content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import logging import cloudinary from django.conf import settings L = logging.getLogger(__name__) try: cloudinary.config( cloud_name=settings.CLOUDINARY_NAME, api_key=settings.CLOUDINARY_API_KEY, api_secret=settings.CLOUDINARY_API_SECRET ) except AttributeError: L.warning('Cloudinary settings attributes are missing and storage will not be available.')
[ 11748, 18931, 198, 198, 11748, 6279, 3219, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 43, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 6279, 3219, 13, 11250, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6279, 62, 3672, 28, 33692, 13, 5097, 2606, 35, 1268, 13153, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 2539, 28, 33692, 13, 5097, 2606, 35, 1268, 13153, 62, 17614, 62, 20373, 11, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 21078, 28, 33692, 13, 5097, 2606, 35, 1268, 13153, 62, 17614, 62, 23683, 26087, 198, 220, 220, 220, 1267, 198, 16341, 3460, 4163, 12331, 25, 198, 220, 220, 220, 406, 13, 43917, 10786, 18839, 3219, 6460, 12608, 389, 4814, 290, 6143, 481, 407, 307, 1695, 2637, 8, 198 ]
2.691781
146
import setuptools setuptools.setup( name="inferactively", version="0.0.1", description=( "A Python implementation of active inference for Markov Decision Processes" ), license="Apache 2.0", url="https://github.com/alec-tschantz/infer-actively", packages=[ "inferactively", "inferactively.core", "inferactively.distributions", "inferactively.agent", "inferactively.envs", ], )
[ 11748, 900, 37623, 10141, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 259, 2232, 33329, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 16, 1600, 198, 220, 220, 220, 6764, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32, 11361, 7822, 286, 4075, 32278, 329, 2940, 709, 26423, 10854, 274, 1, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 5964, 2625, 25189, 4891, 362, 13, 15, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 282, 721, 12, 912, 8907, 89, 14, 259, 2232, 12, 33329, 1600, 198, 220, 220, 220, 10392, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 2232, 33329, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 2232, 33329, 13, 7295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 2232, 33329, 13, 17080, 2455, 507, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 2232, 33329, 13, 25781, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 2232, 33329, 13, 268, 14259, 1600, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.367876
193
# Generated by Django 3.2.8 on 2021-10-17 16:26 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 23, 319, 33448, 12, 940, 12, 1558, 1467, 25, 2075, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 11748, 334, 27112, 628 ]
3.017857
56
#!/usr/bin/python from Tools.datetimetool import DateTimeTool import logging from DbAccess import DBHelper SOCKET_TIMEOUT = 1
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 6738, 20003, 13, 19608, 316, 38813, 970, 1330, 7536, 7575, 25391, 198, 11748, 18931, 198, 6738, 360, 65, 15457, 1330, 20137, 47429, 198, 198, 50, 11290, 2767, 62, 34694, 12425, 796, 352, 628, 198 ]
3.023256
43
from numpy import arange, pi, sin from bokeh.models.annotations.labels import Label from bokeh.plotting import figure, show x = arange(-2*pi, 2*pi, 0.1) y = sin(x) p = figure(height=250, title=r"\[\sin(x)\text{ for }x\text{ between }-2\pi\text{ and }2\pi\]") p.circle(x, y, alpha=0.6, size=7) label = Label( text="$$y = \sin(x)\$$", x=150, y=130, x_units="screen", y_units="screen", ) p.add_layout(label) p.yaxis.axis_label = r"\[\sin(x)\]" p.xaxis.axis_label = r"\[x\pi\]" show(p)
[ 6738, 299, 32152, 1330, 610, 858, 11, 31028, 11, 7813, 198, 198, 6738, 1489, 365, 71, 13, 27530, 13, 34574, 602, 13, 23912, 1424, 1330, 36052, 198, 6738, 1489, 365, 71, 13, 29487, 889, 1330, 3785, 11, 905, 198, 198, 87, 796, 610, 858, 32590, 17, 9, 14415, 11, 362, 9, 14415, 11, 657, 13, 16, 8, 198, 88, 796, 7813, 7, 87, 8, 198, 198, 79, 796, 3785, 7, 17015, 28, 9031, 11, 3670, 28, 81, 1, 59, 58, 59, 31369, 7, 87, 19415, 5239, 90, 329, 1782, 87, 59, 5239, 90, 1022, 1782, 12, 17, 59, 14415, 59, 5239, 90, 290, 1782, 17, 59, 14415, 59, 60, 4943, 198, 79, 13, 45597, 7, 87, 11, 331, 11, 17130, 28, 15, 13, 21, 11, 2546, 28, 22, 8, 198, 198, 18242, 796, 36052, 7, 198, 220, 220, 220, 2420, 2625, 13702, 88, 796, 3467, 31369, 7, 87, 19415, 13702, 1600, 198, 220, 220, 220, 2124, 28, 8628, 11, 331, 28, 12952, 11, 198, 220, 220, 220, 2124, 62, 41667, 2625, 9612, 1600, 331, 62, 41667, 2625, 9612, 1600, 198, 8, 198, 79, 13, 2860, 62, 39786, 7, 18242, 8, 198, 198, 79, 13, 88, 22704, 13, 22704, 62, 18242, 796, 374, 1, 59, 58, 59, 31369, 7, 87, 19415, 30866, 198, 79, 13, 87, 22704, 13, 22704, 62, 18242, 796, 374, 1, 59, 58, 87, 59, 14415, 59, 30866, 198, 198, 12860, 7, 79, 8, 198 ]
2.109705
237
import json import logging import swapper from django.shortcuts import get_object_or_404 from django.utils.decorators import method_decorator from django.views import View from django.views.decorators.csrf import csrf_exempt from .processor import PaymentProcessor logger = logging.getLogger(__name__) @method_decorator(csrf_exempt, name='dispatch') class CallbackView(View): """ Dedicated callback view, since payNow does not support dynamic callback urls. """
[ 11748, 33918, 198, 11748, 18931, 198, 198, 11748, 1509, 11463, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 33571, 1330, 3582, 198, 6738, 42625, 14208, 13, 33571, 13, 12501, 273, 2024, 13, 6359, 41871, 1330, 269, 27891, 69, 62, 42679, 198, 198, 6738, 764, 41341, 1330, 28784, 18709, 273, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 31, 24396, 62, 12501, 273, 1352, 7, 6359, 41871, 62, 42679, 11, 1438, 11639, 6381, 17147, 11537, 198, 4871, 4889, 1891, 7680, 7, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35023, 3474, 23838, 1570, 11, 1201, 1414, 3844, 857, 407, 1104, 8925, 23838, 2956, 7278, 13, 198, 220, 220, 220, 37227, 198 ]
3.178808
151
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2008 Sascha Steinbiss <[email protected]> # Copyright (c) 2008 Center for Bioinformatics, University of Hamburg # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # from gt.dlload import gtlib from gt.core.array import Array from gt.core.error import Error, gterror from gt.core.gtrange import Range from gt.core.str_array import StrArray from gt.extended.feature_node import FeatureNode
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 66, 8, 3648, 23771, 11693, 15215, 65, 747, 1279, 5714, 65, 747, 31, 14969, 71, 13, 35657, 12, 2763, 7423, 13, 2934, 29, 198, 2, 15069, 357, 66, 8, 3648, 3337, 329, 16024, 259, 18982, 873, 11, 2059, 286, 32526, 198, 2, 198, 2, 2448, 3411, 284, 779, 11, 4866, 11, 13096, 11, 290, 14983, 428, 3788, 329, 597, 198, 2, 4007, 351, 393, 1231, 6838, 318, 29376, 7520, 11, 2810, 326, 262, 2029, 198, 2, 6634, 4003, 290, 428, 7170, 4003, 1656, 287, 477, 9088, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1, 5357, 3336, 44746, 13954, 48778, 50, 11096, 34764, 11015, 198, 2, 13315, 23337, 9795, 5390, 12680, 47466, 47783, 2751, 11096, 8959, 49094, 34764, 11015, 3963, 198, 2, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 13, 3268, 8005, 49261, 50163, 3336, 44746, 9348, 43031, 19146, 7473, 198, 2, 15529, 38846, 11, 42242, 11, 3268, 17931, 23988, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 6375, 15529, 29506, 25552, 198, 2, 25003, 15821, 36, 5959, 15731, 16724, 2751, 16034, 406, 18420, 3963, 23210, 11, 42865, 6375, 4810, 19238, 29722, 11, 7655, 2767, 16879, 3268, 3537, 198, 2, 40282, 3963, 27342, 10659, 11, 399, 7156, 43, 3528, 18310, 6375, 25401, 309, 9863, 40, 20958, 40282, 11, 5923, 1797, 2751, 16289, 3963, 198, 2, 6375, 3268, 7102, 45, 24565, 13315, 3336, 23210, 6375, 19878, 13775, 10725, 5222, 3963, 12680, 47466, 13, 198, 2, 198, 198, 6738, 308, 83, 13, 12736, 1170, 1330, 308, 83, 8019, 198, 6738, 308, 83, 13, 7295, 13, 18747, 1330, 15690, 198, 6738, 308, 83, 13, 7295, 13, 18224, 1330, 13047, 11, 308, 14007, 198, 6738, 308, 83, 13, 7295, 13, 70, 2213, 858, 1330, 13667, 198, 6738, 308, 83, 13, 7295, 13, 2536, 62, 18747, 1330, 4285, 19182, 198, 6738, 308, 83, 13, 2302, 1631, 13, 30053, 62, 17440, 1330, 27018, 19667, 628, 628, 198 ]
3.265896
346
from bs4 import BeautifulSoup as bs import requests, json, pprint, pandas, csv, time import psutil, asyncio, aiohttp start_time = time.time() headers = { # First line of defense 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'GET', 'Access-Control-Allow-Headers': 'Content-Type', 'Access-Control-Max-Age': '3600', 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0' } # ============================================================= s_id = 1032500 # ||||||||||||||||||||||||||||||||||||||||||||| Starting ID e_id = 1033000 # ||||||||||||||||||||||||||||||||||||||||||||| Ending ID # ============================================================= # players = get_list_o_players(s_id, e_id) players = asyncio.get_event_loop().run_until_complete(get_list_o_players(s_id, e_id)) print(players) with open('players.csv', 'w', ) as csvfile: writer = csv.writer(csvfile) writer.writerow(['Name', 'ID', 'LvL', 'Rank', 'Join Date', 'Join Time']) for player in players: writer.writerow([player.split('/')[0], player.split('/')[1], player.split('/')[2], player.split('/')[3], player.split('/')[4], player.split('/')[5]]) pandas.set_option('display.max_columns', 6) pandas.set_option('display.max_rows', 1000) pandas.set_option('display.width', 1000) print(pandas.read_csv('players.csv')) print(f'---------------- Elapsed time {round(time.time() - start_time, 6)} seconds ----------------') CPU_percent = psutil.cpu_percent() RAM_percent = psutil.virtual_memory().percent with open('benchmark.csv', 'a', ) as csvfile: writer = csv.writer(csvfile) # writer.writerow(['Players', 'Time','Cpu Used','RAM Used']) writer.writerow([(e_id - s_id), round(time.time() - start_time, 6), CPU_percent, RAM_percent]) print(f'CPU Used: {CPU_percent}% , RAM Used: {RAM_percent}%')
[ 6738, 275, 82, 19, 1330, 23762, 50, 10486, 355, 275, 82, 201, 198, 11748, 7007, 11, 33918, 11, 279, 4798, 11, 19798, 292, 11, 269, 21370, 11, 640, 201, 198, 11748, 26692, 22602, 11, 30351, 952, 11, 257, 952, 4023, 201, 198, 201, 198, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 201, 198, 201, 198, 201, 198, 201, 198, 50145, 796, 1391, 220, 1303, 3274, 1627, 286, 3761, 201, 198, 220, 220, 220, 705, 15457, 12, 15988, 12, 35265, 12, 39688, 10354, 705, 9, 3256, 201, 198, 220, 220, 220, 705, 15457, 12, 15988, 12, 35265, 12, 46202, 10354, 705, 18851, 3256, 201, 198, 220, 220, 220, 705, 15457, 12, 15988, 12, 35265, 12, 13847, 364, 10354, 705, 19746, 12, 6030, 3256, 201, 198, 220, 220, 220, 705, 15457, 12, 15988, 12, 11518, 12, 23396, 10354, 705, 2623, 405, 3256, 201, 198, 220, 220, 220, 705, 12982, 12, 36772, 10354, 705, 44, 8590, 5049, 14, 20, 13, 15, 357, 55, 1157, 26, 14949, 26, 7020, 2124, 4521, 62, 2414, 26, 374, 85, 25, 4309, 13, 15, 8, 2269, 37549, 14, 1264, 8298, 486, 16802, 14, 4309, 13, 15, 6, 201, 198, 92, 201, 198, 201, 198, 201, 198, 2, 46111, 4770, 25609, 201, 198, 82, 62, 312, 796, 15349, 44688, 220, 1303, 8614, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 15886, 91, 17962, 4522, 201, 198, 68, 62, 312, 796, 838, 2091, 830, 220, 1303, 8614, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 42210, 15886, 91, 43626, 4522, 201, 198, 2, 46111, 4770, 25609, 201, 198, 2, 1938, 796, 651, 62, 4868, 62, 78, 62, 32399, 7, 82, 62, 312, 11, 304, 62, 312, 8, 201, 198, 32399, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 22446, 5143, 62, 28446, 62, 20751, 7, 1136, 62, 4868, 62, 78, 62, 32399, 7, 82, 62, 312, 11, 304, 62, 312, 4008, 201, 198, 4798, 7, 32399, 8, 201, 198, 4480, 1280, 10786, 32399, 13, 40664, 3256, 705, 86, 3256, 1267, 355, 269, 21370, 7753, 25, 201, 198, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 40664, 7753, 8, 201, 198, 220, 220, 220, 6260, 13, 16002, 322, 7, 17816, 5376, 3256, 705, 2389, 3256, 705, 29507, 43, 3256, 705, 27520, 3256, 705, 18234, 7536, 3256, 705, 18234, 3862, 6, 12962, 201, 198, 220, 220, 220, 329, 2137, 287, 1938, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 26933, 7829, 13, 35312, 10786, 14, 11537, 58, 15, 4357, 2137, 13, 35312, 10786, 14, 11537, 58, 16, 4357, 2137, 13, 35312, 10786, 14, 11537, 58, 17, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 13, 35312, 10786, 14, 11537, 58, 18, 4357, 2137, 13, 35312, 10786, 14, 11537, 58, 19, 4357, 2137, 13, 35312, 10786, 14, 11537, 58, 20, 11907, 8, 201, 198, 201, 198, 79, 392, 292, 13, 2617, 62, 18076, 10786, 13812, 13, 9806, 62, 28665, 82, 3256, 718, 8, 201, 198, 79, 392, 292, 13, 2617, 62, 18076, 10786, 13812, 13, 9806, 62, 8516, 3256, 8576, 8, 201, 198, 79, 392, 292, 13, 2617, 62, 18076, 10786, 13812, 13, 10394, 3256, 8576, 8, 201, 198, 4798, 7, 79, 392, 292, 13, 961, 62, 40664, 10786, 32399, 13, 40664, 6, 4008, 201, 198, 4798, 7, 69, 6, 1783, 2574, 28361, 640, 1391, 744, 7, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 11, 718, 38165, 4201, 34400, 11537, 201, 198, 36037, 62, 25067, 796, 26692, 22602, 13, 36166, 62, 25067, 3419, 201, 198, 24115, 62, 25067, 796, 26692, 22602, 13, 32844, 62, 31673, 22446, 25067, 201, 198, 4480, 1280, 10786, 26968, 4102, 13, 40664, 3256, 705, 64, 3256, 1267, 355, 269, 21370, 7753, 25, 201, 198, 220, 220, 220, 6260, 796, 269, 21370, 13, 16002, 7, 40664, 7753, 8, 201, 198, 220, 220, 220, 1303, 6260, 13, 16002, 322, 7, 17816, 24860, 3256, 705, 7575, 41707, 34, 19944, 16718, 41707, 24115, 16718, 6, 12962, 201, 198, 220, 220, 220, 6260, 13, 16002, 322, 26933, 7, 68, 62, 312, 532, 264, 62, 312, 828, 2835, 7, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 11, 718, 828, 9135, 62, 25067, 11, 13931, 62, 25067, 12962, 201, 198, 201, 198, 4798, 7, 69, 6, 36037, 16718, 25, 1391, 36037, 62, 25067, 92, 4, 837, 13931, 16718, 25, 1391, 24115, 62, 25067, 92, 4, 11537, 201, 198 ]
2.60241
747
import pandas as pd from ._datasets import * __all__ = [ "load_alicante_murcia", "load_barcelona", "load_madrid", "load_valencia" "load_argentina", "load_burma", "load_china", "load_canada", "load_djibouti", "load_egypt", "load_ireland", "load_finland", "load_greece", "load_honduras", "load_italy", "load_japan", "load_kazakhstan", "load_luxembourg", "load_morocco", "load_oman", "load_nicaragua", "load_panama", "load_qatar", "load_rwanda", "load_sweden", "load_tanzania", "load_uruguay", "load_vietnam", "load_sahara", "load_yemen", "load_zimbabwe" ]
[ 11748, 19798, 292, 355, 279, 67, 198, 6738, 47540, 19608, 292, 1039, 1330, 1635, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 2220, 62, 282, 291, 12427, 62, 28582, 33743, 1600, 366, 2220, 62, 5657, 14308, 1600, 366, 2220, 62, 9937, 6058, 1600, 366, 2220, 62, 2100, 29634, 1, 198, 220, 220, 220, 366, 2220, 62, 853, 298, 1437, 1600, 366, 2220, 62, 6236, 2611, 1600, 366, 2220, 62, 354, 1437, 1600, 366, 2220, 62, 5171, 4763, 1600, 198, 220, 220, 220, 366, 2220, 62, 28241, 571, 448, 72, 1600, 366, 2220, 62, 68, 6022, 1600, 366, 2220, 62, 557, 1044, 1600, 366, 2220, 62, 15643, 1044, 1600, 198, 220, 220, 220, 366, 2220, 62, 70, 631, 344, 1600, 366, 2220, 62, 71, 623, 17786, 1600, 366, 2220, 62, 1287, 88, 1600, 366, 2220, 62, 73, 2674, 1600, 198, 220, 220, 220, 366, 2220, 62, 74, 1031, 11322, 14192, 1600, 366, 2220, 62, 22564, 368, 24256, 1600, 366, 2220, 62, 4491, 420, 1073, 1600, 366, 2220, 62, 5185, 1600, 220, 198, 220, 220, 220, 366, 2220, 62, 6988, 29967, 6413, 1600, 366, 2220, 62, 6839, 1689, 1600, 366, 2220, 62, 80, 9459, 1600, 366, 2220, 62, 31653, 5282, 1600, 366, 2220, 62, 2032, 31829, 1600, 198, 220, 220, 220, 366, 2220, 62, 83, 35410, 5411, 1600, 366, 2220, 62, 333, 1018, 30106, 1600, 366, 2220, 62, 85, 1155, 7402, 1600, 366, 2220, 62, 82, 993, 3301, 1600, 366, 2220, 62, 88, 8952, 1600, 198, 220, 220, 220, 366, 2220, 62, 89, 27175, 1, 198, 220, 220, 220, 2361, 198 ]
2.250951
263
import requests import os import shutil from zipfile import ZipFile
[ 11748, 7007, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 19974, 7753, 1330, 38636, 8979, 628 ]
4.058824
17
# coding: utf-8 # In[3]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns get_ipython().magic('matplotlib inline') heat_map(filepath)
[ 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 18, 5974, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 1136, 62, 541, 7535, 22446, 32707, 10786, 6759, 29487, 8019, 26098, 11537, 198, 25080, 62, 8899, 7, 7753, 6978, 8, 628 ]
2.614286
70
import sys import os import csv import json import re import math from decimal import Decimal from django.core.management.base import BaseCommand, CommandError field_types = { 'date_ymd': 'DateField', 'number': 'FloatField', 'integer': 'IntegerField', 'email': 'EmailField', 'text': 'CharField', 'textarea': 'TextField', 'calc': 'FloatField', 'radio': 'CharField', 'select': 'CharField', 'checkbox': 'CharField', 'yesno': 'BooleanField', 'truefalse': 'BooleanField', } __project_name__ = '' requires_model_validation = False db_module = 'django.db' args = 'file', 'jsonfile' def generate_repeating_fixtures(self, line, form, form_list, fixtures, pk_num, pk_num_list, primary_key_counter, additional_forms): """ This function generates the fixture dictionaries for a repeating form. """ num_repeats_all = 1 num_repeats_list = [] current_repeat_list = [] counter = 0 #populates current_repeat_list with 1s, amount equal to length of #form_list - 1 current_repeat_list = [1] * len(form_list[1:]) #determines number of repeats from items in form_list for item in form_list: if len(item.split(' ')) > 1: num_repeats_form = item.split(' ')[1] num_repeats_list.insert(0, num_repeats_form) num_repeats_all = int(num_repeats_all) * int(num_repeats_form) for i in range(num_repeats_all): primary_key_counter += 1 fixture_dict = {} form_num_list = [] fk_index = len(form_list)-2 foreign_key = form_list[fk_index].lower().split(' ')[0].replace('_', '') if fk_index == 0: fixture_dict[foreign_key] = ['', pk_num] else: fk_num = int(math.ceil(primary_key_counter / float(num_repeats_list[0]))) fixture_dict[foreign_key] = ['', fk_num] pk_num_list.append(primary_key_counter+additional_forms) checkboxform = False try: if form['fields'][0]['field name'] == 'label' and \ form['fields'][1]['field name'] == 'value': checkboxform = True except IndexError: pass if checkboxform: #clean_field_name = re.sub('\${d\}', '', form['form name']) cb_field_name = form['form name'].split('~')[0].split(' ')[0] cb_field_name = re.sub('\${d\}', '', cb_field_name) if len(form_list[2:]) == 0: base_field_name = cb_field_name else: base_field_name = get_field_name(self, form['fields'][1], form_list[2:], current_repeat_list, cb_field_name).lower() base_field_name = base_field_name[:-1] field_names = get_field_names(self, form['fields'][1], form_list[2:], base_field_name) checked_lines = [] answered = False for name in field_names: try: if line[name] == '1': checked_lines.append(name[-1]) answered = True elif line[name] == '0': answered = True except KeyError: pass checked_fixtures = [] for checked_line in checked_lines: choices = form['fields'][1]['choices'] choice = choices.split('|') """ The number assigned to each choice by redcap might not start at 1. This subtracts the starting num from the index so an out of bounds error doesn't occur """ starts_at = choice[0].split(',')[0] choice = choice[int(checked_line)-int(starts_at)] choice = choice.split(',') fixture_dict['label'] = [form['fields'][0], choice[1]] fixture_dict['value'] = [form['fields'][1], choice[0].strip(' ')] checked_fixtures.append(dict(fixture_dict)) temp_primary = primary_key_counter for i, fixture in enumerate(checked_fixtures): if i < len(checked_fixtures)-1: additional_forms = additional_forms + 1 clean_form_name = form['form name'].split(' ')[0] \ .replace('$', '') fixtures.append([clean_form_name, fixture]) pk_num_list.append(temp_primary+additional_forms) else: for field in form['fields']: clean_field_name = re.sub('\${d\}', '', field['field name']) #form_list[0] and form_list[1] are both 'base forms' #form_list[0] is record, form_list[1] is the form name #given for each field without repeating if len(form_list[2:]) == 0: base_field_name = field['field name'] else: base_field_name = get_field_name(self, field, form_list[2:], current_repeat_list) \ .lower() if field['choices']: field_names = get_field_names(self, field, form_list[2:], base_field_name) checked_line = '' answered = '' for name in field_names: try: if len(field_names) > 1: if line[name] == '1': checked_line = name[-1] answered = True elif line[name] == '0': answered = True else: if line[name]: checked_line = line[name] except KeyError: #print 'ERROR: FIELD NOT FOUND ' + name #print field #print field_names pass #if the line is checked, the number of option is the answer if checked_line: fixture_dict[clean_field_name] = [field, checked_line] elif answered is True: fixture_dict[clean_field_name] = [field, '0'] else: fixture_dict[clean_field_name] = [field, ''] elif '_summary' in field['field name']: field_names = get_field_names_summary(self, field, form_list[2:], base_field_name[:-8]) checked_lines = [] answered = False for name in field_names: try: if line[name] == '1': checked_lines.append(name[-1]) answered = True elif line[name] == '0': answered = True except KeyError: pass choices_str = '' for checked_line in checked_lines: choices = field['field note'] choice = choices.split('|') """ The number assigned to each choice might not start at 1. This subtracts the starting num from the index we check """ starts_at = choice[0].split(',')[0] choice = choice[int(checked_line)-int(starts_at)] choices_str = choices_str + ' ' + choice fixture_dict[clean_field_name] = [field, choices_str] else: try: fixture_dict[clean_field_name] = [field, line[base_field_name] ] except KeyError: #print 'ERROR: NOT FOUND ' + base_field_name #print field #print base_field_name pass clean_form_name = form['form name'].split(' ')[0].replace('$', '') fixtures.append([clean_form_name, fixture_dict]) cur_ind = len(current_repeat_list) - 1 update_current_repeats(self, num_repeats_list[::-1], current_repeat_list, cur_ind) return primary_key_counter, additional_forms def get_field_name(self, field, form_list, repeat_num_list, alt_field_name=None): """ Loops through a list of forms. All forms are prefix forms except for the last form in form_list. """ prefix = '' if alt_field_name: field_name = alt_field_name else: field_name = field['field name'] for i in range(len(form_list)): if i != len(form_list)-1: str_split = form_list[i].split(' ') name = str_split[0] name = re.sub('\d$', '', name) num_repeats = repeat_num_list[i] prefix = prefix + name + str(num_repeats) + '_' elif field_name.find('${d}') != -1: new_field_name = re.sub('\$\{d\}', str(repeat_num_list[-1]), field_name) else: new_field_name = field_name + '' + str(repeat_num_list[-1]) new_field_name = prefix + new_field_name return new_field_name def find_related_forms(self, form_name, form_dict, foreign_forms=None): """ Finds the form_name value in the form_dict. If it is found, the function will call itself using form_dict[form_name]. The form_dict is a dictionary with the keys being a form name and the value being the name of the form they have a foreign key relation with. Ex: form_dict['Microarray 1'] = 'Prior Gen Testing' This function will continue until no more related forms are found, and will return a list of them, in order from highest to deepest form relation """ if foreign_forms is None: foreign_forms = [] if form_name in form_dict and not form_name in foreign_forms: foreign_forms.append(form_name) find_related_forms(self, form_dict[form_name], form_dict, foreign_forms) return foreign_forms def get_field_names(self, field, form_dict, field_name): """ Checkboxes and radio_other fields have multiple parts in the data csv, usually something like name1 name2 name3 for each checkbox/radio button that is pushable, but the info must be put into one field. This method finds the fields in the data file that are related to the field parameter. If it is a checkbox, it splits the possible choices and uses that to find the fields. If another special case for field names needs to be added, all that needs to be done is add an elif statement with the field type or variable it depends on. """ choices_field_names = [] if field['field type'] == 'checkbox' or \ field['field type'] == 'checkbox_other' or \ field['field type'] == 'checkbox_details': choices = field['choices'].split('|') for choice in choices: choices_field_names.append(field_name.lower() + '___' + choice.split(',')[0].strip(' ')) else: choices_field_names.append(field_name.lower()) return choices_field_names def update_current_repeats(self, form_list, current_repeats_list, cur_index): """ Updates the current_repeats_list depending on form_list([5,5,5] which is a list of numbers indicating the max number of repeats needed) and current_repeats_list([1,1,1] which is a list of numbers indicating what iteration the repeating is on). When function is first called, cur_index will be 0. Iterates the current_repeats_list like [1,1,1][1,1,2][1,1,3][1,2,1][1,2,2][1,2,3] if the element at cur_index in current_repeats_list is greater than or equal to the element in form_list at cur_index (Both of these are ints), then 'reset' the element in current_repeats_list. if the cur_index - 1 is not negative (still in bounds + cur_index is not first index) then recursively call update_current_repeats on cur_index - 1 else add 1 to current_repeats_list[cur_index] """ if int(current_repeats_list[cur_index]) >= int(form_list[cur_index]): current_repeats_list[cur_index] = 1 if cur_index - 1 >= 0: cur_index -= 1 update_current_repeats(self, form_list, current_repeats_list, cur_index) else: current_repeats_list[cur_index] += 1 def print_fixtures(self, fixtures_list, pk_list, fout): """ fixtures_list is a list of lists. Each element is a list of [form name,fixture_dict]. Each element in fixture_dict is [field, field_val] function loops through each element in fixtures_list, then each key(element) in fixtures_list[i][1](a fixture_dict) and determines if its fields are blank. If they are not blank, the field is added to field_dict. field_dict is then printed all fields in each fixture_dict has been checked """ all_json = [] first_fix = True for i in range(len(fixtures_list)): field_dict = {} #if field has a value, print it for key in fixtures_list[i][1]: if fixtures_list[i][1][key]: field = fixtures_list[i][1][key][0] field_val = fixtures_list[i][1][key][1] if field: field_dict[key] = cast_field(self, field, field_val) else: #if it is just a foreign key field_dict[key] = field_val all_json.append({'model': __project_name__ + '.' + fixtures_list[i][0].replace('_', '') + '', 'pk': pk_list[i], 'fields': field_dict }) fout.write(json.dumps(all_json, indent=4, separators=(',', ': '))) def get_field_type(self, field): """ Given the database connection, the table name, and the cursor row description, this routine will return the given field type name,as well as any additional keyword parameters and notes for the field. """ required = field['required'] validation_type = field['validation type'] field_type = field['field type'] try: field_type = field_types.get(validation_type, field_types[field_type]) except KeyError: field_type = 'TextField' if not required: if field_type is 'BooleanField': field_type = 'NullBooleanField' choices = None if field['choices']: try: choices = [(int(v.strip()), k.strip()) for v, k in [choice.split(',') for choice in field['choices'].split('|')]] field_type = 'IntegerField' except (ValueError, TypeError): pass return field_type def cast_field(self, field, field_val): """ Casts line[name] depending on the field_type """ field_type = get_field_type(self, field) if field_type == 'CharField' or field_type == 'TextField': return field_val elif field_type == 'IntegerField': if field_val and field_val.isdigit(): return int(field_val) elif field_type == 'FloatField': try: return float(field_val) except: pass elif field_type == 'NullBooleanField': if field_val == '': return None elif field_val == '0': return False elif field_val == '1': return True else: return field_val elif field_type == 'BooleanField': if field_val: if field_val == '1': return True elif field_val == '0': return False else: return field_val elif field_type == 'DateField': if field_val: return field_val else: return field_val
[ 11748, 25064, 201, 198, 11748, 28686, 201, 198, 11748, 269, 21370, 201, 198, 11748, 33918, 201, 198, 11748, 302, 201, 198, 11748, 10688, 201, 198, 6738, 32465, 1330, 4280, 4402, 201, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 11, 9455, 12331, 201, 198, 201, 198, 3245, 62, 19199, 796, 1391, 201, 198, 220, 220, 220, 705, 4475, 62, 4948, 67, 10354, 705, 10430, 15878, 3256, 201, 198, 220, 220, 220, 705, 17618, 10354, 705, 43879, 15878, 3256, 201, 198, 220, 220, 220, 705, 41433, 10354, 705, 46541, 15878, 3256, 201, 198, 220, 220, 220, 705, 12888, 10354, 705, 15333, 15878, 3256, 201, 198, 220, 220, 220, 705, 5239, 10354, 705, 12441, 15878, 3256, 201, 198, 220, 220, 220, 705, 5239, 20337, 10354, 705, 8206, 15878, 3256, 201, 198, 220, 220, 220, 705, 9948, 66, 10354, 705, 43879, 15878, 3256, 201, 198, 220, 220, 220, 705, 37004, 10354, 705, 12441, 15878, 3256, 201, 198, 220, 220, 220, 705, 19738, 10354, 705, 12441, 15878, 3256, 201, 198, 220, 220, 220, 705, 9122, 3524, 10354, 705, 12441, 15878, 3256, 201, 198, 220, 220, 220, 705, 8505, 3919, 10354, 705, 46120, 13087, 15878, 3256, 201, 198, 220, 220, 220, 705, 7942, 9562, 10354, 705, 46120, 13087, 15878, 3256, 201, 198, 92, 201, 198, 201, 198, 834, 16302, 62, 3672, 834, 796, 10148, 201, 198, 201, 198, 47911, 62, 19849, 62, 12102, 341, 796, 10352, 201, 198, 9945, 62, 21412, 796, 705, 28241, 14208, 13, 9945, 6, 201, 198, 22046, 796, 705, 7753, 3256, 705, 17752, 7753, 6, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 7716, 62, 45956, 803, 62, 69, 25506, 7, 944, 11, 1627, 11, 1296, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 11, 34609, 11, 279, 74, 62, 22510, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 74, 62, 22510, 62, 4868, 11, 4165, 62, 2539, 62, 24588, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3224, 62, 23914, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 770, 2163, 18616, 262, 29220, 48589, 3166, 329, 257, 20394, 1296, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 997, 62, 45956, 1381, 62, 439, 796, 352, 201, 198, 220, 220, 220, 997, 62, 45956, 1381, 62, 4868, 796, 17635, 201, 198, 220, 220, 220, 1459, 62, 44754, 62, 4868, 796, 17635, 201, 198, 220, 220, 220, 3753, 796, 657, 201, 198, 201, 198, 220, 220, 220, 1303, 12924, 15968, 1459, 62, 44754, 62, 4868, 351, 352, 82, 11, 2033, 4961, 284, 4129, 286, 201, 198, 220, 220, 220, 1303, 687, 62, 4868, 532, 352, 201, 198, 220, 220, 220, 1459, 62, 44754, 62, 4868, 796, 685, 16, 60, 1635, 18896, 7, 687, 62, 4868, 58, 16, 25, 12962, 201, 198, 220, 220, 220, 1303, 67, 13221, 274, 1271, 286, 29819, 422, 3709, 287, 1296, 62, 4868, 201, 198, 220, 220, 220, 329, 2378, 287, 1296, 62, 4868, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9186, 13, 35312, 10786, 705, 4008, 1875, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 45956, 1381, 62, 687, 796, 2378, 13, 35312, 10786, 705, 38381, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 45956, 1381, 62, 4868, 13, 28463, 7, 15, 11, 997, 62, 45956, 1381, 62, 687, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 45956, 1381, 62, 439, 796, 493, 7, 22510, 62, 45956, 1381, 62, 439, 8, 1635, 493, 7, 22510, 62, 45956, 1381, 62, 687, 8, 201, 198, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 45956, 1381, 62, 439, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 62, 24588, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 796, 23884, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 22510, 62, 4868, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 277, 74, 62, 9630, 796, 18896, 7, 687, 62, 4868, 13219, 17, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3215, 62, 2539, 796, 1296, 62, 4868, 58, 69, 74, 62, 9630, 4083, 21037, 22446, 35312, 10786, 705, 38381, 15, 4083, 33491, 10786, 62, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 74, 62, 9630, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 38823, 62, 2539, 60, 796, 37250, 3256, 279, 74, 62, 22510, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 74, 62, 22510, 796, 493, 7, 11018, 13, 344, 346, 7, 39754, 62, 2539, 62, 24588, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 7, 22510, 62, 45956, 1381, 62, 4868, 58, 15, 60, 22305, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 38823, 62, 2539, 60, 796, 37250, 3256, 277, 74, 62, 22510, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 279, 74, 62, 22510, 62, 4868, 13, 33295, 7, 39754, 62, 2539, 62, 24588, 10, 2860, 1859, 62, 23914, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 3524, 687, 796, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1296, 17816, 25747, 6, 7131, 15, 7131, 6, 3245, 1438, 20520, 6624, 705, 18242, 6, 290, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 17816, 25747, 6, 7131, 16, 7131, 6, 3245, 1438, 20520, 6624, 705, 8367, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 3524, 687, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 3524, 687, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27773, 62, 3245, 62, 3672, 796, 302, 13, 7266, 10786, 59, 38892, 67, 59, 92, 3256, 705, 3256, 1296, 17816, 687, 1438, 6, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 62, 3245, 62, 3672, 796, 1296, 17816, 687, 1438, 6, 4083, 35312, 10786, 93, 11537, 58, 15, 4083, 35312, 10786, 705, 38381, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 62, 3245, 62, 3672, 796, 302, 13, 7266, 10786, 59, 38892, 67, 59, 92, 3256, 705, 3256, 269, 65, 62, 3245, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 687, 62, 4868, 58, 17, 25, 12962, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 796, 269, 65, 62, 3245, 62, 3672, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 796, 651, 62, 3245, 62, 3672, 7, 944, 11, 1296, 17816, 25747, 6, 7131, 16, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 58, 17, 25, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 44754, 62, 4868, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 65, 62, 3245, 62, 3672, 737, 21037, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 796, 2779, 62, 3245, 62, 3672, 58, 21912, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 14933, 796, 651, 62, 3245, 62, 14933, 7, 944, 11, 1296, 17816, 25747, 6, 7131, 16, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 58, 17, 25, 4357, 2779, 62, 3245, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 6615, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2214, 62, 14933, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 3672, 60, 6624, 705, 16, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 6615, 13, 33295, 7, 3672, 58, 12, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 58, 3672, 60, 6624, 705, 15, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 69, 25506, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10667, 62, 1370, 287, 10667, 62, 6615, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 1296, 17816, 25747, 6, 7131, 16, 7131, 6, 6679, 1063, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 796, 7747, 13, 35312, 10786, 91, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 8686, 284, 1123, 3572, 416, 2266, 11128, 1244, 407, 923, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 352, 13, 770, 34128, 82, 262, 3599, 997, 422, 262, 6376, 523, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 503, 286, 22303, 4049, 1595, 470, 3051, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4940, 62, 265, 796, 3572, 58, 15, 4083, 35312, 7, 3256, 11537, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 796, 3572, 58, 600, 7, 26752, 62, 1370, 13219, 600, 7, 301, 5889, 62, 265, 15437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 796, 3572, 13, 35312, 7, 3256, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 17816, 18242, 20520, 796, 685, 687, 17816, 25747, 6, 7131, 15, 4357, 3572, 58, 16, 11907, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 17816, 8367, 20520, 796, 685, 687, 17816, 25747, 6, 7131, 16, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 58, 15, 4083, 36311, 10786, 705, 15437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 69, 25506, 13, 33295, 7, 11600, 7, 69, 9602, 62, 11600, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 39754, 796, 4165, 62, 2539, 62, 24588, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 29220, 287, 27056, 378, 7, 26752, 62, 69, 25506, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1279, 18896, 7, 26752, 62, 69, 25506, 13219, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3224, 62, 23914, 796, 3224, 62, 23914, 1343, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 687, 62, 3672, 796, 1296, 17816, 687, 1438, 6, 4083, 35312, 10786, 705, 38381, 15, 60, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 33491, 10786, 3, 3256, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 13, 33295, 26933, 27773, 62, 687, 62, 3672, 11, 29220, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 74, 62, 22510, 62, 4868, 13, 33295, 7, 29510, 62, 39754, 10, 2860, 1859, 62, 23914, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 1296, 17816, 25747, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 3245, 62, 3672, 796, 302, 13, 7266, 10786, 59, 38892, 67, 59, 92, 3256, 705, 3256, 2214, 17816, 3245, 1438, 6, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 687, 62, 4868, 58, 15, 60, 290, 1296, 62, 4868, 58, 16, 60, 389, 1111, 705, 8692, 5107, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 687, 62, 4868, 58, 15, 60, 318, 1700, 11, 1296, 62, 4868, 58, 16, 60, 318, 262, 1296, 1438, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35569, 329, 1123, 2214, 1231, 20394, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 687, 62, 4868, 58, 17, 25, 12962, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 796, 2214, 17816, 3245, 1438, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 796, 651, 62, 3245, 62, 3672, 7, 944, 11, 2214, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 58, 17, 25, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 44754, 62, 4868, 8, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 21037, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 17816, 6679, 1063, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 14933, 796, 651, 62, 3245, 62, 14933, 7, 944, 11, 2214, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 58, 17, 25, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 1370, 796, 10148, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 10148, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2214, 62, 14933, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 3245, 62, 14933, 8, 1875, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 3672, 60, 6624, 705, 16, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 1370, 796, 1438, 58, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 58, 3672, 60, 6624, 705, 15, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 3672, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 1370, 796, 1627, 58, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 24908, 25, 18930, 24639, 5626, 376, 15919, 705, 1343, 1438, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 2214, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 2214, 62, 14933, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 262, 1627, 318, 10667, 11, 262, 1271, 286, 3038, 318, 262, 3280, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10667, 62, 1370, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 27773, 62, 3245, 62, 3672, 60, 796, 685, 3245, 11, 10667, 62, 1370, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9373, 318, 6407, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 27773, 62, 3245, 62, 3672, 60, 796, 685, 3245, 11, 705, 15, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 27773, 62, 3245, 62, 3672, 60, 796, 685, 3245, 11, 10148, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 62, 49736, 6, 287, 2214, 17816, 3245, 1438, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 14933, 796, 651, 62, 3245, 62, 14933, 62, 49736, 7, 944, 11, 2214, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 4868, 58, 17, 25, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 3245, 62, 3672, 58, 21912, 23, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 6615, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2214, 62, 14933, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 3672, 60, 6624, 705, 16, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10667, 62, 6615, 13, 33295, 7, 3672, 58, 12, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 58, 3672, 60, 6624, 705, 15, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9373, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 62, 2536, 796, 10148, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10667, 62, 1370, 287, 10667, 62, 6615, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 2214, 17816, 3245, 3465, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 796, 7747, 13, 35312, 10786, 91, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 8686, 284, 1123, 3572, 1244, 407, 923, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 352, 13, 770, 34128, 82, 262, 3599, 997, 422, 262, 6376, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 356, 2198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4940, 62, 265, 796, 3572, 58, 15, 4083, 35312, 7, 3256, 11537, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 796, 3572, 58, 600, 7, 26752, 62, 1370, 13219, 600, 7, 301, 5889, 62, 265, 15437, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 62, 2536, 796, 7747, 62, 2536, 1343, 705, 705, 1343, 3572, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 27773, 62, 3245, 62, 3672, 60, 796, 685, 3245, 11, 7747, 62, 2536, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29220, 62, 11600, 58, 27773, 62, 3245, 62, 3672, 60, 796, 685, 3245, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 58, 8692, 62, 3245, 62, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 24908, 25, 5626, 376, 15919, 705, 1343, 2779, 62, 3245, 62, 3672, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 2214, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 2779, 62, 3245, 62, 3672, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 687, 62, 3672, 796, 1296, 17816, 687, 1438, 6, 4083, 35312, 10786, 705, 38381, 15, 4083, 33491, 10786, 3, 3256, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 34609, 13, 33295, 26933, 27773, 62, 687, 62, 3672, 11, 29220, 62, 11600, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 521, 796, 18896, 7, 14421, 62, 44754, 62, 4868, 8, 532, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 14421, 62, 45956, 1381, 7, 944, 11, 997, 62, 45956, 1381, 62, 4868, 58, 3712, 12, 16, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 44754, 62, 4868, 11, 1090, 62, 521, 8, 201, 198, 201, 198, 220, 220, 220, 1441, 4165, 62, 2539, 62, 24588, 11, 3224, 62, 23914, 201, 198, 201, 198, 201, 198, 4299, 651, 62, 3245, 62, 3672, 7, 944, 11, 2214, 11, 1296, 62, 4868, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9585, 62, 22510, 62, 4868, 11, 5988, 62, 3245, 62, 3672, 28, 14202, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 6706, 2840, 832, 257, 1351, 286, 5107, 13, 1439, 5107, 389, 21231, 5107, 2845, 329, 262, 201, 198, 220, 220, 220, 938, 1296, 287, 1296, 62, 4868, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 21231, 796, 10148, 201, 198, 220, 220, 220, 611, 5988, 62, 3245, 62, 3672, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 796, 5988, 62, 3245, 62, 3672, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 796, 2214, 17816, 3245, 1438, 20520, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 687, 62, 4868, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 14512, 18896, 7, 687, 62, 4868, 13219, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 62, 35312, 796, 1296, 62, 4868, 58, 72, 4083, 35312, 10786, 705, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 965, 62, 35312, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 302, 13, 7266, 10786, 59, 67, 3, 3256, 705, 3256, 1438, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 45956, 1381, 796, 9585, 62, 22510, 62, 4868, 58, 72, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 796, 21231, 1343, 1438, 1343, 965, 7, 22510, 62, 45956, 1381, 8, 1343, 705, 62, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2214, 62, 3672, 13, 19796, 10786, 38892, 67, 92, 11537, 14512, 532, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3245, 62, 3672, 796, 302, 13, 7266, 10786, 59, 3, 59, 90, 67, 59, 92, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 44754, 62, 22510, 62, 4868, 58, 12, 16, 46570, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3245, 62, 3672, 796, 2214, 62, 3672, 1343, 10148, 1343, 965, 7, 44754, 62, 22510, 62, 4868, 58, 12, 16, 12962, 201, 198, 220, 220, 220, 649, 62, 3245, 62, 3672, 796, 21231, 1343, 649, 62, 3245, 62, 3672, 201, 198, 220, 220, 220, 1441, 649, 62, 3245, 62, 3672, 201, 198, 201, 198, 201, 198, 4299, 1064, 62, 5363, 62, 23914, 7, 944, 11, 1296, 62, 3672, 11, 1296, 62, 11600, 11, 3215, 62, 23914, 28, 14202, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 9938, 82, 262, 1296, 62, 3672, 1988, 287, 262, 1296, 62, 11600, 13, 1002, 340, 318, 1043, 11, 262, 2163, 201, 198, 220, 220, 220, 481, 869, 2346, 1262, 1296, 62, 11600, 58, 687, 62, 3672, 4083, 383, 1296, 62, 11600, 318, 257, 22155, 201, 198, 220, 220, 220, 351, 262, 8251, 852, 257, 1296, 1438, 290, 262, 1988, 852, 262, 1438, 286, 262, 1296, 201, 198, 220, 220, 220, 484, 423, 257, 3215, 1994, 8695, 351, 13, 201, 198, 220, 220, 220, 1475, 25, 1296, 62, 11600, 17816, 13031, 18747, 352, 20520, 796, 705, 22442, 5215, 23983, 6, 201, 198, 220, 220, 220, 770, 2163, 481, 2555, 1566, 645, 517, 3519, 5107, 389, 1043, 11, 290, 481, 201, 198, 220, 220, 220, 1441, 257, 1351, 286, 606, 11, 287, 1502, 422, 4511, 284, 25420, 1296, 8695, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 611, 3215, 62, 23914, 318, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3215, 62, 23914, 796, 17635, 201, 198, 220, 220, 220, 611, 1296, 62, 3672, 287, 1296, 62, 11600, 290, 407, 1296, 62, 3672, 287, 3215, 62, 23914, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3215, 62, 23914, 13, 33295, 7, 687, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1064, 62, 5363, 62, 23914, 7, 944, 11, 1296, 62, 11600, 58, 687, 62, 3672, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 11600, 11, 3215, 62, 23914, 8, 201, 198, 220, 220, 220, 1441, 3215, 62, 23914, 201, 198, 201, 198, 201, 198, 4299, 651, 62, 3245, 62, 14933, 7, 944, 11, 2214, 11, 1296, 62, 11600, 11, 2214, 62, 3672, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 6822, 29305, 290, 5243, 62, 847, 7032, 423, 3294, 3354, 287, 262, 1366, 269, 21370, 11, 201, 198, 220, 220, 220, 3221, 1223, 588, 1438, 16, 1438, 17, 1438, 18, 329, 1123, 2198, 3524, 14, 37004, 4936, 201, 198, 220, 220, 220, 326, 318, 4574, 540, 11, 475, 262, 7508, 1276, 307, 1234, 656, 530, 2214, 13, 201, 198, 201, 198, 220, 220, 220, 770, 2446, 7228, 262, 7032, 287, 262, 1366, 2393, 326, 389, 3519, 284, 262, 2214, 201, 198, 220, 220, 220, 11507, 13, 1002, 340, 318, 257, 2198, 3524, 11, 340, 30778, 262, 1744, 7747, 290, 3544, 201, 198, 220, 220, 220, 326, 284, 1064, 262, 7032, 13, 201, 198, 220, 220, 220, 1002, 1194, 2041, 1339, 329, 2214, 3891, 2476, 284, 307, 2087, 11, 477, 326, 201, 198, 220, 220, 220, 2476, 284, 307, 1760, 318, 751, 281, 1288, 361, 2643, 351, 262, 2214, 2099, 393, 7885, 201, 198, 220, 220, 220, 340, 8338, 319, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 7747, 62, 3245, 62, 14933, 796, 17635, 201, 198, 220, 220, 220, 611, 2214, 17816, 3245, 2099, 20520, 6624, 705, 9122, 3524, 6, 393, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 2214, 17816, 3245, 2099, 20520, 6624, 705, 9122, 3524, 62, 847, 6, 393, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 2214, 17816, 3245, 2099, 20520, 6624, 705, 9122, 3524, 62, 36604, 10354, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 2214, 17816, 6679, 1063, 6, 4083, 35312, 10786, 91, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3572, 287, 7747, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 62, 3245, 62, 14933, 13, 33295, 7, 3245, 62, 3672, 13, 21037, 3419, 1343, 705, 17569, 6, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3572, 13, 35312, 7, 3256, 11537, 58, 15, 4083, 36311, 10786, 705, 4008, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 62, 3245, 62, 14933, 13, 33295, 7, 3245, 62, 3672, 13, 21037, 28955, 201, 198, 220, 220, 220, 1441, 7747, 62, 3245, 62, 14933, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 4296, 62, 14421, 62, 45956, 1381, 7, 944, 11, 1296, 62, 4868, 11, 1459, 62, 45956, 1381, 62, 4868, 11, 1090, 62, 9630, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 28090, 262, 1459, 62, 45956, 1381, 62, 4868, 6906, 319, 1296, 62, 4868, 26933, 20, 11, 20, 11, 20, 60, 543, 201, 198, 220, 220, 220, 318, 257, 1351, 286, 3146, 12739, 262, 3509, 1271, 286, 29819, 2622, 8, 290, 201, 198, 220, 220, 220, 1459, 62, 45956, 1381, 62, 4868, 26933, 16, 11, 16, 11, 16, 60, 543, 318, 257, 1351, 286, 3146, 12739, 644, 201, 198, 220, 220, 220, 24415, 262, 20394, 318, 319, 737, 1649, 2163, 318, 717, 1444, 11, 1090, 62, 9630, 201, 198, 220, 220, 220, 481, 307, 657, 13, 40806, 689, 262, 1459, 62, 45956, 1381, 62, 4868, 588, 201, 198, 220, 220, 220, 685, 16, 11, 16, 11, 16, 7131, 16, 11, 16, 11, 17, 7131, 16, 11, 16, 11, 18, 7131, 16, 11, 17, 11, 16, 7131, 16, 11, 17, 11, 17, 7131, 16, 11, 17, 11, 18, 60, 201, 198, 201, 198, 220, 220, 220, 611, 262, 5002, 379, 1090, 62, 9630, 287, 1459, 62, 45956, 1381, 62, 4868, 318, 3744, 621, 393, 201, 198, 220, 220, 220, 4961, 284, 262, 5002, 287, 1296, 62, 4868, 379, 1090, 62, 9630, 357, 10265, 286, 777, 389, 493, 82, 828, 201, 198, 220, 220, 220, 788, 705, 42503, 6, 262, 5002, 287, 1459, 62, 45956, 1381, 62, 4868, 13, 201, 198, 220, 220, 220, 611, 262, 1090, 62, 9630, 532, 352, 318, 407, 4633, 357, 24219, 287, 22303, 1343, 1090, 62, 9630, 318, 201, 198, 220, 220, 220, 407, 717, 6376, 8, 788, 664, 1834, 2280, 869, 4296, 62, 14421, 62, 45956, 1381, 319, 201, 198, 220, 220, 220, 1090, 62, 9630, 532, 352, 201, 198, 220, 220, 220, 2073, 751, 352, 284, 1459, 62, 45956, 1381, 62, 4868, 58, 22019, 62, 9630, 60, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 611, 493, 7, 14421, 62, 45956, 1381, 62, 4868, 58, 22019, 62, 9630, 12962, 18189, 493, 7, 687, 62, 4868, 58, 22019, 62, 9630, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 45956, 1381, 62, 4868, 58, 22019, 62, 9630, 60, 796, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 9630, 532, 352, 18189, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 9630, 48185, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 14421, 62, 45956, 1381, 7, 944, 11, 1296, 62, 4868, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 45956, 1381, 62, 4868, 11, 1090, 62, 9630, 8, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 45956, 1381, 62, 4868, 58, 22019, 62, 9630, 60, 15853, 352, 201, 198, 201, 198, 201, 198, 4299, 3601, 62, 69, 25506, 7, 944, 11, 34609, 62, 4868, 11, 279, 74, 62, 4868, 11, 277, 448, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 34609, 62, 4868, 318, 257, 1351, 286, 8341, 13, 5501, 5002, 318, 257, 1351, 286, 201, 198, 220, 220, 220, 685, 687, 1438, 11, 69, 9602, 62, 11600, 4083, 5501, 5002, 287, 29220, 62, 11600, 201, 198, 220, 220, 220, 318, 685, 3245, 11, 2214, 62, 2100, 60, 201, 198, 201, 198, 220, 220, 220, 2163, 23607, 832, 1123, 5002, 287, 34609, 62, 4868, 11, 788, 1123, 201, 198, 220, 220, 220, 1994, 7, 30854, 8, 287, 34609, 62, 4868, 58, 72, 7131, 16, 16151, 64, 29220, 62, 11600, 8, 290, 15947, 611, 663, 201, 198, 220, 220, 220, 7032, 389, 9178, 13, 1002, 484, 389, 407, 9178, 11, 262, 2214, 318, 2087, 284, 2214, 62, 11600, 13, 201, 198, 201, 198, 220, 220, 220, 2214, 62, 11600, 318, 788, 10398, 477, 7032, 287, 1123, 29220, 62, 11600, 468, 587, 10667, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 477, 62, 17752, 796, 17635, 201, 198, 220, 220, 220, 717, 62, 13049, 796, 6407, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 69, 25506, 62, 4868, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 11600, 796, 23884, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 2214, 468, 257, 1988, 11, 3601, 340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 34609, 62, 4868, 58, 72, 7131, 16, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 34609, 62, 4868, 58, 72, 7131, 16, 7131, 2539, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 796, 34609, 62, 4868, 58, 72, 7131, 16, 7131, 2539, 7131, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 2100, 796, 34609, 62, 4868, 58, 72, 7131, 16, 7131, 2539, 7131, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 11600, 58, 2539, 60, 796, 3350, 62, 3245, 7, 944, 11, 2214, 11, 2214, 62, 2100, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 340, 318, 655, 257, 3215, 1994, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 11600, 58, 2539, 60, 796, 2214, 62, 2100, 201, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 17752, 13, 33295, 15090, 6, 19849, 10354, 11593, 16302, 62, 3672, 834, 1343, 705, 2637, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34609, 62, 4868, 58, 72, 7131, 15, 4083, 33491, 10786, 62, 3256, 10148, 8, 1343, 705, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 74, 10354, 279, 74, 62, 4868, 58, 72, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25747, 10354, 2214, 62, 11600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 201, 198, 220, 220, 220, 277, 448, 13, 13564, 7, 17752, 13, 67, 8142, 7, 439, 62, 17752, 11, 33793, 28, 19, 11, 2880, 2024, 16193, 3256, 3256, 705, 25, 705, 22305, 201, 198, 201, 198, 201, 198, 4299, 651, 62, 3245, 62, 4906, 7, 944, 11, 2214, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 11259, 262, 6831, 4637, 11, 262, 3084, 1438, 11, 290, 262, 23493, 5752, 201, 198, 220, 220, 220, 6764, 11, 428, 8027, 481, 1441, 262, 1813, 2214, 2099, 1438, 11, 292, 880, 201, 198, 220, 220, 220, 355, 597, 3224, 21179, 10007, 290, 4710, 329, 262, 2214, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 2672, 796, 2214, 17816, 35827, 20520, 201, 198, 220, 220, 220, 21201, 62, 4906, 796, 2214, 17816, 12102, 341, 2099, 20520, 201, 198, 220, 220, 220, 2214, 62, 4906, 796, 2214, 17816, 3245, 2099, 20520, 201, 198, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 4906, 796, 2214, 62, 19199, 13, 1136, 7, 12102, 341, 62, 4906, 11, 2214, 62, 19199, 58, 3245, 62, 4906, 12962, 201, 198, 220, 220, 220, 2845, 7383, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 4906, 796, 705, 8206, 15878, 6, 201, 198, 220, 220, 220, 611, 407, 2672, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 4906, 318, 705, 46120, 13087, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 4906, 796, 705, 35067, 46120, 13087, 15878, 6, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 6045, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 17816, 6679, 1063, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 796, 47527, 600, 7, 85, 13, 36311, 3419, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 13, 36311, 28955, 329, 410, 11, 479, 287, 685, 25541, 13, 35312, 7, 3256, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3572, 287, 2214, 17816, 6679, 1063, 6, 4083, 35312, 10786, 91, 11537, 11907, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 4906, 796, 705, 46541, 15878, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 11395, 12331, 11, 5994, 12331, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 1441, 2214, 62, 4906, 201, 198, 201, 198, 201, 198, 4299, 3350, 62, 3245, 7, 944, 11, 2214, 11, 2214, 62, 2100, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 327, 5773, 1627, 58, 3672, 60, 6906, 319, 262, 2214, 62, 4906, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 2214, 62, 4906, 796, 651, 62, 3245, 62, 4906, 7, 944, 11, 2214, 8, 201, 198, 220, 220, 220, 611, 2214, 62, 4906, 6624, 705, 12441, 15878, 6, 393, 2214, 62, 4906, 6624, 705, 8206, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2214, 62, 2100, 201, 198, 220, 220, 220, 1288, 361, 2214, 62, 4906, 6624, 705, 46541, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 2100, 290, 2214, 62, 2100, 13, 9409, 328, 270, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 3245, 62, 2100, 8, 201, 198, 220, 220, 220, 1288, 361, 2214, 62, 4906, 6624, 705, 43879, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12178, 7, 3245, 62, 2100, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 1288, 361, 2214, 62, 4906, 6624, 705, 35067, 46120, 13087, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 2100, 6624, 10148, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2214, 62, 2100, 6624, 705, 15, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2214, 62, 2100, 6624, 705, 16, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2214, 62, 2100, 201, 198, 220, 220, 220, 1288, 361, 2214, 62, 4906, 6624, 705, 46120, 13087, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 2100, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 2100, 6624, 705, 16, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2214, 62, 2100, 6624, 705, 15, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2214, 62, 2100, 201, 198, 220, 220, 220, 1288, 361, 2214, 62, 4906, 6624, 705, 10430, 15878, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2214, 62, 2100, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2214, 62, 2100, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2214, 62, 2100, 201, 198 ]
1.876823
9,393
from . import base, messages, participants, rooms, users
[ 6738, 764, 1330, 2779, 11, 6218, 11, 6809, 11, 9519, 11, 2985, 198 ]
4.384615
13
from flask import Flask, render_template, url_for, redirect from pathlib import Path import config from controller import ProgressController controller = ProgressController() app = Flask(__name__) @app.route('/') @app.route('/tech/<stem>') def tech(stem): """ 显示技术要求 :param stem: :return: """ controller.activate(stem) return render_template('text_label.html', view=TechView(controller)) @app.route('/change/<int:line_number>/<mark>') @app.route('/view') if __name__ == '__main__': app.run(host=config.host, port=config.port)
[ 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 19016, 62, 1640, 11, 18941, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 4566, 198, 6738, 10444, 1330, 18387, 22130, 198, 198, 36500, 796, 18387, 22130, 3419, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 13670, 14, 27, 927, 29, 11537, 198, 4299, 7261, 7, 927, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 246, 122, 163, 97, 118, 162, 232, 222, 17312, 107, 17358, 223, 162, 109, 224, 628, 220, 220, 220, 1058, 17143, 10717, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10444, 13, 39022, 7, 927, 8, 198, 220, 220, 220, 1441, 8543, 62, 28243, 10786, 5239, 62, 18242, 13, 6494, 3256, 1570, 28, 17760, 7680, 7, 36500, 4008, 628, 198, 31, 1324, 13, 38629, 10786, 14, 3803, 14, 27, 600, 25, 1370, 62, 17618, 29, 14, 27, 4102, 29, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 1177, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 28, 11250, 13, 4774, 11, 2493, 28, 11250, 13, 634, 8, 198 ]
2.621005
219
import multiprocessing.pool
[ 11748, 18540, 305, 919, 278, 13, 7742 ]
3.857143
7
import json import sys batch_size = 2000 clusters = { 'eqiad': "search.svc.eqiad.wmnet", 'codfw': "search.svc.codfw.wmnet", } if __name__ == "__main__": import math import multiprocessing if not len(sys.argv) == 2: print("Usage: %s <wiki>\n" % (sys.argv[0])) sys.exit(1) wiki = sys.argv[1] max_id = get_max_id(wiki) + 5000 min_per_process = batch_size * 10 num_processes = min(40, int(math.ceil(max_id / float(min_per_process)))) step = int(math.ceil(max_id/float(num_processes))) q = multiprocessing.Queue() workers = [] try: listener = multiprocessing.Process(target=listen, args=(wiki, q)) listener.start() for start in range(1, max_id, step): args = (wiki, start, start + step, q) worker = multiprocessing.Process(target=run, args=args) workers.append(worker) worker.start() for w in workers: w.join() q.put_nowait(None) listener.join() except KeyboardInterrupt: for w in workers: w.terminate() listener.terminate()
[ 11748, 33918, 198, 11748, 25064, 198, 198, 43501, 62, 7857, 796, 4751, 198, 565, 13654, 796, 1391, 198, 220, 220, 220, 705, 27363, 72, 324, 10354, 366, 12947, 13, 21370, 66, 13, 27363, 72, 324, 13, 26377, 3262, 1600, 198, 220, 220, 220, 705, 19815, 44482, 10354, 366, 12947, 13, 21370, 66, 13, 19815, 44482, 13, 26377, 3262, 1600, 198, 92, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 10688, 198, 220, 220, 220, 1330, 18540, 305, 919, 278, 628, 220, 220, 220, 611, 407, 18896, 7, 17597, 13, 853, 85, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 28350, 25, 4064, 82, 1279, 15466, 29, 59, 77, 1, 4064, 357, 17597, 13, 853, 85, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 22719, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 3509, 62, 312, 796, 651, 62, 9806, 62, 312, 7, 15466, 8, 1343, 23336, 198, 220, 220, 220, 949, 62, 525, 62, 14681, 796, 15458, 62, 7857, 1635, 838, 198, 220, 220, 220, 997, 62, 14681, 274, 796, 949, 7, 1821, 11, 493, 7, 11018, 13, 344, 346, 7, 9806, 62, 312, 1220, 12178, 7, 1084, 62, 525, 62, 14681, 35514, 198, 220, 220, 220, 2239, 796, 493, 7, 11018, 13, 344, 346, 7, 9806, 62, 312, 14, 22468, 7, 22510, 62, 14681, 274, 22305, 628, 220, 220, 220, 10662, 796, 18540, 305, 919, 278, 13, 34991, 3419, 198, 220, 220, 220, 3259, 796, 17635, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24783, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 28, 4868, 268, 11, 26498, 16193, 15466, 11, 10662, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 24783, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 923, 287, 2837, 7, 16, 11, 3509, 62, 312, 11, 2239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 357, 15466, 11, 923, 11, 923, 1343, 2239, 11, 10662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8383, 796, 18540, 305, 919, 278, 13, 18709, 7, 16793, 28, 5143, 11, 26498, 28, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3259, 13, 33295, 7, 28816, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8383, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 266, 287, 3259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 13, 1996, 62, 2197, 4548, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 24783, 13, 22179, 3419, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 266, 287, 3259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 13, 23705, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 24783, 13, 23705, 378, 3419, 198 ]
2.116883
539
from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 628 ]
3.5
26
#!/usr/bin/env python # ctypes-opencv - A Python wrapper for OpenCV using ctypes # Copyright (c) 2008, Minh-Tri Pham # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # * Neither the name of ctypes-opencv's copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # For further inquiries, please contact Minh-Tri Pham at [email protected]. # ---------------------------------------------------------------------------- """ctypes-opencv - A Python wrapper for OpenCV using ctypes ctypes-opencv is a package that brings Intel's (now Willow Garage's) Open Source Computer Vision Library (OpenCV) to Python. OpenCV is a collection of algorithms and sample code for various computer vision problems. The goal of ctypes-opencv is to provide Python access to all documented functionality of OpenCV. """ DOCLINES = __doc__.split("\n") from distutils.core import setup CLASSIFIERS = """\ Development Status :: 5 - Production/Stable Intended Audience :: Developers Intended Audience :: End Users/Desktop Intended Audience :: Information Technology Intended Audience :: Science/Research License :: OSI Approved :: BSD License Natural Language :: English Operating System :: OS Independent Operating System :: Microsoft :: Windows Operating System :: POSIX Operating System :: Unix Operating System :: MacOS Programming Language :: Python Programming Language :: Python :: 3 Topic :: Multimedia :: Graphics Topic :: Multimedia :: Video Topic :: Scientific/Engineering :: Artificial Intelligence Topic :: Scientific/Engineering :: Human Machine Interfaces Topic :: Software Development :: Libraries :: Python Modules """ setup(name = 'ctypes-opencv', version = '0.8.0', description = DOCLINES[0], author = 'Minh-Tri Pham', author_email = '[email protected]', url = 'http://code.google.com/p/ctypes-opencv/', license = 'New BSD License', platforms = 'OS Independent, Windows, Linux, MacOS', classifiers = filter(None, CLASSIFIERS.split('\n')), long_description = "\n".join(DOCLINES[2:]), packages = ['ctypes_opencv'], data_files=[('doc/ctypes_opencv', ['AUTHORS', 'ChangeLog', 'COPYING', 'README', 'THANKS', 'TODO'])], )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 269, 19199, 12, 9654, 33967, 532, 317, 11361, 29908, 329, 4946, 33538, 1262, 269, 19199, 198, 198, 2, 15069, 357, 66, 8, 3648, 11, 1855, 71, 12, 14824, 1380, 321, 198, 2, 1439, 2489, 10395, 13, 198, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 198, 2, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 220, 220, 1635, 16126, 262, 1438, 286, 269, 19199, 12, 9654, 33967, 338, 6634, 16392, 4249, 262, 3891, 286, 663, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 198, 2, 43559, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 47210, 21479, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 2, 1114, 2252, 23538, 11, 3387, 2800, 1855, 71, 12, 14824, 1380, 321, 379, 9114, 28461, 1795, 31, 14816, 13, 785, 13, 198, 2, 16529, 10541, 198, 37811, 310, 9497, 12, 9654, 33967, 532, 317, 11361, 29908, 329, 4946, 33538, 1262, 269, 19199, 198, 198, 310, 9497, 12, 9654, 33967, 318, 257, 5301, 326, 6774, 8180, 338, 357, 2197, 33021, 45502, 338, 8, 4946, 8090, 13851, 19009, 10074, 357, 11505, 33538, 8, 284, 11361, 13, 4946, 33538, 318, 257, 4947, 286, 16113, 290, 6291, 2438, 329, 2972, 3644, 5761, 2761, 13, 383, 3061, 286, 269, 19199, 12, 9654, 33967, 318, 284, 2148, 11361, 1895, 284, 477, 12395, 11244, 286, 4946, 33538, 13, 198, 37811, 198, 198, 38715, 34509, 1546, 796, 11593, 15390, 834, 13, 35312, 7203, 59, 77, 4943, 198, 198, 6738, 1233, 26791, 13, 7295, 1330, 9058, 198, 198, 31631, 5064, 40, 4877, 796, 37227, 59, 198, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 198, 5317, 1631, 7591, 1240, 7904, 34152, 198, 5317, 1631, 7591, 1240, 7904, 5268, 18987, 14, 36881, 198, 5317, 1631, 7591, 1240, 7904, 6188, 8987, 198, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 198, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 198, 35364, 15417, 7904, 3594, 198, 18843, 803, 4482, 7904, 7294, 13362, 198, 18843, 803, 4482, 7904, 5413, 7904, 3964, 198, 18843, 803, 4482, 7904, 28069, 10426, 198, 18843, 803, 4482, 7904, 33501, 198, 18843, 803, 4482, 7904, 4100, 2640, 198, 15167, 2229, 15417, 7904, 11361, 198, 15167, 2229, 15417, 7904, 11361, 7904, 513, 198, 33221, 7904, 7854, 20626, 7904, 19840, 198, 33221, 7904, 7854, 20626, 7904, 7623, 198, 33221, 7904, 22060, 14, 13798, 1586, 7904, 35941, 9345, 198, 33221, 7904, 22060, 14, 13798, 1586, 7904, 5524, 10850, 4225, 32186, 198, 33221, 7904, 10442, 7712, 7904, 46267, 7904, 11361, 3401, 5028, 198, 37811, 628, 198, 40406, 7, 3672, 796, 705, 310, 9497, 12, 9654, 33967, 3256, 198, 197, 9641, 796, 705, 15, 13, 23, 13, 15, 3256, 198, 197, 11213, 796, 37760, 34509, 1546, 58, 15, 4357, 198, 197, 9800, 796, 705, 9452, 71, 12, 14824, 1380, 321, 3256, 198, 197, 9800, 62, 12888, 796, 705, 4426, 28461, 1795, 31, 14816, 13, 785, 3256, 198, 197, 6371, 796, 705, 4023, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 310, 9497, 12, 9654, 33967, 14, 3256, 198, 197, 43085, 796, 705, 3791, 347, 10305, 13789, 3256, 198, 197, 24254, 82, 796, 705, 2640, 13362, 11, 3964, 11, 7020, 11, 4100, 2640, 3256, 198, 197, 4871, 13350, 796, 8106, 7, 14202, 11, 42715, 5064, 40, 4877, 13, 35312, 10786, 59, 77, 11537, 828, 198, 197, 6511, 62, 11213, 796, 37082, 77, 1911, 22179, 7, 38715, 34509, 1546, 58, 17, 25, 46570, 198, 197, 43789, 796, 37250, 310, 9497, 62, 9654, 33967, 6, 4357, 198, 220, 220, 220, 1366, 62, 16624, 41888, 10786, 15390, 14, 310, 9497, 62, 9654, 33967, 3256, 37250, 32, 24318, 20673, 3256, 705, 19400, 11187, 3256, 705, 34, 3185, 45761, 3256, 705, 15675, 11682, 3256, 705, 4221, 15154, 50, 3256, 705, 51, 3727, 46, 6, 12962, 4357, 198, 8, 628 ]
3.696581
936
import requests from steamapi.steamapikey import SteamAPIKey #message = True
[ 11748, 7007, 198, 6738, 13324, 15042, 13, 21465, 499, 522, 88, 1330, 9094, 17614, 9218, 198, 2, 20500, 796, 6407, 628 ]
3.714286
21
# Generated by Django 3.2.7 on 2021-11-10 18:20 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 22, 319, 33448, 12, 1157, 12, 940, 1248, 25, 1238, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ Histogram visualization """ from string import Template from collections import Counter import sys import time import re import numpy as np if ('ipykernel' in sys.modules) and ('spyder' not in sys.modules): try: from IPython.core.display import display, HTML except ImportError: print("Error importing IPython.core.display") def process_data(data, number_to_keep): """ Prepare received data for representation. Args: data (dict): values to represent (ex. {'001' : 130}) number_to_keep (int): number of elements to show individually. Returns: dict: processed data to show. """ result = dict() if number_to_keep != 0: data_temp = dict(Counter(data).most_common(number_to_keep)) data_temp['rest'] = sum(data.values()) - sum(data_temp.values()) data = data_temp labels = data values = np.array([data[key] for key in labels], dtype=float) pvalues = values / sum(values) for position, label in enumerate(labels): result[label] = round(pvalues[position], 5) return result def iplot_histogram(executions_results, options=None): """ Create a histogram representation. Graphical representation of the input array using a vertical bars style graph. Args: executions_results (array): Array of dictionaries containing - data (dict): values to represent (ex. {'001' : 130}) - name (string): name to show in the legend - device (string): Could be 'real' or 'simulated' options (dict): Representation settings containing - width (integer): graph horizontal size - height (integer): graph vertical size - slider (bool): activate slider - number_to_keep (integer): groups max values - show_legend (bool): show legend of graph content - sort (string): Could be 'asc' or 'desc' """ # HTML html_template = Template(""" <p> <div id="histogram_$divNumber"></div> </p> """) # JavaScript javascript_template = Template(""" <script> requirejs.config({ paths: { qVisualization: "https://qvisualization.mybluemix.net/q-visualizations" } }); require(["qVisualization"], function(qVisualizations) { qVisualizations.plotState("histogram_$divNumber", "histogram", $executions, $options); }); </script> """) # Process data and execute div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) if not options: options = {} if 'slider' in options and options['slider'] is True: options['slider'] = 1 else: options['slider'] = 0 if 'show_legend' in options and options['show_legend'] is False: options['show_legend'] = 0 else: options['show_legend'] = 1 if 'number_to_keep' not in options: options['number_to_keep'] = 0 data_to_plot = [] for execution in executions_results: data = process_data(execution['data'], options['number_to_keep']) data_to_plot.append({'data': data}) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'divNumber': div_number, 'executions': data_to_plot, 'options': options }) display(HTML(html + javascript))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 2864, 11, 19764, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 1043, 287, 198, 2, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 37811, 198, 13749, 21857, 32704, 198, 37811, 198, 6738, 4731, 1330, 37350, 198, 6738, 17268, 1330, 15034, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 302, 198, 11748, 299, 32152, 355, 45941, 198, 361, 19203, 541, 88, 33885, 6, 287, 25064, 13, 18170, 8, 290, 19203, 2777, 88, 1082, 6, 407, 287, 25064, 13, 18170, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 6101, 7535, 13, 7295, 13, 13812, 1330, 3359, 11, 11532, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 33332, 6101, 7535, 13, 7295, 13, 13812, 4943, 628, 198, 4299, 1429, 62, 7890, 7, 7890, 11, 1271, 62, 1462, 62, 14894, 2599, 198, 220, 220, 220, 37227, 43426, 2722, 1366, 329, 10552, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 357, 11600, 2599, 3815, 284, 2380, 357, 1069, 13, 1391, 6, 8298, 6, 1058, 11323, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1462, 62, 14894, 357, 600, 2599, 1271, 286, 4847, 284, 905, 17033, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 13686, 1366, 284, 905, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1255, 796, 8633, 3419, 628, 220, 220, 220, 611, 1271, 62, 1462, 62, 14894, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 29510, 796, 8633, 7, 31694, 7, 7890, 737, 1712, 62, 11321, 7, 17618, 62, 1462, 62, 14894, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 29510, 17816, 2118, 20520, 796, 2160, 7, 7890, 13, 27160, 28955, 532, 2160, 7, 7890, 62, 29510, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 62, 29510, 628, 220, 220, 220, 14722, 796, 1366, 198, 220, 220, 220, 3815, 796, 45941, 13, 18747, 26933, 7890, 58, 2539, 60, 329, 1994, 287, 14722, 4357, 288, 4906, 28, 22468, 8, 198, 220, 220, 220, 279, 27160, 796, 3815, 1220, 2160, 7, 27160, 8, 198, 220, 220, 220, 329, 2292, 11, 6167, 287, 27056, 378, 7, 23912, 1424, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 18242, 60, 796, 2835, 7, 79, 27160, 58, 9150, 4357, 642, 8, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1312, 29487, 62, 10034, 21857, 7, 18558, 3508, 62, 43420, 11, 3689, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13610, 257, 1554, 21857, 10552, 13, 628, 220, 220, 220, 220, 220, 220, 220, 29681, 605, 10552, 286, 262, 5128, 7177, 1262, 257, 11723, 9210, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30632, 62, 43420, 357, 18747, 2599, 15690, 286, 48589, 3166, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1366, 357, 11600, 2599, 3815, 284, 2380, 357, 1069, 13, 1391, 6, 8298, 6, 1058, 11323, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1438, 357, 8841, 2599, 1438, 284, 905, 287, 262, 8177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3335, 357, 8841, 2599, 10347, 307, 705, 5305, 6, 393, 705, 14323, 4817, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 357, 11600, 2599, 10858, 341, 6460, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 9647, 357, 41433, 2599, 4823, 16021, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 6001, 357, 41433, 2599, 4823, 11723, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 28982, 357, 30388, 2599, 15155, 28982, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1271, 62, 1462, 62, 14894, 357, 41433, 2599, 2628, 3509, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 905, 62, 1455, 437, 357, 30388, 2599, 905, 8177, 286, 4823, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3297, 357, 8841, 2599, 10347, 307, 705, 3372, 6, 393, 705, 20147, 6, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 11532, 198, 220, 220, 220, 27711, 62, 28243, 796, 37350, 7203, 15931, 198, 220, 220, 220, 1279, 79, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 4686, 2625, 10034, 21857, 62, 3, 7146, 15057, 23984, 7146, 29, 198, 220, 220, 220, 7359, 79, 29, 198, 220, 220, 220, 13538, 4943, 628, 220, 220, 220, 1303, 11933, 198, 220, 220, 220, 44575, 62, 28243, 796, 37350, 7203, 15931, 198, 220, 220, 220, 1279, 12048, 29, 198, 220, 220, 220, 220, 220, 220, 220, 2421, 8457, 13, 11250, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 36259, 1634, 25, 366, 5450, 1378, 80, 41464, 1634, 13, 1820, 65, 2290, 368, 844, 13, 3262, 14, 80, 12, 41464, 4582, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 14980, 628, 220, 220, 220, 220, 220, 220, 220, 2421, 7, 14692, 80, 36259, 1634, 33116, 2163, 7, 80, 36259, 4582, 8, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 36259, 4582, 13, 29487, 9012, 7203, 10034, 21857, 62, 3, 7146, 15057, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10034, 21857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 18558, 3508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 25811, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 7359, 12048, 29, 198, 220, 220, 220, 13538, 4943, 628, 220, 220, 220, 1303, 10854, 1366, 290, 12260, 198, 220, 220, 220, 2659, 62, 17618, 796, 965, 7, 2435, 13, 2435, 28955, 198, 220, 220, 220, 2659, 62, 17618, 796, 302, 13, 7266, 10786, 58, 8183, 3256, 705, 3256, 2659, 62, 17618, 8, 628, 220, 220, 220, 611, 407, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 796, 23884, 628, 220, 220, 220, 611, 705, 6649, 1304, 6, 287, 3689, 290, 3689, 17816, 6649, 1304, 20520, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 17816, 6649, 1304, 20520, 796, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 17816, 6649, 1304, 20520, 796, 657, 628, 220, 220, 220, 611, 705, 12860, 62, 1455, 437, 6, 287, 3689, 290, 3689, 17816, 12860, 62, 1455, 437, 20520, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 17816, 12860, 62, 1455, 437, 20520, 796, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 17816, 12860, 62, 1455, 437, 20520, 796, 352, 628, 220, 220, 220, 611, 705, 17618, 62, 1462, 62, 14894, 6, 407, 287, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 17816, 17618, 62, 1462, 62, 14894, 20520, 796, 657, 628, 220, 220, 220, 1366, 62, 1462, 62, 29487, 796, 17635, 198, 220, 220, 220, 329, 9706, 287, 30632, 62, 43420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1429, 62, 7890, 7, 18558, 1009, 17816, 7890, 6, 4357, 3689, 17816, 17618, 62, 1462, 62, 14894, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 1462, 62, 29487, 13, 33295, 15090, 6, 7890, 10354, 1366, 30072, 628, 220, 220, 220, 27711, 796, 27711, 62, 28243, 13, 7266, 301, 3678, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7146, 15057, 10354, 2659, 62, 17618, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 44575, 796, 44575, 62, 28243, 13, 7266, 301, 3678, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7146, 15057, 10354, 2659, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18558, 3508, 10354, 1366, 62, 1462, 62, 29487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25811, 10354, 3689, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 3359, 7, 28656, 7, 6494, 1343, 44575, 4008, 198 ]
2.35723
1,646
""" Utility functions for formatting """ from qcelemental import constants as qcc from qcelemental import periodictable as ptab from automol import geom # Conversion factors BOHR2ANG = qcc.conversion_factor('bohr', 'angstrom') def determine_struct_type(geo): """ determines the linear string """ # Remove dummy atoms geo = [coords for coords in geo if coords[0] != 'X'] if geom.is_atom(geo): struct_type = 'Monoatomic' else: if geom.is_linear(geo): struct_type = 'Linear' else: struct_type = 'Nonlinear' return struct_type def format_coords(geo): """ format the coords section """ # Get the number of atoms natoms = len(geo) # Get the geometry information symbols = geom.symbols(geo) coordinates = geom.coordinates(geo) masses = [int(ptab.to_mass(symbol)) for symbol in symbols] # Build a string with the formatted coordinates string if geom.is_atom(geo): geo_str = '{0:<4s}{1:<6d}'.format(symbols[0], masses[0]) else: geo_str = '' for symbol, mass, coords in zip(symbols, masses, coordinates): coords = [coord * BOHR2ANG for coord in coords] coords_str = '{0:>14.8f}{1:>14.8f}{2:>14.8f}'.format( coords[0], coords[1], coords[2]) geo_str += '{0:<4s}{1:<6d}{2}\n'.format( symbol, mass, coords_str) # Remove final newline character from the string geo_str = geo_str.rstrip() return natoms, geo_str def format_values_string(coord, values, conv_factor=1.0): """ format the values string for the divsur.inp file """ if values: values = ', '.join('{0:.3f}'.format(val * conv_factor) for val in values) values_string = '{0} = ({1})'.format(coord, values) else: values_string = '' return values_string def format_pivot_xyz_string(idx, npivot, xyzP, phi_dependence=False): """ format the pivot point xyz """ assert npivot in (1, 2) atom_idx = idx if idx == 1: d_idx = 1 else: d_idx = 2 if npivot == 1: x_val = 'x{0} = {1:.3f}'.format(atom_idx, xyzP[0]) y_val = ' y{0} = {1:.3f}'.format(atom_idx, xyzP[1]) z_val = ' z{0} = {1:.3f}'.format(atom_idx, xyzP[2]) pivot_xyz_string = (x_val + y_val + z_val) elif npivot > 1 and not phi_dependence: x_val1 = 'x{0} = {1:.3f} + d{2}*cos(t{0})'.format( atom_idx, xyzP[0], d_idx) y_val1 = ' y{0} = {1:.3f} + d{2}*sin(t{0})'.format( atom_idx, xyzP[1], d_idx) z_val1 = ' z{0} = 0.000'.format( atom_idx) x_val2 = 'x{0} = {1:.3f} - d{2}*cos(t{0})'.format( atom_idx+1, xyzP[0], d_idx) y_val2 = ' y{0} = {1:.3f} - d{2}*sin(t{0})'.format( atom_idx+1, xyzP[1], d_idx) z_val2 = ' z{0} = 0.000'.format( atom_idx+1) pivot_xyz_string = (x_val1 + y_val1 + z_val1 + '\n' + x_val2 + y_val2 + z_val2) else: # Not sure if this implementation is any good x_val1 = 'x{0} = {1:.3f} + d{2}*sin(p{0})*cos(t{0})'.format( atom_idx, xyzP[0], d_idx) y_val1 = ' y{0} = {1:.3f} + d{2}*sin(p{0})*sin(t{0})'.format( atom_idx, xyzP[1], d_idx) z_val1 = ' z{0} = {1:.3f} + d{2}*cos(p{0})'.format( atom_idx, xyzP[2], d_idx) x_val2 = 'x{0} = {1:.3f} - d{2}*sin(p{0})*cos(t{0})'.format( atom_idx+1, xyzP[0], d_idx) y_val2 = ' y{0} = {1:.3f} - d{2}*sin(p{0})*sin(t{0})'.format( atom_idx+1, xyzP[1], d_idx) z_val2 = ' z{0} = {1:.3f} + d{2}*cos(p{0})'.format( atom_idx+1, xyzP[2], d_idx) pivot_xyz_string = (x_val1 + y_val1 + z_val1 + '\n' + x_val2 + y_val2 + z_val2) return pivot_xyz_string
[ 37811, 198, 34030, 5499, 329, 33313, 198, 37811, 198, 198, 6738, 10662, 344, 1732, 282, 1330, 38491, 355, 10662, 535, 198, 6738, 10662, 344, 1732, 282, 1330, 2278, 713, 540, 355, 279, 8658, 198, 6738, 3557, 349, 1330, 4903, 296, 198, 198, 2, 44101, 5087, 198, 8202, 17184, 17, 15567, 796, 10662, 535, 13, 1102, 9641, 62, 31412, 10786, 65, 1219, 81, 3256, 705, 648, 20282, 11537, 628, 198, 4299, 5004, 62, 7249, 62, 4906, 7, 469, 78, 2599, 198, 220, 220, 220, 37227, 15947, 262, 14174, 4731, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 17220, 31548, 23235, 198, 220, 220, 220, 40087, 796, 685, 1073, 3669, 329, 763, 3669, 287, 40087, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 763, 3669, 58, 15, 60, 14512, 705, 55, 20520, 628, 220, 220, 220, 611, 4903, 296, 13, 271, 62, 37696, 7, 469, 78, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2878, 62, 4906, 796, 705, 9069, 15073, 10179, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4903, 296, 13, 271, 62, 29127, 7, 469, 78, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2878, 62, 4906, 796, 705, 14993, 451, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2878, 62, 4906, 796, 705, 15419, 29127, 6, 628, 220, 220, 220, 1441, 2878, 62, 4906, 628, 198, 4299, 5794, 62, 1073, 3669, 7, 469, 78, 2599, 198, 220, 220, 220, 37227, 5794, 262, 763, 3669, 2665, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3497, 262, 1271, 286, 23235, 198, 220, 220, 220, 34664, 3150, 796, 18896, 7, 469, 78, 8, 628, 220, 220, 220, 1303, 3497, 262, 22939, 1321, 198, 220, 220, 220, 14354, 796, 4903, 296, 13, 1837, 2022, 10220, 7, 469, 78, 8, 198, 220, 220, 220, 22715, 796, 4903, 296, 13, 37652, 17540, 7, 469, 78, 8, 198, 220, 220, 220, 14568, 796, 685, 600, 7, 457, 397, 13, 1462, 62, 22208, 7, 1837, 23650, 4008, 329, 6194, 287, 14354, 60, 628, 220, 220, 220, 1303, 10934, 257, 4731, 351, 262, 39559, 22715, 4731, 198, 220, 220, 220, 611, 4903, 296, 13, 271, 62, 37696, 7, 469, 78, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 2536, 796, 705, 90, 15, 25, 27, 19, 82, 18477, 16, 25, 27, 21, 67, 92, 4458, 18982, 7, 1837, 2022, 10220, 58, 15, 4357, 14568, 58, 15, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 2536, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 11, 2347, 11, 763, 3669, 287, 19974, 7, 1837, 2022, 10220, 11, 14568, 11, 22715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 796, 685, 37652, 1635, 347, 12096, 49, 17, 15567, 329, 6349, 287, 763, 3669, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 62, 2536, 796, 705, 90, 15, 25, 29, 1415, 13, 23, 69, 18477, 16, 25, 29, 1415, 13, 23, 69, 18477, 17, 25, 29, 1415, 13, 23, 69, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 58, 15, 4357, 763, 3669, 58, 16, 4357, 763, 3669, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 2536, 15853, 705, 90, 15, 25, 27, 19, 82, 18477, 16, 25, 27, 21, 67, 18477, 17, 32239, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 11, 2347, 11, 763, 3669, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 2457, 649, 1370, 2095, 422, 262, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 2536, 796, 40087, 62, 2536, 13, 81, 36311, 3419, 628, 220, 220, 220, 1441, 34664, 3150, 11, 40087, 62, 2536, 628, 198, 4299, 5794, 62, 27160, 62, 8841, 7, 37652, 11, 3815, 11, 3063, 62, 31412, 28, 16, 13, 15, 2599, 198, 220, 220, 220, 37227, 5794, 262, 3815, 4731, 329, 262, 2659, 11793, 13, 259, 79, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 46083, 45302, 22179, 10786, 90, 15, 25, 13, 18, 69, 92, 4458, 18982, 7, 2100, 1635, 3063, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1188, 287, 3815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 62, 8841, 796, 705, 90, 15, 92, 796, 37913, 16, 30072, 4458, 18982, 7, 37652, 11, 3815, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 62, 8841, 796, 10148, 628, 220, 220, 220, 1441, 3815, 62, 8841, 628, 198, 4299, 5794, 62, 79, 45785, 62, 5431, 89, 62, 8841, 7, 312, 87, 11, 45941, 45785, 11, 2124, 45579, 47, 11, 872, 72, 62, 67, 15091, 28, 25101, 2599, 198, 220, 220, 220, 37227, 5794, 262, 30355, 966, 2124, 45579, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6818, 45941, 45785, 287, 357, 16, 11, 362, 8, 628, 220, 220, 220, 22037, 62, 312, 87, 796, 4686, 87, 198, 220, 220, 220, 611, 4686, 87, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 312, 87, 796, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 312, 87, 796, 362, 628, 220, 220, 220, 611, 45941, 45785, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 796, 705, 87, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 4458, 18982, 7, 37696, 62, 312, 87, 11, 2124, 45579, 47, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2100, 796, 705, 220, 331, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 4458, 18982, 7, 37696, 62, 312, 87, 11, 2124, 45579, 47, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 2100, 796, 705, 220, 1976, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 4458, 18982, 7, 37696, 62, 312, 87, 11, 2124, 45579, 47, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 30355, 62, 5431, 89, 62, 8841, 796, 357, 87, 62, 2100, 1343, 331, 62, 2100, 1343, 1976, 62, 2100, 8, 198, 220, 220, 220, 1288, 361, 45941, 45785, 1875, 352, 290, 407, 872, 72, 62, 67, 15091, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 16, 796, 705, 87, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 6966, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 11, 2124, 45579, 47, 58, 15, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2100, 16, 796, 705, 220, 331, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 31369, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 11, 2124, 45579, 47, 58, 16, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 2100, 16, 796, 705, 220, 1976, 90, 15, 92, 796, 657, 13, 830, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 17, 796, 705, 87, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 532, 288, 90, 17, 92, 9, 6966, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 11, 2124, 45579, 47, 58, 15, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2100, 17, 796, 705, 220, 331, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 532, 288, 90, 17, 92, 9, 31369, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 11, 2124, 45579, 47, 58, 16, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 2100, 17, 796, 705, 220, 1976, 90, 15, 92, 796, 657, 13, 830, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30355, 62, 5431, 89, 62, 8841, 796, 357, 87, 62, 2100, 16, 1343, 331, 62, 2100, 16, 1343, 1976, 62, 2100, 16, 1343, 705, 59, 77, 6, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 17, 1343, 331, 62, 2100, 17, 1343, 1976, 62, 2100, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1892, 1654, 611, 428, 7822, 318, 597, 922, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 16, 796, 705, 87, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 31369, 7, 79, 90, 15, 92, 27493, 6966, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 11, 2124, 45579, 47, 58, 15, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2100, 16, 796, 705, 220, 331, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 31369, 7, 79, 90, 15, 92, 27493, 31369, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 11, 2124, 45579, 47, 58, 16, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 2100, 16, 796, 705, 220, 1976, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 6966, 7, 79, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 11, 2124, 45579, 47, 58, 17, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 17, 796, 705, 87, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 532, 288, 90, 17, 92, 9, 31369, 7, 79, 90, 15, 92, 27493, 6966, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 11, 2124, 45579, 47, 58, 15, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 2100, 17, 796, 705, 220, 331, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 532, 288, 90, 17, 92, 9, 31369, 7, 79, 90, 15, 92, 27493, 31369, 7, 83, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 11, 2124, 45579, 47, 58, 16, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 2100, 17, 796, 705, 220, 1976, 90, 15, 92, 796, 1391, 16, 25, 13, 18, 69, 92, 1343, 288, 90, 17, 92, 9, 6966, 7, 79, 90, 15, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22037, 62, 312, 87, 10, 16, 11, 2124, 45579, 47, 58, 17, 4357, 288, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30355, 62, 5431, 89, 62, 8841, 796, 357, 87, 62, 2100, 16, 1343, 331, 62, 2100, 16, 1343, 1976, 62, 2100, 16, 1343, 705, 59, 77, 6, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 2100, 17, 1343, 331, 62, 2100, 17, 1343, 1976, 62, 2100, 17, 8, 628, 220, 220, 220, 1441, 30355, 62, 5431, 89, 62, 8841, 198 ]
1.822222
2,160
import os import os.path as osp import random import shutil import sys import json import glob import xml.etree.ElementTree as ET import argparse # voc_dir = '/data/xiaowenjie/nas/datasets/urpc2021/new_urpc/before/' #remember to modify the path # voc_annotations = voc_dir + 'boxes/' # txt_dir = voc_dir + 'txt/' # coco_ann_dir = voc_dir + 'coco_ann/' START_BOUNDING_BOX_ID = 1 PRE_DEFINE_CATEGORIES = None def get_categories(xml_dir): """Generate category name to id mapping from a list of xml files. Arguments: Returns: dict -- category name to id mapping. """ classes_names = [] xml_files = os.listdir(xml_dir) xml_files.sort() for xml_file in xml_files: print('read kinds:', xml_file) xml_file = osp.join(xml_dir, xml_file) tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall("object"): classes_names.append(member[0].text) classes_names = list(set(classes_names)) classes_names.sort() return {name: i for i, name in enumerate(classes_names)} if __name__ == '__main__': parer = argparse.ArgumentParser() parer.add_argument('voc_ann') parer.add_argument('txt_dir') parer.add_argument('coco_save') arg = parer.parse_args() voc_to_coco(arg.voc_ann, arg.coco_save, arg.txt_dir)
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 4738, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 15095, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 1822, 29572, 198, 198, 2, 12776, 62, 15908, 796, 31051, 7890, 14, 36072, 322, 268, 73, 494, 14, 24716, 14, 19608, 292, 1039, 14, 333, 14751, 1238, 2481, 14, 3605, 62, 333, 14751, 14, 19052, 14, 6, 220, 1303, 38947, 284, 13096, 262, 3108, 198, 2, 12776, 62, 34574, 602, 796, 12776, 62, 15908, 1343, 705, 29305, 14, 6, 198, 2, 256, 742, 62, 15908, 796, 12776, 62, 15908, 1343, 705, 14116, 14, 6, 198, 2, 8954, 78, 62, 1236, 62, 15908, 796, 12776, 62, 15908, 1343, 705, 66, 25634, 62, 1236, 14, 6, 198, 198, 2257, 7227, 62, 33, 15919, 2751, 62, 39758, 62, 2389, 796, 352, 198, 46437, 62, 7206, 29940, 62, 34, 6158, 38, 1581, 11015, 796, 6045, 628, 628, 198, 4299, 651, 62, 66, 26129, 7, 19875, 62, 15908, 2599, 198, 220, 220, 220, 37227, 8645, 378, 6536, 1438, 284, 4686, 16855, 422, 257, 1351, 286, 35555, 3696, 13, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 1377, 6536, 1438, 284, 4686, 16855, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6097, 62, 14933, 796, 17635, 198, 220, 220, 220, 35555, 62, 16624, 796, 28686, 13, 4868, 15908, 7, 19875, 62, 15908, 8, 198, 220, 220, 220, 35555, 62, 16624, 13, 30619, 3419, 198, 220, 220, 220, 329, 35555, 62, 7753, 287, 35555, 62, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 961, 6982, 25, 3256, 35555, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 35555, 62, 7753, 796, 267, 2777, 13, 22179, 7, 19875, 62, 15908, 11, 35555, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 12152, 13, 29572, 7, 19875, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 5509, 13, 1136, 15763, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2888, 287, 6808, 13, 19796, 439, 7203, 15252, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6097, 62, 14933, 13, 33295, 7, 19522, 58, 15, 4083, 5239, 8, 198, 220, 220, 220, 6097, 62, 14933, 796, 1351, 7, 2617, 7, 37724, 62, 14933, 4008, 198, 220, 220, 220, 6097, 62, 14933, 13, 30619, 3419, 198, 220, 220, 220, 1441, 1391, 3672, 25, 1312, 329, 1312, 11, 1438, 287, 27056, 378, 7, 37724, 62, 14933, 38165, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 279, 11258, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 279, 11258, 13, 2860, 62, 49140, 10786, 18893, 62, 1236, 11537, 198, 220, 220, 220, 279, 11258, 13, 2860, 62, 49140, 10786, 14116, 62, 15908, 11537, 198, 220, 220, 220, 279, 11258, 13, 2860, 62, 49140, 10786, 66, 25634, 62, 21928, 11537, 198, 220, 220, 220, 1822, 796, 279, 11258, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 12776, 62, 1462, 62, 66, 25634, 7, 853, 13, 18893, 62, 1236, 11, 1822, 13, 66, 25634, 62, 21928, 11, 1822, 13, 14116, 62, 15908, 8, 198 ]
2.402154
557
# Generated by Django 3.1.6 on 2021-02-17 03:27 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 21, 319, 33448, 12, 2999, 12, 1558, 7643, 25, 1983, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import pytz from datetime import datetime from django.test import TestCase from robber import expect from data.constants import MEDIA_TYPE_DOCUMENT from data.factories import ( AllegationFactory, AllegationCategoryFactory, AttachmentFileFactory, OfficerFactory, OfficerAllegationFactory, VictimFactory, ) from social_graph.serializers import SocialGraphCRDetailSerializer
[ 11748, 12972, 22877, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 29979, 1330, 1607, 198, 198, 6738, 1366, 13, 9979, 1187, 1330, 26112, 3539, 62, 25216, 62, 38715, 5883, 3525, 198, 6738, 1366, 13, 22584, 1749, 1330, 357, 198, 220, 220, 220, 26326, 341, 22810, 11, 198, 220, 220, 220, 26326, 341, 27313, 22810, 11, 198, 220, 220, 220, 3460, 15520, 8979, 22810, 11, 198, 220, 220, 220, 10391, 22810, 11, 198, 220, 220, 220, 10391, 2348, 1455, 341, 22810, 11, 198, 220, 220, 220, 38901, 22810, 11, 198, 8, 198, 6738, 1919, 62, 34960, 13, 46911, 11341, 1330, 5483, 37065, 9419, 11242, 603, 32634, 7509, 628 ]
3.361345
119
from discord import Color # TODO: Place holder for now - can use __init__.py once dependencies such as # data.ROLE_MAPPINGS_TABLE and rally_api.BASE_URL have been removed """ Constants useful for data module """ ROLE_MAPPINGS_TABLE = "mappings" CHANNEL_MAPPINGS_TABLE = "channel_mappings" RALLY_CONNECTIONS_TABLE = "rally_connections" CHANNEL_PREFIXES_TABLE = "channel_prefixes" DEFAULT_COIN_TABLE = "default_coin" CONFIG_TABLE = "config" USERS_TABLE = "users" USERS_TOKEN_TABLE = "users_token" COMMANDS_TABLE = "commands" COIN_PRICE_TABLE = "coin_price" GUILD_ID_KEY = "guildId" PRICE_KEY = "priceInUSD" REQUIRED_BALANCE_KEY = "requiredBalance" ROLE_NAME_KEY = "roleName" CHANNEL_NAME_KEY = "channel" DISCORD_ID_KEY = "discordId" RALLY_ID_KEY = "rallyId" BOT_TOKEN_KEY = "botToken" BOT_INSTANCES_KEY = "botInstances" OWNER_ID_KEY = "ownerId" TIME_ADDED_KEY = "timeAdded" BOT_NAME_KEY = "botName" BOT_AVATAR_KEY = "botAvatar" BOT_ID_KEY = "botId" AVATAR_TIMEOUT_KEY = "avatarTimeout" NAME_TIMEOUT_KEY = "nameTimeout" BOT_ACTIVITY_TEXT_KEY = "botActivityText" BOT_ACTIVITY_TYPE_KEY = "botActivityType" USERNAME_KEY = "username" DISCRIMINATOR_KEY = "discriminator" GUILDS_KEY = "guilds" TOKEN_KEY = "token" TIME_CREATED_KEY = "timeCreated" NAME_KEY = "name" DESCRIPTION_KEY = "description" PREFIX_KEY = "prefix" CONFIG_NAME_KEY = "configName" PURCHASE_MESSAGE_KEY = "purchaseMessage" DONATE_MESSAGE_KEY = "donateMessage" """ Constants useful for rally_api module """ COIN_KIND_KEY = "coinKind" COIN_BALANCE_KEY = "coinBalance" BASE_URL = "https://api.rally.io/v1" COINGECKO_API_URL = "https://api.coingecko.com/api/v3" DISCORD_API_URL = "https://discord.com/api" """ Constants useful for update_cog module """ UPDATE_WAIT_TIME = 600 """ Miscellaneous constants """ ERROR_COLOR = Color(0xFF0000) SUCCESS_COLOR = Color(0x0000FF) WARNING_COLOR = Color(0xFFFF00) GREEN_COLOR = Color(0x00FF00) RED_COLOR = Color(0xFF0000) WHITE_COLOR = Color(0xFFFFFE) DARK_RED_COLOR = Color(0x800000) DARK_GREEN_COLOR = Color(0x008000) PRICE_GRADIENT_DEPTH = 5 DEFAULT_DONATE_MESSAGE = "You can donate to by going to - Your donation helps grow and support the community and creator - Plus, there are 10 tiers of Donation badges to earn to show off your support!" DEFAULT_PURCHASE_MESSAGE = "You can purchase at by using a Credit/Debit card or a number of different Crypto Currencies! Buying earns rewards, supports the community, and you can even get VIP Status! (hint: there’s a secret VIP room for users who hold over X # of ;)" DEFAULT_BOT_AVATAR_URL = "https://rallybot.app/img/space.5424f731.png" API_TAGS_METADATA = [ {"name": "channels", "description": "Coin channel mappings"}, {"name": "coin", "description": "Default coin in guild"}, {"name": "commands", "description": "Get list of all available bot commands"}, {"name": "prefix", "description": "Command prefix in guild"}, {"name": "roles", "description": "Coin role mappings"}, {"name": "coins", "description": "Coin price data"}, {"name": "bot_instance", "description": "Bot instances"}, {"name": "bot_avatar", "description": "Configure bot avatar"}, {"name": "bot_name", "description": "Configure bot name"}, ]
[ 6738, 36446, 1330, 5315, 198, 198, 2, 16926, 46, 25, 8474, 15762, 329, 783, 532, 460, 779, 11593, 15003, 834, 13, 9078, 1752, 20086, 884, 355, 198, 2, 1366, 13, 13252, 2538, 62, 44, 24805, 20754, 62, 38148, 290, 7903, 62, 15042, 13, 33, 11159, 62, 21886, 423, 587, 4615, 198, 198, 37811, 198, 4757, 1187, 4465, 329, 1366, 8265, 198, 37811, 198, 13252, 2538, 62, 44, 24805, 20754, 62, 38148, 796, 366, 76, 39242, 1, 198, 3398, 22846, 3698, 62, 44, 24805, 20754, 62, 38148, 796, 366, 17620, 62, 76, 39242, 1, 198, 49, 19807, 62, 10943, 48842, 11053, 62, 38148, 796, 366, 81, 453, 62, 8443, 507, 1, 198, 3398, 22846, 3698, 62, 47, 31688, 10426, 1546, 62, 38148, 796, 366, 17620, 62, 40290, 274, 1, 198, 7206, 38865, 62, 8220, 1268, 62, 38148, 796, 366, 12286, 62, 3630, 1, 198, 10943, 16254, 62, 38148, 796, 366, 11250, 1, 198, 2937, 4877, 62, 38148, 796, 366, 18417, 1, 198, 2937, 4877, 62, 10468, 43959, 62, 38148, 796, 366, 18417, 62, 30001, 1, 198, 9858, 10725, 5258, 62, 38148, 796, 366, 9503, 1746, 1, 198, 8220, 1268, 62, 4805, 8476, 62, 38148, 796, 366, 3630, 62, 20888, 1, 628, 198, 38022, 26761, 62, 2389, 62, 20373, 796, 366, 70, 3547, 7390, 1, 198, 4805, 8476, 62, 20373, 796, 366, 20888, 818, 29072, 1, 198, 2200, 10917, 37819, 62, 33, 1847, 19240, 62, 20373, 796, 366, 35827, 45866, 1, 198, 13252, 2538, 62, 20608, 62, 20373, 796, 366, 18090, 5376, 1, 198, 3398, 22846, 3698, 62, 20608, 62, 20373, 796, 366, 17620, 1, 198, 26288, 34, 12532, 62, 2389, 62, 20373, 796, 366, 15410, 585, 7390, 1, 198, 49, 19807, 62, 2389, 62, 20373, 796, 366, 81, 453, 7390, 1, 198, 198, 33, 2394, 62, 10468, 43959, 62, 20373, 796, 366, 13645, 30642, 1, 198, 33, 2394, 62, 38604, 20940, 1546, 62, 20373, 796, 366, 13645, 6310, 1817, 1, 198, 14165, 1137, 62, 2389, 62, 20373, 796, 366, 18403, 7390, 1, 198, 34694, 62, 29266, 1961, 62, 20373, 796, 366, 2435, 13003, 1, 198, 33, 2394, 62, 20608, 62, 20373, 796, 366, 13645, 5376, 1, 198, 33, 2394, 62, 10116, 1404, 1503, 62, 20373, 796, 366, 13645, 7355, 9459, 1, 198, 33, 2394, 62, 2389, 62, 20373, 796, 366, 13645, 7390, 1, 198, 10116, 1404, 1503, 62, 34694, 12425, 62, 20373, 796, 366, 615, 9459, 48031, 1, 198, 20608, 62, 34694, 12425, 62, 20373, 796, 366, 3672, 48031, 1, 198, 33, 2394, 62, 10659, 3824, 9050, 62, 32541, 62, 20373, 796, 366, 13645, 16516, 8206, 1, 198, 33, 2394, 62, 10659, 3824, 9050, 62, 25216, 62, 20373, 796, 366, 13645, 16516, 6030, 1, 198, 198, 29904, 20608, 62, 20373, 796, 366, 29460, 1, 198, 26288, 9419, 3955, 1268, 25633, 62, 20373, 796, 366, 15410, 3036, 20900, 1, 198, 38022, 4146, 5258, 62, 20373, 796, 366, 70, 3547, 82, 1, 198, 10468, 43959, 62, 20373, 796, 366, 30001, 1, 198, 34694, 62, 43387, 11617, 62, 20373, 796, 366, 2435, 41972, 1, 198, 20608, 62, 20373, 796, 366, 3672, 1, 198, 30910, 40165, 62, 20373, 796, 366, 11213, 1, 198, 198, 47, 31688, 10426, 62, 20373, 796, 366, 40290, 1, 198, 198, 10943, 16254, 62, 20608, 62, 20373, 796, 366, 11250, 5376, 1, 198, 47, 4261, 3398, 11159, 62, 44, 1546, 4090, 8264, 62, 20373, 796, 366, 79, 18737, 12837, 1, 198, 41173, 6158, 62, 44, 1546, 4090, 8264, 62, 20373, 796, 366, 9099, 378, 12837, 1, 198, 198, 37811, 198, 4757, 1187, 4465, 329, 220, 7903, 62, 15042, 8265, 198, 37811, 198, 198, 8220, 1268, 62, 42, 12115, 62, 20373, 796, 366, 3630, 35854, 1, 198, 8220, 1268, 62, 33, 1847, 19240, 62, 20373, 796, 366, 3630, 45866, 1, 198, 198, 33, 11159, 62, 21886, 796, 366, 5450, 1378, 15042, 13, 81, 453, 13, 952, 14, 85, 16, 1, 198, 8220, 2751, 2943, 22328, 62, 17614, 62, 21886, 796, 366, 5450, 1378, 15042, 13, 1073, 11912, 37549, 13, 785, 14, 15042, 14, 85, 18, 1, 198, 26288, 34, 12532, 62, 17614, 62, 21886, 796, 366, 5450, 1378, 15410, 585, 13, 785, 14, 15042, 1, 628, 198, 37811, 198, 220, 220, 220, 4757, 1187, 4465, 329, 4296, 62, 66, 519, 8265, 198, 37811, 198, 16977, 62, 15543, 2043, 62, 34694, 796, 10053, 198, 198, 37811, 198, 220, 220, 220, 46253, 38491, 198, 37811, 198, 198, 24908, 62, 46786, 796, 5315, 7, 15, 87, 5777, 2388, 8, 198, 12564, 4093, 7597, 62, 46786, 796, 5315, 7, 15, 87, 2388, 5777, 8, 198, 31502, 62, 46786, 796, 5315, 7, 15, 87, 29312, 405, 8, 198, 43016, 62, 46786, 796, 5315, 7, 15, 87, 405, 5777, 405, 8, 198, 22083, 62, 46786, 796, 5315, 7, 15, 87, 5777, 2388, 8, 198, 12418, 12709, 62, 46786, 796, 5315, 7, 15, 87, 29312, 15112, 8, 198, 35, 14175, 62, 22083, 62, 46786, 796, 5315, 7, 15, 87, 7410, 830, 8, 198, 35, 14175, 62, 43016, 62, 46786, 796, 5315, 7, 15, 87, 25257, 830, 8, 198, 198, 4805, 8476, 62, 10761, 2885, 28495, 62, 46162, 4221, 796, 642, 198, 198, 7206, 38865, 62, 41173, 6158, 62, 44, 1546, 4090, 8264, 796, 366, 1639, 460, 16565, 284, 416, 1016, 284, 532, 3406, 13784, 5419, 1663, 290, 1104, 262, 2055, 290, 13172, 532, 8227, 11, 612, 389, 838, 33355, 286, 41654, 37583, 284, 5160, 284, 905, 572, 534, 1104, 2474, 198, 7206, 38865, 62, 47, 4261, 3398, 11159, 62, 44, 1546, 4090, 8264, 796, 366, 1639, 460, 5001, 379, 416, 1262, 257, 10504, 14, 16587, 270, 2657, 393, 257, 1271, 286, 1180, 36579, 4424, 14038, 0, 9842, 1112, 29339, 11530, 11, 6971, 262, 2055, 11, 290, 345, 460, 772, 651, 24791, 12678, 0, 357, 71, 600, 25, 612, 447, 247, 82, 257, 3200, 24791, 2119, 329, 2985, 508, 1745, 625, 1395, 1303, 286, 2162, 16725, 198, 198, 7206, 38865, 62, 33, 2394, 62, 10116, 1404, 1503, 62, 21886, 796, 366, 5450, 1378, 81, 453, 13645, 13, 1324, 14, 9600, 14, 13200, 13, 4051, 1731, 69, 22, 3132, 13, 11134, 1, 198, 198, 17614, 62, 42197, 50, 62, 47123, 2885, 13563, 796, 685, 198, 220, 220, 220, 19779, 3672, 1298, 366, 354, 8961, 1600, 366, 11213, 1298, 366, 24387, 6518, 285, 39242, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 3630, 1600, 366, 11213, 1298, 366, 19463, 10752, 287, 19806, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 9503, 1746, 1600, 366, 11213, 1298, 366, 3855, 1351, 286, 477, 1695, 10214, 9729, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 40290, 1600, 366, 11213, 1298, 366, 21575, 21231, 287, 19806, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 305, 829, 1600, 366, 11213, 1298, 366, 24387, 2597, 285, 39242, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 14624, 1600, 366, 11213, 1298, 366, 24387, 2756, 1366, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 13645, 62, 39098, 1600, 366, 11213, 1298, 366, 20630, 10245, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 13645, 62, 615, 9459, 1600, 366, 11213, 1298, 366, 16934, 495, 10214, 30919, 25719, 198, 220, 220, 220, 19779, 3672, 1298, 366, 13645, 62, 3672, 1600, 366, 11213, 1298, 366, 16934, 495, 10214, 1438, 25719, 198, 60 ]
2.690635
1,196
import sublime import sublime_plugin from .core.configurations import is_supported_syntax from .core.protocol import Request, Range, DocumentHighlightKind from .core.registry import session_for_view, client_from_session from .core.documents import get_document_position from .core.settings import settings, client_configs from .core.views import range_to_region try: from typing import List, Dict, Optional assert List and Dict and Optional except ImportError: pass SUBLIME_WORD_MASK = 515 NO_HIGHLIGHT_SCOPES = 'comment, string' _kind2name = { DocumentHighlightKind.Unknown: "unknown", DocumentHighlightKind.Text: "text", DocumentHighlightKind.Read: "read", DocumentHighlightKind.Write: "write" }
[ 11748, 41674, 198, 11748, 41674, 62, 33803, 198, 198, 6738, 764, 7295, 13, 11250, 20074, 1330, 318, 62, 15999, 62, 1837, 41641, 198, 6738, 764, 7295, 13, 11235, 4668, 1330, 19390, 11, 13667, 11, 16854, 11922, 2971, 35854, 198, 6738, 764, 7295, 13, 2301, 4592, 1330, 6246, 62, 1640, 62, 1177, 11, 5456, 62, 6738, 62, 29891, 198, 6738, 764, 7295, 13, 15390, 2886, 1330, 651, 62, 22897, 62, 9150, 198, 6738, 764, 7295, 13, 33692, 1330, 6460, 11, 5456, 62, 11250, 82, 198, 6738, 764, 7295, 13, 33571, 1330, 2837, 62, 1462, 62, 36996, 198, 28311, 25, 198, 220, 220, 220, 422, 19720, 1330, 7343, 11, 360, 713, 11, 32233, 198, 220, 220, 220, 6818, 7343, 290, 360, 713, 290, 32233, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 12564, 9148, 12789, 62, 54, 12532, 62, 31180, 42, 796, 642, 1314, 198, 15285, 62, 39, 3528, 6581, 9947, 62, 6173, 3185, 1546, 796, 705, 23893, 11, 4731, 6, 198, 198, 62, 11031, 17, 3672, 796, 1391, 198, 220, 220, 220, 16854, 11922, 2971, 35854, 13, 20035, 25, 366, 34680, 1600, 198, 220, 220, 220, 16854, 11922, 2971, 35854, 13, 8206, 25, 366, 5239, 1600, 198, 220, 220, 220, 16854, 11922, 2971, 35854, 13, 5569, 25, 366, 961, 1600, 198, 220, 220, 220, 16854, 11922, 2971, 35854, 13, 16594, 25, 366, 13564, 1, 198, 92, 628, 198 ]
3.164502
231
#! /usr/bin/env python3 ''' Problem 39 - Project Euler http://projecteuler.net/index.php?section=problems&id=039 ''' import math if __name__ == '__main__': x = 5 pytha = [] while True: a,b,c = getPythagoreanTriplet(x) if a+b+c > 1000: break else: if a != 0: print((a,b,c),a+b+c) pytha.append(a+b+c) x+=1 maxp = (0, 0) for i in set(pytha): c = pytha.count(i) if c > maxp[0]: maxp = (c, i) print(maxp)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 7061, 6, 198, 40781, 5014, 532, 4935, 412, 18173, 198, 4023, 1378, 16302, 68, 18173, 13, 3262, 14, 9630, 13, 10121, 30, 5458, 28, 1676, 22143, 5, 312, 28, 15, 2670, 198, 7061, 6, 198, 11748, 10688, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2124, 796, 642, 198, 220, 220, 220, 279, 5272, 64, 796, 17635, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 11, 65, 11, 66, 796, 651, 47, 5272, 363, 29456, 14824, 37069, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 257, 10, 65, 10, 66, 1875, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 257, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19510, 64, 11, 65, 11, 66, 828, 64, 10, 65, 10, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5272, 64, 13, 33295, 7, 64, 10, 65, 10, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 47932, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3509, 79, 796, 357, 15, 11, 657, 8, 198, 220, 220, 220, 329, 1312, 287, 900, 7, 79, 5272, 64, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 279, 5272, 64, 13, 9127, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 1875, 3509, 79, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 79, 796, 357, 66, 11, 1312, 8, 628, 220, 220, 220, 3601, 7, 9806, 79, 8, 198 ]
1.672783
327
""" Created on April 19, 2020 @author: Yi Wang """ import datetime from mylib.geosfp.gc_process import geosfp_add_variables ####################### # Start user parameters # gc_root_dir = '/Dedicated/jwang-data/GCDATA/GEOS_2x2.5/GEOS_FP/' new_root_dir = '/Dedicated/jwang-data/GCDATA/GEOS_2x2.5/GEOS_FP_soil_T/' startDate = '20140820' endDate = '20140825' # # End user parameters ##################### currDate = startDate currDate_D = datetime.datetime.strptime(currDate, '%Y%m%d') endDate_D = datetime.datetime.strptime(endDate, '%Y%m%d') while currDate_D <= endDate_D: # year, month, and day currDate = str(currDate_D) yyyy = currDate[0:4] mm = currDate[5:7] dd = currDate[8:10] yyyymmdd = yyyy + mm + dd print('------ process ' + yyyymmdd + ' ------') gc_dir = gc_root_dir + yyyy + '/' + mm + '/' new_dir = new_root_dir + yyyy + '/' + mm + '/' geosfp_add_variables(gc_dir, new_dir, yyyymmdd) # go to next day currDate_D = currDate_D + datetime.timedelta(days=1)
[ 37811, 198, 41972, 319, 3035, 678, 11, 12131, 198, 198, 31, 9800, 25, 26463, 15233, 198, 37811, 198, 198, 11748, 4818, 8079, 198, 198, 6738, 616, 8019, 13, 469, 418, 46428, 13, 36484, 62, 14681, 1330, 4903, 418, 46428, 62, 2860, 62, 25641, 2977, 198, 198, 14468, 4242, 21017, 198, 2, 7253, 2836, 10007, 198, 2, 198, 198, 36484, 62, 15763, 62, 15908, 796, 31051, 35, 276, 3474, 14, 73, 47562, 12, 7890, 14, 38, 8610, 13563, 14, 8264, 2640, 62, 17, 87, 17, 13, 20, 14, 8264, 2640, 62, 5837, 14, 6, 198, 198, 3605, 62, 15763, 62, 15908, 796, 31051, 35, 276, 3474, 14, 73, 47562, 12, 7890, 14, 38, 8610, 13563, 14, 8264, 2640, 62, 17, 87, 17, 13, 20, 14, 8264, 2640, 62, 5837, 62, 568, 346, 62, 51, 14, 6, 198, 198, 9688, 10430, 796, 705, 1264, 26200, 1238, 6, 198, 437, 10430, 220, 220, 796, 705, 1264, 26200, 1495, 6, 198, 198, 2, 198, 2, 5268, 2836, 10007, 198, 14468, 4242, 2, 198, 198, 22019, 81, 10430, 220, 796, 923, 10430, 198, 198, 22019, 81, 10430, 62, 35, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 22019, 81, 10430, 11, 705, 4, 56, 4, 76, 4, 67, 11537, 198, 437, 10430, 62, 35, 220, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 437, 10430, 11, 220, 705, 4, 56, 4, 76, 4, 67, 11537, 198, 198, 4514, 1090, 81, 10430, 62, 35, 19841, 886, 10430, 62, 35, 25, 628, 220, 220, 220, 1303, 614, 11, 1227, 11, 290, 1110, 198, 220, 220, 220, 1090, 81, 10430, 796, 965, 7, 22019, 81, 10430, 62, 35, 8, 198, 220, 220, 220, 331, 22556, 88, 796, 1090, 81, 10430, 58, 15, 25, 19, 60, 198, 220, 220, 220, 8085, 796, 1090, 81, 10430, 58, 20, 25, 22, 60, 198, 220, 220, 220, 49427, 796, 1090, 81, 10430, 58, 23, 25, 940, 60, 198, 220, 220, 220, 331, 22556, 26621, 1860, 796, 331, 22556, 88, 1343, 8085, 1343, 49427, 628, 220, 220, 220, 3601, 10786, 23031, 1429, 705, 1343, 331, 22556, 26621, 1860, 220, 1343, 705, 40103, 11537, 628, 220, 220, 220, 308, 66, 62, 15908, 796, 308, 66, 62, 15763, 62, 15908, 1343, 331, 22556, 88, 1343, 31051, 6, 1343, 8085, 1343, 31051, 6, 198, 220, 220, 220, 649, 62, 15908, 796, 649, 62, 15763, 62, 15908, 1343, 331, 22556, 88, 1343, 31051, 6, 1343, 8085, 1343, 31051, 6, 198, 220, 220, 220, 4903, 418, 46428, 62, 2860, 62, 25641, 2977, 7, 36484, 62, 15908, 11, 649, 62, 15908, 11, 331, 22556, 26621, 1860, 8, 628, 220, 220, 220, 1303, 467, 284, 1306, 1110, 198, 220, 220, 220, 1090, 81, 10430, 62, 35, 796, 1090, 81, 10430, 62, 35, 1343, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 16, 8, 198 ]
2.197452
471
import random import pytest import pandas as pd from datetime import datetime, date, timedelta from ..conftest import ( FauxJIRA as JIRA, FauxIssue as Issue, FauxChange as Change, FauxFieldValue as Value ) from ..querymanager import QueryManager from ..utils import extend_dict from .progressreport import ( throughput_range_sampler, update_team_sampler, calculate_team_throughput, calculate_epic_target, find_epics, update_story_counts, forecast_to_complete, Outcome, Team, Epic, ProgressReportCalculator ) @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture
[ 11748, 4738, 198, 11748, 12972, 9288, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 3128, 11, 28805, 12514, 198, 6738, 11485, 1102, 701, 395, 1330, 357, 198, 220, 220, 220, 376, 14644, 41, 40, 3861, 355, 449, 40, 3861, 11, 198, 220, 220, 220, 376, 14644, 45147, 355, 18232, 11, 198, 220, 220, 220, 376, 14644, 19400, 355, 9794, 11, 198, 220, 220, 220, 376, 14644, 15878, 11395, 355, 11052, 198, 8, 198, 198, 6738, 11485, 22766, 37153, 1330, 43301, 13511, 198, 6738, 11485, 26791, 1330, 9117, 62, 11600, 198, 198, 6738, 764, 33723, 13116, 1330, 357, 198, 220, 220, 220, 41997, 62, 9521, 62, 37687, 20053, 11, 198, 220, 220, 220, 4296, 62, 15097, 62, 37687, 20053, 11, 198, 220, 220, 220, 15284, 62, 15097, 62, 9579, 1996, 11, 198, 220, 220, 220, 15284, 62, 538, 291, 62, 16793, 11, 198, 220, 220, 220, 1064, 62, 538, 873, 11, 198, 220, 220, 220, 4296, 62, 13571, 62, 9127, 82, 11, 198, 220, 220, 220, 11092, 62, 1462, 62, 20751, 11, 198, 220, 220, 220, 3806, 2958, 11, 198, 220, 220, 220, 4816, 11, 198, 220, 220, 220, 16781, 11, 198, 220, 220, 220, 18387, 19100, 9771, 3129, 1352, 198, 8, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.647303
241
from setuptools import find_packages, setup from setuptools.command.install import install from setuptools import setup, find_packages from distutils.command.install import install as _install import os PROJECT_DIR = os.path.dirname(__file__) DEPENDENCIES = open(os.path.join(PROJECT_DIR, 'requirements.txt')).readlines() setup( name='model_fkeywords', version='0.1.0', description='A Natural Language Processing Library', author='Eneas Rodrigues', license='MIT', packages=find_packages(include=['api_model']), install_requires=[d for d in DEPENDENCIES if '://' not in d], python_requires='==3.7.13', #TO-DO: Fix dependency links : not working with bdist_wheel dependency_links = ["git+https://github.com/explosion/spacy-models/releases/download/pt_core_news_sm-3.2.0/pt_core_news_sm-3.2.0.tar.gz"], tests_require=['pytest', 'parameterized'], zip_safe=False )
[ 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 6738, 900, 37623, 10141, 13, 21812, 13, 17350, 1330, 2721, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 6738, 1233, 26791, 13, 21812, 13, 17350, 1330, 2721, 355, 4808, 17350, 198, 198, 11748, 28686, 198, 198, 31190, 23680, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 46162, 10619, 24181, 11015, 796, 1280, 7, 418, 13, 6978, 13, 22179, 7, 31190, 23680, 62, 34720, 11, 705, 8897, 18883, 13, 14116, 11537, 737, 961, 6615, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 19849, 62, 69, 2539, 10879, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 16, 13, 15, 3256, 198, 220, 220, 220, 6764, 11639, 32, 12068, 15417, 28403, 10074, 3256, 198, 220, 220, 220, 1772, 11639, 36, 710, 292, 16114, 947, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 17256, 28, 17816, 15042, 62, 19849, 20520, 828, 198, 220, 220, 220, 2721, 62, 47911, 41888, 67, 329, 288, 287, 5550, 47, 10619, 24181, 11015, 611, 705, 1378, 6, 407, 287, 288, 4357, 198, 220, 220, 220, 21015, 62, 47911, 11639, 855, 18, 13, 22, 13, 1485, 3256, 198, 220, 220, 220, 1303, 10468, 12, 18227, 25, 13268, 20203, 6117, 1058, 407, 1762, 351, 275, 17080, 62, 22001, 198, 220, 220, 220, 20203, 62, 28751, 796, 14631, 18300, 10, 5450, 1378, 12567, 13, 785, 14, 20676, 18442, 14, 2777, 1590, 12, 27530, 14, 260, 29329, 14, 15002, 14, 457, 62, 7295, 62, 10827, 62, 5796, 12, 18, 13, 17, 13, 15, 14, 457, 62, 7295, 62, 10827, 62, 5796, 12, 18, 13, 17, 13, 15, 13, 18870, 13, 34586, 33116, 198, 220, 220, 220, 5254, 62, 46115, 28, 17816, 9078, 9288, 3256, 705, 17143, 2357, 1143, 6, 4357, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 198, 8, 628 ]
2.797546
326
stable = 'scala-native-0.4.0-2.12' latest = 'scala-native-0.4.1-SNAPSHOT-2.12'
[ 31284, 796, 705, 1416, 6081, 12, 30191, 12, 15, 13, 19, 13, 15, 12, 17, 13, 1065, 6, 198, 42861, 796, 705, 1416, 6081, 12, 30191, 12, 15, 13, 19, 13, 16, 12, 15571, 2969, 9693, 2394, 12, 17, 13, 1065, 6 ]
1.857143
42
#!/usr/bin/python # Written by Thomas York # Imports from flask import Flask from flask_hashing import Hashing from config import Config from flask_sqlalchemy import SQLAlchemy # Flask Setup app = Flask(__name__) app.config.from_object(Config) hashing = Hashing(app) db = SQLAlchemy(app) # Route setup from app.routes import * # Flask Setup if __name__ == "__main__": app.run()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 22503, 416, 5658, 1971, 198, 198, 2, 1846, 3742, 198, 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 71, 2140, 1330, 367, 2140, 198, 6738, 4566, 1330, 17056, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 198, 2, 46947, 31122, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 16934, 8, 198, 71, 2140, 796, 367, 2140, 7, 1324, 8, 198, 9945, 796, 16363, 2348, 26599, 7, 1324, 8, 198, 198, 2, 18956, 9058, 198, 6738, 598, 13, 81, 448, 274, 1330, 1635, 198, 198, 2, 46947, 31122, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 3419, 198 ]
2.954198
131
""" Task 1 @author: Alexandr Mazanik """ import time import turtle main() time.sleep(2)
[ 37811, 198, 25714, 352, 198, 31, 9800, 25, 21000, 81, 21625, 272, 1134, 198, 37811, 198, 11748, 640, 198, 11748, 28699, 628, 628, 628, 628, 198, 12417, 3419, 198, 2435, 13, 42832, 7, 17, 8, 198 ]
2.666667
36
#%% import IPython.display as ipyd #%% from IPython.display import Markdown ideas = open('./design/ideas.md') output = ideas.read() Markdown(output) #%% [markdown] # ### Problem type description template #%% [markdown] # ### Problem type title # # Description # # #### Problem generation # # Outline of algorithm for generating problem # # #### Problem template # # Form the problem takes # # #### Solution generation # # Outline of algorithm for generating solution # # #### Solution template # # Form the solution takes #%% [markdown] # ### Given $f(x)$, find $f(-x)$ #%% from sympy import symbols, Poly, Rational, latex from numpy import random, around, arange from numpy.random import randint, rand from problem import create_full_text_problem from testbed_utils import render_debug_problem from util import fmath render_debug_problem(polynomial_function_find_negative()) #%% [markdown] # ### Complete the square # # Generate an equation from a perfect square, then remove the term with the lowest degree and add some other number. Not sure what rule should be used when generating this other number. # # #### Problem generation # # 1. Generate $c$ for $(x + c)$ within some predetermined bounds. $c$ can be negative. # 2. Evaluate $(x + c)^2$ for an output of $x^2+xc+c^2$. # 3. Optionally multiply this by an integer within some bounds, so an extra step has to be taken to factor when solving, for an output of $ax^2+axc+ac^2$ # 4. Remove $ac^2$ for an output of $ax^2+axc)$. # 5. Add another number $n$ and make it equal zero for $ax^2+axc+n=0$ # # $ax^2+axc+n=0$ # # #### Problem template # # $ax^2+axc+n=0$ # # Factor by completing the square. # # #### Solution generation # # $a(x+c)+n-ac^2=0$ # # Solution should be in vertex form ($h$ and $k$ are only used because they haven't been defined in the algorithm. They serve only to show the shape of the expression): # # $a(x-h)^2+k=0$ # # #### Solution template # # $a(x-h)^2+k=0$ #%% from sympy import Poly, Rational, expand, simplify, latex, symbols from numpy import random, around, arange from numpy.random import rand render_debug_problem(quadratic_function_find_vertex_intercept_form()) #%% [markdown] # ### Finding vertex given quadratic # # $-\frac{b}{2a}$ # # Quadratics generated by or provided to this type don't need to be neatly factored or have real x-intercepts. #%% from sympy import symbols, Rational, UnevaluatedExpr, Array import numpy as np from numpy import random from math import gcd from functools import reduce coeff_bounds = (1, 10) a, b, c = (gen_coeff(), gen_coeff(), gen_coeff()) x = symbols('x') gcd = reduce(gcd, (a, b, c)) # Divide coefficients by gcd a, b, c = Array(np.array([a, b, c])/gcd).applyfunc(lambda coeff: Rational(coeff)) factored_f = a*x**2+b*x+c latex_expr = latex(factored_f) f = factored_f*gcd problem_content = f'{gcd}({latex_expr})' if gcd != 1 else latex_expr vertex_x = Rational(-b, 2*a) vertex_y = f.subs(x, vertex_x) ipyd.Latex(f'problem: ${problem_content}$ solution: ${(vertex_x, vertex_y)}$, gcd:${gcd}$ {(a, b, c)}') #%% [markdown] # ### Determining possible number of real roots of quadratic function # # By analyzing discriminant # # 2, 1 (repeated), or 0 # # **We need a method to generate a quadratic function that has an equal likelihood of having 0, 1, or 2 roots** #%% # #%% [markdown] # ### List transformations # # We're just doing this with $x^2$ right now, but there's not reason we couldn't do it with something else. # # #### Examples # # $x^2+1$: Up by 1 # # $x^2-2$: Down by 2 # # $(x+5)^2+1/2$: Left by 5, up by 1/2 # # $5(x+2)^2+2$: Left by 2, stretch vertically by 5 (compress horizontally by 1/5), up by 2 #%% # STUB: Do later
[ 198, 2, 16626, 198, 11748, 6101, 7535, 13, 13812, 355, 20966, 5173, 628, 198, 2, 16626, 198, 6738, 6101, 7535, 13, 13812, 1330, 2940, 2902, 198, 198, 485, 292, 796, 1280, 7, 4458, 14, 26124, 14, 485, 292, 13, 9132, 11537, 198, 22915, 796, 4213, 13, 961, 3419, 198, 198, 9704, 2902, 7, 22915, 8, 198, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 20647, 2099, 6764, 11055, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 20647, 2099, 3670, 198, 2, 220, 198, 2, 12489, 198, 2, 220, 198, 2, 1303, 21017, 20647, 5270, 198, 2, 220, 198, 2, 3806, 1370, 286, 11862, 329, 15453, 1917, 198, 2, 220, 198, 2, 1303, 21017, 20647, 11055, 198, 2, 220, 198, 2, 5178, 262, 1917, 2753, 198, 2, 220, 198, 2, 1303, 21017, 28186, 5270, 198, 2, 220, 198, 2, 3806, 1370, 286, 11862, 329, 15453, 4610, 198, 2, 220, 198, 2, 1303, 21017, 28186, 11055, 198, 2, 220, 198, 2, 5178, 262, 4610, 2753, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 11259, 720, 69, 7, 87, 8, 47113, 1064, 720, 69, 32590, 87, 8, 3, 198, 198, 2, 16626, 198, 6738, 10558, 88, 1330, 14354, 11, 12280, 11, 46863, 11, 47038, 198, 6738, 299, 32152, 1330, 4738, 11, 1088, 11, 610, 858, 198, 6738, 299, 32152, 13, 25120, 1330, 43720, 600, 11, 43720, 198, 6738, 1917, 1330, 2251, 62, 12853, 62, 5239, 62, 45573, 198, 6738, 1332, 3077, 62, 26791, 1330, 8543, 62, 24442, 62, 45573, 198, 6738, 7736, 1330, 277, 11018, 198, 198, 13287, 62, 24442, 62, 45573, 7, 35428, 26601, 498, 62, 8818, 62, 19796, 62, 31591, 28955, 198, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 13248, 262, 6616, 198, 2, 220, 198, 2, 2980, 378, 281, 16022, 422, 257, 2818, 6616, 11, 788, 4781, 262, 3381, 351, 262, 9016, 4922, 290, 751, 617, 584, 1271, 13, 1892, 1654, 644, 3896, 815, 307, 973, 618, 15453, 428, 584, 1271, 13, 198, 2, 220, 198, 2, 1303, 21017, 20647, 5270, 198, 2, 220, 198, 2, 352, 13, 2980, 378, 720, 66, 3, 329, 29568, 87, 1343, 269, 8, 3, 1626, 617, 45574, 22303, 13, 720, 66, 3, 460, 307, 4633, 13, 198, 2, 362, 13, 26439, 4985, 29568, 87, 1343, 269, 8, 61, 17, 3, 329, 281, 5072, 286, 720, 87, 61, 17, 10, 25306, 10, 66, 61, 17, 35307, 198, 2, 513, 13, 16018, 453, 29162, 428, 416, 281, 18253, 1626, 617, 22303, 11, 523, 281, 3131, 2239, 468, 284, 307, 2077, 284, 5766, 618, 18120, 11, 329, 281, 5072, 286, 720, 897, 61, 17, 10, 897, 66, 10, 330, 61, 17, 3, 198, 2, 604, 13, 17220, 720, 330, 61, 17, 3, 329, 281, 5072, 286, 720, 897, 61, 17, 10, 897, 66, 8, 35307, 198, 2, 642, 13, 3060, 1194, 1271, 720, 77, 3, 290, 787, 340, 4961, 6632, 329, 720, 897, 61, 17, 10, 897, 66, 10, 77, 28, 15, 3, 198, 2, 220, 198, 2, 720, 897, 61, 17, 10, 897, 66, 10, 77, 28, 15, 3, 198, 2, 220, 198, 2, 1303, 21017, 20647, 11055, 198, 2, 220, 198, 2, 720, 897, 61, 17, 10, 897, 66, 10, 77, 28, 15, 3, 198, 2, 220, 198, 2, 27929, 416, 14339, 262, 6616, 13, 198, 2, 220, 198, 2, 1303, 21017, 28186, 5270, 198, 2, 220, 198, 2, 720, 64, 7, 87, 10, 66, 47762, 77, 12, 330, 61, 17, 28, 15, 3, 198, 2, 220, 198, 2, 28186, 815, 307, 287, 37423, 1296, 7198, 71, 3, 290, 720, 74, 3, 389, 691, 973, 780, 484, 4398, 470, 587, 5447, 287, 262, 11862, 13, 1119, 4691, 691, 284, 905, 262, 5485, 286, 262, 5408, 2599, 198, 2, 220, 198, 2, 720, 64, 7, 87, 12, 71, 8, 61, 17, 10, 74, 28, 15, 3, 198, 2, 220, 198, 2, 1303, 21017, 28186, 11055, 198, 2, 220, 198, 2, 720, 64, 7, 87, 12, 71, 8, 61, 17, 10, 74, 28, 15, 3, 198, 198, 2, 16626, 198, 6738, 10558, 88, 1330, 12280, 11, 46863, 11, 4292, 11, 30276, 11, 47038, 11, 14354, 198, 6738, 299, 32152, 1330, 4738, 11, 1088, 11, 610, 858, 198, 6738, 299, 32152, 13, 25120, 1330, 43720, 198, 198, 13287, 62, 24442, 62, 45573, 7, 421, 41909, 1512, 62, 8818, 62, 19796, 62, 332, 16886, 62, 3849, 984, 62, 687, 28955, 198, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 27063, 37423, 1813, 15094, 81, 1512, 198, 2, 220, 198, 2, 720, 12, 59, 31944, 90, 65, 18477, 17, 64, 92, 3, 198, 2, 220, 198, 2, 20648, 10366, 873, 7560, 416, 393, 2810, 284, 428, 2099, 836, 470, 761, 284, 307, 29776, 1109, 1850, 393, 423, 1103, 2124, 12, 3849, 984, 82, 13, 198, 198, 2, 16626, 198, 6738, 10558, 88, 1330, 14354, 11, 46863, 11, 471, 710, 2100, 6605, 3109, 1050, 11, 15690, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 1330, 4738, 198, 6738, 10688, 1330, 308, 10210, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 198, 1073, 14822, 62, 65, 3733, 796, 357, 16, 11, 838, 8, 198, 220, 220, 220, 220, 198, 64, 11, 275, 11, 269, 796, 357, 5235, 62, 1073, 14822, 22784, 2429, 62, 1073, 14822, 22784, 2429, 62, 1073, 14822, 28955, 198, 198, 87, 796, 14354, 10786, 87, 11537, 198, 198, 70, 10210, 796, 4646, 7, 70, 10210, 11, 357, 64, 11, 275, 11, 269, 4008, 198, 198, 2, 46894, 44036, 416, 308, 10210, 198, 198, 64, 11, 275, 11, 269, 796, 15690, 7, 37659, 13, 18747, 26933, 64, 11, 275, 11, 269, 12962, 14, 70, 10210, 737, 39014, 20786, 7, 50033, 763, 14822, 25, 46863, 7, 1073, 14822, 4008, 198, 198, 22584, 1850, 62, 69, 796, 257, 9, 87, 1174, 17, 10, 65, 9, 87, 10, 66, 198, 198, 17660, 87, 62, 31937, 796, 47038, 7, 22584, 1850, 62, 69, 8, 198, 198, 69, 796, 1109, 1850, 62, 69, 9, 70, 10210, 198, 198, 45573, 62, 11299, 796, 277, 6, 90, 70, 10210, 92, 15090, 17660, 87, 62, 31937, 30072, 6, 611, 308, 10210, 14512, 352, 2073, 47038, 62, 31937, 198, 198, 332, 16886, 62, 87, 796, 46863, 32590, 65, 11, 362, 9, 64, 8, 198, 332, 16886, 62, 88, 796, 277, 13, 7266, 82, 7, 87, 11, 37423, 62, 87, 8, 198, 198, 541, 5173, 13, 26302, 87, 7, 69, 6, 45573, 25, 25597, 45573, 62, 11299, 92, 3, 4610, 25, 25597, 7, 332, 16886, 62, 87, 11, 37423, 62, 88, 38165, 47113, 308, 10210, 25, 38892, 70, 10210, 92, 3, 1391, 7, 64, 11, 275, 11, 269, 38165, 11537, 198, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 360, 13221, 278, 1744, 1271, 286, 1103, 11135, 286, 15094, 81, 1512, 2163, 198, 2, 220, 198, 2, 2750, 22712, 6534, 42483, 198, 2, 220, 198, 2, 362, 11, 352, 357, 45956, 515, 828, 393, 657, 198, 2, 220, 198, 2, 12429, 1135, 761, 257, 2446, 284, 7716, 257, 15094, 81, 1512, 2163, 326, 468, 281, 4961, 14955, 286, 1719, 657, 11, 352, 11, 393, 362, 11135, 1174, 198, 198, 2, 16626, 198, 2, 220, 198, 198, 2, 16626, 685, 4102, 2902, 60, 198, 2, 44386, 7343, 38226, 198, 2, 220, 198, 2, 775, 821, 655, 1804, 428, 351, 720, 87, 61, 17, 3, 826, 783, 11, 475, 612, 338, 407, 1738, 356, 3521, 470, 466, 340, 351, 1223, 2073, 13, 198, 2, 220, 198, 2, 1303, 21017, 21066, 198, 2, 220, 198, 2, 720, 87, 61, 17, 10, 16, 3, 25, 3205, 416, 352, 198, 2, 220, 198, 2, 720, 87, 61, 17, 12, 17, 3, 25, 5588, 416, 362, 198, 2, 220, 198, 2, 29568, 87, 10, 20, 8, 61, 17, 10, 16, 14, 17, 3, 25, 9578, 416, 642, 11, 510, 416, 352, 14, 17, 198, 2, 220, 198, 2, 720, 20, 7, 87, 10, 17, 8, 61, 17, 10, 17, 3, 25, 9578, 416, 362, 11, 7539, 31677, 416, 642, 357, 5589, 601, 36774, 416, 352, 14, 20, 828, 510, 416, 362, 198, 198, 2, 16626, 198, 2, 3563, 10526, 25, 2141, 1568, 628, 198 ]
2.758315
1,353
import unittest from signals.generators.ios.objc.parameters import ObjCParameter from signals.parser.fields import Field from signals.parser.schema import DataObject from tests.utils import create_dynamic_schema
[ 11748, 555, 715, 395, 198, 6738, 10425, 13, 8612, 2024, 13, 4267, 13, 26801, 66, 13, 17143, 7307, 1330, 38764, 8697, 41158, 2357, 198, 6738, 10425, 13, 48610, 13, 25747, 1330, 7663, 198, 6738, 10425, 13, 48610, 13, 15952, 2611, 1330, 6060, 10267, 198, 6738, 5254, 13, 26791, 1330, 2251, 62, 67, 28995, 62, 15952, 2611, 628 ]
3.736842
57
"""Converts 1 hz RSA from a bedrock hazard map to soil values using the NEHRP amplifcation factors Reference: Borchedt 1994 RSA is then converted to MMI using the formuala of Atkinson and Kaka (2006) Jonathan Griffin, AIFDR January 2011 """ import sys, os import numpy as np from scipy.interpolate import interp1d from scipy.stats import norm from RSA2MMI import rsa2mmi9 def hazmap2amp(RSA1, NEHRP_class, period=1.0): """Function to amplify RSA amplifcation based on BS30 values and the NEHRP amplification factors """ function = Amp_fns() RSA_amp_list = [] for i in range(len(RSA1)): if period <= 0.3: # Assumed value, not clear from paper RSA_amp = function.short_period_dict[NEHRP_class[i]](RSA1[i])*RSA1[i] RSA_amp_list.append(RSA_amp) else: RSA_amp = function.mid_period_dict[NEHRP_class[i]](RSA1[i])*RSA1[i] RSA_amp_list.append(RSA_amp) return RSA_amp_list def read_data(infile): """Read data into numpy array """ f_in=open(infile, 'r') header = f_in.readline() RSA1 = [] vs30 = [] for line in f_in.readlines(): row = line.split(',') RSA1.append(float(row[2])) vs30.append(float(row[3])) f_in.close() return RSA1, vs30 def write_data(infile, outfile, NEHRP_class, RSA_amp_list, MMI): """Write output data to file """ f_in = open(infile, 'r') header = f_in.readline() f_out = open(outfile, 'w') i = 0 # Write header f_out.write('LONGITUDE,LATITUDE,BEDROCK_RSA1,VS30,SITE_CLASS,SOIL_RSA,MMI\n') for line in f_in.readlines(): row = line.rstrip('\n').rstrip('\r') row = row + ',' + NEHRP_class[i] + ',' + str(RSA_amp_list[i]) + ','\ + str(MMI[i]) +'\n' f_out.write(row) i+=1 f_in.close() f_out.close() if __name__ == '__main__': haz_NEHRP_class_file = sys.argv[1] RSA1, vs30 = read_data(haz_NEHRP_class_file) NEHRP_class = vs30_to_NEHRP_class(vs30) RSA_amp_list = hazmap2amp(RSA1, NEHRP_class) MMI = rsa2mmi9(RSA_amp_list, period = 1.0) outfile = haz_NEHRP_class_file[:-4] + '_MMI.csv' write_data(haz_NEHRP_class_file, outfile, NEHRP_class, RSA_amp_list, MMI)
[ 37811, 3103, 24040, 352, 289, 89, 42319, 422, 257, 47856, 15834, 3975, 284, 9260, 3815, 201, 198, 3500, 262, 10635, 17184, 47, 12306, 361, 30907, 5087, 201, 198, 26687, 25, 12182, 1740, 83, 9162, 201, 198, 201, 198, 49, 4090, 318, 788, 11513, 284, 337, 8895, 1262, 262, 1296, 41944, 286, 49042, 290, 509, 8130, 357, 13330, 8, 201, 198, 201, 198, 30365, 16525, 11, 317, 5064, 7707, 3269, 2813, 201, 198, 37811, 201, 198, 201, 198, 11748, 25064, 11, 28686, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 987, 79, 16, 67, 201, 198, 6738, 629, 541, 88, 13, 34242, 1330, 2593, 201, 198, 6738, 42319, 17, 44, 8895, 1330, 374, 11400, 17, 3020, 72, 24, 201, 198, 201, 198, 201, 198, 4299, 11595, 8899, 17, 696, 7, 49, 4090, 16, 11, 10635, 17184, 47, 62, 4871, 11, 2278, 28, 16, 13, 15, 2599, 201, 198, 220, 220, 220, 37227, 22203, 284, 47366, 42319, 12306, 361, 30907, 1912, 319, 24218, 1270, 3815, 290, 262, 10635, 17184, 47, 201, 198, 220, 220, 220, 220, 220, 220, 220, 50250, 5087, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 2163, 796, 50161, 62, 69, 5907, 3419, 201, 198, 220, 220, 220, 42319, 62, 696, 62, 4868, 796, 17635, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 49, 4090, 16, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2278, 19841, 657, 13, 18, 25, 1303, 2195, 18940, 1988, 11, 407, 1598, 422, 3348, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42319, 62, 696, 796, 2163, 13, 19509, 62, 41007, 62, 11600, 58, 12161, 17184, 47, 62, 4871, 58, 72, 11907, 7, 49, 4090, 16, 58, 72, 12962, 9, 49, 4090, 16, 58, 72, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42319, 62, 696, 62, 4868, 13, 33295, 7, 49, 4090, 62, 696, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42319, 62, 696, 796, 2163, 13, 13602, 62, 41007, 62, 11600, 58, 12161, 17184, 47, 62, 4871, 58, 72, 11907, 7, 49, 4090, 16, 58, 72, 12962, 9, 49, 4090, 16, 58, 72, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42319, 62, 696, 62, 4868, 13, 33295, 7, 49, 4090, 62, 696, 8, 201, 198, 220, 220, 220, 1441, 42319, 62, 696, 62, 4868, 201, 198, 201, 198, 201, 198, 4299, 1100, 62, 7890, 7, 259, 7753, 2599, 201, 198, 220, 220, 220, 37227, 5569, 1366, 656, 299, 32152, 7177, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 277, 62, 259, 28, 9654, 7, 259, 7753, 11, 705, 81, 11537, 201, 198, 220, 220, 220, 13639, 796, 277, 62, 259, 13, 961, 1370, 3419, 201, 198, 201, 198, 220, 220, 220, 42319, 16, 796, 17635, 201, 198, 220, 220, 220, 3691, 1270, 796, 17635, 201, 198, 220, 220, 220, 329, 1627, 287, 277, 62, 259, 13, 961, 6615, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 1627, 13, 35312, 7, 3256, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42319, 16, 13, 33295, 7, 22468, 7, 808, 58, 17, 60, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3691, 1270, 13, 33295, 7, 22468, 7, 808, 58, 18, 60, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 277, 62, 259, 13, 19836, 3419, 201, 198, 201, 198, 220, 220, 220, 1441, 42319, 16, 11, 3691, 1270, 201, 198, 201, 198, 4299, 3551, 62, 7890, 7, 259, 7753, 11, 503, 7753, 11, 10635, 17184, 47, 62, 4871, 11, 42319, 62, 696, 62, 4868, 11, 337, 8895, 2599, 201, 198, 220, 220, 220, 37227, 16594, 5072, 1366, 284, 2393, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 277, 62, 259, 796, 1280, 7, 259, 7753, 11, 705, 81, 11537, 201, 198, 220, 220, 220, 13639, 796, 277, 62, 259, 13, 961, 1370, 3419, 201, 198, 220, 220, 220, 277, 62, 448, 796, 1280, 7, 448, 7753, 11, 705, 86, 11537, 201, 198, 220, 220, 220, 1312, 796, 657, 201, 198, 201, 198, 220, 220, 220, 1303, 19430, 13639, 201, 198, 220, 220, 220, 277, 62, 448, 13, 13564, 10786, 43, 18494, 2043, 52, 7206, 11, 43, 1404, 2043, 52, 7206, 11, 33, 1961, 49, 11290, 62, 49, 4090, 16, 11, 20304, 1270, 11, 50, 12709, 62, 31631, 11, 15821, 4146, 62, 49, 4090, 11, 44, 8895, 59, 77, 11537, 201, 198, 220, 220, 220, 329, 1627, 287, 277, 62, 259, 13, 961, 6615, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 1627, 13, 81, 36311, 10786, 59, 77, 27691, 81, 36311, 10786, 59, 81, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 5752, 1343, 705, 4032, 1343, 10635, 17184, 47, 62, 4871, 58, 72, 60, 1343, 705, 4032, 1343, 965, 7, 49, 4090, 62, 696, 62, 4868, 58, 72, 12962, 1343, 220, 705, 4032, 59, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 965, 7, 44, 8895, 58, 72, 12962, 1343, 6, 59, 77, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 448, 13, 13564, 7, 808, 8, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 47932, 16, 201, 198, 220, 220, 220, 277, 62, 259, 13, 19836, 3419, 201, 198, 220, 220, 220, 277, 62, 448, 13, 19836, 3419, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 11595, 62, 12161, 17184, 47, 62, 4871, 62, 7753, 796, 25064, 13, 853, 85, 58, 16, 60, 201, 198, 220, 220, 220, 42319, 16, 11, 3691, 1270, 796, 1100, 62, 7890, 7, 71, 1031, 62, 12161, 17184, 47, 62, 4871, 62, 7753, 8, 201, 198, 220, 220, 220, 10635, 17184, 47, 62, 4871, 796, 3691, 1270, 62, 1462, 62, 12161, 17184, 47, 62, 4871, 7, 14259, 1270, 8, 201, 198, 220, 220, 220, 42319, 62, 696, 62, 4868, 796, 11595, 8899, 17, 696, 7, 49, 4090, 16, 11, 10635, 17184, 47, 62, 4871, 8, 201, 198, 220, 220, 220, 337, 8895, 796, 374, 11400, 17, 3020, 72, 24, 7, 49, 4090, 62, 696, 62, 4868, 11, 2278, 796, 352, 13, 15, 8, 201, 198, 220, 220, 220, 503, 7753, 796, 11595, 62, 12161, 17184, 47, 62, 4871, 62, 7753, 58, 21912, 19, 60, 1343, 705, 62, 44, 8895, 13, 40664, 6, 201, 198, 220, 220, 220, 3551, 62, 7890, 7, 71, 1031, 62, 12161, 17184, 47, 62, 4871, 62, 7753, 11, 503, 7753, 11, 10635, 17184, 47, 62, 4871, 11, 42319, 62, 696, 62, 4868, 11, 337, 8895, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198 ]
2.00085
1,177
import json import scrapy from kingfisher_scrapy.base_spider import CompressedFileSpider from kingfisher_scrapy.util import components, handle_http_error class ArgentinaBuenosAires(CompressedFileSpider): """ Domain Ciudad de Buenos Aires API documentation https://data.buenosaires.gob.ar/acerca/ckan Bulk download documentation https://data.buenosaires.gob.ar/dataset/buenos-aires-compras/archivo/2a3d077c-71b6-4ba7-8924-f3e38cf1b8fc """ name = 'argentina_buenos_aires' data_type = 'release_package' compressed_file_format = 'release_package' # the data list service takes too long to be downloaded, so we increase the download timeout download_timeout = 1000 @handle_http_error
[ 11748, 33918, 198, 198, 11748, 15881, 88, 198, 198, 6738, 5822, 69, 4828, 62, 1416, 2416, 88, 13, 8692, 62, 2777, 1304, 1330, 3082, 2790, 8979, 41294, 198, 6738, 5822, 69, 4828, 62, 1416, 2416, 88, 13, 22602, 1330, 6805, 11, 5412, 62, 4023, 62, 18224, 628, 198, 4871, 16519, 38374, 28380, 32, 2387, 7, 7293, 2790, 8979, 41294, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20021, 198, 220, 220, 220, 220, 220, 37685, 463, 324, 390, 46210, 44692, 198, 220, 220, 220, 7824, 10314, 198, 220, 220, 220, 220, 220, 3740, 1378, 7890, 13, 11110, 28380, 17693, 13, 44270, 13, 283, 14, 330, 2798, 64, 14, 694, 272, 198, 220, 220, 220, 47900, 4321, 10314, 198, 220, 220, 220, 220, 220, 3740, 1378, 7890, 13, 11110, 28380, 17693, 13, 44270, 13, 283, 14, 19608, 292, 316, 14, 11110, 28380, 12, 17693, 12, 785, 1050, 292, 14, 998, 23593, 14, 17, 64, 18, 67, 2998, 22, 66, 12, 4869, 65, 21, 12, 19, 7012, 22, 12, 4531, 1731, 12, 69, 18, 68, 2548, 12993, 16, 65, 23, 16072, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1438, 796, 705, 853, 298, 1437, 62, 11110, 28380, 62, 17693, 6, 198, 220, 220, 220, 1366, 62, 4906, 796, 705, 20979, 62, 26495, 6, 198, 220, 220, 220, 25388, 62, 7753, 62, 18982, 796, 705, 20979, 62, 26495, 6, 628, 220, 220, 220, 1303, 262, 1366, 1351, 2139, 2753, 1165, 890, 284, 307, 15680, 11, 523, 356, 2620, 262, 4321, 26827, 198, 220, 220, 220, 4321, 62, 48678, 796, 8576, 628, 220, 220, 220, 2488, 28144, 62, 4023, 62, 18224, 198 ]
2.75
272
import requests, logging, json, sys from Lib.GCS.http_calls import EdgeGridHttpCaller from random import randint from akamai.edgegrid import EdgeGridAuth from Lib.GCS.config import EdgeGridConfig import urllib import socket import subprocess import os import dns.resolver import functools class Wrapper: """ A simple wrapper for the API calls. Each call maps to a API URL and no tampering of the results is done within the class. """ def getGroups(self): """Return the group and contract details based on PAPI credentials. Keyword arguments: None Return type: List of groups """ if self.account: params = 'accountSwitchKey={0}'.format(self.account) else: params = None return self.httpCaller.getResult('/papi/v1/groups/',parameters=params) def getContractNames(self): """ Returns the contract id and contract name for a given contract Id Keyword arguments: None Return parameter: Hash of contractId and contract name. Same as the output from the raw API call to "/papi/v1/groups/" """ if self.account: params = 'accountSwitchKey={0}'.format(self.account) else: params = None return self.httpCaller.getResult('/papi/v1/contracts/',parameters=params) def getProducts(self, contractId): """ Returns the contract information for the contractId Keyword arguments: contractId Return parameter: Contract details """ if self.account: params = 'accountSwitchKey={0}&contractId={1}'.format(self.account,contractId) else: params = 'contractId={0}'.format(contractId) return self.httpCaller.getResult('/papi/v1/products/',parameters=params) def getCPCodes(self, groupId, contractId): """ Return the CP Code details for a groupId-contractId combination Keyword arguments: groupId contractId Return parameter: List of CP Codes """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/cpcodes/',parameters=params) def getEdgeHostNames(self,groupId, contractId,version=None): """ Returns the edgehostnames by groupId. If all groups for an account are passed to this function, it will return all the Edge host names associated with the account. Keyword arguments: groupId contractId Return parameter: List of edge hostnames """ if version == 'hapi': endpoint = '/hapi/v1/edge-hostnames' if self.account: params = 'accountSwitchKey={0}'.format(self.account) else: endpoint = '/papi/v1/edgehostnames/' if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult(endpoint,parameters=params) def getAppSecConfigurations(self): """ Keyword arguments: None Return parameter: Lists available versions for the specified security configuration https://developer.akamai.com/api/cloud_security/application_security/v1.html#getconfigurations """ endpoint = '/appsec/v1/configs' params = None if self.account: params = 'accountSwitchKey={0}'.format(self.account) return self.httpCaller.getResult(endpoint,parameters=params) def getProperties(self, groupId, contractId): """ Returns the names of properties associated with a group. If all groups for an account are passed to this function, it will return all the properties associated with the account. Keyword arguments: groupId contractId Return parameter: List of properties """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/',parameters=params) def getPropertyVersions(self, propertyId, groupId, contractId): """ Returns the property versions. This can be used to find the audit trail details for a configuration Keyword arguments: propertId groupId contractId Return parameters: List of property versions """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/{0}/versions/'.format(propertyId),parameters=params) def getavailableBehavior(self, propertyId,propertyVersion, contractId, groupId ): """ Returns a lists of set of behaviors you may apply within a property version’s rules. The available set is determined by the product under which you created the property, and any additional modules enabled under your account. Keyword arguments: propertId propertyVersion contractId groupId Return parameters: List of behaviors for """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/{0}/versions/{1}/available-behaviors'.format(propertyId,propertyVersion),parameters=params) def getVersionDetails(self, propertyId, groupId, contractId, propertyVersion=1): """ Returns information about a specific property version Keyword arguments: propertyVersion: Default version is 1, the first version. propertId groupId contractId Return parameters: Details on a specific property version """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/{0}/versions/{1}'.format(propertyId,propertyVersion),parameters=params) def getLatestVersionDetails(self, propertyId, groupId, contractId): """ Returns information about a specific property version Keyword arguments: propertyVersion: Default version is 1, the first version. propertId groupId contractId Return parameters: Details on a specific property version """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/latest/versions/{0}'.format(propertyId),parameters=params) def getConfigRuleTree(self, propertyId, versionNumber, groupId, contractId): """ Returns all the Property Manager rule details. It will not retrieve advanced code. Keyword arguments: propertyId versionNumber - Specific version for which we need the rules groupId contractId Return parameters: Configuration tree rule for a given configuration """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/{0}/versions/{1}/rules/'.format(propertyId,versionNumber),parameters=params) def getPropertyHostNames(self, propertyId, versionNumber, groupId, contractId): """ Returns the host names associated with a configuration. Keyword arguments: propertyId versionNumber - Specific version for which we need the rules groupId contractId Return parameters: List of host names belonging to the configuration """ if self.account: params = 'accountSwitchKey={0}&groupId={1}&contractId={2}'.format(self.account,groupId,contractId) else: params = 'groupId={0}&contractId={1}'.format(groupId,contractId) return self.httpCaller.getResult('/papi/v1/properties/{0}/versions/{1}/hostnames/'.format(propertyId,versionNumber),parameters=params) def getEnrollements(self, contractId): """ Returns the enrollements associated with a contractId. Keyword arguments: contractId Return parameters: List of enrollments associated with a contractId """ if self.account: params = 'accountSwitchKey={0}&contractId={1}'.format(self.account,contractId) else: params = 'contractId={0}'.format(contractId) return self.httpCaller.getResult('/cps/v2/enrollments',parameters=params, headers='cps') @functools.lru_cache() def getCNAME(self, hostname): """ Runs a dig command to find the CNAME for a given host name. If a CNAME is found, it returns it. Else returns a None. Keyword arguments: hostname: The host name for which we need the CNAME """ try: return (dns.resolver.query(hostname, 'CNAME')).response.answer[0][0] except (dns.resolver.NXDOMAIN, dns.resolver.NoAnswer): return None @functools.lru_cache() @functools.lru_cache() @functools.lru_cache() @functools.lru_cache() def checkIfCdnIP(self, ipaddress): """ Returns if an IP address blongs to Akamai or if it is not an Akamai IP. It uses the OS command "host" on systems that supports it. Else, it uses the command nslookup. Keyword arguments: ipaddress Return parameters: A boolean flag based on whether the call returns a true or a false. """ result = False try: if os.name =="nt": resp = str ( subprocess.check_output(['nslookup',ipaddress]) ) print(resp) if resp.find('akamai'): result=True else: resp = str( subprocess.check_output(['host', ipaddress]) ) print (resp) resp = resp.split(' ') if len(resp) >=5: if resp[4].find('akamai') > -1: result=True except subprocess.CalledProcessError: pass return result @functools.lru_cache() if __name__=="__main__": w = Wrapper()
[ 11748, 7007, 11, 18931, 11, 33918, 11, 25064, 198, 6738, 7980, 13, 38, 7902, 13, 4023, 62, 66, 5691, 1330, 13113, 41339, 43481, 14134, 263, 198, 6738, 4738, 1330, 43720, 600, 198, 6738, 47594, 1689, 72, 13, 14907, 25928, 1330, 13113, 41339, 30515, 198, 6738, 7980, 13, 38, 7902, 13, 11250, 1330, 13113, 41339, 16934, 198, 11748, 2956, 297, 571, 198, 11748, 17802, 198, 11748, 850, 14681, 198, 11748, 28686, 198, 11748, 288, 5907, 13, 411, 14375, 198, 11748, 1257, 310, 10141, 198, 198, 4871, 27323, 2848, 25, 198, 197, 37811, 198, 197, 32, 2829, 29908, 329, 262, 7824, 3848, 13, 5501, 869, 8739, 284, 257, 7824, 10289, 290, 645, 42471, 286, 262, 2482, 318, 1760, 1626, 262, 1398, 13, 198, 197, 37811, 628, 197, 4299, 651, 38, 14459, 7, 944, 2599, 198, 197, 197, 37811, 13615, 262, 1448, 290, 2775, 3307, 1912, 319, 350, 17614, 18031, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 14202, 628, 197, 197, 197, 13615, 2099, 25, 198, 197, 197, 197, 197, 8053, 286, 2628, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 4458, 18982, 7, 944, 13, 23317, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 6045, 198, 197, 628, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 24432, 14, 3256, 17143, 7307, 28, 37266, 8, 198, 197, 197, 628, 197, 4299, 651, 45845, 36690, 7, 944, 2599, 197, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 2775, 4686, 290, 2775, 1438, 329, 257, 1813, 2775, 5121, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 14202, 628, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 26257, 286, 2775, 7390, 290, 2775, 1438, 13, 16766, 355, 262, 5072, 422, 262, 8246, 7824, 869, 284, 12813, 79, 15042, 14, 85, 16, 14, 24432, 30487, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 4458, 18982, 7, 944, 13, 23317, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 6045, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 28484, 82, 14, 3256, 17143, 7307, 28, 37266, 8, 197, 628, 197, 4299, 651, 48650, 7, 944, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 2775, 1321, 329, 262, 2775, 7390, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 28484, 7390, 220, 628, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 45845, 3307, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 944, 13, 23317, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 28484, 7390, 34758, 15, 92, 4458, 18982, 7, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 29498, 14, 3256, 17143, 7307, 28, 37266, 8, 198, 197, 197, 628, 197, 4299, 651, 34, 5662, 4147, 7, 944, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 13615, 262, 16932, 6127, 3307, 329, 257, 1448, 7390, 12, 28484, 7390, 6087, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 198, 197, 197, 197, 197, 198, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 8053, 286, 16932, 44380, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 13155, 40148, 14, 3256, 17143, 7307, 28, 37266, 8, 220, 198, 197, 197, 628, 198, 197, 4299, 651, 37021, 17932, 36690, 7, 944, 11, 8094, 7390, 11, 2775, 7390, 11, 9641, 28, 14202, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 5743, 4774, 14933, 416, 1448, 7390, 13, 1002, 477, 2628, 329, 281, 1848, 389, 3804, 284, 428, 2163, 11, 340, 481, 1441, 477, 262, 13113, 2583, 3891, 3917, 351, 262, 1848, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 8053, 286, 5743, 2583, 14933, 198, 197, 197, 37811, 197, 197, 198, 197, 197, 361, 2196, 6624, 705, 71, 15042, 10354, 198, 197, 197, 197, 437, 4122, 796, 31051, 71, 15042, 14, 85, 16, 14, 14907, 12, 4774, 14933, 6, 198, 197, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 4458, 18982, 7, 944, 13, 23317, 8, 197, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 437, 4122, 796, 31051, 79, 15042, 14, 85, 16, 14, 14907, 4774, 14933, 14, 6, 198, 197, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 7, 437, 4122, 11, 17143, 7307, 28, 37266, 8, 220, 197, 628, 197, 4299, 651, 4677, 6558, 16934, 20074, 7, 944, 2599, 198, 197, 197, 37811, 198, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 14202, 628, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 43, 1023, 1695, 6300, 329, 262, 7368, 2324, 8398, 198, 197, 197, 197, 197, 5450, 1378, 16244, 263, 13, 461, 1689, 72, 13, 785, 14, 15042, 14, 17721, 62, 12961, 14, 31438, 62, 12961, 14, 85, 16, 13, 6494, 2, 1136, 11250, 20074, 198, 197, 197, 37811, 198, 197, 197, 437, 4122, 796, 31051, 1324, 2363, 14, 85, 16, 14, 11250, 82, 6, 198, 197, 197, 37266, 796, 6045, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 4458, 18982, 7, 944, 13, 23317, 8, 628, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 7, 437, 4122, 11, 17143, 7307, 28, 37266, 8, 220, 197, 197, 197, 628, 197, 4299, 651, 2964, 18200, 7, 944, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 3891, 286, 6608, 3917, 351, 257, 1448, 13, 1002, 477, 2628, 329, 281, 1848, 389, 3804, 284, 428, 2163, 11, 340, 481, 1441, 477, 262, 6608, 3917, 351, 262, 1848, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 11507, 25, 198, 197, 197, 197, 197, 8053, 286, 6608, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 3256, 17143, 7307, 28, 37266, 8, 197, 197, 628, 197, 4299, 651, 21746, 45150, 7, 944, 11, 3119, 7390, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 3119, 6300, 13, 770, 460, 307, 973, 284, 1064, 262, 14984, 8025, 3307, 329, 257, 8398, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 1676, 11766, 7390, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 8053, 286, 3119, 6300, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 90, 15, 92, 14, 47178, 14, 4458, 18982, 7, 26745, 7390, 828, 17143, 7307, 28, 37266, 8, 197, 197, 197, 628, 197, 4299, 651, 15182, 25267, 15759, 7, 944, 11, 3119, 7390, 11, 26745, 14815, 11, 2775, 7390, 11, 1448, 7390, 15179, 198, 197, 197, 37811, 198, 197, 197, 35561, 257, 8341, 286, 900, 286, 14301, 345, 743, 4174, 1626, 257, 3119, 2196, 447, 247, 82, 3173, 13, 383, 1695, 900, 318, 5295, 416, 262, 1720, 739, 543, 345, 2727, 262, 3119, 11, 220, 198, 197, 197, 392, 597, 3224, 13103, 9343, 739, 534, 1848, 13, 198, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 1676, 11766, 7390, 198, 197, 197, 197, 197, 26745, 14815, 198, 197, 197, 197, 197, 28484, 7390, 198, 197, 197, 197, 197, 8094, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 8053, 286, 14301, 329, 220, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 90, 15, 92, 14, 47178, 14, 90, 16, 92, 14, 15182, 12, 20709, 615, 12706, 4458, 18982, 7, 26745, 7390, 11, 26745, 14815, 828, 17143, 7307, 28, 37266, 8, 197, 197, 628, 197, 4299, 651, 14815, 24259, 7, 944, 11, 3119, 7390, 11, 1448, 7390, 11, 2775, 7390, 11, 3119, 14815, 28, 16, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 1321, 546, 257, 2176, 3119, 2196, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 26745, 14815, 25, 15161, 2196, 318, 352, 11, 262, 717, 2196, 13, 198, 197, 197, 197, 197, 1676, 11766, 7390, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 24259, 319, 257, 2176, 3119, 2196, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 90, 15, 92, 14, 47178, 14, 90, 16, 92, 4458, 18982, 7, 26745, 7390, 11, 26745, 14815, 828, 17143, 7307, 28, 37266, 8, 197, 197, 628, 197, 4299, 651, 39478, 14815, 24259, 7, 944, 11, 3119, 7390, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 1321, 546, 257, 2176, 3119, 2196, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 26745, 14815, 25, 15161, 2196, 318, 352, 11, 262, 717, 2196, 13, 198, 197, 197, 197, 197, 1676, 11766, 7390, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 24259, 319, 257, 2176, 3119, 2196, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 42861, 14, 47178, 14, 90, 15, 92, 4458, 18982, 7, 26745, 7390, 828, 17143, 7307, 28, 37266, 8, 197, 197, 197, 628, 197, 4299, 651, 16934, 31929, 27660, 7, 944, 11, 3119, 7390, 11, 2196, 15057, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 477, 262, 14161, 9142, 3896, 3307, 13, 632, 481, 407, 19818, 6190, 2438, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 26745, 7390, 198, 197, 197, 197, 197, 9641, 15057, 532, 17377, 2196, 329, 543, 356, 761, 262, 3173, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 38149, 5509, 3896, 329, 257, 1813, 8398, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 90, 15, 92, 14, 47178, 14, 90, 16, 92, 14, 38785, 14, 4458, 18982, 7, 26745, 7390, 11, 9641, 15057, 828, 17143, 7307, 28, 37266, 8, 197, 628, 198, 197, 4299, 651, 21746, 17932, 36690, 7, 944, 11, 3119, 7390, 11, 2196, 15057, 11, 1448, 7390, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 2583, 3891, 3917, 351, 257, 8398, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 26745, 7390, 198, 197, 197, 197, 197, 9641, 15057, 532, 17377, 2196, 329, 543, 356, 761, 262, 3173, 198, 197, 197, 197, 197, 8094, 7390, 198, 197, 197, 197, 197, 28484, 7390, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 8053, 286, 2583, 3891, 16686, 284, 262, 8398, 197, 197, 197, 198, 197, 197, 37811, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 8094, 7390, 34758, 16, 92, 5, 28484, 7390, 34758, 17, 92, 4458, 18982, 7, 944, 13, 23317, 11, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 8094, 7390, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 8094, 7390, 11, 28484, 7390, 8, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 79, 15042, 14, 85, 16, 14, 48310, 14, 90, 15, 92, 14, 47178, 14, 90, 16, 92, 14, 4774, 14933, 14, 4458, 18982, 7, 26745, 7390, 11, 9641, 15057, 828, 17143, 7307, 28, 37266, 8, 197, 198, 197, 4299, 651, 4834, 3225, 3639, 7, 944, 11, 2775, 7390, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 262, 34311, 3639, 3917, 351, 257, 2775, 7390, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 28484, 7390, 198, 197, 197, 197, 197, 198, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 8053, 286, 14627, 902, 3917, 351, 257, 2775, 7390, 197, 197, 197, 198, 197, 197, 37811, 198, 197, 197, 198, 197, 197, 361, 2116, 13, 23317, 25, 198, 197, 197, 197, 37266, 796, 705, 23317, 38978, 9218, 34758, 15, 92, 5, 28484, 7390, 34758, 16, 92, 4458, 18982, 7, 944, 13, 23317, 11, 28484, 7390, 8, 198, 197, 197, 17772, 25, 197, 198, 197, 197, 197, 37266, 796, 705, 28484, 7390, 34758, 15, 92, 4458, 18982, 7, 28484, 7390, 8, 198, 197, 197, 198, 197, 197, 7783, 2116, 13, 4023, 14134, 263, 13, 1136, 23004, 10786, 14, 66, 862, 14, 85, 17, 14, 268, 2487, 902, 3256, 17143, 7307, 28, 37266, 11, 24697, 11639, 66, 862, 11537, 197, 628, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 198, 197, 4299, 651, 34, 20608, 7, 944, 11, 2583, 3672, 2599, 198, 197, 197, 37811, 198, 197, 197, 10987, 82, 257, 3100, 3141, 284, 1064, 262, 327, 20608, 329, 257, 1813, 2583, 1438, 13, 198, 197, 197, 1532, 257, 327, 20608, 318, 1043, 11, 340, 5860, 340, 13, 25974, 5860, 257, 6045, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 4774, 3672, 25, 383, 2583, 1438, 329, 543, 356, 761, 262, 327, 20608, 198, 197, 197, 37811, 198, 197, 197, 28311, 25, 198, 197, 197, 197, 7783, 357, 67, 5907, 13, 411, 14375, 13, 22766, 7, 4774, 3672, 11, 705, 34, 20608, 11537, 737, 26209, 13, 41484, 58, 15, 7131, 15, 60, 198, 197, 197, 16341, 357, 67, 5907, 13, 411, 14375, 13, 45, 55, 39170, 29833, 11, 288, 5907, 13, 411, 14375, 13, 2949, 33706, 2599, 198, 197, 197, 197, 7783, 6045, 628, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 198, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 198, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 198, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 198, 197, 4299, 2198, 1532, 34, 32656, 4061, 7, 944, 11, 20966, 21975, 2599, 198, 197, 197, 37811, 198, 197, 197, 35561, 611, 281, 6101, 2209, 698, 28079, 284, 9084, 1689, 72, 393, 611, 340, 318, 407, 281, 9084, 1689, 72, 6101, 13, 632, 3544, 262, 7294, 3141, 366, 4774, 1, 319, 3341, 198, 197, 197, 5562, 6971, 340, 13, 25974, 11, 340, 3544, 262, 3141, 36545, 5460, 929, 13, 628, 197, 197, 197, 9218, 4775, 7159, 25, 198, 197, 197, 197, 197, 541, 21975, 628, 197, 197, 197, 13615, 10007, 25, 198, 197, 197, 197, 197, 32, 25131, 6056, 1912, 319, 1771, 262, 869, 5860, 257, 2081, 393, 257, 3991, 13, 198, 197, 197, 37811, 198, 197, 197, 20274, 796, 10352, 198, 197, 197, 628, 197, 197, 28311, 25, 198, 197, 197, 197, 361, 28686, 13, 3672, 796, 2625, 429, 1298, 198, 197, 197, 197, 197, 4363, 796, 965, 357, 850, 14681, 13, 9122, 62, 22915, 7, 17816, 5907, 5460, 929, 3256, 541, 21975, 12962, 1267, 198, 197, 197, 197, 197, 4798, 7, 4363, 8, 198, 197, 197, 197, 197, 361, 1217, 13, 19796, 10786, 461, 1689, 72, 6, 2599, 198, 197, 197, 197, 197, 197, 20274, 28, 17821, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 4363, 796, 965, 7, 850, 14681, 13, 9122, 62, 22915, 7, 17816, 4774, 3256, 20966, 21975, 12962, 1267, 198, 197, 197, 197, 197, 4798, 357, 4363, 8, 198, 197, 197, 197, 197, 4363, 796, 1217, 13, 35312, 10786, 705, 8, 198, 197, 197, 197, 197, 361, 18896, 7, 4363, 8, 18189, 20, 25, 198, 197, 197, 197, 197, 197, 361, 1217, 58, 19, 4083, 19796, 10786, 461, 1689, 72, 11537, 1875, 532, 16, 25, 198, 197, 197, 197, 197, 197, 197, 20274, 28, 17821, 198, 197, 197, 16341, 850, 14681, 13, 34, 4262, 18709, 12331, 25, 198, 197, 197, 197, 6603, 197, 197, 198, 197, 197, 7783, 1255, 198, 197, 31, 12543, 310, 10141, 13, 75, 622, 62, 23870, 3419, 628, 198, 197, 197, 220, 198, 197, 197, 220, 198, 197, 197, 220, 198, 197, 197, 220, 198, 197, 197, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 197, 86, 796, 27323, 2848, 3419, 198 ]
2.788568
3,604
import time from urllib import parse as url_parse import pytest from page_get import ( get_cont_of_weibo, get_page, get_profile) from tasks.comment import crawl_comment_by_page from tasks.repost import crawl_repost_by_page from tests import REQUEST_INTERNAL HOME_AJAX_URL = 'http://weibo.com/p/aj/v6/mblog/mbloglist?ajwvr=6&domain={}&pagebar={}&is_ori=1&id={}{}&page={}' \ '&pre_page={}&__rnd={}' @pytest.mark.parametrize( 'mid', ['4158010915826421', '4159555900113636'] ) @pytest.mark.parametrize( 'uid, expect', [ ('1371731565', 'Miss'), ('1642351362', 'angelababy') ])
[ 11748, 640, 198, 6738, 2956, 297, 571, 1330, 21136, 355, 19016, 62, 29572, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 2443, 62, 1136, 1330, 357, 198, 220, 220, 220, 651, 62, 3642, 62, 1659, 62, 732, 26762, 11, 651, 62, 7700, 11, 651, 62, 13317, 8, 198, 6738, 8861, 13, 23893, 1330, 27318, 62, 23893, 62, 1525, 62, 7700, 198, 6738, 8861, 13, 260, 7353, 1330, 27318, 62, 260, 7353, 62, 1525, 62, 7700, 198, 6738, 5254, 1330, 4526, 35780, 62, 1268, 31800, 1847, 628, 198, 39069, 62, 32, 41, 25922, 62, 21886, 796, 705, 4023, 1378, 732, 26762, 13, 785, 14, 79, 14, 1228, 14, 85, 21, 14, 2022, 6404, 14, 2022, 6404, 4868, 30, 1228, 86, 37020, 28, 21, 5, 27830, 34758, 92, 5, 7700, 5657, 34758, 92, 5, 271, 62, 10145, 28, 16, 5, 312, 34758, 18477, 92, 5, 7700, 34758, 92, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5, 3866, 62, 7700, 34758, 92, 5, 834, 81, 358, 34758, 92, 6, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 13602, 3256, 37250, 19, 21273, 486, 2931, 21273, 18897, 2481, 3256, 705, 19, 19707, 2816, 3270, 405, 1157, 2623, 2623, 20520, 198, 8, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 705, 27112, 11, 1607, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19708, 25399, 1314, 2996, 3256, 705, 17140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 23237, 22370, 1485, 5237, 3256, 705, 8368, 397, 3930, 11537, 198, 220, 220, 220, 33761, 628 ]
2.235714
280
from glmnet import ElasticNet import io import numpy as np import pandas as pd import requests from sklearn.preprocessing import StandardScaler # Load data url = 'https://raw.githubusercontent.com/CCS-Lab/easyml/master/Python/datasets/prostate.csv' s = requests.get(url).content prostate = pd.read_csv(io.StringIO(s.decode('utf-8'))) # Generate coefficients from data by hand X, y = prostate.drop('lpsa', axis=1).values, prostate['lpsa'].values sclr = StandardScaler() X_preprocessed = sclr.fit_transform(X) # no random state coefficients = [] for i in range(10): model = ElasticNet(alpha=1, standardize=False, cut_point=0.0, n_lambda=200) print(id(model)) model.fit(X_preprocessed, y) coefficients.append(np.asarray(model.coef_)) print(coefficients) # seed set at outer level np.random.seed(43210) coefficients = [] for i in range(10): model = ElasticNet(alpha=1, standardize=False, cut_point=0.0, n_lambda=200) print(id(model)) model.fit(X_preprocessed, y) coefficients.append(np.asarray(model.coef_)) print(coefficients) # seed set at inner level coefficients = [] for i in range(10): np.random.seed(43210) model = ElasticNet(alpha=1, standardize=False, cut_point=0.0, n_lambda=200) print(id(model)) model.fit(X_preprocessed, y) coefficients.append(np.asarray(model.coef_)) print(coefficients) # seed set at function level coefficients = [] for i in range(10): random_state = np.random.RandomState(i) model = ElasticNet(alpha=1, standardize=False, cut_point=0.0, n_lambda=200, random_state=random_state) print(id(model)) model.fit(X_preprocessed, y) coefficients.append(np.asarray(model.coef_)) print(coefficients) coefficients = [] random_state = np.random.RandomState(43210) for i in range(10): model = ElasticNet(alpha=1, standardize=False, cut_point=0.0, n_lambda=200, random_state=random_state) print(id(model)) model.fit(X_preprocessed, y) coefficients.append(np.asarray(model.coef_)) print(coefficients)
[ 6738, 1278, 76, 3262, 1330, 48567, 7934, 198, 11748, 33245, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 7007, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 628, 198, 2, 8778, 1366, 198, 6371, 796, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 4093, 50, 12, 17822, 14, 38171, 4029, 14, 9866, 14, 37906, 14, 19608, 292, 1039, 14, 1676, 5219, 13, 40664, 6, 198, 82, 796, 7007, 13, 1136, 7, 6371, 737, 11299, 198, 1676, 5219, 796, 279, 67, 13, 961, 62, 40664, 7, 952, 13, 10100, 9399, 7, 82, 13, 12501, 1098, 10786, 40477, 12, 23, 6, 22305, 198, 198, 2, 2980, 378, 44036, 422, 1366, 416, 1021, 198, 55, 11, 331, 796, 26711, 13, 14781, 10786, 75, 862, 64, 3256, 16488, 28, 16, 737, 27160, 11, 26711, 17816, 75, 862, 64, 6, 4083, 27160, 198, 38528, 81, 796, 8997, 3351, 36213, 3419, 198, 55, 62, 3866, 14681, 276, 796, 264, 565, 81, 13, 11147, 62, 35636, 7, 55, 8, 198, 198, 2, 645, 4738, 1181, 198, 1073, 41945, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 2746, 796, 48567, 7934, 7, 26591, 28, 16, 11, 3210, 1096, 28, 25101, 11, 2005, 62, 4122, 28, 15, 13, 15, 11, 299, 62, 50033, 28, 2167, 8, 198, 220, 220, 220, 3601, 7, 312, 7, 19849, 4008, 198, 220, 220, 220, 2746, 13, 11147, 7, 55, 62, 3866, 14681, 276, 11, 331, 8, 198, 220, 220, 220, 44036, 13, 33295, 7, 37659, 13, 292, 18747, 7, 19849, 13, 1073, 891, 62, 4008, 198, 4798, 7, 1073, 41945, 8, 198, 198, 2, 9403, 900, 379, 12076, 1241, 198, 37659, 13, 25120, 13, 28826, 7, 45331, 940, 8, 198, 1073, 41945, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 2746, 796, 48567, 7934, 7, 26591, 28, 16, 11, 3210, 1096, 28, 25101, 11, 2005, 62, 4122, 28, 15, 13, 15, 11, 299, 62, 50033, 28, 2167, 8, 198, 220, 220, 220, 3601, 7, 312, 7, 19849, 4008, 198, 220, 220, 220, 2746, 13, 11147, 7, 55, 62, 3866, 14681, 276, 11, 331, 8, 198, 220, 220, 220, 44036, 13, 33295, 7, 37659, 13, 292, 18747, 7, 19849, 13, 1073, 891, 62, 4008, 198, 4798, 7, 1073, 41945, 8, 198, 198, 2, 9403, 900, 379, 8434, 1241, 198, 1073, 41945, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 45331, 940, 8, 198, 220, 220, 220, 2746, 796, 48567, 7934, 7, 26591, 28, 16, 11, 3210, 1096, 28, 25101, 11, 2005, 62, 4122, 28, 15, 13, 15, 11, 299, 62, 50033, 28, 2167, 8, 198, 220, 220, 220, 3601, 7, 312, 7, 19849, 4008, 198, 220, 220, 220, 2746, 13, 11147, 7, 55, 62, 3866, 14681, 276, 11, 331, 8, 198, 220, 220, 220, 44036, 13, 33295, 7, 37659, 13, 292, 18747, 7, 19849, 13, 1073, 891, 62, 4008, 198, 4798, 7, 1073, 41945, 8, 198, 198, 2, 9403, 900, 379, 2163, 1241, 198, 1073, 41945, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 4738, 62, 5219, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 72, 8, 198, 220, 220, 220, 2746, 796, 48567, 7934, 7, 26591, 28, 16, 11, 3210, 1096, 28, 25101, 11, 2005, 62, 4122, 28, 15, 13, 15, 11, 299, 62, 50033, 28, 2167, 11, 4738, 62, 5219, 28, 25120, 62, 5219, 8, 198, 220, 220, 220, 3601, 7, 312, 7, 19849, 4008, 198, 220, 220, 220, 2746, 13, 11147, 7, 55, 62, 3866, 14681, 276, 11, 331, 8, 198, 220, 220, 220, 44036, 13, 33295, 7, 37659, 13, 292, 18747, 7, 19849, 13, 1073, 891, 62, 4008, 198, 4798, 7, 1073, 41945, 8, 198, 198, 1073, 41945, 796, 17635, 198, 25120, 62, 5219, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 45331, 940, 8, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 2746, 796, 48567, 7934, 7, 26591, 28, 16, 11, 3210, 1096, 28, 25101, 11, 2005, 62, 4122, 28, 15, 13, 15, 11, 299, 62, 50033, 28, 2167, 11, 4738, 62, 5219, 28, 25120, 62, 5219, 8, 198, 220, 220, 220, 3601, 7, 312, 7, 19849, 4008, 198, 220, 220, 220, 2746, 13, 11147, 7, 55, 62, 3866, 14681, 276, 11, 331, 8, 198, 220, 220, 220, 44036, 13, 33295, 7, 37659, 13, 292, 18747, 7, 19849, 13, 1073, 891, 62, 4008, 198, 4798, 7, 1073, 41945, 8, 198 ]
2.655218
757
#!/usr/bin/env python3 # This script compares AppGene files for similiarty # Run this script in terminal / command line to see the usage of arguments. import os import argparse from sklearn.feature_extraction.text import HashingVectorizer import json import re from sklearn.metrics.pairwise import cosine_similarity import numpy import subprocess import time from pprint import pprint import itertools import gc import random import hashlib hashFeatureNumber = 2 ** 16 nGramRange = (16, 16) tmpDir = os.path.curdir jsonStopCharRe = re.compile(",|:|,|{|}|\"") def getAllFilesOfExtension(rootDir, extension): """Traverse a directory tree and find all the files with a specified extension Args: rootDir: The directory to traverse extension: The extension Returns: A list of files """ fileList = [] for (dirPath, dirNames, fileNames) in os.walk(rootDir): for baseName in fileNames: if baseName.endswith(extension): fileList.append((dirPath, baseName)) return fileList def customTokenizer(input): """Tokenise transformed Smali instructions. Args: input: Lines of transformed instructions Returns: An array of transformed instructions """ return re.split("\n", input) def getHashVector(content): """Get hash vector of transformed Smali instructions. Args: input: Lines of transformed instructions Returns: Hash vector """ hashVectorizer = HashingVectorizer(n_features=hashFeatureNumber, tokenizer=customTokenizer, ngram_range=nGramRange) return hashVectorizer.transform([content]) def loadJSONFromFile(filename): """A generic function to read a JSON file. Args: filename: The full filename for the JSON file Returns: The object loaded from JSON """ jsonFile = open(filename, "r") theObject = json.load(jsonFile) jsonFile.close() return theObject def writeTextToBufferDir(baseFilename, text): """Write text to a file in the buffer directory. Args: baseFilename: Base filename of the target file text: The text to be written to the file Returns: Full filename of the target file """ bufferFilename = os.path.join(tmpDir, baseFilename) bufferFile = open(bufferFilename, "w") bufferFile.write(text) bufferFile.close() return bufferFilename def getTextSHA256(plaintext): """Get the SHA256 hash value of plaintext. Args: plaintext: The plaintext Returns: Hash value represneted in Hex string """ textHash = hashlib.sha256(plaintext) return "%s" % textHash.hexdigest() def getHashInArray(arr): """Get the SHA256 hash values of elements in an array. Args: arr: The array Returns: An array of hash values (represneted in Hex string) """ return [getTextSHA256(t.encode("utf-8")) for t in arr] def diffContentPairAsFiles(file1Content, file2Content): """Use the operating system's wdiff utility to compare two files. Args: file1Content: Content of the first file file2Content: Content of the second file Returns: Result object with properties: union, intersection and ratio """ diffResult = {"ratio": float(0), "intersection": float(0), "union": float(0)} try: tmpFilename1 = writeTextToBufferDir("_diff_tmp1_{}".format(time.time()), file1Content) tmpFilename2 = writeTextToBufferDir("_diff_tmp2_{}".format(time.time()), file2Content) diffOuput = subprocess.run("wdiff -s -1 -2 -3 {} {}".format(tmpFilename1, tmpFilename2), check=False, stdout=subprocess.PIPE, shell=True).stdout.decode("utf-8") # Parse the output of wdiff diffOuput = diffOuput.replace(" word ", " words ").split("\n") file1ResultSegments = diffOuput[0].split(" ") file2ResultSegments = diffOuput[1].split(" ") words = int(file1ResultSegments[file1ResultSegments.index("words") - 1]) if words > 0: common = float(file1ResultSegments[file1ResultSegments.index("common") - 2]) file1Total = float(file1ResultSegments[file1ResultSegments.index("words") - 1]) file2Total = float(file2ResultSegments[file2ResultSegments.index("words") - 1]) diffResult["union"] = (file1Total + file2Total - common) diffResult["intersection"] = common diffResult["ratio"] = float(diffResult["intersection"]) / float(diffResult["union"]) os.remove(tmpFilename1) os.remove(tmpFilename2) except: print("pair diff failed - {} {}".format(tmpFilename1, tmpFilename2)) gc.collect(2) return diffResult def diffMarkupPairs(content1, content2): """Compare two markup (XML) files by their common attribute-value pairs and common values. Args: content1: Extracted attribute-value pairs content2: Extracted values Returns: Result object with properties: byAttributeValuePair and byValue (both of the same structure as the output from diffContentPairAsFiles) """ pairResult = {"byAttributeValuePair": None, "byValue": None} content1 = jsonStopCharRe.sub("", content1) content2 = jsonStopCharRe.sub("", content2) if not ((not content1) and (not content2)): pairResult["byAttributeValuePair"] = diffContentPairAsFiles(content1.replace(" ", "_").replace("\n", " "), content2.replace(" ", "_").replace("\n", " ")) pairResult["byValue"] = diffContentPairAsFiles(content1.replace("\n", " "), content2.replace("\n", " ")) return pairResult def getJaccardSimilarity(arr1, arr2): """Get the Jaccard similarity of two arrays Args: arr1: The first array arr1: The second array Returns: Result object with properties: union, intersection and ratio """ jaccardSimResult = {"ratio": float(0), "intersection": float(len(numpy.intersect1d(arr1, arr2, assume_unique=True))), "union": float(len(numpy.union1d(arr1, arr2)))} if jaccardSimResult["union"] > float(0): jaccardSimResult["ratio"] = jaccardSimResult["intersection"] / jaccardSimResult["union"] return jaccardSimResult def getEmptyJaccardResult(): """Get as empty Jaccard similarity result object. Returns: Result object with properties: union, intersection and ratio (all values are 0) """ return {"ratio": 0, "intersection": 0, "union": 0} def compareGenes(gene1, gene2): """Compare a pair of AppGene objects Args: gene1: The first AppGene object gene2: The second AppGene object Returns: Result object with properties: smali: cosineSimilarity: The cosine similarity of the hash vectors of AppGene pairs byLine: The union, intersection and ratio (Jaccard Similarity) of transformed Smali instructions by line 1-gram: The union, intersection and ratio (Jaccard Similarity) of transformed Smali instructions by opcode and argument namespace: The union, intersection and ratio (Jaccard Similarity) of namespaces (code package names in full) markup: names: The union, intersection and ratio (Jaccard Similarity) of attribute names in markup (XML) files values: The union, intersection and ratio (Jaccard Similarity) of attribute values in markup (XML) files media: exactDuplicates: The union, intersection and ratio (Jaccard Similarity) of pHash (perceptual hash) values of image files nearDuplicates: The union, intersection and ratio (Jaccard Similarity) of SHA256 values of all other resource files permission: android: The union, intersection and ratio (Jaccard Similarity) of Android permissions non-android: The union, intersection and ratio (Jaccard Similarity) of custom permissions """ result = {"smali": {}, "namespace": {}, "markup": {}, "media": {}, "permission": {}} try: print("Comparing vectorised code ...") result["smali"]["cosineSimilarity"] = cosine_similarity(gene1["features"]["smaliVector"], gene2["features"]["smaliVector"]).item(0) except: print("Failed to compare vectorised code") result["smali"]["cosineSimilarity"] = 0 try: print("Comparing disassembled code ...") result["smali"]["byLine"] = diffContentPairAsFiles(gene1["smali"].replace(" ", "_"), gene2["smali"].replace(" ", "_")) result["smali"]["1-gram"] = diffContentPairAsFiles(gene1["smali"].replace("\n", " "), gene2["smali"].replace("\n", " ")) except: print("Failed to compare disassembled code") result["smali"]["byLine"] = getEmptyJaccardResult() result["smali"]["1-gram"] = getEmptyJaccardResult() try: print("Comparing permissions ...") result["permission"] = { "android": getJaccardSimilarity([pf for pf in gene1["permission-feature"] if pf.startswith("android.")], [pf for pf in gene2["permission-feature"] if pf.startswith("android.")]), "non-android": getJaccardSimilarity( [pf for pf in gene1["permission-feature"] if not pf.startswith("android.")], [pf for pf in gene2["permission-feature"] if not pf.startswith("android.")])} except: print("Failed to compare permissions") result["permission"]["android"] = getEmptyJaccardResult() result["permission"]["non-android"] = getEmptyJaccardResult() try: print("Comparing namespaces ...") result["namespace"] = getJaccardSimilarity(gene1["namespace"], gene2["namespace"]) except: print("Failed to compare namespaces") result["namespace"] = getEmptyJaccardResult() try: print("Comparing media files ...") result["media"]["exactDuplicates"] = getJaccardSimilarity(gene1["features"]["media_sha256"], gene2["features"]["media_sha256"]) result["media"]["nearDuplicates"] = getJaccardSimilarity(gene1["features"]["media_phash"], gene2["features"]["media_phash"]) except: print("Failed to media files") result["media"]["exactDuplicates"] = getEmptyJaccardResult() result["media"]["nearDuplicates"] = getEmptyJaccardResult() try: print("Comparing markup files ...") result["markup"]["names"] = getJaccardSimilarity(getHashInArray(gene1["markup"]["names"]), getHashInArray(gene2["markup"]["names"])) result["markup"]["values"] = getJaccardSimilarity(getHashInArray(gene1["markup"]["values"]), getHashInArray(gene2["markup"]["values"])) except: print("Failed to markup files") result["markup"]["names"] = getEmptyJaccardResult() result["markup"]["values"] = getEmptyJaccardResult() return result def computeFeatures(geneObject): """Vectorise and Smali code and hash the resource files. Args: geneObject: AppGene object Returns: The AppGene object with a new property "features" with properties: smaliVector: The hash vector of transformed Smali code media_phash: List of pHash (perceptual hash) values of image files media_sha256: List of SHA256 values of all other resource files """ geneObject["features"] = {} geneObject["features"]["smaliVector"] = getHashVector(geneObject["smali"]) geneObject["features"]["media_phash"] = list(geneObject["media"]["phash"].keys()) geneObject["features"]["media_sha256"] = list(geneObject["media"]["sha256"].keys()) return geneObject def dumpObjectAsJson(obj, filename): """Write/dump an object to a JSON file. Args: obj: The object to be dumped filename: The full filename of the target file Returns: None """ outputFileHandler = open(filename, "w") json.dump(obj, outputFileHandler, indent=4, ensure_ascii=False, sort_keys=True) outputFileHandler.close() def comparePair(geneFilename1, geneFilename2): """Load two AppGenes from JSON files and pass them to the compareGenes function. Args: geneFilename1: The object to be dumped geneFilename2: The full filename for the target file Returns: The same result object as the compareGenes function, supplemented by a new property "pair": an array containing the ids and version codes of the two AppGenes (see the code below for the structure). """ result = None print("About to process {} and {}".format(geneFilename1, geneFilename2)) try: gene1 = loadJSONFromFile(geneFilename1) gene1 = computeFeatures(gene1) gene2 = loadJSONFromFile(geneFilename2) gene2 = computeFeatures(gene2) print("Comparing {} to {}".format(gene1["appID"], gene2["appID"])) result = compareGenes(gene1, gene2) result["pair"] = [] result["pair"].extend([{"id": gene1["appID"], "version": gene1["appVersion"]}, {"id": gene2["appID"], "version": gene2["appVersion"]}]) except: print("Comparison failed") gc.collect() return result def compareAppGenesInDir(geneFileList, shuffle): """Generate all combinations of AppGene pairs of AppGene files on a list and then compare them. Args: geneFileList: List of full filenames for AppGene files shuffle: (bool) Whether the combinations are shuffled Returns: A list of results of compared pairs. (See comparePair and compareGenes functions for the strucutre of the results object for each pair.) """ result = [] pairList = list(itertools.combinations(geneFileList, 2)) if shuffle: random.shuffle(pairList) for genePair in pairList: pairResult = comparePair(genePair[0], genePair[1]) if pairResult is not None: result.append(pairResult) dumpObjectAsJson(pairResult, os.path.join(tmpDir, "_tmp_pair_result_{}".format(time.time()))) else: print("Failed to compare pair {} {}".format(genePair[0], genePair[1])) return result if __name__ == '__main__': # The usage of arguemnts is self-explanatory as follows argParser = argparse.ArgumentParser() argParser.add_argument("--mode", choices=["single-pair", "all-pairs"], help="Mode of comparison", required=True) argParser.add_argument("--appgene1", help="AppGene file 1 in single-pair mode") argParser.add_argument("--appgene2", help="AppGene file 2 in single-pair mode") argParser.add_argument("--geneDir", help="Directory containing AppGene files in all-pairs mode") argParser.add_argument("--bufferDir", help="Directory for temporary files", default=os.getenv("COMPARE_TEMP_DIR", os.path.curdir)) argParser.add_argument("--shuffle", help="Shuffle the order of AppGene pairs (applicable to all-pairs mode only)", action="store_true") argParser.add_argument("--outputFile", help="Result file to be saved", required=True) args = argParser.parse_args() tmpDir = os.path.realpath(args.bufferDir) outputResult = {} if args.mode == "single-pair": outputResult = comparePair(os.path.realpath(args.appgene1), os.path.realpath(args.appgene2)) elif args.mode == "all-pairs": geneRootDir = os.path.realpath(args.geneDir) allAppGeneFiles = list( os.path.join(geneFile[0], geneFile[1]) for geneFile in getAllFilesOfExtension(geneRootDir, ".appgene")) outputResult = compareAppGenesInDir(allAppGeneFiles, args.shuffle) pprint(outputResult) dumpObjectAsJson(outputResult, args.outputFile)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 770, 4226, 23008, 2034, 39358, 3696, 329, 985, 2403, 25494, 198, 2, 5660, 428, 4226, 287, 12094, 1220, 3141, 1627, 284, 766, 262, 8748, 286, 7159, 13, 198, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 367, 2140, 38469, 7509, 198, 11748, 33918, 198, 11748, 302, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 8615, 500, 62, 38610, 414, 198, 11748, 299, 32152, 198, 11748, 850, 14681, 198, 11748, 640, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 11748, 340, 861, 10141, 198, 11748, 308, 66, 198, 11748, 4738, 198, 11748, 12234, 8019, 198, 198, 17831, 38816, 15057, 796, 362, 12429, 1467, 198, 77, 38, 859, 17257, 796, 357, 1433, 11, 1467, 8, 198, 22065, 35277, 796, 28686, 13, 6978, 13, 66, 2799, 343, 198, 17752, 19485, 12441, 3041, 796, 302, 13, 5589, 576, 7, 1600, 91, 25, 91, 11, 91, 90, 91, 92, 91, 7879, 4943, 628, 198, 4299, 651, 3237, 25876, 5189, 11627, 3004, 7, 15763, 35277, 11, 7552, 2599, 198, 220, 220, 220, 37227, 15721, 4399, 257, 8619, 5509, 290, 1064, 477, 262, 3696, 351, 257, 7368, 7552, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 35277, 25, 383, 8619, 284, 38138, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7552, 25, 383, 7552, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2393, 8053, 796, 17635, 198, 220, 220, 220, 329, 357, 15908, 15235, 11, 26672, 36690, 11, 2393, 36690, 8, 287, 28686, 13, 11152, 7, 15763, 35277, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2779, 5376, 287, 2393, 36690, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2779, 5376, 13, 437, 2032, 342, 7, 2302, 3004, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 8053, 13, 33295, 19510, 15908, 15235, 11, 2779, 5376, 4008, 198, 220, 220, 220, 1441, 2393, 8053, 628, 198, 4299, 2183, 30642, 7509, 7, 15414, 2599, 198, 220, 220, 220, 37227, 30642, 786, 14434, 2439, 7344, 7729, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 25, 26299, 286, 14434, 7729, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 14434, 7729, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 35312, 7203, 59, 77, 1600, 5128, 8, 628, 198, 4299, 651, 26257, 38469, 7, 11299, 2599, 198, 220, 220, 220, 37227, 3855, 12234, 15879, 286, 14434, 2439, 7344, 7729, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 25, 26299, 286, 14434, 7729, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 21059, 15879, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 12234, 38469, 7509, 796, 367, 2140, 38469, 7509, 7, 77, 62, 40890, 28, 17831, 38816, 15057, 11, 11241, 7509, 28, 23144, 30642, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 4546, 62, 9521, 28, 77, 38, 859, 17257, 8, 198, 220, 220, 220, 1441, 12234, 38469, 7509, 13, 35636, 26933, 11299, 12962, 628, 198, 4299, 3440, 40386, 4863, 8979, 7, 34345, 2599, 198, 220, 220, 220, 37227, 32, 14276, 2163, 284, 1100, 257, 19449, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 383, 1336, 29472, 329, 262, 19449, 2393, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2134, 9639, 422, 19449, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33918, 8979, 796, 1280, 7, 34345, 11, 366, 81, 4943, 198, 220, 220, 220, 262, 10267, 796, 33918, 13, 2220, 7, 17752, 8979, 8, 198, 220, 220, 220, 33918, 8979, 13, 19836, 3419, 198, 220, 220, 220, 1441, 262, 10267, 628, 198, 4299, 3551, 8206, 2514, 28632, 35277, 7, 8692, 35063, 11, 2420, 2599, 198, 220, 220, 220, 37227, 16594, 2420, 284, 257, 2393, 287, 262, 11876, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 35063, 25, 7308, 29472, 286, 262, 2496, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 25, 383, 2420, 284, 307, 3194, 284, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6462, 29472, 286, 262, 2496, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11876, 35063, 796, 28686, 13, 6978, 13, 22179, 7, 22065, 35277, 11, 2779, 35063, 8, 198, 220, 220, 220, 11876, 8979, 796, 1280, 7, 22252, 35063, 11, 366, 86, 4943, 198, 220, 220, 220, 11876, 8979, 13, 13564, 7, 5239, 8, 198, 220, 220, 220, 11876, 8979, 13, 19836, 3419, 198, 220, 220, 220, 1441, 11876, 35063, 628, 198, 4299, 651, 8206, 37596, 11645, 7, 25638, 5239, 2599, 198, 220, 220, 220, 37227, 3855, 262, 25630, 11645, 12234, 1988, 286, 8631, 5239, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 8631, 5239, 25, 383, 8631, 5239, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 21059, 1988, 1128, 411, 3262, 276, 287, 22212, 4731, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 2420, 26257, 796, 12234, 8019, 13, 26270, 11645, 7, 25638, 5239, 8, 198, 220, 220, 220, 1441, 36521, 82, 1, 4064, 2420, 26257, 13, 33095, 12894, 395, 3419, 628, 198, 4299, 651, 26257, 818, 19182, 7, 3258, 2599, 198, 220, 220, 220, 37227, 3855, 262, 25630, 11645, 12234, 3815, 286, 4847, 287, 281, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 25, 383, 7177, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 12234, 3815, 357, 7856, 411, 3262, 276, 287, 22212, 4731, 8, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 685, 1136, 8206, 37596, 11645, 7, 83, 13, 268, 8189, 7203, 40477, 12, 23, 48774, 329, 256, 287, 5240, 60, 628, 198, 4299, 814, 19746, 47, 958, 1722, 25876, 7, 7753, 16, 19746, 11, 2393, 17, 19746, 2599, 198, 220, 220, 220, 37227, 11041, 262, 5361, 1080, 338, 266, 26069, 10361, 284, 8996, 734, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 16, 19746, 25, 14041, 286, 262, 717, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 17, 19746, 25, 14041, 286, 262, 1218, 2393, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 2134, 351, 6608, 25, 6441, 11, 16246, 290, 8064, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 814, 23004, 796, 19779, 10366, 952, 1298, 12178, 7, 15, 828, 366, 3849, 5458, 1298, 12178, 7, 15, 828, 366, 24592, 1298, 12178, 7, 15, 38165, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 35063, 16, 796, 3551, 8206, 2514, 28632, 35277, 7203, 62, 26069, 62, 22065, 16, 23330, 92, 1911, 18982, 7, 2435, 13, 2435, 3419, 828, 2393, 16, 19746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 35063, 17, 796, 3551, 8206, 2514, 28632, 35277, 7203, 62, 26069, 62, 22065, 17, 23330, 92, 1911, 18982, 7, 2435, 13, 2435, 3419, 828, 2393, 17, 19746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 814, 46, 929, 315, 796, 850, 14681, 13, 5143, 7203, 16993, 733, 532, 82, 532, 16, 532, 17, 532, 18, 23884, 23884, 1911, 18982, 7, 22065, 35063, 16, 11, 45218, 35063, 17, 828, 2198, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 7582, 28, 17821, 737, 19282, 448, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 5072, 286, 266, 26069, 198, 220, 220, 220, 220, 220, 220, 220, 814, 46, 929, 315, 796, 814, 46, 929, 315, 13, 33491, 7203, 1573, 33172, 366, 2456, 366, 737, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 16, 23004, 41030, 902, 796, 814, 46, 929, 315, 58, 15, 4083, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 17, 23004, 41030, 902, 796, 814, 46, 929, 315, 58, 16, 4083, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 493, 7, 7753, 16, 23004, 41030, 902, 58, 7753, 16, 23004, 41030, 902, 13, 9630, 7203, 10879, 4943, 532, 352, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2456, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2219, 796, 12178, 7, 7753, 16, 23004, 41030, 902, 58, 7753, 16, 23004, 41030, 902, 13, 9630, 7203, 11321, 4943, 532, 362, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 16, 14957, 796, 12178, 7, 7753, 16, 23004, 41030, 902, 58, 7753, 16, 23004, 41030, 902, 13, 9630, 7203, 10879, 4943, 532, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 17, 14957, 796, 12178, 7, 7753, 17, 23004, 41030, 902, 58, 7753, 17, 23004, 41030, 902, 13, 9630, 7203, 10879, 4943, 532, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 23004, 14692, 24592, 8973, 796, 357, 7753, 16, 14957, 1343, 2393, 17, 14957, 532, 2219, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 23004, 14692, 3849, 5458, 8973, 796, 2219, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 23004, 14692, 10366, 952, 8973, 796, 12178, 7, 26069, 23004, 14692, 3849, 5458, 8973, 8, 1220, 12178, 7, 26069, 23004, 14692, 24592, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 22065, 35063, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 22065, 35063, 17, 8, 628, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24874, 814, 4054, 532, 23884, 23884, 1911, 18982, 7, 22065, 35063, 16, 11, 45218, 35063, 17, 4008, 628, 220, 220, 220, 308, 66, 13, 33327, 7, 17, 8, 198, 220, 220, 220, 1441, 814, 23004, 628, 198, 4299, 814, 9704, 929, 47, 3468, 7, 11299, 16, 11, 2695, 17, 2599, 198, 220, 220, 220, 37227, 41488, 734, 41485, 357, 55, 5805, 8, 3696, 416, 511, 2219, 11688, 12, 8367, 14729, 290, 2219, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 16, 25, 5683, 20216, 11688, 12, 8367, 14729, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 17, 25, 5683, 20216, 3815, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 2134, 351, 6608, 25, 416, 33682, 11395, 47, 958, 290, 416, 11395, 357, 16885, 286, 262, 976, 4645, 355, 262, 5072, 422, 814, 19746, 47, 958, 1722, 25876, 8, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 5166, 23004, 796, 19779, 1525, 33682, 11395, 47, 958, 1298, 6045, 11, 366, 1525, 11395, 1298, 6045, 92, 198, 220, 220, 220, 2695, 16, 796, 33918, 19485, 12441, 3041, 13, 7266, 7203, 1600, 2695, 16, 8, 198, 220, 220, 220, 2695, 17, 796, 33918, 19485, 12441, 3041, 13, 7266, 7203, 1600, 2695, 17, 8, 628, 220, 220, 220, 611, 407, 14808, 1662, 2695, 16, 8, 290, 357, 1662, 2695, 17, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 23004, 14692, 1525, 33682, 11395, 47, 958, 8973, 796, 814, 19746, 47, 958, 1722, 25876, 7, 11299, 16, 13, 33491, 7203, 33172, 45434, 11074, 33491, 7203, 59, 77, 1600, 366, 366, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 17, 13, 33491, 7203, 33172, 45434, 11074, 33491, 7203, 59, 77, 1600, 366, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 23004, 14692, 1525, 11395, 8973, 796, 814, 19746, 47, 958, 1722, 25876, 7, 11299, 16, 13, 33491, 7203, 59, 77, 1600, 366, 366, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 17, 13, 33491, 7203, 59, 77, 1600, 366, 366, 4008, 198, 220, 220, 220, 1441, 5166, 23004, 628, 198, 4299, 651, 41, 4134, 446, 18925, 414, 7, 3258, 16, 11, 5240, 17, 2599, 198, 220, 220, 220, 37227, 3855, 262, 449, 4134, 446, 26789, 286, 734, 26515, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 16, 25, 383, 717, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 16, 25, 383, 1218, 7177, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 2134, 351, 6608, 25, 6441, 11, 16246, 290, 8064, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 198, 220, 220, 220, 474, 4134, 446, 8890, 23004, 796, 19779, 10366, 952, 1298, 12178, 7, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3849, 5458, 1298, 12178, 7, 11925, 7, 77, 32152, 13, 3849, 8831, 16, 67, 7, 3258, 16, 11, 5240, 17, 11, 7048, 62, 34642, 28, 17821, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24592, 1298, 12178, 7, 11925, 7, 77, 32152, 13, 24592, 16, 67, 7, 3258, 16, 11, 5240, 17, 22305, 92, 198, 220, 220, 220, 611, 474, 4134, 446, 8890, 23004, 14692, 24592, 8973, 1875, 12178, 7, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 474, 4134, 446, 8890, 23004, 14692, 10366, 952, 8973, 796, 474, 4134, 446, 8890, 23004, 14692, 3849, 5458, 8973, 1220, 474, 4134, 446, 8890, 23004, 14692, 24592, 8973, 198, 220, 220, 220, 1441, 474, 4134, 446, 8890, 23004, 628, 198, 4299, 651, 40613, 41, 4134, 446, 23004, 33529, 198, 220, 220, 220, 37227, 3855, 355, 6565, 449, 4134, 446, 26789, 1255, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 2134, 351, 6608, 25, 6441, 11, 16246, 290, 8064, 357, 439, 3815, 389, 657, 8, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 19779, 10366, 952, 1298, 657, 11, 366, 3849, 5458, 1298, 657, 11, 366, 24592, 1298, 657, 92, 628, 198, 4299, 8996, 13746, 274, 7, 70, 1734, 16, 11, 9779, 17, 2599, 198, 220, 220, 220, 37227, 41488, 257, 5166, 286, 2034, 39358, 5563, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 16, 25, 383, 717, 2034, 39358, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 25, 383, 1218, 2034, 39358, 2134, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 2134, 351, 6608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 7344, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8615, 500, 18925, 414, 25, 383, 8615, 500, 26789, 286, 262, 12234, 30104, 286, 2034, 39358, 14729, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 416, 13949, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 14434, 2439, 7344, 7729, 416, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 12, 4546, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 14434, 2439, 7344, 7729, 416, 1034, 8189, 290, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 3891, 43076, 357, 8189, 5301, 3891, 287, 1336, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41485, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 11688, 3891, 287, 41485, 357, 55, 5805, 8, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 11688, 3815, 287, 41485, 357, 55, 5805, 8, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2748, 35660, 489, 16856, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 22918, 1077, 357, 525, 984, 723, 12234, 8, 3815, 286, 2939, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1474, 35660, 489, 16856, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 25630, 11645, 3815, 286, 477, 584, 8271, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7170, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19286, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 5565, 21627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 12, 19411, 25, 383, 6441, 11, 16246, 290, 8064, 357, 41, 4134, 446, 11014, 414, 8, 286, 2183, 21627, 198, 220, 220, 220, 37227, 220, 220, 628, 220, 220, 220, 1255, 796, 19779, 5796, 7344, 1298, 1391, 5512, 366, 14933, 10223, 1298, 1391, 5512, 366, 4102, 929, 1298, 1391, 5512, 366, 11431, 1298, 1391, 5512, 366, 525, 3411, 1298, 1391, 11709, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 15879, 1417, 2438, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 6966, 500, 18925, 414, 8973, 796, 8615, 500, 62, 38610, 414, 7, 70, 1734, 16, 14692, 40890, 1, 7131, 1, 5796, 7344, 38469, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 14692, 40890, 1, 7131, 1, 5796, 7344, 38469, 8973, 737, 9186, 7, 15, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 8996, 15879, 1417, 2438, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 6966, 500, 18925, 414, 8973, 796, 657, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 595, 46826, 2438, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 1525, 13949, 8973, 796, 814, 19746, 47, 958, 1722, 25876, 7, 70, 1734, 16, 14692, 5796, 7344, 1, 4083, 33491, 7203, 33172, 45434, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 14692, 5796, 7344, 1, 4083, 33491, 7203, 33172, 45434, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 16, 12, 4546, 8973, 796, 814, 19746, 47, 958, 1722, 25876, 7, 70, 1734, 16, 14692, 5796, 7344, 1, 4083, 33491, 7203, 59, 77, 1600, 366, 366, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 14692, 5796, 7344, 1, 4083, 33491, 7203, 59, 77, 1600, 366, 366, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 8996, 595, 46826, 2438, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 1525, 13949, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 5796, 7344, 1, 7131, 1, 16, 12, 4546, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 21627, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 525, 3411, 8973, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19411, 1298, 651, 41, 4134, 446, 18925, 414, 26933, 79, 69, 329, 279, 69, 287, 9779, 16, 14692, 525, 3411, 12, 30053, 8973, 611, 279, 69, 13, 9688, 2032, 342, 7203, 19411, 19570, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 79, 69, 329, 279, 69, 287, 9779, 17, 14692, 525, 3411, 12, 30053, 8973, 611, 279, 69, 13, 9688, 2032, 342, 7203, 19411, 526, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13159, 12, 19411, 1298, 651, 41, 4134, 446, 18925, 414, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 79, 69, 329, 279, 69, 287, 9779, 16, 14692, 525, 3411, 12, 30053, 8973, 611, 407, 279, 69, 13, 9688, 2032, 342, 7203, 19411, 19570, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 79, 69, 329, 279, 69, 287, 9779, 17, 14692, 525, 3411, 12, 30053, 8973, 611, 407, 279, 69, 13, 9688, 2032, 342, 7203, 19411, 19570, 12962, 92, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 8996, 21627, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 525, 3411, 1, 7131, 1, 19411, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 525, 3411, 1, 7131, 1, 13159, 12, 19411, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 3891, 43076, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 14933, 10223, 8973, 796, 651, 41, 4134, 446, 18925, 414, 7, 70, 1734, 16, 14692, 14933, 10223, 33116, 9779, 17, 14692, 14933, 10223, 8973, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 8996, 3891, 43076, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 14933, 10223, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 2056, 3696, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 11431, 1, 7131, 1, 1069, 529, 35660, 489, 16856, 8973, 796, 651, 41, 4134, 446, 18925, 414, 7, 70, 1734, 16, 14692, 40890, 1, 7131, 1, 11431, 62, 26270, 11645, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 14692, 40890, 1, 7131, 1, 11431, 62, 26270, 11645, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 11431, 1, 7131, 1, 40093, 35660, 489, 16856, 8973, 796, 651, 41, 4134, 446, 18925, 414, 7, 70, 1734, 16, 14692, 40890, 1, 7131, 1, 11431, 62, 746, 1077, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 14692, 40890, 1, 7131, 1, 11431, 62, 746, 1077, 8973, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 2056, 3696, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 11431, 1, 7131, 1, 1069, 529, 35660, 489, 16856, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 11431, 1, 7131, 1, 40093, 35660, 489, 16856, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 41485, 3696, 35713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 4102, 929, 1, 7131, 1, 14933, 8973, 796, 651, 41, 4134, 446, 18925, 414, 7, 1136, 26257, 818, 19182, 7, 70, 1734, 16, 14692, 4102, 929, 1, 7131, 1, 14933, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 26257, 818, 19182, 7, 70, 1734, 17, 14692, 4102, 929, 1, 7131, 1, 14933, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 4102, 929, 1, 7131, 1, 27160, 8973, 796, 651, 41, 4134, 446, 18925, 414, 7, 1136, 26257, 818, 19182, 7, 70, 1734, 16, 14692, 4102, 929, 1, 7131, 1, 27160, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 26257, 818, 19182, 7, 70, 1734, 17, 14692, 4102, 929, 1, 7131, 1, 27160, 8973, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 41485, 3696, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 4102, 929, 1, 7131, 1, 14933, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 4102, 929, 1, 7131, 1, 27160, 8973, 796, 651, 40613, 41, 4134, 446, 23004, 3419, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 24061, 23595, 7, 70, 1734, 10267, 2599, 198, 220, 220, 220, 37227, 38469, 786, 290, 2439, 7344, 2438, 290, 12234, 262, 8271, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 10267, 25, 2034, 39358, 2134, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2034, 39358, 2134, 351, 257, 649, 3119, 366, 40890, 1, 351, 6608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 7344, 38469, 25, 383, 12234, 15879, 286, 14434, 2439, 7344, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2056, 62, 746, 1077, 25, 7343, 286, 22918, 1077, 357, 525, 984, 723, 12234, 8, 3815, 286, 2939, 3696, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2056, 62, 26270, 11645, 25, 7343, 286, 25630, 11645, 3815, 286, 477, 584, 8271, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9779, 10267, 14692, 40890, 8973, 796, 23884, 198, 220, 220, 220, 9779, 10267, 14692, 40890, 1, 7131, 1, 5796, 7344, 38469, 8973, 796, 651, 26257, 38469, 7, 70, 1734, 10267, 14692, 5796, 7344, 8973, 8, 198, 220, 220, 220, 9779, 10267, 14692, 40890, 1, 7131, 1, 11431, 62, 746, 1077, 8973, 796, 1351, 7, 70, 1734, 10267, 14692, 11431, 1, 7131, 1, 746, 1077, 1, 4083, 13083, 28955, 198, 220, 220, 220, 9779, 10267, 14692, 40890, 1, 7131, 1, 11431, 62, 26270, 11645, 8973, 796, 1351, 7, 70, 1734, 10267, 14692, 11431, 1, 7131, 1, 26270, 11645, 1, 4083, 13083, 28955, 628, 220, 220, 220, 1441, 9779, 10267, 628, 198, 4299, 10285, 10267, 1722, 41, 1559, 7, 26801, 11, 29472, 2599, 198, 220, 220, 220, 37227, 16594, 14, 39455, 281, 2134, 284, 257, 19449, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 25, 383, 2134, 284, 307, 24105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 383, 1336, 29472, 286, 262, 2496, 2393, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5072, 8979, 25060, 796, 1280, 7, 34345, 11, 366, 86, 4943, 198, 220, 220, 220, 33918, 13, 39455, 7, 26801, 11, 5072, 8979, 25060, 11, 33793, 28, 19, 11, 4155, 62, 292, 979, 72, 28, 25101, 11, 3297, 62, 13083, 28, 17821, 8, 198, 220, 220, 220, 5072, 8979, 25060, 13, 19836, 3419, 628, 198, 4299, 8996, 47, 958, 7, 70, 1734, 35063, 16, 11, 9779, 35063, 17, 2599, 198, 220, 220, 220, 37227, 8912, 734, 2034, 13746, 274, 422, 19449, 3696, 290, 1208, 606, 284, 262, 8996, 13746, 274, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 35063, 16, 25, 383, 2134, 284, 307, 24105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 35063, 17, 25, 383, 1336, 29472, 329, 262, 2496, 2393, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 383, 976, 1255, 2134, 355, 262, 8996, 13746, 274, 2163, 11, 41610, 416, 257, 649, 3119, 366, 24874, 1298, 281, 7177, 7268, 262, 220, 2340, 290, 2196, 12416, 286, 262, 734, 2034, 13746, 274, 357, 3826, 262, 2438, 2174, 329, 262, 4645, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 6045, 198, 220, 220, 220, 3601, 7203, 8585, 284, 1429, 23884, 290, 23884, 1911, 18982, 7, 70, 1734, 35063, 16, 11, 9779, 35063, 17, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 16, 796, 3440, 40386, 4863, 8979, 7, 70, 1734, 35063, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 16, 796, 24061, 23595, 7, 70, 1734, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 796, 3440, 40386, 4863, 8979, 7, 70, 1734, 35063, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 17, 796, 24061, 23595, 7, 70, 1734, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7293, 1723, 23884, 284, 23884, 1911, 18982, 7, 70, 1734, 16, 14692, 1324, 2389, 33116, 9779, 17, 14692, 1324, 2389, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 8996, 13746, 274, 7, 70, 1734, 16, 11, 9779, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 24874, 8973, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 24874, 1, 4083, 2302, 437, 26933, 4895, 312, 1298, 9779, 16, 14692, 1324, 2389, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 9779, 16, 14692, 1324, 14815, 8973, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 312, 1298, 9779, 17, 14692, 1324, 2389, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 9779, 17, 14692, 1324, 14815, 8973, 92, 12962, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 50249, 1653, 4054, 4943, 198, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 8996, 4677, 13746, 274, 818, 35277, 7, 70, 1734, 8979, 8053, 11, 36273, 2599, 198, 220, 220, 220, 37227, 8645, 378, 477, 17790, 286, 2034, 39358, 14729, 286, 2034, 39358, 3696, 319, 257, 1351, 290, 788, 8996, 606, 13, 198, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 8979, 8053, 25, 7343, 286, 1336, 1226, 268, 1047, 329, 2034, 39358, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 25, 357, 30388, 8, 10127, 262, 17790, 389, 32299, 992, 198, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 2482, 286, 3688, 14729, 13, 357, 6214, 8996, 47, 958, 290, 8996, 13746, 274, 5499, 329, 262, 2874, 8968, 260, 286, 262, 2482, 2134, 329, 1123, 5166, 2014, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 5166, 8053, 796, 1351, 7, 270, 861, 10141, 13, 24011, 7352, 7, 70, 1734, 8979, 8053, 11, 362, 4008, 198, 220, 220, 220, 611, 36273, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 13, 1477, 18137, 7, 24874, 8053, 8, 198, 220, 220, 220, 329, 9779, 47, 958, 287, 5166, 8053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 23004, 796, 8996, 47, 958, 7, 70, 1734, 47, 958, 58, 15, 4357, 9779, 47, 958, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5166, 23004, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 24874, 23004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10285, 10267, 1722, 41, 1559, 7, 24874, 23004, 11, 28686, 13, 6978, 13, 22179, 7, 22065, 35277, 11, 45434, 22065, 62, 24874, 62, 20274, 23330, 92, 1911, 18982, 7, 2435, 13, 2435, 3419, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 8996, 5166, 23884, 23884, 1911, 18982, 7, 70, 1734, 47, 958, 58, 15, 4357, 9779, 47, 958, 58, 16, 60, 4008, 198, 220, 220, 220, 1441, 1255, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 383, 8748, 286, 1822, 84, 368, 429, 82, 318, 2116, 12, 1069, 11578, 2870, 355, 5679, 198, 220, 220, 220, 1822, 46677, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 14171, 1600, 7747, 28, 14692, 29762, 12, 24874, 1600, 366, 439, 12, 79, 3468, 33116, 1037, 2625, 19076, 286, 7208, 1600, 2672, 28, 17821, 8, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 1324, 70, 1734, 16, 1600, 1037, 2625, 4677, 39358, 2393, 352, 287, 2060, 12, 24874, 4235, 4943, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 1324, 70, 1734, 17, 1600, 1037, 2625, 4677, 39358, 2393, 362, 287, 2060, 12, 24874, 4235, 4943, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 70, 1734, 35277, 1600, 1037, 2625, 43055, 7268, 2034, 39358, 3696, 287, 477, 12, 79, 3468, 4235, 4943, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 22252, 35277, 1600, 1037, 2625, 43055, 329, 8584, 3696, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 418, 13, 1136, 24330, 7203, 9858, 47, 12203, 62, 51, 39494, 62, 34720, 1600, 28686, 13, 6978, 13, 66, 2799, 343, 4008, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 1477, 18137, 1600, 1037, 2625, 2484, 18137, 262, 1502, 286, 2034, 39358, 14729, 357, 1324, 677, 540, 284, 477, 12, 79, 3468, 4235, 691, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 220, 220, 220, 1822, 46677, 13, 2860, 62, 49140, 7203, 438, 22915, 8979, 1600, 1037, 2625, 23004, 2393, 284, 307, 7448, 1600, 2672, 28, 17821, 8, 628, 220, 220, 220, 26498, 796, 1822, 46677, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 45218, 35277, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 22046, 13, 22252, 35277, 8, 628, 220, 220, 220, 5072, 23004, 796, 23884, 628, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 29762, 12, 24874, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 23004, 796, 8996, 47, 958, 7, 418, 13, 6978, 13, 5305, 6978, 7, 22046, 13, 1324, 70, 1734, 16, 828, 28686, 13, 6978, 13, 5305, 6978, 7, 22046, 13, 1324, 70, 1734, 17, 4008, 198, 220, 220, 220, 1288, 361, 26498, 13, 14171, 6624, 366, 439, 12, 79, 3468, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 30016, 35277, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 22046, 13, 70, 1734, 35277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 4677, 39358, 25876, 796, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 70, 1734, 8979, 58, 15, 4357, 9779, 8979, 58, 16, 12962, 329, 9779, 8979, 287, 651, 3237, 25876, 5189, 11627, 3004, 7, 70, 1734, 30016, 35277, 11, 27071, 1324, 70, 1734, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 23004, 796, 8996, 4677, 13746, 274, 818, 35277, 7, 439, 4677, 39358, 25876, 11, 26498, 13, 1477, 18137, 8, 628, 220, 220, 220, 279, 4798, 7, 22915, 23004, 8, 628, 220, 220, 220, 10285, 10267, 1722, 41, 1559, 7, 22915, 23004, 11, 26498, 13, 22915, 8979, 8, 198 ]
2.422909
6,862
from corehq.const import SERVER_DATETIME_FORMAT from corehq.util.timezones.conversions import PhoneTime, ServerTime from corehq.util.timezones.utils import get_timezone
[ 6738, 4755, 71, 80, 13, 9979, 1330, 18871, 5959, 62, 35, 1404, 2767, 12789, 62, 21389, 1404, 198, 6738, 4755, 71, 80, 13, 22602, 13, 2435, 89, 1952, 13, 1102, 47178, 1330, 14484, 7575, 11, 9652, 7575, 198, 6738, 4755, 71, 80, 13, 22602, 13, 2435, 89, 1952, 13, 26791, 1330, 651, 62, 2435, 11340, 628 ]
3.035714
56
from typing import Dict import pandas as pd import warnings from concurrent.futures import ThreadPoolExecutor, TimeoutError from capiq_excel.downloader.timeout import TimeoutWrapper from capiq_excel.fileops import get_path_of_failed_folder_add_if_necessary, move_file_to_failed_folder, get_path_of_additional_failed_folder_add_if_necessary from capiq_excel.workbook.populate.main import populate_capiq_for_file from exceldriver.tools import _start_excel_with_addins_and_attach, _get_excel_running_workbook, _restart_excel_with_addins_and_attach, NoExcelWorkbookException from processfiles.files import FileProcessTracker def populate_all_files_in_folder(folder, financial_data_items_dict: Dict[str, str], market_data_items_dict: Dict[str, str], restart=True, timeout=240, run_failed=False,): """ """ _validate_populate_inputs(folder, restart, run_failed) excel = _start_excel_with_addins_and_attach() failed_folder = get_path_of_failed_folder_add_if_necessary(folder) if run_failed: # Set main folder as 'failed', then set failed folder as another failed folder inside the original folder = failed_folder failed_folder = get_path_of_additional_failed_folder_add_if_necessary(folder) file_tracker = FileProcessTracker(folder=folder, restart=restart, file_types=('xlsx',)) with ThreadPoolExecutor(max_workers=1) as e: for i, file in enumerate(file_tracker.file_generator()): excel, successful = _try_to_get_result_if_fail_restart_excel( e, i, file, excel, financial_data_items_dict=financial_data_items_dict, market_data_items_dict=market_data_items_dict ) if not successful: move_file_to_failed_folder(file, failed_folder) ### Functions below to assist with multiprocessing/timeout handling ## END TEMP
[ 6738, 19720, 1330, 360, 713, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 14601, 198, 6738, 24580, 13, 69, 315, 942, 1330, 14122, 27201, 23002, 38409, 11, 3862, 448, 12331, 198, 198, 6738, 1451, 25011, 62, 1069, 5276, 13, 15002, 263, 13, 48678, 1330, 3862, 448, 36918, 2848, 198, 6738, 1451, 25011, 62, 1069, 5276, 13, 7753, 2840, 1330, 651, 62, 6978, 62, 1659, 62, 47904, 62, 43551, 62, 2860, 62, 361, 62, 49986, 11, 1445, 62, 7753, 62, 1462, 62, 47904, 62, 43551, 11, 651, 62, 6978, 62, 1659, 62, 2860, 1859, 62, 47904, 62, 43551, 62, 2860, 62, 361, 62, 49986, 198, 6738, 1451, 25011, 62, 1069, 5276, 13, 1818, 2070, 13, 12924, 5039, 13, 12417, 1330, 48040, 62, 11128, 25011, 62, 1640, 62, 7753, 198, 6738, 43748, 335, 38291, 13, 31391, 1330, 4808, 9688, 62, 1069, 5276, 62, 4480, 62, 2860, 1040, 62, 392, 62, 47348, 11, 4808, 1136, 62, 1069, 5276, 62, 20270, 62, 1818, 2070, 11, 4808, 2118, 433, 62, 1069, 5276, 62, 4480, 62, 2860, 1040, 62, 392, 62, 47348, 11, 1400, 3109, 5276, 12468, 2070, 16922, 198, 6738, 1429, 16624, 13, 16624, 1330, 9220, 18709, 35694, 628, 198, 198, 4299, 48040, 62, 439, 62, 16624, 62, 259, 62, 43551, 7, 43551, 11, 3176, 62, 7890, 62, 23814, 62, 11600, 25, 360, 713, 58, 2536, 11, 965, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1910, 62, 7890, 62, 23814, 62, 11600, 25, 360, 713, 58, 2536, 11, 965, 4357, 15765, 28, 17821, 11, 26827, 28, 16102, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 47904, 28, 25101, 11, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 12924, 5039, 62, 15414, 82, 7, 43551, 11, 15765, 11, 1057, 62, 47904, 8, 628, 220, 220, 220, 27336, 796, 4808, 9688, 62, 1069, 5276, 62, 4480, 62, 2860, 1040, 62, 392, 62, 47348, 3419, 198, 220, 220, 220, 4054, 62, 43551, 796, 651, 62, 6978, 62, 1659, 62, 47904, 62, 43551, 62, 2860, 62, 361, 62, 49986, 7, 43551, 8, 628, 220, 220, 220, 611, 1057, 62, 47904, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 1388, 9483, 355, 705, 47904, 3256, 788, 900, 4054, 9483, 355, 1194, 4054, 9483, 2641, 262, 2656, 198, 220, 220, 220, 220, 220, 220, 220, 9483, 796, 4054, 62, 43551, 198, 220, 220, 220, 220, 220, 220, 220, 4054, 62, 43551, 796, 651, 62, 6978, 62, 1659, 62, 2860, 1859, 62, 47904, 62, 43551, 62, 2860, 62, 361, 62, 49986, 7, 43551, 8, 628, 220, 220, 220, 2393, 62, 2213, 10735, 796, 9220, 18709, 35694, 7, 43551, 28, 43551, 11, 15765, 28, 2118, 433, 11, 2393, 62, 19199, 28, 10786, 87, 7278, 87, 3256, 4008, 628, 220, 220, 220, 351, 14122, 27201, 23002, 38409, 7, 9806, 62, 22896, 28, 16, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2393, 287, 27056, 378, 7, 7753, 62, 2213, 10735, 13, 7753, 62, 8612, 1352, 3419, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27336, 11, 4388, 796, 4808, 28311, 62, 1462, 62, 1136, 62, 20274, 62, 361, 62, 32165, 62, 2118, 433, 62, 1069, 5276, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27336, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3176, 62, 7890, 62, 23814, 62, 11600, 28, 46921, 62, 7890, 62, 23814, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1910, 62, 7890, 62, 23814, 62, 11600, 28, 10728, 62, 7890, 62, 23814, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1445, 62, 7753, 62, 1462, 62, 47904, 62, 43551, 7, 7753, 11, 4054, 62, 43551, 8, 628, 198, 21017, 40480, 2174, 284, 3342, 351, 18540, 305, 919, 278, 14, 48678, 9041, 628, 198, 2235, 23578, 309, 39494 ]
2.455665
812
#!/usr/bin/env python # -*- coding: UTF-8 -*- from requests import get, post from bs4 import BeautifulSoup from random import randint
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 6738, 7007, 1330, 651, 11, 1281, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 4738, 1330, 43720, 600 ]
3.093023
43
print('This program finds the number of times a letter appears in a text') word = input('Enter a text: ') char = input('Enter letter to find its number of times: ') count(word,char)
[ 4798, 10786, 1212, 1430, 7228, 262, 1271, 286, 1661, 257, 3850, 3568, 287, 257, 2420, 11537, 198, 4775, 796, 5128, 10786, 17469, 257, 2420, 25, 705, 8, 198, 10641, 796, 5128, 10786, 17469, 3850, 284, 1064, 663, 1271, 286, 1661, 25, 705, 8, 198, 9127, 7, 4775, 11, 10641, 8 ]
3.62
50
import numpy as np from tangles.tree_tangles import get_hard_predictions from tangles.loading import load_GMM from sklearn.metrics import pairwise_distances def test_simple_gaussians_ab(): """ AB test to make sure the tangles algorithm still does the exact same thing. """ X, _ = load_GMM([20, 20], np.array([[0, 0], [1, 1]]), [0.7, 0.7], 10) idx_a = [0, 1, 5, 12, 20, 23, 34] idx_b = [11, 21, 34, 35, 22, 7] cuts = [] for a, b in zip(idx_a, idx_b): cut = pivot_cut(X, X[a, :], X[b, :]) cuts.append(cut) pred = get_hard_predictions(np.concatenate(cuts).T, 10) res_ab = np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]) assert np.all(pred == res_ab) def test_simple_gaussians_performance(): """ Makes sure that the tangles algorithm achieves 100% performance on a simple gaussian, even if the AB test is not passed (so we might have some small implementation change). """ X, ys = load_GMM([20, 20], np.array([[0, 0], [1, 1]]), [0.2, 0.2], 10) idx_a = [0, 1, 5, 12, 20, 23, 34] idx_b = [11, 21, 34, 35, 22, 7] cuts = [] for a, b in zip(idx_a, idx_b): cut = pivot_cut(X, X[a, :], X[b, :]) cuts.append(cut) pred = get_hard_predictions(np.concatenate(cuts).T, 10) assert np.all(pred == ys)
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 13875, 829, 13, 21048, 62, 83, 27787, 1330, 651, 62, 10424, 62, 28764, 9278, 198, 6738, 13875, 829, 13, 25138, 1330, 3440, 62, 38, 12038, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 5166, 3083, 62, 17080, 1817, 628, 628, 198, 4299, 1332, 62, 36439, 62, 4908, 1046, 1547, 62, 397, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9564, 1332, 284, 787, 1654, 262, 13875, 829, 11862, 991, 857, 262, 2748, 976, 1517, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 4808, 796, 3440, 62, 38, 12038, 26933, 1238, 11, 1160, 4357, 45941, 13, 18747, 26933, 58, 15, 11, 657, 4357, 685, 16, 11, 352, 11907, 828, 685, 15, 13, 22, 11, 657, 13, 22, 4357, 838, 8, 198, 220, 220, 220, 4686, 87, 62, 64, 796, 685, 15, 11, 352, 11, 642, 11, 1105, 11, 1160, 11, 2242, 11, 4974, 60, 198, 220, 220, 220, 4686, 87, 62, 65, 796, 685, 1157, 11, 2310, 11, 4974, 11, 3439, 11, 2534, 11, 767, 60, 198, 220, 220, 220, 6630, 796, 17635, 198, 220, 220, 220, 329, 257, 11, 275, 287, 19974, 7, 312, 87, 62, 64, 11, 4686, 87, 62, 65, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 30355, 62, 8968, 7, 55, 11, 1395, 58, 64, 11, 1058, 4357, 1395, 58, 65, 11, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6630, 13, 33295, 7, 8968, 8, 198, 220, 220, 220, 2747, 796, 651, 62, 10424, 62, 28764, 9278, 7, 37659, 13, 1102, 9246, 268, 378, 7, 23779, 737, 51, 11, 838, 8, 198, 220, 220, 220, 581, 62, 397, 796, 45941, 13, 18747, 26933, 16, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 11, 657, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 11, 352, 11, 352, 11, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 657, 11, 657, 12962, 198, 220, 220, 220, 6818, 45941, 13, 439, 7, 28764, 6624, 581, 62, 397, 8, 628, 198, 4299, 1332, 62, 36439, 62, 4908, 1046, 1547, 62, 26585, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27433, 1654, 326, 262, 13875, 829, 11862, 41885, 1802, 4, 2854, 319, 257, 2829, 31986, 31562, 11, 198, 220, 220, 220, 772, 611, 262, 9564, 1332, 318, 407, 3804, 357, 568, 356, 1244, 423, 617, 1402, 7822, 1487, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 331, 82, 796, 3440, 62, 38, 12038, 26933, 1238, 11, 1160, 4357, 45941, 13, 18747, 26933, 58, 15, 11, 657, 4357, 685, 16, 11, 352, 11907, 828, 685, 15, 13, 17, 11, 657, 13, 17, 4357, 838, 8, 198, 220, 220, 220, 4686, 87, 62, 64, 796, 685, 15, 11, 352, 11, 642, 11, 1105, 11, 1160, 11, 2242, 11, 4974, 60, 198, 220, 220, 220, 4686, 87, 62, 65, 796, 685, 1157, 11, 2310, 11, 4974, 11, 3439, 11, 2534, 11, 767, 60, 198, 220, 220, 220, 6630, 796, 17635, 198, 220, 220, 220, 329, 257, 11, 275, 287, 19974, 7, 312, 87, 62, 64, 11, 4686, 87, 62, 65, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2005, 796, 30355, 62, 8968, 7, 55, 11, 1395, 58, 64, 11, 1058, 4357, 1395, 58, 65, 11, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6630, 13, 33295, 7, 8968, 8, 198, 220, 220, 220, 2747, 796, 651, 62, 10424, 62, 28764, 9278, 7, 37659, 13, 1102, 9246, 268, 378, 7, 23779, 737, 51, 11, 838, 8, 198, 220, 220, 220, 6818, 45941, 13, 439, 7, 28764, 6624, 331, 82, 8, 198 ]
2.107143
672
"""Vconnex integration""" import hashlib import hmac import base64 import json import time from types import SimpleNamespace from typing import Any from enum import Enum import requests import logging API__TOKEN = "/auth/project-token" logger = logging.getLogger(__name__)
[ 37811, 53, 1102, 12413, 11812, 37811, 201, 198, 201, 198, 11748, 12234, 8019, 201, 198, 11748, 289, 20285, 201, 198, 11748, 2779, 2414, 201, 198, 11748, 33918, 201, 198, 11748, 640, 201, 198, 6738, 3858, 1330, 17427, 36690, 10223, 201, 198, 6738, 19720, 1330, 4377, 201, 198, 6738, 33829, 1330, 2039, 388, 201, 198, 201, 198, 11748, 7007, 201, 198, 11748, 18931, 201, 198, 201, 198, 201, 198, 17614, 834, 10468, 43959, 796, 12813, 18439, 14, 16302, 12, 30001, 1, 201, 198, 201, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.841121
107
from django.contrib import admin from .models import Image # Register your models here. @admin.register(Image)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 7412, 198, 198, 2, 17296, 534, 4981, 994, 13, 198, 198, 31, 28482, 13, 30238, 7, 5159, 8, 628 ]
3.5625
32
import os import ntpath #EL PROGRAMA PUEDE TENER INPUT DE UNA URL #extraer_sonido(ruta)
[ 11748, 28686, 201, 198, 11748, 299, 83, 6978, 201, 198, 201, 198, 201, 198, 2, 3698, 46805, 32, 24676, 1961, 36, 309, 1677, 1137, 3268, 30076, 5550, 471, 4535, 10289, 201, 198, 201, 198, 201, 198, 201, 198, 2, 26086, 263, 62, 1559, 17305, 7, 81, 29822, 8, 201, 198 ]
2.04
50
from validate_docbr import CPF
[ 6738, 26571, 62, 15390, 1671, 1330, 16932, 37, 198 ]
3.444444
9
import pandas as pd import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': main()
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.076923
65
# Third party imports import pytest # pydatastructs imports from pydatastructs.linkedlist import LinkedList # Setup # initialize _linkedlist in pytest fixture to be used in individual method tests @pytest.fixture # Executions # append() adds a new instantiation of the Node class to the end of the linked list # append() accepts any data type # remove_head() removes and returns the head node from the linked list # remove_head() shifts the head property pointer to the next node in the linked list # remove_head() returns None if the linked list is empty # find_node() finds and returns the first node that has the value provided # find_node() returns None if no node contains the value provided
[ 2, 10467, 2151, 17944, 198, 11748, 12972, 9288, 198, 2, 279, 5173, 265, 459, 1356, 82, 17944, 198, 6738, 279, 5173, 265, 459, 1356, 82, 13, 25614, 4868, 1330, 7502, 276, 8053, 198, 198, 2, 31122, 198, 2, 41216, 4808, 25614, 4868, 287, 12972, 9288, 29220, 284, 307, 973, 287, 1981, 2446, 5254, 198, 31, 9078, 9288, 13, 69, 9602, 198, 198, 2, 8393, 3508, 198, 2, 24443, 3419, 6673, 257, 649, 9113, 3920, 286, 262, 19081, 1398, 284, 262, 886, 286, 262, 6692, 1351, 198, 2, 24443, 3419, 18178, 597, 1366, 2099, 198, 198, 2, 4781, 62, 2256, 3419, 20694, 290, 5860, 262, 1182, 10139, 422, 262, 6692, 1351, 198, 2, 4781, 62, 2256, 3419, 15381, 262, 1182, 3119, 17562, 284, 262, 1306, 10139, 287, 262, 6692, 1351, 198, 2, 4781, 62, 2256, 3419, 5860, 6045, 611, 262, 6692, 1351, 318, 6565, 198, 198, 2, 1064, 62, 17440, 3419, 7228, 290, 5860, 262, 717, 10139, 326, 468, 262, 1988, 2810, 198, 2, 1064, 62, 17440, 3419, 5860, 6045, 611, 645, 10139, 4909, 262, 1988, 2810 ]
3.977273
176
import pymol from pymol import cmd, util from sys import argv # usage: pymol -cq script_name.py -- path/to/fragments/ path = argv[1:][0] print(f"Using path: {path} for structures") # Set some nice CB friendly colours cmd.set_color("cb_orange", [0.96, 0.41, 0.23]) # Add filter (ambient) and other misc settings cmd.set("ambient", 0.4) cmd.set("ambient_occlusion_mode", 1) cmd.set("ambient_occlusion_scale", 15) cmd.bg_colour("white") cmd.set("antialias", 2) cmd.set("ortho", 1) cmd.set("ray_trace_mode", 0) cmd.reset() cmd.delete('all') # Specify fragment codes from each series amino_p1_prime = "Mpro-x12321_0A" ugi_p1_prime = "Mpro-x2776_0A" quin_p1_prime = "Mpro-P0008_0A" benzo_p1_prime = "Mpro-x10871_0A" fragments = [amino_p1_prime, ugi_p1_prime, quin_p1_prime, benzo_p1_prime] # Load each fragment: ligand + apo protein for i, fragment in enumerate(fragments): cmd.load(path + f'{fragment}/' + f'{fragment}.sdf', f'p1prime-{i}-{fragment}-ligand') cmd.load(path + f'{fragment}/' + f'{fragment}_apo-desolv.pdb', f'p1prime-{i}-{fragment}-protein') # Sort out colours for each series cmd.color("wheat", f"p1prime-0-*") # amino cmd.color("palegreen", f"p1prime-1-*") # ugi cmd.color("violet", f"p1prime-2-*") # quin cmd.color("deepolive", f"p1prime-3-*") # benzo # Retain non-carbon default colours util.cnc(f"p1prime-*") # remove waters cmd.remove('resn HOH') cmd.deselect() # Show molecular representation cmd.hide('all') cmd.bg_color('white') util.cbaw('*-protein') cmd.show('sticks', f'*-protein and not hydrogen') cmd.show('surface', f'*-protein and not hydrogen') cmd.show('sticks', 'not hydrogen and *-ligand') cmd.hide('sticks', 'hydrogen') cmd.disable('*-protein') cmd.disable('*-ligand') cmd.set('surface_color', 'white') # Sort transparency for surfaces and catalytic dyad cmd.set('surface_mode', 3) cmd.set('transparency', 0.15) cmd.set('transparency', 1, 'resi 145 and resn CYS') cmd.set('transparency', 1, 'resi 41 and resn HIS') # Set the viewport and view cmd.viewport(720,720) cmd.set_view ("\ 0.889428616, -0.456408978, 0.024401871,\ -0.099697880, -0.141634151, 0.984882414,\ -0.446053863, -0.878418088, -0.171478689,\ 0.000357639, 0.000210542, -94.736244202,\ -21.802495956, 4.796146870, 28.488866806,\ 81.561714172, 107.897544861, 20.000000000 ") # Label MPro pockets cmd.set("label_shadow_mode", 2) # P1 prime cmd.select("p1_prime", "resi 25+26+27") cmd.set("surface_color", "cb_orange", "p1_prime") cmd.show("surface", "p1_prime") cmd.pseudoatom("p1_prime_label", "p1_prime") cmd.set("label_color", "cb_orange", "p1_prime_label") cmd.set("label_size", -0.8, "p1_prime_label") cmd.set("label_font_id", 7, "p1_prime_label") ### hide psuedoatom cmd.hide("everything", "p1_prime_label") cmd.show("label", "p1_prime_label") pymol.finish_launching() # Create images print("Creating images for P1 prime...") for i, fragment in zip([0,1,2,3], fragments): fragment_key = {0: "amino", 1:"ugi", 2: "quin", 3: "benzo"} print(fragment_key[i], fragment) cmd.enable(f'p1prime-{i}-{fragment}-ligand') cmd.enable(f'p1prime-{i}-{fragment}-protein') cmd.ray(720,720) cmd.png(f"./p1_prime_flex_{fragment_key[i]}_{fragment}.png") cmd.disable(f'p1prime-{i}-{fragment}-ligand') cmd.disable(f'p1prime-{i}-{fragment}-protein')
[ 11748, 279, 4948, 349, 198, 6738, 279, 4948, 349, 1330, 23991, 11, 7736, 198, 6738, 25064, 1330, 1822, 85, 198, 198, 2, 8748, 25, 279, 4948, 349, 532, 66, 80, 4226, 62, 3672, 13, 9078, 1377, 3108, 14, 1462, 14, 8310, 363, 902, 14, 198, 198, 6978, 796, 1822, 85, 58, 16, 25, 7131, 15, 60, 198, 4798, 7, 69, 1, 12814, 3108, 25, 1391, 6978, 92, 329, 8573, 4943, 198, 198, 2, 5345, 617, 3621, 10078, 8030, 18915, 198, 28758, 13, 2617, 62, 8043, 7203, 21101, 62, 43745, 1600, 685, 15, 13, 4846, 11, 657, 13, 3901, 11, 657, 13, 1954, 12962, 198, 198, 2, 3060, 8106, 357, 4131, 1153, 8, 290, 584, 12747, 6460, 198, 28758, 13, 2617, 7203, 4131, 1153, 1600, 657, 13, 19, 8, 198, 28758, 13, 2617, 7203, 4131, 1153, 62, 420, 4717, 62, 14171, 1600, 352, 8, 198, 28758, 13, 2617, 7203, 4131, 1153, 62, 420, 4717, 62, 9888, 1600, 1315, 8, 198, 28758, 13, 35904, 62, 49903, 7203, 11186, 4943, 198, 28758, 13, 2617, 7203, 415, 498, 4448, 1600, 362, 8, 198, 28758, 13, 2617, 7203, 1506, 78, 1600, 352, 8, 198, 28758, 13, 2617, 7203, 2433, 62, 40546, 62, 14171, 1600, 657, 8, 198, 198, 28758, 13, 42503, 3419, 198, 28758, 13, 33678, 10786, 439, 11537, 198, 198, 2, 18291, 1958, 24225, 12416, 422, 1123, 2168, 198, 321, 2879, 62, 79, 16, 62, 35505, 796, 366, 44, 1676, 12, 87, 10163, 2481, 62, 15, 32, 1, 198, 45659, 62, 79, 16, 62, 35505, 796, 366, 44, 1676, 12, 87, 1983, 4304, 62, 15, 32, 1, 198, 21915, 62, 79, 16, 62, 35505, 796, 366, 44, 1676, 12, 47, 830, 23, 62, 15, 32, 1, 198, 11722, 10872, 62, 79, 16, 62, 35505, 796, 366, 44, 1676, 12, 87, 15711, 4869, 62, 15, 32, 1, 198, 198, 8310, 363, 902, 796, 685, 321, 2879, 62, 79, 16, 62, 35505, 11, 334, 12397, 62, 79, 16, 62, 35505, 11, 627, 259, 62, 79, 16, 62, 35505, 11, 1888, 10872, 62, 79, 16, 62, 35505, 60, 220, 198, 198, 2, 8778, 1123, 24225, 25, 26106, 392, 1343, 2471, 78, 7532, 198, 1640, 1312, 11, 24225, 287, 27056, 378, 7, 8310, 363, 902, 2599, 198, 220, 23991, 13, 2220, 7, 6978, 1343, 277, 6, 90, 8310, 363, 434, 92, 14, 6, 1343, 277, 6, 90, 8310, 363, 434, 27422, 82, 7568, 3256, 277, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 4604, 392, 11537, 198, 220, 23991, 13, 2220, 7, 6978, 1343, 277, 6, 90, 8310, 363, 434, 92, 14, 6, 1343, 277, 6, 90, 8310, 363, 434, 92, 62, 41817, 12, 8906, 349, 85, 13, 79, 9945, 3256, 277, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 48693, 11537, 198, 198, 2, 33947, 503, 18915, 329, 1123, 2168, 198, 28758, 13, 8043, 7203, 12491, 265, 1600, 277, 1, 79, 16, 35505, 12, 15, 12, 9, 4943, 1303, 23206, 198, 28758, 13, 8043, 7203, 79, 1000, 14809, 1600, 277, 1, 79, 16, 35505, 12, 16, 12, 9, 4943, 1303, 334, 12397, 198, 28758, 13, 8043, 7203, 85, 19194, 1600, 277, 1, 79, 16, 35505, 12, 17, 12, 9, 4943, 1303, 627, 259, 198, 28758, 13, 8043, 7203, 22089, 349, 425, 1600, 277, 1, 79, 16, 35505, 12, 18, 12, 9, 4943, 1303, 1888, 10872, 198, 198, 2, 4990, 391, 1729, 12, 29255, 4277, 18915, 198, 22602, 13, 66, 10782, 7, 69, 1, 79, 16, 35505, 12, 9, 4943, 198, 198, 2, 4781, 10150, 198, 28758, 13, 28956, 10786, 411, 77, 367, 12096, 11537, 198, 28758, 13, 67, 2771, 801, 3419, 198, 198, 2, 5438, 18955, 10552, 198, 28758, 13, 24717, 10786, 439, 11537, 198, 28758, 13, 35904, 62, 8043, 10786, 11186, 11537, 198, 22602, 13, 21101, 707, 10786, 9, 12, 48693, 11537, 198, 198, 28758, 13, 12860, 10786, 34810, 3256, 277, 6, 9, 12, 48693, 290, 407, 17669, 11537, 198, 28758, 13, 12860, 10786, 42029, 3256, 277, 6, 9, 12, 48693, 290, 407, 17669, 11537, 198, 28758, 13, 12860, 10786, 34810, 3256, 705, 1662, 17669, 290, 1635, 12, 4604, 392, 11537, 198, 198, 28758, 13, 24717, 10786, 34810, 3256, 705, 15511, 8648, 11537, 198, 198, 28758, 13, 40223, 10786, 9, 12, 48693, 11537, 198, 28758, 13, 40223, 10786, 9, 12, 4604, 392, 11537, 198, 198, 28758, 13, 2617, 10786, 42029, 62, 8043, 3256, 705, 11186, 11537, 198, 198, 2, 33947, 13902, 329, 16649, 290, 36745, 13370, 20268, 324, 198, 28758, 13, 2617, 10786, 42029, 62, 14171, 3256, 513, 8, 198, 28758, 13, 2617, 10786, 7645, 11944, 3256, 657, 13, 1314, 8, 198, 28758, 13, 2617, 10786, 7645, 11944, 3256, 352, 11, 705, 411, 72, 20299, 290, 581, 77, 327, 16309, 11537, 198, 28758, 13, 2617, 10786, 7645, 11944, 3256, 352, 11, 705, 411, 72, 6073, 290, 581, 77, 33700, 11537, 198, 198, 2, 5345, 262, 1570, 634, 290, 1570, 198, 28758, 13, 1177, 634, 7, 23906, 11, 23906, 8, 198, 28758, 13, 2617, 62, 1177, 5855, 59, 198, 220, 220, 220, 220, 657, 13, 3459, 5824, 27033, 1433, 11, 220, 220, 532, 15, 13, 29228, 1821, 4531, 3695, 11, 220, 220, 220, 657, 13, 40839, 21844, 23, 4869, 11, 59, 198, 220, 220, 220, 532, 15, 13, 15, 2079, 3388, 3695, 1795, 11, 220, 220, 532, 15, 13, 1415, 1433, 2682, 24309, 11, 220, 220, 220, 657, 13, 4089, 33646, 1731, 1415, 11, 59, 198, 220, 220, 220, 532, 15, 13, 2598, 32417, 2548, 5066, 11, 220, 220, 532, 15, 13, 23, 37688, 1507, 46556, 11, 220, 220, 532, 15, 13, 1558, 1415, 3695, 40523, 11, 59, 198, 220, 220, 220, 220, 657, 13, 830, 2327, 4304, 2670, 11, 220, 220, 220, 657, 13, 34215, 13348, 3682, 11, 220, 532, 5824, 13, 49150, 25707, 19004, 11, 59, 198, 220, 220, 532, 2481, 13, 1795, 21626, 3270, 3980, 11, 220, 220, 220, 604, 13, 41060, 1415, 3104, 2154, 11, 220, 220, 2579, 13, 2780, 3459, 2791, 37988, 11, 59, 198, 220, 220, 220, 9773, 13, 3980, 1558, 1415, 23628, 11, 220, 16226, 13, 4531, 2425, 2598, 4521, 16, 11, 220, 220, 1160, 13, 10535, 830, 366, 8, 198, 198, 2, 36052, 337, 2964, 16511, 198, 28758, 13, 2617, 7203, 18242, 62, 19106, 62, 14171, 1600, 362, 8, 198, 198, 2, 350, 16, 6994, 198, 28758, 13, 19738, 7203, 79, 16, 62, 35505, 1600, 366, 411, 72, 1679, 10, 2075, 10, 1983, 4943, 198, 28758, 13, 2617, 7203, 42029, 62, 8043, 1600, 366, 21101, 62, 43745, 1600, 366, 79, 16, 62, 35505, 4943, 198, 28758, 13, 12860, 7203, 42029, 1600, 366, 79, 16, 62, 35505, 4943, 198, 28758, 13, 7752, 12003, 37696, 7203, 79, 16, 62, 35505, 62, 18242, 1600, 366, 79, 16, 62, 35505, 4943, 198, 28758, 13, 2617, 7203, 18242, 62, 8043, 1600, 366, 21101, 62, 43745, 1600, 366, 79, 16, 62, 35505, 62, 18242, 4943, 198, 28758, 13, 2617, 7203, 18242, 62, 7857, 1600, 532, 15, 13, 23, 11, 366, 79, 16, 62, 35505, 62, 18242, 4943, 198, 28758, 13, 2617, 7203, 18242, 62, 10331, 62, 312, 1600, 767, 11, 366, 79, 16, 62, 35505, 62, 18242, 4943, 198, 21017, 7808, 26692, 1739, 15073, 296, 198, 28758, 13, 24717, 7203, 37814, 1600, 366, 79, 16, 62, 35505, 62, 18242, 4943, 198, 28758, 13, 12860, 7203, 18242, 1600, 366, 79, 16, 62, 35505, 62, 18242, 4943, 198, 198, 79, 4948, 349, 13, 15643, 680, 62, 38722, 10813, 3419, 198, 198, 2, 13610, 4263, 198, 4798, 7203, 32071, 4263, 329, 350, 16, 6994, 9313, 8, 198, 1640, 1312, 11, 24225, 287, 19974, 26933, 15, 11, 16, 11, 17, 11, 18, 4357, 21441, 2599, 198, 220, 220, 220, 24225, 62, 2539, 796, 1391, 15, 25, 366, 321, 2879, 1600, 352, 11097, 45659, 1600, 362, 25, 366, 21915, 1600, 513, 25, 366, 11722, 10872, 20662, 198, 220, 220, 220, 3601, 7, 8310, 363, 434, 62, 2539, 58, 72, 4357, 24225, 8, 628, 220, 220, 220, 23991, 13, 21633, 7, 69, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 4604, 392, 11537, 198, 220, 220, 220, 23991, 13, 21633, 7, 69, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 48693, 11537, 628, 220, 220, 220, 23991, 13, 2433, 7, 23906, 11, 23906, 8, 198, 220, 220, 220, 23991, 13, 11134, 7, 69, 1911, 14, 79, 16, 62, 35505, 62, 32880, 23330, 8310, 363, 434, 62, 2539, 58, 72, 48999, 23330, 8310, 363, 434, 27422, 11134, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23991, 13, 40223, 7, 69, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 4604, 392, 11537, 198, 220, 220, 220, 23991, 13, 40223, 7, 69, 6, 79, 16, 35505, 12, 90, 72, 92, 12, 90, 8310, 363, 434, 92, 12, 48693, 11537, 198 ]
2.269518
1,473
import unittest from mosaic.node import Node ''' def test_fully_expanded(self): def a_func(): return 0 def b_func(): return 0 def c_func(): return 0 x1 = ListTask(is_ordered=False, name = "x1", tasks = ["x1__p1", "x1__p2"]) x2 = ListTask(is_ordered=True, name = "x2", tasks = ["x2__p1", "x2__p2"]) start = ChoiceScenario(name = "root", scenarios=[x1, x2]) sampler = { "x1__p1": Parameter("x1__p1", [0, 1], "uniform", "float"), "x1__p2": Parameter("x1__p2", [1, 2, 3, 4, 5, 6, 7], "choice", "int"), "x2__p1": Parameter("x2__p1", ["a", "b", "c", "d"], "choice", "string"), "x2__p2": Parameter("x2__p2", [a_func, b_func, c_func], "choice", "int") } space = Space(scenario = start, sampler = sampler) node = Node() node.add_node(name="x1", parent_node = 0) node.add_node(name="x2", parent_node = 0) assert(node.fully_expanded(0, space)) assert(node.fully_expanded(1, space)) assert(node.fully_expanded(2, space)) node.add_node(name="x1__p1", parent_node = 1) assert(node.fully_expanded(1, space)) node.set_attribute(1, "max_number_child", 2) assert(node.fully_expanded(1, space)) assert(node.fully_expanded(3, space)) node.set_attribute(3, "max_number_child", 2) node.add_node(name="x1__p2", value=1, parent_node = 3) assert(node.fully_expanded(3, space)) node.add_node(name="x1__p2", value=2, parent_node = 3) assert(node.fully_expanded(3, space)) '''
[ 11748, 555, 715, 395, 198, 198, 6738, 47076, 13, 17440, 1330, 19081, 628, 198, 7061, 6, 220, 220, 220, 825, 1332, 62, 2759, 62, 11201, 12249, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 825, 257, 62, 20786, 33529, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 825, 275, 62, 20786, 33529, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 825, 269, 62, 20786, 33529, 1441, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 796, 7343, 25714, 7, 271, 62, 24071, 28, 25101, 11, 1438, 796, 366, 87, 16, 1600, 8861, 796, 14631, 87, 16, 834, 79, 16, 1600, 366, 87, 16, 834, 79, 17, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 796, 7343, 25714, 7, 271, 62, 24071, 28, 17821, 11, 1438, 796, 366, 87, 17, 1600, 220, 8861, 796, 14631, 87, 17, 834, 79, 16, 1600, 366, 87, 17, 834, 79, 17, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 923, 796, 18502, 3351, 39055, 7, 3672, 796, 366, 15763, 1600, 13858, 41888, 87, 16, 11, 2124, 17, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 796, 1391, 366, 87, 16, 834, 79, 16, 1298, 25139, 2357, 7203, 87, 16, 834, 79, 16, 1600, 685, 15, 11, 352, 4357, 366, 403, 6933, 1600, 366, 22468, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 16, 834, 79, 17, 1298, 25139, 2357, 7203, 87, 16, 834, 79, 17, 1600, 685, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 4357, 366, 25541, 1600, 366, 600, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 17, 834, 79, 16, 1298, 25139, 2357, 7203, 87, 17, 834, 79, 16, 1600, 14631, 64, 1600, 366, 65, 1600, 366, 66, 1600, 366, 67, 33116, 366, 25541, 1600, 366, 8841, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 17, 834, 79, 17, 1298, 25139, 2357, 7203, 87, 17, 834, 79, 17, 1600, 685, 64, 62, 20786, 11, 275, 62, 20786, 11, 269, 62, 20786, 4357, 366, 25541, 1600, 366, 600, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2272, 796, 4687, 7, 1416, 39055, 796, 923, 11, 6072, 20053, 796, 6072, 20053, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 19081, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2860, 62, 17440, 7, 3672, 2625, 87, 16, 1600, 2560, 62, 17440, 796, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2860, 62, 17440, 7, 3672, 2625, 87, 17, 1600, 2560, 62, 17440, 796, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 15, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 16, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 17, 11, 2272, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2860, 62, 17440, 7, 3672, 2625, 87, 16, 834, 79, 16, 1600, 2560, 62, 17440, 796, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 16, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2617, 62, 42348, 7, 16, 11, 366, 9806, 62, 17618, 62, 9410, 1600, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 16, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 18, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2617, 62, 42348, 7, 18, 11, 366, 9806, 62, 17618, 62, 9410, 1600, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2860, 62, 17440, 7, 3672, 2625, 87, 16, 834, 79, 17, 1600, 1988, 28, 16, 11, 2560, 62, 17440, 796, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 18, 11, 2272, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 2860, 62, 17440, 7, 3672, 2625, 87, 16, 834, 79, 17, 1600, 1988, 28, 17, 11, 2560, 62, 17440, 796, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 17440, 13, 2759, 62, 11201, 12249, 7, 18, 11, 2272, 4008, 198, 7061, 6 ]
2.02372
801
# -*- coding: utf-8 -*- """ Created on Thu Feb 7 20:52:19 2019 @author: if715029 """ ### Crea los clusters de 5, 20, 40 y 125 días y los exporta a .sav import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from time import time import pickle t1 = time() csv = ['AC','ALFAA','ALPEKA','ALSEA','ELEKTRA','IENOVA','MEXCHEM','PE&OLES','PINFRA','WALMEX'] data = [] for i in csv: data.append(pd.read_csv('../Data/%s.csv'%i, index_col='0')) #%% #%% ndias = [5,20,40,125] vent = [] for i in ndias: close_v = crear_ventanas(data[0]['Close'],i) for j in range(1,len(data)): close_v = np.concatenate((close_v, crear_ventanas(data[j]['Close'],i))) vent.append(close_v) #%% cont = len(ndias) for i in range(cont): vent[i] = np.transpose((vent[i].transpose()-vent[i].mean(axis=1))/vent[i].std(axis=1)) #%% Función para la gráfica de codo #%% #for i in range(cont): # grafica_codo_kmeans(vent[i],np.arange(1,16)) #%% model_close = [] for i in range(cont): model_close.append(KMeans(n_clusters=4,init='k-means++').fit(vent[i])) #%% Función para dibujar los centroides del modelo #%% for i in range(cont): ver_centroides(model_close[i].cluster_centers_) #%% pickle.dump(model_close,open('model_close.sav','wb'))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 3158, 220, 767, 1160, 25, 4309, 25, 1129, 13130, 198, 198, 31, 9800, 25, 611, 4869, 1120, 1959, 198, 37811, 198, 198, 21017, 5844, 64, 22346, 23163, 390, 642, 11, 1160, 11, 2319, 331, 13151, 288, 8836, 292, 331, 22346, 10784, 64, 257, 764, 39308, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 6738, 640, 1330, 640, 198, 11748, 2298, 293, 628, 198, 83, 16, 796, 640, 3419, 198, 40664, 796, 37250, 2246, 41707, 1847, 37, 3838, 41707, 1847, 11401, 25123, 41707, 23719, 32, 41707, 36, 2538, 42176, 3861, 41707, 40, 1677, 41576, 41707, 44, 6369, 3398, 3620, 41707, 11401, 5, 3535, 1546, 41707, 44032, 37, 3861, 41707, 54, 1847, 44, 6369, 20520, 198, 7890, 796, 17635, 198, 1640, 1312, 287, 269, 21370, 25, 198, 220, 220, 220, 1366, 13, 33295, 7, 30094, 13, 961, 62, 40664, 10786, 40720, 6601, 14, 4, 82, 13, 40664, 6, 4, 72, 11, 6376, 62, 4033, 11639, 15, 6, 4008, 198, 220, 220, 220, 220, 198, 2, 16626, 198, 198, 2, 16626, 198, 358, 4448, 796, 685, 20, 11, 1238, 11, 1821, 11, 11623, 60, 198, 198, 1151, 796, 17635, 198, 1640, 1312, 287, 299, 67, 4448, 25, 198, 220, 220, 220, 1969, 62, 85, 796, 1126, 283, 62, 1151, 15991, 7, 7890, 58, 15, 7131, 6, 26125, 6, 4357, 72, 8, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 11925, 7, 7890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 85, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 19836, 62, 85, 11, 1126, 283, 62, 1151, 15991, 7, 7890, 58, 73, 7131, 6, 26125, 6, 4357, 72, 22305, 198, 220, 220, 220, 7435, 13, 33295, 7, 19836, 62, 85, 8, 198, 2, 16626, 198, 3642, 796, 18896, 7, 358, 4448, 8, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 1640, 1312, 287, 2837, 7, 3642, 2599, 198, 220, 220, 220, 7435, 58, 72, 60, 796, 45941, 13, 7645, 3455, 19510, 1151, 58, 72, 4083, 7645, 3455, 3419, 12, 1151, 58, 72, 4083, 32604, 7, 22704, 28, 16, 4008, 14, 1151, 58, 72, 4083, 19282, 7, 22704, 28, 16, 4008, 198, 2, 16626, 11138, 979, 18840, 31215, 8591, 1036, 6557, 69, 3970, 390, 14873, 78, 198, 2, 16626, 198, 2, 1640, 1312, 287, 2837, 7, 3642, 2599, 198, 2, 220, 220, 220, 7933, 69, 3970, 62, 19815, 78, 62, 74, 1326, 504, 7, 1151, 58, 72, 4357, 37659, 13, 283, 858, 7, 16, 11, 1433, 4008, 198, 2, 16626, 198, 19849, 62, 19836, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 3642, 2599, 198, 220, 220, 220, 2746, 62, 19836, 13, 33295, 7, 42, 5308, 504, 7, 77, 62, 565, 13654, 28, 19, 11, 15003, 11639, 74, 12, 1326, 504, 4880, 27691, 11147, 7, 1151, 58, 72, 60, 4008, 198, 198, 2, 16626, 11138, 979, 18840, 31215, 288, 33828, 9491, 22346, 1247, 305, 1460, 1619, 2746, 78, 198, 2, 16626, 198, 1640, 1312, 287, 2837, 7, 3642, 2599, 198, 220, 220, 220, 3326, 62, 1087, 305, 1460, 7, 19849, 62, 19836, 58, 72, 4083, 565, 5819, 62, 1087, 364, 62, 8, 198, 198, 2, 16626, 198, 27729, 293, 13, 39455, 7, 19849, 62, 19836, 11, 9654, 10786, 19849, 62, 19836, 13, 39308, 41707, 39346, 6, 4008 ]
2.216949
590
from django.db.models import ( BooleanField, CharField, Model, TextField, )
[ 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 357, 198, 220, 220, 220, 41146, 15878, 11, 198, 220, 220, 220, 3178, 15878, 11, 198, 220, 220, 220, 9104, 11, 198, 220, 220, 220, 8255, 15878, 11, 198, 8, 628 ]
2.384615
39
def countdown(): """Write a generator that counts from 100 to 1""" for i in reversed(range(1, 101)): yield i
[ 4299, 33970, 33529, 198, 220, 220, 220, 37227, 16594, 257, 17301, 326, 9853, 422, 1802, 284, 352, 37811, 198, 220, 220, 220, 329, 1312, 287, 17687, 7, 9521, 7, 16, 11, 8949, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 1312, 198 ]
2.777778
45
from tf2recommender.config.local import ColumnNames config = { 'training_args': NcfTrainingArguments( user_dim=10, item_dim=6, batch_size=16, num_epochs=5, hidden1_dim=8, hidden2_dim=2), 'col_names': ColumnNames(user_col='user', item_col='item', rating_col='rating') }
[ 6738, 48700, 17, 47335, 2194, 13, 11250, 13, 12001, 1330, 29201, 36690, 628, 198, 198, 11250, 796, 1391, 198, 220, 220, 220, 705, 34409, 62, 22046, 10354, 198, 220, 220, 220, 399, 12993, 44357, 28100, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27740, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 62, 27740, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 538, 5374, 82, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 16, 62, 27740, 28, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 17, 62, 27740, 28, 17, 828, 198, 220, 220, 220, 705, 4033, 62, 14933, 10354, 198, 220, 220, 220, 29201, 36690, 7, 7220, 62, 4033, 11639, 7220, 3256, 2378, 62, 4033, 11639, 9186, 3256, 7955, 62, 4033, 11639, 8821, 11537, 198, 92, 198 ]
2.074074
162
""" 进程控制类 """ """ PCB 进程控制块 """ """ 进程控制块队列 """
[ 37811, 198, 32573, 249, 163, 101, 233, 162, 236, 100, 26344, 114, 163, 109, 119, 198, 37811, 628, 198, 37811, 198, 5662, 33, 198, 32573, 249, 163, 101, 233, 162, 236, 100, 26344, 114, 161, 251, 245, 198, 37811, 628, 198, 37811, 198, 32573, 249, 163, 101, 233, 162, 236, 100, 26344, 114, 161, 251, 245, 165, 246, 253, 26344, 245, 198, 37811, 198 ]
0.8125
64
from nonebot import on_command from nonebot.rule import to_me from nonebot.adapters.cqhttp import Bot,Event from nonebot.adapters.cqhttp import MessageSegment as msg from nonebot.log import logger from .util import check_rss,update_rss,rss_db_init,rss_server,add_rss,query_user_rss,remove_rss from .model import Rss from christinaqqbot.utils.rule import _gruop_white_list import threading rss_db_init() threading.Thread(target=rss_server).start() RSS=on_command('rss',rule=to_me()&_gruop_white_list) @RSS.handle()
[ 6738, 4844, 13645, 1330, 319, 62, 21812, 198, 6738, 4844, 13645, 13, 25135, 1330, 284, 62, 1326, 198, 6738, 4844, 13645, 13, 324, 12126, 13, 66, 80, 4023, 1330, 18579, 11, 9237, 198, 6738, 4844, 13645, 13, 324, 12126, 13, 66, 80, 4023, 1330, 16000, 41030, 434, 355, 31456, 198, 6738, 4844, 13645, 13, 6404, 1330, 49706, 198, 198, 6738, 764, 22602, 1330, 2198, 62, 42216, 11, 19119, 62, 42216, 11, 42216, 62, 9945, 62, 15003, 11, 42216, 62, 15388, 11, 2860, 62, 42216, 11, 22766, 62, 7220, 62, 42216, 11, 28956, 62, 42216, 198, 6738, 764, 19849, 1330, 371, 824, 198, 198, 6738, 33826, 1437, 38227, 13645, 13, 26791, 13, 25135, 1330, 4808, 48929, 404, 62, 11186, 62, 4868, 198, 198, 11748, 4704, 278, 198, 198, 42216, 62, 9945, 62, 15003, 3419, 198, 16663, 278, 13, 16818, 7, 16793, 28, 42216, 62, 15388, 737, 9688, 3419, 628, 198, 49, 5432, 28, 261, 62, 21812, 10786, 42216, 3256, 25135, 28, 1462, 62, 1326, 3419, 5, 62, 48929, 404, 62, 11186, 62, 4868, 8, 198, 31, 49, 5432, 13, 28144, 3419, 198 ]
2.872928
181
""" Timer ====== This module measures the execution time and provides three ways to do this: * **MeasureTime**: Measure time as decorator ``@MeasureTime``. * **MeasureBlockTime**: Measure as ``with MeasureBlockTime("my_block") as my_block:``. * **Timer**: Measure as instance ``timer = Timer()`` """ from __future__ import annotations import timeit import datetime from functools import wraps from ml_dev_utils import log def MeasureTime(function): """Measure the execution time as a decorator. Returns: : The return of the wrapped function Example:: from ml_dev_utils.Timer import MeasureTime @MeasureTime def my_function(): print("my awesome code") The measured duration time will be written to ``log.debug``. Therefore to see the output, you need to set up a handler for logging. Example with specific ``ml_dev_utils`` logger:: import logging from ml_dev_utils import log from ml_dev_utils.log_handler import console from ml_dev_utils.Timer import MeasureTime log.addHandler(console) log.setLevel(logging.DEBUG) @MeasureTime def my_function(): print("my awesome code") my_function() """ @wraps(function) return _wrapper class MeasureBlockTime(): """Measure the execution time of a code block. Args: name: A name for the timer instance. Defaults to "(block)". log_time: If true, it will write the execution time to ``log.debug``. Defaults to True. **Attributes** Attributes: timer (ml_dev_utils.Timer.Timer): Keeps the measured time. Example:: from ml_dev_utils.Timer import MeasureBlockTime with MeasureBlockTime("my_block") as my_block: print("my code here") print(my_block.timer.time) """ class Timer(): """Measures the execution time. Args: name: A name for the timer instance. Defaults to "unnamed". **Attributes** Attributes: name (str): The name of the Timer. time (datetime.timedelta): The measured duration time. start_time (float): The start time of the measurement. Example:: from ml_dev_utils.Timer import Timer timer = Timer().start() print(timer.end()) """ def start(self) -> Timer: """Starts the measurement. Set's the start time in the ``start_time`` instance variable. Returns: Returns itself for fluent initialization. """ self.start_time = timeit.default_timer() return self def end(self) -> datetime.timedelta: """Stops the measurement. Measures the time duration and set's it to the ``time`` instance variable. Returns: The measured time duration """ self.time = timeit.default_timer() - self.start_time self.time = _format_time(self.time) return self.time
[ 37811, 198, 48801, 198, 50155, 198, 198, 1212, 8265, 5260, 262, 9706, 640, 290, 3769, 1115, 2842, 284, 466, 428, 25, 198, 198, 9, 12429, 47384, 7575, 1174, 25, 24291, 640, 355, 11705, 1352, 7559, 31, 47384, 7575, 15506, 13, 198, 9, 12429, 47384, 12235, 7575, 1174, 25, 24291, 355, 7559, 4480, 24291, 12235, 7575, 7203, 1820, 62, 9967, 4943, 355, 616, 62, 9967, 25, 15506, 13, 198, 9, 12429, 48801, 1174, 25, 24291, 355, 4554, 7559, 45016, 796, 5045, 263, 3419, 15506, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 640, 270, 198, 11748, 4818, 8079, 198, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 198, 6738, 25962, 62, 7959, 62, 26791, 1330, 2604, 628, 198, 4299, 24291, 7575, 7, 8818, 2599, 198, 220, 220, 220, 37227, 47384, 262, 9706, 640, 355, 257, 11705, 1352, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 383, 1441, 286, 262, 12908, 2163, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 13, 48801, 1330, 24291, 7575, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 47384, 7575, 198, 220, 220, 220, 220, 220, 220, 220, 825, 616, 62, 8818, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1820, 7427, 2438, 4943, 628, 220, 220, 220, 383, 8630, 9478, 640, 481, 307, 3194, 284, 7559, 6404, 13, 24442, 15506, 13, 8447, 284, 220, 198, 220, 220, 220, 766, 262, 5072, 11, 345, 761, 284, 900, 510, 257, 21360, 329, 18931, 13, 628, 220, 220, 220, 17934, 351, 2176, 7559, 4029, 62, 7959, 62, 26791, 15506, 49706, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 1330, 2604, 198, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 13, 6404, 62, 30281, 1330, 8624, 198, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 13, 48801, 1330, 24291, 7575, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 2860, 25060, 7, 41947, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 47384, 7575, 198, 220, 220, 220, 220, 220, 220, 220, 825, 616, 62, 8818, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1820, 7427, 2438, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 616, 62, 8818, 3419, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 29988, 862, 7, 8818, 8, 198, 220, 220, 220, 1441, 4808, 48553, 628, 198, 4871, 24291, 12235, 7575, 33529, 198, 220, 220, 220, 37227, 47384, 262, 9706, 640, 286, 257, 2438, 2512, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 317, 1438, 329, 262, 19781, 4554, 13, 2896, 13185, 284, 30629, 9967, 8, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 2435, 25, 1002, 2081, 11, 340, 481, 3551, 262, 9706, 640, 284, 7559, 6404, 13, 24442, 15506, 13, 2896, 13185, 284, 6407, 13, 628, 220, 220, 220, 12429, 29021, 1174, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19781, 357, 4029, 62, 7959, 62, 26791, 13, 48801, 13, 48801, 2599, 9175, 82, 262, 8630, 640, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 13, 48801, 1330, 24291, 12235, 7575, 628, 220, 220, 220, 220, 220, 220, 220, 351, 24291, 12235, 7575, 7203, 1820, 62, 9967, 4943, 355, 616, 62, 9967, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1820, 2438, 994, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1820, 62, 9967, 13, 45016, 13, 2435, 8, 198, 220, 220, 220, 37227, 628, 198, 4871, 5045, 263, 33529, 198, 220, 220, 220, 37227, 5308, 13846, 262, 9706, 640, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 317, 1438, 329, 262, 19781, 4554, 13, 2896, 13185, 284, 366, 403, 13190, 1911, 628, 220, 220, 220, 12429, 29021, 1174, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 2536, 2599, 383, 1438, 286, 262, 5045, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 640, 357, 19608, 8079, 13, 16514, 276, 12514, 2599, 383, 8630, 9478, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 357, 22468, 2599, 383, 923, 640, 286, 262, 15558, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 422, 25962, 62, 7959, 62, 26791, 13, 48801, 1330, 5045, 263, 628, 220, 220, 220, 220, 220, 220, 220, 19781, 796, 5045, 263, 22446, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 45016, 13, 437, 28955, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 923, 7, 944, 8, 4613, 5045, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1273, 5889, 262, 15558, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5345, 338, 262, 923, 640, 287, 262, 7559, 9688, 62, 2435, 15506, 4554, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 2346, 329, 43472, 37588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 2435, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 886, 7, 944, 8, 4613, 4818, 8079, 13, 16514, 276, 12514, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1273, 2840, 262, 15558, 13, 628, 220, 220, 220, 220, 220, 220, 220, 45040, 262, 640, 9478, 290, 900, 338, 340, 284, 262, 7559, 2435, 15506, 4554, 7885, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 8630, 640, 9478, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 796, 640, 270, 13, 12286, 62, 45016, 3419, 532, 2116, 13, 9688, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 796, 4808, 18982, 62, 2435, 7, 944, 13, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 2435, 628, 198 ]
2.665477
1,121
from regression_tests import *
[ 6738, 20683, 62, 41989, 1330, 1635, 198 ]
4.428571
7
""" BAD CODE The problem is in the data structure. Loading the movie database as a list of lists causes the function movies() to find the movies of a user to be of linear complexity O(1) and the function shared() to find shared movies to be of quadratic complexity O(m*m). The good code has constant complexity O(1) for movies() and linear complexity O(m) for shared(). For a very small movie database the difference will be small but for a larger database it will be dramatic. """ db = load_db('movies.csv') print(db) print(movies('user42', db)) print(shared('user42', 'user13', db))
[ 37811, 198, 33, 2885, 42714, 198, 198, 464, 1917, 318, 287, 262, 1366, 4645, 13, 12320, 262, 3807, 6831, 355, 257, 1351, 198, 1659, 8341, 5640, 262, 2163, 6918, 3419, 284, 1064, 262, 6918, 286, 257, 2836, 284, 307, 198, 1659, 14174, 13357, 440, 7, 16, 8, 290, 262, 2163, 4888, 3419, 284, 1064, 4888, 6918, 284, 307, 198, 1659, 15094, 81, 1512, 13357, 440, 7, 76, 9, 76, 737, 198, 198, 464, 922, 2438, 468, 6937, 13357, 440, 7, 16, 8, 329, 6918, 3419, 290, 198, 29127, 13357, 440, 7, 76, 8, 329, 4888, 22446, 1114, 257, 845, 1402, 3807, 6831, 262, 198, 26069, 1945, 481, 307, 1402, 475, 329, 257, 4025, 6831, 340, 481, 307, 10092, 13, 198, 37811, 628, 628, 198, 198, 9945, 796, 3440, 62, 9945, 10786, 76, 20526, 13, 40664, 11537, 198, 4798, 7, 9945, 8, 198, 198, 4798, 7, 76, 20526, 10786, 7220, 3682, 3256, 20613, 4008, 198, 4798, 7, 28710, 10786, 7220, 3682, 3256, 705, 7220, 1485, 3256, 20613, 4008, 198 ]
3.529762
168
from .motifprogram import MotifProgram import os import shutil from subprocess import Popen, PIPE from gimmemotifs.motif import Motif class Gadem(MotifProgram): """ Predict motifs using GADEM. Reference: """ def _run_program(self, bin, fastafile, params=None): """ Run GADEM and predict motifs from a FASTA file. Parameters ---------- bin : str Command used to run the tool. fastafile : str Name of the FASTA input file. params : dict, optional Optional parameters. For some of the tools required parameters are passed using this dictionary. Returns ------- motifs : list of Motif instances The predicted motifs. stdout : str Standard out of the tool. stderr : str Standard error of the tool. """ default_params = {} if params is not None: default_params.update(params) new_file = os.path.join(self.tmpdir, "gadem_in.fa") shutil.copy(fastafile, new_file) fastafile = new_file pfmfile = fastafile + ".pwm" outfile = fastafile + ".out" current_path = os.getcwd() os.chdir(self.tmpdir) cmd = "%s -fseq %s -fpwm %s -fout %s" % (bin, fastafile, pfmfile, outfile) p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() motifs = [] if os.path.exists(pfmfile): with open(pfmfile) as f: motifs = self.parse(f) os.chdir(current_path) return motifs, stdout, stderr def parse(self, fo): """ Convert GADEM output to motifs Parameters ---------- fo : file-like File object containing GADEM output. Returns ------- motifs : list List of Motif instances. """ motifs = [] nucs = {"A": 0, "C": 1, "G": 2, "T": 3} lines = fo.readlines() for i in range(0, len(lines), 5): align = [] pwm = [] pfm = [] m_id = "" line = lines[i].strip() m_id = line[1:] number = m_id.split("_")[0][1:] if os.path.exists("%s.seq" % number): with open("%s.seq" % number) as f: for line in f: if "x" not in line and "n" not in line: line = line.strip().upper() align.append(line) if not pfm: pfm = [[0 for x in range(4)] for x in range(len(line))] for p in range(len(line)): pfm[p][nucs[line[p]]] += 1 m = [ line.strip().split(" ")[1].split("\t") for line in lines[i + 1 : i + 5] ] pwm = [[float(m[x][y]) for x in range(4)] for y in range(len(m[0]))] motifs.append(Motif(pwm)) motifs[-1].id = "{}_{}".format(self.name, m_id) if align: motifs[-1].pfm = pfm motifs[-1].align = align return motifs
[ 6738, 764, 27926, 361, 23065, 1330, 6543, 361, 15167, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 350, 4061, 36, 198, 198, 6738, 33135, 368, 313, 361, 82, 13, 27926, 361, 1330, 6543, 361, 628, 198, 4871, 20925, 368, 7, 47733, 361, 15167, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 49461, 32702, 82, 1262, 402, 2885, 3620, 13, 628, 220, 220, 220, 20984, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 5143, 62, 23065, 7, 944, 11, 9874, 11, 3049, 1878, 576, 11, 42287, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5660, 402, 2885, 3620, 290, 4331, 32702, 82, 422, 257, 376, 1921, 5603, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 9874, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9455, 973, 284, 1057, 262, 2891, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3049, 1878, 576, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 376, 1921, 5603, 5128, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 1058, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32233, 10007, 13, 1114, 617, 286, 262, 4899, 2672, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 3804, 1262, 428, 22155, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 1058, 1351, 286, 6543, 361, 10245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 11001, 32702, 82, 13, 628, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8997, 503, 286, 262, 2891, 13, 628, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8997, 4049, 286, 262, 2891, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 37266, 13, 19119, 7, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 22065, 15908, 11, 366, 70, 36920, 62, 259, 13, 13331, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7, 7217, 1878, 576, 11, 649, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3049, 1878, 576, 796, 649, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 279, 38353, 7753, 796, 3049, 1878, 576, 1343, 27071, 79, 26377, 1, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 3049, 1878, 576, 1343, 27071, 448, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 6978, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 944, 13, 22065, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 36521, 82, 532, 69, 41068, 4064, 82, 532, 46428, 26377, 4064, 82, 532, 69, 448, 4064, 82, 1, 4064, 357, 8800, 11, 3049, 1878, 576, 11, 279, 38353, 7753, 11, 503, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 8099, 268, 7, 28758, 11, 7582, 28, 17821, 11, 14367, 448, 28, 47, 4061, 36, 11, 336, 1082, 81, 28, 47, 4061, 36, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 11, 336, 1082, 81, 796, 279, 13, 10709, 5344, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 79, 38353, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 79, 38353, 7753, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 796, 2116, 13, 29572, 7, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 14421, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 32702, 82, 11, 14367, 448, 11, 336, 1082, 81, 628, 220, 220, 220, 825, 21136, 7, 944, 11, 11511, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 402, 2885, 3620, 5072, 284, 32702, 82, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 11511, 1058, 2393, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9220, 2134, 7268, 402, 2885, 3620, 5072, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 6543, 361, 10245, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 299, 1229, 82, 796, 19779, 32, 1298, 657, 11, 366, 34, 1298, 352, 11, 366, 38, 1298, 362, 11, 366, 51, 1298, 513, 92, 628, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 11511, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 6615, 828, 642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10548, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 26377, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 38353, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 312, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 3951, 58, 72, 4083, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 312, 796, 1627, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 285, 62, 312, 13, 35312, 7203, 62, 4943, 58, 15, 7131, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7203, 4, 82, 13, 41068, 1, 4064, 1271, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 4, 82, 13, 41068, 1, 4064, 1271, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 87, 1, 407, 287, 1627, 290, 366, 77, 1, 407, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 22446, 45828, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10548, 13, 33295, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 38353, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 38353, 796, 16410, 15, 329, 2124, 287, 2837, 7, 19, 15437, 329, 2124, 287, 2837, 7, 11925, 7, 1370, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 1370, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 38353, 58, 79, 7131, 77, 1229, 82, 58, 1370, 58, 79, 11907, 60, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 36311, 22446, 35312, 7203, 366, 38381, 16, 4083, 35312, 7203, 59, 83, 4943, 329, 1627, 287, 3951, 58, 72, 1343, 352, 1058, 1312, 1343, 642, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 26377, 796, 16410, 22468, 7, 76, 58, 87, 7131, 88, 12962, 329, 2124, 287, 2837, 7, 19, 15437, 329, 331, 287, 2837, 7, 11925, 7, 76, 58, 15, 60, 4008, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 13, 33295, 7, 47733, 361, 7, 79, 26377, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 58, 12, 16, 4083, 312, 796, 45144, 92, 23330, 92, 1911, 18982, 7, 944, 13, 3672, 11, 285, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10548, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 58, 12, 16, 4083, 79, 38353, 796, 279, 38353, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32702, 82, 58, 12, 16, 4083, 31494, 796, 10548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 32702, 82, 198 ]
1.859898
1,763
""" C, R (= 열, 행) = 7, 6일 때 [6, 7, 8, 9, 10, 11, 12] [5, 26, 27, 28, 29, 30, 13] [4, 25, 38, 39, 40, 31, 14] [3, 24, 37, 42, 41, 32, 15] [2, 23, 36, 35, 34, 33, 16] [1, 22, 21, 20, 19, 18, 17] """ C, R = map(int, input().split()) grid = [[0]* C for _ in range(R)] count, offset = 0, 0 max_size = C*R while R > 0 and C > 0: for i in range(offset+R-1, offset-1, -1): if count >= max_size: break count += 1 grid[i][offset] = count for j in range(offset+1, offset+C): if count >= max_size: break count += 1 grid[offset][j] = count for i in range(offset+1, offset+R): if count >= max_size: break count += 1 grid[i][offset+C-1] = count for j in range(offset+C-2, offset, -1): if count >= max_size: break count += 1 grid[offset+R-1][j] = count offset +=1 R -=2 C -=2 for row in grid: print(row)
[ 37811, 198, 34, 11, 371, 46121, 23821, 245, 112, 11, 220, 169, 244, 231, 8, 796, 767, 11, 718, 35975, 120, 31619, 243, 234, 198, 198, 58, 21, 11, 767, 11, 807, 11, 860, 11, 838, 11, 1367, 11, 1105, 60, 198, 58, 20, 11, 2608, 11, 2681, 11, 2579, 11, 2808, 11, 1542, 11, 1511, 60, 198, 58, 19, 11, 1679, 11, 4353, 11, 5014, 11, 2319, 11, 3261, 11, 1478, 60, 198, 58, 18, 11, 1987, 11, 5214, 11, 5433, 11, 6073, 11, 3933, 11, 1315, 60, 198, 58, 17, 11, 2242, 11, 4570, 11, 3439, 11, 4974, 11, 4747, 11, 1467, 60, 198, 58, 16, 11, 2534, 11, 2310, 11, 1160, 11, 678, 11, 1248, 11, 1596, 60, 198, 37811, 198, 198, 34, 11, 371, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 25928, 796, 16410, 15, 60, 9, 327, 329, 4808, 287, 2837, 7, 49, 15437, 198, 198, 9127, 11, 11677, 796, 657, 11, 657, 198, 9806, 62, 7857, 796, 327, 9, 49, 198, 198, 4514, 371, 1875, 657, 290, 327, 1875, 657, 25, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 28968, 10, 49, 12, 16, 11, 11677, 12, 16, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 3509, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 72, 7131, 28968, 60, 796, 954, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 28968, 10, 16, 11, 11677, 10, 34, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 3509, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 28968, 7131, 73, 60, 796, 954, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 28968, 10, 16, 11, 11677, 10, 49, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 3509, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 72, 7131, 28968, 10, 34, 12, 16, 60, 796, 954, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 28968, 10, 34, 12, 17, 11, 11677, 11, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 3509, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 58, 28968, 10, 49, 12, 16, 7131, 73, 60, 796, 954, 628, 220, 220, 220, 11677, 15853, 16, 220, 198, 220, 220, 220, 371, 48185, 17, 220, 198, 220, 220, 220, 327, 48185, 17, 220, 198, 198, 1640, 5752, 287, 10706, 25, 198, 220, 220, 220, 3601, 7, 808, 8, 198 ]
1.862595
524
import sys from .parent_parser import ParentParser from .common_parser import CommonParser class CreateSiteUsersParser: """ Parser for createsiteusers command """ @staticmethod def create_site_user_parser(): """Method to parse create site users arguments passed by the user""" parent_parser = ParentParser() parser = parent_parser.parent_parser_with_global_options() subparsers = parser.add_subparsers() create_site_users_parser = subparsers.add_parser('createsiteusers', parents=[parser]) create_site_users_parser.add_argument('--role', '-r', default="Unlicensed", help='name of site') args = create_site_users_parser.parse_args(sys.argv[3:]) csv_lines = CommonParser.read_file(sys.argv[2]) if args.site is None or args.site == "Default": args.site = '' return csv_lines, args
[ 11748, 25064, 198, 6738, 764, 8000, 62, 48610, 1330, 16774, 46677, 198, 6738, 764, 11321, 62, 48610, 1330, 8070, 46677, 628, 198, 4871, 13610, 29123, 14490, 46677, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23042, 263, 329, 8075, 578, 18417, 3141, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2251, 62, 15654, 62, 7220, 62, 48610, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17410, 284, 21136, 2251, 2524, 2985, 7159, 3804, 416, 262, 2836, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 48610, 796, 16774, 46677, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 796, 2560, 62, 48610, 13, 8000, 62, 48610, 62, 4480, 62, 20541, 62, 25811, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 22718, 945, 364, 796, 30751, 13, 2860, 62, 7266, 79, 945, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15654, 62, 18417, 62, 48610, 796, 22718, 945, 364, 13, 2860, 62, 48610, 10786, 20123, 274, 578, 18417, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3397, 41888, 48610, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 15654, 62, 18417, 62, 48610, 13, 2860, 62, 49140, 10786, 438, 18090, 3256, 705, 12, 81, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 3118, 36612, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 3672, 286, 2524, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 2251, 62, 15654, 62, 18417, 62, 48610, 13, 29572, 62, 22046, 7, 17597, 13, 853, 85, 58, 18, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 6615, 796, 8070, 46677, 13, 961, 62, 7753, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 15654, 318, 6045, 393, 26498, 13, 15654, 6624, 366, 19463, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 15654, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 21370, 62, 6615, 11, 26498, 198 ]
2.159751
482
""" "Stickfix" (c) by Ignacio Slater M. "Stickfix" is licensed under a Creative Commons Attribution 4.0 International License. You should have received a copy of the license along with this work. If not, see <http://creativecommons.org/licenses/by/4.0/>. """ from bot.utils.logger import StickfixLogger class StickfixException(Exception): """ Base class for exceptions in this module Attributes: err_message -- message sent by the error. err_cause -- reason that caused the exception. """ class InputException(StickfixException): """ Exception raised when the arguments passed as input to the bot are incorrect. """ class NoStickerException(StickfixException): """ Exception raised when the bot can't find a sticker in a message. """ class WrongContextException(StickfixException): """ Exception raised when the bot tries to execute a command from the wrong context. For example, this exception should be raised if a command can only be called from a private chat and is being called from a group chat. """ class InsufficientPermissionsException(StickfixException): """ Exception raised when a user tries to call a command without the appropriate permissions. """ class Databasexception(StickfixException): """ Exception raised when a database operation fails. """ def unexpected_error(e: Exception, a_logger: StickfixLogger): """ Logs an unhandled exception. """ a_logger.critical("Unexpected error") a_logger.critical(str(type(e))) a_logger.critical(str(e.args))
[ 37811, 366, 1273, 624, 13049, 1, 357, 66, 8, 416, 16583, 48711, 44289, 337, 13, 198, 220, 220, 220, 366, 1273, 624, 13049, 1, 318, 11971, 739, 257, 198, 220, 220, 220, 17404, 13815, 45336, 604, 13, 15, 4037, 13789, 13, 628, 220, 220, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 5964, 1863, 351, 428, 198, 220, 220, 220, 670, 13, 1002, 407, 11, 766, 1279, 4023, 1378, 20123, 425, 9503, 684, 13, 2398, 14, 677, 4541, 14, 1525, 14, 19, 13, 15, 15913, 13, 198, 37811, 198, 6738, 10214, 13, 26791, 13, 6404, 1362, 1330, 22994, 13049, 11187, 1362, 628, 198, 4871, 22994, 13049, 16922, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 329, 13269, 287, 428, 8265, 198, 220, 220, 220, 220, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 62, 20500, 1377, 3275, 1908, 416, 262, 4049, 13, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 62, 25587, 1377, 1738, 326, 4073, 262, 6631, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 23412, 16922, 7, 1273, 624, 13049, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 262, 7159, 3804, 355, 5128, 284, 262, 10214, 389, 11491, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 1400, 1273, 15799, 16922, 7, 1273, 624, 13049, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 262, 10214, 460, 470, 1064, 257, 27735, 287, 257, 3275, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 28843, 21947, 16922, 7, 1273, 624, 13049, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 262, 10214, 8404, 284, 12260, 257, 3141, 422, 262, 2642, 4732, 13, 198, 220, 220, 220, 1114, 1672, 11, 428, 6631, 815, 307, 4376, 611, 257, 3141, 460, 691, 307, 1444, 422, 257, 2839, 198, 220, 220, 220, 8537, 290, 318, 852, 198, 220, 220, 220, 1444, 422, 257, 1448, 8537, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 7088, 15267, 5990, 8481, 16922, 7, 1273, 624, 13049, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 257, 2836, 8404, 284, 869, 257, 3141, 1231, 262, 5035, 21627, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 24047, 87, 4516, 7, 1273, 624, 13049, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35528, 4376, 618, 257, 6831, 4905, 10143, 13, 198, 220, 220, 220, 37227, 628, 198, 4299, 10059, 62, 18224, 7, 68, 25, 35528, 11, 257, 62, 6404, 1362, 25, 22994, 13049, 11187, 1362, 2599, 198, 220, 220, 220, 37227, 5972, 82, 281, 555, 38788, 6631, 13, 220, 220, 220, 37227, 198, 220, 220, 220, 257, 62, 6404, 1362, 13, 34666, 7203, 52, 42072, 4049, 4943, 198, 220, 220, 220, 257, 62, 6404, 1362, 13, 34666, 7, 2536, 7, 4906, 7, 68, 22305, 198, 220, 220, 220, 257, 62, 6404, 1362, 13, 34666, 7, 2536, 7, 68, 13, 22046, 4008, 198 ]
3.222222
504
#!/usr/bin/env python # coding: utf-8 # <div class="alert alert-block alert-info"> # <b><h1>ENGR 1330 Computational Thinking with Data Science </h1></b> # </div> # # Copyright © 2021 Theodore G. Cleveland and Farhang Forghanparast # # Last GitHub Commit Date: # # # 34: KNN Applications # - application # # In[ ]: # ## References # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 1279, 7146, 1398, 2625, 44598, 7995, 12, 9967, 7995, 12, 10951, 5320, 198, 2, 220, 220, 220, 220, 1279, 65, 6927, 71, 16, 29, 1677, 10761, 1511, 1270, 22476, 864, 30707, 351, 6060, 5800, 7359, 71, 16, 12240, 65, 29, 220, 198, 2, 7359, 7146, 29, 220, 198, 2, 220, 198, 2, 15069, 10673, 33448, 36494, 402, 13, 10306, 290, 6755, 33255, 1114, 6064, 1845, 459, 198, 2, 220, 198, 2, 4586, 21722, 35910, 7536, 25, 220, 198, 2, 220, 198, 2, 1303, 4974, 25, 509, 6144, 26622, 198, 2, 532, 3586, 220, 198, 2, 220, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 22492, 31458, 198, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.611511
139
from __future__ import absolute_import from proteus import * from proteus.default_p import * from math import * from .vortex import * from proteus.mprans import RDLS from . import ls_vortex_3d_p name=soname+"_rdls" LevelModelType = RDLS.LevelModel coefficients = RDLS.Coefficients(applyRedistancing=applyRedistancing, epsFact=epsFactRedistance, nModelId=0, rdModelId=1) #now define the Dirichlet boundary conditions dirichletConditions = {0:getDBC} if LevelModelType == RDLS.LevelModel: weakDirichletConditions = {0:RDLS.setZeroLSweakDirichletBCs} #weakDirichletConditions = {0:RDLS.setZeroLSweakDirichletBCsSimple} else: weakDirichletConditions = {0:coefficients.setZeroLSweakDirichletBCs} #weakDirichletConditions = {0:coefficients.setZeroLSweakDirichletBCs2} #weakDirichletConditions = None initialConditions = ls_vortex_3d_p.initialConditions fluxBoundaryConditions = {0:'noFlow'} advectiveFluxBoundaryConditions = {} diffusiveFluxBoundaryConditions = {0:{}}
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 5915, 385, 1330, 1635, 198, 6738, 5915, 385, 13, 12286, 62, 79, 1330, 1635, 198, 6738, 10688, 1330, 1635, 198, 6738, 764, 85, 26158, 1330, 1635, 198, 6738, 5915, 385, 13, 76, 1050, 504, 1330, 31475, 6561, 198, 6738, 764, 1330, 43979, 62, 85, 26158, 62, 18, 67, 62, 79, 198, 3672, 28, 1559, 480, 10, 1, 62, 4372, 7278, 1, 198, 198, 4971, 17633, 6030, 796, 31475, 6561, 13, 4971, 17633, 198, 198, 1073, 41945, 796, 31475, 6561, 13, 34, 2577, 2108, 2334, 7, 39014, 7738, 396, 5077, 28, 39014, 7738, 396, 5077, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 29054, 28, 25386, 29054, 7738, 9311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 17633, 7390, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 67, 17633, 7390, 28, 16, 8, 198, 198, 2, 2197, 8160, 262, 36202, 488, 1616, 18645, 3403, 198, 220, 220, 220, 220, 198, 15908, 488, 1616, 25559, 1756, 796, 1391, 15, 25, 1136, 35, 2749, 92, 198, 198, 361, 5684, 17633, 6030, 6624, 31475, 6561, 13, 4971, 17633, 25, 198, 220, 220, 220, 4939, 35277, 488, 1616, 25559, 1756, 796, 1391, 15, 25, 35257, 6561, 13, 2617, 28667, 6561, 38695, 35277, 488, 1616, 2749, 82, 92, 198, 220, 220, 220, 1303, 38695, 35277, 488, 1616, 25559, 1756, 796, 1391, 15, 25, 35257, 6561, 13, 2617, 28667, 6561, 38695, 35277, 488, 1616, 2749, 82, 26437, 92, 198, 17772, 25, 198, 220, 220, 220, 4939, 35277, 488, 1616, 25559, 1756, 796, 1391, 15, 25, 1073, 41945, 13, 2617, 28667, 6561, 38695, 35277, 488, 1616, 2749, 82, 92, 198, 198, 2, 38695, 35277, 488, 1616, 25559, 1756, 796, 1391, 15, 25, 1073, 41945, 13, 2617, 28667, 6561, 38695, 35277, 488, 1616, 2749, 82, 17, 92, 198, 2, 38695, 35277, 488, 1616, 25559, 1756, 796, 6045, 628, 198, 36733, 25559, 1756, 220, 796, 43979, 62, 85, 26158, 62, 18, 67, 62, 79, 13, 36733, 25559, 1756, 198, 198, 69, 22564, 49646, 560, 25559, 1756, 796, 1391, 15, 32105, 3919, 37535, 6, 92, 198, 198, 324, 303, 14070, 37, 22564, 49646, 560, 25559, 1756, 796, 220, 23884, 198, 198, 26069, 11350, 37, 22564, 49646, 560, 25559, 1756, 796, 1391, 15, 29164, 11709, 198 ]
2.373102
461
from xapitrader.core.data.stream.base import StreamDataInterface from xapitrader.types import types from xapitrader.types import utils
[ 6738, 2124, 499, 270, 81, 5067, 13, 7295, 13, 7890, 13, 5532, 13, 8692, 1330, 13860, 6601, 39317, 198, 6738, 2124, 499, 270, 81, 5067, 13, 19199, 1330, 3858, 198, 6738, 2124, 499, 270, 81, 5067, 13, 19199, 1330, 3384, 4487, 198 ]
3.214286
42
import pytest from mxnet.util import use_np from mxnet.gluon.data import DataLoader import numpy as np import numpy.testing as npt import tempfile import pickle import os from sklearn.model_selection import train_test_split from autogluon.core.utils.loaders import load_pd from autogluon.text.text_prediction.mx.preprocessing import MultiModalTextFeatureProcessor,\ base_preprocess_cfg, MultiModalTextBatchify, get_cls_sep_id, auto_shrink_max_length from autogluon.text.text_prediction.infer_types import infer_column_problem_types TEST_CASES = [ ['melbourne_airbnb_sample', 'https://autogluon-text-data.s3.amazonaws.com/test_cases/melbourne_airbnb_sample_1000.pq', 'price_label'], ['women_clothing_rating', 'https://autogluon-text-data.s3.amazonaws.com/test_cases/women_clothing_sample.pq', 'Rating'] ] @use_np @pytest.mark.parametrize('dataset_name,url,label_column', TEST_CASES) @pytest.mark.parametrize('backbone_name', ['google_electra_small', 'google_albert_base_v2']) @pytest.mark.parametrize('all_to_text', [False, True]) @use_np @pytest.mark.parametrize('dataset_name,url,label_column', TEST_CASES) @pytest.mark.parametrize('backbone_name', ['google_electra_small', 'google_albert_base_v2', 'fairseq_roberta_base']) @pytest.mark.parametrize('all_to_text', [False, True]) @pytest.mark.parametrize('insert_sep', [False, True]) @pytest.mark.parametrize('stochastic_chunk', [False, True])
[ 11748, 12972, 9288, 198, 6738, 285, 87, 3262, 13, 22602, 1330, 779, 62, 37659, 198, 6738, 285, 87, 3262, 13, 70, 2290, 261, 13, 7890, 1330, 6060, 17401, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 33407, 355, 299, 457, 198, 11748, 20218, 7753, 198, 11748, 2298, 293, 198, 11748, 28686, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1960, 49006, 261, 13, 7295, 13, 26791, 13, 2220, 364, 1330, 3440, 62, 30094, 198, 6738, 1960, 49006, 261, 13, 5239, 13, 5239, 62, 28764, 2867, 13, 36802, 13, 3866, 36948, 1330, 15237, 5841, 282, 8206, 38816, 18709, 273, 11, 59, 198, 220, 220, 220, 2779, 62, 3866, 14681, 62, 37581, 11, 15237, 5841, 282, 8206, 33, 963, 1958, 11, 651, 62, 565, 82, 62, 325, 79, 62, 312, 11, 8295, 62, 36007, 676, 62, 9806, 62, 13664, 198, 6738, 1960, 49006, 261, 13, 5239, 13, 5239, 62, 28764, 2867, 13, 259, 2232, 62, 19199, 1330, 13249, 62, 28665, 62, 45573, 62, 19199, 628, 198, 198, 51, 6465, 62, 34, 1921, 1546, 796, 685, 198, 220, 220, 220, 37250, 17694, 12544, 62, 958, 31971, 62, 39873, 3256, 198, 220, 220, 220, 220, 705, 5450, 1378, 2306, 49006, 261, 12, 5239, 12, 7890, 13, 82, 18, 13, 33103, 8356, 13, 785, 14, 9288, 62, 33964, 14, 17694, 12544, 62, 958, 31971, 62, 39873, 62, 12825, 13, 79, 80, 3256, 198, 220, 220, 220, 220, 705, 20888, 62, 18242, 6, 4357, 198, 220, 220, 220, 37250, 25878, 62, 565, 24834, 62, 8821, 3256, 198, 220, 220, 220, 220, 705, 5450, 1378, 2306, 49006, 261, 12, 5239, 12, 7890, 13, 82, 18, 13, 33103, 8356, 13, 785, 14, 9288, 62, 33964, 14, 25878, 62, 565, 24834, 62, 39873, 13, 79, 80, 3256, 198, 220, 220, 220, 220, 705, 29321, 20520, 198, 60, 628, 198, 198, 31, 1904, 62, 37659, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 19608, 292, 316, 62, 3672, 11, 6371, 11, 18242, 62, 28665, 3256, 43001, 62, 34, 1921, 1546, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 1891, 15992, 62, 3672, 3256, 37250, 13297, 62, 9509, 430, 62, 17470, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13297, 62, 282, 4835, 62, 8692, 62, 85, 17, 6, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 439, 62, 1462, 62, 5239, 3256, 685, 25101, 11, 6407, 12962, 628, 198, 31, 1904, 62, 37659, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 19608, 292, 316, 62, 3672, 11, 6371, 11, 18242, 62, 28665, 3256, 43001, 62, 34, 1921, 1546, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 1891, 15992, 62, 3672, 3256, 37250, 13297, 62, 9509, 430, 62, 17470, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13297, 62, 282, 4835, 62, 8692, 62, 85, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22043, 41068, 62, 305, 4835, 64, 62, 8692, 6, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 439, 62, 1462, 62, 5239, 3256, 685, 25101, 11, 6407, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 28463, 62, 325, 79, 3256, 685, 25101, 11, 6407, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 301, 5374, 3477, 62, 354, 2954, 3256, 685, 25101, 11, 6407, 12962, 198 ]
2.271802
688
"""__init.py__""" import sys MIN_PYTHON_VERSION = (3, 8) if sys.version_info < MIN_PYTHON_VERSION: version_str = '.'.join(map(str, MIN_PYTHON_VERSION)) raise EnvironmentError("Python version needs to be at least " + version_str)
[ 37811, 834, 15003, 13, 9078, 834, 37811, 198, 11748, 25064, 198, 198, 23678, 62, 47, 56, 4221, 1340, 62, 43717, 796, 357, 18, 11, 807, 8, 198, 198, 361, 25064, 13, 9641, 62, 10951, 1279, 20625, 62, 47, 56, 4221, 1340, 62, 43717, 25, 198, 220, 220, 220, 2196, 62, 2536, 796, 705, 2637, 13, 22179, 7, 8899, 7, 2536, 11, 20625, 62, 47, 56, 4221, 1340, 62, 43717, 4008, 198, 220, 220, 220, 5298, 9344, 12331, 7203, 37906, 2196, 2476, 284, 307, 379, 1551, 366, 1343, 2196, 62, 2536, 8, 198 ]
2.597826
92
from bokeh.plotting import show, output_file from bokeh.models import Plot, Title, Circle, ColumnDataSource, DataRange1d, LinearAxis, Range1d xdr = DataRange1d() ydr = DataRange1d() p = Plot( title=None, toolbar_location=None, x_range=xdr, y_range=ydr, plot_width=800, plot_height=800, min_border=30, background_fill_color="#F0F0F0", border_fill_color="lightgray") p.extra_x_ranges["x"] = Range1d(0, 100) p.extra_y_ranges["y"] = Range1d(0, 100) source = ColumnDataSource(dict(x=[1.0, 2.0, 3.0], y=[1.0, 2.0, 3.0])) p.add_layout(LinearAxis(axis_label="x_label"), "above") p.add_layout(LinearAxis(x_range_name="x"), "above") p.add_layout(LinearAxis(axis_label="x_label"), "below") p.add_layout(LinearAxis(x_range_name="x"), "below") p.add_layout(LinearAxis(axis_label="y_label"), "left") p.add_layout(LinearAxis(y_range_name="y"), "left") p.add_layout(LinearAxis(axis_label="y_label"), "right") p.add_layout(LinearAxis(y_range_name="y"), "right") gly = Circle(x="x", y="y", size=10) p.add_glyph(source, gly) add_title("Title A1", "above", "red") add_title("Title A2", "above", "green") add_title("Title A3", "above", "lightblue") add_title("Title A4", "above", "pink") add_title("Title B1", "below", "red") add_title("Title B2", "below", "green") add_title("Title L1", "left", "red") add_title("Title L2", "left", "green") add_title("Title R1", "right", "red") add_title("Title R2", "right", "green") add_title("Title R3", "right", "lightblue") add_title("Title R4", "right", "pink") output_file("panels.html") show(p)
[ 6738, 1489, 365, 71, 13, 29487, 889, 1330, 905, 11, 5072, 62, 7753, 198, 6738, 1489, 365, 71, 13, 27530, 1330, 28114, 11, 11851, 11, 16291, 11, 29201, 6601, 7416, 11, 6060, 17257, 16, 67, 11, 44800, 31554, 271, 11, 13667, 16, 67, 198, 198, 87, 7109, 796, 6060, 17257, 16, 67, 3419, 198, 5173, 81, 796, 6060, 17257, 16, 67, 3419, 198, 198, 79, 796, 28114, 7, 198, 220, 220, 220, 3670, 28, 14202, 11, 50149, 62, 24886, 28, 14202, 11, 198, 220, 220, 220, 2124, 62, 9521, 28, 87, 7109, 11, 331, 62, 9521, 28, 5173, 81, 11, 198, 220, 220, 220, 7110, 62, 10394, 28, 7410, 11, 7110, 62, 17015, 28, 7410, 11, 198, 220, 220, 220, 949, 62, 20192, 28, 1270, 11, 198, 220, 220, 220, 4469, 62, 20797, 62, 8043, 25698, 37, 15, 37, 15, 37, 15, 1600, 198, 220, 220, 220, 4865, 62, 20797, 62, 8043, 2625, 2971, 44605, 4943, 198, 198, 79, 13, 26086, 62, 87, 62, 81, 6231, 14692, 87, 8973, 796, 13667, 16, 67, 7, 15, 11, 1802, 8, 198, 79, 13, 26086, 62, 88, 62, 81, 6231, 14692, 88, 8973, 796, 13667, 16, 67, 7, 15, 11, 1802, 8, 198, 198, 10459, 796, 29201, 6601, 7416, 7, 11600, 7, 87, 41888, 16, 13, 15, 11, 362, 13, 15, 11, 513, 13, 15, 4357, 331, 41888, 16, 13, 15, 11, 362, 13, 15, 11, 513, 13, 15, 60, 4008, 198, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 22704, 62, 18242, 2625, 87, 62, 18242, 12340, 366, 29370, 4943, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 87, 62, 9521, 62, 3672, 2625, 87, 12340, 366, 29370, 4943, 198, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 22704, 62, 18242, 2625, 87, 62, 18242, 12340, 366, 35993, 4943, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 87, 62, 9521, 62, 3672, 2625, 87, 12340, 366, 35993, 4943, 198, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 22704, 62, 18242, 2625, 88, 62, 18242, 12340, 366, 9464, 4943, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 88, 62, 9521, 62, 3672, 2625, 88, 12340, 366, 9464, 4943, 198, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 22704, 62, 18242, 2625, 88, 62, 18242, 12340, 366, 3506, 4943, 198, 79, 13, 2860, 62, 39786, 7, 14993, 451, 31554, 271, 7, 88, 62, 9521, 62, 3672, 2625, 88, 12340, 366, 3506, 4943, 198, 198, 10853, 796, 16291, 7, 87, 2625, 87, 1600, 331, 2625, 88, 1600, 2546, 28, 940, 8, 198, 79, 13, 2860, 62, 10853, 746, 7, 10459, 11, 13874, 8, 198, 198, 2860, 62, 7839, 7203, 19160, 317, 16, 1600, 366, 29370, 1600, 366, 445, 4943, 198, 2860, 62, 7839, 7203, 19160, 317, 17, 1600, 366, 29370, 1600, 366, 14809, 4943, 198, 2860, 62, 7839, 7203, 19160, 317, 18, 1600, 366, 29370, 1600, 366, 2971, 17585, 4943, 198, 2860, 62, 7839, 7203, 19160, 317, 19, 1600, 366, 29370, 1600, 366, 79, 676, 4943, 198, 198, 2860, 62, 7839, 7203, 19160, 347, 16, 1600, 366, 35993, 1600, 366, 445, 4943, 198, 2860, 62, 7839, 7203, 19160, 347, 17, 1600, 366, 35993, 1600, 366, 14809, 4943, 198, 198, 2860, 62, 7839, 7203, 19160, 406, 16, 1600, 366, 9464, 1600, 366, 445, 4943, 198, 2860, 62, 7839, 7203, 19160, 406, 17, 1600, 366, 9464, 1600, 366, 14809, 4943, 198, 198, 2860, 62, 7839, 7203, 19160, 371, 16, 1600, 366, 3506, 1600, 366, 445, 4943, 198, 2860, 62, 7839, 7203, 19160, 371, 17, 1600, 366, 3506, 1600, 366, 14809, 4943, 198, 2860, 62, 7839, 7203, 19160, 371, 18, 1600, 366, 3506, 1600, 366, 2971, 17585, 4943, 198, 2860, 62, 7839, 7203, 19160, 371, 19, 1600, 366, 3506, 1600, 366, 79, 676, 4943, 198, 198, 22915, 62, 7753, 7203, 6839, 1424, 13, 6494, 4943, 198, 12860, 7, 79, 8, 198 ]
2.352496
661
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils to be used in testing DNN estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import numpy as np import six from tensorflow.core.framework import summary_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.feature_column import feature_column from tensorflow.python.feature_column import feature_column_v2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.summary import summary as summary_lib from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import gradient_descent from tensorflow.python.training import monitored_session from tensorflow.python.training import optimizer as optimizer_lib from tensorflow.python.training import saver from tensorflow.python.training import session_run_hook from tensorflow.python.training import training_util from tensorflow_estimator.python.estimator import estimator from tensorflow_estimator.python.estimator import model_fn from tensorflow_estimator.python.estimator.canned import head as head_lib from tensorflow_estimator.python.estimator.canned import metric_keys from tensorflow_estimator.python.estimator.canned import prediction_keys from tensorflow_estimator.python.estimator.inputs import numpy_io from tensorflow_estimator.python.estimator.mode_keys import ModeKeys # pylint rules which are disabled by default for test files. # pylint: disable=invalid-name,protected-access,missing-docstring # Names of variables created by model. LEARNING_RATE_NAME = 'dnn/regression_head/dnn/learning_rate' HIDDEN_WEIGHTS_NAME_PATTERN = 'dnn/hiddenlayer_%d/kernel' HIDDEN_BIASES_NAME_PATTERN = 'dnn/hiddenlayer_%d/bias' BATCH_NORM_BETA_NAME_PATTERN = 'dnn/hiddenlayer_%d/batchnorm_%d/beta' BATCH_NORM_GAMMA_NAME_PATTERN = 'dnn/hiddenlayer_%d/batchnorm_%d/gamma' BATCH_NORM_MEAN_NAME_PATTERN = 'dnn/hiddenlayer_%d/batchnorm_%d/moving_mean' BATCH_NORM_VARIANCE_NAME_PATTERN = ( 'dnn/hiddenlayer_%d/batchnorm_%d/moving_variance') LOGITS_WEIGHTS_NAME = 'dnn/logits/kernel' LOGITS_BIASES_NAME = 'dnn/logits/bias' OCCUPATION_EMBEDDING_NAME = ('dnn/input_from_feature_columns/input_layer/' 'occupation_embedding/embedding_weights') CITY_EMBEDDING_NAME = ('dnn/input_from_feature_columns/input_layer/' 'city_embedding/embedding_weights') # This is so that we can easily switch between feature_column and # feature_column_v2 for testing. feature_column.numeric_column = feature_column._numeric_column feature_column.categorical_column_with_hash_bucket = feature_column._categorical_column_with_hash_bucket # pylint: disable=line-too-long feature_column.categorical_column_with_vocabulary_list = feature_column._categorical_column_with_vocabulary_list # pylint: disable=line-too-long feature_column.categorical_column_with_vocabulary_file = feature_column._categorical_column_with_vocabulary_file # pylint: disable=line-too-long feature_column.embedding_column = feature_column._embedding_column def create_checkpoint(weights_and_biases, global_step, model_dir, batch_norm_vars=None): """Create checkpoint file with provided model weights. Args: weights_and_biases: Iterable of tuples of weight and bias values. global_step: Initial global step to save in checkpoint. model_dir: Directory into which checkpoint is saved. batch_norm_vars: Variables used for batch normalization. """ weights, biases = zip(*weights_and_biases) if batch_norm_vars: assert len(batch_norm_vars) == len(weights_and_biases) - 1 (bn_betas, bn_gammas, bn_means, bn_variances) = zip(*batch_norm_vars) model_weights = {} # Hidden layer weights. for i in range(0, len(weights) - 1): model_weights[HIDDEN_WEIGHTS_NAME_PATTERN % i] = weights[i] model_weights[HIDDEN_BIASES_NAME_PATTERN % i] = biases[i] if batch_norm_vars: model_weights[BATCH_NORM_BETA_NAME_PATTERN % (i, i)] = bn_betas[i] model_weights[BATCH_NORM_GAMMA_NAME_PATTERN % (i, i)] = bn_gammas[i] model_weights[BATCH_NORM_MEAN_NAME_PATTERN % (i, i)] = bn_means[i] model_weights[BATCH_NORM_VARIANCE_NAME_PATTERN % (i, i)] = bn_variances[i] # Output layer weights. model_weights[LOGITS_WEIGHTS_NAME] = weights[-1] model_weights[LOGITS_BIASES_NAME] = biases[-1] with ops.Graph().as_default(): # Create model variables. for k, v in six.iteritems(model_weights): variables_lib.Variable(v, name=k, dtype=dtypes.float32) # Create non-model variables. global_step_var = training_util.create_global_step() # Initialize vars and save checkpoint. with tf_session.Session() as sess: variables_lib.global_variables_initializer().run() global_step_var.assign(global_step).eval() saver.Saver().save(sess, os.path.join(model_dir, 'model.ckpt')) def mock_head(testcase, hidden_units, logits_dimension, expected_logits): """Returns a mock head that validates logits values and variable names.""" hidden_weights_names = [(HIDDEN_WEIGHTS_NAME_PATTERN + '/part_0:0') % i for i in range(len(hidden_units))] hidden_biases_names = [(HIDDEN_BIASES_NAME_PATTERN + '/part_0:0') % i for i in range(len(hidden_units))] expected_var_names = ( hidden_weights_names + hidden_biases_names + [LOGITS_WEIGHTS_NAME + '/part_0:0', LOGITS_BIASES_NAME + '/part_0:0']) head = test.mock.NonCallableMagicMock(spec=head_lib._Head) head.logits_dimension = logits_dimension head._create_tpu_estimator_spec = test.mock.MagicMock( wraps=_create_tpu_estimator_spec) head.create_estimator_spec = test.mock.MagicMock( wraps=_create_estimator_spec) return head def mock_optimizer(testcase, hidden_units, expected_loss=None): """Creates a mock optimizer to test the train method. Args: testcase: A TestCase instance. hidden_units: Iterable of integer sizes for the hidden layers. expected_loss: If given, will assert the loss value. Returns: A mock Optimizer. """ hidden_weights_names = [(HIDDEN_WEIGHTS_NAME_PATTERN + '/part_0:0') % i for i in range(len(hidden_units))] hidden_biases_names = [(HIDDEN_BIASES_NAME_PATTERN + '/part_0:0') % i for i in range(len(hidden_units))] expected_var_names = ( hidden_weights_names + hidden_biases_names + [LOGITS_WEIGHTS_NAME + '/part_0:0', LOGITS_BIASES_NAME + '/part_0:0']) def _minimize(loss, global_step=None, var_list=None): """Mock of optimizer.minimize.""" trainable_vars = var_list or ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) testcase.assertItemsEqual(expected_var_names, [var.name for var in trainable_vars]) # Verify loss. We can't check the value directly, so we add an assert op. testcase.assertEquals(0, loss.shape.ndims) if expected_loss is None: if global_step is not None: return state_ops.assign_add(global_step, 1).op return control_flow_ops.no_op() assert_loss = assert_close( math_ops.to_float(expected_loss, name='expected'), loss, name='assert_loss') with ops.control_dependencies((assert_loss,)): if global_step is not None: return state_ops.assign_add(global_step, 1).op return control_flow_ops.no_op() optimizer_mock = test.mock.NonCallableMagicMock( spec=optimizer_lib.Optimizer, wraps=optimizer_lib.Optimizer(use_locking=False, name='my_optimizer')) optimizer_mock.minimize = test.mock.MagicMock(wraps=_minimize) return optimizer_mock class BaseDNNModelFnTest(object): """Tests that _dnn_model_fn passes expected logits to mock head.""" def _test_logits(self, mode, hidden_units, logits_dimension, inputs, expected_logits): """Tests that the expected logits are passed to mock head.""" with ops.Graph().as_default(): training_util.create_global_step() head = mock_head( self, hidden_units=hidden_units, logits_dimension=logits_dimension, expected_logits=expected_logits) estimator_spec = self._dnn_model_fn( features={'age': constant_op.constant(inputs)}, labels=constant_op.constant([[1]]), mode=mode, head=head, hidden_units=hidden_units, feature_columns=[ self._fc_impl.numeric_column( 'age', shape=np.array(inputs).shape[1:]) ], optimizer=mock_optimizer(self, hidden_units)) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: if mode == ModeKeys.TRAIN: sess.run(estimator_spec.train_op) elif mode == ModeKeys.EVAL: sess.run(estimator_spec.loss) elif mode == ModeKeys.PREDICT: sess.run(estimator_spec.predictions) else: self.fail('Invalid mode: {}'.format(mode)) def test_one_dim_logits(self): """Tests one-dimensional logits. input_layer = [[10]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)]] = [[6.1, 4.9]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)]] = [[relu(2.38), relu(-0.12)]] = [[2.38, 0]] logits = [[-1*2.38 +1*0 +0.3]] = [[-2.08]] """ base_global_step = 100 create_checkpoint( (([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=1, inputs=[[10.]], expected_logits=[[-2.08]]) def test_multi_dim_logits(self): """Tests multi-dimensional logits. input_layer = [[10]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)]] = [[6.1, 4.9]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)]] = [[relu(2.38), relu(-0.12)]] = [[2.38, 0]] logits = [[-1*2.38 +0.3, 1*2.38 -0.3, 0.5*2.38]] = [[-2.08, 2.08, 1.19]] """ base_global_step = 100 create_checkpoint((([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10.]], expected_logits=[[-2.08, 2.08, 1.19]]) def test_multi_example_multi_dim_logits(self): """Tests multiple examples and multi-dimensional logits. input_layer = [[10], [5]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)], [relu(0.6*5 +0.1), relu(0.5*5 -0.1)]] = [[6.1, 4.9], [3.1, 2.4]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)], [relu(1*3.1 -0.8*2.4 +0.2), relu(0.8*3.1 -1*2.4 -0.1)]] = [[2.38, 0], [1.38, 0]] logits = [[-1*2.38 +0.3, 1*2.38 -0.3, 0.5*2.38], [-1*1.38 +0.3, 1*1.38 -0.3, 0.5*1.38]] = [[-2.08, 2.08, 1.19], [-1.08, 1.08, 0.69]] """ base_global_step = 100 create_checkpoint((([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10.], [5.]], expected_logits=[[-2.08, 2.08, 1.19], [-1.08, 1.08, .69]]) def test_multi_dim_input_one_dim_logits(self): """Tests multi-dimensional inputs and one-dimensional logits. input_layer = [[10, 8]] hidden_layer_0 = [[relu(0.6*10 -0.6*8 +0.1), relu(0.5*10 -0.5*8 -0.1)]] = [[1.3, 0.9]] hidden_layer_1 = [[relu(1*1.3 -0.8*0.9 + 0.2), relu(0.8*1.3 -1*0.9 -0.2)]] = [[0.78, relu(-0.06)]] = [[0.78, 0]] logits = [[-1*0.78 +1*0 +0.3]] = [[-0.48]] """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=1, inputs=[[10., 8.]], expected_logits=[[-0.48]]) def test_multi_dim_input_multi_dim_logits(self): """Tests multi-dimensional inputs and multi-dimensional logits. input_layer = [[10, 8]] hidden_layer_0 = [[relu(0.6*10 -0.6*8 +0.1), relu(0.5*10 -0.5*8 -0.1)]] = [[1.3, 0.9]] hidden_layer_1 = [[relu(1*1.3 -0.8*0.9 + 0.2), relu(0.8*1.3 -1*0.9 -0.2)]] = [[0.78, relu(-0.06)]] = [[0.78, 0]] logits = [[-1*0.78 + 0.3, 1*0.78 -0.3, 0.5*0.78]] = [[-0.48, 0.48, 0.39]] """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10., 8.]], expected_logits=[[-0.48, 0.48, 0.39]]) def test_multi_feature_column_multi_dim_logits(self): """Tests multiple feature columns and multi-dimensional logits. All numbers are the same as test_multi_dim_input_multi_dim_logits. The only difference is that the input consists of two 1D feature columns, instead of one 2D feature column. """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) hidden_units = (2, 2) logits_dimension = 3 inputs = ([[10.]], [[8.]]) expected_logits = [[-0.48, 0.48, 0.39]] for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: with ops.Graph().as_default(): training_util.create_global_step() head = mock_head( self, hidden_units=hidden_units, logits_dimension=logits_dimension, expected_logits=expected_logits) estimator_spec = self._dnn_model_fn( features={ 'age': constant_op.constant(inputs[0]), 'height': constant_op.constant(inputs[1]) }, labels=constant_op.constant([[1]]), mode=mode, head=head, hidden_units=hidden_units, feature_columns=[ self._fc_impl.numeric_column('age'), self._fc_impl.numeric_column('height') ], optimizer=mock_optimizer(self, hidden_units)) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: if mode == ModeKeys.TRAIN: sess.run(estimator_spec.train_op) elif mode == ModeKeys.EVAL: sess.run(estimator_spec.loss) elif mode == ModeKeys.PREDICT: sess.run(estimator_spec.predictions) else: self.fail('Invalid mode: {}'.format(mode)) def test_multi_feature_column_mix_multi_dim_logits(self): """Tests multiple feature columns and multi-dimensional logits. All numbers are the same as test_multi_dim_input_multi_dim_logits. The only difference is that the input consists of two 1D feature columns, instead of one 2D feature column. """ base_global_step = 100 create_checkpoint(( ([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]), ), base_global_step, self._model_dir) hidden_units = (2, 2) logits_dimension = 3 inputs = ([[10.]], [[8.]]) expected_logits = [[-0.48, 0.48, 0.39]] for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: with ops.Graph().as_default(): training_util.create_global_step() head = mock_head( self, hidden_units=hidden_units, logits_dimension=logits_dimension, expected_logits=expected_logits) estimator_spec = self._dnn_model_fn( features={ 'age': constant_op.constant(inputs[0]), 'height': constant_op.constant(inputs[1]) }, labels=constant_op.constant([[1]]), mode=mode, head=head, hidden_units=hidden_units, feature_columns=[ feature_column.numeric_column('age'), feature_column_v2.numeric_column('height') ], optimizer=mock_optimizer(self, hidden_units)) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: if mode == ModeKeys.TRAIN: sess.run(estimator_spec.train_op) elif mode == ModeKeys.EVAL: sess.run(estimator_spec.loss) elif mode == ModeKeys.PREDICT: sess.run(estimator_spec.predictions) else: self.fail('Invalid mode: {}'.format(mode)) def test_features_tensor_raises_value_error(self): """Tests that passing a Tensor for features raises a ValueError.""" hidden_units = (2, 2) logits_dimension = 3 inputs = ([[10.]], [[8.]]) expected_logits = [[0, 0, 0]] with ops.Graph().as_default(): training_util.create_global_step() head = mock_head( self, hidden_units=hidden_units, logits_dimension=logits_dimension, expected_logits=expected_logits) with self.assertRaisesRegexp(ValueError, 'features should be a dict'): self._dnn_model_fn( features=constant_op.constant(inputs), labels=constant_op.constant([[1]]), mode=ModeKeys.TRAIN, head=head, hidden_units=hidden_units, feature_columns=[ self._fc_impl.numeric_column( 'age', shape=np.array(inputs).shape[1:]) ], optimizer=mock_optimizer(self, hidden_units)) class BaseDNNLogitFnTest(object): """Tests correctness of logits calculated from _dnn_logit_fn_builder.""" def _test_logits(self, mode, hidden_units, logits_dimension, inputs, expected_logits, batch_norm=False): """Tests that the expected logits are calculated.""" with ops.Graph().as_default(): # Global step needed for MonitoredSession, which is in turn used to # explicitly set variable weights through a checkpoint. training_util.create_global_step() # Use a variable scope here with 'dnn', emulating the dnn model_fn, so # the checkpoint naming is shared. with variable_scope.variable_scope('dnn'): input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=0, min_slice_size=64 << 20)) logit_fn = self._dnn_logit_fn_builder( units=logits_dimension, hidden_units=hidden_units, feature_columns=[ self._fc_impl.numeric_column( 'age', shape=np.array(inputs).shape[1:]) ], activation_fn=nn.relu, dropout=None, input_layer_partitioner=input_layer_partitioner, batch_norm=batch_norm) logits = logit_fn( features={'age': constant_op.constant(inputs)}, mode=mode) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: self.assertAllClose(expected_logits, sess.run(logits)) def test_one_dim_logits(self): """Tests one-dimensional logits. input_layer = [[10]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)]] = [[6.1, 4.9]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)]] = [[relu(2.38), relu(-0.12)]] = [[2.38, 0]] logits = [[-1*2.38 +1*0 +0.3]] = [[-2.08]] """ base_global_step = 100 create_checkpoint( (([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=1, inputs=[[10.]], expected_logits=[[-2.08]]) def test_one_dim_logits_with_batch_norm(self): """Tests one-dimensional logits. input_layer = [[10]] hidden_layer_0 = [[relu(0.6*10 +1), relu(0.5*10 -1)]] = [[7, 4]] hidden_layer_0 = [[relu(0.6*20 +1), relu(0.5*20 -1)]] = [[13, 9]] batch_norm_0, training (epsilon = 0.001): mean1 = 1/2*(7+13) = 10, variance1 = 1/2*(3^2+3^2) = 9 x11 = (7-10)/sqrt(9+0.001) = -0.999944449, x21 = (13-10)/sqrt(9+0.001) = 0.999944449, mean2 = 1/2*(4+9) = 6.5, variance2 = 1/2*(2.5^2+.2.5^2) = 6.25 x12 = (4-6.5)/sqrt(6.25+0.001) = -0.99992001, x22 = (9-6.5)/sqrt(6.25+0.001) = 0.99992001, logits = [[-1*(-0.999944449) + 2*(-0.99992001) + 0.3], [-1*0.999944449 + 2*0.99992001 + 0.3]] = [[-0.699895571],[1.299895571]] batch_norm_0, not training (epsilon = 0.001): moving_mean1 = 0, moving_variance1 = 1 x11 = (7-0)/sqrt(1+0.001) = 6.996502623, x21 = (13-0)/sqrt(1+0.001) = 12.993504871, moving_mean2 = 0, moving_variance2 = 1 x12 = (4-0)/sqrt(1+0.001) = 3.998001499, x22 = (9-0)/sqrt(1+0.001) = 8.995503372, logits = [[-1*6.996502623 + 2*3.998001499 + 0.3], [-1*12.993504871 + 2*8.995503372 + 0.3]] = [[1.299500375],[5.297501873]] """ base_global_step = 100 create_checkpoint( ( ([[.6, .5]], [1., -1.]), ([[-1.], [2.]], [.3]), ), base_global_step, self._model_dir, batch_norm_vars=([[0, 0], # beta. [1, 1], # gamma. [0, 0], # moving mean. [1, 1], # moving variance. ],)) self._test_logits( ModeKeys.TRAIN, hidden_units=[2], logits_dimension=1, inputs=[[10.], [20.]], expected_logits=[[-0.699895571], [1.299895571]], batch_norm=True) for mode in [ModeKeys.EVAL, ModeKeys.PREDICT]: self._test_logits( mode, hidden_units=[2], logits_dimension=1, inputs=[[10.], [20.]], expected_logits=[[1.299500375], [5.297501873]], batch_norm=True) def test_multi_dim_logits(self): """Tests multi-dimensional logits. input_layer = [[10]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)]] = [[6.1, 4.9]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)]] = [[relu(2.38), relu(-0.12)]] = [[2.38, 0]] logits = [[-1*2.38 +0.3, 1*2.38 -0.3, 0.5*2.38]] = [[-2.08, 2.08, 1.19]] """ base_global_step = 100 create_checkpoint((([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10.]], expected_logits=[[-2.08, 2.08, 1.19]]) def test_multi_example_multi_dim_logits(self): """Tests multiple examples and multi-dimensional logits. input_layer = [[10], [5]] hidden_layer_0 = [[relu(0.6*10 +0.1), relu(0.5*10 -0.1)], [relu(0.6*5 +0.1), relu(0.5*5 -0.1)]] = [[6.1, 4.9], [3.1, 2.4]] hidden_layer_1 = [[relu(1*6.1 -0.8*4.9 +0.2), relu(0.8*6.1 -1*4.9 -0.1)], [relu(1*3.1 -0.8*2.4 +0.2), relu(0.8*3.1 -1*2.4 -0.1)]] = [[2.38, 0], [1.38, 0]] logits = [[-1*2.38 +0.3, 1*2.38 -0.3, 0.5*2.38], [-1*1.38 +0.3, 1*1.38 -0.3, 0.5*1.38]] = [[-2.08, 2.08, 1.19], [-1.08, 1.08, 0.69]] """ base_global_step = 100 create_checkpoint((([[.6, .5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10.], [5.]], expected_logits=[[-2.08, 2.08, 1.19], [-1.08, 1.08, .69]]) def test_multi_dim_input_one_dim_logits(self): """Tests multi-dimensional inputs and one-dimensional logits. input_layer = [[10, 8]] hidden_layer_0 = [[relu(0.6*10 -0.6*8 +0.1), relu(0.5*10 -0.5*8 -0.1)]] = [[1.3, 0.9]] hidden_layer_1 = [[relu(1*1.3 -0.8*0.9 + 0.2), relu(0.8*1.3 -1*0.9 -0.2)]] = [[0.78, relu(-0.06)]] = [[0.78, 0]] logits = [[-1*0.78 +1*0 +0.3]] = [[-0.48]] """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1.], [1.]], [.3]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=1, inputs=[[10., 8.]], expected_logits=[[-0.48]]) def test_multi_dim_input_multi_dim_logits(self): """Tests multi-dimensional inputs and multi-dimensional logits. input_layer = [[10, 8]] hidden_layer_0 = [[relu(0.6*10 -0.6*8 +0.1), relu(0.5*10 -0.5*8 -0.1)]] = [[1.3, 0.9]] hidden_layer_1 = [[relu(1*1.3 -0.8*0.9 + 0.2), relu(0.8*1.3 -1*0.9 -0.2)]] = [[0.78, relu(-0.06)]] = [[0.78, 0]] logits = [[-1*0.78 + 0.3, 1*0.78 -0.3, 0.5*0.78]] = [[-0.48, 0.48, 0.39]] """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: self._test_logits( mode, hidden_units=(2, 2), logits_dimension=3, inputs=[[10., 8.]], expected_logits=[[-0.48, 0.48, 0.39]]) def test_multi_feature_column_multi_dim_logits(self): """Tests multiple feature columns and multi-dimensional logits. All numbers are the same as test_multi_dim_input_multi_dim_logits. The only difference is that the input consists of two 1D feature columns, instead of one 2D feature column. """ base_global_step = 100 create_checkpoint((([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]),), base_global_step, self._model_dir) hidden_units = (2, 2) logits_dimension = 3 inputs = ([[10.]], [[8.]]) expected_logits = [[-0.48, 0.48, 0.39]] for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: with ops.Graph().as_default(): # Global step needed for MonitoredSession, which is in turn used to # explicitly set variable weights through a checkpoint. training_util.create_global_step() # Use a variable scope here with 'dnn', emulating the dnn model_fn, so # the checkpoint naming is shared. with variable_scope.variable_scope('dnn'): input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=0, min_slice_size=64 << 20)) logit_fn = self._dnn_logit_fn_builder( units=logits_dimension, hidden_units=hidden_units, feature_columns=[ self._fc_impl.numeric_column('age'), self._fc_impl.numeric_column('height') ], activation_fn=nn.relu, dropout=None, input_layer_partitioner=input_layer_partitioner, batch_norm=False) logits = logit_fn( features={ 'age': constant_op.constant(inputs[0]), 'height': constant_op.constant(inputs[1]) }, mode=mode) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: self.assertAllClose(expected_logits, sess.run(logits)) def test_multi_feature_column_mix_multi_dim_logits(self): """Tests multiple feature columns and multi-dimensional logits. All numbers are the same as test_multi_dim_input_multi_dim_logits. The only difference is that the input consists of two 1D feature columns, instead of one 2D feature column. """ base_global_step = 100 create_checkpoint(( ([[.6, .5], [-.6, -.5]], [.1, -.1]), ([[1., .8], [-.8, -1.]], [.2, -.2]), ([[-1., 1., .5], [-1., 1., .5]], [.3, -.3, .0]), ), base_global_step, self._model_dir) hidden_units = (2, 2) logits_dimension = 3 inputs = ([[10.]], [[8.]]) expected_logits = [[-0.48, 0.48, 0.39]] for mode in [ ModeKeys.TRAIN, ModeKeys.EVAL, ModeKeys.PREDICT ]: with ops.Graph().as_default(): # Global step needed for MonitoredSession, which is in turn used to # explicitly set variable weights through a checkpoint. training_util.create_global_step() # Use a variable scope here with 'dnn', emulating the dnn model_fn, so # the checkpoint naming is shared. with variable_scope.variable_scope('dnn'): input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=0, min_slice_size=64 << 20)) logit_fn = self._dnn_logit_fn_builder( units=logits_dimension, hidden_units=hidden_units, feature_columns=[ feature_column.numeric_column('age'), feature_column_v2.numeric_column('height') ], activation_fn=nn.relu, dropout=None, input_layer_partitioner=input_layer_partitioner, batch_norm=False) logits = logit_fn( features={ 'age': constant_op.constant(inputs[0]), 'height': constant_op.constant(inputs[1]) }, mode=mode) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: self.assertAllClose(expected_logits, sess.run(logits)) class _SummaryHook(session_run_hook.SessionRunHook): """Saves summaries every N steps.""" def _assert_checkpoint( testcase, global_step, input_units, hidden_units, output_units, model_dir): """Asserts checkpoint contains expected variables with proper shapes. Args: testcase: A TestCase instance. global_step: Expected global step value. input_units: The dimension of input layer. hidden_units: Iterable of integer sizes for the hidden layers. output_units: The dimension of output layer (logits). model_dir: The model directory. """ shapes = { name: shape for (name, shape) in checkpoint_utils.list_variables(model_dir) } # Global step. testcase.assertEqual([], shapes[ops.GraphKeys.GLOBAL_STEP]) testcase.assertEqual( global_step, checkpoint_utils.load_variable( model_dir, ops.GraphKeys.GLOBAL_STEP)) # Hidden layer weights. prev_layer_units = input_units for i in range(len(hidden_units)): layer_units = hidden_units[i] testcase.assertAllEqual( (prev_layer_units, layer_units), shapes[HIDDEN_WEIGHTS_NAME_PATTERN % i]) testcase.assertAllEqual( (layer_units,), shapes[HIDDEN_BIASES_NAME_PATTERN % i]) prev_layer_units = layer_units # Output layer weights. testcase.assertAllEqual((prev_layer_units, output_units), shapes[LOGITS_WEIGHTS_NAME]) testcase.assertAllEqual((output_units,), shapes[LOGITS_BIASES_NAME]) def _assert_simple_summary(testcase, expected_values, actual_summary): """Assert summary the specified simple values. Args: testcase: A TestCase instance. expected_values: Dict of expected tags and simple values. actual_summary: `summary_pb2.Summary`. """ testcase.assertAllClose(expected_values, { v.tag: v.simple_value for v in actual_summary.value if (v.tag in expected_values) })
[ 2, 15069, 2177, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 18274, 4487, 284, 307, 973, 287, 4856, 360, 6144, 3959, 2024, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2237, 198, 198, 6738, 11192, 273, 11125, 13, 7295, 13, 30604, 1330, 10638, 62, 40842, 17, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 16366, 1330, 6246, 355, 48700, 62, 29891, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30053, 62, 28665, 1330, 3895, 62, 28665, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30053, 62, 28665, 1330, 3895, 62, 28665, 62, 85, 17, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 6937, 62, 404, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 288, 19199, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 39628, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7177, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 2198, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 1630, 62, 11125, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 2315, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 10688, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 299, 77, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 18398, 276, 62, 25641, 2977, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 1181, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7885, 62, 29982, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 9633, 355, 9633, 62, 8019, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 1332, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 49736, 1330, 10638, 355, 10638, 62, 8019, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 49736, 13, 16002, 1330, 6260, 62, 23870, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 26954, 62, 26791, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 31312, 62, 8906, 1087, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 20738, 62, 29891, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 6436, 7509, 355, 6436, 7509, 62, 8019, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 473, 332, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 6246, 62, 5143, 62, 25480, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 34409, 1330, 3047, 62, 22602, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 1330, 3959, 1352, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 1330, 2746, 62, 22184, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 13, 66, 3577, 1330, 1182, 355, 1182, 62, 8019, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 13, 66, 3577, 1330, 18663, 62, 13083, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 13, 66, 3577, 1330, 17724, 62, 13083, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 13, 15414, 82, 1330, 299, 32152, 62, 952, 198, 6738, 11192, 273, 11125, 62, 395, 320, 1352, 13, 29412, 13, 395, 320, 1352, 13, 14171, 62, 13083, 1330, 10363, 40729, 198, 198, 2, 279, 2645, 600, 3173, 543, 389, 10058, 416, 4277, 329, 1332, 3696, 13, 198, 2, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 11, 24326, 12, 15526, 11, 45688, 12, 15390, 8841, 198, 198, 2, 28531, 286, 9633, 2727, 416, 2746, 13, 198, 2538, 1503, 15871, 62, 49, 6158, 62, 20608, 796, 705, 67, 20471, 14, 2301, 2234, 62, 2256, 14, 67, 20471, 14, 40684, 62, 4873, 6, 198, 39, 2389, 41819, 62, 8845, 34874, 62, 20608, 62, 47, 1404, 31800, 796, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 33885, 6, 198, 39, 2389, 41819, 62, 3483, 1921, 1546, 62, 20608, 62, 47, 1404, 31800, 796, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 65, 4448, 6, 198, 33, 11417, 62, 35510, 44, 62, 33, 20892, 62, 20608, 62, 47, 1404, 31800, 796, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 43501, 27237, 62, 4, 67, 14, 31361, 6, 198, 33, 11417, 62, 35510, 44, 62, 38, 2390, 5673, 62, 20608, 62, 47, 1404, 31800, 796, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 43501, 27237, 62, 4, 67, 14, 28483, 2611, 6, 198, 33, 11417, 62, 35510, 44, 62, 11682, 1565, 62, 20608, 62, 47, 1404, 31800, 796, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 43501, 27237, 62, 4, 67, 14, 31462, 62, 32604, 6, 198, 33, 11417, 62, 35510, 44, 62, 53, 1503, 16868, 5222, 62, 20608, 62, 47, 1404, 31800, 796, 357, 198, 220, 220, 220, 705, 67, 20471, 14, 30342, 29289, 62, 4, 67, 14, 43501, 27237, 62, 4, 67, 14, 31462, 62, 25641, 590, 11537, 198, 25294, 29722, 62, 8845, 34874, 62, 20608, 796, 705, 67, 20471, 14, 6404, 896, 14, 33885, 6, 198, 25294, 29722, 62, 3483, 1921, 1546, 62, 20608, 796, 705, 67, 20471, 14, 6404, 896, 14, 65, 4448, 6, 198, 46, 4093, 8577, 6234, 62, 3620, 33, 1961, 35, 2751, 62, 20608, 796, 19203, 67, 20471, 14, 15414, 62, 6738, 62, 30053, 62, 28665, 82, 14, 15414, 62, 29289, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19596, 341, 62, 20521, 12083, 14, 20521, 12083, 62, 43775, 11537, 198, 34, 9050, 62, 3620, 33, 1961, 35, 2751, 62, 20608, 796, 19203, 67, 20471, 14, 15414, 62, 6738, 62, 30053, 62, 28665, 82, 14, 15414, 62, 29289, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19205, 62, 20521, 12083, 14, 20521, 12083, 62, 43775, 11537, 628, 198, 2, 770, 318, 523, 326, 356, 460, 3538, 5078, 1022, 3895, 62, 28665, 290, 198, 2, 3895, 62, 28665, 62, 85, 17, 329, 4856, 13, 198, 30053, 62, 28665, 13, 77, 39223, 62, 28665, 796, 3895, 62, 28665, 13557, 77, 39223, 62, 28665, 198, 30053, 62, 28665, 13, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 17831, 62, 27041, 316, 796, 3895, 62, 28665, 13557, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 17831, 62, 27041, 316, 220, 1303, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 30053, 62, 28665, 13, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 18893, 22528, 62, 4868, 796, 3895, 62, 28665, 13557, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 18893, 22528, 62, 4868, 220, 1303, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 30053, 62, 28665, 13, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 18893, 22528, 62, 7753, 796, 3895, 62, 28665, 13557, 66, 2397, 12409, 62, 28665, 62, 4480, 62, 18893, 22528, 62, 7753, 220, 1303, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 30053, 62, 28665, 13, 20521, 12083, 62, 28665, 796, 3895, 62, 28665, 13557, 20521, 12083, 62, 28665, 628, 198, 198, 4299, 2251, 62, 9122, 4122, 7, 43775, 62, 392, 62, 8482, 1386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 62, 85, 945, 28, 14202, 2599, 198, 220, 37227, 16447, 26954, 2393, 351, 2810, 2746, 19590, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 19590, 62, 392, 62, 8482, 1386, 25, 40806, 540, 286, 12777, 2374, 286, 3463, 290, 10690, 3815, 13, 198, 220, 220, 220, 3298, 62, 9662, 25, 20768, 3298, 2239, 284, 3613, 287, 26954, 13, 198, 220, 220, 220, 2746, 62, 15908, 25, 27387, 656, 543, 26954, 318, 7448, 13, 198, 220, 220, 220, 15458, 62, 27237, 62, 85, 945, 25, 15965, 2977, 973, 329, 15458, 3487, 1634, 13, 198, 220, 37227, 198, 220, 19590, 11, 29275, 796, 19974, 46491, 43775, 62, 392, 62, 8482, 1386, 8, 198, 220, 611, 15458, 62, 27237, 62, 85, 945, 25, 198, 220, 220, 220, 6818, 18896, 7, 43501, 62, 27237, 62, 85, 945, 8, 6624, 18896, 7, 43775, 62, 392, 62, 8482, 1386, 8, 532, 352, 198, 220, 220, 220, 357, 9374, 62, 11181, 292, 11, 275, 77, 62, 28483, 5356, 11, 275, 77, 62, 1326, 504, 11, 275, 77, 62, 85, 3699, 728, 8, 796, 19974, 46491, 43501, 62, 27237, 62, 85, 945, 8, 198, 220, 2746, 62, 43775, 796, 23884, 628, 220, 1303, 20458, 7679, 19590, 13, 198, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 43775, 8, 532, 352, 2599, 198, 220, 220, 220, 2746, 62, 43775, 58, 39, 2389, 41819, 62, 8845, 34874, 62, 20608, 62, 47, 1404, 31800, 4064, 1312, 60, 796, 19590, 58, 72, 60, 198, 220, 220, 220, 2746, 62, 43775, 58, 39, 2389, 41819, 62, 3483, 1921, 1546, 62, 20608, 62, 47, 1404, 31800, 4064, 1312, 60, 796, 29275, 58, 72, 60, 198, 220, 220, 220, 611, 15458, 62, 27237, 62, 85, 945, 25, 198, 220, 220, 220, 220, 220, 2746, 62, 43775, 58, 33, 11417, 62, 35510, 44, 62, 33, 20892, 62, 20608, 62, 47, 1404, 31800, 4064, 357, 72, 11, 1312, 15437, 796, 275, 77, 62, 11181, 292, 58, 72, 60, 198, 220, 220, 220, 220, 220, 2746, 62, 43775, 58, 33, 11417, 62, 35510, 44, 62, 38, 2390, 5673, 62, 20608, 62, 47, 1404, 31800, 4064, 357, 72, 11, 1312, 15437, 796, 275, 77, 62, 28483, 5356, 58, 72, 60, 198, 220, 220, 220, 220, 220, 2746, 62, 43775, 58, 33, 11417, 62, 35510, 44, 62, 11682, 1565, 62, 20608, 62, 47, 1404, 31800, 4064, 357, 72, 11, 1312, 15437, 796, 275, 77, 62, 1326, 504, 58, 72, 60, 198, 220, 220, 220, 220, 220, 2746, 62, 43775, 58, 33, 11417, 62, 35510, 44, 62, 53, 1503, 16868, 5222, 62, 20608, 62, 47, 1404, 31800, 4064, 357, 72, 11, 1312, 15437, 796, 275, 77, 62, 85, 3699, 728, 58, 72, 60, 628, 220, 1303, 25235, 7679, 19590, 13, 198, 220, 2746, 62, 43775, 58, 25294, 29722, 62, 8845, 34874, 62, 20608, 60, 796, 19590, 58, 12, 16, 60, 198, 220, 2746, 62, 43775, 58, 25294, 29722, 62, 3483, 1921, 1546, 62, 20608, 60, 796, 29275, 58, 12, 16, 60, 628, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 1303, 13610, 2746, 9633, 13, 198, 220, 220, 220, 329, 479, 11, 410, 287, 2237, 13, 2676, 23814, 7, 19849, 62, 43775, 2599, 198, 220, 220, 220, 220, 220, 9633, 62, 8019, 13, 43015, 7, 85, 11, 1438, 28, 74, 11, 288, 4906, 28, 67, 19199, 13, 22468, 2624, 8, 628, 220, 220, 220, 1303, 13610, 1729, 12, 19849, 9633, 13, 198, 220, 220, 220, 3298, 62, 9662, 62, 7785, 796, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 628, 220, 220, 220, 1303, 20768, 1096, 410, 945, 290, 3613, 26954, 13, 198, 220, 220, 220, 351, 48700, 62, 29891, 13, 36044, 3419, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 9633, 62, 8019, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 22446, 5143, 3419, 198, 220, 220, 220, 220, 220, 3298, 62, 9662, 62, 7785, 13, 562, 570, 7, 20541, 62, 9662, 737, 18206, 3419, 198, 220, 220, 220, 220, 220, 473, 332, 13, 50, 8770, 22446, 21928, 7, 82, 408, 11, 28686, 13, 6978, 13, 22179, 7, 19849, 62, 15908, 11, 705, 19849, 13, 694, 457, 6, 4008, 628, 198, 4299, 15290, 62, 2256, 7, 9288, 7442, 11, 7104, 62, 41667, 11, 2604, 896, 62, 46156, 11, 2938, 62, 6404, 896, 2599, 198, 220, 37227, 35561, 257, 15290, 1182, 326, 4938, 689, 2604, 896, 3815, 290, 7885, 3891, 526, 15931, 198, 220, 7104, 62, 43775, 62, 14933, 796, 47527, 39, 2389, 41819, 62, 8845, 34874, 62, 20608, 62, 47, 1404, 31800, 1343, 31051, 3911, 62, 15, 25, 15, 11537, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30342, 62, 41667, 4008, 60, 198, 220, 7104, 62, 8482, 1386, 62, 14933, 796, 47527, 39, 2389, 41819, 62, 3483, 1921, 1546, 62, 20608, 62, 47, 1404, 31800, 1343, 31051, 3911, 62, 15, 25, 15, 11537, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30342, 62, 41667, 4008, 60, 198, 220, 2938, 62, 7785, 62, 14933, 796, 357, 198, 220, 220, 220, 220, 220, 7104, 62, 43775, 62, 14933, 1343, 7104, 62, 8482, 1386, 62, 14933, 1343, 198, 220, 220, 220, 220, 220, 685, 25294, 29722, 62, 8845, 34874, 62, 20608, 1343, 31051, 3911, 62, 15, 25, 15, 3256, 41605, 29722, 62, 3483, 1921, 1546, 62, 20608, 1343, 31051, 3911, 62, 15, 25, 15, 6, 12962, 628, 220, 1182, 796, 1332, 13, 76, 735, 13, 15419, 14134, 540, 22975, 44, 735, 7, 16684, 28, 2256, 62, 8019, 13557, 13847, 8, 198, 220, 1182, 13, 6404, 896, 62, 46156, 796, 2604, 896, 62, 46156, 198, 220, 1182, 13557, 17953, 62, 83, 19944, 62, 395, 320, 1352, 62, 16684, 796, 1332, 13, 76, 735, 13, 22975, 44, 735, 7, 198, 220, 220, 220, 220, 220, 27521, 28, 62, 17953, 62, 83, 19944, 62, 395, 320, 1352, 62, 16684, 8, 198, 220, 1182, 13, 17953, 62, 395, 320, 1352, 62, 16684, 796, 1332, 13, 76, 735, 13, 22975, 44, 735, 7, 198, 220, 220, 220, 220, 220, 27521, 28, 62, 17953, 62, 395, 320, 1352, 62, 16684, 8, 628, 220, 1441, 1182, 628, 198, 4299, 15290, 62, 40085, 7509, 7, 9288, 7442, 11, 7104, 62, 41667, 11, 2938, 62, 22462, 28, 14202, 2599, 198, 220, 37227, 16719, 274, 257, 15290, 6436, 7509, 284, 1332, 262, 4512, 2446, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 1332, 7442, 25, 317, 6208, 20448, 4554, 13, 198, 220, 220, 220, 7104, 62, 41667, 25, 40806, 540, 286, 18253, 10620, 329, 262, 7104, 11685, 13, 198, 220, 220, 220, 2938, 62, 22462, 25, 1002, 1813, 11, 481, 6818, 262, 2994, 1988, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 15290, 30011, 7509, 13, 198, 220, 37227, 198, 220, 7104, 62, 43775, 62, 14933, 796, 47527, 39, 2389, 41819, 62, 8845, 34874, 62, 20608, 62, 47, 1404, 31800, 1343, 31051, 3911, 62, 15, 25, 15, 11537, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30342, 62, 41667, 4008, 60, 198, 220, 7104, 62, 8482, 1386, 62, 14933, 796, 47527, 39, 2389, 41819, 62, 3483, 1921, 1546, 62, 20608, 62, 47, 1404, 31800, 1343, 31051, 3911, 62, 15, 25, 15, 11537, 4064, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30342, 62, 41667, 4008, 60, 198, 220, 2938, 62, 7785, 62, 14933, 796, 357, 198, 220, 220, 220, 220, 220, 7104, 62, 43775, 62, 14933, 1343, 7104, 62, 8482, 1386, 62, 14933, 1343, 198, 220, 220, 220, 220, 220, 685, 25294, 29722, 62, 8845, 34874, 62, 20608, 1343, 31051, 3911, 62, 15, 25, 15, 3256, 41605, 29722, 62, 3483, 1921, 1546, 62, 20608, 1343, 31051, 3911, 62, 15, 25, 15, 6, 12962, 628, 220, 825, 4808, 1084, 48439, 7, 22462, 11, 3298, 62, 9662, 28, 14202, 11, 1401, 62, 4868, 28, 14202, 2599, 198, 220, 220, 220, 37227, 44, 735, 286, 6436, 7509, 13, 1084, 48439, 526, 15931, 198, 220, 220, 220, 4512, 540, 62, 85, 945, 796, 1401, 62, 4868, 393, 39628, 13, 1136, 62, 43681, 7, 198, 220, 220, 220, 220, 220, 220, 220, 39628, 13, 37065, 40729, 13, 51, 3861, 1268, 17534, 62, 53, 1503, 3539, 9148, 1546, 8, 198, 220, 220, 220, 1332, 7442, 13, 30493, 23022, 36, 13255, 7, 40319, 62, 7785, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7785, 13, 3672, 329, 1401, 287, 4512, 540, 62, 85, 945, 12962, 628, 220, 220, 220, 1303, 49899, 2994, 13, 775, 460, 470, 2198, 262, 1988, 3264, 11, 523, 356, 751, 281, 6818, 1034, 13, 198, 220, 220, 220, 1332, 7442, 13, 30493, 23588, 874, 7, 15, 11, 2994, 13, 43358, 13, 358, 12078, 8, 198, 220, 220, 220, 611, 2938, 62, 22462, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 611, 3298, 62, 9662, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1181, 62, 2840, 13, 562, 570, 62, 2860, 7, 20541, 62, 9662, 11, 352, 737, 404, 198, 220, 220, 220, 220, 220, 1441, 1630, 62, 11125, 62, 2840, 13, 3919, 62, 404, 3419, 198, 220, 220, 220, 6818, 62, 22462, 796, 6818, 62, 19836, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10688, 62, 2840, 13, 1462, 62, 22468, 7, 40319, 62, 22462, 11, 1438, 11639, 40319, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 30493, 62, 22462, 11537, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 19510, 30493, 62, 22462, 35751, 2599, 198, 220, 220, 220, 220, 220, 611, 3298, 62, 9662, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1181, 62, 2840, 13, 562, 570, 62, 2860, 7, 20541, 62, 9662, 11, 352, 737, 404, 198, 220, 220, 220, 220, 220, 1441, 1630, 62, 11125, 62, 2840, 13, 3919, 62, 404, 3419, 628, 220, 6436, 7509, 62, 76, 735, 796, 1332, 13, 76, 735, 13, 15419, 14134, 540, 22975, 44, 735, 7, 198, 220, 220, 220, 220, 220, 1020, 28, 40085, 7509, 62, 8019, 13, 27871, 320, 7509, 11, 198, 220, 220, 220, 220, 220, 27521, 28, 40085, 7509, 62, 8019, 13, 27871, 320, 7509, 7, 1904, 62, 48331, 28, 25101, 11, 1438, 11639, 1820, 62, 40085, 7509, 6, 4008, 198, 220, 6436, 7509, 62, 76, 735, 13, 1084, 48439, 796, 1332, 13, 76, 735, 13, 22975, 44, 735, 7, 29988, 862, 28, 62, 1084, 48439, 8, 628, 220, 1441, 6436, 7509, 62, 76, 735, 628, 198, 4871, 7308, 35, 6144, 17633, 37, 77, 14402, 7, 15252, 2599, 198, 220, 37227, 51, 3558, 326, 4808, 67, 20471, 62, 19849, 62, 22184, 8318, 2938, 2604, 896, 284, 15290, 1182, 526, 15931, 628, 220, 825, 4808, 9288, 62, 6404, 896, 7, 944, 11, 4235, 11, 7104, 62, 41667, 11, 2604, 896, 62, 46156, 11, 17311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 2599, 198, 220, 220, 220, 37227, 51, 3558, 326, 262, 2938, 2604, 896, 389, 3804, 284, 15290, 1182, 526, 15931, 198, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 1182, 796, 15290, 62, 2256, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 40319, 62, 6404, 896, 8, 198, 220, 220, 220, 220, 220, 3959, 1352, 62, 16684, 796, 2116, 13557, 67, 20471, 62, 19849, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 6, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 9979, 415, 62, 404, 13, 9979, 415, 26933, 58, 16, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 28, 2256, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 3256, 5485, 28, 37659, 13, 18747, 7, 15414, 82, 737, 43358, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 76, 735, 62, 40085, 7509, 7, 944, 11, 7104, 62, 41667, 4008, 198, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 10363, 40729, 13, 51, 3861, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 27432, 62, 404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 20114, 1847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 4805, 1961, 18379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 28764, 9278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 10786, 44651, 4235, 25, 23884, 4458, 18982, 7, 14171, 4008, 628, 220, 825, 1332, 62, 505, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 530, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 11907, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 260, 2290, 7, 17, 13, 2548, 828, 823, 84, 32590, 15, 13, 1065, 8, 11907, 796, 16410, 17, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 16, 9, 15, 1343, 15, 13, 18, 11907, 796, 16410, 12, 17, 13, 2919, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 30109, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 13, 4357, 685, 16, 8183, 4357, 685, 13, 18, 46570, 828, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 11907, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 260, 2290, 7, 17, 13, 2548, 828, 823, 84, 32590, 15, 13, 1065, 8, 11907, 796, 16410, 17, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 17, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 17, 13, 2548, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 20688, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 6096, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 4357, 685, 20, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 260, 2290, 7, 15, 13, 21, 9, 20, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 20, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 4357, 685, 18, 13, 16, 11, 362, 13, 19, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 260, 2290, 7, 16, 9, 18, 13, 16, 532, 15, 13, 23, 9, 17, 13, 19, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 18, 13, 16, 532, 16, 9, 17, 13, 19, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 17, 13, 2548, 11, 657, 4357, 685, 16, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 17, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 17, 13, 2548, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 9, 16, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 16, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 16, 13, 2548, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 4357, 25915, 16, 13, 2919, 11, 352, 13, 2919, 11, 657, 13, 3388, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 13, 4357, 685, 20, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 4357, 25915, 16, 13, 2919, 11, 352, 13, 2919, 11, 764, 3388, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 505, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 17311, 290, 530, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11, 807, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 532, 15, 13, 21, 9, 23, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 20, 9, 23, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 16, 13, 18, 11, 657, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 16, 13, 18, 532, 15, 13, 23, 9, 15, 13, 24, 1343, 657, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 16, 13, 18, 532, 16, 9, 15, 13, 24, 532, 15, 13, 17, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 15, 13, 3695, 11, 823, 84, 32590, 15, 13, 3312, 8, 11907, 796, 16410, 15, 13, 3695, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 15, 13, 3695, 1343, 16, 9, 15, 1343, 15, 13, 18, 11907, 796, 16410, 12, 15, 13, 2780, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 13, 4357, 685, 16, 8183, 4357, 685, 13, 18, 46570, 828, 2779, 62, 20541, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 1539, 807, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 15, 13, 2780, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 17311, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11, 807, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 532, 15, 13, 21, 9, 23, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 20, 9, 23, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 16, 13, 18, 11, 657, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 16, 13, 18, 532, 15, 13, 23, 9, 15, 13, 24, 1343, 657, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 16, 13, 18, 532, 16, 9, 15, 13, 24, 532, 15, 13, 17, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 15, 13, 3695, 11, 823, 84, 32590, 15, 13, 3312, 8, 11907, 796, 16410, 15, 13, 3695, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 15, 13, 3695, 1343, 657, 13, 18, 11, 352, 9, 15, 13, 3695, 532, 15, 13, 18, 11, 657, 13, 20, 9, 15, 13, 3695, 11907, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 1539, 807, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 30053, 62, 28665, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 3895, 15180, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 1439, 3146, 389, 262, 976, 355, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 13, 383, 691, 198, 220, 220, 220, 3580, 318, 326, 262, 5128, 10874, 286, 734, 352, 35, 3895, 15180, 11, 2427, 286, 198, 220, 220, 220, 530, 362, 35, 3895, 5721, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 7104, 62, 41667, 796, 357, 17, 11, 362, 8, 198, 220, 220, 220, 2604, 896, 62, 46156, 796, 513, 198, 220, 220, 220, 17311, 796, 29565, 58, 940, 8183, 4357, 16410, 23, 8183, 12962, 198, 220, 220, 220, 2938, 62, 6404, 896, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1182, 796, 15290, 62, 2256, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 40319, 62, 6404, 896, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3959, 1352, 62, 16684, 796, 2116, 13557, 67, 20471, 62, 19849, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 9979, 415, 62, 404, 13, 9979, 415, 26933, 58, 16, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 28, 2256, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 10786, 496, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 10786, 17015, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 76, 735, 62, 40085, 7509, 7, 944, 11, 7104, 62, 41667, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 10363, 40729, 13, 51, 3861, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 27432, 62, 404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 20114, 1847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 4805, 1961, 18379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 28764, 9278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 10786, 44651, 4235, 25, 23884, 4458, 18982, 7, 14171, 4008, 628, 220, 825, 1332, 62, 41684, 62, 30053, 62, 28665, 62, 19816, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 3895, 15180, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 1439, 3146, 389, 262, 976, 355, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 13, 383, 691, 198, 220, 220, 220, 3580, 318, 326, 262, 5128, 10874, 286, 734, 352, 35, 3895, 15180, 11, 2427, 286, 198, 220, 220, 220, 530, 362, 35, 3895, 5721, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 198, 220, 220, 220, 10612, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 7104, 62, 41667, 796, 357, 17, 11, 362, 8, 198, 220, 220, 220, 2604, 896, 62, 46156, 796, 513, 198, 220, 220, 220, 17311, 796, 29565, 58, 940, 8183, 4357, 16410, 23, 8183, 12962, 198, 220, 220, 220, 2938, 62, 6404, 896, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1182, 796, 15290, 62, 2256, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 40319, 62, 6404, 896, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3959, 1352, 62, 16684, 796, 2116, 13557, 67, 20471, 62, 19849, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 9979, 415, 62, 404, 13, 9979, 415, 26933, 58, 16, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 28, 2256, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 13, 77, 39223, 62, 28665, 10786, 496, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 62, 85, 17, 13, 77, 39223, 62, 28665, 10786, 17015, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 76, 735, 62, 40085, 7509, 7, 944, 11, 7104, 62, 41667, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 10363, 40729, 13, 51, 3861, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 27432, 62, 404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 20114, 1847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4235, 6624, 10363, 40729, 13, 4805, 1961, 18379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 13, 5143, 7, 395, 320, 1352, 62, 16684, 13, 28764, 9278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 10786, 44651, 4235, 25, 23884, 4458, 18982, 7, 14171, 4008, 628, 220, 825, 1332, 62, 40890, 62, 83, 22854, 62, 430, 2696, 62, 8367, 62, 18224, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 326, 6427, 257, 309, 22854, 329, 3033, 12073, 257, 11052, 12331, 526, 15931, 198, 220, 220, 220, 7104, 62, 41667, 796, 357, 17, 11, 362, 8, 198, 220, 220, 220, 2604, 896, 62, 46156, 796, 513, 198, 220, 220, 220, 17311, 796, 29565, 58, 940, 8183, 4357, 16410, 23, 8183, 12962, 198, 220, 220, 220, 2938, 62, 6404, 896, 796, 16410, 15, 11, 657, 11, 657, 11907, 628, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 1182, 796, 15290, 62, 2256, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 40319, 62, 6404, 896, 8, 198, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 3041, 25636, 79, 7, 11395, 12331, 11, 705, 40890, 815, 307, 257, 8633, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 67, 20471, 62, 19849, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 9979, 415, 62, 404, 13, 9979, 415, 7, 15414, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 9979, 415, 62, 404, 13, 9979, 415, 26933, 58, 16, 11907, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 19076, 40729, 13, 51, 3861, 1268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 28, 2256, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 3256, 5485, 28, 37659, 13, 18747, 7, 15414, 82, 737, 43358, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 28, 76, 735, 62, 40085, 7509, 7, 944, 11, 7104, 62, 41667, 4008, 628, 198, 4871, 7308, 35, 6144, 11187, 270, 37, 77, 14402, 7, 15252, 2599, 198, 220, 37227, 51, 3558, 29409, 286, 2604, 896, 10488, 422, 4808, 67, 20471, 62, 6404, 270, 62, 22184, 62, 38272, 526, 15931, 628, 220, 825, 4808, 9288, 62, 6404, 896, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 25101, 2599, 198, 220, 220, 220, 37227, 51, 3558, 326, 262, 2938, 2604, 896, 389, 10488, 526, 15931, 198, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 1303, 8060, 2239, 2622, 329, 2892, 20026, 36044, 11, 543, 318, 287, 1210, 973, 284, 198, 220, 220, 220, 220, 220, 1303, 11777, 900, 7885, 19590, 832, 257, 26954, 13, 198, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 1303, 5765, 257, 7885, 8354, 994, 351, 705, 67, 20471, 3256, 795, 8306, 262, 288, 20471, 2746, 62, 22184, 11, 523, 198, 220, 220, 220, 220, 220, 1303, 262, 26954, 19264, 318, 4888, 13, 198, 220, 220, 220, 220, 220, 351, 7885, 62, 29982, 13, 45286, 62, 29982, 10786, 67, 20471, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 276, 62, 25641, 2977, 13, 1084, 62, 9806, 62, 45286, 62, 3911, 653, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3911, 1756, 28, 15, 11, 949, 62, 48369, 62, 7857, 28, 2414, 9959, 1160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 270, 62, 22184, 796, 2116, 13557, 67, 20471, 62, 6404, 270, 62, 22184, 62, 38272, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 3256, 5485, 28, 37659, 13, 18747, 7, 15414, 82, 737, 43358, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 22184, 28, 20471, 13, 260, 2290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 28, 15414, 62, 29289, 62, 3911, 653, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 43501, 62, 27237, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 796, 2604, 270, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 6, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 8, 5512, 4235, 28, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3237, 26125, 7, 40319, 62, 6404, 896, 11, 264, 408, 13, 5143, 7, 6404, 896, 4008, 628, 220, 825, 1332, 62, 505, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 530, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 11907, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 260, 2290, 7, 17, 13, 2548, 828, 823, 84, 32590, 15, 13, 1065, 8, 11907, 796, 16410, 17, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 16, 9, 15, 1343, 15, 13, 18, 11907, 796, 16410, 12, 17, 13, 2919, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 30109, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 13, 4357, 685, 16, 8183, 4357, 685, 13, 18, 46570, 828, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11907, 8, 628, 220, 825, 1332, 62, 505, 62, 27740, 62, 6404, 896, 62, 4480, 62, 43501, 62, 27237, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 530, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 16, 8, 11907, 796, 16410, 22, 11, 604, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 1238, 1343, 16, 828, 823, 84, 7, 15, 13, 20, 9, 1238, 532, 16, 8, 11907, 796, 16410, 1485, 11, 860, 11907, 628, 220, 220, 220, 15458, 62, 27237, 62, 15, 11, 3047, 357, 538, 18217, 261, 796, 657, 13, 8298, 2599, 198, 220, 220, 220, 220, 220, 1612, 16, 796, 352, 14, 17, 9, 7, 22, 10, 1485, 8, 796, 838, 11, 198, 220, 220, 220, 220, 220, 24198, 16, 796, 352, 14, 17, 9, 7, 18, 61, 17, 10, 18, 61, 17, 8, 796, 860, 198, 220, 220, 220, 220, 220, 2124, 1157, 796, 357, 22, 12, 940, 20679, 31166, 17034, 7, 24, 10, 15, 13, 8298, 8, 796, 532, 15, 13, 24214, 2598, 31911, 11, 198, 220, 220, 220, 220, 220, 2124, 2481, 796, 357, 1485, 12, 940, 20679, 31166, 17034, 7, 24, 10, 15, 13, 8298, 8, 796, 657, 13, 24214, 2598, 31911, 11, 628, 220, 220, 220, 220, 220, 1612, 17, 796, 352, 14, 17, 9, 7, 19, 10, 24, 8, 796, 718, 13, 20, 11, 198, 220, 220, 220, 220, 220, 24198, 17, 796, 352, 14, 17, 9, 7, 17, 13, 20, 61, 17, 27613, 17, 13, 20, 61, 17, 8, 796, 718, 13, 1495, 198, 220, 220, 220, 220, 220, 2124, 1065, 796, 357, 19, 12, 21, 13, 20, 20679, 31166, 17034, 7, 21, 13, 1495, 10, 15, 13, 8298, 8, 796, 532, 15, 13, 24214, 14585, 11, 198, 220, 220, 220, 220, 220, 2124, 1828, 796, 357, 24, 12, 21, 13, 20, 20679, 31166, 17034, 7, 21, 13, 1495, 10, 15, 13, 8298, 8, 796, 657, 13, 24214, 14585, 11, 628, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 32590, 15, 13, 24214, 2598, 31911, 8, 1343, 362, 9, 32590, 15, 13, 24214, 14585, 8, 1343, 657, 13, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 9, 15, 13, 24214, 2598, 31911, 1343, 362, 9, 15, 13, 24214, 14585, 1343, 657, 13, 18, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 12, 15, 13, 47325, 4531, 2816, 4869, 38430, 16, 13, 1959, 42520, 2816, 4869, 11907, 628, 220, 220, 220, 15458, 62, 27237, 62, 15, 11, 407, 3047, 357, 538, 18217, 261, 796, 657, 13, 8298, 2599, 198, 220, 220, 220, 220, 220, 3867, 62, 32604, 16, 796, 657, 11, 3867, 62, 25641, 590, 16, 796, 352, 198, 220, 220, 220, 220, 220, 2124, 1157, 796, 357, 22, 12, 15, 20679, 31166, 17034, 7, 16, 10, 15, 13, 8298, 8, 796, 718, 13, 2079, 17544, 2075, 1954, 11, 198, 220, 220, 220, 220, 220, 2124, 2481, 796, 357, 1485, 12, 15, 20679, 31166, 17034, 7, 16, 10, 15, 13, 8298, 8, 796, 1105, 13, 2079, 14877, 2780, 4869, 11, 198, 220, 220, 220, 220, 220, 3867, 62, 32604, 17, 796, 657, 11, 3867, 62, 25641, 590, 17, 796, 352, 198, 220, 220, 220, 220, 220, 2124, 1065, 796, 357, 19, 12, 15, 20679, 31166, 17034, 7, 16, 10, 15, 13, 8298, 8, 796, 513, 13, 2079, 7410, 1415, 2079, 11, 198, 220, 220, 220, 220, 220, 2124, 1828, 796, 357, 24, 12, 15, 20679, 31166, 17034, 7, 16, 10, 15, 13, 8298, 8, 796, 807, 13, 2079, 22730, 2091, 4761, 11, 628, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 21, 13, 2079, 17544, 2075, 1954, 1343, 362, 9, 18, 13, 2079, 7410, 1415, 2079, 1343, 657, 13, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 9, 1065, 13, 2079, 14877, 2780, 4869, 1343, 362, 9, 23, 13, 2079, 22730, 2091, 4761, 1343, 657, 13, 18, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 16, 13, 1959, 3865, 11245, 2425, 38430, 20, 13, 1959, 2425, 29159, 4790, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 13, 21, 11, 764, 20, 60, 4357, 685, 16, 1539, 532, 16, 8183, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 13, 4357, 685, 17, 8183, 4357, 685, 13, 18, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19849, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 62, 85, 945, 16193, 30109, 15, 11, 657, 4357, 220, 1303, 12159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 352, 4357, 220, 1303, 34236, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 4357, 220, 1303, 3867, 1612, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 352, 4357, 220, 1303, 3867, 24198, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 4008, 198, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 41888, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 13, 4357, 685, 1238, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 15, 13, 47325, 4531, 2816, 4869, 4357, 685, 16, 13, 1959, 42520, 2816, 4869, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 17821, 8, 198, 220, 220, 220, 329, 4235, 287, 685, 19076, 40729, 13, 20114, 1847, 11, 10363, 40729, 13, 4805, 1961, 18379, 5974, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 41888, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 13, 4357, 685, 1238, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 16, 13, 1959, 3865, 11245, 2425, 4357, 685, 20, 13, 1959, 2425, 29159, 4790, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 17821, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 11907, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 260, 2290, 7, 17, 13, 2548, 828, 823, 84, 32590, 15, 13, 1065, 8, 11907, 796, 16410, 17, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 17, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 17, 13, 2548, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 20688, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 6096, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 4357, 685, 20, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 260, 2290, 7, 15, 13, 21, 9, 20, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 20, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 21, 13, 16, 11, 604, 13, 24, 4357, 685, 18, 13, 16, 11, 362, 13, 19, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 21, 13, 16, 532, 15, 13, 23, 9, 19, 13, 24, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 21, 13, 16, 532, 16, 9, 19, 13, 24, 532, 15, 13, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 260, 2290, 7, 16, 9, 18, 13, 16, 532, 15, 13, 23, 9, 17, 13, 19, 1343, 15, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 18, 13, 16, 532, 16, 9, 17, 13, 19, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 17, 13, 2548, 11, 657, 4357, 685, 16, 13, 2548, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 17, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 17, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 17, 13, 2548, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 9, 16, 13, 2548, 1343, 15, 13, 18, 11, 352, 9, 16, 13, 2548, 532, 15, 13, 18, 11, 657, 13, 20, 9, 16, 13, 2548, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 4357, 25915, 16, 13, 2919, 11, 352, 13, 2919, 11, 657, 13, 3388, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 13, 4357, 685, 20, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 17, 13, 2919, 11, 362, 13, 2919, 11, 352, 13, 1129, 4357, 25915, 16, 13, 2919, 11, 352, 13, 2919, 11, 764, 3388, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 505, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 17311, 290, 530, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11, 807, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 532, 15, 13, 21, 9, 23, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 20, 9, 23, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 16, 13, 18, 11, 657, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 16, 13, 18, 532, 15, 13, 23, 9, 15, 13, 24, 1343, 657, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 16, 13, 18, 532, 16, 9, 15, 13, 24, 532, 15, 13, 17, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 15, 13, 3695, 11, 823, 84, 32590, 15, 13, 3312, 8, 11907, 796, 16410, 15, 13, 3695, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 15, 13, 3695, 1343, 16, 9, 15, 1343, 15, 13, 18, 11907, 796, 16410, 12, 15, 13, 2780, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 13, 4357, 685, 16, 8183, 4357, 685, 13, 18, 46570, 828, 2779, 62, 20541, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 1539, 807, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 15, 13, 2780, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 5021, 12, 19577, 17311, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 5128, 62, 29289, 796, 16410, 940, 11, 807, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 15, 796, 16410, 260, 2290, 7, 15, 13, 21, 9, 940, 532, 15, 13, 21, 9, 23, 1343, 15, 13, 16, 828, 823, 84, 7, 15, 13, 20, 9, 940, 532, 15, 13, 20, 9, 23, 532, 15, 13, 16, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 16, 13, 18, 11, 657, 13, 24, 11907, 198, 220, 220, 220, 7104, 62, 29289, 62, 16, 796, 16410, 260, 2290, 7, 16, 9, 16, 13, 18, 532, 15, 13, 23, 9, 15, 13, 24, 1343, 657, 13, 17, 828, 823, 84, 7, 15, 13, 23, 9, 16, 13, 18, 532, 16, 9, 15, 13, 24, 532, 15, 13, 17, 8, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 16410, 15, 13, 3695, 11, 823, 84, 32590, 15, 13, 3312, 8, 11907, 796, 16410, 15, 13, 3695, 11, 657, 11907, 198, 220, 220, 220, 2604, 896, 796, 16410, 12, 16, 9, 15, 13, 3695, 1343, 657, 13, 18, 11, 352, 9, 15, 13, 3695, 532, 15, 13, 18, 11, 657, 13, 20, 9, 15, 13, 3695, 11907, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 198, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 9288, 62, 6404, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 16193, 17, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 62, 46156, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 30109, 940, 1539, 807, 8183, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 6404, 896, 28, 30109, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 8, 628, 220, 825, 1332, 62, 41684, 62, 30053, 62, 28665, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 3895, 15180, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 1439, 3146, 389, 262, 976, 355, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 13, 383, 691, 198, 220, 220, 220, 3580, 318, 326, 262, 5128, 10874, 286, 734, 352, 35, 3895, 15180, 11, 2427, 286, 198, 220, 220, 220, 530, 362, 35, 3895, 5721, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 26933, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 13, 16, 11, 532, 13, 16, 46570, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 7104, 62, 41667, 796, 357, 17, 11, 362, 8, 198, 220, 220, 220, 2604, 896, 62, 46156, 796, 513, 198, 220, 220, 220, 17311, 796, 29565, 58, 940, 8183, 4357, 16410, 23, 8183, 12962, 198, 220, 220, 220, 2938, 62, 6404, 896, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8060, 2239, 2622, 329, 2892, 20026, 36044, 11, 543, 318, 287, 1210, 973, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11777, 900, 7885, 19590, 832, 257, 26954, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 257, 7885, 8354, 994, 351, 705, 67, 20471, 3256, 795, 8306, 262, 288, 20471, 2746, 62, 22184, 11, 523, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 26954, 19264, 318, 4888, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 7885, 62, 29982, 13, 45286, 62, 29982, 10786, 67, 20471, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 276, 62, 25641, 2977, 13, 1084, 62, 9806, 62, 45286, 62, 3911, 653, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3911, 1756, 28, 15, 11, 949, 62, 48369, 62, 7857, 28, 2414, 9959, 1160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 270, 62, 22184, 796, 2116, 13557, 67, 20471, 62, 6404, 270, 62, 22184, 62, 38272, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 10786, 496, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16072, 62, 23928, 13, 77, 39223, 62, 28665, 10786, 17015, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 22184, 28, 20471, 13, 260, 2290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 28, 15414, 62, 29289, 62, 3911, 653, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 796, 2604, 270, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3237, 26125, 7, 40319, 62, 6404, 896, 11, 264, 408, 13, 5143, 7, 6404, 896, 4008, 628, 220, 825, 1332, 62, 41684, 62, 30053, 62, 28665, 62, 19816, 62, 41684, 62, 27740, 62, 6404, 896, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 3294, 3895, 15180, 290, 5021, 12, 19577, 2604, 896, 13, 628, 220, 220, 220, 1439, 3146, 389, 262, 976, 355, 1332, 62, 41684, 62, 27740, 62, 15414, 62, 41684, 62, 27740, 62, 6404, 896, 13, 383, 691, 198, 220, 220, 220, 3580, 318, 326, 262, 5128, 10874, 286, 734, 352, 35, 3895, 15180, 11, 2427, 286, 198, 220, 220, 220, 530, 362, 35, 3895, 5721, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 20541, 62, 9662, 796, 1802, 198, 220, 220, 220, 2251, 62, 9122, 4122, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 13, 21, 11, 764, 20, 4357, 25915, 13, 21, 11, 532, 13, 20, 60, 4357, 685, 13, 16, 11, 532, 13, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 16, 1539, 764, 23, 4357, 25915, 13, 23, 11, 532, 16, 8183, 4357, 685, 13, 17, 11, 532, 13, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 58, 12, 16, 1539, 352, 1539, 764, 20, 4357, 25915, 16, 1539, 352, 1539, 764, 20, 60, 4357, 685, 13, 18, 11, 532, 13, 18, 11, 764, 15, 46570, 198, 220, 220, 220, 10612, 2779, 62, 20541, 62, 9662, 11, 2116, 13557, 19849, 62, 15908, 8, 628, 220, 220, 220, 7104, 62, 41667, 796, 357, 17, 11, 362, 8, 198, 220, 220, 220, 2604, 896, 62, 46156, 796, 513, 198, 220, 220, 220, 17311, 796, 29565, 58, 940, 8183, 4357, 16410, 23, 8183, 12962, 198, 220, 220, 220, 2938, 62, 6404, 896, 796, 16410, 12, 15, 13, 2780, 11, 657, 13, 2780, 11, 657, 13, 2670, 11907, 628, 220, 220, 220, 329, 4235, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 51, 3861, 1268, 11, 10363, 40729, 13, 20114, 1847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10363, 40729, 13, 4805, 1961, 18379, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 351, 39628, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8060, 2239, 2622, 329, 2892, 20026, 36044, 11, 543, 318, 287, 1210, 973, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11777, 900, 7885, 19590, 832, 257, 26954, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22602, 13, 17953, 62, 20541, 62, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 257, 7885, 8354, 994, 351, 705, 67, 20471, 3256, 795, 8306, 262, 288, 20471, 2746, 62, 22184, 11, 523, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 26954, 19264, 318, 4888, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 7885, 62, 29982, 13, 45286, 62, 29982, 10786, 67, 20471, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18398, 276, 62, 25641, 2977, 13, 1084, 62, 9806, 62, 45286, 62, 3911, 653, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 3911, 1756, 28, 15, 11, 949, 62, 48369, 62, 7857, 28, 2414, 9959, 1160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 270, 62, 22184, 796, 2116, 13557, 67, 20471, 62, 6404, 270, 62, 22184, 62, 38272, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 28, 6404, 896, 62, 46156, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 41667, 28, 30342, 62, 41667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 82, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 13, 77, 39223, 62, 28665, 10786, 496, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 28665, 62, 85, 17, 13, 77, 39223, 62, 28665, 10786, 17015, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 22184, 28, 20471, 13, 260, 2290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 3911, 653, 263, 28, 15414, 62, 29289, 62, 3911, 653, 263, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 27237, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 796, 2604, 270, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 496, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 6937, 62, 404, 13, 9979, 415, 7, 15414, 82, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 20738, 62, 29891, 13, 9069, 20026, 44357, 36044, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 28, 944, 13557, 19849, 62, 15908, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3237, 26125, 7, 40319, 62, 6404, 896, 11, 264, 408, 13, 5143, 7, 6404, 896, 4008, 628, 628, 628, 198, 198, 4871, 4808, 22093, 39, 566, 7, 29891, 62, 5143, 62, 25480, 13, 36044, 10987, 39, 566, 2599, 198, 220, 37227, 50, 3080, 30114, 3166, 790, 399, 4831, 526, 15931, 628, 198, 4299, 4808, 30493, 62, 9122, 4122, 7, 198, 220, 220, 220, 1332, 7442, 11, 3298, 62, 9662, 11, 5128, 62, 41667, 11, 7104, 62, 41667, 11, 5072, 62, 41667, 11, 2746, 62, 15908, 2599, 198, 220, 37227, 8021, 861, 82, 26954, 4909, 2938, 9633, 351, 1774, 15268, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 1332, 7442, 25, 317, 6208, 20448, 4554, 13, 198, 220, 220, 220, 3298, 62, 9662, 25, 1475, 7254, 3298, 2239, 1988, 13, 198, 220, 220, 220, 5128, 62, 41667, 25, 383, 15793, 286, 5128, 7679, 13, 198, 220, 220, 220, 7104, 62, 41667, 25, 40806, 540, 286, 18253, 10620, 329, 262, 7104, 11685, 13, 198, 220, 220, 220, 5072, 62, 41667, 25, 383, 15793, 286, 5072, 7679, 357, 6404, 896, 737, 198, 220, 220, 220, 2746, 62, 15908, 25, 383, 2746, 8619, 13, 198, 220, 37227, 198, 220, 15268, 796, 1391, 198, 220, 220, 220, 220, 220, 1438, 25, 5485, 198, 220, 220, 220, 220, 220, 329, 357, 3672, 11, 5485, 8, 287, 26954, 62, 26791, 13, 4868, 62, 25641, 2977, 7, 19849, 62, 15908, 8, 198, 220, 1782, 628, 220, 1303, 8060, 2239, 13, 198, 220, 1332, 7442, 13, 30493, 36, 13255, 26933, 4357, 15268, 58, 2840, 13, 37065, 40729, 13, 8763, 9864, 1847, 62, 42135, 12962, 198, 220, 1332, 7442, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 3298, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 26954, 62, 26791, 13, 2220, 62, 45286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 15908, 11, 39628, 13, 37065, 40729, 13, 8763, 9864, 1847, 62, 42135, 4008, 628, 220, 1303, 20458, 7679, 19590, 13, 198, 220, 8654, 62, 29289, 62, 41667, 796, 5128, 62, 41667, 198, 220, 329, 1312, 287, 2837, 7, 11925, 7, 30342, 62, 41667, 8, 2599, 198, 220, 220, 220, 7679, 62, 41667, 796, 7104, 62, 41667, 58, 72, 60, 198, 220, 220, 220, 1332, 7442, 13, 30493, 3237, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 357, 47050, 62, 29289, 62, 41667, 11, 7679, 62, 41667, 828, 198, 220, 220, 220, 220, 220, 220, 220, 15268, 58, 39, 2389, 41819, 62, 8845, 34874, 62, 20608, 62, 47, 1404, 31800, 4064, 1312, 12962, 198, 220, 220, 220, 1332, 7442, 13, 30493, 3237, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 357, 29289, 62, 41667, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 15268, 58, 39, 2389, 41819, 62, 3483, 1921, 1546, 62, 20608, 62, 47, 1404, 31800, 4064, 1312, 12962, 198, 220, 220, 220, 8654, 62, 29289, 62, 41667, 796, 7679, 62, 41667, 628, 220, 1303, 25235, 7679, 19590, 13, 198, 220, 1332, 7442, 13, 30493, 3237, 36, 13255, 19510, 47050, 62, 29289, 62, 41667, 11, 5072, 62, 41667, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15268, 58, 25294, 29722, 62, 8845, 34874, 62, 20608, 12962, 198, 220, 1332, 7442, 13, 30493, 3237, 36, 13255, 19510, 22915, 62, 41667, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15268, 58, 25294, 29722, 62, 3483, 1921, 1546, 62, 20608, 12962, 628, 198, 4299, 4808, 30493, 62, 36439, 62, 49736, 7, 9288, 7442, 11, 2938, 62, 27160, 11, 4036, 62, 49736, 2599, 198, 220, 37227, 8021, 861, 10638, 262, 7368, 2829, 3815, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 1332, 7442, 25, 317, 6208, 20448, 4554, 13, 198, 220, 220, 220, 2938, 62, 27160, 25, 360, 713, 286, 2938, 15940, 290, 2829, 3815, 13, 198, 220, 220, 220, 4036, 62, 49736, 25, 4600, 49736, 62, 40842, 17, 13, 22093, 44646, 198, 220, 37227, 198, 220, 1332, 7442, 13, 30493, 3237, 26125, 7, 40319, 62, 27160, 11, 1391, 198, 220, 220, 220, 220, 220, 410, 13, 12985, 25, 410, 13, 36439, 62, 8367, 198, 220, 220, 220, 220, 220, 329, 410, 287, 4036, 62, 49736, 13, 8367, 611, 357, 85, 13, 12985, 287, 2938, 62, 27160, 8, 198, 220, 32092, 628, 198 ]
2.034389
17,593
# Copyright The IETF Trust 2007, All Rights Reserved # Django settings for ietf project. # BASE_DIR and "settings_local" are from # http://code.djangoproject.com/wiki/SplitSettings import os try: import syslog syslog.openlog("datatracker", syslog.LOG_PID, syslog.LOG_USER) except ImportError: pass BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # a place to put ajax logs if necessary. LOG_DIR = '/var/log/datatracker' import sys sys.path.append(os.path.abspath(BASE_DIR + "/..")) import datetime from ietf import __version__ DEBUG = False TEMPLATE_DEBUG = DEBUG # Valid values: # 'production', 'test', 'development' # Override this in settings_local.py if it's not the desired setting: SERVER_MODE = 'production' # Domain name of the IETF IETF_DOMAIN = 'ietf.org' ADMINS = ( ('IETF Django Developers', 'django-project@' + IETF_DOMAIN), ('GMail Tracker Archive', '[email protected]'), ('Henrik Levkowetz', '[email protected]'), ('Robert Sparks', '[email protected]'), ('Ole Laursen', '[email protected]'), ('Ryan Cross', '[email protected]'), ) ALLOWED_HOSTS = [".ietf.org", ".ietf.org.", "209.208.19.216", "4.31.198.44", ] # Server name of the tools server TOOLS_SERVER = 'tools.' + IETF_DOMAIN # Override this in the settings_local.py file: SERVER_EMAIL = 'Django Server <django-project@' + TOOLS_SERVER + '>' DEFAULT_FROM_EMAIL = 'IETF Secretariat <ietf-secretariat-reply@' + IETF_DOMAIN + '>' MANAGERS = ADMINS DATABASES = { 'default': { 'NAME': 'ietf_utf8', 'ENGINE': 'django.db.backends.mysql', 'USER': 'ietf', #'PASSWORD': 'ietf', #'OPTIONS': {}, }, # 'legacy': { # 'NAME': 'ietf', # 'ENGINE': 'django.db.backends.mysql', # 'USER': 'ietf', # #'PASSWORD': 'ietf', # }, } DATABASE_TEST_OPTIONS = { # Comment this out if your database doesn't support InnoDB 'init_command': 'SET storage_engine=InnoDB', } # Local time zone for this installation. Choices can be found here: # http://www.postgresql.org/docs/8.1/static/datetime-keywords.html#DATETIME-TIMEZONE-SET-TABLE # although not all variations may be possible on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'PST8PDT' # Language code for this installation. All choices can be found here: # http://www.w3.org/TR/REC-html40/struct/dirlang.html#langcodes # http://blogs.law.harvard.edu/tech/stories/storyReader$15 LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = False USE_TZ = False MEDIA_URL = 'https://www.ietf.org/' # Absolute path to the directory static files should be collected to. # Example: "/var/www/example.com/static/" SERVE_CDN_FILES_LOCALLY_IN_DEV_MODE = True # URL to use when referring to static files located in STATIC_ROOT. #if SERVER_MODE != 'production' and SERVE_CDN_FILES_LOCALLY_IN_DEV_MODE: STATIC_URL = "/static/" STATIC_ROOT = os.path.abspath(BASE_DIR + "/../static/") #else: # STATIC_URL = "https://www.ietf.org/lib/dt/%s/"%__version__ # STATIC_ROOT = "/a/www/www6s/lib/dt/%s/"%__version__ # Destination for components handled by djangobower COMPONENT_ROOT = BASE_DIR + "/externals/static/" COMPONENT_URL = STATIC_URL # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'ietf.utils.bower_storage.BowerStorageFinder', ) WSGI_APPLICATION = "ietf.wsgi.application" AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) #DATABASE_ROUTERS = ["ietf.legacy_router.LegacyRouter"] # -------------------------------sh ----------------------------------------- # Django/Python Logging Framework Modifications # enable HTML error emails from django.utils.log import DEFAULT_LOGGING LOGGING = DEFAULT_LOGGING.copy() LOGGING['handlers']['mail_admins']['include_html'] = True # Filter out "Invalid HTTP_HOST" emails # Based on http://www.tiwoc.de/blog/2013/03/django-prevent-email-notification-on-suspiciousoperation/ from django.core.exceptions import SuspiciousOperation LOGGING['filters']['skip_suspicious_operations'] = { '()': 'django.utils.log.CallbackFilter', 'callback': skip_suspicious_operations, } LOGGING['handlers']['mail_admins']['filters'] += [ 'skip_suspicious_operations' ] # Filter out UreadablePostError: from django.http import UnreadablePostError LOGGING['filters']['skip_unreadable_posts'] = { '()': 'django.utils.log.CallbackFilter', 'callback': skip_unreadable_post, } LOGGING['handlers']['mail_admins']['filters'] += [ 'skip_unreadable_posts' ] # End logging # ------------------------------------------------------------------------ #SESSION_COOKIE_AGE = 60 * 60 * 24 * 7 * 2 # Age of cookie, in seconds: 2 weeks. SESSION_COOKIE_AGE = 60 * 60 * 24 * 365 * 50 # Age of cookie, in seconds: 50 years SESSION_EXPIRE_AT_BROWSER_CLOSE = False SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' TEMPLATE_LOADERS = ( ('django.template.loaders.cached.Loader', ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )), 'ietf.dbtemplate.template.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.csrf.CsrfViewMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.http.ConditionalGetMiddleware', 'ietf.middleware.SQLLogMiddleware', 'ietf.middleware.SMTPExceptionMiddleware', 'ietf.middleware.RedirectTrailingPeriod', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'ietf.middleware.UnicodeNfkcNormalization', # 'debug_toolbar.middleware.DebugToolbarMiddleware', # ) ROOT_URLCONF = 'ietf.urls' TEMPLATE_DIRS = ( BASE_DIR + "/templates", BASE_DIR + "/secr/templates", ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.request', 'django.core.context_processors.media', 'django.contrib.messages.context_processors.messages', 'ietf.context_processors.server_mode', 'ietf.context_processors.revision_info', 'ietf.secr.context_processors.secr_revision_info', 'ietf.context_processors.rfcdiff_base_url', ) # Additional locations of static files (in addition to each app's static/ dir) STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'secr/static'), os.path.join(BASE_DIR, 'externals/static'), ) INSTALLED_APPS = ( # Django apps 'django.contrib.admin', 'django.contrib.admindocs', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.humanize', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sitemaps', 'django.contrib.sites', 'django.contrib.staticfiles', # External apps 'bootstrap3', 'djangobwr', 'form_utils', 'tastypie', 'widget_tweaks', # IETF apps 'ietf.api', 'ietf.community', 'ietf.dbtemplate', 'ietf.doc', 'ietf.group', 'ietf.idindex', 'ietf.iesg', 'ietf.ietfauth', 'ietf.ipr', 'ietf.liaisons', 'ietf.mailinglists', 'ietf.mailtrigger', 'ietf.meeting', 'ietf.message', 'ietf.name', 'ietf.nomcom', 'ietf.person', 'ietf.redirects', 'ietf.release', 'ietf.submit', 'ietf.sync', 'ietf.utils', # IETF Secretariat apps 'ietf.secr.announcement', 'ietf.secr.areas', 'ietf.secr.drafts', 'ietf.secr.groups', 'ietf.secr.meetings', 'ietf.secr.proceedings', 'ietf.secr.roles', 'ietf.secr.rolodex', 'ietf.secr.sreq', 'ietf.secr.telechat', ) # Settings for django-bootstrap3 # See http://django-bootstrap3.readthedocs.org/en/latest/settings.html BOOTSTRAP3 = { # Label class to use in horizontal forms 'horizontal_label_class': 'col-md-2', # Field class to use in horiozntal forms 'horizontal_field_class': 'col-md-10', # Set HTML required attribute on required fields 'set_required': True, # Set placeholder attributes to label if no placeholder is provided 'set_placeholder': False, # Class to indicate required 'form_required_class': 'bootstrap3-required', # Class to indicate error 'form_error_class': 'bootstrap3-error', } INTERNAL_IPS = ( # AMS servers '64.170.98.32', '64.170.98.86', # local '127.0.0.1', '::1', ) # no slash at end IDTRACKER_BASE_URL = "https://datatracker.ietf.org" RFCDIFF_BASE_URL = "https://www.ietf.org/rfcdiff" # The name of the method to use to invoke the test suite TEST_RUNNER = 'ietf.utils.test_runner.IetfTestRunner' # Fixtures which will be loaded before testing starts GLOBAL_TEST_FIXTURES = [ 'names','ietf.utils.test_data.make_immutable_base_data','nomcom_templates' ] TEST_DIFF_FAILURE_DIR = "/tmp/test/failure/" TEST_GHOSTDRIVER_LOG_PATH = "ghostdriver.log" TEST_MATERIALS_DIR = "tmp-meeting-materials-dir" TEST_BLUESHEET_DIR = "tmp-bluesheet-dir" # These are regexes TEST_URL_COVERAGE_EXCLUDE = [ "^\^admin/", ] # Tese are filename globs TEST_CODE_COVERAGE_EXCLUDE = [ "*/tests*", "*/admin.py", "*/migrations/*", "ietf/settings*", "ietf/utils/test_runner.py", ] TEST_COVERAGE_MASTER_FILE = os.path.join(BASE_DIR, "../release-coverage.json.gz") TEST_COVERAGE_LATEST_FILE = os.path.join(BASE_DIR, "../latest-coverage.json") TEST_CODE_COVERAGE_CHECKER = None if SERVER_MODE != 'production': import coverage TEST_CODE_COVERAGE_CHECKER = coverage.Coverage(source=[ BASE_DIR ], cover_pylib=False, omit=TEST_CODE_COVERAGE_EXCLUDE) TEST_CODE_COVERAGE_REPORT_PATH = "coverage/" TEST_CODE_COVERAGE_REPORT_URL = os.path.join(STATIC_URL, TEST_CODE_COVERAGE_REPORT_PATH, "index.html") TEST_CODE_COVERAGE_REPORT_DIR = os.path.join(BASE_DIR, "static", TEST_CODE_COVERAGE_REPORT_PATH) TEST_CODE_COVERAGE_REPORT_FILE = os.path.join(TEST_CODE_COVERAGE_REPORT_DIR, "index.html") # WG Chair configuration MAX_WG_DELEGATES = 3 DATE_FORMAT = "Y-m-d" DATETIME_FORMAT = "Y-m-d H:i T" # Override this in settings_local.py if needed # *_PATH variables ends with a slash/ . DOCUMENT_PATH_PATTERN = '/a/www/ietf-ftp/{doc.type_id}/' INTERNET_DRAFT_PATH = '/a/www/ietf-ftp/internet-drafts/' INTERNET_DRAFT_PDF_PATH = '/a/www/ietf-datatracker/pdf/' RFC_PATH = '/a/www/ietf-ftp/rfc/' CHARTER_PATH = '/a/www/ietf-ftp/charter/' CONFLICT_REVIEW_PATH = '/a/www/ietf-ftp/conflict-reviews' STATUS_CHANGE_PATH = '/a/www/ietf-ftp/status-changes' AGENDA_PATH = '/a/www/www6s/proceedings/' IPR_DOCUMENT_PATH = '/a/www/ietf-ftp/ietf/IPR/' IESG_TASK_FILE = '/a/www/www6/iesg/internal/task.txt' IESG_ROLL_CALL_FILE = '/a/www/www6/iesg/internal/rollcall.txt' IESG_MINUTES_FILE = '/a/www/www6/iesg/internal/minutes.txt' IESG_WG_EVALUATION_DIR = "/a/www/www6/iesg/evaluation" # Move drafts to this directory when they expire INTERNET_DRAFT_ARCHIVE_DIR = '/a/www/www6s/draft-archive' # The following directory contains linked copies of all drafts, but don't # write anything to this directory -- its content is maintained by ghostlinkd: INTERNET_ALL_DRAFTS_ARCHIVE_DIR = '/a/www/www6s/archive/id' MEETING_RECORDINGS_DIR = '/a/www/audio' # Mailing list info URL for lists hosted on the IETF servers MAILING_LIST_INFO_URL = "https://www.ietf.org/mailman/listinfo/%(list_addr)s" # Liaison Statement Tool settings (one is used in DOC_HREFS below) LIAISON_UNIVERSAL_FROM = 'Liaison Statement Management Tool <lsmt@' + IETF_DOMAIN + '>' LIAISON_ATTACH_PATH = '/a/www/ietf-datatracker/documents/LIAISON/' # should end in a slash LIAISON_ATTACH_URL = 'https://www.ietf.org/lib/dt/documents/LIAISON/' # should end in a slash, location should have a symlink to LIAISON_ATTACH_PATH # Ideally, more of these would be local -- but since we don't support # versions right now, we'll point to external websites DOC_HREFS = { "charter": "https://www.ietf.org/charter/{doc.name}-{doc.rev}.txt", "draft": "https://www.ietf.org/archive/id/{doc.name}-{doc.rev}.txt", "slides": "https://www.ietf.org/slides/{doc.name}-{doc.rev}", "conflrev": "https://www.ietf.org/cr/{doc.name}-{doc.rev}.txt", "statchg": "https://www.ietf.org/sc/{doc.name}-{doc.rev}.txt", "liaison": "%s{doc.external_url}" % LIAISON_ATTACH_URL, "liai-att": "%s{doc.external_url}" % LIAISON_ATTACH_URL, } MEETING_DOC_HREFS = { "agenda": "/meeting/{meeting}/agenda/{doc.group.acronym}/", "minutes": "https://www.ietf.org/proceedings/{meeting}/minutes/{doc.external_url}", "slides": "https://www.ietf.org/proceedings/{meeting}/slides/{doc.external_url}", "recording": "{doc.external_url}", } # Override this in settings_local.py if needed CACHE_MIDDLEWARE_SECONDS = 300 CACHE_MIDDLEWARE_KEY_PREFIX = '' # The default with no CACHES setting is 'django.core.cache.backends.locmem.LocMemCache' # This setting is possibly overridden further down, after the import of settings_local CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', } } IPR_EMAIL_FROM = '[email protected]' IANA_EVAL_EMAIL = "[email protected]" # Put real password in settings_local.py IANA_SYNC_PASSWORD = "secret" IANA_SYNC_CHANGES_URL = "https://datatracker.iana.org:4443/data-tracker/changes" IANA_SYNC_PROTOCOLS_URL = "https://www.iana.org/protocols/" RFC_TEXT_RSYNC_SOURCE="ftp.rfc-editor.org::rfcs-text-only" RFC_EDITOR_SYNC_PASSWORD="secret" RFC_EDITOR_SYNC_NOTIFICATION_URL = "https://www.rfc-editor.org/parser/parser.php" RFC_EDITOR_QUEUE_URL = "https://www.rfc-editor.org/queue2.xml" RFC_EDITOR_INDEX_URL = "https://www.rfc-editor.org/rfc/rfc-index.xml" # NomCom Tool settings ROLODEX_URL = "" NOMCOM_PUBLIC_KEYS_DIR = '/a/www/nomcom/public_keys/' NOMCOM_FROM_EMAIL = '[email protected]' OPENSSL_COMMAND = '/usr/bin/openssl' DAYS_TO_EXPIRE_NOMINATION_LINK = '' DEFAULT_FEEDBACK_TYPE = 'offtopic' NOMINEE_FEEDBACK_TYPES = ['comment', 'questio', 'nomina'] # ID Submission Tool settings IDSUBMIT_FROM_EMAIL = 'IETF I-D Submission Tool <[email protected]>' IDSUBMIT_ANNOUNCE_FROM_EMAIL = '[email protected]' IDSUBMIT_ANNOUNCE_LIST_EMAIL = '[email protected]' # Days from meeting to day of cut off dates on submit -- cutoff_time_utc is added to this IDSUBMIT_DEFAULT_CUTOFF_DAY_OFFSET_00 = 13 IDSUBMIT_DEFAULT_CUTOFF_DAY_OFFSET_01 = 13 IDSUBMIT_DEFAULT_CUTOFF_TIME_UTC = datetime.timedelta(hours=23, minutes=59, seconds=59) IDSUBMIT_DEFAULT_CUTOFF_WARNING_DAYS = datetime.timedelta(days=21) IDSUBMIT_REPOSITORY_PATH = INTERNET_DRAFT_PATH IDSUBMIT_STAGING_PATH = '/a/www/www6s/staging/' IDSUBMIT_STAGING_URL = '//www.ietf.org/staging/' IDSUBMIT_IDNITS_BINARY = '/a/www/ietf-datatracker/scripts/idnits' IDSUBMIT_FILE_TYPES = ( 'txt', 'xml', 'pdf', 'ps', ) IDSUBMIT_MAX_DRAFT_SIZE = { 'txt': 6*1024*1024, # Max size of txt draft file in bytes 'xml': 10*1024*1024, # Max size of xml draft file in bytes 'pdf': 10*1024*1024, 'ps' : 10*1024*1024, } IDSUBMIT_MAX_DAILY_SAME_DRAFT_NAME = 20 IDSUBMIT_MAX_DAILY_SAME_DRAFT_NAME_SIZE = 50 # in MB IDSUBMIT_MAX_DAILY_SAME_SUBMITTER = 50 IDSUBMIT_MAX_DAILY_SAME_SUBMITTER_SIZE = 150 # in MB IDSUBMIT_MAX_DAILY_SAME_GROUP = 150 IDSUBMIT_MAX_DAILY_SAME_GROUP_SIZE = 450 # in MB IDSUBMIT_MAX_DAILY_SUBMISSIONS = 1000 IDSUBMIT_MAX_DAILY_SUBMISSIONS_SIZE = 2000 # in MB XML_LIBRARY = "/www/tools.ietf.org/tools/xml2rfc/web/public/rfc/" MEETING_MATERIALS_SUBMISSION_START_DAYS = -90 MEETING_MATERIALS_SUBMISSION_CUTOFF_DAYS = 26 MEETING_MATERIALS_SUBMISSION_CORRECTION_DAYS = 50 INTERNET_DRAFT_DAYS_TO_EXPIRE = 185 DOT_BINARY = '/usr/bin/dot' UNFLATTEN_BINARY= '/usr/bin/unflatten' PS2PDF_BINARY = '/usr/bin/ps2pdf' RSYNC_BINARY = '/usr/bin/rsync' # Account settings DAYS_TO_EXPIRE_REGISTRATION_LINK = 3 HTPASSWD_COMMAND = "/usr/bin/htpasswd2" HTPASSWD_FILE = "/www/htpasswd" # Generation of bibxml files for xml2rfc BIBXML_BASE_PATH = '/a/www/ietf-ftp/xml2rfc' # Timezone files for iCalendar TZDATA_ICS_PATH = BASE_DIR + '/../vzic/zoneinfo/' CHANGELOG_PATH = BASE_DIR + '/../changelog' SECR_BLUE_SHEET_PATH = '/a/www/ietf-datatracker/documents/blue_sheet.rtf' SECR_BLUE_SHEET_URL = '//datatracker.ietf.org/documents/blue_sheet.rtf' SECR_INTERIM_LISTING_DIR = '/a/www/www6/meeting/interim' SECR_MAX_UPLOAD_SIZE = 40960000 SECR_PROCEEDINGS_DIR = '/a/www/www6s/proceedings/' SECR_PPT2PDF_COMMAND = ['/usr/bin/soffice','--headless','--convert-to','pdf','--outdir'] USE_ETAGS=True PRODUCTION_TIMEZONE = "America/Los_Angeles" PYFLAKES_DEFAULT_ARGS= ["ietf", ] VULTURE_DEFAULT_ARGS= ["ietf", ] # Automatic Scheduling # # how much to login while running, bigger numbers make it more verbose. BADNESS_CALC_LOG = 0 # # these penalties affect the calculation of how bad the assignments are. BADNESS_UNPLACED = 1000000 # following four are used only during migrations to setup up ConstraintName # and penalties are taken from the database afterwards. BADNESS_BETHERE = 200000 BADNESS_CONFLICT_1 = 100000 BADNESS_CONFLICT_2 = 10000 BADNESS_CONFLICT_3 = 1000 BADNESS_TOOSMALL_50 = 5000 BADNESS_TOOSMALL_100 = 50000 BADNESS_TOOBIG = 100 BADNESS_MUCHTOOBIG = 500 # do not run SELENIUM tests by default SELENIUM_TESTS = False SELENIUM_TESTS_ONLY = False # Domain which hosts draft and wg alias lists DRAFT_ALIAS_DOMAIN = IETF_DOMAIN GROUP_ALIAS_DOMAIN = IETF_DOMAIN # Path to the email alias lists. Used by ietf.utils.aliases DRAFT_ALIASES_PATH = "/a/postfix/draft-aliases" DRAFT_VIRTUAL_PATH = "/a/postfix/draft-virtual" # Set debug apps in DEV_APPS settings_local DEV_APPS = () DRAFT_VIRTUAL_DOMAIN = "virtual.ietf.org" GROUP_ALIASES_PATH = "/a/postfix/group-aliases" GROUP_VIRTUAL_PATH = "/a/postfix/group-virtual" GROUP_VIRTUAL_DOMAIN = "virtual.ietf.org" POSTCONFIRM_PATH = "/a/postconfirm/test-wrapper" USER_PREFERENCE_DEFAULTS = { "expires_soon" : "14", "new_enough" : "14", "full_draft" : "off", "left_menu" : "on", } # Put the production SECRET_KEY in settings_local.py, and also any other # sensitive or site-specific changes. DO NOT commit settings_local.py to svn. from settings_local import * # pyflakes:ignore # Add DEV_APPS to INSTALLED_APPS INSTALLED_APPS += DEV_APPS INSTALLED_APPS += CODESTAND_APPS # We provide a secret key only for test and development modes. It's # absolutely vital that django fails to start in production mode unless a # secret key has been provided elsewhere, not in this file which is # publicly available, for instance from the source repository. if SERVER_MODE != 'production': # stomp out the cached template loader, it's annoying TEMPLATE_LOADERS = tuple(l for e in TEMPLATE_LOADERS for l in (e[1] if isinstance(e, tuple) and "cached.Loader" in e[0] else (e,))) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } } if 'SECRET_KEY' not in locals(): SECRET_KEY = 'PDwXboUq!=hPjnrtG2=ge#N$Dwy+wn@uivrugwpic8mxyPfHka' ALLOWED_HOSTS = ['*',]
[ 2, 15069, 383, 314, 22274, 9870, 4343, 11, 1439, 6923, 33876, 198, 198, 2, 37770, 6460, 329, 220, 1155, 69, 1628, 13, 198, 2, 49688, 62, 34720, 290, 366, 33692, 62, 12001, 1, 389, 422, 198, 2, 2638, 1378, 8189, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 15466, 14, 41205, 26232, 198, 198, 11748, 28686, 198, 28311, 25, 198, 220, 220, 220, 1330, 25064, 6404, 198, 220, 220, 220, 25064, 6404, 13, 9654, 6404, 7203, 19608, 265, 81, 10735, 1600, 25064, 6404, 13, 25294, 62, 47, 2389, 11, 25064, 6404, 13, 25294, 62, 29904, 8, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 198, 2, 257, 1295, 284, 1234, 257, 73, 897, 17259, 611, 3306, 13, 198, 25294, 62, 34720, 796, 31051, 7785, 14, 6404, 14, 19608, 265, 81, 10735, 6, 198, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 33, 11159, 62, 34720, 1343, 12813, 492, 48774, 198, 198, 11748, 4818, 8079, 198, 198, 6738, 220, 1155, 69, 1330, 11593, 9641, 834, 198, 198, 30531, 796, 10352, 198, 51, 3620, 6489, 6158, 62, 30531, 796, 16959, 198, 198, 2, 48951, 3815, 25, 198, 2, 705, 25493, 3256, 705, 9288, 3256, 705, 31267, 6, 198, 2, 3827, 13154, 428, 287, 6460, 62, 12001, 13, 9078, 611, 340, 338, 407, 262, 10348, 4634, 25, 198, 35009, 5959, 62, 49058, 796, 705, 25493, 6, 198, 198, 2, 20021, 1438, 286, 262, 314, 22274, 198, 40, 22274, 62, 39170, 29833, 796, 705, 1155, 69, 13, 2398, 6, 198, 198, 2885, 44, 20913, 796, 357, 198, 220, 220, 220, 19203, 40, 22274, 37770, 34152, 3256, 705, 28241, 14208, 12, 16302, 31, 6, 1343, 314, 22274, 62, 39170, 29833, 828, 198, 220, 220, 220, 19203, 15548, 603, 26885, 20816, 3256, 705, 1155, 69, 13, 2213, 10735, 13, 17474, 10, 48277, 31, 14816, 13, 785, 33809, 198, 220, 220, 220, 19203, 26055, 12602, 16042, 74, 322, 23773, 3256, 705, 831, 12602, 31, 2768, 74, 322, 23773, 13, 785, 33809, 198, 220, 220, 220, 19203, 19156, 48117, 3256, 705, 81, 8457, 1845, 591, 31, 77, 455, 6582, 13, 785, 33809, 198, 220, 220, 220, 19203, 46, 293, 4689, 1834, 268, 3256, 705, 349, 559, 31, 30292, 13, 34388, 33809, 198, 220, 220, 220, 19203, 21868, 6372, 3256, 705, 6015, 1214, 31, 4105, 75, 13, 785, 33809, 198, 8, 198, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 685, 1911, 1155, 69, 13, 2398, 1600, 27071, 1155, 69, 13, 2398, 33283, 366, 22567, 13, 21315, 13, 1129, 13, 20666, 1600, 366, 19, 13, 3132, 13, 22337, 13, 2598, 1600, 2361, 198, 198, 2, 9652, 1438, 286, 262, 4899, 4382, 198, 10468, 3535, 50, 62, 35009, 5959, 796, 705, 31391, 2637, 1343, 314, 22274, 62, 39170, 29833, 198, 198, 2, 3827, 13154, 428, 287, 262, 6460, 62, 12001, 13, 9078, 2393, 25, 198, 35009, 5959, 62, 27630, 4146, 796, 705, 35, 73, 14208, 9652, 1279, 28241, 14208, 12, 16302, 31, 6, 1343, 5390, 3535, 50, 62, 35009, 5959, 1343, 705, 29, 6, 198, 198, 7206, 38865, 62, 10913, 2662, 62, 27630, 4146, 796, 705, 40, 22274, 3943, 21621, 1279, 1155, 69, 12, 21078, 21621, 12, 47768, 31, 6, 1343, 314, 22274, 62, 39170, 29833, 1343, 705, 29, 6, 198, 198, 10725, 4760, 4877, 796, 5984, 44, 20913, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 705, 1155, 69, 62, 40477, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 705, 1155, 69, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 47924, 54, 12532, 10354, 705, 1155, 69, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 3185, 51, 11053, 10354, 1391, 5512, 198, 220, 220, 220, 8964, 198, 2, 220, 220, 220, 705, 1455, 1590, 10354, 1391, 198, 2, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 705, 1155, 69, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 705, 1155, 69, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1303, 6, 47924, 54, 12532, 10354, 705, 1155, 69, 3256, 198, 2, 220, 220, 220, 8964, 198, 92, 198, 198, 35, 1404, 6242, 11159, 62, 51, 6465, 62, 3185, 51, 11053, 796, 1391, 198, 220, 220, 220, 1303, 18957, 428, 503, 611, 534, 6831, 1595, 470, 1104, 554, 3919, 11012, 198, 220, 220, 220, 705, 15003, 62, 21812, 10354, 705, 28480, 6143, 62, 18392, 28, 818, 3919, 11012, 3256, 198, 92, 198, 198, 2, 10714, 640, 6516, 329, 428, 9988, 13, 10031, 1063, 460, 307, 1043, 994, 25, 198, 2, 2638, 1378, 2503, 13, 7353, 34239, 13976, 13, 2398, 14, 31628, 14, 23, 13, 16, 14, 12708, 14, 19608, 8079, 12, 2539, 10879, 13, 6494, 2, 35, 1404, 2767, 12789, 12, 34694, 57, 11651, 12, 28480, 12, 38148, 198, 2, 3584, 407, 477, 13991, 743, 307, 1744, 319, 477, 5361, 3341, 13, 198, 2, 1002, 2491, 287, 257, 3964, 2858, 428, 1276, 307, 900, 284, 262, 976, 355, 534, 198, 2, 1080, 640, 6516, 13, 198, 34694, 62, 57, 11651, 796, 705, 47, 2257, 23, 5760, 51, 6, 198, 198, 2, 15417, 2438, 329, 428, 9988, 13, 1439, 7747, 460, 307, 1043, 994, 25, 198, 2, 2638, 1378, 2503, 13, 86, 18, 13, 2398, 14, 5446, 14, 38827, 12, 6494, 1821, 14, 7249, 14, 67, 1901, 648, 13, 6494, 2, 17204, 40148, 198, 2, 2638, 1378, 49096, 13, 6270, 13, 9869, 10187, 13, 15532, 14, 13670, 14, 50164, 14, 13571, 33634, 3, 1314, 198, 43, 15567, 52, 11879, 62, 34, 16820, 796, 705, 268, 12, 385, 6, 198, 198, 50, 12709, 62, 2389, 796, 352, 198, 198, 2, 1002, 345, 900, 428, 284, 10352, 11, 37770, 481, 787, 617, 41446, 523, 355, 407, 198, 2, 284, 3440, 262, 3230, 1634, 20230, 13, 198, 19108, 62, 40, 1507, 45, 796, 10352, 198, 198, 19108, 62, 51, 57, 796, 10352, 198, 198, 30733, 3539, 62, 21886, 796, 705, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 6, 198, 198, 2, 36532, 3108, 284, 262, 8619, 9037, 3696, 815, 307, 7723, 284, 13, 198, 2, 17934, 25, 12813, 7785, 14, 2503, 14, 20688, 13, 785, 14, 12708, 30487, 628, 198, 198, 35009, 6089, 62, 8610, 45, 62, 46700, 1546, 62, 29701, 19807, 62, 1268, 62, 39345, 62, 49058, 796, 6407, 198, 198, 2, 10289, 284, 779, 618, 9759, 284, 9037, 3696, 5140, 287, 15486, 2149, 62, 13252, 2394, 13, 198, 2, 361, 18871, 5959, 62, 49058, 14512, 705, 25493, 6, 290, 18871, 6089, 62, 8610, 45, 62, 46700, 1546, 62, 29701, 19807, 62, 1268, 62, 39345, 62, 49058, 25, 198, 35744, 2149, 62, 21886, 796, 12813, 12708, 30487, 198, 35744, 2149, 62, 13252, 2394, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 33, 11159, 62, 34720, 1343, 12813, 40720, 12708, 14, 4943, 198, 2, 17772, 25, 198, 2, 220, 220, 220, 15486, 2149, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 8019, 14, 28664, 14, 4, 82, 30487, 4, 834, 9641, 834, 198, 2, 220, 220, 220, 15486, 2149, 62, 13252, 2394, 796, 12813, 64, 14, 2503, 14, 2503, 21, 82, 14, 8019, 14, 28664, 14, 4, 82, 30487, 4, 834, 9641, 834, 198, 198, 2, 45657, 329, 6805, 12118, 416, 42625, 648, 672, 789, 198, 9858, 47, 1340, 3525, 62, 13252, 2394, 796, 49688, 62, 34720, 1343, 12813, 1069, 759, 874, 14, 12708, 30487, 198, 9858, 47, 1340, 3525, 62, 21886, 220, 796, 15486, 2149, 62, 21886, 198, 198, 2, 7343, 286, 1064, 263, 6097, 326, 760, 703, 284, 1064, 9037, 3696, 287, 198, 2, 2972, 7064, 13, 198, 35744, 2149, 46700, 1546, 62, 37, 12115, 4877, 796, 357, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 19796, 364, 13, 8979, 11964, 37, 5540, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 19796, 364, 13, 4677, 13470, 1749, 37, 5540, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 26791, 13, 65, 789, 62, 35350, 13, 33, 789, 31425, 37, 5540, 3256, 198, 8, 198, 198, 19416, 18878, 62, 2969, 31484, 6234, 796, 366, 1155, 69, 13, 18504, 12397, 13, 31438, 1, 198, 198, 32, 24318, 3525, 2149, 6234, 62, 31098, 1677, 5258, 796, 357, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 1891, 2412, 13, 17633, 7282, 437, 3256, 1267, 198, 198, 2, 35, 1404, 6242, 11159, 62, 49, 12425, 4877, 796, 14631, 1155, 69, 13, 1455, 1590, 62, 472, 353, 13, 11484, 1590, 49, 39605, 8973, 198, 198, 2, 34400, 24305, 1477, 20368, 45537, 198, 2, 37770, 14, 37906, 5972, 2667, 25161, 3401, 6637, 198, 198, 2, 7139, 11532, 4049, 7237, 198, 6738, 42625, 14208, 13, 26791, 13, 6404, 1330, 5550, 38865, 62, 25294, 38, 2751, 198, 25294, 38, 2751, 796, 5550, 38865, 62, 25294, 38, 2751, 13, 30073, 3419, 198, 25294, 38, 2751, 17816, 4993, 8116, 6, 7131, 6, 4529, 62, 324, 42951, 6, 7131, 6, 17256, 62, 6494, 20520, 796, 6407, 198, 198, 2, 25853, 503, 366, 44651, 14626, 62, 39, 10892, 1, 7237, 198, 2, 13403, 319, 2638, 1378, 2503, 13, 83, 14246, 420, 13, 2934, 14, 14036, 14, 6390, 14, 3070, 14, 28241, 14208, 12, 3866, 1151, 12, 12888, 12, 1662, 2649, 12, 261, 12, 40409, 6243, 27184, 14, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 31922, 6243, 32180, 198, 25294, 38, 2751, 17816, 10379, 1010, 6, 7131, 6, 48267, 62, 40409, 6243, 62, 3575, 602, 20520, 796, 1391, 198, 220, 220, 220, 705, 3419, 10354, 705, 28241, 14208, 13, 26791, 13, 6404, 13, 47258, 22417, 3256, 198, 220, 220, 220, 705, 47423, 10354, 14267, 62, 40409, 6243, 62, 3575, 602, 11, 198, 92, 198, 25294, 38, 2751, 17816, 4993, 8116, 6, 7131, 6, 4529, 62, 324, 42951, 6, 7131, 6, 10379, 1010, 20520, 15853, 685, 705, 48267, 62, 40409, 6243, 62, 3575, 602, 6, 2361, 198, 2, 25853, 503, 471, 46155, 6307, 12331, 25, 198, 6738, 42625, 14208, 13, 4023, 1330, 791, 46155, 6307, 12331, 198, 25294, 38, 2751, 17816, 10379, 1010, 6, 7131, 6, 48267, 62, 403, 46155, 62, 24875, 20520, 796, 1391, 198, 220, 220, 220, 705, 3419, 10354, 705, 28241, 14208, 13, 26791, 13, 6404, 13, 47258, 22417, 3256, 198, 220, 220, 220, 705, 47423, 10354, 14267, 62, 403, 46155, 62, 7353, 11, 198, 92, 198, 25294, 38, 2751, 17816, 4993, 8116, 6, 7131, 6, 4529, 62, 324, 42951, 6, 7131, 6, 10379, 1010, 20520, 15853, 685, 705, 48267, 62, 403, 46155, 62, 24875, 6, 2361, 628, 628, 198, 2, 5268, 18931, 198, 2, 16529, 982, 198, 198, 2, 50, 47621, 62, 34, 15308, 10008, 62, 11879, 796, 3126, 1635, 3126, 1635, 1987, 1635, 767, 1635, 362, 1303, 7129, 286, 19751, 11, 287, 4201, 25, 362, 2745, 13, 198, 50, 47621, 62, 34, 15308, 10008, 62, 11879, 796, 3126, 1635, 3126, 1635, 1987, 1635, 21268, 1635, 2026, 1303, 7129, 286, 19751, 11, 287, 4201, 25, 2026, 812, 198, 198, 50, 47621, 62, 6369, 11901, 2200, 62, 1404, 62, 11473, 22845, 1137, 62, 32737, 796, 10352, 198, 50, 47621, 62, 35009, 12576, 14887, 1137, 796, 705, 28241, 14208, 13, 3642, 822, 13, 82, 6202, 13, 46911, 11341, 13, 31686, 293, 32634, 7509, 6, 198, 198, 51, 3620, 6489, 6158, 62, 35613, 4877, 796, 357, 198, 220, 220, 220, 19203, 28241, 14208, 13, 28243, 13, 2220, 364, 13, 66, 2317, 13, 17401, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28241, 14208, 13, 28243, 13, 2220, 364, 13, 16624, 6781, 13, 17401, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28241, 14208, 13, 28243, 13, 2220, 364, 13, 1324, 62, 12942, 1749, 13, 17401, 3256, 198, 220, 220, 220, 1267, 828, 198, 220, 220, 220, 705, 1155, 69, 13, 9945, 28243, 13, 28243, 13, 17401, 3256, 198, 8, 198, 198, 44, 2389, 35, 2538, 33746, 62, 31631, 1546, 796, 357, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 6359, 41871, 13, 34, 27891, 69, 7680, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 11321, 13, 17227, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 82, 6202, 13, 27171, 1574, 13, 36044, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 27171, 1574, 13, 47649, 3299, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 37348, 1095, 13, 27171, 1574, 13, 12837, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 4023, 13, 25559, 1859, 3855, 34621, 1574, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 27171, 1574, 13, 50, 48, 3069, 519, 34621, 1574, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 27171, 1574, 13, 12310, 7250, 16922, 34621, 1574, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 27171, 1574, 13, 7738, 1060, 15721, 4386, 5990, 2101, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 12976, 73, 5430, 13, 55, 19778, 29046, 34621, 1574, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 27171, 1574, 13, 3118, 291, 1098, 45, 69, 74, 66, 26447, 1634, 3256, 198, 220, 220, 220, 1303, 705, 24442, 62, 25981, 5657, 13, 27171, 1574, 13, 27509, 25391, 5657, 34621, 1574, 3256, 1303, 198, 8, 198, 198, 13252, 2394, 62, 4261, 5639, 1340, 37, 796, 705, 1155, 69, 13, 6371, 82, 6, 198, 198, 51, 3620, 6489, 6158, 62, 34720, 50, 796, 357, 198, 220, 220, 220, 49688, 62, 34720, 1343, 12813, 11498, 17041, 1600, 198, 220, 220, 220, 49688, 62, 34720, 1343, 12813, 2363, 81, 14, 11498, 17041, 1600, 198, 8, 198, 198, 51, 3620, 6489, 6158, 62, 10943, 32541, 62, 4805, 4503, 7597, 20673, 796, 357, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 22866, 62, 14681, 669, 13, 18439, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 24442, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 72, 1507, 77, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 25927, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 11431, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 37348, 1095, 13, 22866, 62, 14681, 669, 13, 37348, 1095, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 22866, 62, 14681, 669, 13, 15388, 62, 14171, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 22866, 62, 14681, 669, 13, 260, 10178, 62, 10951, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 22866, 62, 14681, 669, 13, 2363, 81, 62, 260, 10178, 62, 10951, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 22866, 62, 14681, 669, 13, 41871, 10210, 733, 62, 8692, 62, 6371, 3256, 198, 8, 198, 198, 2, 15891, 7064, 286, 9037, 3696, 357, 259, 3090, 284, 1123, 598, 338, 9037, 14, 26672, 8, 198, 35744, 2149, 46700, 1546, 62, 34720, 50, 796, 357, 198, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 12708, 33809, 198, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 2363, 81, 14, 12708, 33809, 198, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 1069, 759, 874, 14, 12708, 33809, 198, 8, 198, 198, 38604, 7036, 1961, 62, 2969, 3705, 796, 357, 198, 220, 220, 220, 1303, 37770, 6725, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 28482, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 324, 10155, 420, 82, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 11299, 19199, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 10734, 1096, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 37348, 1095, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 82, 6202, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 82, 9186, 1686, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 49315, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 12708, 16624, 3256, 198, 220, 220, 220, 1303, 34579, 6725, 220, 198, 220, 220, 220, 705, 18769, 26418, 18, 3256, 198, 220, 220, 220, 705, 28241, 648, 672, 18351, 3256, 198, 220, 220, 220, 705, 687, 62, 26791, 3256, 198, 220, 220, 220, 705, 83, 459, 4464, 494, 3256, 198, 220, 220, 220, 705, 42655, 62, 83, 732, 4730, 3256, 198, 220, 220, 220, 1303, 314, 22274, 6725, 198, 220, 220, 220, 705, 1155, 69, 13, 15042, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 28158, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 9945, 28243, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 15390, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 8094, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 312, 9630, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 444, 70, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 1155, 13331, 1071, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 541, 81, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 24660, 9886, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 4529, 278, 20713, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 4529, 46284, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 1326, 13629, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 20500, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 3672, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 26601, 785, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 6259, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 445, 1060, 82, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 20979, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 46002, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 27261, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 26791, 3256, 198, 220, 220, 220, 1303, 314, 22274, 3943, 21621, 6725, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 1236, 8652, 434, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 533, 292, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 35679, 82, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 24432, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 47745, 654, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 1676, 2707, 654, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 305, 829, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 3225, 375, 1069, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 82, 42180, 3256, 198, 220, 220, 220, 705, 1155, 69, 13, 2363, 81, 13, 46813, 17006, 3256, 198, 8, 198, 198, 2, 16163, 329, 42625, 14208, 12, 18769, 26418, 18, 198, 2, 4091, 2638, 1378, 28241, 14208, 12, 18769, 26418, 18, 13, 961, 83, 704, 420, 82, 13, 2398, 14, 268, 14, 42861, 14, 33692, 13, 6494, 198, 8202, 2394, 18601, 2969, 18, 796, 1391, 198, 220, 220, 220, 1303, 36052, 1398, 284, 779, 287, 16021, 5107, 198, 220, 220, 220, 705, 17899, 38342, 62, 18242, 62, 4871, 10354, 705, 4033, 12, 9132, 12, 17, 3256, 628, 220, 220, 220, 1303, 7663, 1398, 284, 779, 287, 3076, 952, 89, 429, 282, 5107, 198, 220, 220, 220, 705, 17899, 38342, 62, 3245, 62, 4871, 10354, 705, 4033, 12, 9132, 12, 940, 3256, 628, 220, 220, 220, 1303, 5345, 11532, 2672, 11688, 319, 2672, 7032, 198, 220, 220, 220, 705, 2617, 62, 35827, 10354, 6407, 11, 628, 220, 220, 220, 1303, 5345, 46076, 12608, 284, 6167, 611, 645, 46076, 318, 2810, 198, 220, 220, 220, 705, 2617, 62, 5372, 13829, 10354, 10352, 11, 628, 220, 220, 220, 1303, 5016, 284, 7603, 2672, 198, 220, 220, 220, 705, 687, 62, 35827, 62, 4871, 10354, 705, 18769, 26418, 18, 12, 35827, 3256, 628, 220, 220, 220, 1303, 5016, 284, 7603, 4049, 198, 220, 220, 220, 705, 687, 62, 18224, 62, 4871, 10354, 705, 18769, 26418, 18, 12, 18224, 3256, 198, 92, 198, 198, 1268, 31800, 1847, 62, 47643, 796, 357, 198, 2, 3001, 50, 9597, 198, 197, 6, 2414, 13, 17279, 13, 4089, 13, 2624, 3256, 198, 197, 6, 2414, 13, 17279, 13, 4089, 13, 4521, 3256, 198, 198, 2, 1957, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16799, 13, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3712, 16, 3256, 198, 8, 198, 198, 2, 645, 24632, 379, 886, 198, 2389, 5446, 8120, 1137, 62, 33, 11159, 62, 21886, 796, 366, 5450, 1378, 19608, 265, 81, 10735, 13, 1155, 69, 13, 2398, 1, 198, 41150, 35, 29267, 62, 33, 11159, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 41871, 10210, 733, 1, 198, 198, 2, 383, 1438, 286, 262, 2446, 284, 779, 284, 26342, 262, 1332, 18389, 198, 51, 6465, 62, 49, 4944, 21479, 796, 705, 1155, 69, 13, 26791, 13, 9288, 62, 16737, 13, 40, 316, 69, 14402, 49493, 6, 198, 198, 2, 376, 25506, 543, 481, 307, 9639, 878, 4856, 4940, 198, 8763, 9864, 1847, 62, 51, 6465, 62, 47084, 51, 29514, 796, 685, 705, 14933, 41707, 1155, 69, 13, 26791, 13, 9288, 62, 7890, 13, 15883, 62, 8608, 18187, 62, 8692, 62, 7890, 41707, 26601, 785, 62, 11498, 17041, 6, 2361, 198, 198, 51, 6465, 62, 35, 29267, 62, 7708, 4146, 11335, 62, 34720, 796, 12813, 22065, 14, 9288, 14, 32165, 495, 30487, 198, 198, 51, 6465, 62, 17511, 10892, 7707, 38757, 62, 25294, 62, 34219, 796, 366, 38933, 26230, 13, 6404, 1, 198, 198, 51, 6465, 62, 44, 23261, 12576, 50, 62, 34720, 796, 366, 22065, 12, 1326, 13629, 12, 33665, 82, 12, 15908, 1, 198, 198, 51, 6465, 62, 9148, 35409, 13909, 2767, 62, 34720, 796, 366, 22065, 12, 2436, 947, 25473, 12, 15908, 1, 198, 198, 2, 2312, 389, 40364, 274, 198, 51, 6465, 62, 21886, 62, 8220, 5959, 11879, 62, 6369, 5097, 52, 7206, 796, 685, 198, 220, 220, 220, 366, 61, 59, 61, 28482, 14, 1600, 198, 60, 198, 198, 2, 309, 2771, 389, 29472, 1278, 8158, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 6369, 5097, 52, 7206, 796, 685, 198, 220, 220, 220, 366, 16208, 41989, 9, 1600, 198, 220, 220, 220, 366, 16208, 28482, 13, 9078, 1600, 198, 220, 220, 220, 366, 16208, 76, 3692, 602, 15211, 1600, 198, 220, 220, 220, 366, 1155, 69, 14, 33692, 9, 1600, 198, 220, 220, 220, 366, 1155, 69, 14, 26791, 14, 9288, 62, 16737, 13, 9078, 1600, 198, 60, 198, 198, 51, 6465, 62, 8220, 5959, 11879, 62, 31180, 5781, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 366, 40720, 20979, 12, 1073, 1857, 13, 17752, 13, 34586, 4943, 198, 51, 6465, 62, 8220, 5959, 11879, 62, 43, 1404, 6465, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 366, 40720, 42861, 12, 1073, 1857, 13, 17752, 4943, 198, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 50084, 1137, 796, 6045, 198, 361, 18871, 5959, 62, 49058, 14512, 705, 25493, 10354, 198, 220, 220, 220, 1330, 5197, 198, 220, 220, 220, 43001, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 50084, 1137, 796, 5197, 13, 7222, 1857, 7, 10459, 41888, 49688, 62, 34720, 16589, 3002, 62, 79, 2645, 571, 28, 25101, 11, 42848, 28, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 6369, 5097, 52, 7206, 8, 198, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 34219, 796, 366, 1073, 1857, 30487, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 21886, 796, 28686, 13, 6978, 13, 22179, 7, 35744, 2149, 62, 21886, 11, 43001, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 34219, 11, 366, 9630, 13, 6494, 4943, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 366, 12708, 1600, 43001, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 34219, 8, 198, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 51, 6465, 62, 34, 16820, 62, 8220, 5959, 11879, 62, 2200, 15490, 62, 34720, 11, 366, 9630, 13, 6494, 4943, 198, 198, 2, 370, 38, 9369, 8398, 198, 22921, 62, 54, 38, 62, 7206, 2538, 38, 29462, 796, 513, 198, 198, 35, 6158, 62, 21389, 1404, 796, 366, 56, 12, 76, 12, 67, 1, 198, 35, 1404, 2767, 12789, 62, 21389, 1404, 796, 366, 56, 12, 76, 12, 67, 367, 25, 72, 309, 1, 198, 198, 2, 3827, 13154, 428, 287, 6460, 62, 12001, 13, 9078, 611, 2622, 198, 2, 1635, 62, 34219, 9633, 5645, 351, 257, 24632, 14, 764, 198, 38715, 5883, 3525, 62, 34219, 62, 47, 1404, 31800, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 90, 15390, 13, 4906, 62, 312, 92, 14, 6, 198, 41358, 12884, 62, 35, 44700, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 37675, 12, 35679, 82, 14, 6, 198, 41358, 12884, 62, 35, 44700, 62, 20456, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 19608, 265, 81, 10735, 14, 12315, 14, 6, 198, 41150, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 81, 16072, 14, 6, 198, 38019, 5781, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 354, 2571, 14, 6, 198, 10943, 3697, 18379, 62, 2200, 28206, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 10414, 13758, 12, 19023, 82, 6, 198, 35744, 2937, 62, 3398, 27746, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 13376, 12, 36653, 6, 198, 4760, 1677, 5631, 62, 34219, 796, 31051, 64, 14, 2503, 14, 2503, 21, 82, 14, 1676, 2707, 654, 14, 6, 198, 4061, 49, 62, 38715, 5883, 3525, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 1155, 69, 14, 4061, 49, 14, 6, 198, 11015, 38, 62, 51, 1921, 42, 62, 25664, 796, 31051, 64, 14, 2503, 14, 2503, 21, 14, 444, 70, 14, 32538, 14, 35943, 13, 14116, 6, 198, 11015, 38, 62, 13252, 3069, 62, 34, 7036, 62, 25664, 796, 31051, 64, 14, 2503, 14, 2503, 21, 14, 444, 70, 14, 32538, 14, 2487, 13345, 13, 14116, 6, 198, 11015, 38, 62, 23678, 3843, 1546, 62, 25664, 796, 31051, 64, 14, 2503, 14, 2503, 21, 14, 444, 70, 14, 32538, 14, 1084, 1769, 13, 14116, 6, 198, 11015, 38, 62, 54, 38, 62, 20114, 1847, 52, 6234, 62, 34720, 796, 12813, 64, 14, 2503, 14, 2503, 21, 14, 444, 70, 14, 18206, 2288, 1, 198, 2, 10028, 30247, 284, 428, 8619, 618, 484, 24264, 198, 41358, 12884, 62, 35, 44700, 62, 31315, 9306, 62, 34720, 796, 31051, 64, 14, 2503, 14, 2503, 21, 82, 14, 35679, 12, 17474, 6, 198, 2, 383, 1708, 8619, 4909, 6692, 9088, 286, 477, 30247, 11, 475, 836, 470, 198, 2, 3551, 1997, 284, 428, 8619, 1377, 663, 2695, 318, 9456, 416, 10905, 8726, 67, 25, 198, 41358, 12884, 62, 7036, 62, 35, 3861, 37, 4694, 62, 31315, 9306, 62, 34720, 796, 31051, 64, 14, 2503, 14, 2503, 21, 82, 14, 17474, 14, 312, 6, 198, 11682, 2767, 2751, 62, 38827, 12532, 20754, 62, 34720, 796, 31051, 64, 14, 2503, 14, 24051, 6, 198, 198, 2, 11099, 278, 1351, 7508, 10289, 329, 8341, 12007, 319, 262, 314, 22274, 9597, 198, 5673, 4146, 2751, 62, 45849, 62, 10778, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 4529, 805, 14, 4868, 10951, 14, 4, 7, 4868, 62, 29851, 8, 82, 1, 198, 198, 2, 49520, 1653, 21983, 16984, 6460, 357, 505, 318, 973, 287, 37760, 62, 39, 2200, 10652, 2174, 8, 198, 43, 3539, 39960, 62, 4944, 30194, 1847, 62, 10913, 2662, 796, 705, 43, 544, 1653, 21983, 8549, 16984, 1279, 75, 5796, 83, 31, 6, 1343, 314, 22274, 62, 39170, 29833, 1343, 705, 29, 6, 198, 43, 3539, 39960, 62, 17139, 16219, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 19608, 265, 81, 10735, 14, 15390, 2886, 14, 43, 3539, 39960, 14, 6, 1303, 815, 886, 287, 257, 24632, 198, 43, 3539, 39960, 62, 17139, 16219, 62, 21886, 796, 705, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 8019, 14, 28664, 14, 15390, 2886, 14, 43, 3539, 39960, 14, 6, 1303, 815, 886, 287, 257, 24632, 11, 4067, 815, 423, 257, 827, 4029, 676, 284, 43031, 39960, 62, 17139, 16219, 62, 34219, 198, 198, 2, 40067, 11, 517, 286, 777, 561, 307, 1957, 1377, 475, 1201, 356, 836, 470, 1104, 198, 2, 6300, 826, 783, 11, 356, 1183, 966, 284, 7097, 9293, 198, 38715, 62, 39, 2200, 10652, 796, 1391, 198, 220, 220, 220, 366, 354, 2571, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 354, 2571, 14, 90, 15390, 13, 3672, 92, 12, 90, 15390, 13, 18218, 27422, 14116, 1600, 198, 220, 220, 220, 366, 35679, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 17474, 14, 312, 14, 90, 15390, 13, 3672, 92, 12, 90, 15390, 13, 18218, 27422, 14116, 1600, 198, 220, 220, 220, 366, 6649, 1460, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 6649, 1460, 14, 90, 15390, 13, 3672, 92, 12, 90, 15390, 13, 18218, 92, 1600, 198, 220, 220, 220, 366, 1102, 2704, 18218, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 6098, 14, 90, 15390, 13, 3672, 92, 12, 90, 15390, 13, 18218, 27422, 14116, 1600, 198, 220, 220, 220, 366, 301, 963, 70, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 1416, 14, 90, 15390, 13, 3672, 92, 12, 90, 15390, 13, 18218, 27422, 14116, 1600, 198, 220, 220, 220, 366, 24660, 1653, 1298, 36521, 82, 90, 15390, 13, 22615, 62, 6371, 36786, 4064, 43031, 39960, 62, 17139, 16219, 62, 21886, 11, 198, 220, 220, 220, 366, 24660, 72, 12, 1078, 1298, 36521, 82, 90, 15390, 13, 22615, 62, 6371, 36786, 4064, 43031, 39960, 62, 17139, 16219, 62, 21886, 11, 198, 92, 198, 198, 11682, 2767, 2751, 62, 38715, 62, 39, 2200, 10652, 796, 1391, 198, 220, 220, 220, 366, 363, 7438, 1298, 12813, 1326, 13629, 14, 90, 1326, 13629, 92, 14, 363, 7438, 14, 90, 15390, 13, 8094, 13, 330, 1313, 4948, 92, 14, 1600, 198, 220, 220, 220, 366, 1084, 1769, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 1676, 2707, 654, 14, 90, 1326, 13629, 92, 14, 1084, 1769, 14, 90, 15390, 13, 22615, 62, 6371, 92, 1600, 198, 220, 220, 220, 366, 6649, 1460, 1298, 366, 5450, 1378, 2503, 13, 1155, 69, 13, 2398, 14, 1676, 2707, 654, 14, 90, 1326, 13629, 92, 14, 6649, 1460, 14, 90, 15390, 13, 22615, 62, 6371, 92, 1600, 198, 220, 220, 220, 366, 8344, 1284, 1298, 45144, 15390, 13, 22615, 62, 6371, 92, 1600, 198, 92, 198, 198, 2, 3827, 13154, 428, 287, 6460, 62, 12001, 13, 9078, 611, 2622, 198, 34, 2246, 13909, 62, 44, 2389, 35, 2538, 33746, 62, 23683, 1340, 5258, 796, 5867, 198, 34, 2246, 13909, 62, 44, 2389, 35, 2538, 33746, 62, 20373, 62, 47, 31688, 10426, 796, 10148, 198, 198, 2, 383, 4277, 351, 645, 327, 16219, 1546, 4634, 318, 705, 28241, 14208, 13, 7295, 13, 23870, 13, 1891, 2412, 13, 17946, 11883, 13, 33711, 13579, 30562, 6, 198, 2, 770, 4634, 318, 5457, 23170, 4651, 2252, 866, 11, 706, 262, 1330, 286, 6460, 62, 12001, 198, 34, 16219, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31098, 10619, 10354, 705, 28241, 14208, 13, 7295, 13, 23870, 13, 1891, 2412, 13, 11883, 66, 2317, 13, 13579, 66, 2317, 30562, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29701, 6234, 10354, 705, 16799, 13, 15, 13, 15, 13, 16, 25, 14686, 1157, 3256, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 4061, 49, 62, 27630, 4146, 62, 10913, 2662, 796, 705, 1155, 69, 12, 541, 81, 31, 1155, 69, 13, 2398, 6, 198, 198, 16868, 32, 62, 20114, 1847, 62, 27630, 4146, 796, 366, 35679, 82, 12, 18206, 31, 291, 1236, 13, 2398, 1, 198, 198, 2, 5930, 1103, 9206, 287, 6460, 62, 12001, 13, 9078, 198, 16868, 32, 62, 23060, 7792, 62, 47924, 54, 12532, 796, 366, 21078, 1, 198, 16868, 32, 62, 23060, 7792, 62, 3398, 15567, 1546, 62, 21886, 796, 366, 5450, 1378, 19608, 265, 81, 10735, 13, 7484, 13, 2398, 25, 2598, 3559, 14, 7890, 12, 2213, 10735, 14, 36653, 1, 198, 16868, 32, 62, 23060, 7792, 62, 4805, 2394, 4503, 3535, 50, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 7484, 13, 2398, 14, 11235, 4668, 82, 30487, 198, 198, 41150, 62, 32541, 62, 6998, 56, 7792, 62, 47690, 2625, 701, 79, 13, 81, 16072, 12, 35352, 13, 2398, 3712, 41871, 6359, 12, 5239, 12, 8807, 1, 198, 198, 41150, 62, 24706, 1581, 62, 23060, 7792, 62, 47924, 54, 12532, 2625, 21078, 1, 198, 41150, 62, 24706, 1581, 62, 23060, 7792, 62, 11929, 30643, 6234, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 81, 16072, 12, 35352, 13, 2398, 14, 48610, 14, 48610, 13, 10121, 1, 198, 41150, 62, 24706, 1581, 62, 48, 8924, 8924, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 81, 16072, 12, 35352, 13, 2398, 14, 36560, 17, 13, 19875, 1, 198, 41150, 62, 24706, 1581, 62, 12115, 6369, 62, 21886, 796, 366, 5450, 1378, 2503, 13, 81, 16072, 12, 35352, 13, 2398, 14, 81, 16072, 14, 81, 16072, 12, 9630, 13, 19875, 1, 198, 198, 2, 21198, 5377, 16984, 6460, 198, 49, 3535, 3727, 6369, 62, 21886, 796, 13538, 198, 45, 2662, 9858, 62, 5105, 32936, 62, 7336, 16309, 62, 34720, 796, 31051, 64, 14, 2503, 14, 26601, 785, 14, 11377, 62, 13083, 14, 6, 198, 45, 2662, 9858, 62, 10913, 2662, 62, 27630, 4146, 796, 705, 26601, 785, 12, 16337, 31, 1155, 69, 13, 2398, 6, 198, 3185, 1677, 31127, 62, 9858, 44, 6981, 796, 31051, 14629, 14, 8800, 14, 44813, 6649, 6, 198, 26442, 50, 62, 10468, 62, 6369, 11901, 2200, 62, 45, 2662, 1268, 6234, 62, 43, 17248, 796, 10148, 198, 7206, 38865, 62, 15112, 1961, 31098, 62, 25216, 796, 705, 2364, 26652, 6, 198, 45, 2662, 1268, 6500, 62, 15112, 1961, 31098, 62, 9936, 47, 1546, 796, 37250, 23893, 3256, 705, 6138, 952, 3256, 705, 26601, 1437, 20520, 198, 198, 2, 4522, 42641, 16984, 6460, 198, 14255, 10526, 36393, 62, 10913, 2662, 62, 27630, 4146, 796, 705, 40, 22274, 314, 12, 35, 42641, 16984, 1279, 2340, 549, 3411, 31, 1155, 69, 13, 2398, 29, 6, 198, 14255, 10526, 36393, 62, 22846, 19385, 5222, 62, 10913, 2662, 62, 27630, 4146, 796, 705, 37675, 12, 35679, 82, 31, 1155, 69, 13, 2398, 6, 198, 14255, 10526, 36393, 62, 22846, 19385, 5222, 62, 45849, 62, 27630, 4146, 796, 705, 72, 12, 67, 12, 1236, 8652, 31, 1155, 69, 13, 2398, 6, 198, 198, 2, 12579, 422, 3249, 284, 1110, 286, 2005, 572, 9667, 319, 9199, 1377, 45616, 62, 2435, 62, 315, 66, 318, 2087, 284, 428, 198, 14255, 10526, 36393, 62, 7206, 38865, 62, 34, 3843, 27977, 62, 26442, 62, 27977, 28480, 62, 405, 796, 1511, 198, 14255, 10526, 36393, 62, 7206, 38865, 62, 34, 3843, 27977, 62, 26442, 62, 27977, 28480, 62, 486, 796, 1511, 198, 14255, 10526, 36393, 62, 7206, 38865, 62, 34, 3843, 27977, 62, 34694, 62, 17429, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 1954, 11, 2431, 28, 3270, 11, 4201, 28, 3270, 8, 198, 14255, 10526, 36393, 62, 7206, 38865, 62, 34, 3843, 27977, 62, 31502, 62, 26442, 50, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 2481, 8, 198, 198, 14255, 10526, 36393, 62, 35316, 2640, 2043, 15513, 62, 34219, 796, 23255, 12884, 62, 35, 44700, 62, 34219, 198, 14255, 10526, 36393, 62, 2257, 4760, 2751, 62, 34219, 796, 31051, 64, 14, 2503, 14, 2503, 21, 82, 14, 301, 3039, 14, 6, 198, 14255, 10526, 36393, 62, 2257, 4760, 2751, 62, 21886, 796, 705, 1003, 2503, 13, 1155, 69, 13, 2398, 14, 301, 3039, 14, 6, 198, 14255, 10526, 36393, 62, 2389, 45, 29722, 62, 33, 1268, 13153, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 19608, 265, 81, 10735, 14, 46521, 14, 312, 77, 896, 6, 198, 198, 14255, 10526, 36393, 62, 25664, 62, 9936, 47, 1546, 796, 357, 198, 220, 220, 220, 705, 14116, 3256, 198, 220, 220, 220, 705, 19875, 3256, 198, 220, 220, 220, 705, 12315, 3256, 198, 220, 220, 220, 705, 862, 3256, 198, 8, 198, 14255, 10526, 36393, 62, 22921, 62, 35, 44700, 62, 33489, 796, 220, 1391, 198, 220, 220, 220, 705, 14116, 10354, 220, 718, 9, 35500, 9, 35500, 11, 220, 1303, 5436, 2546, 286, 256, 742, 4538, 2393, 287, 9881, 198, 220, 220, 220, 705, 19875, 10354, 838, 9, 35500, 9, 35500, 11, 220, 1303, 5436, 2546, 286, 35555, 4538, 2393, 287, 9881, 198, 220, 220, 220, 705, 12315, 10354, 838, 9, 35500, 9, 35500, 11, 198, 220, 220, 220, 705, 862, 6, 1058, 838, 9, 35500, 9, 35500, 11, 198, 92, 198, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 35, 44700, 62, 20608, 796, 1160, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 35, 44700, 62, 20608, 62, 33489, 796, 2026, 1303, 287, 10771, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 50, 10526, 36393, 5781, 796, 2026, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 50, 10526, 36393, 5781, 62, 33489, 796, 6640, 1303, 287, 10771, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 46846, 796, 6640, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10067, 62, 46846, 62, 33489, 796, 18523, 1303, 287, 10771, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10526, 44, 16744, 11053, 796, 8576, 198, 14255, 10526, 36393, 62, 22921, 62, 5631, 33340, 62, 50, 10526, 44, 16744, 11053, 62, 33489, 796, 4751, 1303, 287, 10771, 198, 198, 55, 5805, 62, 40347, 49, 13153, 796, 12813, 2503, 14, 31391, 13, 1155, 69, 13, 2398, 14, 31391, 14, 19875, 17, 81, 16072, 14, 12384, 14, 11377, 14, 81, 16072, 30487, 198, 198, 11682, 2767, 2751, 62, 44, 23261, 12576, 50, 62, 50, 10526, 44, 40373, 62, 2257, 7227, 62, 26442, 50, 796, 532, 3829, 198, 11682, 2767, 2751, 62, 44, 23261, 12576, 50, 62, 50, 10526, 44, 40373, 62, 34, 3843, 27977, 62, 26442, 50, 796, 2608, 198, 11682, 2767, 2751, 62, 44, 23261, 12576, 50, 62, 50, 10526, 44, 40373, 62, 44879, 23988, 2849, 62, 26442, 50, 796, 2026, 198, 198, 41358, 12884, 62, 35, 44700, 62, 26442, 50, 62, 10468, 62, 6369, 11901, 2200, 796, 22855, 198, 198, 35, 2394, 62, 33, 1268, 13153, 796, 31051, 14629, 14, 8800, 14, 26518, 6, 198, 4944, 3697, 17139, 1677, 62, 33, 1268, 13153, 28, 31051, 14629, 14, 8800, 14, 403, 2704, 41769, 6, 198, 3705, 17, 20456, 62, 33, 1268, 13153, 796, 31051, 14629, 14, 8800, 14, 862, 17, 12315, 6, 198, 6998, 56, 7792, 62, 33, 1268, 13153, 796, 31051, 14629, 14, 8800, 14, 81, 27261, 6, 198, 198, 2, 10781, 6460, 198, 26442, 50, 62, 10468, 62, 6369, 11901, 2200, 62, 31553, 1797, 5446, 6234, 62, 43, 17248, 796, 513, 198, 6535, 47924, 22332, 62, 9858, 44, 6981, 796, 12813, 14629, 14, 8800, 14, 4352, 6603, 16993, 17, 1, 198, 6535, 47924, 22332, 62, 25664, 796, 12813, 2503, 14, 4352, 6603, 16993, 1, 198, 198, 2, 16588, 286, 275, 571, 19875, 3696, 329, 35555, 17, 81, 16072, 198, 3483, 33, 55, 5805, 62, 33, 11159, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 701, 79, 14, 19875, 17, 81, 16072, 6, 198, 198, 2, 3862, 11340, 3696, 329, 1312, 9771, 9239, 198, 51, 57, 26947, 62, 19505, 62, 34219, 796, 49688, 62, 34720, 1343, 31051, 40720, 85, 89, 291, 14, 11340, 10951, 14, 6, 198, 3398, 15567, 3698, 7730, 62, 34219, 796, 220, 49688, 62, 34720, 1343, 31051, 40720, 354, 8368, 519, 6, 198, 198, 23683, 49, 62, 9148, 8924, 62, 9693, 36, 2767, 62, 34219, 796, 31051, 64, 14, 2503, 14, 1155, 69, 12, 19608, 265, 81, 10735, 14, 15390, 2886, 14, 17585, 62, 21760, 13, 17034, 69, 6, 198, 23683, 49, 62, 9148, 8924, 62, 9693, 36, 2767, 62, 21886, 796, 705, 1003, 19608, 265, 81, 10735, 13, 1155, 69, 13, 2398, 14, 15390, 2886, 14, 17585, 62, 21760, 13, 17034, 69, 6, 198, 23683, 49, 62, 41358, 3955, 62, 45849, 2751, 62, 34720, 796, 31051, 64, 14, 2503, 14, 2503, 21, 14, 1326, 13629, 14, 3849, 320, 6, 198, 23683, 49, 62, 22921, 62, 52, 6489, 41048, 62, 33489, 796, 42479, 2388, 198, 23683, 49, 62, 4805, 4503, 41841, 20754, 62, 34720, 796, 31051, 64, 14, 2503, 14, 2503, 21, 82, 14, 1676, 2707, 654, 14, 6, 198, 23683, 49, 62, 10246, 51, 17, 20456, 62, 9858, 44, 6981, 796, 685, 26488, 14629, 14, 8800, 14, 568, 487, 501, 41707, 438, 2256, 1203, 41707, 438, 1102, 1851, 12, 1462, 41707, 12315, 41707, 438, 448, 15908, 20520, 198, 198, 19108, 62, 2767, 4760, 50, 28, 17821, 198, 198, 4805, 28644, 2849, 62, 34694, 57, 11651, 796, 366, 18165, 14, 28903, 62, 33246, 274, 1, 198, 198, 47, 56, 3697, 10206, 1546, 62, 7206, 38865, 62, 1503, 14313, 28, 14631, 1155, 69, 1600, 2361, 198, 53, 16724, 11335, 62, 7206, 38865, 62, 1503, 14313, 28, 14631, 1155, 69, 1600, 2361, 198, 198, 2, 30199, 27774, 16619, 198, 2, 198, 2, 703, 881, 284, 17594, 981, 2491, 11, 5749, 3146, 787, 340, 517, 15942, 577, 13, 198, 33, 2885, 31097, 62, 34, 1847, 34, 62, 25294, 220, 220, 796, 657, 198, 2, 198, 2, 777, 12970, 2689, 262, 17952, 286, 703, 2089, 262, 25815, 389, 13, 198, 33, 2885, 31097, 62, 4944, 6489, 2246, 1961, 220, 220, 796, 1802, 2388, 198, 198, 2, 1708, 1440, 389, 973, 691, 1141, 15720, 602, 284, 9058, 510, 1482, 2536, 2913, 5376, 198, 2, 290, 12970, 389, 2077, 422, 262, 6831, 12979, 13, 198, 33, 2885, 31097, 62, 33, 20702, 9338, 220, 220, 220, 796, 939, 830, 198, 33, 2885, 31097, 62, 10943, 3697, 18379, 62, 16, 796, 1802, 830, 198, 33, 2885, 31097, 62, 10943, 3697, 18379, 62, 17, 796, 33028, 198, 33, 2885, 31097, 62, 10943, 3697, 18379, 62, 18, 796, 8576, 198, 198, 33, 2885, 31097, 62, 10468, 2640, 44, 7036, 62, 1120, 220, 796, 23336, 198, 33, 2885, 31097, 62, 10468, 2640, 44, 7036, 62, 3064, 796, 642, 2388, 198, 33, 2885, 31097, 62, 51, 6684, 3483, 38, 220, 220, 220, 220, 796, 1802, 198, 33, 2885, 31097, 62, 42422, 3398, 51, 6684, 3483, 38, 796, 5323, 198, 198, 2, 466, 407, 1057, 311, 3698, 1677, 41796, 5254, 416, 4277, 198, 50, 3698, 1677, 41796, 62, 51, 1546, 4694, 796, 10352, 198, 50, 3698, 1677, 41796, 62, 51, 1546, 4694, 62, 1340, 11319, 796, 10352, 198, 198, 2, 20021, 543, 11453, 4538, 290, 266, 70, 16144, 8341, 198, 35, 44700, 62, 1847, 43429, 62, 39170, 29833, 796, 314, 22274, 62, 39170, 29833, 198, 46846, 62, 1847, 43429, 62, 39170, 29833, 796, 314, 22274, 62, 39170, 29833, 198, 198, 2, 10644, 284, 262, 3053, 16144, 8341, 13, 220, 16718, 416, 220, 1155, 69, 13, 26791, 13, 7344, 1386, 198, 35, 44700, 62, 1847, 43429, 1546, 62, 34219, 796, 12813, 64, 14, 7353, 13049, 14, 35679, 12, 7344, 1386, 1, 198, 35, 44700, 62, 53, 48771, 25620, 62, 34219, 796, 12813, 64, 14, 7353, 13049, 14, 35679, 12, 32844, 1, 198, 198, 2, 5345, 14257, 6725, 287, 5550, 53, 62, 2969, 3705, 6460, 62, 12001, 198, 39345, 62, 2969, 3705, 796, 7499, 198, 35, 44700, 62, 53, 48771, 25620, 62, 39170, 29833, 796, 366, 32844, 13, 1155, 69, 13, 2398, 1, 198, 198, 46846, 62, 1847, 43429, 1546, 62, 34219, 796, 12813, 64, 14, 7353, 13049, 14, 8094, 12, 7344, 1386, 1, 198, 46846, 62, 53, 48771, 25620, 62, 34219, 796, 12813, 64, 14, 7353, 13049, 14, 8094, 12, 32844, 1, 198, 46846, 62, 53, 48771, 25620, 62, 39170, 29833, 796, 366, 32844, 13, 1155, 69, 13, 2398, 1, 198, 198, 32782, 10943, 39776, 44, 62, 34219, 220, 220, 796, 12813, 64, 14, 7353, 10414, 2533, 14, 9288, 12, 48553, 1, 198, 198, 29904, 62, 46437, 24302, 18310, 62, 7206, 7708, 35342, 796, 1391, 198, 220, 220, 220, 366, 11201, 2387, 62, 36194, 1, 220, 1058, 366, 1415, 1600, 198, 220, 220, 220, 366, 3605, 62, 48229, 1, 220, 220, 220, 1058, 366, 1415, 1600, 198, 220, 220, 220, 366, 12853, 62, 35679, 1, 220, 220, 220, 1058, 366, 2364, 1600, 198, 220, 220, 220, 366, 9464, 62, 26272, 1, 220, 220, 220, 220, 1058, 366, 261, 1600, 198, 92, 628, 198, 2, 5930, 262, 3227, 10729, 26087, 62, 20373, 287, 6460, 62, 12001, 13, 9078, 11, 290, 635, 597, 584, 198, 2, 8564, 393, 2524, 12, 11423, 2458, 13, 220, 8410, 5626, 4589, 6460, 62, 12001, 13, 9078, 284, 38487, 77, 13, 198, 6738, 6460, 62, 12001, 1330, 1635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12972, 2704, 1124, 25, 46430, 198, 198, 2, 3060, 5550, 53, 62, 2969, 3705, 284, 40589, 7036, 1961, 62, 2969, 3705, 198, 38604, 7036, 1961, 62, 2969, 3705, 15853, 5550, 53, 62, 2969, 3705, 198, 38604, 7036, 1961, 62, 2969, 3705, 15853, 327, 3727, 6465, 6981, 62, 2969, 3705, 198, 198, 2, 775, 2148, 257, 3200, 1994, 691, 329, 1332, 290, 2478, 12881, 13, 220, 632, 338, 198, 2, 5543, 9204, 326, 42625, 14208, 10143, 284, 923, 287, 3227, 4235, 4556, 257, 198, 2, 3200, 1994, 468, 587, 2810, 8057, 11, 407, 287, 428, 2393, 543, 318, 198, 2, 7271, 1695, 11, 329, 4554, 422, 262, 2723, 16099, 13, 198, 361, 18871, 5959, 62, 49058, 14512, 705, 25493, 10354, 198, 220, 220, 220, 1303, 32221, 503, 262, 39986, 11055, 40213, 11, 340, 338, 15774, 198, 220, 220, 220, 309, 3620, 6489, 6158, 62, 35613, 4877, 796, 46545, 7, 75, 329, 304, 287, 309, 3620, 6489, 6158, 62, 35613, 4877, 329, 300, 287, 357, 68, 58, 16, 60, 611, 318, 39098, 7, 68, 11, 46545, 8, 290, 366, 66, 2317, 13, 17401, 1, 287, 304, 58, 15, 60, 2073, 357, 68, 11, 22305, 628, 220, 220, 220, 327, 16219, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31098, 10619, 10354, 705, 28241, 14208, 13, 7295, 13, 23870, 13, 1891, 2412, 13, 67, 13513, 13, 35, 13513, 30562, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 705, 23683, 26087, 62, 20373, 6, 407, 287, 17205, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 10729, 26087, 62, 20373, 796, 705, 5760, 86, 55, 2127, 52, 80, 0, 28, 71, 47, 73, 77, 17034, 38, 17, 28, 469, 2, 45, 3, 35, 21768, 10, 675, 31, 84, 452, 2143, 86, 16564, 23, 76, 5431, 47, 69, 39, 4914, 6, 198, 220, 220, 220, 11096, 3913, 1961, 62, 39, 10892, 50, 796, 37250, 9, 3256, 60, 198 ]
2.413188
8,098
# Logistic regression #%% # Importing libraries import numpy as np import random from matplotlib import pyplot as plt #%% #%% # Generating training data x = np.linspace(1, 10, 1000)[:, np.newaxis].T y = np.hstack((np.zeros((1,500)), np.ones((1,500)))) # Adding some randomness y[0,random.randint(0,500)] = 1 y[0,random.randint(500,1000)] = 0 print("X is", x.shape) print("y is", y.shape) #%% # Creating and training the model model = LogisticRegression() model.train(x, y) #%% # Generating a test example x1 = np.array([[0.05]]) # Predicting the output y1 = model.predict(x1) print("Prediction of", x1, " is", y1) #%% # Generating predictions for all input examples X x_test = np.linspace(1, 10, 100)[:,np.newaxis].T y_p = model.predict(x_test) #%% # Plotting training data plt.figure(0) plt.plot(x, y, "r+") # plt.show() # Plotting predictions print("x is", x.shape, "and y_p is", y_p.shape) print("max of y_p:", np.max(y_p)) plt.plot(x_test, y_p, "bo") plt.show()
[ 2, 5972, 2569, 20683, 198, 2, 16626, 198, 2, 17267, 278, 12782, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 2, 16626, 198, 198, 2, 16626, 198, 2, 2980, 803, 3047, 1366, 198, 87, 796, 45941, 13, 21602, 10223, 7, 16, 11, 838, 11, 8576, 38381, 45299, 45941, 13, 3605, 22704, 4083, 51, 198, 88, 796, 45941, 13, 71, 25558, 19510, 37659, 13, 9107, 418, 19510, 16, 11, 4059, 36911, 45941, 13, 1952, 19510, 16, 11, 4059, 35514, 198, 198, 2, 18247, 617, 4738, 1108, 198, 88, 58, 15, 11, 25120, 13, 25192, 600, 7, 15, 11, 4059, 15437, 796, 352, 198, 88, 58, 15, 11, 25120, 13, 25192, 600, 7, 4059, 11, 12825, 15437, 796, 657, 198, 4798, 7203, 55, 318, 1600, 2124, 13, 43358, 8, 198, 4798, 7203, 88, 318, 1600, 331, 13, 43358, 8, 198, 198, 2, 16626, 198, 2, 30481, 290, 3047, 262, 2746, 198, 19849, 796, 5972, 2569, 8081, 2234, 3419, 198, 19849, 13, 27432, 7, 87, 11, 331, 8, 198, 198, 2, 16626, 198, 2, 2980, 803, 257, 1332, 1672, 198, 87, 16, 796, 45941, 13, 18747, 26933, 58, 15, 13, 2713, 11907, 8, 198, 2, 49461, 278, 262, 5072, 198, 88, 16, 796, 2746, 13, 79, 17407, 7, 87, 16, 8, 198, 4798, 7203, 39156, 2867, 286, 1600, 2124, 16, 11, 366, 318, 1600, 331, 16, 8, 198, 198, 2, 16626, 198, 2, 2980, 803, 16277, 329, 477, 5128, 6096, 1395, 198, 87, 62, 9288, 796, 45941, 13, 21602, 10223, 7, 16, 11, 838, 11, 1802, 38381, 45299, 37659, 13, 3605, 22704, 4083, 51, 198, 88, 62, 79, 796, 2746, 13, 79, 17407, 7, 87, 62, 9288, 8, 198, 198, 2, 16626, 198, 2, 28114, 889, 3047, 1366, 198, 489, 83, 13, 26875, 7, 15, 8, 198, 489, 83, 13, 29487, 7, 87, 11, 331, 11, 366, 81, 10, 4943, 198, 2, 458, 83, 13, 12860, 3419, 198, 2, 28114, 889, 16277, 198, 4798, 7203, 87, 318, 1600, 2124, 13, 43358, 11, 366, 392, 331, 62, 79, 318, 1600, 331, 62, 79, 13, 43358, 8, 198, 4798, 7203, 9806, 286, 331, 62, 79, 25, 1600, 45941, 13, 9806, 7, 88, 62, 79, 4008, 198, 489, 83, 13, 29487, 7, 87, 62, 9288, 11, 331, 62, 79, 11, 366, 2127, 4943, 198, 489, 83, 13, 12860, 3419 ]
2.448363
397
import os import unittest from recipe_scrapers.whatsgabycooking import WhatsGabyCooking
[ 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 8364, 62, 1416, 2416, 364, 13, 1929, 1381, 70, 3930, 27916, 278, 1330, 28556, 38, 3930, 28937, 278, 628 ]
3.103448
29
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2019 all rights reserved # # superclasses from .Communicator import Communicator # declaration class Cartesian(Communicator): """ An encapsulation of Cartesian communicators """ # per-instance public data axes = None periods = None coordinates = None # meta methods # end of file
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 285, 40302, 257, 13, 70, 13, 257, 26884, 85, 6557, 89, 271, 198, 2, 29617, 39795, 198, 2, 357, 66, 8, 7795, 12, 23344, 477, 2489, 10395, 198, 2, 628, 198, 2, 2208, 37724, 198, 6738, 764, 30813, 26407, 1330, 4440, 26407, 628, 198, 2, 14305, 198, 4871, 13690, 35610, 7, 30813, 26407, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 32652, 1741, 286, 13690, 35610, 1316, 44549, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 1303, 583, 12, 39098, 1171, 1366, 198, 220, 220, 220, 34197, 796, 6045, 198, 220, 220, 220, 9574, 796, 6045, 198, 220, 220, 220, 22715, 796, 6045, 628, 198, 220, 220, 220, 1303, 13634, 5050, 628, 198, 2, 886, 286, 2393, 198 ]
2.821429
140
from configparser import ConfigParser from pymongo import MongoClient from math import pow, sqrt __author__ = 'MuhamadNoorZainal MuhamadZabidi' __version__ = '1.5'
[ 6738, 4566, 48610, 1330, 17056, 46677, 201, 198, 6738, 279, 4948, 25162, 1330, 42591, 11792, 201, 198, 6738, 10688, 1330, 7182, 11, 19862, 17034, 201, 198, 201, 198, 834, 9800, 834, 796, 705, 33239, 2763, 324, 45, 2675, 57, 391, 282, 8252, 2763, 324, 57, 397, 19830, 6, 201, 198, 834, 9641, 834, 796, 705, 16, 13, 20, 6, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.428571
77
from typing import Dict, Tuple, List, Any import logging from overrides import overrides from conllu import parse_incr, string_to_file from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.fields import Field, TextField, SequenceLabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token, Tokenizer from .enhanced_universal_dependencies_oracle import get_oracle_actions logger = logging.getLogger(__name__) METADATA_PARSERS = { "sent_id": lambda key, value: (key, value), "text": lambda key, value: (key, value), } @DatasetReader.register("enhanced_universal_dependencies") class EnhancedUniversalDependenciesDatasetReader(DatasetReader): """ Reads a file in the conllu Universal Dependencies format. # Parameters token_indexers : `Dict[str, TokenIndexer]`, optional (default=`{"tokens": SingleIdTokenIndexer()}`) The token indexers to be applied to the words TextField. tokenizer : `Tokenizer`, optional, default = None A tokenizer to use to split the text. This is useful when the tokens that you pass into the model need to have some particular attribute. Typically it is not necessary. """ @overrides @overrides def text_to_instance( self, # type: ignore words: List[str], annotation: List[Dict[str,Any]], gold_actions: List[str] = None, multiwords: List[Dict[str,str]]=None, sent_id: str = None, text: str = None, ) -> Instance: """ # Parameters words : `List[str]`, required. The words in the sentence to be encoded. upos_tags : `List[str]`, required. The universal dependencies POS tags for each word. dependencies : `List[Tuple[str, int]]`, optional (default = None) A list of (head tag, head index) tuples. Indices are 1 indexed, meaning an index of 0 corresponds to that word being the root of the dependency tree. # Returns An instance containing words, upos tags, dependency head tags and head indices as fields. """ fields: Dict[str, Field] = {} text_field = TextField([Token(t) for t in words], self._token_indexers) meta_dict = {"words": words, "annotation":annotation, "multiwords": multiwords, 'sent_id':sent_id, 'text':text} fields["words"] = text_field if gold_actions is not None: meta_dict["gold_actions"] = gold_actions fields["gold_actions"] = TextField([Token(a) for a in gold_actions], self._action_indexers) fields["metadata"] = MetadataField(meta_dict) return Instance(fields)
[ 6738, 19720, 1330, 360, 713, 11, 309, 29291, 11, 7343, 11, 4377, 198, 11748, 18931, 198, 198, 6738, 23170, 1460, 1330, 23170, 1460, 198, 6738, 369, 297, 84, 1330, 21136, 62, 1939, 81, 11, 4731, 62, 1462, 62, 7753, 198, 198, 6738, 477, 1697, 34431, 13, 11321, 13, 7753, 62, 26791, 1330, 39986, 62, 6978, 198, 6738, 477, 1697, 34431, 13, 7890, 13, 19608, 292, 316, 62, 961, 364, 13, 19608, 292, 316, 62, 46862, 1330, 16092, 292, 316, 33634, 198, 6738, 477, 1697, 34431, 13, 7890, 13, 25747, 1330, 7663, 11, 8255, 15878, 11, 45835, 33986, 15878, 11, 3395, 14706, 15878, 198, 6738, 477, 1697, 34431, 13, 7890, 13, 39098, 1330, 2262, 590, 198, 6738, 477, 1697, 34431, 13, 7890, 13, 30001, 62, 9630, 364, 1330, 14206, 7390, 30642, 15732, 263, 11, 29130, 15732, 263, 198, 6738, 477, 1697, 34431, 13, 7890, 13, 30001, 11341, 1330, 29130, 11, 29130, 7509, 198, 6738, 764, 16550, 2903, 62, 40082, 62, 45841, 3976, 62, 273, 6008, 1330, 651, 62, 273, 6008, 62, 4658, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 47123, 2885, 13563, 62, 27082, 50, 4877, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 62, 312, 1298, 37456, 1994, 11, 1988, 25, 357, 2539, 11, 1988, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 1298, 37456, 1994, 11, 1988, 25, 357, 2539, 11, 1988, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 31, 27354, 292, 316, 33634, 13, 30238, 7203, 16550, 2903, 62, 40082, 62, 45841, 3976, 4943, 198, 4871, 22104, 38747, 35, 2690, 3976, 27354, 292, 316, 33634, 7, 27354, 292, 316, 33634, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 82, 257, 2393, 287, 262, 369, 297, 84, 14499, 37947, 3976, 5794, 13, 628, 220, 220, 220, 1303, 40117, 628, 220, 220, 220, 11241, 62, 9630, 364, 1058, 4600, 35, 713, 58, 2536, 11, 29130, 15732, 263, 60, 47671, 11902, 357, 12286, 28, 63, 4895, 83, 482, 641, 1298, 14206, 7390, 30642, 15732, 263, 3419, 92, 63, 8, 198, 220, 220, 220, 220, 220, 220, 220, 383, 11241, 6376, 364, 284, 307, 5625, 284, 262, 2456, 8255, 15878, 13, 198, 220, 220, 220, 11241, 7509, 1058, 4600, 30642, 7509, 47671, 11902, 11, 4277, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 317, 11241, 7509, 284, 779, 284, 6626, 262, 2420, 13, 770, 318, 4465, 618, 262, 16326, 326, 345, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 656, 262, 2746, 761, 284, 423, 617, 1948, 11688, 13, 27095, 340, 318, 407, 3306, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 2502, 81, 1460, 628, 220, 220, 220, 2488, 2502, 81, 1460, 198, 220, 220, 220, 825, 2420, 62, 1462, 62, 39098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 25, 7343, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 23025, 25, 7343, 58, 35, 713, 58, 2536, 11, 7149, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3869, 62, 4658, 25, 7343, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 10879, 25, 7343, 58, 35, 713, 58, 2536, 11, 2536, 11907, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1908, 62, 312, 25, 965, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 25, 965, 796, 6045, 11, 198, 220, 220, 220, 1267, 4613, 2262, 590, 25, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40117, 628, 220, 220, 220, 220, 220, 220, 220, 2456, 1058, 4600, 8053, 58, 2536, 60, 47671, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2456, 287, 262, 6827, 284, 307, 30240, 13, 198, 220, 220, 220, 220, 220, 220, 220, 510, 418, 62, 31499, 1058, 4600, 8053, 58, 2536, 60, 47671, 2672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10112, 20086, 28069, 15940, 329, 1123, 1573, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20086, 1058, 4600, 8053, 58, 51, 29291, 58, 2536, 11, 493, 11907, 47671, 11902, 357, 12286, 796, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 220, 357, 2256, 7621, 11, 1182, 6376, 8, 12777, 2374, 13, 1423, 1063, 389, 352, 41497, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3616, 281, 6376, 286, 657, 24866, 284, 326, 1573, 852, 262, 6808, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 20203, 5509, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16409, 628, 220, 220, 220, 220, 220, 220, 220, 1052, 4554, 7268, 2456, 11, 510, 418, 15940, 11, 20203, 1182, 15940, 290, 1182, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 355, 7032, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 25, 360, 713, 58, 2536, 11, 7663, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 3245, 796, 8255, 15878, 26933, 30642, 7, 83, 8, 329, 256, 287, 2456, 4357, 2116, 13557, 30001, 62, 9630, 364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 11600, 796, 19779, 10879, 1298, 2456, 11, 366, 1236, 14221, 1298, 1236, 14221, 11, 366, 41684, 10879, 1298, 5021, 10879, 11, 705, 34086, 62, 312, 10354, 34086, 62, 312, 11, 705, 5239, 10354, 5239, 92, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 14692, 10879, 8973, 796, 2420, 62, 3245, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3869, 62, 4658, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 11600, 14692, 24267, 62, 4658, 8973, 796, 3869, 62, 4658, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 14692, 24267, 62, 4658, 8973, 796, 8255, 15878, 26933, 30642, 7, 64, 8, 329, 257, 287, 3869, 62, 4658, 4357, 2116, 13557, 2673, 62, 9630, 364, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7032, 14692, 38993, 8973, 796, 3395, 14706, 15878, 7, 28961, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2262, 590, 7, 25747, 8, 198 ]
2.67313
1,083
import os import time import traceback import numpy as np import math import cv2 from pathlib import Path from osr2mp4 import logger from osr2mp4.global_var import videoextensions from osr2mp4.Exceptions import CannotCreateVideo, FourccIsNotExtension, WrongFourcc, LibAvNotFound ### TODO: MOVE THIS TO ITS OWN FILE ###
[ 11748, 28686, 198, 11748, 640, 198, 11748, 12854, 1891, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 269, 85, 17, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 267, 27891, 17, 3149, 19, 1330, 49706, 198, 6738, 267, 27891, 17, 3149, 19, 13, 20541, 62, 7785, 1330, 2008, 2302, 5736, 198, 6738, 267, 27891, 17, 3149, 19, 13, 3109, 11755, 1330, 26003, 16447, 10798, 11, 6675, 535, 3792, 3673, 11627, 3004, 11, 28843, 15137, 535, 11, 7980, 7355, 3673, 21077, 198, 198, 21017, 16926, 46, 25, 13070, 6089, 12680, 5390, 42437, 47672, 45811, 198, 198, 21017, 628, 198 ]
3.19802
101
import pandas as pd from sklearn.exceptions import NotFittedError from pytorch_widedeep.wdtypes import * # noqa: F403 # This class does not represent any sctructural advantage, but I keep it to # keep things tidy, as guidance for contribution and because is useful for the # check_is_fitted function class BasePreprocessor: """Base Class of All Preprocessors.""" def check_is_fitted( estimator: BasePreprocessor, attributes: List[str] = None, all_or_any: str = "all", condition: bool = True, ): r"""Checks if an estimator is fitted Parameters ---------- estimator: ``BasePreprocessor``, An object of type ``BasePreprocessor`` attributes: List, default = None List of strings with the attributes to check for all_or_any: str, default = "all" whether all or any of the attributes in the list must be present condition: bool, default = True, If not attribute list is passed, this condition that must be True for the estimator to be considered as fitted """ estimator_name: str = estimator.__class__.__name__ error_msg = ( "This {} instance is not fitted yet. Call 'fit' with appropriate " "arguments before using this estimator.".format(estimator_name) ) if attributes is not None and all_or_any == "all": if not all([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(error_msg) elif attributes is not None and all_or_any == "any": if not any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(error_msg) elif not condition: raise NotFittedError(error_msg)
[ 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 13, 1069, 11755, 1330, 1892, 37, 2175, 12331, 198, 198, 6738, 12972, 13165, 354, 62, 86, 1384, 68, 538, 13, 16993, 19199, 1330, 1635, 220, 1303, 645, 20402, 25, 376, 31552, 628, 198, 2, 770, 1398, 857, 407, 2380, 597, 264, 310, 1356, 1523, 4621, 11, 475, 314, 1394, 340, 284, 198, 2, 1394, 1243, 43044, 11, 355, 11154, 329, 10156, 290, 780, 318, 4465, 329, 262, 198, 2, 2198, 62, 271, 62, 38631, 2163, 198, 4871, 7308, 6719, 41341, 25, 198, 220, 220, 220, 37227, 14881, 5016, 286, 1439, 3771, 14681, 669, 526, 15931, 628, 198, 4299, 2198, 62, 271, 62, 38631, 7, 198, 220, 220, 220, 3959, 1352, 25, 7308, 6719, 41341, 11, 198, 220, 220, 220, 12608, 25, 7343, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 477, 62, 273, 62, 1092, 25, 965, 796, 366, 439, 1600, 198, 220, 220, 220, 4006, 25, 20512, 796, 6407, 11, 198, 2599, 198, 220, 220, 220, 374, 37811, 7376, 4657, 611, 281, 3959, 1352, 318, 18235, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3959, 1352, 25, 7559, 14881, 6719, 41341, 15506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 2134, 286, 2099, 7559, 14881, 6719, 41341, 15506, 198, 220, 220, 220, 12608, 25, 7343, 11, 4277, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 13042, 351, 262, 12608, 284, 2198, 329, 198, 220, 220, 220, 477, 62, 273, 62, 1092, 25, 965, 11, 4277, 796, 366, 439, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1771, 477, 393, 597, 286, 262, 12608, 287, 262, 1351, 1276, 307, 1944, 198, 220, 220, 220, 4006, 25, 20512, 11, 4277, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 11688, 1351, 318, 3804, 11, 428, 4006, 326, 1276, 307, 6407, 329, 198, 220, 220, 220, 220, 220, 220, 220, 262, 3959, 1352, 284, 307, 3177, 355, 18235, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3959, 1352, 62, 3672, 25, 965, 796, 3959, 1352, 13, 834, 4871, 834, 13, 834, 3672, 834, 198, 220, 220, 220, 4049, 62, 19662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 23884, 4554, 318, 407, 18235, 1865, 13, 4889, 705, 11147, 6, 351, 5035, 366, 198, 220, 220, 220, 220, 220, 220, 220, 366, 853, 2886, 878, 1262, 428, 3959, 1352, 526, 13, 18982, 7, 395, 320, 1352, 62, 3672, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 12608, 318, 407, 6045, 290, 477, 62, 273, 62, 1092, 6624, 366, 439, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 26933, 10134, 35226, 7, 395, 320, 1352, 11, 708, 81, 8, 329, 708, 81, 287, 12608, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 37, 2175, 12331, 7, 18224, 62, 19662, 8, 198, 220, 220, 220, 1288, 361, 12608, 318, 407, 6045, 290, 477, 62, 273, 62, 1092, 6624, 366, 1092, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 26933, 10134, 35226, 7, 395, 320, 1352, 11, 708, 81, 8, 329, 708, 81, 287, 12608, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 37, 2175, 12331, 7, 18224, 62, 19662, 8, 198, 220, 220, 220, 1288, 361, 407, 4006, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 37, 2175, 12331, 7, 18224, 62, 19662, 8, 198 ]
2.833613
595
from __future__ import annotations from typing import NamedTuple
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 19720, 1330, 34441, 51, 29291, 628, 198 ]
4.25
16
#!/usr/bin/env python3 """ Run a single-purpose HTTP server. Server takes all GET requests and redirects them to a new host if the request URI starts with SUBPATH, otherwise returns 404. Requests are redirected to the URL provided by --baseurl. """ import socketserver import http.server import argparse import sys CHALLENGE_HOST = None SUBPATH = "/.well-known/acme-challenge" class ReusableServer(socketserver.TCPServer): """ Allow TCPServer to reuse host address. Without setting 'allow_reuse_address', we can get stuck in TIME_WAIT after being killed and the stale state stops a new server from attaching to the port.""" allow_reuse_address = True if __name__ == "__main__": parser = argparse.ArgumentParser( description="Redirect all URIs with matching prefix to another host") parser.add_argument( '--baseurl', dest='baseurl', required=True, help="Destination URL for all matching URIs on this server") args = parser.parse_args() CHALLENGE_HOST = args.baseurl if not CHALLENGE_HOST.startswith("http"): print("Redirect URL must be a full URL starting with http") sys.exit(1) # If user gave us a trailing slash URL, remove slash. if CHALLENGE_HOST[-1] == "/": CHALLENGE_HOST = CHALLENGE_HOST[:-1] serverAddress = ('', 80) # Note: if running remotely by an SSH command, you MUST launch with '-t': # > ssh -t me@otherhost leforward.py --baseurl http://otherserver.com # If you omit '-t' the listening server won't terminate when you kill the # ssh session, which probably isn't what you want. with ReusableServer(serverAddress, RedirectChallenges) as httpd: httpd.serve_forever()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 5660, 257, 2060, 12, 29983, 14626, 4382, 13, 198, 198, 10697, 2753, 477, 17151, 7007, 290, 18941, 82, 606, 284, 257, 649, 2583, 198, 361, 262, 2581, 43975, 4940, 351, 28932, 34219, 11, 4306, 5860, 32320, 13, 198, 198, 16844, 3558, 389, 45158, 284, 262, 10289, 2810, 416, 1377, 8692, 6371, 13, 37227, 198, 198, 11748, 37037, 18497, 198, 11748, 2638, 13, 15388, 198, 11748, 1822, 29572, 198, 11748, 25064, 628, 198, 3398, 7036, 1677, 8264, 62, 39, 10892, 796, 6045, 198, 50, 10526, 34219, 796, 366, 11757, 4053, 12, 4002, 14, 330, 1326, 12, 36747, 3540, 1, 628, 198, 198, 4871, 797, 31979, 10697, 7, 82, 11603, 18497, 13, 4825, 3705, 18497, 2599, 198, 220, 220, 220, 37227, 22507, 17283, 3705, 18497, 284, 32349, 2583, 2209, 13, 628, 220, 220, 220, 9170, 4634, 705, 12154, 62, 260, 1904, 62, 21975, 3256, 356, 460, 651, 7819, 287, 198, 220, 220, 220, 20460, 62, 15543, 2043, 706, 852, 2923, 290, 262, 39985, 1181, 9911, 257, 649, 198, 220, 220, 220, 4382, 422, 39550, 284, 262, 2493, 526, 15931, 628, 220, 220, 220, 1249, 62, 260, 1904, 62, 21975, 796, 6407, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 7738, 1060, 477, 37902, 3792, 351, 12336, 21231, 284, 1194, 2583, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 8692, 6371, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 11639, 8692, 6371, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 24159, 1883, 10289, 329, 477, 12336, 37902, 3792, 319, 428, 4382, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 5870, 7036, 1677, 8264, 62, 39, 10892, 796, 26498, 13, 8692, 6371, 628, 220, 220, 220, 611, 407, 5870, 7036, 1677, 8264, 62, 39, 10892, 13, 9688, 2032, 342, 7203, 4023, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7738, 1060, 10289, 1276, 307, 257, 1336, 10289, 3599, 351, 2638, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 1303, 1002, 2836, 2921, 514, 257, 25462, 24632, 10289, 11, 4781, 24632, 13, 198, 220, 220, 220, 611, 5870, 7036, 1677, 8264, 62, 39, 10892, 58, 12, 16, 60, 6624, 12813, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5870, 7036, 1677, 8264, 62, 39, 10892, 796, 5870, 7036, 1677, 8264, 62, 39, 10892, 58, 21912, 16, 60, 628, 220, 220, 220, 4382, 20231, 796, 19203, 3256, 4019, 8, 628, 220, 220, 220, 1303, 5740, 25, 611, 2491, 19863, 416, 281, 33825, 3141, 11, 345, 17191, 4219, 351, 705, 12, 83, 10354, 198, 220, 220, 220, 1303, 220, 220, 1875, 26678, 532, 83, 502, 31, 847, 4774, 443, 11813, 13, 9078, 1377, 8692, 6371, 2638, 1378, 847, 15388, 13, 785, 198, 220, 220, 220, 1303, 1002, 345, 42848, 705, 12, 83, 6, 262, 8680, 4382, 1839, 470, 23654, 618, 345, 1494, 262, 198, 220, 220, 220, 1303, 26678, 6246, 11, 543, 2192, 2125, 470, 644, 345, 765, 13, 198, 220, 220, 220, 351, 797, 31979, 10697, 7, 15388, 20231, 11, 2297, 1060, 41812, 34120, 8, 355, 2638, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 67, 13, 2655, 303, 62, 754, 332, 3419, 198 ]
2.884298
605
############################################################# # 2016-09-26: ParameterType.py # Author: Jeremy M. Gibson (State Archives of North Carolina) # # Description: Implementation of the parameter-type ############################################################## from lxml.ElementInclude import etree class Parameter: """""" def __init__(self, name=None, value=None): """Constructor for Parameter""" self.name = name # type: str self.value = value # type: str def render(self, parent): """ :type parent: xml.etree.ElementTree.Element :param parent: :return: """ child = etree.SubElement(parent, "Parameter") child1 = etree.SubElement(child, "Name") child1.text = self.value child2 = etree.SubElement(child, "Value") child2.text = self.value
[ 29113, 14468, 7804, 4242, 2, 198, 2, 1584, 12, 2931, 12, 2075, 25, 25139, 2357, 6030, 13, 9078, 198, 2, 6434, 25, 11753, 337, 13, 20400, 357, 9012, 22275, 286, 2258, 5913, 8, 198, 2, 198, 2, 12489, 25, 46333, 286, 262, 11507, 12, 4906, 198, 29113, 14468, 7804, 4242, 2235, 198, 6738, 300, 19875, 13, 20180, 818, 9152, 1330, 2123, 631, 628, 198, 4871, 25139, 2357, 25, 198, 220, 220, 220, 13538, 15931, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 28, 14202, 11, 1988, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 273, 329, 25139, 2357, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 220, 1303, 2099, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 796, 1988, 220, 1303, 2099, 25, 965, 628, 220, 220, 220, 825, 8543, 7, 944, 11, 2560, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2560, 25, 35555, 13, 316, 631, 13, 20180, 27660, 13, 20180, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2560, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 796, 2123, 631, 13, 7004, 20180, 7, 8000, 11, 366, 36301, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 16, 796, 2123, 631, 13, 7004, 20180, 7, 9410, 11, 366, 5376, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 16, 13, 5239, 796, 2116, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 17, 796, 2123, 631, 13, 7004, 20180, 7, 9410, 11, 366, 11395, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1200, 17, 13, 5239, 796, 2116, 13, 8367 ]
2.765079
315
#from server import db #class User(db.Model): # __tablename__ = 'users'
[ 2, 6738, 4382, 1330, 20613, 628, 198, 2, 4871, 11787, 7, 9945, 13, 17633, 2599, 198, 198, 2, 220, 220, 220, 11593, 8658, 11925, 480, 834, 796, 705, 18417, 6, 198 ]
2.516129
31
import math import numpy as np from typing import Tuple, List
[ 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 19720, 1330, 309, 29291, 11, 7343 ]
3.647059
17
import logging import numpy as np import pickle from copy import deepcopy from ase.atoms import Atoms from thyme.utils.cell import convert_cell_format from thyme.utils.savenload import save_file, load_file from thyme.utils.atomic_symbols import species_to_order_label from ._key import *
[ 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 198, 198, 6738, 4866, 1330, 2769, 30073, 198, 198, 6738, 257, 325, 13, 265, 3150, 1330, 1629, 3150, 198, 198, 6738, 11906, 1326, 13, 26791, 13, 3846, 1330, 10385, 62, 3846, 62, 18982, 198, 6738, 11906, 1326, 13, 26791, 13, 82, 4005, 2220, 1330, 3613, 62, 7753, 11, 3440, 62, 7753, 198, 6738, 11906, 1326, 13, 26791, 13, 47116, 62, 1837, 2022, 10220, 1330, 4693, 62, 1462, 62, 2875, 62, 18242, 198, 6738, 47540, 2539, 1330, 1635, 628 ]
3.244444
90
import pygame pygame.init() ROWS = 45 COLS = 50 SQUARE_SIZE = 8 WIDTH, HEIGHT = 400, 400 win = pygame.display.set_mode((WIDTH, HEIGHT)) win.fill("white") pygame.display.set_caption("PyPaint") COLORS = ["red", "green", "blue", "yellow", "purple", "black"] drawing_color = COLORS[5] grid_squares = [] buttons = [] clear = pygame.image.load('eraser.png') for i in range(COLS): for j in range(ROWS): square = GridSquare(i*SQUARE_SIZE, j*SQUARE_SIZE, SQUARE_SIZE, SQUARE_SIZE) grid_squares.append(square) for i, color in enumerate(COLORS): button = ColorButton(4*i+20*(i+1), 375, 20, 20, color) buttons.append(button) clock = pygame.time.Clock() running = True drawing = False while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.MOUSEBUTTONDOWN: drawing = True if event.type == pygame.MOUSEBUTTONUP: drawing = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: reset(grid_squares) # Render the drawing grid for square in grid_squares: square.draw(win) if draw_on_grid(drawing, square): square.color = drawing_color # Render the color buttons for button in buttons: button.draw(win) if pick_color(button): drawing_color = button.color # Render the clear button clear_rect = clear.get_rect(topleft = (188, 375)) win.blit(clear, clear_rect) if pick_clear(clear_rect): drawing_color = "white" clock.tick(60) pygame.display.update() pygame.quit()
[ 11748, 12972, 6057, 198, 198, 9078, 6057, 13, 15003, 3419, 628, 198, 49, 22845, 796, 4153, 198, 25154, 50, 796, 2026, 198, 50, 10917, 12203, 62, 33489, 796, 807, 198, 54, 2389, 4221, 11, 11179, 9947, 796, 7337, 11, 7337, 198, 5404, 796, 12972, 6057, 13, 13812, 13, 2617, 62, 14171, 19510, 54, 2389, 4221, 11, 11179, 9947, 4008, 198, 5404, 13, 20797, 7203, 11186, 4943, 198, 198, 9078, 6057, 13, 13812, 13, 2617, 62, 6888, 1159, 7203, 20519, 47, 2913, 4943, 198, 198, 25154, 20673, 796, 14631, 445, 1600, 366, 14809, 1600, 366, 17585, 1600, 366, 36022, 1600, 366, 14225, 1154, 1600, 366, 13424, 8973, 198, 19334, 278, 62, 8043, 796, 20444, 20673, 58, 20, 60, 198, 198, 25928, 62, 16485, 3565, 796, 17635, 198, 4360, 27288, 796, 17635, 198, 198, 20063, 796, 12972, 6057, 13, 9060, 13, 2220, 10786, 263, 6005, 13, 11134, 11537, 198, 198, 1640, 1312, 287, 2837, 7, 25154, 50, 2599, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 49, 22845, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6616, 796, 24846, 48011, 7, 72, 9, 50, 10917, 12203, 62, 33489, 11, 474, 9, 50, 10917, 12203, 62, 33489, 11, 45880, 12203, 62, 33489, 11, 45880, 12203, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 16485, 3565, 13, 33295, 7, 23415, 8, 198, 198, 1640, 1312, 11, 3124, 287, 27056, 378, 7, 25154, 20673, 2599, 198, 220, 220, 220, 4936, 796, 5315, 21864, 7, 19, 9, 72, 10, 1238, 9, 7, 72, 10, 16, 828, 29414, 11, 1160, 11, 1160, 11, 3124, 8, 198, 220, 220, 220, 12163, 13, 33295, 7, 16539, 8, 198, 198, 15750, 796, 12972, 6057, 13, 2435, 13, 44758, 3419, 198, 20270, 796, 6407, 198, 19334, 278, 796, 10352, 198, 198, 4514, 2491, 25, 198, 220, 220, 220, 329, 1785, 287, 12972, 6057, 13, 15596, 13, 1136, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 4906, 6624, 12972, 6057, 13, 10917, 2043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 4906, 6624, 12972, 6057, 13, 44, 2606, 5188, 47526, 11357, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8263, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 4906, 6624, 12972, 6057, 13, 44, 2606, 5188, 47526, 11357, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8263, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 4906, 6624, 12972, 6057, 13, 20373, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 2539, 6624, 12972, 6057, 13, 42, 62, 4303, 11598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13259, 7, 25928, 62, 16485, 3565, 8, 628, 220, 220, 220, 1303, 46722, 262, 8263, 10706, 198, 220, 220, 220, 329, 6616, 287, 10706, 62, 16485, 3565, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6616, 13, 19334, 7, 5404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3197, 62, 261, 62, 25928, 7, 19334, 278, 11, 6616, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6616, 13, 8043, 796, 8263, 62, 8043, 628, 220, 220, 220, 1303, 46722, 262, 3124, 12163, 198, 220, 220, 220, 329, 4936, 287, 12163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4936, 13, 19334, 7, 5404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2298, 62, 8043, 7, 16539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8263, 62, 8043, 796, 4936, 13, 8043, 628, 220, 220, 220, 1303, 46722, 262, 1598, 4936, 198, 220, 220, 220, 1598, 62, 2554, 796, 1598, 13, 1136, 62, 2554, 7, 83, 643, 701, 796, 357, 20356, 11, 29414, 4008, 198, 220, 220, 220, 1592, 13, 2436, 270, 7, 20063, 11, 1598, 62, 2554, 8, 198, 220, 220, 220, 611, 2298, 62, 20063, 7, 20063, 62, 2554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8263, 62, 8043, 796, 366, 11186, 1, 628, 220, 220, 220, 8801, 13, 42298, 7, 1899, 8, 198, 220, 220, 220, 12972, 6057, 13, 13812, 13, 19119, 3419, 628, 198, 9078, 6057, 13, 47391, 3419 ]
2.276567
734
"""Tests for the tucuxi.s3 Module using some fixtures from conftest.py""" import logging from typing import Dict from typing import List from tucuxi import S3 logger = logging.getLogger(__name__) def test_set_get_object(s3_name: str, objs: List[Dict[str, str]]) -> None: """[summary] Args: s3_name (str): [description] objs (List[Dict[str, str]]): [description] """ s3 = S3(s3_name) logger.info("Testing set_object and get_object") s3.set_object(objs[0]["key"], objs[0]["data"]) assert objs[0]["data"] == s3.get_object(objs[0]["key"]).decode("utf8") def test_list_objects(s3_name: str, objs: List[Dict[str, str]]) -> None: """[summary] Args: s3_name (str): [description] objs (List[Dict[str, str]]): [description] """ s3 = S3(s3_name) logger.info("Testing get_all_s3_objects") s3.set_object(objs[1]["key"], objs[1]["data"]) result = list(s3.list_objects("T")) assert result == [objs[0]["key"], objs[1]["key"]] def test_list_objects_prefix(s3_name: str, objs: List[Dict[str, str]]) -> None: """[summary] Args: s3_name (str): [description] objs (List[Dict[str, str]]): [description] """ s3 = S3(s3_name) logger.info("Testing get_by prefix") assert objs[0]["key"][:-4] == next(s3.list_objects("T", ".")) def test_get_size(s3_name: str, objs: List[Dict[str, str]]) -> None: """[summary] Args: s3_name (str): [description] objs (List[Dict[str, str]]): [description] """ s3 = S3(s3_name) logger.info("Testing get_size") assert 9 == s3.get_size(objs[0]["key"]) def test_view_tree(s3_name: str, objs: List[Dict[str, str]]) -> None: """[summary] Args: s3_name (str): [description] objs (List[Dict[str, str]]): [description] """ s3 = S3(s3_name) logger.info("Testing view_tree") s3.view_tree()
[ 37811, 51, 3558, 329, 262, 256, 1229, 2821, 72, 13, 82, 18, 19937, 1262, 617, 34609, 422, 369, 701, 395, 13, 9078, 37811, 198, 11748, 18931, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 256, 1229, 2821, 72, 1330, 311, 18, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 1332, 62, 2617, 62, 1136, 62, 15252, 7, 82, 18, 62, 3672, 25, 965, 11, 909, 8457, 25, 7343, 58, 35, 713, 58, 2536, 11, 965, 11907, 8, 4613, 6045, 25, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 3672, 357, 2536, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 909, 8457, 357, 8053, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 18, 796, 311, 18, 7, 82, 18, 62, 3672, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 900, 62, 15252, 290, 651, 62, 15252, 4943, 198, 220, 220, 220, 264, 18, 13, 2617, 62, 15252, 7, 672, 8457, 58, 15, 7131, 1, 2539, 33116, 909, 8457, 58, 15, 7131, 1, 7890, 8973, 8, 198, 220, 220, 220, 6818, 909, 8457, 58, 15, 7131, 1, 7890, 8973, 6624, 264, 18, 13, 1136, 62, 15252, 7, 672, 8457, 58, 15, 7131, 1, 2539, 8973, 737, 12501, 1098, 7203, 40477, 23, 4943, 628, 198, 4299, 1332, 62, 4868, 62, 48205, 7, 82, 18, 62, 3672, 25, 965, 11, 909, 8457, 25, 7343, 58, 35, 713, 58, 2536, 11, 965, 11907, 8, 4613, 6045, 25, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 3672, 357, 2536, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 909, 8457, 357, 8053, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 18, 796, 311, 18, 7, 82, 18, 62, 3672, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 651, 62, 439, 62, 82, 18, 62, 48205, 4943, 198, 220, 220, 220, 264, 18, 13, 2617, 62, 15252, 7, 672, 8457, 58, 16, 7131, 1, 2539, 33116, 909, 8457, 58, 16, 7131, 1, 7890, 8973, 8, 198, 220, 220, 220, 1255, 796, 1351, 7, 82, 18, 13, 4868, 62, 48205, 7203, 51, 48774, 198, 220, 220, 220, 6818, 1255, 6624, 685, 672, 8457, 58, 15, 7131, 1, 2539, 33116, 909, 8457, 58, 16, 7131, 1, 2539, 8973, 60, 628, 198, 4299, 1332, 62, 4868, 62, 48205, 62, 40290, 7, 82, 18, 62, 3672, 25, 965, 11, 909, 8457, 25, 7343, 58, 35, 713, 58, 2536, 11, 965, 11907, 8, 4613, 6045, 25, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 3672, 357, 2536, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 909, 8457, 357, 8053, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 18, 796, 311, 18, 7, 82, 18, 62, 3672, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 651, 62, 1525, 21231, 4943, 198, 220, 220, 220, 6818, 909, 8457, 58, 15, 7131, 1, 2539, 1, 7131, 21912, 19, 60, 6624, 1306, 7, 82, 18, 13, 4868, 62, 48205, 7203, 51, 1600, 366, 526, 4008, 628, 198, 4299, 1332, 62, 1136, 62, 7857, 7, 82, 18, 62, 3672, 25, 965, 11, 909, 8457, 25, 7343, 58, 35, 713, 58, 2536, 11, 965, 11907, 8, 4613, 6045, 25, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 3672, 357, 2536, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 909, 8457, 357, 8053, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 18, 796, 311, 18, 7, 82, 18, 62, 3672, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 651, 62, 7857, 4943, 198, 220, 220, 220, 6818, 860, 6624, 264, 18, 13, 1136, 62, 7857, 7, 672, 8457, 58, 15, 7131, 1, 2539, 8973, 8, 628, 198, 4299, 1332, 62, 1177, 62, 21048, 7, 82, 18, 62, 3672, 25, 965, 11, 909, 8457, 25, 7343, 58, 35, 713, 58, 2536, 11, 965, 11907, 8, 4613, 6045, 25, 198, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 3672, 357, 2536, 2599, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 909, 8457, 357, 8053, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 685, 11213, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 18, 796, 311, 18, 7, 82, 18, 62, 3672, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 44154, 1570, 62, 21048, 4943, 198, 220, 220, 220, 264, 18, 13, 1177, 62, 21048, 3419, 198 ]
2.156708
887
from app import db from models import Flaskr # Create the database, and the table within. db.create_all() # Commit the changes. db.session.commit()
[ 6738, 598, 1330, 20613, 198, 6738, 4981, 1330, 46947, 81, 198, 198, 2, 13610, 262, 6831, 11, 290, 262, 3084, 1626, 13, 198, 9945, 13, 17953, 62, 439, 3419, 198, 198, 2, 35910, 262, 2458, 13, 198, 9945, 13, 29891, 13, 41509, 3419, 198 ]
3.409091
44
import pytest from encoded.tests.features.conftest import app, app_settings, index_workbook from pyramid.exceptions import HTTPBadRequest pytestmark = [ pytest.mark.indexing, pytest.mark.usefixtures('index_workbook'), ]
[ 11748, 12972, 9288, 198, 198, 6738, 30240, 13, 41989, 13, 40890, 13, 1102, 701, 395, 1330, 598, 11, 598, 62, 33692, 11, 6376, 62, 1818, 2070, 198, 6738, 27944, 13, 1069, 11755, 1330, 14626, 22069, 18453, 628, 198, 198, 9078, 9288, 4102, 796, 685, 198, 220, 220, 220, 12972, 9288, 13, 4102, 13, 9630, 278, 11, 198, 220, 220, 220, 12972, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 9630, 62, 1818, 2070, 33809, 198, 60, 628, 628 ]
3.012821
78
import torch from torch.nn import functional as F from torch.utils.data import Dataset, DataLoader import numpy as np import math import os import Audio from text import text_to_sequence from utils import process_text, pad_1D, pad_2D import hparams device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class LightSpeechDataset(Dataset): """ LJSpeech """
[ 11748, 28034, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 28686, 198, 198, 11748, 13491, 198, 6738, 2420, 1330, 2420, 62, 1462, 62, 43167, 198, 6738, 3384, 4487, 1330, 1429, 62, 5239, 11, 14841, 62, 16, 35, 11, 14841, 62, 17, 35, 198, 11748, 289, 37266, 198, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 628, 198, 4871, 4401, 5248, 3055, 27354, 292, 316, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 406, 41, 5248, 3055, 37227, 628, 198 ]
3.080645
124
from django.db import models from django.contrib.auth.models import User from aspc.activityfeed.signals import new_activity, delete_activity from aspc.courses.models import Course from amazon.api import AmazonAPI import datetime from aspc.settings import AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG import json import logging logger = logging.getLogger(__name__) amazon = AmazonAPI(AMAZON_ACCESS_KEY, AMAZON_SECRET_KEY, AMAZON_ASSOC_TAG)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 355, 14751, 13, 21797, 12363, 13, 12683, 874, 1330, 649, 62, 21797, 11, 12233, 62, 21797, 198, 6738, 355, 14751, 13, 66, 39975, 13, 27530, 1330, 20537, 198, 6738, 716, 5168, 13, 15042, 1330, 6186, 17614, 198, 11748, 4818, 8079, 198, 6738, 355, 14751, 13, 33692, 1330, 3001, 22778, 1340, 62, 26861, 7597, 62, 20373, 11, 3001, 22778, 1340, 62, 23683, 26087, 62, 20373, 11, 3001, 22778, 1340, 62, 10705, 4503, 62, 42197, 198, 11748, 33918, 198, 11748, 18931, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 33103, 796, 6186, 17614, 7, 2390, 22778, 1340, 62, 26861, 7597, 62, 20373, 11, 3001, 22778, 1340, 62, 23683, 26087, 62, 20373, 11, 3001, 22778, 1340, 62, 10705, 4503, 62, 42197, 8 ]
3.013423
149
# -*- coding: utf-8 -*- #/usr/bin/env python import numpy as np import matplotlib.pylab as plt from timer import Timer from chebpy import ETDRK4FxCy, ETDRK4FxCy2, BC, ETDRK4 from chebpy import ROBIN, DIRICHLET def test_etdrk4fxcy(): ''' The test function is u = e^[f(x,y) - t] where f(x,y) = h(x) + g(y) Assume it is the solution of following PDE du/dt = (d^2/dx^2 + d^2/dy^2) u - w(x,y)u in the domain [0,Lx]x[0,Ly] for time t=0 to t=1, with boundary conditions u(x+Lx,y,t) = u(x,y,t) # periodic in x direction d/dy[u(x,y=0,t)] = ka u(y=0) d/dy[u(x,y=Ly,t)] = kb u(y=Ly) To generate a suitable solution, we assume h(x) = sin(x) h_x = dh/dx = cos(x) h_xx = d^2h/dx^2 = -sin(x) since it is periodic in x direction. The corresponding w(x,y) is w(x,y) = h_xx + g_yy + (h_x)^2 + (g_y)^2 + 1 1. For homogeneous NBC (ka=kb=0), a suitable g(y) is g(y) = Ay^2(2y-3)/6 g_y = A(y^2-y) # g_y(y=0)=0, g_y(y=1)=0 g_yy = A(2*y-1) where A is a positive constant. Lx = 2*pi, Ly = 1.0, Nx = 64, Ny =32, Ns = 21 is a good parameter set. Note the time step ds = 1/(Ns-1) = 0.05 is very large. 2. For homogeneous DBC, an approximate g(y) is g(y) = -A(y-1)^2 g_y = -2A(y-1) g_yy = -2A where A is a positive and large constant. Lx = 2*pi, Ly = 2.0, Nx = 64, Ny =32, Ns = 101 is a good parameter set. 3. For RBC, g(y) is given by g(y) = -Ay g_y = -A # ka=kb=-A g_yy = 0 A is a positive constant. Numerical result is different than the analytical one. ''' Lx = 2*np.pi # x [0, Lx] Nx = 64 Ly = 1.0 # y [0, Ly] Ny = 127 Ns = 101 ds = 1. / (Ns - 1) # Periodic in x direction, Fourier xx = np.arange(Nx) * Lx / Nx # Non-periodic in y direction, Chebyshev ii = np.arange(Ny+1) yy = np.cos(np.pi * ii / Ny) # yy [-1, 1] yy = 0.5 * (yy + 1) * Ly # mapping to [0, Ly] w = np.zeros([Nx,Ny+1]) A = 1.0 q = np.zeros([Ns, Nx, Ny+1]) q_exact = np.zeros([Nx, Ny+1]) #q[0] = 1. for i in xrange(Nx): for j in xrange(Ny+1): x = xx[i] y = yy[j] # RBC #q_exact[i,j] = np.exp(-A*y + np.sin(x) - 1) #q[0,i,j] = np.exp(-A*y + np.sin(x)) #w[i,j] = np.cos(x)**2 - np.sin(x) + A**2 + 1 # homogeneous NBC q_exact[i,j] = np.exp(A*y**2*(2*y-3)/6 + np.sin(x) - 1) q[0,i,j] = np.exp(A*y**2*(2*y-3)/6 + np.sin(x)) w[i,j] = (A*y*(y-1))**2 + np.cos(x)**2 - np.sin(x) + A*(2*y-1) + 1 # homogeneous DBC #q[0,i,j] = np.exp(-A*(y-1)**2 + np.sin(x)) #q_exact[i,j] = np.exp(-A*(y-1)**2 + np.sin(x) + 1) #w[i, j] = np.cos(x)**2 - np.sin(x) + 4*A**2 + (2*A*(y-1))**2 + 1 # Fredrickson #sech = 1. / np.cosh(0.25*(6*y[j]-3*Ly)) #w[i,j] = (1 - 2*sech**2)*(np.sin(2*np.pi*x[i]/Lx)+1) #w[i,j] = (1 - 2*sech**2) x = xx; y = yy plt.imshow(w) plt.xlabel('w') plt.show() plt.plot(x,w[:,Ny/2]) plt.xlabel('w(x)') plt.show() plt.plot(y,w[Nx/4,:]) plt.xlabel('w(y)') plt.show() # DBC #lbc = BC(DIRICHLET, [0.0, 1.0, 0.0]) #rbc = BC(DIRICHLET, [0.0, 1.0, 0.0]) # RBC #lbc = BC(ROBIN, [1.0, A, 0.0]) #rbc = BC(ROBIN, [1.0, A, 0.0]) # NBC lbc = BC(ROBIN, [1.0, 0, 0.0]) rbc = BC(ROBIN, [1.0, 0, 0.0]) #q_solver = ETDRK4FxCy(Lx, Ly, Nx, Ny, Ns, h=ds, lbc=lbc, rbc=rbc) q_solver = ETDRK4FxCy2(Lx, Ly, Nx, Ny, Ns, h=ds, lbc=lbc, rbc=rbc) M = 100 # Took 1117.6 x 4 seconds for cpu one core with Timer() as t: for m in xrange(M): q1 = q_solver.solve(w, q[0], q) print "100 runs took ", t.secs, " seconds." print 'Error =', np.max(np.abs(q1-q_exact)) plt.imshow(q[0]) plt.xlabel('q_0') plt.show() plt.imshow(q1) plt.xlabel('q_solution') plt.show() plt.imshow(q_exact) plt.xlabel('q_exact') plt.show() plt.plot(x,q[0,:,Ny/2], label='q0') plt.plot(x,q1[:,Ny/2], label='q_solution') plt.plot(x,q_exact[:,Ny/2], label='q_exact') plt.legend(loc='best') plt.xlabel('q[:,Ny/2]') plt.show() plt.plot(y,q[0,Nx/4,:], label='q0') plt.plot(y,q1[Nx/4,:], label='q_solution') plt.plot(y,q_exact[Nx/4,:], label='q_exact') plt.legend(loc='best') plt.xlabel('q[Nx/4,:]') plt.show() plt.plot(y,q[0,Nx*3/4,:], label='q0') plt.plot(y,q1[Nx*3/4,:], label='q_solution') plt.plot(y,q_exact[Nx*3/4,:], label='q_exact') plt.legend(loc='best') plt.xlabel('q[Nx*3/4,:]') plt.show() exit() # Check with ETDRK4 sech = 1. / np.cosh(0.25*(6*y-3*Ly)) w1 = 1 - 2*sech**2 plt.plot(y,w1) plt.show() q = np.zeros([Ns, Ny+1]) q[0] = 1. q_solver = ETDRK4(Ly,Ny,Ns,h=ds,lbc=lbc,rbc=rbc) q1, y = q_solver.solve(w1, q[0], q) plt.plot(y,q1) plt.show() def test_etdrk4(): ''' The test case is according to R. C. Daileda Lecture notes. du/dt = (1/25) u_xx , x@(0,3) with boundary conditions: u(0,t) = 0 u_x(3,t) = -(1/2) u(3,t) u(x,0) = 100*(1-x/3) Conclusion: We find that the numerical solution is much more accurate than the five term approximation of the exact analytical solution. ''' Nx = 64 Lx = 3 t = 1. Ns = 101 ds = t/(Ns - 1) ii = np.arange(Nx+1) x = np.cos(np.pi * ii / Nx) # yy [-1, 1] x = 0.5 * (x + 1) * Lx # mapping to [0, Ly] w = np.zeros(Nx+1) q = np.zeros([Ns, Nx+1]) q[0] = 100*(1-x/3) # The approximation of exact solution by first 5 terms q_exact = 47.0449*np.exp(-0.0210*t)*np.sin(0.7249*x) + \ 45.1413*np.exp(-0.1113*t)*np.sin(1.6679*x) + \ 21.3586*np.exp(-0.2872*t)*np.sin(2.6795*x) + \ 19.3403*np.exp(-0.5505*t)*np.sin(3.7098*x) + \ 12.9674*np.exp(-0.9015*t)*np.sin(4.7474*x) lbc = BC(DIRICHLET, [0,1,0]) rbc = BC(ROBIN, [1.,0.5,0]) q_solver = ETDRK4(Lx,Nx,Ns,h=ds,c=1./25,lbc=lbc,rbc=rbc) q1, x = q_solver.solve(w, q[0], q) plt.plot(x, q[0], label='q_0') plt.plot(x, q1, label='q_solution') plt.plot(x, q_exact, label='q_exact') plt.legend(loc='best') plt.show() def check(u): ''' The PDE is du/dt = u_xx + u_yy - wu Calculate the residual using FD scheme. R(x) = (u(x+h) ''' pass if __name__ == '__main__': test_etdrk4fxcy() #test_etdrk4()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 14, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 79, 2645, 397, 355, 458, 83, 198, 198, 6738, 19781, 1330, 5045, 263, 198, 198, 6738, 1125, 65, 9078, 1330, 12152, 7707, 42, 19, 37, 87, 20418, 11, 12152, 7707, 42, 19, 37, 87, 20418, 17, 11, 11843, 11, 12152, 7707, 42, 19, 198, 6738, 1125, 65, 9078, 1330, 36449, 1268, 11, 360, 4663, 20739, 28882, 198, 198, 4299, 1332, 62, 316, 7109, 74, 19, 21373, 948, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 1332, 2163, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 796, 304, 61, 58, 69, 7, 87, 11, 88, 8, 532, 256, 60, 198, 220, 220, 220, 810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 7, 87, 11, 88, 8, 796, 289, 7, 87, 8, 1343, 308, 7, 88, 8, 198, 220, 220, 220, 2195, 2454, 340, 318, 262, 4610, 286, 1708, 350, 7206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7043, 14, 28664, 796, 357, 67, 61, 17, 14, 34350, 61, 17, 1343, 288, 61, 17, 14, 9892, 61, 17, 8, 334, 532, 266, 7, 87, 11, 88, 8, 84, 198, 220, 220, 220, 287, 262, 7386, 685, 15, 11, 43, 87, 60, 87, 58, 15, 11, 31633, 60, 329, 640, 256, 28, 15, 284, 256, 28, 16, 11, 198, 220, 220, 220, 351, 18645, 3403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 7, 87, 10, 43, 87, 11, 88, 11, 83, 8, 796, 334, 7, 87, 11, 88, 11, 83, 8, 1303, 27458, 287, 2124, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14, 9892, 58, 84, 7, 87, 11, 88, 28, 15, 11, 83, 15437, 796, 38387, 334, 7, 88, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14, 9892, 58, 84, 7, 87, 11, 88, 28, 31633, 11, 83, 15437, 796, 47823, 334, 7, 88, 28, 31633, 8, 198, 220, 220, 220, 1675, 7716, 257, 11080, 4610, 11, 356, 7048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 7, 87, 8, 796, 7813, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 62, 87, 796, 34590, 14, 34350, 796, 8615, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 62, 5324, 796, 288, 61, 17, 71, 14, 34350, 61, 17, 796, 532, 31369, 7, 87, 8, 198, 220, 220, 220, 1201, 340, 318, 27458, 287, 2124, 4571, 13, 198, 220, 220, 220, 383, 11188, 266, 7, 87, 11, 88, 8, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 7, 87, 11, 88, 8, 796, 289, 62, 5324, 1343, 308, 62, 22556, 1343, 357, 71, 62, 87, 8, 61, 17, 1343, 357, 70, 62, 88, 8, 61, 17, 1343, 352, 628, 220, 220, 220, 352, 13, 1114, 3488, 32269, 9716, 357, 4914, 28, 32812, 28, 15, 828, 257, 11080, 308, 7, 88, 8, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 7, 88, 8, 796, 13709, 61, 17, 7, 17, 88, 12, 18, 20679, 21, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 88, 796, 317, 7, 88, 61, 17, 12, 88, 8, 220, 1303, 308, 62, 88, 7, 88, 28, 15, 47505, 15, 11, 308, 62, 88, 7, 88, 28, 16, 47505, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 22556, 796, 317, 7, 17, 9, 88, 12, 16, 8, 198, 220, 220, 220, 810, 317, 318, 257, 3967, 6937, 13, 198, 220, 220, 220, 220, 220, 220, 220, 406, 87, 796, 362, 9, 14415, 11, 9334, 796, 352, 13, 15, 11, 399, 87, 796, 5598, 11, 17735, 796, 2624, 11, 399, 82, 796, 2310, 198, 220, 220, 220, 318, 257, 922, 11507, 900, 13, 5740, 262, 640, 2239, 288, 82, 796, 352, 29006, 47503, 12, 16, 8, 796, 657, 13, 2713, 318, 845, 198, 220, 220, 220, 1588, 13, 198, 220, 220, 220, 362, 13, 1114, 3488, 32269, 360, 2749, 11, 281, 27665, 308, 7, 88, 8, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 7, 88, 8, 796, 532, 32, 7, 88, 12, 16, 8, 61, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 88, 796, 532, 17, 32, 7, 88, 12, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 22556, 796, 532, 17, 32, 198, 220, 220, 220, 810, 317, 318, 257, 3967, 290, 1588, 6937, 13, 198, 220, 220, 220, 220, 220, 220, 220, 406, 87, 796, 362, 9, 14415, 11, 9334, 796, 362, 13, 15, 11, 399, 87, 796, 5598, 11, 17735, 796, 2624, 11, 399, 82, 796, 8949, 198, 220, 220, 220, 318, 257, 922, 11507, 900, 13, 198, 220, 220, 220, 513, 13, 1114, 371, 2749, 11, 308, 7, 88, 8, 318, 1813, 416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 7, 88, 8, 796, 532, 42012, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 88, 796, 532, 32, 1303, 38387, 28, 32812, 10779, 32, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 62, 22556, 796, 657, 198, 220, 220, 220, 220, 220, 220, 317, 318, 257, 3967, 6937, 13, 198, 220, 220, 220, 220, 220, 220, 399, 6975, 605, 1255, 318, 1180, 621, 262, 30063, 530, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 406, 87, 796, 362, 9, 37659, 13, 14415, 1303, 2124, 685, 15, 11, 406, 87, 60, 198, 220, 220, 220, 399, 87, 796, 5598, 198, 220, 220, 220, 9334, 796, 352, 13, 15, 1303, 331, 685, 15, 11, 9334, 60, 198, 220, 220, 220, 17735, 796, 18112, 198, 220, 220, 220, 399, 82, 796, 8949, 198, 220, 220, 220, 288, 82, 796, 352, 13, 1220, 357, 47503, 532, 352, 8, 628, 220, 220, 220, 1303, 18581, 291, 287, 2124, 4571, 11, 34296, 5277, 198, 220, 220, 220, 31383, 796, 45941, 13, 283, 858, 7, 45, 87, 8, 1635, 406, 87, 1220, 399, 87, 198, 220, 220, 220, 1303, 8504, 12, 41007, 291, 287, 331, 4571, 11, 2580, 48209, 258, 85, 198, 220, 220, 220, 21065, 796, 45941, 13, 283, 858, 7, 45, 88, 10, 16, 8, 198, 220, 220, 220, 331, 88, 796, 45941, 13, 6966, 7, 37659, 13, 14415, 1635, 21065, 1220, 17735, 8, 1303, 331, 88, 25915, 16, 11, 352, 60, 198, 220, 220, 220, 331, 88, 796, 657, 13, 20, 1635, 357, 22556, 1343, 352, 8, 1635, 9334, 1303, 16855, 284, 685, 15, 11, 9334, 60, 198, 220, 220, 220, 266, 796, 45941, 13, 9107, 418, 26933, 45, 87, 11, 45, 88, 10, 16, 12962, 198, 220, 220, 220, 317, 796, 352, 13, 15, 198, 220, 220, 220, 10662, 796, 45941, 13, 9107, 418, 26933, 47503, 11, 399, 87, 11, 17735, 10, 16, 12962, 198, 220, 220, 220, 10662, 62, 1069, 529, 796, 45941, 13, 9107, 418, 26933, 45, 87, 11, 17735, 10, 16, 12962, 198, 220, 220, 220, 1303, 80, 58, 15, 60, 796, 352, 13, 198, 220, 220, 220, 329, 1312, 287, 2124, 9521, 7, 45, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2124, 9521, 7, 45, 88, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 31383, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 331, 88, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 371, 2749, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 80, 62, 1069, 529, 58, 72, 11, 73, 60, 796, 45941, 13, 11201, 32590, 32, 9, 88, 1343, 45941, 13, 31369, 7, 87, 8, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 80, 58, 15, 11, 72, 11, 73, 60, 796, 45941, 13, 11201, 32590, 32, 9, 88, 1343, 45941, 13, 31369, 7, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 86, 58, 72, 11, 73, 60, 796, 45941, 13, 6966, 7, 87, 8, 1174, 17, 532, 45941, 13, 31369, 7, 87, 8, 1343, 317, 1174, 17, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3488, 32269, 9716, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 1069, 529, 58, 72, 11, 73, 60, 796, 45941, 13, 11201, 7, 32, 9, 88, 1174, 17, 9, 7, 17, 9, 88, 12, 18, 20679, 21, 1343, 45941, 13, 31369, 7, 87, 8, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 58, 15, 11, 72, 11, 73, 60, 796, 45941, 13, 11201, 7, 32, 9, 88, 1174, 17, 9, 7, 17, 9, 88, 12, 18, 20679, 21, 1343, 45941, 13, 31369, 7, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 72, 11, 73, 60, 796, 357, 32, 9, 88, 9, 7, 88, 12, 16, 4008, 1174, 17, 1343, 45941, 13, 6966, 7, 87, 8, 1174, 17, 532, 45941, 13, 31369, 7, 87, 8, 1343, 317, 9, 7, 17, 9, 88, 12, 16, 8, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3488, 32269, 360, 2749, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 80, 58, 15, 11, 72, 11, 73, 60, 796, 45941, 13, 11201, 32590, 32, 9, 7, 88, 12, 16, 8, 1174, 17, 1343, 45941, 13, 31369, 7, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 80, 62, 1069, 529, 58, 72, 11, 73, 60, 796, 45941, 13, 11201, 32590, 32, 9, 7, 88, 12, 16, 8, 1174, 17, 1343, 45941, 13, 31369, 7, 87, 8, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 86, 58, 72, 11, 474, 60, 796, 45941, 13, 6966, 7, 87, 8, 1174, 17, 532, 45941, 13, 31369, 7, 87, 8, 1343, 604, 9, 32, 1174, 17, 1343, 357, 17, 9, 32, 9, 7, 88, 12, 16, 4008, 1174, 17, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8559, 23706, 261, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 325, 354, 796, 352, 13, 1220, 45941, 13, 66, 3768, 7, 15, 13, 1495, 9, 7, 21, 9, 88, 58, 73, 45297, 18, 9, 31633, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 86, 58, 72, 11, 73, 60, 796, 357, 16, 532, 362, 9, 325, 354, 1174, 17, 27493, 7, 37659, 13, 31369, 7, 17, 9, 37659, 13, 14415, 9, 87, 58, 72, 60, 14, 43, 87, 47762, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 86, 58, 72, 11, 73, 60, 796, 357, 16, 532, 362, 9, 325, 354, 1174, 17, 8, 628, 220, 220, 220, 2124, 796, 31383, 26, 331, 796, 331, 88, 198, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 86, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 86, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 86, 58, 45299, 45, 88, 14, 17, 12962, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 86, 7, 87, 8, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 86, 58, 45, 87, 14, 19, 11, 25, 12962, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 86, 7, 88, 8, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 1303, 360, 2749, 198, 220, 220, 220, 1303, 75, 15630, 796, 11843, 7, 34720, 20739, 28882, 11, 685, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 1303, 81, 15630, 796, 11843, 7, 34720, 20739, 28882, 11, 685, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 1303, 371, 2749, 198, 220, 220, 220, 1303, 75, 15630, 796, 11843, 7, 49, 9864, 1268, 11, 685, 16, 13, 15, 11, 317, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 1303, 81, 15630, 796, 11843, 7, 49, 9864, 1268, 11, 685, 16, 13, 15, 11, 317, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 1303, 9716, 198, 220, 220, 220, 300, 15630, 796, 11843, 7, 49, 9864, 1268, 11, 685, 16, 13, 15, 11, 657, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 374, 15630, 796, 11843, 7, 49, 9864, 1268, 11, 685, 16, 13, 15, 11, 657, 11, 657, 13, 15, 12962, 198, 220, 220, 220, 1303, 80, 62, 82, 14375, 796, 12152, 7707, 42, 19, 37, 87, 20418, 7, 43, 87, 11, 9334, 11, 399, 87, 11, 17735, 11, 399, 82, 11, 289, 28, 9310, 11, 300, 15630, 28, 75, 15630, 11, 374, 15630, 28, 81, 15630, 8, 198, 220, 220, 220, 10662, 62, 82, 14375, 796, 12152, 7707, 42, 19, 37, 87, 20418, 17, 7, 43, 87, 11, 9334, 11, 399, 87, 11, 17735, 11, 399, 82, 11, 289, 28, 9310, 11, 300, 15630, 28, 75, 15630, 11, 374, 15630, 28, 81, 15630, 8, 198, 220, 220, 220, 337, 796, 1802, 220, 220, 1303, 309, 566, 13374, 22, 13, 21, 2124, 604, 4201, 329, 42804, 530, 4755, 198, 220, 220, 220, 351, 5045, 263, 3419, 355, 256, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 2124, 9521, 7, 44, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 16, 796, 10662, 62, 82, 14375, 13, 82, 6442, 7, 86, 11, 10662, 58, 15, 4357, 10662, 8, 198, 220, 220, 220, 3601, 366, 3064, 4539, 1718, 33172, 256, 13, 2363, 82, 11, 366, 4201, 526, 628, 220, 220, 220, 3601, 705, 12331, 796, 3256, 45941, 13, 9806, 7, 37659, 13, 8937, 7, 80, 16, 12, 80, 62, 1069, 529, 4008, 628, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 80, 58, 15, 12962, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 62, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 80, 16, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 62, 82, 2122, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 80, 62, 1069, 529, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 62, 1069, 529, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 80, 58, 15, 11, 45299, 45, 88, 14, 17, 4357, 6167, 11639, 80, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 80, 16, 58, 45299, 45, 88, 14, 17, 4357, 6167, 11639, 80, 62, 82, 2122, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 80, 62, 1069, 529, 58, 45299, 45, 88, 14, 17, 4357, 6167, 11639, 80, 62, 1069, 529, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 58, 45299, 45, 88, 14, 17, 60, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 58, 15, 11, 45, 87, 14, 19, 11, 25, 4357, 6167, 11639, 80, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 16, 58, 45, 87, 14, 19, 11, 25, 4357, 6167, 11639, 80, 62, 82, 2122, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 62, 1069, 529, 58, 45, 87, 14, 19, 11, 25, 4357, 6167, 11639, 80, 62, 1069, 529, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 58, 45, 87, 14, 19, 11, 47715, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 58, 15, 11, 45, 87, 9, 18, 14, 19, 11, 25, 4357, 6167, 11639, 80, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 16, 58, 45, 87, 9, 18, 14, 19, 11, 25, 4357, 6167, 11639, 80, 62, 82, 2122, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 62, 1069, 529, 58, 45, 87, 9, 18, 14, 19, 11, 25, 4357, 6167, 11639, 80, 62, 1069, 529, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 10786, 80, 58, 45, 87, 9, 18, 14, 19, 11, 47715, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 1303, 6822, 351, 12152, 7707, 42, 19, 198, 220, 220, 220, 384, 354, 796, 352, 13, 1220, 45941, 13, 66, 3768, 7, 15, 13, 1495, 9, 7, 21, 9, 88, 12, 18, 9, 31633, 4008, 198, 220, 220, 220, 266, 16, 796, 352, 532, 362, 9, 325, 354, 1174, 17, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 86, 16, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 10662, 796, 45941, 13, 9107, 418, 26933, 47503, 11, 17735, 10, 16, 12962, 198, 220, 220, 220, 10662, 58, 15, 60, 796, 352, 13, 198, 220, 220, 220, 10662, 62, 82, 14375, 796, 12152, 7707, 42, 19, 7, 31633, 11, 45, 88, 11, 47503, 11, 71, 28, 9310, 11, 75, 15630, 28, 75, 15630, 11, 81, 15630, 28, 81, 15630, 8, 198, 220, 220, 220, 10662, 16, 11, 331, 796, 10662, 62, 82, 14375, 13, 82, 6442, 7, 86, 16, 11, 10662, 58, 15, 4357, 10662, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 80, 16, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 4299, 1332, 62, 316, 7109, 74, 19, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 1332, 1339, 318, 1864, 284, 371, 13, 327, 13, 360, 6255, 64, 31209, 495, 4710, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7043, 14, 28664, 796, 357, 16, 14, 1495, 8, 334, 62, 5324, 837, 2124, 31, 7, 15, 11, 18, 8, 198, 220, 220, 220, 351, 18645, 3403, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 7, 15, 11, 83, 8, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 62, 87, 7, 18, 11, 83, 8, 796, 532, 7, 16, 14, 17, 8, 334, 7, 18, 11, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 7, 87, 11, 15, 8, 796, 1802, 9, 7, 16, 12, 87, 14, 18, 8, 198, 220, 220, 220, 44790, 25, 198, 220, 220, 220, 220, 220, 220, 220, 775, 1064, 326, 262, 29052, 4610, 318, 881, 517, 7187, 621, 262, 1936, 198, 220, 220, 220, 220, 220, 220, 220, 3381, 40874, 286, 262, 2748, 30063, 4610, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 399, 87, 796, 5598, 198, 220, 220, 220, 406, 87, 796, 513, 198, 220, 220, 220, 256, 796, 352, 13, 198, 220, 220, 220, 399, 82, 796, 8949, 198, 220, 220, 220, 288, 82, 796, 256, 29006, 47503, 532, 352, 8, 628, 220, 220, 220, 21065, 796, 45941, 13, 283, 858, 7, 45, 87, 10, 16, 8, 198, 220, 220, 220, 2124, 796, 45941, 13, 6966, 7, 37659, 13, 14415, 1635, 21065, 1220, 399, 87, 8, 1303, 331, 88, 25915, 16, 11, 352, 60, 198, 220, 220, 220, 2124, 796, 657, 13, 20, 1635, 357, 87, 1343, 352, 8, 1635, 406, 87, 1303, 16855, 284, 685, 15, 11, 9334, 60, 198, 220, 220, 220, 266, 796, 45941, 13, 9107, 418, 7, 45, 87, 10, 16, 8, 198, 220, 220, 220, 10662, 796, 45941, 13, 9107, 418, 26933, 47503, 11, 399, 87, 10, 16, 12962, 198, 220, 220, 220, 10662, 58, 15, 60, 796, 1802, 9, 7, 16, 12, 87, 14, 18, 8, 198, 220, 220, 220, 1303, 383, 40874, 286, 2748, 4610, 416, 717, 642, 2846, 198, 220, 220, 220, 10662, 62, 1069, 529, 796, 6298, 13, 15, 31911, 9, 37659, 13, 11201, 32590, 15, 13, 2999, 940, 9, 83, 27493, 37659, 13, 31369, 7, 15, 13, 22, 21626, 9, 87, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4153, 13, 1415, 1485, 9, 37659, 13, 11201, 32590, 15, 13, 1157, 1485, 9, 83, 27493, 37659, 13, 31369, 7, 16, 13, 2791, 3720, 9, 87, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2310, 13, 2327, 4521, 9, 37659, 13, 11201, 32590, 15, 13, 2078, 4761, 9, 83, 27493, 37659, 13, 31369, 7, 17, 13, 3134, 3865, 9, 87, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 678, 13, 23601, 18, 9, 37659, 13, 11201, 32590, 15, 13, 22730, 20, 9, 83, 27493, 37659, 13, 31369, 7, 18, 13, 2154, 4089, 9, 87, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1105, 13, 24, 45385, 9, 37659, 13, 11201, 32590, 15, 13, 24, 25150, 9, 83, 27493, 37659, 13, 31369, 7, 19, 13, 22, 38652, 9, 87, 8, 198, 220, 220, 220, 300, 15630, 796, 11843, 7, 34720, 20739, 28882, 11, 685, 15, 11, 16, 11, 15, 12962, 198, 220, 220, 220, 374, 15630, 796, 11843, 7, 49, 9864, 1268, 11, 685, 16, 1539, 15, 13, 20, 11, 15, 12962, 628, 220, 220, 220, 10662, 62, 82, 14375, 796, 12152, 7707, 42, 19, 7, 43, 87, 11, 45, 87, 11, 47503, 11, 71, 28, 9310, 11, 66, 28, 16, 19571, 1495, 11, 75, 15630, 28, 75, 15630, 11, 81, 15630, 28, 81, 15630, 8, 198, 220, 220, 220, 10662, 16, 11, 2124, 796, 10662, 62, 82, 14375, 13, 82, 6442, 7, 86, 11, 10662, 58, 15, 4357, 10662, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 10662, 58, 15, 4357, 6167, 11639, 80, 62, 15, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 10662, 16, 11, 6167, 11639, 80, 62, 82, 2122, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 11, 10662, 62, 1069, 529, 11, 6167, 11639, 80, 62, 1069, 529, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 4299, 2198, 7, 84, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 383, 350, 7206, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7043, 14, 28664, 796, 334, 62, 5324, 1343, 334, 62, 22556, 532, 266, 84, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 262, 29598, 1262, 30002, 7791, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 7, 87, 8, 796, 357, 84, 7, 87, 10, 71, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1208, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 316, 7109, 74, 19, 21373, 948, 3419, 198, 220, 220, 220, 1303, 9288, 62, 316, 7109, 74, 19, 3419, 628 ]
1.653196
4,083
# O(n) time, O(n) space
[ 2, 440, 7, 77, 8, 640, 11, 440, 7, 77, 8, 2272 ]
1.916667
12
#!/usr/bin/python # Written by Heiko 2019.02.07 # Will return the password change interval from Active Directory import subprocess result = subprocess.check_output( 'dsconfigad -show | grep \'Password change interval\' | awk \'{print $5}\' ', shell=True).strip() print '<result>' + result + '</result>'
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 22503, 416, 679, 12125, 13130, 13, 2999, 13, 2998, 198, 2, 2561, 1441, 262, 9206, 1487, 16654, 422, 14199, 27387, 198, 198, 11748, 850, 14681, 198, 198, 20274, 796, 850, 14681, 13, 9122, 62, 22915, 7, 705, 9310, 11250, 324, 532, 12860, 930, 42717, 34373, 35215, 1487, 16654, 43054, 930, 3253, 74, 34373, 90, 4798, 720, 20, 32239, 6, 46083, 7582, 28, 17821, 737, 36311, 3419, 198, 4798, 705, 27, 20274, 29, 6, 1343, 1255, 1343, 705, 3556, 20274, 29, 6 ]
3.377778
90
#!/usr/bin/env python import getpass import time from web3 import Web3, HTTPProvider from eth_account import Account # will use directly instead of through web3 provider from schedule import chainids, txs print(len(txs), 'transactions in schedule.') with open('infura.key') as keyfile: infurakey = keyfile.read() w3s = { net: Web3(HTTPProvider('https://' + net + '.infura.io/v3/' + infurakey)) for net in chainids.keys() } # https://web3py.readthedocs.io/en/latest/middleware.html#geth-style-proof-of-authority if 'rinkeby' in w3s.keys(): from web3.middleware import geth_poa_middleware w3s['rinkeby'].middleware_onion.inject(geth_poa_middleware, layer=0) # UGLY: assume Goerli is used, too w3s['goerli'].middleware_onion.inject(geth_poa_middleware, layer=0) # only ask for password once with open('ethereum.key') as keyfile: privkey = Account.decrypt(keyfile.read(), getpass.getpass()) acct = Account.privateKeyToAccount(privkey) # get nonces on all chains chainnonces = {} for net, w3 in w3s.items(): print(net, 'block', w3.eth.getBlock('latest')['number']) chainnonces[net] = w3.eth.getTransactionCount(acct.address) - 1 print('Nonces present:', chainnonces) # print('Starting run in 10 seconds!') # time.sleep(10) print('Starting run:', time.ctime()) for nonce, tx in txs.items(): # don't even consider nonces present on all chains if nonce < min(chainnonces.values()): continue if nonce == min(chainnonces.values()): print('Nonces up to (and including)', nonce, 'present on all chains - skipping...') continue # populate "missing" key tx['nonce'] = nonce for net, w3 in w3s.items(): # skip txs already in _this_ chain if tx['nonce'] <= chainnonces[net]: print('Transaction with nonce', tx['nonce'], 'already included on', net, '- skipping...') continue # infura doesn't like chainId==0, so be explicit tx['chainId'] = chainids[net] # TODO: other ways to specify?.. if 'gasPrice' not in tx.keys(): tx['gasPrice'] = w3.eth.gasPrice signed = acct.signTransaction(tx) try: txhash = w3.eth.sendRawTransaction(signed.rawTransaction) print(net, 'tx with nonce', tx['nonce'], 'txhash', Web3.toHex(txhash)) except ValueError as e: errorcode = e.args[0]['code'] # 'invalid sender' (everywhere?..) and 'transaction already imported' (kovan) if errorcode != -32000 and errorcode != -32010: raise e else: print('Transaction with nonce', tx['nonce'], 'already submitted to', net)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 651, 6603, 198, 11748, 640, 198, 198, 6738, 3992, 18, 1330, 5313, 18, 11, 14626, 29495, 198, 6738, 4555, 62, 23317, 1330, 10781, 1303, 481, 779, 3264, 2427, 286, 832, 3992, 18, 10131, 198, 198, 6738, 7269, 1330, 6333, 2340, 11, 27765, 82, 198, 198, 4798, 7, 11925, 7, 17602, 82, 828, 705, 7645, 4658, 287, 7269, 2637, 8, 198, 198, 4480, 1280, 10786, 10745, 5330, 13, 2539, 11537, 355, 1994, 7753, 25, 198, 220, 220, 220, 1167, 333, 539, 88, 796, 1994, 7753, 13, 961, 3419, 198, 198, 86, 18, 82, 796, 1391, 198, 220, 220, 220, 2010, 25, 5313, 18, 7, 40717, 29495, 10786, 5450, 1378, 6, 1343, 2010, 1343, 45302, 10745, 5330, 13, 952, 14, 85, 18, 14, 6, 1343, 1167, 333, 539, 88, 4008, 198, 220, 220, 220, 329, 2010, 287, 6333, 2340, 13, 13083, 3419, 198, 92, 198, 198, 2, 3740, 1378, 12384, 18, 9078, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 42861, 14, 27171, 1574, 13, 6494, 2, 1136, 71, 12, 7635, 12, 13288, 12, 1659, 12, 9800, 414, 198, 361, 705, 12769, 365, 1525, 6, 287, 266, 18, 82, 13, 13083, 33529, 198, 220, 220, 220, 422, 3992, 18, 13, 27171, 1574, 1330, 651, 71, 62, 7501, 64, 62, 27171, 1574, 198, 220, 220, 220, 266, 18, 82, 17816, 12769, 365, 1525, 6, 4083, 27171, 1574, 62, 261, 295, 13, 259, 752, 7, 1136, 71, 62, 7501, 64, 62, 27171, 1574, 11, 7679, 28, 15, 8, 198, 220, 220, 220, 1303, 471, 8763, 56, 25, 7048, 1514, 263, 4528, 318, 973, 11, 1165, 198, 220, 220, 220, 266, 18, 82, 17816, 2188, 263, 4528, 6, 4083, 27171, 1574, 62, 261, 295, 13, 259, 752, 7, 1136, 71, 62, 7501, 64, 62, 27171, 1574, 11, 7679, 28, 15, 8, 198, 198, 2, 691, 1265, 329, 9206, 1752, 198, 4480, 1280, 10786, 316, 1456, 388, 13, 2539, 11537, 355, 1994, 7753, 25, 198, 220, 220, 220, 1953, 2539, 796, 10781, 13, 12501, 6012, 7, 2539, 7753, 13, 961, 22784, 651, 6603, 13, 1136, 6603, 28955, 198, 220, 220, 220, 936, 310, 796, 10781, 13, 19734, 9218, 2514, 30116, 7, 13776, 2539, 8, 198, 198, 2, 651, 1729, 728, 319, 477, 14659, 198, 7983, 13159, 728, 796, 23884, 198, 1640, 2010, 11, 266, 18, 287, 266, 18, 82, 13, 23814, 33529, 198, 220, 220, 220, 3601, 7, 3262, 11, 705, 9967, 3256, 266, 18, 13, 2788, 13, 1136, 12235, 10786, 42861, 11537, 17816, 17618, 6, 12962, 198, 220, 220, 220, 6333, 13159, 728, 58, 3262, 60, 796, 266, 18, 13, 2788, 13, 1136, 48720, 12332, 7, 330, 310, 13, 21975, 8, 532, 352, 198, 4798, 10786, 15419, 728, 1944, 25, 3256, 6333, 13159, 728, 8, 198, 198, 2, 3601, 10786, 22851, 1057, 287, 838, 4201, 0, 11537, 198, 2, 640, 13, 42832, 7, 940, 8, 198, 198, 4798, 10786, 22851, 1057, 25, 3256, 640, 13, 310, 524, 28955, 198, 198, 1640, 1729, 344, 11, 27765, 287, 27765, 82, 13, 23814, 33529, 198, 220, 220, 220, 1303, 836, 470, 772, 2074, 1729, 728, 1944, 319, 477, 14659, 198, 220, 220, 220, 611, 1729, 344, 1279, 949, 7, 7983, 13159, 728, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 1729, 344, 6624, 949, 7, 7983, 13159, 728, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15419, 728, 510, 284, 357, 392, 1390, 8, 3256, 1729, 344, 11, 705, 25579, 319, 477, 14659, 532, 31017, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1303, 48040, 366, 45688, 1, 1994, 198, 220, 220, 220, 27765, 17816, 13159, 344, 20520, 796, 1729, 344, 628, 220, 220, 220, 329, 2010, 11, 266, 18, 287, 266, 18, 82, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 27765, 82, 1541, 287, 4808, 5661, 62, 6333, 198, 220, 220, 220, 220, 220, 220, 220, 611, 27765, 17816, 13159, 344, 20520, 19841, 6333, 13159, 728, 58, 3262, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 48720, 351, 1729, 344, 3256, 27765, 17816, 13159, 344, 6, 4357, 705, 282, 1493, 3017, 319, 3256, 2010, 11, 705, 12, 31017, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1167, 5330, 1595, 470, 588, 6333, 7390, 855, 15, 11, 523, 307, 7952, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 17816, 7983, 7390, 20520, 796, 6333, 2340, 58, 3262, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 584, 2842, 284, 11986, 30, 492, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 22649, 18124, 6, 407, 287, 27765, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 17816, 22649, 18124, 20520, 796, 266, 18, 13, 2788, 13, 22649, 18124, 628, 220, 220, 220, 220, 220, 220, 220, 4488, 796, 936, 310, 13, 12683, 48720, 7, 17602, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 17831, 796, 266, 18, 13, 2788, 13, 21280, 27369, 48720, 7, 32696, 13, 1831, 48720, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3262, 11, 705, 17602, 351, 1729, 344, 3256, 27765, 17816, 13159, 344, 6, 4357, 705, 17602, 17831, 3256, 5313, 18, 13, 1462, 39, 1069, 7, 17602, 17831, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 8189, 796, 304, 13, 22046, 58, 15, 7131, 6, 8189, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 259, 12102, 29788, 6, 357, 16833, 3003, 30, 492, 8, 290, 705, 7645, 2673, 1541, 17392, 6, 357, 21862, 272, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 8189, 14512, 532, 2624, 830, 290, 4049, 8189, 14512, 532, 18, 10333, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 48720, 351, 1729, 344, 3256, 27765, 17816, 13159, 344, 6, 4357, 705, 282, 1493, 8948, 284, 3256, 2010, 8, 198 ]
2.431408
1,108
#!/usr/bin/env python """Build documentation and api.""" import os EPYDOC = "python c:/programmi/python23/scripts/epydoc.py" PSYCOPG = "c:/programmi/python23/lib/site-packages/psycopg2" os.system("python ext2html.py ../doc/extensions.rst > ../doc/extensions.html") os.system("%s " "-o ../doc/api " "--css ../doc/api-screen.css " "--docformat restructuredtext " "%s" % (EPYDOC,PSYCOPG,))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 37811, 15580, 10314, 290, 40391, 526, 15931, 201, 198, 201, 198, 11748, 28686, 201, 198, 201, 198, 8905, 35755, 4503, 796, 366, 29412, 269, 14079, 23065, 11632, 14, 29412, 1954, 14, 46521, 14, 538, 5173, 420, 13, 9078, 1, 201, 198, 3705, 44816, 3185, 38, 796, 366, 66, 14079, 23065, 11632, 14, 29412, 1954, 14, 8019, 14, 15654, 12, 43789, 14, 13764, 22163, 70, 17, 1, 201, 198, 201, 198, 418, 13, 10057, 7203, 29412, 1070, 17, 6494, 13, 9078, 11485, 14, 15390, 14, 2302, 5736, 13, 81, 301, 1875, 11485, 14, 15390, 14, 2302, 5736, 13, 6494, 4943, 201, 198, 418, 13, 10057, 7203, 4, 82, 366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 78, 11485, 14, 15390, 14, 15042, 366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 25471, 11485, 14, 15390, 14, 15042, 12, 9612, 13, 25471, 366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 15390, 18982, 27596, 1522, 5239, 366, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36521, 82, 1, 201, 198, 220, 220, 220, 4064, 357, 8905, 35755, 4503, 11, 3705, 44816, 3185, 38, 11, 4008, 201, 198 ]
2.102804
214