12501, 323, 628, 198, 198, 62, 2617, 62, 68, 3536, 62, 14171, 3419, 198 ]
2.843049
223
import csv import sys import json if __name__ == "__main__": sys.exit(main(sys.argv))
[ 198, 11748, 269, 21370, 198, 11748, 25064, 198, 11748, 33918, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
2.421053
38
import gym import gym.spaces import numpy as np import numpy.testing as nt import pytest from vel.exceptions import VelException from vel.rl.buffers.backend.circular_buffer_backend import CircularBufferBackend def get_half_filled_buffer(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space) v1 = np.ones(4).reshape((2, 2, 1)) for i in range(10): buffer.store_transition(v1 * (i+1), 0, float(i)/2, False) return buffer def get_filled_buffer(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space) v1 = np.ones(4).reshape((2, 2, 1)) for i in range(30): buffer.store_transition(v1 * (i+1), 0, float(i)/2, False) return buffer def get_filled_buffer1x1(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2,), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(2).reshape((2,)) a1 = np.arange(2).reshape((2,)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, a1 * i, float(i)/2, False) return buffer def get_filled_buffer2x2(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2, 2), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(4).reshape((2, 2)) a1 = np.arange(4).reshape((2, 2)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, a1 * i, float(i)/2, False) return buffer def get_filled_buffer3x3(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 2), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2, 2, 2), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(8).reshape((2, 2, 2)) a1 = np.arange(8).reshape((2, 2, 2)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, i * a1, float(i)/2, False) return buffer def get_filled_buffer1x1_history(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 1), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(2).reshape((2, 1)) a1 = np.arange(2).reshape((2,)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, a1 * i, float(i)/2, False) return buffer def get_filled_buffer2x2_history(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2, 2), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(4).reshape((2, 2, 1)) a1 = np.arange(4).reshape((2, 2)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, a1 * i, float(i)/2, False) return buffer def get_filled_buffer3x3_history(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 2, 1), dtype=int) action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(2, 2, 2), dtype=float) buffer = CircularBufferBackend(20, observation_space=observation_space, action_space=action_space) v1 = np.ones(8).reshape((2, 2, 2, 1)) a1 = np.arange(8).reshape((2, 2, 2)) for i in range(30): item = v1.copy() item[0] *= (i+1) item[1] *= 10 * (i+1) buffer.store_transition(item, i * a1, float(i)/2, False) return buffer def get_filled_buffer_extra_info(): """ Return simple preinitialized buffer """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space, extra_data={ 'neglogp': np.zeros(20, dtype=float) }) v1 = np.ones(4).reshape((2, 2, 1)) for i in range(30): buffer.store_transition(v1 * (i+1), 0, float(i)/2, False, extra_info={'neglogp': i / 30.0}) return buffer def get_filled_buffer_with_dones(): """ Return simple preinitialized buffer with some done's in there """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space) v1 = np.ones(4).reshape((2, 2, 1)) done_set = {2, 5, 10, 13, 18, 22, 28} for i in range(30): if i in done_set: buffer.store_transition(v1 * (i+1), 0, float(i)/2, True) else: buffer.store_transition(v1 * (i+1), 0, float(i)/2, False) return buffer def test_simple_get_frame(): """ Check if get_frame returns frames from a buffer partially full """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space) v1 = np.ones(4).reshape((2, 2, 1)) v2 = v1 * 2 v3 = v1 * 3 buffer.store_transition(v1, 0, 0, False) buffer.store_transition(v2, 0, 0, False) buffer.store_transition(v3, 0, 0, False) assert np.all(buffer.get_frame(0, 4).max(0).max(0) == np.array([0, 0, 0, 1])) assert np.all(buffer.get_frame(1, 4).max(0).max(0) == np.array([0, 0, 1, 2])) assert np.all(buffer.get_frame(2, 4).max(0).max(0) == np.array([0, 1, 2, 3])) with pytest.raises(VelException): buffer.get_frame(3, 4) with pytest.raises(VelException): buffer.get_frame(4, 4) def test_full_buffer_get_frame(): """ Check if get_frame returns frames for full buffer """ buffer = get_filled_buffer() nt.assert_array_equal(buffer.get_frame(0, 4).max(0).max(0), np.array([18, 19, 20, 21])) nt.assert_array_equal(buffer.get_frame(1, 4).max(0).max(0), np.array([19, 20, 21, 22])) nt.assert_array_equal(buffer.get_frame(9, 4).max(0).max(0), np.array([27, 28, 29, 30])) with pytest.raises(VelException): buffer.get_frame(10, 4) with pytest.raises(VelException): buffer.get_frame(11, 4) with pytest.raises(VelException): buffer.get_frame(12, 4) nt.assert_array_equal(buffer.get_frame(13, 4).max(0).max(0), np.array([11, 12, 13, 14])) nt.assert_array_equal(buffer.get_frame(19, 4).max(0).max(0), np.array([17, 18, 19, 20])) def test_full_buffer_get_future_frame(): """ Check if get_frame_with_future works with full buffer """ buffer = get_filled_buffer() nt.assert_array_equal(buffer.get_frame_with_future(0, 4)[1].max(0).max(0), np.array([19, 20, 21, 22])) nt.assert_array_equal(buffer.get_frame_with_future(1, 4)[1].max(0).max(0), np.array([20, 21, 22, 23])) with pytest.raises(VelException): buffer.get_frame_with_future(9, 4) with pytest.raises(VelException): buffer.get_frame_with_future(10, 4) with pytest.raises(VelException): buffer.get_frame_with_future(11, 4) with pytest.raises(VelException): buffer.get_frame_with_future(12, 4) nt.assert_array_equal(buffer.get_frame_with_future(13, 4)[1].max(0).max(0), np.array([12, 13, 14, 15])) nt.assert_array_equal(buffer.get_frame_with_future(19, 4)[1].max(0).max(0), np.array([18, 19, 20, 21])) def test_buffer_filling_size(): """ Check if buffer size is properly updated when we add items """ observation_space = gym.spaces.Box(low=0, high=255, shape=(2, 2, 1), dtype=np.uint8) action_space = gym.spaces.Discrete(4) buffer = CircularBufferBackend(20, observation_space, action_space) v1 = np.ones(4).reshape((2, 2, 1)) assert buffer.current_size == 0 buffer.store_transition(v1, 0, 0, False) buffer.store_transition(v1, 0, 0, False) assert buffer.current_size == 2 for i in range(30): buffer.store_transition(v1 * (i+1), 0, float(i)/2, False) assert buffer.current_size == buffer.buffer_capacity def test_get_frame_with_dones(): """ Check if get_frame works properly in case there are multiple sequences in buffer """ buffer = get_filled_buffer_with_dones() nt.assert_array_equal(buffer.get_frame(0, 4).max(0).max(0), np.array([0, 0, 20, 21])) nt.assert_array_equal(buffer.get_frame(1, 4).max(0).max(0), np.array([0, 20, 21, 22])) nt.assert_array_equal(buffer.get_frame(2, 4).max(0).max(0), np.array([20, 21, 22, 23])) nt.assert_array_equal(buffer.get_frame(3, 4).max(0).max(0), np.array([0, 0, 0, 24])) nt.assert_array_equal(buffer.get_frame(8, 4).max(0).max(0), np.array([26, 27, 28, 29])) nt.assert_array_equal(buffer.get_frame(9, 4).max(0).max(0), np.array([0, 0, 0, 30])) with pytest.raises(VelException): buffer.get_frame(10, 4) nt.assert_array_equal(buffer.get_frame(11, 4).max(0).max(0), np.array([0, 0, 0, 12])) nt.assert_array_equal(buffer.get_frame(12, 4).max(0).max(0), np.array([0, 0, 12, 13])) def test_get_frame_future_with_dones(): """ Check if get_frame_with_future works properly in case there are multiple sequences in buffer """ buffer = get_filled_buffer_with_dones() nt.assert_array_equal(buffer.get_frame_with_future(0, 4)[1].max(0).max(0), np.array([0, 20, 21, 22])) nt.assert_array_equal(buffer.get_frame_with_future(1, 4)[1].max(0).max(0), np.array([20, 21, 22, 23])) nt.assert_array_equal(buffer.get_frame_with_future(2, 4)[1].max(0).max(0), np.array([21, 22, 23, 0])) nt.assert_array_equal(buffer.get_frame_with_future(3, 4)[1].max(0).max(0), np.array([0, 0, 24, 25])) nt.assert_array_equal(buffer.get_frame_with_future(8, 4)[1].max(0).max(0), np.array([27, 28, 29, 0])) with pytest.raises(VelException): buffer.get_frame_with_future(9, 4) with pytest.raises(VelException): buffer.get_frame_with_future(10, 4) nt.assert_array_equal(buffer.get_frame_with_future(11, 4)[1].max(0).max(0), np.array([0, 0, 12, 13])) nt.assert_array_equal(buffer.get_frame_with_future(12, 4)[1].max(0).max(0), np.array([0, 12, 13, 14])) def test_get_batch(): """ Check if get_batch works properly for buffers """ buffer = get_filled_buffer_with_dones() batch = buffer.get_transitions(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]), history_length=4) obs = batch['observations'] act = batch['actions'] rew = batch['rewards'] obs_tp1 = batch['observations_next'] dones = batch['dones'] nt.assert_array_equal(dones, np.array([False, False, True, False, False, False, False, False, True])) nt.assert_array_equal(obs.max(1).max(1), np.array([ [0, 0, 20, 21], [0, 20, 21, 22], [20, 21, 22, 23], [0, 0, 0, 24], [0, 0, 24, 25], [0, 24, 25, 26], [24, 25, 26, 27], [25, 26, 27, 28], [26, 27, 28, 29], ])) nt.assert_array_equal(act, np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) nt.assert_array_equal(rew, np.array([10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0])) nt.assert_array_equal(obs_tp1.max(1).max(1), np.array([ [0, 20, 21, 22], [20, 21, 22, 23], [21, 22, 23, 0], [0, 0, 24, 25], [0, 24, 25, 26], [24, 25, 26, 27], [25, 26, 27, 28], [26, 27, 28, 29], [27, 28, 29, 0], ])) with pytest.raises(VelException): buffer.get_transitions(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), history_length=4) def test_sample_and_get_batch(): """ Check if batch sampling works properly """ buffer = get_filled_buffer_with_dones() for i in range(100): indexes = buffer.sample_batch_transitions(batch_size=5, history_length=4) batch = buffer.get_transitions(indexes, history_length=4) obs = batch['observations'] act = batch['actions'] rew = batch['rewards'] obs_tp1 = batch['observations_next'] dones = batch['dones'] assert obs.shape[0] == 5 assert act.shape[0] == 5 assert rew.shape[0] == 5 assert obs_tp1.shape[0] == 5 assert dones.shape[0] == 5 def test_storing_extra_info(): """ Make sure additional information are stored and recovered properly """ buffer = get_filled_buffer_extra_info() batch = buffer.get_transitions(np.array([0, 1, 2, 17, 18, 19]), history_length=4) nt.assert_equal(batch['neglogp'][0], 20.0/30) nt.assert_equal(batch['neglogp'][1], 21.0/30) nt.assert_equal(batch['neglogp'][2], 22.0/30) nt.assert_equal(batch['neglogp'][3], 17.0/30) nt.assert_equal(batch['neglogp'][4], 18.0/30) nt.assert_equal(batch['neglogp'][5], 19.0/30) def test_sample_rollout_half_filled(): """ Test if sampling rollout is correct and returns proper results """ buffer = get_half_filled_buffer() indexes = [] for i in range(1000): rollout_idx = buffer.sample_batch_trajectories(rollout_length=5, history_length=4) rollout = buffer.get_trajectories(index=rollout_idx, rollout_length=5, history_length=4) assert rollout['observations'].shape[0] == 5 # Rollout length assert rollout['observations'].shape[-1] == 4 # History length indexes.append(rollout_idx) assert np.min(indexes) == 4 assert np.max(indexes) == 8 with pytest.raises(VelException): buffer.sample_batch_trajectories(rollout_length=10, history_length=4) rollout_idx = buffer.sample_batch_trajectories(rollout_length=9, history_length=4) rollout = buffer.get_trajectories(index=rollout_idx, rollout_length=9, history_length=4) assert rollout_idx == 8 nt.assert_array_equal(rollout['rewards'], np.array([ 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4. ])) def test_sample_rollout_filled(): """ Test if sampling rollout is correct and returns proper results """ buffer = get_filled_buffer() indexes = [] for i in range(1000): rollout_idx = buffer.sample_batch_trajectories(rollout_length=5, history_length=4) rollout = buffer.get_trajectories(index=rollout_idx, rollout_length=5, history_length=4) assert rollout['observations'].shape[0] == 5 # Rollout length assert rollout['observations'].shape[-1] == 4 # History length indexes.append(rollout_idx) assert np.min(indexes) == 0 assert np.max(indexes) == 19 with pytest.raises(VelException): buffer.sample_batch_trajectories(rollout_length=17, history_length=4) max_rollout = buffer.sample_batch_trajectories(rollout_length=16, history_length=4) rollout = buffer.get_trajectories(max_rollout, rollout_length=16, history_length=4) assert max_rollout == 8 assert np.sum(rollout['rewards']) == pytest.approx(164.0, 1e-5)
[ 11748, 11550, 198, 11748, 11550, 13, 2777, 2114, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 33407, 355, 299, 83, 198, 11748, 12972, 9288, 198, 198, 6738, 11555, 13, 1069, 11755, 1330, 17378, 16922, 198, 6738, 11555, 13, 45895, 13, 36873, 364, 13, 1891, 437, 13, 21170, 934, 62, 22252, 62, 1891, 437, 1330, 7672, 934, 28632, 7282, 437, 628, 198, 4299, 651, 62, 13959, 62, 20286, 62, 22252, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 16, 87, 16, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 17, 737, 3447, 1758, 19510, 17, 11, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 17, 737, 3447, 1758, 19510, 17, 11, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 257, 16, 1635, 1312, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 17, 87, 17, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 362, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 257, 16, 1635, 1312, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 18, 87, 18, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 362, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 362, 11, 362, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 23, 737, 3447, 1758, 19510, 17, 11, 362, 11, 362, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 23, 737, 3447, 1758, 19510, 17, 11, 362, 11, 362, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 1312, 1635, 257, 16, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 16, 87, 16, 62, 23569, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 352, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 17, 737, 3447, 1758, 19510, 17, 11, 352, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 17, 737, 3447, 1758, 19510, 17, 11, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 257, 16, 1635, 1312, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 17, 87, 17, 62, 23569, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 362, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 257, 16, 1635, 1312, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 18, 87, 18, 62, 23569, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 362, 11, 352, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 10779, 16, 13, 15, 11, 1029, 28, 16, 13, 15, 11, 5485, 16193, 17, 11, 362, 11, 362, 828, 288, 4906, 28, 22468, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 28, 672, 3168, 341, 62, 13200, 11, 2223, 62, 13200, 28, 2673, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 23, 737, 3447, 1758, 19510, 17, 11, 362, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 257, 16, 796, 45941, 13, 283, 858, 7, 23, 737, 3447, 1758, 19510, 17, 11, 362, 11, 362, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 796, 410, 16, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 15, 60, 1635, 28, 357, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 58, 16, 60, 1635, 28, 838, 1635, 357, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 9186, 11, 1312, 1635, 257, 16, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 62, 26086, 62, 10951, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 628, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 11, 3131, 62, 7890, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 710, 4743, 519, 79, 10354, 45941, 13, 9107, 418, 7, 1238, 11, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 10352, 11, 3131, 62, 10951, 34758, 6, 710, 4743, 519, 79, 10354, 1312, 1220, 1542, 13, 15, 30072, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 651, 62, 20286, 62, 22252, 62, 4480, 62, 67, 1952, 33529, 198, 220, 220, 220, 37227, 8229, 2829, 662, 17532, 11876, 351, 617, 1760, 338, 287, 612, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 198, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 628, 220, 220, 220, 1760, 62, 2617, 796, 1391, 17, 11, 642, 11, 838, 11, 1511, 11, 1248, 11, 2534, 11, 2579, 92, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 287, 1760, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 1441, 11876, 628, 198, 4299, 1332, 62, 36439, 62, 1136, 62, 14535, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 14535, 5860, 13431, 422, 257, 11876, 12387, 1336, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 198, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 410, 17, 796, 410, 16, 1635, 362, 198, 220, 220, 220, 410, 18, 796, 410, 16, 1635, 513, 628, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 11, 657, 11, 657, 11, 10352, 8, 198, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 17, 11, 657, 11, 657, 11, 10352, 8, 198, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 18, 11, 657, 11, 657, 11, 10352, 8, 628, 220, 220, 220, 6818, 45941, 13, 439, 7, 22252, 13, 1136, 62, 14535, 7, 15, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 8, 6624, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 352, 60, 4008, 198, 220, 220, 220, 6818, 45941, 13, 439, 7, 22252, 13, 1136, 62, 14535, 7, 16, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 8, 6624, 45941, 13, 18747, 26933, 15, 11, 657, 11, 352, 11, 362, 60, 4008, 198, 220, 220, 220, 6818, 45941, 13, 439, 7, 22252, 13, 1136, 62, 14535, 7, 17, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 8, 6624, 45941, 13, 18747, 26933, 15, 11, 352, 11, 362, 11, 513, 60, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 18, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 19, 11, 604, 8, 628, 198, 4299, 1332, 62, 12853, 62, 22252, 62, 1136, 62, 14535, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 14535, 5860, 13431, 329, 1336, 11876, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 3419, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 15, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1507, 11, 678, 11, 1160, 11, 2310, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 16, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1129, 11, 1160, 11, 2310, 11, 2534, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 24, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1983, 11, 2579, 11, 2808, 11, 1542, 60, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 940, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 1157, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 1065, 11, 604, 8, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 1485, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1157, 11, 1105, 11, 1511, 11, 1478, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 1129, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1558, 11, 1248, 11, 678, 11, 1160, 60, 4008, 628, 198, 4299, 1332, 62, 12853, 62, 22252, 62, 1136, 62, 37443, 62, 14535, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 14535, 62, 4480, 62, 37443, 2499, 351, 1336, 11876, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 3419, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 15, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1129, 11, 1160, 11, 2310, 11, 2534, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 16, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1238, 11, 2310, 11, 2534, 11, 2242, 60, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 24, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 940, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1157, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1065, 11, 604, 8, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1485, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1065, 11, 1511, 11, 1478, 11, 1315, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1129, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1507, 11, 678, 11, 1160, 11, 2310, 60, 4008, 628, 198, 4299, 1332, 62, 22252, 62, 69, 4509, 62, 7857, 33529, 198, 220, 220, 220, 37227, 6822, 611, 11876, 2546, 318, 6105, 6153, 618, 356, 751, 3709, 37227, 198, 220, 220, 220, 13432, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 14253, 7, 9319, 28, 15, 11, 1029, 28, 13381, 11, 5485, 16193, 17, 11, 362, 11, 352, 828, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 2223, 62, 13200, 796, 11550, 13, 2777, 2114, 13, 15642, 8374, 7, 19, 8, 198, 220, 220, 220, 11876, 796, 7672, 934, 28632, 7282, 437, 7, 1238, 11, 13432, 62, 13200, 11, 2223, 62, 13200, 8, 628, 220, 220, 220, 410, 16, 796, 45941, 13, 1952, 7, 19, 737, 3447, 1758, 19510, 17, 11, 362, 11, 352, 4008, 628, 220, 220, 220, 6818, 11876, 13, 14421, 62, 7857, 6624, 657, 628, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 11, 657, 11, 657, 11, 10352, 8, 198, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 11, 657, 11, 657, 11, 10352, 8, 628, 220, 220, 220, 6818, 11876, 13, 14421, 62, 7857, 6624, 362, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 8095, 62, 7645, 653, 7, 85, 16, 1635, 357, 72, 10, 16, 828, 657, 11, 12178, 7, 72, 20679, 17, 11, 10352, 8, 628, 220, 220, 220, 6818, 11876, 13, 14421, 62, 7857, 6624, 11876, 13, 22252, 62, 42404, 628, 198, 4299, 1332, 62, 1136, 62, 14535, 62, 4480, 62, 67, 1952, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 14535, 2499, 6105, 287, 1339, 612, 389, 3294, 16311, 287, 11876, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 62, 4480, 62, 67, 1952, 3419, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 15, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 1160, 11, 2310, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 16, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 1160, 11, 2310, 11, 2534, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 17, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1238, 11, 2310, 11, 2534, 11, 2242, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 18, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 1987, 60, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 23, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 2075, 11, 2681, 11, 2579, 11, 2808, 60, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 24, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 1542, 60, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 7, 940, 11, 604, 8, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 1157, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 1105, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 7, 1065, 11, 604, 737, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 1105, 11, 1511, 60, 4008, 628, 198, 4299, 1332, 62, 1136, 62, 14535, 62, 37443, 62, 4480, 62, 67, 1952, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 14535, 62, 4480, 62, 37443, 2499, 6105, 287, 1339, 612, 389, 3294, 16311, 287, 11876, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 62, 4480, 62, 67, 1952, 3419, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 15, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 1160, 11, 2310, 11, 2534, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 16, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1238, 11, 2310, 11, 2534, 11, 2242, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 17, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 2481, 11, 2534, 11, 2242, 11, 657, 60, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 18, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 1987, 11, 1679, 60, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 23, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 1983, 11, 2579, 11, 2808, 11, 657, 60, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 24, 11, 604, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 940, 11, 604, 8, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1157, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 657, 11, 1105, 11, 1511, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 22252, 13, 1136, 62, 14535, 62, 4480, 62, 37443, 7, 1065, 11, 604, 38381, 16, 4083, 9806, 7, 15, 737, 9806, 7, 15, 828, 45941, 13, 18747, 26933, 15, 11, 1105, 11, 1511, 11, 1478, 60, 4008, 628, 198, 4299, 1332, 62, 1136, 62, 43501, 33529, 198, 220, 220, 220, 37227, 6822, 611, 651, 62, 43501, 2499, 6105, 329, 39334, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 62, 4480, 62, 67, 1952, 3419, 628, 220, 220, 220, 15458, 796, 11876, 13, 1136, 62, 7645, 1756, 7, 37659, 13, 18747, 26933, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 46570, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 10201, 796, 15458, 17816, 672, 3168, 602, 20520, 198, 220, 220, 220, 719, 796, 15458, 17816, 4658, 20520, 198, 220, 220, 220, 302, 86, 796, 15458, 17816, 260, 2017, 20520, 198, 220, 220, 220, 10201, 62, 34788, 16, 796, 15458, 17816, 672, 3168, 602, 62, 19545, 20520, 198, 220, 220, 220, 836, 274, 796, 15458, 17816, 67, 1952, 20520, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 67, 1952, 11, 45941, 13, 18747, 26933, 25101, 11, 10352, 11, 6407, 11, 10352, 11, 10352, 11, 10352, 11, 10352, 11, 10352, 11, 6407, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 8158, 13, 9806, 7, 16, 737, 9806, 7, 16, 828, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 1160, 11, 2310, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 1160, 11, 2310, 11, 2534, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 657, 11, 1987, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 1987, 11, 1679, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 1987, 11, 1679, 11, 2608, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1731, 11, 1679, 11, 2608, 11, 2681, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1495, 11, 2608, 11, 2681, 11, 2579, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 2075, 11, 2681, 11, 2579, 11, 2808, 4357, 198, 220, 220, 220, 2361, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 529, 11, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 60, 4008, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 1809, 11, 45941, 13, 18747, 26933, 940, 13, 15, 11, 838, 13, 20, 11, 1367, 13, 15, 11, 1367, 13, 20, 11, 1105, 13, 15, 11, 1105, 13, 20, 11, 1511, 13, 15, 11, 1511, 13, 20, 11, 1478, 13, 15, 60, 4008, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 8158, 62, 34788, 16, 13, 9806, 7, 16, 737, 9806, 7, 16, 828, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 1160, 11, 2310, 11, 2534, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1238, 11, 2310, 11, 2534, 11, 2242, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 2481, 11, 2534, 11, 2242, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 1987, 11, 1679, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 1987, 11, 1679, 11, 2608, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1731, 11, 1679, 11, 2608, 11, 2681, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1495, 11, 2608, 11, 2681, 11, 2579, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 2075, 11, 2681, 11, 2579, 11, 2808, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1983, 11, 2579, 11, 2808, 11, 657, 4357, 198, 220, 220, 220, 2361, 4008, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 1136, 62, 7645, 1756, 7, 37659, 13, 18747, 26933, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 46570, 2106, 62, 13664, 28, 19, 8, 628, 198, 4299, 1332, 62, 39873, 62, 392, 62, 1136, 62, 43501, 33529, 198, 220, 220, 220, 37227, 6822, 611, 15458, 19232, 2499, 6105, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 62, 4480, 62, 67, 1952, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 796, 11876, 13, 39873, 62, 43501, 62, 7645, 1756, 7, 43501, 62, 7857, 28, 20, 11, 2106, 62, 13664, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 796, 11876, 13, 1136, 62, 7645, 1756, 7, 9630, 274, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10201, 796, 15458, 17816, 672, 3168, 602, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 719, 796, 15458, 17816, 4658, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 302, 86, 796, 15458, 17816, 260, 2017, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 62, 34788, 16, 796, 15458, 17816, 672, 3168, 602, 62, 19545, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 836, 274, 796, 15458, 17816, 67, 1952, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 10201, 13, 43358, 58, 15, 60, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 719, 13, 43358, 58, 15, 60, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 302, 86, 13, 43358, 58, 15, 60, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10201, 62, 34788, 16, 13, 43358, 58, 15, 60, 6624, 642, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 836, 274, 13, 43358, 58, 15, 60, 6624, 642, 628, 198, 4299, 1332, 62, 301, 3255, 62, 26086, 62, 10951, 33529, 198, 220, 220, 220, 37227, 6889, 1654, 3224, 1321, 389, 8574, 290, 11911, 6105, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 62, 26086, 62, 10951, 3419, 628, 220, 220, 220, 15458, 796, 11876, 13, 1136, 62, 7645, 1756, 7, 37659, 13, 18747, 26933, 15, 11, 352, 11, 362, 11, 1596, 11, 1248, 11, 678, 46570, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 15, 4357, 1160, 13, 15, 14, 1270, 8, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 16, 4357, 2310, 13, 15, 14, 1270, 8, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 17, 4357, 2534, 13, 15, 14, 1270, 8, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 18, 4357, 1596, 13, 15, 14, 1270, 8, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 19, 4357, 1248, 13, 15, 14, 1270, 8, 198, 220, 220, 220, 299, 83, 13, 30493, 62, 40496, 7, 43501, 17816, 710, 4743, 519, 79, 6, 7131, 20, 4357, 678, 13, 15, 14, 1270, 8, 628, 198, 4299, 1332, 62, 39873, 62, 2487, 448, 62, 13959, 62, 20286, 33529, 198, 220, 220, 220, 37227, 6208, 611, 19232, 38180, 318, 3376, 290, 5860, 1774, 2482, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 13959, 62, 20286, 62, 22252, 3419, 628, 220, 220, 220, 39199, 796, 17635, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 38180, 62, 312, 87, 796, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 20, 11, 2106, 62, 13664, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 38180, 796, 11876, 13, 1136, 62, 9535, 752, 1749, 7, 9630, 28, 2487, 448, 62, 312, 87, 11, 38180, 62, 13664, 28, 20, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 38180, 17816, 672, 3168, 602, 6, 4083, 43358, 58, 15, 60, 6624, 642, 220, 1303, 8299, 448, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 38180, 17816, 672, 3168, 602, 6, 4083, 43358, 58, 12, 16, 60, 6624, 604, 220, 1303, 7443, 4129, 628, 220, 220, 220, 220, 220, 220, 220, 39199, 13, 33295, 7, 2487, 448, 62, 312, 87, 8, 628, 220, 220, 220, 6818, 45941, 13, 1084, 7, 9630, 274, 8, 6624, 604, 198, 220, 220, 220, 6818, 45941, 13, 9806, 7, 9630, 274, 8, 6624, 807, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 940, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 38180, 62, 312, 87, 796, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 24, 11, 2106, 62, 13664, 28, 19, 8, 198, 220, 220, 220, 38180, 796, 11876, 13, 1136, 62, 9535, 752, 1749, 7, 9630, 28, 2487, 448, 62, 312, 87, 11, 38180, 62, 13664, 28, 24, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 6818, 38180, 62, 312, 87, 6624, 807, 628, 220, 220, 220, 299, 83, 13, 30493, 62, 18747, 62, 40496, 7, 2487, 448, 17816, 260, 2017, 6, 4357, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 657, 1539, 657, 13, 20, 11, 352, 1539, 352, 13, 20, 11, 362, 1539, 362, 13, 20, 11, 513, 1539, 513, 13, 20, 11, 604, 13, 198, 220, 220, 220, 2361, 4008, 628, 198, 4299, 1332, 62, 39873, 62, 2487, 448, 62, 20286, 33529, 198, 220, 220, 220, 37227, 6208, 611, 19232, 38180, 318, 3376, 290, 5860, 1774, 2482, 37227, 198, 220, 220, 220, 11876, 796, 651, 62, 20286, 62, 22252, 3419, 628, 220, 220, 220, 39199, 796, 17635, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 38180, 62, 312, 87, 796, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 20, 11, 2106, 62, 13664, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 38180, 796, 11876, 13, 1136, 62, 9535, 752, 1749, 7, 9630, 28, 2487, 448, 62, 312, 87, 11, 38180, 62, 13664, 28, 20, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 38180, 17816, 672, 3168, 602, 6, 4083, 43358, 58, 15, 60, 6624, 642, 220, 1303, 8299, 448, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 38180, 17816, 672, 3168, 602, 6, 4083, 43358, 58, 12, 16, 60, 6624, 604, 220, 1303, 7443, 4129, 628, 220, 220, 220, 220, 220, 220, 220, 39199, 13, 33295, 7, 2487, 448, 62, 312, 87, 8, 628, 220, 220, 220, 6818, 45941, 13, 1084, 7, 9630, 274, 8, 6624, 657, 198, 220, 220, 220, 6818, 45941, 13, 9806, 7, 9630, 274, 8, 6624, 678, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 46261, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 1558, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 3509, 62, 2487, 448, 796, 11876, 13, 39873, 62, 43501, 62, 9535, 752, 1749, 7, 2487, 448, 62, 13664, 28, 1433, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 38180, 796, 11876, 13, 1136, 62, 9535, 752, 1749, 7, 9806, 62, 2487, 448, 11, 38180, 62, 13664, 28, 1433, 11, 2106, 62, 13664, 28, 19, 8, 628, 220, 220, 220, 6818, 3509, 62, 2487, 448, 6624, 807, 198, 220, 220, 220, 6818, 45941, 13, 16345, 7, 2487, 448, 17816, 260, 2017, 6, 12962, 6624, 12972, 9288, 13, 1324, 13907, 7, 23237, 13, 15, 11, 352, 68, 12, 20, 8, 628, 198 ]
2.308472
6,905
import adafruit_fancyled.adafruit_fancyled as fancy import board import adafruit_dotstar import time num_leds = 1085 spread = 5 # Declare a NeoPixel object on pin D6 with num_leds pixels, no auto-write. # Set brightness to max because we'll be using FancyLED's brightness control. pixels = adafruit_dotstar.DotStar(board.SCK, board.MOSI, num_leds, brightness=1.0, auto_write=False) offset = 0 # Positional offset into color palette to get it to 'spin' blue = fancy.CRGB(0.0, 0.0, 1.0) # Blue red = fancy.CRGB(1.0, 0.0, 1.0) # Pink yellow = fancy.CRGB(1.0, 1.0, 0.0) # Yellow pixels.fill((0.0, 0.0, 1.0) ) pixels.show() time.sleep(3) # pixels. while True: pass #pixels.show()
[ 11748, 512, 1878, 4872, 62, 69, 3883, 992, 13, 324, 1878, 4872, 62, 69, 3883, 992, 355, 14996, 198, 11748, 3096, 198, 11748, 512, 1878, 4872, 62, 26518, 7364, 198, 11748, 640, 198, 198, 22510, 62, 992, 82, 796, 838, 5332, 198, 43639, 796, 642, 198, 198, 2, 16691, 533, 257, 21227, 40809, 2134, 319, 6757, 360, 21, 351, 997, 62, 992, 82, 17848, 11, 645, 8295, 12, 13564, 13, 198, 2, 5345, 22204, 284, 3509, 780, 356, 1183, 307, 1262, 49848, 30465, 338, 22204, 1630, 13, 198, 198, 79, 14810, 796, 512, 1878, 4872, 62, 26518, 7364, 13, 35, 313, 8248, 7, 3526, 13, 6173, 42, 11, 3096, 13, 44, 2640, 40, 11, 997, 62, 992, 82, 11, 22204, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 13564, 28, 25101, 8, 198, 198, 28968, 796, 657, 220, 1303, 18574, 1859, 11677, 656, 3124, 27043, 284, 651, 340, 284, 705, 39706, 6, 628, 198, 17585, 796, 14996, 13, 9419, 4579, 7, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 8, 220, 1303, 4518, 198, 445, 796, 14996, 13, 9419, 4579, 7, 16, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 8, 220, 1303, 14657, 198, 36022, 796, 14996, 13, 9419, 4579, 7, 16, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 8, 220, 1303, 12550, 198, 198, 79, 14810, 13, 20797, 19510, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 8, 1267, 198, 79, 14810, 13, 12860, 3419, 198, 198, 2435, 13, 42832, 7, 18, 8, 198, 198, 2, 17848, 13, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1208, 198, 220, 220, 220, 1303, 79, 14810, 13, 12860, 3419, 198 ]
2.320635
315
l, c = [int(x) for x in input().split()] matriz = [[0 for _ in range(c)] for _ in range(l)] possible_sabers = [] for i in range(l): for j, v in enumerate(input().split()): v = int(v) matriz[i][j] = v if v == 42: possible_sabers.append((i, j)) final = (0, 0) pattern = [ (-1 , -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] for a, b in possible_sabers: for x, y in pattern: adx = a + x ady = b + y if 0 <= adx < l and 0 <= ady < c: if matriz[adx][ady] != 7: break else: break else: final = a + 1, b + 1 print(*final)
[ 75, 11, 269, 796, 685, 600, 7, 87, 8, 329, 2124, 287, 5128, 22446, 35312, 3419, 60, 198, 6759, 47847, 796, 16410, 15, 329, 4808, 287, 2837, 7, 66, 15437, 329, 4808, 287, 2837, 7, 75, 15437, 198, 198, 79, 4733, 62, 82, 397, 364, 796, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 75, 2599, 198, 220, 220, 220, 329, 474, 11, 410, 287, 27056, 378, 7, 15414, 22446, 35312, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 493, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 47847, 58, 72, 7131, 73, 60, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 611, 410, 6624, 5433, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1744, 62, 82, 397, 364, 13, 33295, 19510, 72, 11, 474, 4008, 198, 198, 20311, 796, 357, 15, 11, 657, 8, 198, 198, 33279, 796, 685, 198, 220, 220, 220, 13841, 16, 837, 532, 16, 828, 13841, 16, 11, 657, 828, 13841, 16, 11, 352, 828, 198, 220, 220, 220, 357, 15, 11, 532, 16, 828, 357, 15, 11, 352, 828, 198, 220, 220, 220, 357, 16, 11, 532, 16, 828, 357, 16, 11, 657, 828, 357, 16, 11, 352, 828, 198, 60, 198, 198, 1640, 257, 11, 275, 287, 1744, 62, 82, 397, 364, 25, 198, 220, 220, 220, 329, 2124, 11, 331, 287, 3912, 25, 198, 220, 220, 220, 220, 220, 220, 220, 512, 87, 796, 257, 1343, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 512, 88, 796, 275, 1343, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 657, 19841, 512, 87, 1279, 300, 290, 657, 19841, 512, 88, 1279, 269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2603, 47847, 58, 324, 87, 7131, 4597, 60, 14512, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 796, 257, 1343, 352, 11, 275, 1343, 352, 198, 220, 220, 220, 220, 198, 4798, 46491, 20311, 8, 628 ]
1.766497
394
# @param start, a string # @param end, a string # @param dict, a set of string # @return a list of lists of string
[ 220, 220, 220, 1303, 2488, 17143, 923, 11, 257, 4731, 198, 220, 220, 220, 1303, 2488, 17143, 886, 11, 257, 4731, 198, 220, 220, 220, 1303, 2488, 17143, 8633, 11, 257, 900, 286, 4731, 198, 220, 220, 220, 1303, 2488, 7783, 257, 1351, 286, 8341, 286, 4731 ]
2.765957
47
from .nums import are_close_enough class OpenInterval: """ An open interval is one where both ends aren't included. For example, the range (2, 7) includes every number between its two ends, 2 and 7, but the ends are excluded. """ @property def length(self): """ Length of the interval: end - start. :return: length """ return self.end - self.start def contains(self, value: float): """ Tests whether this interval contains a given value or not. :param value: `float` number :return: is the value contained in the interval? """ return self.start < value < self.end def overlaps_interval(self, other): """ Tests whether this and other interval overlap. :param other: `OpenInterval` :return: `bool` do intervals overlap? """ if are_close_enough(self.start, other.start) and \ are_close_enough(self.end, other.end): return True return self.contains(other.start) \ or self.contains(other.end) \ or other.contains(self.start) \ or other.contains(self.end) def compute_overlap_with(self, other): """ Given two overlapping ranges, computes the range of their overlap. If the ranges don't overlap, `None` is returned. :param other: `OpenRange` :return: ranges overlap """ if not self.overlaps_interval(other): return None return OpenInterval( max(self.start, other.start), min(self.end, other.end) )
[ 6738, 764, 77, 5700, 1330, 389, 62, 19836, 62, 48229, 628, 198, 4871, 4946, 9492, 2100, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 1280, 16654, 318, 530, 810, 1111, 5645, 3588, 470, 3017, 13, 628, 220, 220, 220, 1114, 1672, 11, 262, 2837, 357, 17, 11, 767, 8, 3407, 790, 1271, 1022, 198, 220, 220, 220, 663, 734, 5645, 11, 362, 290, 767, 11, 475, 262, 5645, 389, 15009, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4129, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 16654, 25, 886, 532, 923, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 437, 532, 2116, 13, 9688, 628, 220, 220, 220, 825, 4909, 7, 944, 11, 1988, 25, 12178, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30307, 1771, 428, 16654, 4909, 257, 1813, 1988, 393, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 4600, 22468, 63, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 318, 262, 1988, 7763, 287, 262, 16654, 30, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 9688, 1279, 1988, 1279, 2116, 13, 437, 628, 220, 220, 220, 825, 12893, 1686, 62, 3849, 2100, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30307, 1771, 428, 290, 584, 16654, 21721, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 4600, 11505, 9492, 2100, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4600, 30388, 63, 466, 20016, 21721, 30, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 389, 62, 19836, 62, 48229, 7, 944, 13, 9688, 11, 584, 13, 9688, 8, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 62, 19836, 62, 48229, 7, 944, 13, 437, 11, 584, 13, 437, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 3642, 1299, 7, 847, 13, 9688, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 2116, 13, 3642, 1299, 7, 847, 13, 437, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 584, 13, 3642, 1299, 7, 944, 13, 9688, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 584, 13, 3642, 1299, 7, 944, 13, 437, 8, 628, 220, 220, 220, 825, 24061, 62, 2502, 37796, 62, 4480, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 734, 32997, 16069, 11, 552, 1769, 262, 2837, 286, 511, 198, 220, 220, 220, 220, 220, 220, 220, 21721, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 16069, 836, 470, 21721, 11, 4600, 14202, 63, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 4600, 11505, 17257, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16069, 21721, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 2502, 75, 1686, 62, 3849, 2100, 7, 847, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4946, 9492, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 944, 13, 9688, 11, 584, 13, 9688, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 944, 13, 437, 11, 584, 13, 437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.316298
724
#!/usr/bin/env python from vtkmodules.vtkCommonCore import vtkVersion print(vtkVersion.GetVTKSourceVersion())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 410, 30488, 18170, 13, 85, 30488, 17227, 14055, 1330, 410, 30488, 14815, 198, 198, 4798, 7, 85, 30488, 14815, 13, 3855, 36392, 42, 7416, 14815, 28955, 198 ]
2.947368
38
""" The :code:`pyswarms.backend` module abstracts various operations for swarm optimization: generating boundaries, updating positions, etc. You can use the methods implemented here to build your own PSO implementations. """ from .generators import * from .operators import * from .swarms import * __all__ = ["generators", "operators", "swarms"]
[ 37811, 198, 464, 1058, 8189, 25, 63, 79, 893, 5767, 907, 13, 1891, 437, 63, 8265, 12531, 82, 2972, 4560, 198, 1640, 30077, 23989, 25, 15453, 13215, 11, 19698, 6116, 11, 3503, 13, 198, 1639, 460, 779, 262, 5050, 9177, 994, 284, 1382, 534, 898, 6599, 46, 25504, 13, 198, 37811, 198, 198, 6738, 764, 8612, 2024, 1330, 1635, 198, 6738, 764, 3575, 2024, 1330, 1635, 198, 6738, 764, 2032, 8357, 1330, 1635, 198, 198, 834, 439, 834, 796, 14631, 8612, 2024, 1600, 366, 3575, 2024, 1600, 366, 2032, 8357, 8973, 198 ]
3.782609
92
import os import argparse import torch import torch.nn from torch.utils.data import TensorDataset import torch.backends.cudnn as cudnn if __name__ == "__main__": get_args() main(args)
[ 11748, 28686, 198, 11748, 1822, 29572, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 220, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 309, 22854, 27354, 292, 316, 198, 11748, 28034, 13, 1891, 2412, 13, 66, 463, 20471, 355, 269, 463, 20471, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 651, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 8, 198 ]
2.69863
73
#!/usr/bin/env python # coding: utf-8 # In[ ]: ''' # W O R K F L O W # 1. download github data in native clickhouse format (74.6 gb, ~10hours to download) 2. clickhouse server must be running see: https://clickhouse.tech/docs/en/getting-started/install/ >sudo service clickhouse-server start (may need sudo -u japple) >clickhouse-client # Insert the database into clickhouse 3. create the db tables: >CREATE TABLE github_events ... see https://github-sql.github.io/explorer/#install-clickhouse 4. Insert the DB file into clickhouse <E:\Documents\Clickhouse Github data\github_events_v2.native.xz> 5. run code here to connect to clickhouse client and manipulate data # # Note the clickhouse driver (python) communicates with the clickhouse server via a native TCP/IP protocol # that ships data as typed values; this will cause problems when INSERT-ing into a DB, however I don't see # this as an issue ''' # In[83]: from sqlalchemy import create_engine from clickhouse_driver import Client # dependencies # >ipython-sql # install by command prompt: # >conda install -yc conda-forge ipython-sql client = Client('localhost') # In[ ]: # load CSV file into dataframe # get test dataframe with different repos # loop through dataframe # pull repo # build query # run query # write to dataframe # In[ ]: import pandas as pd # not yet needed here import time import math # In[ ]: # Read CSV file into DataFrame df # 200_repos_ready.csv has no index, CMC_id is in first column # NaN is assigned to empty cells dfs = pd.read_csv('200_repos.csv', index_col=0) # In[ ]: df = dfs[['repo','forge']].copy() # In[ ]: # subset dataframes for testing # use .copy() as slicing will not allow for assignment df10 = df.iloc[:10].copy() df33 = df.iloc[:33].copy() # In[ ]: query_stars_L = ''' SELECT count() FROM github_events WHERE event_type = 'WatchEvent' AND repo_name =''' query_stars_R = ''' GROUP BY action ''' repo = ''' 'HuobiGroup/huobi-eco-chain' ''' # In[203]: query_test_noStars = ''' SELECT count() FROM github_events WHERE event_type = 'WatchEvent' AND repo_name = 'millecodex/SEM' GROUP BY action ''' # In[ ]: query2 = ''' SELECT count() FROM github_events WHERE event_type = 'WatchEvent' AND repo_name = 'HuobiGroup/huobi-eco-chain' GROUP BY action ''' # In[206]: res=client.execute(query_test_noStars) if not res: print('not') # In[ ]: # test query that returns empty list (no results) if not res2: print('not') # In[ ]: # Write a function for this # # initialize new column to null/None df['stars']=None # iterate the dataframe as follows: ''' loop through dataframe pull repo build query run query update dataframe ''' for row in df.itertuples(): # only github for now as client is connected to github_events DB if row.forge == 'github': stars = 0 repo = row.repo # skip the NaN repos if type(repo) == str: query = query_stars_L + '\''+repo+'\'' + query_stars_R stars = client.execute(query) # query returns a tuple of list elements accessible by [first list][first item] # no stars returns an empty list if not stars: df.at[row.Index, 'stars'] = 0 else: df.at[row.Index, 'stars'] = stars[0][0] # In[ ]: # write update to 200_copy_stars.csv # note beginning of script: pd.read_csv('200_repos_ready.csv', index_col=0) df.to_csv('200_stars.csv', encoding='utf-8', index=1) df # In[ ]: # Read in 200_repos.csv # has no index, CMC_id is in first column dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['repo','forge']].copy() # In[ ]: query_forks_L = ''' SELECT count() AS forks FROM github_events WHERE event_type = 'ForkEvent' AND repo_name = ''' query_forks_R = ''' 'curvefi/curve-dao-contracts/tree/master/doc' ''' query_forks = query_forks_L + query_forks_R query_forks # In[ ]: result=client.execute(query_forks) print(result) # In[ ]: # Write a function for this # # initialize new column to null/None # might not be necessary df['forks']=None # iterate the dataframe as follows: ''' loop through dataframe pull repo build query run query update dataframe ''' for row in df.itertuples(): # only github for now as client is connected to github_events DB if row.forge == 'github': forks = 0 repo = row.repo # skip the NaN repos if type(repo) == str: query = query_forks_L + '\''+repo+'\'' forks = client.execute(query) # query returns a tuple of list elements accessible by [first list][first item] # no forks returns an empty list if not forks: df.at[row.Index, 'forks'] = 0 else: df.at[row.Index, 'forks'] = forks[0][0] # In[ ]: # write update to 200_forks.csv df.to_csv('200_forks.csv', encoding='utf-8', index=1) df # In[ ]: # merge two csv files into one # 1. 200_stars.csv # 2. 200_forks.csv # # might prefer to append the new column? merge seems a bit cumbersome? # # has no index, CMC_id is in first column dfs = pd.read_csv('200_stars.csv', index_col=0) #dfsm = dfs[['stars']].copy() dff = pd.read_csv('200_forks.csv', index_col=0) #dffm = dff[['forks']].copy() # # In[ ]: # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns # -> might be uncecessary? dfm = pd.merge(dfs,dff,on=['CMC_id','repo','forge']) # In[ ]: # write update to 200_merged.csv dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[91]: # AUTHORS query: # A most-recent three-month average # excluding current month because it is in progress # modify for static clickhouse data which stops at 2020-12-07 # >>created_at >= dateSub(MONTH, 6,toStartOfMonth(now())) AND # >>created_at < dateSub(MONTH, 3,toStartOfMonth(now())) # QUERY_AUTHORS = ''' SELECT ROUND( SUM(authors) / COUNT(month), 2) AS average FROM ( SELECT uniq(actor_login) AS authors, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE event_type IN ('PullRequestEvent', 'IssuesEvent', 'IssueCommentEvent', 'PullRequestReviewCommentEvent') AND repo_name = 'bitcoin/bitcoin' AND created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now()) GROUP BY month, year ORDER BY year DESC, month DESC )''' query_authors_L = ''' SELECT ROUND( SUM(authors) / COUNT(month), 2) AS average FROM ( SELECT uniq(actor_login) AS authors, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE event_type IN ('PullRequestEvent', 'IssuesEvent', 'IssueCommentEvent', 'PullRequestReviewCommentEvent') AND repo_name = ''' q_repo='bitcoin/bitcoin' query_authors_R = '''AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 6,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 3,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC )''' query_authors=query_authors_L + '\'' + q_repo + '\'' + query_authors_R # In[99]: # Read in 200_repos.csv dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['repo','forge']].copy() #dfs = df[0:20].copy() # In[92]: res=client.execute(QUERY_AUTHORS) res # In[ ]: print(QUERY_AUTHORS) # In[93]: print(query_authors) # In[101]: for row in df.itertuples(): # only github for now as client is connected to github_events DB if row.forge == 'github': #forks = 0 repo = row.repo # skip the NaN repos if type(repo) == str: query = query_authors_L + '\'' + repo + '\'' + query_authors_R authors = client.execute(query) # query returns a tuple of list elements accessible by [first list][first item] # average of no authors returns a nan if math.isnan(result[0][0]): df.at[row.Index, 'authors'] = 0 else: df.at[row.Index, 'authors'] = authors[0][0] # In[ ]: # In[104]: # write update to 200_authors.csv df.to_csv('200_authors.csv', encoding='utf-8', index=1) # In[105]: # update MERGED sheet with new data # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns df_temp = pd.read_csv('200_merged.csv', index_col=0) dfm = pd.merge(df_temp,df,on=['CMC_id','repo','forge']) dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[106]: print(client.execute('SELECT created_at FROM github_events ORDER by created_at DESC LIMIT 10')) # In[161]: # COMMITS query: # A most-recent three-month average # excluding current month because it is in progress # # modify for static clickhouse data which stops at 2020-12-07: # >>created_at >= dateSub(MONTH, 6,toStartOfMonth(now())) AND # >>created_at < dateSub(MONTH, 3,toStartOfMonth(now())) # # note: there will be moderate timezone discrepancies, especially # when calculating near the first of the month # QUERY_COMMITS = ''' SELECT ROUND( SUM(sum_push_distinct) / COUNT(month), 2) AS average FROM ( SELECT SUM(push_distinct_size) AS sum_push_distinct, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = 'bitcoin/bitcoin' AND event_type = 'PushEvent' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' query_commits_L =''' SELECT ROUND( SUM(sum_push_distinct) / COUNT(month), 2) AS average FROM ( SELECT SUM(push_distinct_size) AS sum_push_distinct, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = ''' q_repo='bitcoin/bitcoin' query_commits_R = ''' AND event_type = 'PushEvent' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' query_commits=query_commits_L + '\'' + q_repo + '\'' + query_commits_R # In[163]: res=client.execute(query_commits) res # In[199]: # Read in 200_repos.csv dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['repo','forge']].copy() # In[181]: query_test_zero=''' SELECT ROUND( SUM(sum_push_distinct) / COUNT(month), 2) AS average FROM ( SELECT SUM(push_distinct_size) AS sum_push_distinct, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = 'Uniswap/uniswap-v2-core' AND event_type = 'PushEvent' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 6,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 3,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC )''' res=client.execute(query_test_zero) res # In[ ]: import math if math.isnan(res[0][0]): print('not') else: print('dunno') # In[200]: for row in df.itertuples(): # only github for now as client is connected to github_events DB if row.forge == 'github': #forks = 0 repo = row.repo # skip the NaN repos if type(repo) == str: query = query_commits_L + '\'' + repo + '\'' + query_commits_R result = client.execute(query) # query returns a tuple of list elements accessible by [first list][first item] # average of no commits returns a nan if math.isnan(result[0][0]): df.at[row.Index, 'commits'] = 0 else: df.at[row.Index, 'commits'] = result[0][0] # In[202]: # write update to 200_commits.csv df.to_csv('200_commits.csv', encoding='utf-8', index=1) # In[168]: # update MERGED sheet with new data # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns df_temp = pd.read_csv('200_merged.csv', index_col=0) dfm = pd.merge(df_temp,df,on=['CMC_id','repo','forge']) dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[207]: # total COMMENTS includes all commenting activity # any comments counts as activity and increase engagement # there are 3 event_type comment events: # >CommitCommentEvent # >IssueCommentEvent # >CommitCommentEvent # ''' /* View distribution of comments*/ SELECT uniq(comment_id) AS total_comments, uniqIf(comment_id, event_type = 'PullRequestReviewCommentEvent') AS pr_comments, uniqIf(comment_id, event_type = 'IssueCommentEvent') AS issue_comments, uniqIf(comment_id, event_type = 'CommitCommentEvent') AS commit_comments, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = 'bitcoin/bitcoin' AND toYear(created_at) >= 2020 GROUP BY month, year ORDER BY year DESC, month DESC ''' # only Sept/Oct/Nov 2020 # QUERY_COMMENTS=''' SELECT ROUND( SUM(total) / COUNT(month), 2) AS average FROM ( SELECT ( uniqIf(comment_id, event_type = 'PullRequestReviewCommentEvent')+ uniqIf(comment_id, event_type = 'IssueCommentEvent')+ uniqIf(comment_id, event_type = 'CommitCommentEvent') ) AS total, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = 'bitcoin/bitcoin' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' query_L=''' SELECT ROUND( SUM(total) / COUNT(month), 2) AS average FROM ( SELECT ( uniqIf(comment_id, event_type = 'PullRequestReviewCommentEvent')+ uniqIf(comment_id, event_type = 'IssueCommentEvent')+ uniqIf(comment_id, event_type = 'CommitCommentEvent') ) AS total, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = ''' query_R=''' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' # In[209]: res=client.execute(QUERY_COMMENTS) res # In[212]: # query_L=''' SELECT ROUND( SUM(total) / COUNT(month), 2) AS average FROM ( SELECT ( uniqIf(comment_id, event_type = 'PullRequestReviewCommentEvent')+ uniqIf(comment_id, event_type = 'IssueCommentEvent')+ uniqIf(comment_id, event_type = 'CommitCommentEvent') ) AS total, toMonth(created_at) AS month, toYear(created_at) AS year FROM github_events WHERE repo_name = ''' query_R=''' AND /*created_at >= dateSub(MONTH, 3,toStartOfMonth(now())) AND created_at < toStartOfMonth(now())*/ created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' ''' @column name of the column to be added to the dataframe @query_L @query_R @df dataframe ''' # In[213]: # Read in 200_repos.csv dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['repo','forge']].copy() # In[217]: runQuery('comments',query_L,query_R,df) # In[220]: # update MERGED sheet with new data # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns df_temp = pd.read_csv('200_merged.csv', index_col=0) dfm = pd.merge(df_temp,df,on=['CMC_id','repo','forge']) dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[224]: # view all PR activity sorted into: opened, closed, reopened ''' SELECT COUNT() AS total, SUM(action = 'opened') AS opened, SUM(action = 'closed') AS closed, SUM(action = 'reopened') AS reopened, toYear(created_at) AS year, toMonth(created_at) AS month FROM github_events WHERE repo_name = 'bitcoin/bitcoin' AND toYear(created_at) >= '2019' AND event_type = 'PullRequestEvent' GROUP BY month, year ORDER BY year DESC, month DESC ''' ''' SELECT ROUND( SUM(opened) / COUNT(month), 2) AS average FROM ( SELECT SUM(action = 'opened') AS opened, toYear(created_at) AS year, toMonth(created_at) AS month FROM github_events WHERE repo_name = 'bitcoin/bitcoin' AND event_type = 'PullRequestEvent' AND created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' query_L=''' SELECT ROUND( SUM(opened) / COUNT(month), 2) AS average FROM ( SELECT SUM(action = 'opened') AS opened, toYear(created_at) AS year, toMonth(created_at) AS month FROM github_events WHERE repo_name = ''' query_R=''' AND event_type = 'PullRequestEvent' AND created_at >= dateSub(MONTH, 7,toStartOfMonth(now())) AND created_at < dateSub(MONTH, 4,toStartOfMonth(now())) GROUP BY month, year ORDER BY year DESC, month DESC ) ''' # In[225]: # Read in 200_repos.csv dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['repo','forge']].copy() runQuery('PR_open',query_L,query_R,df) # In[226]: # update MERGED sheet with new data # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns df_temp = pd.read_csv('200_merged.csv', index_col=0) dfm = pd.merge(df_temp,df,on=['CMC_id','repo','forge']) dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[227]: dfm # In[234]: import sys,time #criticality (again) # >>>>!!!! # minor problem here with ETC double-IDs... # !!!!>>>> # Read in 200_repos.csv dfr = pd.read_csv('200_repos.csv', index_col=0) # new df with only 2 columns # 'CMC_id' as index is maintained df = dfr[['source_code','forge']].copy() dfc = pd.read_csv('Project_Criticality_all.csv') for row in df.itertuples(): # only search for strings; floats (NaN) are skipped if isinstance(row.source_code, str): url = str(row.source_code) # loop through df2 (criticality) looking for source code url for row2 in dfc.itertuples(): if url == row2.url: df.at[row.Index, 'citicality'] = row2.criticality_score break sys.stdout.write(".") sys.stdout.flush() # In[246]: # update MERGED sheet with new data # 'CMC_id' is the key, however 'repo', and 'forge' are also merged # to prevent duplicate columns df.drop(columns=['source_code'], inplace=True) df_temp = pd.read_csv('200_merged.csv', index_col=0) dfm = pd.merge(df_temp,df,on=['CMC_id','forge']) dfm.to_csv('200_merged.csv', encoding='utf-8', index=1) # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 7061, 6, 198, 2, 370, 440, 371, 509, 220, 220, 376, 406, 440, 370, 220, 1303, 198, 16, 13, 4321, 33084, 1366, 287, 6868, 3904, 4803, 5794, 357, 4524, 13, 21, 308, 65, 11, 5299, 940, 24425, 284, 4321, 8, 198, 17, 13, 3904, 4803, 4382, 1276, 307, 2491, 198, 3826, 25, 3740, 1378, 12976, 4803, 13, 13670, 14, 31628, 14, 268, 14, 37210, 12, 46981, 14, 17350, 14, 198, 1875, 24032, 2139, 3904, 4803, 12, 15388, 923, 357, 11261, 761, 21061, 532, 84, 474, 18040, 8, 198, 1875, 12976, 4803, 12, 16366, 198, 2, 35835, 262, 6831, 656, 3904, 4803, 198, 18, 13, 2251, 262, 20613, 8893, 25, 198, 1875, 43387, 6158, 43679, 33084, 62, 31534, 2644, 198, 3826, 3740, 1378, 12567, 12, 25410, 13, 12567, 13, 952, 14, 20676, 11934, 31113, 17350, 12, 12976, 4803, 198, 19, 13, 35835, 262, 20137, 2393, 656, 3904, 4803, 1279, 36, 7479, 38354, 59, 8164, 4803, 38994, 1366, 59, 12567, 62, 31534, 62, 85, 17, 13, 30191, 13, 87, 89, 29, 198, 20, 13, 1057, 2438, 994, 284, 2018, 284, 3904, 4803, 5456, 290, 18510, 1366, 198, 2, 198, 2, 5740, 262, 3904, 4803, 4639, 357, 29412, 8, 48556, 351, 262, 3904, 4803, 4382, 2884, 257, 6868, 23633, 14, 4061, 8435, 220, 198, 2, 326, 7937, 1366, 355, 25683, 3815, 26, 428, 481, 2728, 2761, 618, 29194, 17395, 12, 278, 656, 257, 20137, 11, 2158, 314, 836, 470, 766, 198, 2, 428, 355, 281, 2071, 198, 7061, 6, 628, 198, 2, 554, 58, 5999, 5974, 628, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 6738, 3904, 4803, 62, 26230, 1330, 20985, 198, 2, 20086, 198, 2, 1875, 541, 7535, 12, 25410, 198, 2, 2721, 416, 3141, 6152, 25, 198, 2, 1875, 66, 13533, 2721, 532, 88, 66, 1779, 64, 12, 30293, 20966, 7535, 12, 25410, 198, 16366, 796, 20985, 10786, 36750, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 3440, 44189, 2393, 656, 1366, 14535, 198, 2, 651, 1332, 1366, 14535, 351, 1180, 1128, 418, 198, 2, 220, 9052, 832, 1366, 14535, 198, 2, 220, 220, 2834, 29924, 198, 2, 220, 220, 1382, 12405, 198, 2, 220, 220, 1057, 12405, 198, 2, 220, 220, 3551, 284, 1366, 14535, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 2, 407, 1865, 2622, 994, 198, 11748, 640, 198, 11748, 10688, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 4149, 44189, 2393, 656, 6060, 19778, 47764, 198, 2, 939, 62, 260, 1930, 62, 1493, 13, 40664, 468, 645, 6376, 11, 327, 9655, 62, 312, 318, 287, 717, 5721, 198, 2, 11013, 45, 318, 8686, 284, 6565, 4778, 198, 7568, 82, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 7568, 796, 288, 9501, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 24637, 1366, 37805, 329, 4856, 198, 2, 779, 764, 30073, 3419, 355, 49289, 481, 407, 1249, 329, 16237, 198, 7568, 940, 796, 47764, 13, 346, 420, 58, 25, 940, 4083, 30073, 3419, 198, 7568, 2091, 796, 47764, 13, 346, 420, 58, 25, 2091, 4083, 30073, 3419, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 22766, 62, 30783, 62, 43, 796, 705, 7061, 198, 46506, 220, 198, 220, 220, 220, 954, 3419, 220, 198, 10913, 2662, 33084, 62, 31534, 220, 198, 47357, 1785, 62, 4906, 796, 705, 10723, 9237, 6, 220, 198, 220, 220, 220, 5357, 29924, 62, 3672, 796, 7061, 6, 198, 22766, 62, 30783, 62, 49, 796, 705, 7061, 198, 46846, 11050, 2223, 198, 7061, 6, 198, 260, 7501, 796, 705, 7061, 198, 6, 38202, 13411, 13247, 14, 13415, 13411, 12, 47704, 12, 7983, 6, 220, 198, 7061, 6, 628, 198, 2, 554, 58, 22416, 5974, 628, 198, 22766, 62, 9288, 62, 3919, 29366, 796, 705, 7061, 198, 46506, 220, 198, 220, 220, 220, 954, 3419, 220, 198, 10913, 2662, 33084, 62, 31534, 220, 198, 47357, 1785, 62, 4906, 796, 705, 10723, 9237, 6, 220, 198, 220, 220, 220, 5357, 29924, 62, 3672, 796, 198, 1101, 8270, 19815, 1069, 14, 50, 3620, 6, 198, 46846, 11050, 2223, 198, 7061, 6, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 22766, 17, 796, 705, 7061, 198, 46506, 220, 198, 220, 220, 220, 954, 3419, 220, 198, 10913, 2662, 33084, 62, 31534, 220, 198, 47357, 1785, 62, 4906, 796, 705, 10723, 9237, 6, 220, 198, 220, 220, 220, 5357, 29924, 62, 3672, 796, 198, 6, 38202, 13411, 13247, 14, 13415, 13411, 12, 47704, 12, 7983, 6, 198, 46846, 11050, 2223, 198, 7061, 6, 628, 198, 2, 554, 58, 22136, 5974, 628, 198, 411, 28, 16366, 13, 41049, 7, 22766, 62, 9288, 62, 3919, 29366, 8, 198, 361, 407, 581, 25, 3601, 10786, 1662, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 1332, 12405, 326, 5860, 6565, 1351, 357, 3919, 2482, 8, 198, 361, 407, 581, 17, 25, 3601, 10786, 1662, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 19430, 257, 2163, 329, 428, 198, 2, 198, 2, 41216, 649, 5721, 284, 9242, 14, 14202, 198, 7568, 17816, 30783, 20520, 28, 14202, 198, 2, 11629, 378, 262, 1366, 14535, 355, 5679, 25, 198, 7061, 6, 198, 26268, 832, 1366, 14535, 198, 220, 2834, 29924, 198, 220, 1382, 12405, 198, 220, 1057, 12405, 198, 220, 4296, 1366, 14535, 198, 7061, 6, 198, 1640, 5752, 287, 47764, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 1303, 691, 33084, 329, 783, 355, 5456, 318, 5884, 284, 33084, 62, 31534, 20137, 198, 220, 220, 220, 611, 5752, 13, 30293, 6624, 705, 12567, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5788, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 796, 5752, 13, 260, 7501, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 262, 11013, 45, 1128, 418, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 260, 7501, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 62, 30783, 62, 43, 1343, 705, 59, 7061, 10, 260, 7501, 10, 6, 59, 7061, 1343, 12405, 62, 30783, 62, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5788, 796, 5456, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12405, 5860, 257, 46545, 286, 1351, 4847, 9857, 416, 685, 11085, 1351, 7131, 11085, 2378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 5788, 5860, 281, 6565, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5788, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 30783, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 30783, 20520, 796, 5788, 58, 15, 7131, 15, 60, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 3551, 4296, 284, 939, 62, 30073, 62, 30783, 13, 40664, 198, 2, 3465, 3726, 286, 4226, 25, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 62, 1493, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 13, 1462, 62, 40664, 10786, 2167, 62, 30783, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 198, 7568, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 220, 198, 2, 468, 645, 6376, 11, 327, 9655, 62, 312, 318, 287, 717, 5721, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 22766, 62, 1640, 591, 62, 43, 796, 705, 7061, 198, 46506, 220, 198, 220, 220, 220, 954, 3419, 7054, 43378, 220, 198, 10913, 2662, 33084, 62, 31534, 220, 198, 47357, 1785, 62, 4906, 796, 705, 37, 967, 9237, 6, 5357, 29924, 62, 3672, 796, 198, 7061, 6, 198, 22766, 62, 1640, 591, 62, 49, 796, 705, 7061, 198, 6, 22019, 303, 12463, 14, 22019, 303, 12, 67, 5488, 12, 28484, 82, 14, 21048, 14, 9866, 14, 15390, 6, 198, 7061, 6, 198, 22766, 62, 1640, 591, 796, 12405, 62, 1640, 591, 62, 43, 1343, 12405, 62, 1640, 591, 62, 49, 198, 22766, 62, 1640, 591, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 20274, 28, 16366, 13, 41049, 7, 22766, 62, 1640, 591, 8, 198, 4798, 7, 20274, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 19430, 257, 2163, 329, 428, 198, 2, 198, 2, 41216, 649, 5721, 284, 9242, 14, 14202, 198, 2, 1244, 407, 307, 3306, 198, 7568, 17816, 1640, 591, 20520, 28, 14202, 198, 2, 11629, 378, 262, 1366, 14535, 355, 5679, 25, 198, 7061, 6, 198, 26268, 832, 1366, 14535, 198, 220, 2834, 29924, 198, 220, 1382, 12405, 198, 220, 1057, 12405, 198, 220, 4296, 1366, 14535, 198, 7061, 6, 198, 1640, 5752, 287, 47764, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 1303, 691, 33084, 329, 783, 355, 5456, 318, 5884, 284, 33084, 62, 31534, 20137, 198, 220, 220, 220, 611, 5752, 13, 30293, 6624, 705, 12567, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 43378, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 796, 5752, 13, 260, 7501, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 262, 11013, 45, 1128, 418, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 260, 7501, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 62, 1640, 591, 62, 43, 1343, 705, 59, 7061, 10, 260, 7501, 10, 6, 59, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43378, 796, 5456, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12405, 5860, 257, 46545, 286, 1351, 4847, 9857, 416, 685, 11085, 1351, 7131, 11085, 2378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 645, 43378, 5860, 281, 6565, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 43378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 1640, 591, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 1640, 591, 20520, 796, 43378, 58, 15, 7131, 15, 60, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 3551, 4296, 284, 939, 62, 1640, 591, 13, 40664, 198, 7568, 13, 1462, 62, 40664, 10786, 2167, 62, 1640, 591, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 198, 7568, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 20121, 734, 269, 21370, 3696, 656, 530, 198, 2, 352, 13, 939, 62, 30783, 13, 40664, 198, 2, 362, 13, 939, 62, 1640, 591, 13, 40664, 198, 2, 198, 2, 1244, 4702, 284, 24443, 262, 649, 5721, 30, 20121, 2331, 257, 1643, 44491, 30, 198, 2, 198, 2, 468, 645, 6376, 11, 327, 9655, 62, 312, 318, 287, 717, 5721, 198, 7568, 82, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 30783, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 7568, 5796, 796, 288, 9501, 58, 17816, 30783, 20520, 4083, 30073, 3419, 198, 67, 487, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 1640, 591, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 67, 487, 76, 796, 288, 487, 58, 17816, 1640, 591, 20520, 4083, 30073, 3419, 198, 2, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 2, 4613, 1244, 307, 555, 344, 919, 560, 30, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 82, 11, 67, 487, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 260, 7501, 41707, 30293, 6, 12962, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2, 3551, 4296, 284, 939, 62, 647, 2004, 13, 40664, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 6420, 5974, 628, 198, 2, 37195, 20673, 12405, 25, 198, 2, 317, 749, 12, 49921, 1115, 12, 8424, 2811, 220, 198, 2, 23494, 1459, 1227, 780, 340, 318, 287, 4371, 198, 2, 13096, 329, 9037, 3904, 4803, 1366, 543, 9911, 379, 12131, 12, 1065, 12, 2998, 198, 2, 9609, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 718, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 2, 9609, 25598, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 2, 198, 10917, 19664, 62, 32, 24318, 20673, 796, 705, 7061, 198, 46506, 198, 220, 220, 220, 371, 15919, 7, 35683, 7, 41617, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 220, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 7, 11218, 62, 38235, 8, 7054, 7035, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 1785, 62, 4906, 3268, 19203, 42940, 18453, 9237, 3256, 705, 27738, 947, 9237, 3256, 705, 45147, 21357, 9237, 3256, 705, 42940, 18453, 14832, 21357, 9237, 11537, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 7061, 6, 198, 22766, 62, 41617, 62, 43, 796, 705, 7061, 198, 46506, 198, 220, 220, 220, 371, 15919, 7, 35683, 7, 41617, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 220, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 7, 11218, 62, 38235, 8, 7054, 7035, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 1785, 62, 4906, 3268, 19203, 42940, 18453, 9237, 3256, 705, 27738, 947, 9237, 3256, 705, 45147, 21357, 9237, 3256, 705, 42940, 18453, 14832, 21357, 9237, 11537, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 62, 3672, 796, 220, 198, 7061, 6, 198, 80, 62, 260, 7501, 11639, 35395, 14, 35395, 6, 198, 22766, 62, 41617, 62, 49, 796, 705, 7061, 6981, 198, 220, 220, 220, 220, 220, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 718, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 7061, 6, 198, 22766, 62, 41617, 28, 22766, 62, 41617, 62, 43, 1343, 705, 59, 7061, 1343, 10662, 62, 260, 7501, 1343, 705, 59, 7061, 1343, 12405, 62, 41617, 62, 49, 628, 198, 2, 554, 58, 2079, 5974, 628, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 198, 2, 7568, 82, 796, 47764, 58, 15, 25, 1238, 4083, 30073, 3419, 628, 198, 2, 554, 58, 5892, 5974, 628, 198, 411, 28, 16366, 13, 41049, 7, 10917, 19664, 62, 32, 24318, 20673, 8, 198, 411, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 4798, 7, 10917, 19664, 62, 32, 24318, 20673, 8, 628, 198, 2, 554, 58, 6052, 5974, 628, 198, 4798, 7, 22766, 62, 41617, 8, 628, 198, 2, 554, 58, 8784, 5974, 628, 198, 1640, 5752, 287, 47764, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 1303, 691, 33084, 329, 783, 355, 5456, 318, 5884, 284, 33084, 62, 31534, 20137, 198, 220, 220, 220, 611, 5752, 13, 30293, 6624, 705, 12567, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1640, 591, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 796, 5752, 13, 260, 7501, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 262, 11013, 45, 1128, 418, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 260, 7501, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 62, 41617, 62, 43, 1343, 705, 59, 7061, 1343, 29924, 1343, 705, 59, 7061, 1343, 12405, 62, 41617, 62, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7035, 796, 5456, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12405, 5860, 257, 46545, 286, 1351, 4847, 9857, 416, 685, 11085, 1351, 7131, 11085, 2378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2811, 286, 645, 7035, 5860, 257, 15709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10688, 13, 271, 12647, 7, 20274, 58, 15, 7131, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 41617, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 41617, 20520, 796, 7035, 58, 15, 7131, 15, 60, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 13464, 5974, 628, 198, 2, 3551, 4296, 284, 939, 62, 41617, 13, 40664, 198, 7568, 13, 1462, 62, 40664, 10786, 2167, 62, 41617, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 13348, 5974, 628, 198, 2, 4296, 34482, 38, 1961, 9629, 351, 649, 1366, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 7568, 62, 29510, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 29510, 11, 7568, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 260, 7501, 41707, 30293, 6, 12962, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 15801, 5974, 628, 198, 4798, 7, 16366, 13, 41049, 10786, 46506, 2727, 62, 265, 16034, 33084, 62, 31534, 38678, 416, 2727, 62, 265, 22196, 34, 27564, 2043, 838, 6, 4008, 628, 198, 2, 554, 58, 25948, 5974, 628, 198, 2, 22240, 29722, 12405, 25, 198, 2, 317, 749, 12, 49921, 1115, 12, 8424, 2811, 220, 198, 2, 23494, 1459, 1227, 780, 340, 318, 287, 4371, 198, 2, 198, 2, 13096, 329, 9037, 3904, 4803, 1366, 543, 9911, 379, 12131, 12, 1065, 12, 2998, 25, 198, 2, 9609, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 718, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 2, 9609, 25598, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 2, 220, 198, 2, 3465, 25, 612, 481, 307, 10768, 640, 11340, 42420, 11, 2592, 220, 198, 2, 220, 220, 220, 220, 220, 220, 618, 26019, 1474, 262, 717, 286, 262, 1227, 198, 2, 198, 10917, 19664, 62, 9858, 44, 29722, 796, 705, 7061, 198, 46506, 371, 15919, 7, 35683, 7, 16345, 62, 14689, 62, 17080, 4612, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 35683, 7, 14689, 62, 17080, 4612, 62, 7857, 8, 7054, 2160, 62, 14689, 62, 17080, 4612, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4906, 796, 705, 49222, 9237, 6, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 198, 22766, 62, 9503, 896, 62, 43, 796, 7061, 6, 198, 46506, 371, 15919, 7, 35683, 7, 16345, 62, 14689, 62, 17080, 4612, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 35683, 7, 14689, 62, 17080, 4612, 62, 7857, 8, 7054, 2160, 62, 14689, 62, 17080, 4612, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 29924, 62, 3672, 796, 220, 198, 7061, 6, 198, 80, 62, 260, 7501, 11639, 35395, 14, 35395, 6, 198, 22766, 62, 9503, 896, 62, 49, 796, 705, 7061, 198, 6981, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4906, 796, 705, 49222, 9237, 6, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 198, 22766, 62, 9503, 896, 28, 22766, 62, 9503, 896, 62, 43, 1343, 705, 59, 7061, 1343, 10662, 62, 260, 7501, 1343, 705, 59, 7061, 1343, 12405, 62, 9503, 896, 62, 49, 628, 198, 2, 554, 58, 24136, 5974, 628, 198, 411, 28, 16366, 13, 41049, 7, 22766, 62, 9503, 896, 8, 198, 411, 628, 198, 2, 554, 58, 19104, 5974, 628, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 628, 198, 2, 554, 58, 27057, 5974, 628, 198, 22766, 62, 9288, 62, 22570, 28, 7061, 6, 198, 46506, 371, 15919, 7, 35683, 7, 16345, 62, 14689, 62, 17080, 4612, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 35683, 7, 14689, 62, 17080, 4612, 62, 7857, 8, 7054, 2160, 62, 14689, 62, 17080, 4612, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 29924, 62, 3672, 796, 705, 3118, 271, 86, 499, 14, 403, 271, 86, 499, 12, 85, 17, 12, 7295, 6, 5357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4906, 796, 705, 49222, 9237, 6, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 718, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 7061, 6, 198, 411, 28, 16366, 13, 41049, 7, 22766, 62, 9288, 62, 22570, 8, 198, 411, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11748, 10688, 198, 361, 10688, 13, 271, 12647, 7, 411, 58, 15, 7131, 15, 60, 2599, 3601, 10786, 1662, 11537, 198, 17772, 25, 3601, 10786, 67, 403, 3919, 11537, 628, 198, 2, 554, 58, 2167, 5974, 628, 198, 1640, 5752, 287, 47764, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 1303, 691, 33084, 329, 783, 355, 5456, 318, 5884, 284, 33084, 62, 31534, 20137, 198, 220, 220, 220, 611, 5752, 13, 30293, 6624, 705, 12567, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1640, 591, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 29924, 796, 5752, 13, 260, 7501, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 262, 11013, 45, 1128, 418, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 260, 7501, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 62, 9503, 896, 62, 43, 1343, 705, 59, 7061, 1343, 29924, 1343, 705, 59, 7061, 1343, 12405, 62, 9503, 896, 62, 49, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 5456, 13, 41049, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12405, 5860, 257, 46545, 286, 1351, 4847, 9857, 416, 685, 11085, 1351, 7131, 11085, 2378, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2811, 286, 645, 23463, 5860, 257, 15709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10688, 13, 271, 12647, 7, 20274, 58, 15, 7131, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 9503, 896, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 9503, 896, 20520, 796, 1255, 58, 15, 7131, 15, 60, 628, 198, 2, 554, 58, 19004, 5974, 628, 198, 2, 3551, 4296, 284, 939, 62, 9503, 896, 13, 40664, 198, 7568, 13, 1462, 62, 40664, 10786, 2167, 62, 9503, 896, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 14656, 5974, 628, 198, 2, 4296, 34482, 38, 1961, 9629, 351, 649, 1366, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 7568, 62, 29510, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 29510, 11, 7568, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 260, 7501, 41707, 30293, 6, 12962, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 22745, 5974, 628, 198, 2, 2472, 9440, 28957, 3407, 477, 26387, 3842, 198, 2, 597, 3651, 9853, 355, 3842, 290, 2620, 12352, 198, 2, 612, 389, 513, 1785, 62, 4906, 2912, 2995, 25, 198, 2, 1875, 6935, 270, 21357, 9237, 198, 2, 1875, 45147, 21357, 9237, 198, 2, 1875, 6935, 270, 21357, 9237, 198, 2, 198, 7061, 6, 198, 15211, 3582, 6082, 286, 3651, 16208, 198, 46506, 220, 198, 220, 220, 220, 555, 25011, 7, 23893, 62, 312, 8, 7054, 2472, 62, 15944, 11, 198, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 42940, 18453, 14832, 21357, 9237, 11537, 7054, 778, 62, 15944, 11, 198, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 45147, 21357, 9237, 11537, 7054, 2071, 62, 15944, 11, 198, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 6935, 270, 21357, 9237, 11537, 7054, 4589, 62, 15944, 11, 198, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 10913, 2662, 33084, 62, 31534, 198, 47357, 220, 198, 220, 220, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 198, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 18189, 12131, 198, 46846, 11050, 1227, 11, 614, 198, 12532, 1137, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 7061, 6, 198, 2, 691, 2362, 14, 12349, 14, 20795, 12131, 1303, 198, 10917, 19664, 62, 9858, 28957, 28, 7061, 6, 198, 46506, 371, 15919, 7, 35683, 7, 23350, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 46506, 220, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 42940, 18453, 14832, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 45147, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 6935, 270, 21357, 9237, 11537, 1267, 7054, 2472, 11, 198, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 10913, 2662, 33084, 62, 31534, 198, 47357, 220, 198, 220, 220, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 198, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 46846, 11050, 1227, 11, 614, 198, 12532, 1137, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 198, 22766, 62, 43, 28, 7061, 6, 198, 46506, 371, 15919, 7, 35683, 7, 23350, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 46506, 220, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 42940, 18453, 14832, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 45147, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 6935, 270, 21357, 9237, 11537, 1267, 7054, 2472, 11, 198, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 10913, 2662, 33084, 62, 31534, 198, 47357, 220, 198, 220, 220, 29924, 62, 3672, 796, 220, 198, 7061, 6, 198, 22766, 62, 49, 28, 7061, 6, 198, 6981, 198, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 46846, 11050, 1227, 11, 614, 198, 12532, 1137, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 628, 198, 2, 554, 58, 22567, 5974, 628, 198, 411, 28, 16366, 13, 41049, 7, 10917, 19664, 62, 9858, 28957, 8, 198, 411, 628, 198, 2, 554, 58, 21777, 5974, 628, 198, 2, 198, 22766, 62, 43, 28, 7061, 6, 198, 46506, 371, 15919, 7, 35683, 7, 23350, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 46506, 220, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 42940, 18453, 14832, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 45147, 21357, 9237, 11537, 10, 198, 220, 220, 220, 220, 220, 220, 220, 555, 25011, 1532, 7, 23893, 62, 312, 11, 1785, 62, 4906, 796, 705, 6935, 270, 21357, 9237, 11537, 1267, 7054, 2472, 11, 198, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 11, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 198, 10913, 2662, 33084, 62, 31534, 198, 47357, 220, 198, 220, 220, 29924, 62, 3672, 796, 220, 198, 7061, 6, 198, 22766, 62, 49, 28, 7061, 6, 198, 6981, 198, 220, 220, 11900, 25598, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 513, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 284, 10434, 5189, 31948, 7, 2197, 28955, 16208, 198, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 46846, 11050, 1227, 11, 614, 198, 12532, 1137, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 198, 7061, 6, 198, 31, 28665, 1438, 286, 262, 5721, 284, 307, 2087, 284, 262, 1366, 14535, 198, 31, 22766, 62, 43, 198, 31, 22766, 62, 49, 198, 31, 7568, 1366, 14535, 198, 7061, 6, 628, 198, 2, 554, 58, 26427, 5974, 628, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 628, 198, 2, 554, 58, 24591, 5974, 628, 198, 5143, 20746, 10786, 15944, 3256, 22766, 62, 43, 11, 22766, 62, 49, 11, 7568, 8, 628, 198, 2, 554, 58, 17572, 5974, 628, 198, 2, 4296, 34482, 38, 1961, 9629, 351, 649, 1366, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 7568, 62, 29510, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 29510, 11, 7568, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 260, 7501, 41707, 30293, 6, 12962, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 24137, 5974, 628, 198, 2, 1570, 477, 4810, 3842, 23243, 656, 25, 4721, 11, 4838, 11, 37415, 198, 7061, 6, 198, 46506, 220, 327, 28270, 3419, 7054, 2472, 11, 198, 220, 220, 220, 35683, 7, 2673, 796, 705, 26350, 11537, 7054, 4721, 11, 198, 220, 220, 220, 35683, 7, 2673, 796, 705, 20225, 11537, 7054, 4838, 11, 198, 220, 220, 220, 35683, 7, 2673, 796, 705, 260, 26350, 11537, 7054, 37415, 11, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 11, 220, 198, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 198, 10913, 2662, 33084, 62, 31534, 198, 47357, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 220, 198, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 18189, 705, 23344, 6, 5357, 220, 198, 220, 220, 220, 1785, 62, 4906, 796, 705, 42940, 18453, 9237, 6, 198, 46846, 11050, 1227, 11, 614, 198, 12532, 1137, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 7061, 6, 198, 7061, 6, 198, 46506, 198, 220, 220, 220, 371, 15919, 7, 35683, 7, 26350, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 35683, 7, 2673, 796, 705, 26350, 11537, 7054, 4721, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 29924, 62, 3672, 796, 705, 35395, 14, 35395, 6, 5357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4906, 796, 705, 42940, 18453, 9237, 6, 5357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 198, 22766, 62, 43, 28, 7061, 6, 198, 46506, 198, 220, 220, 220, 371, 15919, 7, 35683, 7, 26350, 8, 1220, 327, 28270, 7, 8424, 828, 362, 8, 7054, 2811, 198, 10913, 2662, 198, 7, 198, 220, 220, 220, 33493, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 35683, 7, 2673, 796, 705, 26350, 11537, 7054, 4721, 11, 198, 220, 220, 220, 220, 220, 220, 220, 284, 17688, 7, 25598, 62, 265, 8, 7054, 614, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 284, 31948, 7, 25598, 62, 265, 8, 7054, 1227, 198, 220, 220, 220, 16034, 33084, 62, 31534, 198, 220, 220, 220, 33411, 29924, 62, 3672, 796, 220, 198, 7061, 6, 198, 22766, 62, 49, 28, 7061, 6, 198, 6981, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4906, 796, 705, 42940, 18453, 9237, 6, 5357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 18189, 3128, 7004, 7, 27857, 4221, 11, 767, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 5357, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 265, 1279, 3128, 7004, 7, 27857, 4221, 11, 604, 11, 1462, 10434, 5189, 31948, 7, 2197, 3419, 4008, 198, 220, 220, 220, 44441, 11050, 1227, 11, 614, 198, 220, 220, 220, 38678, 11050, 614, 22196, 34, 11, 1227, 22196, 34, 198, 8, 198, 7061, 6, 628, 198, 2, 554, 58, 18182, 5974, 628, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 260, 7501, 41707, 30293, 20520, 4083, 30073, 3419, 198, 5143, 20746, 10786, 4805, 62, 9654, 3256, 22766, 62, 43, 11, 22766, 62, 49, 11, 7568, 8, 628, 198, 2, 554, 58, 24909, 5974, 628, 198, 2, 4296, 34482, 38, 1961, 9629, 351, 649, 1366, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 7568, 62, 29510, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 29510, 11, 7568, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 260, 7501, 41707, 30293, 6, 12962, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 24403, 5974, 628, 198, 7568, 76, 628, 198, 2, 554, 58, 24409, 5974, 628, 198, 11748, 25064, 11, 2435, 198, 2, 34666, 414, 357, 17776, 8, 198, 2, 13163, 29, 13896, 198, 2, 4159, 1917, 994, 351, 412, 4825, 4274, 12, 47954, 986, 198, 2, 220, 13896, 16471, 198, 2, 4149, 287, 939, 62, 260, 1930, 13, 40664, 198, 7568, 81, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 260, 1930, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 649, 47764, 351, 691, 362, 15180, 198, 2, 705, 34, 9655, 62, 312, 6, 355, 6376, 318, 9456, 198, 7568, 796, 288, 8310, 58, 17816, 10459, 62, 8189, 41707, 30293, 20520, 4083, 30073, 3419, 198, 7568, 66, 796, 279, 67, 13, 961, 62, 40664, 10786, 16775, 62, 41000, 414, 62, 439, 13, 40664, 11537, 198, 1640, 5752, 287, 47764, 13, 270, 861, 84, 2374, 33529, 198, 220, 1303, 691, 2989, 329, 13042, 26, 36016, 357, 26705, 45, 8, 389, 26684, 198, 220, 611, 318, 39098, 7, 808, 13, 10459, 62, 8189, 11, 965, 2599, 198, 220, 220, 220, 19016, 796, 965, 7, 808, 13, 10459, 62, 8189, 8, 198, 220, 220, 220, 1303, 9052, 832, 47764, 17, 357, 34666, 414, 8, 2045, 329, 2723, 2438, 19016, 198, 220, 220, 220, 329, 5752, 17, 287, 288, 16072, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 220, 220, 611, 19016, 6624, 5752, 17, 13, 6371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 265, 58, 808, 13, 15732, 11, 705, 47992, 605, 414, 20520, 796, 5752, 17, 13, 34666, 414, 62, 26675, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7203, 19570, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 198, 2, 554, 58, 26912, 5974, 628, 198, 2, 4296, 34482, 38, 1961, 9629, 351, 649, 1366, 198, 2, 705, 34, 9655, 62, 312, 6, 318, 262, 1994, 11, 2158, 705, 260, 7501, 3256, 290, 705, 30293, 6, 389, 635, 23791, 198, 2, 284, 2948, 23418, 15180, 198, 7568, 13, 14781, 7, 28665, 82, 28, 17816, 10459, 62, 8189, 6, 4357, 287, 5372, 28, 17821, 8, 198, 7568, 62, 29510, 796, 279, 67, 13, 961, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 7568, 76, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 29510, 11, 7568, 11, 261, 28, 17816, 34, 9655, 62, 312, 41707, 30293, 6, 12962, 198, 7568, 76, 13, 1462, 62, 40664, 10786, 2167, 62, 647, 2004, 13, 40664, 3256, 21004, 11639, 40477, 12, 23, 3256, 6376, 28, 16, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.479904
7,887
print len([i for i in range(1000000) if is_circular_prime(i)])
[ 220, 220, 220, 220, 220, 220, 220, 220, 198, 4798, 18896, 26933, 72, 329, 1312, 287, 2837, 7, 16, 10535, 8, 611, 318, 62, 21170, 934, 62, 35505, 7, 72, 8, 12962 ]
2.21875
32
from pathlib import Path from soopervisor.exceptions import MissingConfigurationFileError
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 523, 404, 712, 271, 273, 13, 1069, 11755, 1330, 25639, 38149, 8979, 12331, 628, 628 ]
4.086957
23
import inspect import json from libhoney.internal import json_default_handler class FieldHolder: '''A FieldHolder is the generalized class that stores fields and dynamic fields. It should not be used directly; only through the subclasses''' def __add__(self, other): '''adding two field holders merges the data with other overriding any fields they have in common''' self._data.update(other._data) self._dyn_fields.update(other._dyn_fields) return self def __eq__(self, other): '''two FieldHolders are equal if their datasets are equal''' return ((self._data, self._dyn_fields) == (other._data, other._dyn_fields)) def __ne__(self, other): '''two FieldHolders are equal if their datasets are equal''' return not self.__eq__(other) def is_empty(self): '''returns true if there is no data in this FieldHolder''' return len(self._data) == 0 def __str__(self): '''returns a JSON blob of the fields in this holder''' return json.dumps(self._data, default=json_default_handler)
[ 11748, 10104, 198, 11748, 33918, 198, 6738, 9195, 71, 1419, 13, 32538, 1330, 33918, 62, 12286, 62, 30281, 628, 198, 4871, 7663, 39, 19892, 25, 198, 220, 220, 220, 705, 7061, 32, 7663, 39, 19892, 318, 262, 38284, 1398, 326, 7000, 7032, 290, 8925, 198, 220, 220, 220, 220, 220, 220, 7032, 13, 632, 815, 407, 307, 973, 3264, 26, 691, 832, 262, 850, 37724, 7061, 6, 628, 220, 220, 220, 825, 11593, 2860, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 26872, 734, 2214, 16392, 4017, 3212, 262, 1366, 351, 584, 44987, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 597, 7032, 484, 423, 287, 2219, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 13, 19119, 7, 847, 13557, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 67, 2047, 62, 25747, 13, 19119, 7, 847, 13557, 67, 2047, 62, 25747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 11545, 7663, 26807, 364, 389, 4961, 611, 511, 40522, 389, 4961, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 944, 13557, 7890, 11, 2116, 13557, 67, 2047, 62, 25747, 8, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 847, 13557, 7890, 11, 584, 13557, 67, 2047, 62, 25747, 4008, 628, 220, 220, 220, 825, 11593, 710, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 11545, 7663, 26807, 364, 389, 4961, 611, 511, 40522, 389, 4961, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 407, 2116, 13, 834, 27363, 834, 7, 847, 8, 628, 220, 220, 220, 825, 318, 62, 28920, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7783, 82, 2081, 611, 612, 318, 645, 1366, 287, 428, 7663, 39, 19892, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13557, 7890, 8, 6624, 657, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7783, 82, 257, 19449, 44812, 286, 262, 7032, 287, 428, 15762, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 944, 13557, 7890, 11, 4277, 28, 17752, 62, 12286, 62, 30281, 8, 198 ]
2.659624
426
#!/usr/bin/env python # -*- coding:utf8 -*- # Power by viekie. 2017-05-27 09:23:04 import numpy as np
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 40477, 23, 532, 9, 12, 198, 2, 4333, 416, 410, 494, 49375, 13, 2177, 12, 2713, 12, 1983, 7769, 25, 1954, 25, 3023, 198, 11748, 299, 32152, 355, 45941, 628 ]
2.288889
45
import os from server import make_worker worker = make_worker(os.getenv("FLASK_CONFIG") or "default",)
[ 198, 11748, 28686, 198, 6738, 4382, 1330, 787, 62, 28816, 198, 198, 28816, 796, 787, 62, 28816, 7, 418, 13, 1136, 24330, 7203, 3697, 1921, 42, 62, 10943, 16254, 4943, 393, 366, 12286, 1600, 8 ]
2.971429
35
# Copyright 2021 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from charms_openstack import test_utils import check_ovn_db_connections as check import nagios_plugin3 as nagios
[ 2, 15069, 33448, 19507, 605, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 555, 715, 395, 1330, 15290, 198, 6738, 41700, 62, 9654, 25558, 1330, 1332, 62, 26791, 198, 11748, 2198, 62, 709, 77, 62, 9945, 62, 8443, 507, 355, 2198, 198, 11748, 299, 363, 4267, 62, 33803, 18, 355, 299, 363, 4267, 628 ]
3.783069
189
# Description: Run the AOBW function from the pymolshortcuts.py file to generate photorealistic effect in grayscale. # Source: placeHolder """ cmd.do('cmd.do("AOBW")') """ cmd.do('cmd.do("AOBW")')
[ 2, 12489, 25, 220, 5660, 262, 317, 9864, 54, 2163, 422, 262, 279, 4948, 349, 19509, 23779, 13, 9078, 2393, 284, 7716, 2825, 39396, 2569, 1245, 287, 1036, 592, 38765, 13, 198, 2, 8090, 25, 220, 1295, 39, 19892, 198, 198, 37811, 198, 28758, 13, 4598, 10786, 28758, 13, 4598, 7203, 32, 9864, 54, 4943, 11537, 198, 37811, 198, 198, 28758, 13, 4598, 10786, 28758, 13, 4598, 7203, 32, 9864, 54, 4943, 11537, 198 ]
2.716216
74
from year2021.python.day6.day6_func import * inputStr = open('../../data/day6_data.txt').readline() fishes = FishCreator.initFishes(inputStr) spawn = FishSpawn() numberOfFishes80Days = spawn.spawn(fishes, 80) print(f"Part 1: {numberOfFishes80Days}") numberOfFishes256Days = spawn.spawn(fishes, 256) print(f"Part 2: {numberOfFishes256Days}")
[ 6738, 614, 1238, 2481, 13, 29412, 13, 820, 21, 13, 820, 21, 62, 20786, 1330, 1635, 198, 198, 15414, 13290, 796, 1280, 10786, 40720, 40720, 7890, 14, 820, 21, 62, 7890, 13, 14116, 27691, 961, 1370, 3419, 198, 198, 69, 5614, 796, 13388, 16719, 273, 13, 15003, 37, 5614, 7, 15414, 13290, 8, 198, 198, 48183, 796, 13388, 49855, 3419, 198, 198, 17618, 5189, 37, 5614, 1795, 38770, 796, 10922, 13, 48183, 7, 69, 5614, 11, 4019, 8, 198, 198, 4798, 7, 69, 1, 7841, 352, 25, 1391, 17618, 5189, 37, 5614, 1795, 38770, 92, 4943, 628, 198, 17618, 5189, 37, 5614, 11645, 38770, 796, 10922, 13, 48183, 7, 69, 5614, 11, 17759, 8, 198, 198, 4798, 7, 69, 1, 7841, 362, 25, 1391, 17618, 5189, 37, 5614, 11645, 38770, 92, 4943 ]
2.636364
132
from enum import Enum from types import GeneratorType from typing import Any, Callable, Dict, List, Set, Tuple, Union from fastapi.logger import logger from fastapi.utils import PYDANTIC_1 from pydantic import BaseModel from pydantic.json import ENCODERS_BY_TYPE SetIntStr = Set[Union[int, str]] DictIntStrAny = Dict[Union[int, str], Any] encoders_by_class_tuples = generate_encoders_by_class_tuples(ENCODERS_BY_TYPE)
[ 6738, 33829, 1330, 2039, 388, 198, 6738, 3858, 1330, 35986, 6030, 198, 6738, 19720, 1330, 4377, 11, 4889, 540, 11, 360, 713, 11, 7343, 11, 5345, 11, 309, 29291, 11, 4479, 198, 198, 6738, 3049, 15042, 13, 6404, 1362, 1330, 49706, 198, 6738, 3049, 15042, 13, 26791, 1330, 350, 35755, 8643, 2149, 62, 16, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 198, 6738, 279, 5173, 5109, 13, 17752, 1330, 412, 7792, 3727, 4877, 62, 17513, 62, 25216, 198, 198, 7248, 5317, 13290, 796, 5345, 58, 38176, 58, 600, 11, 965, 11907, 198, 35, 713, 5317, 13290, 7149, 796, 360, 713, 58, 38176, 58, 600, 11, 965, 4357, 4377, 60, 628, 198, 198, 12685, 375, 364, 62, 1525, 62, 4871, 62, 28047, 2374, 796, 7716, 62, 12685, 375, 364, 62, 1525, 62, 4871, 62, 28047, 2374, 7, 24181, 3727, 4877, 62, 17513, 62, 25216, 8, 628 ]
2.90411
146
# coding: utf-8 # Copyright (C) 2021, [Breezedeus](https://github.com/breezedeus). # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from pathlib import Path from typing import Dict, Any from copy import deepcopy from collections import OrderedDict from torchvision.models import ( resnet50, resnet34, resnet18, mobilenet_v3_large, mobilenet_v3_small, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0, ) from .__version__ import __version__ # 模型版本只对应到第二层,第三层的改动表示模型兼容。 # 如: __version__ = '1.0.*',对应的 MODEL_VERSION 都是 '1.0' MODEL_VERSION = '.'.join(__version__.split('.', maxsplit=2)[:2]) VOCAB_FP = Path(__file__).parent.parent / 'label_cn.txt' MODEL_CONFIGS: Dict[str, Dict[str, Any]] = { 'db_resnet50': { 'backbone': resnet50, 'backbone_submodule': None, 'fpn_layers': ['layer1', 'layer2', 'layer3', 'layer4'], 'fpn_channels': [256, 512, 1024, 2048], 'input_shape': (3, 768, 768), # resize后输入模型的图片大小, 即 `resized_shape` 'url': None, }, 'db_resnet34': { 'backbone': resnet34, 'backbone_submodule': None, 'fpn_layers': ['layer1', 'layer2', 'layer3', 'layer4'], 'fpn_channels': [64, 128, 256, 512], 'input_shape': (3, 768, 768), 'url': None, }, 'db_resnet18': { 'backbone': resnet18, 'backbone_submodule': None, 'fpn_layers': ['layer1', 'layer2', 'layer3', 'layer4'], 'fpn_channels': [64, 128, 256, 512], 'input_shape': (3, 768, 768), 'url': None, }, 'db_mobilenet_v3': { 'backbone': mobilenet_v3_large, 'backbone_submodule': 'features', 'fpn_layers': ['3', '6', '12', '16'], 'fpn_channels': [24, 40, 112, 960], 'input_shape': (3, 768, 768), 'url': None, }, 'db_mobilenet_v3_small': { 'backbone': mobilenet_v3_small, 'backbone_submodule': 'features', 'fpn_layers': ['1', '3', '8', '12'], 'fpn_channels': [16, 24, 48, 576], 'input_shape': (3, 768, 768), 'url': None, }, 'db_shufflenet_v2': { 'backbone': shufflenet_v2_x2_0, 'backbone_submodule': None, 'fpn_layers': ['maxpool', 'stage2', 'stage3', 'stage4'], 'fpn_channels': [24, 244, 488, 976], 'input_shape': (3, 768, 768), 'url': None, }, 'db_shufflenet_v2_small': { 'backbone': shufflenet_v2_x1_5, 'backbone_submodule': None, 'fpn_layers': ['maxpool', 'stage2', 'stage3', 'stage4'], 'fpn_channels': [24, 176, 352, 704], 'input_shape': (3, 768, 768), 'url': None, }, 'db_shufflenet_v2_tiny': { 'backbone': shufflenet_v2_x1_0, 'backbone_submodule': None, 'fpn_layers': ['maxpool', 'stage2', 'stage3', 'stage4'], 'fpn_channels': [24, 116, 232, 464], 'input_shape': (3, 768, 768), 'url': None, }, } root_url = ( 'https://beiye-model.oss-cn-beijing.aliyuncs.com/models/cnstd/%s/' % MODEL_VERSION ) # name: (epochs, url) # 免费模型 FREE_MODELS = OrderedDict( { 'db_resnet34': { 'model_epoch': 41, 'fpn_type': 'pan', 'url': root_url + 'db_resnet34-pan.zip', }, 'db_resnet18': { 'model_epoch': 34, 'fpn_type': 'pan', 'url': root_url + 'db_resnet18-pan.zip', }, 'db_mobilenet_v3': { 'model_epoch': 47, 'fpn_type': 'pan', 'url': root_url + 'db_mobilenet_v3-pan.zip', }, 'db_mobilenet_v3_small': { 'model_epoch': 37, 'fpn_type': 'pan', 'url': root_url + 'db_mobilenet_v3_small-pan.zip', }, 'db_shufflenet_v2': { 'model_epoch': 41, 'fpn_type': 'pan', 'url': root_url + 'db_shufflenet_v2-pan.zip', }, 'db_shufflenet_v2_small': { 'model_epoch': 34, 'fpn_type': 'pan', 'url': root_url + 'db_shufflenet_v2_small-pan.zip', }, } ) # 付费模型 PAID_MODELS = OrderedDict( { 'db_shufflenet_v2_tiny': { 'model_epoch': 48, 'fpn_type': 'pan', 'url': root_url + 'db_shufflenet_v2_tiny-pan.zip', }, } ) AVAILABLE_MODELS = deepcopy(FREE_MODELS) AVAILABLE_MODELS.update(PAID_MODELS)
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 357, 34, 8, 33448, 11, 685, 33, 631, 8863, 27650, 16151, 5450, 1378, 12567, 13, 785, 14, 65, 631, 8863, 27650, 737, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 360, 713, 11, 4377, 198, 6738, 4866, 1330, 2769, 30073, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 28034, 10178, 13, 27530, 1330, 357, 198, 220, 220, 220, 581, 3262, 1120, 11, 198, 220, 220, 220, 581, 3262, 2682, 11, 198, 220, 220, 220, 581, 3262, 1507, 11, 198, 220, 220, 220, 17754, 268, 316, 62, 85, 18, 62, 11664, 11, 198, 220, 220, 220, 17754, 268, 316, 62, 85, 18, 62, 17470, 11, 198, 220, 220, 220, 32299, 11925, 316, 62, 85, 17, 62, 87, 16, 62, 15, 11, 198, 220, 220, 220, 32299, 11925, 316, 62, 85, 17, 62, 87, 16, 62, 20, 11, 198, 220, 220, 220, 32299, 11925, 316, 62, 85, 17, 62, 87, 17, 62, 15, 11, 198, 8, 198, 198, 6738, 764, 834, 9641, 834, 1330, 11593, 9641, 834, 628, 198, 2, 10545, 101, 94, 161, 252, 233, 48304, 17312, 105, 20998, 103, 43380, 117, 41753, 242, 26344, 108, 163, 105, 105, 12859, 234, 161, 109, 224, 171, 120, 234, 163, 105, 105, 49011, 161, 109, 224, 21410, 162, 242, 117, 27950, 101, 26193, 101, 163, 97, 118, 162, 101, 94, 161, 252, 233, 17739, 120, 22522, 117, 16764, 198, 2, 10263, 99, 224, 25, 11593, 9641, 834, 796, 705, 16, 13, 15, 15885, 6, 171, 120, 234, 43380, 117, 41753, 242, 21410, 19164, 3698, 62, 43717, 16268, 225, 121, 42468, 705, 16, 13, 15, 6, 198, 33365, 3698, 62, 43717, 796, 705, 2637, 13, 22179, 7, 834, 9641, 834, 13, 35312, 10786, 2637, 11, 3509, 35312, 28, 17, 38381, 25, 17, 12962, 198, 53, 4503, 6242, 62, 5837, 796, 10644, 7, 834, 7753, 834, 737, 8000, 13, 8000, 1220, 705, 18242, 62, 31522, 13, 14116, 6, 198, 198, 33365, 3698, 62, 10943, 16254, 50, 25, 360, 713, 58, 2536, 11, 360, 713, 58, 2536, 11, 4377, 11907, 796, 1391, 198, 220, 220, 220, 705, 9945, 62, 411, 3262, 1120, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 581, 3262, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 29289, 16, 3256, 705, 29289, 17, 3256, 705, 29289, 18, 3256, 705, 29289, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 11645, 11, 22243, 11, 28119, 11, 36117, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 220, 1303, 47558, 28938, 236, 164, 122, 241, 17739, 98, 162, 101, 94, 161, 252, 233, 21410, 32368, 122, 31965, 229, 32014, 22887, 237, 11, 10263, 235, 111, 4600, 411, 1143, 62, 43358, 63, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 411, 3262, 2682, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 581, 3262, 2682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 29289, 16, 3256, 705, 29289, 17, 3256, 705, 29289, 18, 3256, 705, 29289, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 2414, 11, 13108, 11, 17759, 11, 22243, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 411, 3262, 1507, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 581, 3262, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 29289, 16, 3256, 705, 29289, 17, 3256, 705, 29289, 18, 3256, 705, 29289, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 2414, 11, 13108, 11, 17759, 11, 22243, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 17754, 268, 316, 62, 85, 18, 62, 11664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 705, 40890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 18, 3256, 705, 21, 3256, 705, 1065, 3256, 705, 1433, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 1731, 11, 2319, 11, 13539, 11, 41263, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 62, 17470, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 17754, 268, 316, 62, 85, 18, 62, 17470, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 705, 40890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 16, 3256, 705, 18, 3256, 705, 23, 3256, 705, 1065, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 1433, 11, 1987, 11, 4764, 11, 642, 4304, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 32299, 11925, 316, 62, 85, 17, 62, 87, 17, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 9806, 7742, 3256, 705, 14247, 17, 3256, 705, 14247, 18, 3256, 705, 14247, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 1731, 11, 35264, 11, 604, 3459, 11, 860, 4304, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 17470, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 32299, 11925, 316, 62, 85, 17, 62, 87, 16, 62, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 9806, 7742, 3256, 705, 14247, 17, 3256, 705, 14247, 18, 3256, 705, 14247, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 1731, 11, 26937, 11, 44063, 11, 767, 3023, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 44152, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 10354, 32299, 11925, 316, 62, 85, 17, 62, 87, 16, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 15992, 62, 7266, 21412, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 75, 6962, 10354, 37250, 9806, 7742, 3256, 705, 14247, 17, 3256, 705, 14247, 18, 3256, 705, 14247, 19, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 354, 8961, 10354, 685, 1731, 11, 18693, 11, 31773, 11, 604, 2414, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 62, 43358, 10354, 357, 18, 11, 46720, 11, 46720, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6045, 11, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 15763, 62, 6371, 796, 357, 198, 220, 220, 220, 705, 5450, 1378, 1350, 72, 5948, 12, 19849, 13, 793, 12, 31522, 12, 1350, 11030, 13, 7344, 88, 403, 6359, 13, 785, 14, 27530, 14, 31522, 19282, 14, 4, 82, 14, 6, 4064, 19164, 3698, 62, 43717, 198, 8, 198, 2, 1438, 25, 357, 538, 5374, 82, 11, 19016, 8, 198, 2, 10263, 227, 235, 164, 112, 117, 162, 101, 94, 161, 252, 233, 198, 39274, 62, 33365, 37142, 796, 14230, 1068, 35, 713, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 411, 3262, 2682, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 6073, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 411, 3262, 2682, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 411, 3262, 1507, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 4974, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 411, 3262, 1507, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 6298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 62, 17470, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 5214, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 76, 25898, 268, 316, 62, 85, 18, 62, 17470, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 6073, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 17470, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 4974, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 17470, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 8, 198, 198, 2, 220, 20015, 246, 164, 112, 117, 162, 101, 94, 161, 252, 233, 198, 4537, 2389, 62, 33365, 37142, 796, 14230, 1068, 35, 713, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 44152, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 538, 5374, 10354, 4764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 21999, 62, 4906, 10354, 705, 6839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 6808, 62, 6371, 1343, 705, 9945, 62, 1477, 1648, 11925, 316, 62, 85, 17, 62, 44152, 12, 6839, 13, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 8, 198, 198, 10116, 32, 4146, 17534, 62, 33365, 37142, 796, 2769, 30073, 7, 39274, 62, 33365, 37142, 8, 198, 10116, 32, 4146, 17534, 62, 33365, 37142, 13, 19119, 7, 4537, 2389, 62, 33365, 37142, 8, 198 ]
1.932024
2,648
##################################################### ## Read bag from file ## ##################################################### # First import library import pyrealsense2 as rs # Import Numpy for easy array manipulation import numpy as np import sys np.set_printoptions(threshold=sys.maxsize) # Import OpenCV for easy image rendering import cv2 # Import argparse for command-line options import argparse # Import os.path for file path manipulation import os.path # Create object for parsing command-line options parser = argparse.ArgumentParser(description="Read recorded bag file and display depth stream in jet colormap.\ Remember to change the stream fps and format to match the recorded.") # Add argument which takes path to a bag file as an input parser.add_argument("-i", "--input", type=str, help="Path to the bag file") # Parse the command line arguments to an object args = parser.parse_args() # Safety if no parameter have been given if not args.input: print("No input paramater have been given.") print("For help type --help") exit() # Check if the given file have bag extension if os.path.splitext(args.input)[1] != ".bag": print("The given file is not of correct file format.") print("Only .bag files are accepted") exit() try: # Create pipeline pipeline = rs.pipeline() # Create a config object config = rs.config() # Tell config that we will use a recorded device from file to be used by the pipeline through playback. rs.config.enable_device_from_file(config, args.input) # Configure the pipeline to stream the depth stream # Change this parameters according to the recorded bag file resolution config.enable_stream(rs.stream.depth, rs.format.z16, 30) # Start streaming from file pipeline.start(config) # Create opencv window to render image in cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE) # Create colorizer object colorizer = rs.colorizer() # Streaming loop count = 0 while True: # Get frameset of depth frames = pipeline.wait_for_frames() # Get depth frame depth_frame = frames.get_depth_frame() # Colorize depth frame to jet colormap depth_color_frame = colorizer.colorize(depth_frame) # Convert depth_frame to numpy array to render image in opencv depth_color_image = np.asanyarray(depth_color_frame.get_data()) npdepth_frame = np.asanyarray(depth_frame.get_data()) print(npdepth_frame.shape) # Render image in opencv window cv2.imshow("Depth Stream", depth_color_image) key = cv2.waitKey(1) # if pressed escape exit program if key == 27: # cv2.destroyAllWindows() break if count == 210: print(npdepth_frame) cv2.waitKey(0) break count += 1 finally: pass
[ 29113, 14468, 4242, 2, 201, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4149, 6131, 422, 2393, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 201, 198, 29113, 14468, 4242, 2, 201, 198, 201, 198, 201, 198, 2, 3274, 1330, 5888, 201, 198, 11748, 12972, 260, 874, 1072, 17, 355, 44608, 201, 198, 2, 17267, 399, 32152, 329, 2562, 7177, 17512, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 25064, 201, 198, 37659, 13, 2617, 62, 4798, 25811, 7, 400, 10126, 28, 17597, 13, 9806, 7857, 8, 201, 198, 2, 17267, 4946, 33538, 329, 2562, 2939, 14837, 201, 198, 11748, 269, 85, 17, 201, 198, 2, 17267, 1822, 29572, 329, 3141, 12, 1370, 3689, 201, 198, 11748, 1822, 29572, 201, 198, 2, 17267, 28686, 13, 6978, 329, 2393, 3108, 17512, 201, 198, 11748, 28686, 13, 6978, 201, 198, 201, 198, 201, 198, 2, 13610, 2134, 329, 32096, 3141, 12, 1370, 3689, 201, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 5569, 6264, 6131, 2393, 290, 3359, 6795, 4269, 287, 12644, 951, 579, 499, 13, 59, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11436, 284, 1487, 262, 4269, 32977, 290, 5794, 284, 2872, 262, 6264, 19570, 201, 198, 2, 3060, 4578, 543, 2753, 3108, 284, 257, 6131, 2393, 355, 281, 5128, 201, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 72, 1600, 366, 438, 15414, 1600, 2099, 28, 2536, 11, 1037, 2625, 15235, 284, 262, 6131, 2393, 4943, 201, 198, 2, 2547, 325, 262, 3141, 1627, 7159, 284, 281, 2134, 201, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 2, 11233, 611, 645, 11507, 423, 587, 1813, 201, 198, 361, 407, 26498, 13, 15414, 25, 201, 198, 220, 220, 220, 3601, 7203, 2949, 5128, 5772, 729, 423, 587, 1813, 19570, 201, 198, 220, 220, 220, 3601, 7203, 1890, 1037, 2099, 1377, 16794, 4943, 201, 198, 220, 220, 220, 8420, 3419, 201, 198, 2, 6822, 611, 262, 1813, 2393, 423, 6131, 7552, 201, 198, 361, 28686, 13, 6978, 13, 22018, 578, 742, 7, 22046, 13, 15414, 38381, 16, 60, 14512, 27071, 21454, 1298, 201, 198, 220, 220, 220, 3601, 7203, 464, 1813, 2393, 318, 407, 286, 3376, 2393, 5794, 19570, 201, 198, 220, 220, 220, 3601, 7203, 10049, 764, 21454, 3696, 389, 6292, 4943, 201, 198, 220, 220, 220, 8420, 3419, 201, 198, 28311, 25, 201, 198, 220, 220, 220, 1303, 13610, 11523, 201, 198, 220, 220, 220, 11523, 796, 44608, 13, 79, 541, 4470, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 13610, 257, 4566, 2134, 201, 198, 220, 220, 220, 4566, 796, 44608, 13, 11250, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 14026, 4566, 326, 356, 481, 779, 257, 6264, 3335, 422, 2393, 284, 307, 973, 416, 262, 11523, 832, 16388, 13, 201, 198, 220, 220, 220, 44608, 13, 11250, 13, 21633, 62, 25202, 62, 6738, 62, 7753, 7, 11250, 11, 26498, 13, 15414, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 17056, 495, 262, 11523, 284, 4269, 262, 6795, 4269, 201, 198, 220, 220, 220, 1303, 9794, 428, 10007, 1864, 284, 262, 6264, 6131, 2393, 6323, 201, 198, 220, 220, 220, 4566, 13, 21633, 62, 5532, 7, 3808, 13, 5532, 13, 18053, 11, 44608, 13, 18982, 13, 89, 1433, 11, 1542, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 7253, 11305, 422, 2393, 201, 198, 220, 220, 220, 11523, 13, 9688, 7, 11250, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 13610, 1280, 33967, 4324, 284, 8543, 2939, 287, 201, 198, 220, 220, 220, 269, 85, 17, 13, 13190, 27703, 7203, 48791, 13860, 1600, 269, 85, 17, 13, 28929, 3913, 62, 39371, 2640, 35400, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 13610, 3124, 7509, 2134, 201, 198, 220, 220, 220, 3124, 7509, 796, 44608, 13, 8043, 7509, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 43124, 9052, 201, 198, 201, 198, 220, 220, 220, 954, 796, 657, 201, 198, 220, 220, 220, 981, 6407, 25, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 13431, 316, 286, 6795, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 796, 11523, 13, 17077, 62, 1640, 62, 37805, 3419, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 6795, 5739, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 14535, 796, 13431, 13, 1136, 62, 18053, 62, 14535, 3419, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5315, 1096, 6795, 5739, 284, 12644, 951, 579, 499, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 8043, 62, 14535, 796, 3124, 7509, 13, 8043, 1096, 7, 18053, 62, 14535, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 6795, 62, 14535, 284, 299, 32152, 7177, 284, 8543, 2939, 287, 1280, 33967, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 8043, 62, 9060, 796, 45941, 13, 292, 1092, 18747, 7, 18053, 62, 8043, 62, 14535, 13, 1136, 62, 7890, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 18053, 62, 14535, 796, 45941, 13, 292, 1092, 18747, 7, 18053, 62, 14535, 13, 1136, 62, 7890, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37659, 18053, 62, 14535, 13, 43358, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 46722, 2939, 287, 1280, 33967, 4324, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 48791, 13860, 1600, 6795, 62, 8043, 62, 9060, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 12070, 6654, 8420, 1430, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 6624, 2681, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 85, 17, 13, 41659, 3237, 11209, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 6624, 20064, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37659, 18053, 62, 14535, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 7, 15, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 201, 198, 201, 198, 69, 3289, 25, 201, 198, 220, 220, 220, 1208 ]
2.656522
1,150
# import pytest
[ 2, 1330, 12972, 9288, 628, 198 ]
3
6