content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import os import glob import subprocess from setuptools import setup, find_packages from distutils import log import sys BUILD_CUAEV = '--cuaev' in sys.argv if BUILD_CUAEV: sys.argv.remove('--cuaev') if not BUILD_CUAEV: log.warn("Will not install cuaev") # type: ignore with open("README.md", "r") as fh: long_description = fh.read() setup( name='torchani', description='PyTorch implementation of ANI', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/aiqm/torchani', author='Xiang Gao', author_email='[email protected]', license='MIT', packages=find_packages(), include_package_data=True, use_scm_version=True, setup_requires=['setuptools_scm'], install_requires=[ 'torch', 'lark-parser', 'requests', 'importlib_metadata', ], **cuaev_kwargs() )
[ 11748, 28686, 198, 11748, 15095, 198, 11748, 850, 14681, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 6738, 1233, 26791, 1330, 2604, 198, 11748, 25064, 198, 198, 19499, 26761, 62, 43633, 14242, 53, 796, 705, 438, 66, 6413, 1990, 6, 287, 25064, 13, 853, 85, 198, 361, 20571, 26761, 62, 43633, 14242, 53, 25, 198, 220, 220, 220, 25064, 13, 853, 85, 13, 28956, 10786, 438, 66, 6413, 1990, 11537, 198, 198, 361, 407, 20571, 26761, 62, 43633, 14242, 53, 25, 198, 220, 220, 220, 2604, 13, 40539, 7203, 8743, 407, 2721, 269, 6413, 1990, 4943, 220, 1303, 2099, 25, 8856, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 628, 628, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 13165, 3147, 72, 3256, 198, 220, 220, 220, 6764, 11639, 20519, 15884, 354, 7822, 286, 3537, 40, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 1872, 80, 76, 14, 13165, 3147, 72, 3256, 198, 220, 220, 220, 1772, 11639, 55, 15483, 402, 5488, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 80, 292, 7568, 70, 774, 9019, 404, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 779, 62, 1416, 76, 62, 9641, 28, 17821, 11, 198, 220, 220, 220, 9058, 62, 47911, 28, 17816, 2617, 37623, 10141, 62, 1416, 76, 6, 4357, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 75, 668, 12, 48610, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11748, 8019, 62, 38993, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 12429, 66, 6413, 1990, 62, 46265, 22046, 3419, 198, 8, 198 ]
2.392208
385
#!/usr/bin/env python3 from six.moves import getoutput import os.path from os import chdir directory = os.path.dirname(os.path.abspath(__file__)) chdir(directory) print('Working directory set to {}'.format(directory)) proto_path = os.path.join('..', 'schema') python_out = os.path.join('..', 'reblockstorer', 'proto') out_pb2 = os.path.join(python_out, '*pb2*.py') protos = os.path.join(proto_path, '*.proto') endpoint_proto = os.path.join(proto_path, 'endpoint.proto') print(getoutput('protoc --proto_path={} --python_out={} {}'. format(proto_path, python_out, protos))) print(getoutput('python -m grpc_tools.protoc --proto_path={} \ --python_out={} --grpc_python_out={} {}'. format(proto_path, python_out, python_out, endpoint_proto))) print(getoutput('sed -i.bak \'s/^\\(import.*_pb2\\)/from . \\1/\' {}'. format(out_pb2))) print('Done.')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 2237, 13, 76, 5241, 1330, 651, 22915, 198, 11748, 28686, 13, 6978, 198, 6738, 28686, 1330, 442, 15908, 198, 198, 34945, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 354, 15908, 7, 34945, 8, 198, 4798, 10786, 28516, 8619, 900, 284, 23884, 4458, 18982, 7, 34945, 4008, 198, 198, 1676, 1462, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 15952, 2611, 11537, 198, 29412, 62, 448, 796, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 260, 9967, 8095, 81, 3256, 705, 1676, 1462, 11537, 198, 448, 62, 40842, 17, 796, 28686, 13, 6978, 13, 22179, 7, 29412, 62, 448, 11, 705, 9, 40842, 17, 24620, 9078, 11537, 198, 11235, 418, 796, 28686, 13, 6978, 13, 22179, 7, 1676, 1462, 62, 6978, 11, 705, 24620, 1676, 1462, 11537, 198, 437, 4122, 62, 1676, 1462, 796, 28686, 13, 6978, 13, 22179, 7, 1676, 1462, 62, 6978, 11, 705, 437, 4122, 13, 1676, 1462, 11537, 198, 198, 4798, 7, 1136, 22915, 10786, 11235, 420, 1377, 1676, 1462, 62, 6978, 34758, 92, 1377, 29412, 62, 448, 34758, 92, 23884, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 1676, 1462, 62, 6978, 11, 21015, 62, 448, 11, 1237, 418, 22305, 198, 4798, 7, 1136, 22915, 10786, 29412, 532, 76, 1036, 14751, 62, 31391, 13, 11235, 420, 1377, 1676, 1462, 62, 6978, 34758, 92, 3467, 198, 197, 438, 29412, 62, 448, 34758, 92, 1377, 2164, 14751, 62, 29412, 62, 448, 34758, 92, 23884, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 1676, 1462, 62, 6978, 11, 21015, 62, 448, 11, 21015, 62, 448, 11, 36123, 62, 1676, 1462, 22305, 198, 198, 4798, 7, 1136, 22915, 10786, 36622, 532, 72, 13, 65, 461, 34373, 82, 14, 61, 6852, 7, 11748, 15885, 62, 40842, 17, 6852, 20679, 6738, 764, 26867, 16, 14, 43054, 23884, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 7, 448, 62, 40842, 17, 22305, 198, 4798, 10786, 45677, 2637, 8, 198 ]
2.364116
379
# -*- coding: utf-8 -*- import sys import inspect import getopt import traceback from exceptions import * write = sys.stdout.write err = sys.stderr.write def trim(docstring): """Intelligently undent given docstring.""" if not docstring: return '' # Convert tabs to spaces (following the normal Python rules) # and split into a list of lines: lines = docstring.expandtabs().splitlines() # Determine minimum indentation (first line doesn't count): indent = sys.maxint for line in lines[1:]: stripped = line.lstrip() if stripped: indent = min(indent, len(line) - len(stripped)) # Remove indentation (first line is special): trimmed = [lines[0].strip()] if indent < sys.maxint: for line in lines[1:]: trimmed.append(line[indent:].rstrip()) # Strip off trailing and leading blank lines: while trimmed and not trimmed[-1]: trimmed.pop() while trimmed and not trimmed[0]: trimmed.pop(0) # Return a single string: return '\n'.join(trimmed) def catcher(target, help_func): '''Catches all exceptions and prints human-readable information on them ''' try: return target() except UnknownCommand, e: err("unknown command: '%s'\n" % e) except AmbiguousCommand, e: err("command '%s' is ambiguous:\n %s\n" % (e.args[0], ' '.join(e.args[1]))) except ParseError, e: err('%s: %s\n' % (e.args[0], e.args[1])) help_func(e.args[0]) except getopt.GetoptError, e: err('error: %s\n' % e) help_func() except FOError, e: err('%s\n' % e) except KeyboardInterrupt: err('interrupted!\n') except SystemExit: raise except: err('unknown exception encountered') raise raise Abort try: from functools import wraps except ImportError:
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 25064, 198, 11748, 10104, 198, 11748, 651, 8738, 198, 11748, 12854, 1891, 198, 198, 6738, 13269, 1330, 1635, 220, 628, 198, 13564, 796, 25064, 13, 19282, 448, 13, 13564, 198, 8056, 796, 25064, 13, 301, 1082, 81, 13, 13564, 628, 198, 4299, 15797, 7, 15390, 8841, 2599, 198, 197, 37811, 5317, 2976, 1473, 3318, 298, 1813, 2205, 8841, 526, 15931, 198, 197, 361, 407, 2205, 8841, 25, 198, 197, 197, 7783, 10148, 198, 197, 2, 38240, 22524, 284, 9029, 357, 27780, 278, 262, 3487, 11361, 3173, 8, 198, 197, 2, 290, 6626, 656, 257, 1351, 286, 3951, 25, 198, 197, 6615, 796, 2205, 8841, 13, 11201, 392, 8658, 82, 22446, 35312, 6615, 3419, 198, 197, 2, 45559, 3810, 5288, 33793, 341, 357, 11085, 1627, 1595, 470, 954, 2599, 198, 197, 521, 298, 796, 25064, 13, 9806, 600, 198, 197, 1640, 1627, 287, 3951, 58, 16, 25, 5974, 198, 197, 197, 33565, 1496, 796, 1627, 13, 75, 36311, 3419, 198, 197, 197, 361, 18818, 25, 198, 197, 197, 197, 521, 298, 796, 949, 7, 521, 298, 11, 18896, 7, 1370, 8, 532, 18896, 7, 33565, 1496, 4008, 198, 197, 2, 17220, 33793, 341, 357, 11085, 1627, 318, 2041, 2599, 198, 197, 2213, 320, 1150, 796, 685, 6615, 58, 15, 4083, 36311, 3419, 60, 198, 197, 361, 33793, 1279, 25064, 13, 9806, 600, 25, 198, 197, 197, 1640, 1627, 287, 3951, 58, 16, 25, 5974, 198, 197, 197, 197, 2213, 320, 1150, 13, 33295, 7, 1370, 58, 521, 298, 25, 4083, 81, 36311, 28955, 198, 197, 2, 18508, 572, 25462, 290, 3756, 9178, 3951, 25, 198, 197, 4514, 40325, 290, 407, 40325, 58, 12, 16, 5974, 198, 197, 197, 2213, 320, 1150, 13, 12924, 3419, 198, 197, 4514, 40325, 290, 407, 40325, 58, 15, 5974, 198, 197, 197, 2213, 320, 1150, 13, 12924, 7, 15, 8, 198, 197, 2, 8229, 257, 2060, 4731, 25, 198, 197, 7783, 705, 59, 77, 4458, 22179, 7, 2213, 320, 1150, 8, 628, 198, 198, 4299, 32408, 7, 16793, 11, 1037, 62, 20786, 2599, 198, 220, 220, 220, 705, 7061, 34, 20981, 477, 13269, 290, 20842, 1692, 12, 46155, 1321, 319, 606, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 3419, 198, 220, 220, 220, 2845, 16185, 21575, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 34680, 3141, 25, 705, 4, 82, 6, 59, 77, 1, 4064, 304, 8, 198, 220, 220, 220, 2845, 12457, 29709, 21575, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 7203, 21812, 705, 4, 82, 6, 318, 27102, 7479, 77, 220, 220, 220, 4064, 82, 59, 77, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 68, 13, 22046, 58, 15, 4357, 705, 45302, 22179, 7, 68, 13, 22046, 58, 16, 60, 22305, 198, 220, 220, 220, 2845, 2547, 325, 12331, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 10786, 4, 82, 25, 4064, 82, 59, 77, 6, 4064, 357, 68, 13, 22046, 58, 15, 4357, 304, 13, 22046, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 20786, 7, 68, 13, 22046, 58, 15, 12962, 198, 220, 220, 220, 2845, 651, 8738, 13, 3855, 8738, 12331, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 10786, 18224, 25, 4064, 82, 59, 77, 6, 4064, 304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 20786, 3419, 198, 220, 220, 220, 2845, 11895, 12331, 11, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 10786, 4, 82, 59, 77, 6, 4064, 304, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 10786, 46037, 0, 59, 77, 11537, 198, 220, 220, 220, 2845, 4482, 30337, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 10786, 34680, 6631, 12956, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 5298, 2275, 419, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 1257, 310, 10141, 1330, 27521, 198, 16341, 17267, 12331, 25 ]
2.482143
728
# a = [-10, -2, 0, 5, 66, 77, 99, 102, 239, 567, 875, 934] # print(encontra_impares(a))
[ 2, 257, 796, 25915, 940, 11, 532, 17, 11, 657, 11, 642, 11, 7930, 11, 8541, 11, 7388, 11, 15143, 11, 32817, 11, 642, 3134, 11, 807, 2425, 11, 860, 2682, 60, 628, 198, 2, 3601, 7, 268, 3642, 430, 62, 11011, 3565, 7, 64, 4008 ]
1.934783
46
from .Collection import Collection from me.storage.data_config import DataType from datetime import datetime from me.logger import MeLogger, DEBUG
[ 6738, 764, 36307, 1330, 12251, 198, 6738, 502, 13, 35350, 13, 7890, 62, 11250, 1330, 6060, 6030, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 502, 13, 6404, 1362, 1330, 2185, 11187, 1362, 11, 16959, 628, 198 ]
3.921053
38
import sys from django.core.management.base import BaseCommand from ... import models from ...ocr import walk
[ 11748, 25064, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 2644, 1330, 4981, 198, 6738, 2644, 1696, 1330, 2513, 198 ]
4.074074
27
import requests as req import sys import json request = req.get('https://economia.awesomeapi.com.br/json/all') cotacoes = json.loads(request.text) consultas = ["USD", "ARS", "EUR", "BTC"] if(len(sys.argv) > 1): consultas = sys.argv[1:] print("1 BRL ==") exibeCotacoes(consultas)
[ 11748, 7007, 355, 43089, 198, 11748, 25064, 198, 11748, 33918, 198, 198, 25927, 796, 43089, 13, 1136, 10786, 5450, 1378, 13926, 544, 13, 707, 5927, 15042, 13, 785, 13, 1671, 14, 17752, 14, 439, 11537, 198, 25557, 330, 3028, 796, 33918, 13, 46030, 7, 25927, 13, 5239, 8, 198, 198, 5936, 586, 292, 796, 14631, 29072, 1600, 366, 27415, 1600, 366, 36, 4261, 1600, 366, 35964, 8973, 198, 361, 7, 11925, 7, 17597, 13, 853, 85, 8, 1875, 352, 2599, 198, 220, 220, 5725, 292, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 198, 4798, 7203, 16, 347, 7836, 796, 2625, 8, 198, 1069, 32438, 34, 313, 330, 3028, 7, 5936, 586, 292, 8, 198 ]
2.456897
116
import logging import urllib import json import base64 import typing as t from galaxy.http import create_client_session, handle_exception from galaxy.api.errors import AccessDenied, AuthenticationRequired logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 11748, 2956, 297, 571, 198, 11748, 33918, 198, 11748, 2779, 2414, 198, 11748, 19720, 355, 256, 198, 198, 6738, 16161, 13, 4023, 1330, 2251, 62, 16366, 62, 29891, 11, 5412, 62, 1069, 4516, 198, 6738, 16161, 13, 15042, 13, 48277, 1330, 8798, 21306, 798, 11, 48191, 37374, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.701493
67
# -*- coding: utf-8 -*- from django.apps import AppConfig
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
2.565217
23
import progressbar import pythonwhois def is_registered(site): """Check if a domain has an WHOIS record.""" try: details = pythonwhois.get_whois(site) except pythonwhois.shared.WhoisException as e: print(f"Exception for {site}") print(e) return False return not details["raw"][0].startswith("No match for") # https://raw.githubusercontent.com/dominictarr/random-name/master/first-names.txt names = read_from_file("english-adjectives.txt") sites = [f"{name}.me" for name in names] # https://raw.githubusercontent.com/datmt/English-Verbs/master/verbsList # names = read_from_file('verbs.txt') # sites = ['{}.it'.format(name) for name in names] sites = [f"{name}.com" for name in generate_by_pattern("CVCV")] print(len(sites)) i = 0 ava_sites = [] for site in progressbar.progressbar(sites): if " " in site: i += 1 continue if not is_registered(site): print(site) ava_sites.append(site) print(ava_sites) # from joblib import Parallel, delayed # import multiprocessing # # what are your inputs, and what operation do you want to # # perform on each input. For example... # names = read_from_file('first-names.txt') # def is_registered(site): # """Check if a domain has an WHOIS record.""" # details = pythonwhois.get_whois(site) # return not details['raw'][0].startswith('No match for') # num_cores = multiprocessing.cpu_count() # results = Parallel(n_jobs=num_cores)(delayed(is_registered)(i) for i in sites) # print(results)
[ 11748, 4371, 5657, 198, 11748, 21015, 8727, 271, 628, 198, 4299, 318, 62, 33736, 7, 15654, 2599, 198, 220, 220, 220, 37227, 9787, 611, 257, 7386, 468, 281, 19494, 1797, 1700, 526, 15931, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3307, 796, 21015, 8727, 271, 13, 1136, 62, 8727, 271, 7, 15654, 8, 198, 220, 220, 220, 2845, 21015, 8727, 271, 13, 28710, 13, 8241, 271, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 16922, 329, 1391, 15654, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 407, 3307, 14692, 1831, 1, 7131, 15, 4083, 9688, 2032, 342, 7203, 2949, 2872, 329, 4943, 628, 628, 198, 2, 3740, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 3438, 259, 713, 3258, 14, 25120, 12, 3672, 14, 9866, 14, 11085, 12, 14933, 13, 14116, 198, 14933, 796, 1100, 62, 6738, 62, 7753, 7203, 39126, 12, 324, 752, 1083, 13, 14116, 4943, 198, 49315, 796, 685, 69, 1, 90, 3672, 27422, 1326, 1, 329, 1438, 287, 3891, 60, 198, 2, 3740, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 19608, 16762, 14, 15823, 12, 13414, 1443, 14, 9866, 14, 46211, 8053, 198, 2, 3891, 796, 1100, 62, 6738, 62, 7753, 10786, 46211, 13, 14116, 11537, 198, 2, 5043, 796, 37250, 90, 27422, 270, 4458, 18982, 7, 3672, 8, 329, 1438, 287, 3891, 60, 198, 49315, 796, 685, 69, 1, 90, 3672, 27422, 785, 1, 329, 1438, 287, 7716, 62, 1525, 62, 33279, 7203, 34, 15922, 53, 4943, 60, 198, 4798, 7, 11925, 7, 49315, 4008, 198, 198, 72, 796, 657, 198, 4170, 62, 49315, 796, 17635, 198, 1640, 2524, 287, 4371, 5657, 13, 33723, 5657, 7, 49315, 2599, 198, 220, 220, 220, 611, 366, 366, 287, 2524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 407, 318, 62, 33736, 7, 15654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 15654, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1196, 64, 62, 49315, 13, 33295, 7, 15654, 8, 198, 4798, 7, 4170, 62, 49315, 8, 628, 198, 2, 422, 1693, 8019, 1330, 42945, 11, 11038, 198, 2, 1330, 18540, 305, 919, 278, 198, 198, 2, 1303, 644, 389, 534, 17311, 11, 290, 644, 4905, 466, 345, 765, 284, 198, 2, 1303, 1620, 319, 1123, 5128, 13, 1114, 1672, 986, 198, 2, 3891, 796, 1100, 62, 6738, 62, 7753, 10786, 11085, 12, 14933, 13, 14116, 11537, 198, 2, 825, 318, 62, 33736, 7, 15654, 2599, 198, 2, 220, 220, 220, 220, 37227, 9787, 611, 257, 7386, 468, 281, 19494, 1797, 1700, 526, 15931, 198, 2, 220, 220, 220, 220, 3307, 796, 21015, 8727, 271, 13, 1136, 62, 8727, 271, 7, 15654, 8, 198, 2, 220, 220, 220, 220, 1441, 407, 3307, 17816, 1831, 6, 7131, 15, 4083, 9688, 2032, 342, 10786, 2949, 2872, 329, 11537, 198, 198, 2, 997, 62, 66, 2850, 796, 18540, 305, 919, 278, 13, 36166, 62, 9127, 3419, 198, 198, 2, 2482, 796, 42945, 7, 77, 62, 43863, 28, 22510, 62, 66, 2850, 5769, 12381, 16548, 7, 271, 62, 33736, 5769, 72, 8, 329, 1312, 287, 5043, 8, 198, 2, 3601, 7, 43420, 8, 198 ]
2.688266
571
""" zoom.tools """ import datetime import logging import os from markdown import Markdown from zoom.response import RedirectResponse import zoom.helpers from zoom.helpers import abs_url_for, url_for_page, url_for from zoom.utils import trim, dedup from zoom.render import apply_helpers one_day = datetime.timedelta(1) one_week = one_day * 7 one_hour = datetime.timedelta(hours=1) one_minute = datetime.timedelta(minutes=1) def now(): """Return the current datetime""" return datetime.datetime.now() def today(): """Return the current date >>> today() == datetime.date.today() True """ return datetime.date.today() def yesterday(any_date=None): """Return date for yesterday >>> yesterday(datetime.date(2017, 12, 4)) datetime.date(2017, 12, 3) >>> yesterday(datetime.date(2017, 1, 1)) datetime.date(2016, 12, 31) """ return (any_date or today()) - one_day def tomorrow(any_date=None): """Return date for tomorrow >>> tomorrow(datetime.date(2017, 12, 3)) datetime.date(2017, 12, 4) >>> tomorrow(datetime.date(2016, 12, 31)) datetime.date(2017, 1, 1) """ return (any_date or today()) + one_day def first_day_of_the_month(any_date): """returns the first day of the month for any date >>> first_day_of_the_month(datetime.date(2016, 12, 31)) datetime.date(2016, 12, 1) """ return datetime.date(any_date.year, any_date.month, 1) def last_day_of_the_month(any_date): """returns the last day of the month for any date >>> last_day_of_the_month(datetime.date(2016, 2, 1)) datetime.date(2016, 2, 29) >>> last_day_of_the_month(datetime.datetime(2016, 2, 1, 1, 1, 1)) datetime.date(2016, 2, 29) """ next_month = any_date.replace(day=28) + datetime.timedelta(days=4) return first_day_of_the_month(next_month) - one_day def first_day_of_next_month(any_date): """returns the first day of next month for any date >>> first_day_of_next_month(datetime.date(2016, 2, 1)) datetime.date(2016, 3, 1) """ return last_day_of_the_month(any_date) + one_day def last_day_of_next_month(any_date): """returns the last day of next month for any date >>> last_day_of_next_month(datetime.date(2016, 2, 1)) datetime.date(2016, 3, 31) """ return last_day_of_the_month(first_day_of_next_month(any_date)) def first_day_of_last_month(any_date): """Returns the first day of last month for any date >>> first_day_of_last_month(datetime.date(2016, 1, 21)) datetime.date(2015, 12, 1) """ return first_day_of_the_month(last_day_of_last_month(any_date)) def last_day_of_last_month(any_date): """Returns the first day of last month for any date >>> last_day_of_last_month(datetime.date(2016, 1, 21)) datetime.date(2015, 12, 31) """ return first_day_of_the_month(any_date) - one_day def this_month(any_date): """Returns date range for last month for any date >>> this_month(datetime.date(2016, 1, 21)) (datetime.date(2016, 1, 1), datetime.date(2016, 1, 31)) """ return (first_day_of_the_month(any_date), last_day_of_the_month(any_date)) def next_month(any_date): """Returns date range for next month for any date >>> next_month(datetime.date(2016, 1, 21)) (datetime.date(2016, 2, 1), datetime.date(2016, 2, 29)) """ return (first_day_of_next_month(any_date), last_day_of_next_month(any_date)) def last_month(any_date): """Returns date range for last month for any date >>> last_month(datetime.date(2016, 1, 21)) (datetime.date(2015, 12, 1), datetime.date(2015, 12, 31)) """ return (first_day_of_last_month(any_date), last_day_of_last_month(any_date)) def how_long(time1, time2): """Returns a string that describes the difference between two times. >>> import time >>> now = now() >>> how_long(now, now) 'a moment' >>> how_long(now, now + one_minute / 3) '20 seconds' >>> how_long(now, now + one_hour / 3) '20 minutes' >>> how_long(now, now + one_day / 3) '8 hours' >>> how_long(now, now + one_day) '1 day' >>> how_long(now, now + 2 * one_day) '2 days' >>> how_long(now, now + 15 * one_day) '2 weeks' >>> how_long(now, now + 35 * one_day) 'over a month' >>> how_long(now, now + 65 * one_day) 'over 2 months' >>> how_long(now, now + 361 * one_day) 'almost a year' >>> how_long(now, now + 20 * one_minute) '20 minutes' >>> how_long(now, now + 2 * 365 * one_day) 'almost two years' >>> how_long(now, now + 3.25 * 365 * one_day) 'over 3 years' >>> how_long(now, now + 1.25 * 365 * one_day) 'over a year' >>> how_long(today(), tomorrow(today())) '1 day' >>> how_long(today(), now + one_week) '7 days' >>> how_long(now, time.time()) 'a moment' >>> failed = False >>> try: ... how_long(now, None) ... except TypeError: ... failed = True >>> failed True """ #pylint: disable=R0912 def as_datetime(anytime): """Convert value to datetime""" if isinstance(anytime, datetime.datetime): return anytime elif isinstance(anytime, datetime.date): return datetime.datetime(anytime.year, anytime.month, anytime.day) elif anytime is None: msg = 'date, datetime or timestamp required (None passed)' raise TypeError(msg) else: return datetime.datetime.fromtimestamp(anytime) diff = as_datetime(time2) - as_datetime(time1) if diff.days > 365*2: result = 'over %d years' % (diff.days / 365) elif diff.days > 365*1.75: result = 'almost two years' elif diff.days > 365: result = 'over a year' elif diff.days > 360: result = 'almost a year' elif diff.days > 60: result = 'over %d months' % (diff.days / 30) elif diff.days > 30: result = 'over a month' elif diff.days > 14: result = '%d weeks' % (diff.days / 7) elif diff.days > 1: result = '%d days' % diff.days elif diff.days == 1: result = '1 day' elif diff.seconds > 3600: result = '%d hours' % int(diff.seconds / 3600) elif diff.seconds > 60: result = '%d minutes' % int(diff.seconds / 60) elif diff.seconds > 0: result = '%d seconds' % int(diff.seconds) else: result = 'a moment' return result def how_long_ago(anytime, since=None): """ Returns a string that describes the difference between any time and now. >>> now = now() >>> how_long_ago(now - datetime.timedelta(1) * 2) '2 days ago' >>> how_long_ago(now + 20 * one_minute) '19 minutes from now' >>> how_long_ago(now - 20 * one_minute) '20 minutes ago' >>> how_long_ago(now - 20 * one_minute, now - 10 * one_minute) '10 minutes ago' """ right_now = since or now() if anytime < right_now: return how_long(anytime, right_now) + ' ago' else: return how_long(right_now, anytime) + ' from now' def is_listy(obj): """test to see if an object will iterate like a list >>> is_listy([1,2,3]) True >>> is_listy(set([3,4,5])) True >>> is_listy((3,4,5)) True >>> is_listy(dict(a=1, b=2)) False >>> is_listy('123') False """ return isinstance(obj, (list, tuple, set)) def ensure_listy(obj): """ensure object is wrapped in a list if it can't behave like one >>> ensure_listy('not listy') ['not listy'] >>> ensure_listy(['already listy']) ['already listy'] >>> ensure_listy([]) [] """ if is_listy(obj): return obj return [obj] def redirect_to(*args, **kwargs): """Return a redirect response for a URL.""" return Redirector(*args, **kwargs) def home(view=None): """Redirect to application home. """ if view: return redirect_to(url_for_page(view)) return redirect_to(url_for_page()) def unisafe(val): """safely convert to unicode >>> unisafe(None) '' >>> unisafe(b'123') '123' >>> unisafe( ... b'\\xe3\\x81\\x93\\xe3\\x82\\x93\\xe3\\x81\\xab\\xe3\\x81' ... b'\\xa1\\xe3\\x81\\xaf\\xe4\\xb8\\x96\\xe7\\x95\\x8c' ... ) 'こんにちは世界' >>> unisafe(1) '1' """ if val is None: return '' elif isinstance(val, bytes): try: val = val.decode('utf-8') except: val = val.decode('Latin-1') elif not isinstance(val, str): val = str(val) return val def websafe(content): """Return htmlquoted version of content >>> websafe(b'This could be <problematic>') 'This could be &lt;problematic&gt;' """ return hide_helpers(htmlquote(unisafe(content))) def htmlquote(text): """Encodes `text` for raw use in HTML. >>> htmlquote(u"<'&\\">") '&lt;&#39;&amp;&quot;&gt;' >>> htmlquote("<'&\\">") '&lt;&#39;&amp;&quot;&gt;' """ replacements = ( ('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'), ("'", '&#39;'), ('"', '&quot;'), ) for replacement in replacements: text = text.replace(*replacement) return text def get_markdown_converter(): """Return a configured markdown converter >>> markdown("a [[wikilink]] test") '<p>a <a class="wikilink" href="wikilink.html">wikilink</a> test</p>' >>> markdown("a [[wikilink.html]] test") '<p>a [[wikilink.html]] test</p>' """ extras = ['tables', 'def_list', 'wikilinks', 'toc'] configs = {'wikilinks': [('build_url', url_builder)]} converter = Markdown(extensions=extras, extension_configs=configs) return converter markdown_converter = get_markdown_converter() # TODO: decorator instead? def markdown(content): """Transform content with markdown >>> markdown('this **is** bold') '<p>this <strong>is</strong> bold</p>' """ return markdown_converter.convert(trim(content)) def load(pathname, encoding='utf-8'): """Read a file and return the contents""" logger = logging.getLogger(__name__) logger.debug('load %r', pathname) with open(pathname, encoding=encoding) as reader: return reader.read() def load_content(pathname, *args, **kwargs): """Load a content file and use it to format parameters """ isfile = os.path.isfile if not isfile(pathname): for extension in ['html', 'md', 'txt']: if isfile(pathname + '.' + extension): pathname = pathname + '.' + extension break template = load(pathname) if template: content = apply_helpers(template, None, [kwargs]).format(*args, **kwargs) if pathname.endswith('.html'): result = content else: result = markdown(content) return result return '' def load_template(name, default=None): """ Load a template from the theme folder. Templates usually have .html file extensions and this module will assume that's what is desired unless otherwise specified. """ site = zoom.system.request.site app = zoom.system.request.app templates_paths = dedup(app.templates_paths + site.templates_paths) if not '.' in name: name = name + '.html' if '/' in name or '\\' in name: raise Exception( 'Unable to use specified template path. ' 'Templates are located in theme folders.' ) # return 'got stuff' return site.templates.setdefault(name, load_template_file(name, default)) def get_template(template_name='default', theme='default'): """Get site page template""" logger = logging.getLogger(__name__) path = zoom.system.site.themes_path pathname = os.path.realpath( os.path.join(path, theme, template_name + '.html') ) if os.path.isfile(pathname): logger.debug('get_template %r', pathname) with open(pathname, 'rb') as reader: return reader.read().decode('utf8') else: if template_name == 'default': logger.error( 'default template %s missing', os.path.realpath(pathname), ) raise zoom.exceptions.ThemeTemplateMissingException( 'Default template missing %r' % pathname ) logger.warning( 'template %r missing', pathname, ) return get_template('default', theme) def zoompath(*args): """Returns the location of a standard Zoom asset""" realpath = os.path.realpath dirname = os.path.dirname join = os.path.join return realpath(join(realpath(dirname(zoom.__file__)), '..', *args)) def hide_helpers(content): """prevent helper requests from being filled""" return content.replace('{{', '[[raw!').replace('}}', '-raw]]') def restore_helpers(content): """Restores content helpers to their usual form""" return content.replace('[[raw!', '{{').replace('-raw]]', '}}')
[ 37811, 198, 220, 220, 220, 19792, 13, 31391, 198, 37811, 198, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 1317, 2902, 1330, 2940, 2902, 198, 6738, 19792, 13, 26209, 1330, 2297, 1060, 31077, 198, 11748, 19792, 13, 16794, 364, 198, 6738, 19792, 13, 16794, 364, 1330, 2352, 62, 6371, 62, 1640, 11, 19016, 62, 1640, 62, 7700, 11, 19016, 62, 1640, 198, 6738, 19792, 13, 26791, 1330, 15797, 11, 4648, 929, 198, 6738, 19792, 13, 13287, 1330, 4174, 62, 16794, 364, 198, 198, 505, 62, 820, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 16, 8, 198, 505, 62, 10464, 796, 530, 62, 820, 1635, 767, 198, 505, 62, 9769, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 24425, 28, 16, 8, 198, 505, 62, 11374, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 1084, 1769, 28, 16, 8, 628, 198, 4299, 783, 33529, 198, 220, 220, 220, 37227, 13615, 262, 1459, 4818, 8079, 37811, 198, 220, 220, 220, 1441, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 628, 198, 4299, 1909, 33529, 198, 220, 220, 220, 37227, 13615, 262, 1459, 3128, 628, 220, 220, 220, 13163, 1909, 3419, 6624, 4818, 8079, 13, 4475, 13, 40838, 3419, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4818, 8079, 13, 4475, 13, 40838, 3419, 628, 198, 4299, 7415, 7, 1092, 62, 4475, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 3128, 329, 7415, 628, 220, 220, 220, 13163, 7415, 7, 19608, 8079, 13, 4475, 7, 5539, 11, 1105, 11, 604, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5539, 11, 1105, 11, 513, 8, 628, 220, 220, 220, 13163, 7415, 7, 19608, 8079, 13, 4475, 7, 5539, 11, 352, 11, 352, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 1105, 11, 3261, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 1092, 62, 4475, 393, 1909, 28955, 532, 530, 62, 820, 628, 198, 4299, 9439, 7, 1092, 62, 4475, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 3128, 329, 9439, 628, 220, 220, 220, 13163, 9439, 7, 19608, 8079, 13, 4475, 7, 5539, 11, 1105, 11, 513, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5539, 11, 1105, 11, 604, 8, 628, 220, 220, 220, 13163, 9439, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 1105, 11, 3261, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5539, 11, 352, 11, 352, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 1092, 62, 4475, 393, 1909, 28955, 1343, 530, 62, 820, 628, 198, 4299, 717, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 7783, 82, 262, 717, 1110, 286, 262, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 717, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 1105, 11, 3261, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 1105, 11, 352, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4818, 8079, 13, 4475, 7, 1092, 62, 4475, 13, 1941, 11, 597, 62, 4475, 13, 8424, 11, 352, 8, 628, 198, 4299, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 7783, 82, 262, 938, 1110, 286, 262, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 362, 11, 2808, 8, 628, 220, 220, 220, 13163, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 19608, 8079, 13, 19608, 8079, 7, 5304, 11, 362, 11, 352, 11, 352, 11, 352, 11, 352, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 362, 11, 2808, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1306, 62, 8424, 796, 597, 62, 4475, 13, 33491, 7, 820, 28, 2078, 8, 1343, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 19, 8, 198, 220, 220, 220, 1441, 717, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 19545, 62, 8424, 8, 532, 530, 62, 820, 628, 198, 4299, 717, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 7783, 82, 262, 717, 1110, 286, 1306, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 717, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 513, 11, 352, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 8, 1343, 530, 62, 820, 628, 198, 4299, 938, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 7783, 82, 262, 938, 1110, 286, 1306, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 938, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 5304, 11, 513, 11, 3261, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 11085, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 1092, 62, 4475, 4008, 628, 198, 4299, 717, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 35561, 262, 717, 1110, 286, 938, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 717, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 2310, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 4626, 11, 1105, 11, 352, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 717, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 12957, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 1092, 62, 4475, 4008, 628, 198, 4299, 938, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 35561, 262, 717, 1110, 286, 938, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 938, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 2310, 4008, 198, 220, 220, 220, 4818, 8079, 13, 4475, 7, 4626, 11, 1105, 11, 3261, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 717, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 8, 532, 530, 62, 820, 628, 198, 4299, 428, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 35561, 3128, 2837, 329, 938, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 428, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 2310, 4008, 198, 220, 220, 220, 357, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 352, 828, 4818, 8079, 13, 4475, 7, 5304, 11, 352, 11, 3261, 4008, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 11085, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 828, 938, 62, 820, 62, 1659, 62, 1169, 62, 8424, 7, 1092, 62, 4475, 4008, 628, 198, 4299, 1306, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 35561, 3128, 2837, 329, 1306, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 1306, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 2310, 4008, 198, 220, 220, 220, 357, 19608, 8079, 13, 4475, 7, 5304, 11, 362, 11, 352, 828, 4818, 8079, 13, 4475, 7, 5304, 11, 362, 11, 2808, 4008, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 11085, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 1092, 62, 4475, 828, 938, 62, 820, 62, 1659, 62, 19545, 62, 8424, 7, 1092, 62, 4475, 4008, 628, 198, 4299, 938, 62, 8424, 7, 1092, 62, 4475, 2599, 198, 220, 220, 220, 37227, 35561, 3128, 2837, 329, 938, 1227, 329, 597, 3128, 628, 220, 220, 220, 13163, 938, 62, 8424, 7, 19608, 8079, 13, 4475, 7, 5304, 11, 352, 11, 2310, 4008, 198, 220, 220, 220, 357, 19608, 8079, 13, 4475, 7, 4626, 11, 1105, 11, 352, 828, 4818, 8079, 13, 4475, 7, 4626, 11, 1105, 11, 3261, 4008, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 11085, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 1092, 62, 4475, 828, 938, 62, 820, 62, 1659, 62, 12957, 62, 8424, 7, 1092, 62, 4475, 4008, 628, 198, 4299, 703, 62, 6511, 7, 2435, 16, 11, 640, 17, 2599, 198, 220, 220, 220, 37227, 35561, 257, 4731, 326, 8477, 262, 3580, 1022, 734, 1661, 13, 628, 220, 220, 220, 13163, 1330, 640, 198, 220, 220, 220, 13163, 783, 796, 783, 3419, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 8, 198, 220, 220, 220, 705, 64, 2589, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 530, 62, 11374, 1220, 513, 8, 198, 220, 220, 220, 705, 1238, 4201, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 530, 62, 9769, 1220, 513, 8, 198, 220, 220, 220, 705, 1238, 2431, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 530, 62, 820, 1220, 513, 8, 198, 220, 220, 220, 705, 23, 2250, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 530, 62, 820, 8, 198, 220, 220, 220, 705, 16, 1110, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 362, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 17, 1528, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 1315, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 17, 2745, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 3439, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 2502, 257, 1227, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 6135, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 2502, 362, 1933, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 47744, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 28177, 257, 614, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 1160, 1635, 530, 62, 11374, 8, 198, 220, 220, 220, 705, 1238, 2431, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 362, 1635, 21268, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 28177, 734, 812, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 513, 13, 1495, 1635, 21268, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 2502, 513, 812, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 783, 1343, 352, 13, 1495, 1635, 21268, 1635, 530, 62, 820, 8, 198, 220, 220, 220, 705, 2502, 257, 614, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 40838, 22784, 9439, 7, 40838, 3419, 4008, 198, 220, 220, 220, 705, 16, 1110, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 40838, 22784, 783, 1343, 530, 62, 10464, 8, 198, 220, 220, 220, 705, 22, 1528, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 7, 2197, 11, 640, 13, 2435, 28955, 198, 220, 220, 220, 705, 64, 2589, 6, 628, 220, 220, 220, 13163, 4054, 796, 10352, 198, 220, 220, 220, 13163, 1949, 25, 198, 220, 220, 220, 2644, 220, 220, 220, 703, 62, 6511, 7, 2197, 11, 6045, 8, 198, 220, 220, 220, 2644, 2845, 5994, 12331, 25, 198, 220, 220, 220, 2644, 220, 220, 220, 4054, 796, 6407, 198, 220, 220, 220, 13163, 4054, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 79, 2645, 600, 25, 15560, 28, 49, 2931, 1065, 628, 220, 220, 220, 825, 355, 62, 19608, 8079, 7, 1092, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 1988, 284, 4818, 8079, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 1092, 2435, 11, 4818, 8079, 13, 19608, 8079, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17949, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 1092, 2435, 11, 4818, 8079, 13, 4475, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 8079, 13, 19608, 8079, 7, 1092, 2435, 13, 1941, 11, 17949, 13, 8424, 11, 17949, 13, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 17949, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 705, 4475, 11, 4818, 8079, 393, 41033, 2672, 357, 14202, 3804, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 8079, 13, 19608, 8079, 13, 6738, 16514, 27823, 7, 1092, 2435, 8, 628, 220, 220, 220, 814, 796, 355, 62, 19608, 8079, 7, 2435, 17, 8, 532, 355, 62, 19608, 8079, 7, 2435, 16, 8, 628, 220, 220, 220, 611, 814, 13, 12545, 1875, 21268, 9, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 2502, 4064, 67, 812, 6, 4064, 357, 26069, 13, 12545, 1220, 21268, 8, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 21268, 9, 16, 13, 2425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 28177, 734, 812, 6, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 21268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 2502, 257, 614, 6, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 11470, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 28177, 257, 614, 6, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 2502, 4064, 67, 1933, 6, 4064, 357, 26069, 13, 12545, 1220, 1542, 8, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 1542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 2502, 257, 1227, 6, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 1478, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 4, 67, 2745, 6, 4064, 357, 26069, 13, 12545, 1220, 767, 8, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 4, 67, 1528, 6, 4064, 814, 13, 12545, 198, 220, 220, 220, 1288, 361, 814, 13, 12545, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 16, 1110, 6, 198, 220, 220, 220, 1288, 361, 814, 13, 43012, 1875, 4570, 405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 4, 67, 2250, 6, 4064, 493, 7, 26069, 13, 43012, 1220, 4570, 405, 8, 198, 220, 220, 220, 1288, 361, 814, 13, 43012, 1875, 3126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 4, 67, 2431, 6, 4064, 493, 7, 26069, 13, 43012, 1220, 3126, 8, 198, 220, 220, 220, 1288, 361, 814, 13, 43012, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 4, 67, 4201, 6, 4064, 493, 7, 26069, 13, 43012, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 705, 64, 2589, 6, 198, 220, 220, 220, 1441, 1255, 198, 198, 4299, 703, 62, 6511, 62, 3839, 7, 1092, 2435, 11, 1201, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 4731, 326, 8477, 262, 3580, 1022, 597, 640, 290, 783, 13, 628, 220, 220, 220, 13163, 783, 796, 783, 3419, 628, 220, 220, 220, 13163, 703, 62, 6511, 62, 3839, 7, 2197, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 16, 8, 1635, 362, 8, 198, 220, 220, 220, 705, 17, 1528, 2084, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 62, 3839, 7, 2197, 1343, 1160, 1635, 530, 62, 11374, 8, 198, 220, 220, 220, 705, 1129, 2431, 422, 783, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 62, 3839, 7, 2197, 532, 1160, 1635, 530, 62, 11374, 8, 198, 220, 220, 220, 705, 1238, 2431, 2084, 6, 628, 220, 220, 220, 13163, 703, 62, 6511, 62, 3839, 7, 2197, 532, 1160, 1635, 530, 62, 11374, 11, 783, 532, 838, 1635, 530, 62, 11374, 8, 198, 220, 220, 220, 705, 940, 2431, 2084, 6, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 826, 62, 2197, 796, 1201, 393, 783, 3419, 198, 220, 220, 220, 611, 17949, 1279, 826, 62, 2197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 703, 62, 6511, 7, 1092, 2435, 11, 826, 62, 2197, 8, 1343, 705, 2084, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 703, 62, 6511, 7, 3506, 62, 2197, 11, 17949, 8, 1343, 705, 422, 783, 6, 628, 198, 4299, 318, 62, 4868, 88, 7, 26801, 2599, 198, 220, 220, 220, 37227, 9288, 284, 766, 611, 281, 2134, 481, 11629, 378, 588, 257, 1351, 628, 220, 220, 220, 13163, 318, 62, 4868, 88, 26933, 16, 11, 17, 11, 18, 12962, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 13163, 318, 62, 4868, 88, 7, 2617, 26933, 18, 11, 19, 11, 20, 60, 4008, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 13163, 318, 62, 4868, 88, 19510, 18, 11, 19, 11, 20, 4008, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 13163, 318, 62, 4868, 88, 7, 11600, 7, 64, 28, 16, 11, 275, 28, 17, 4008, 198, 220, 220, 220, 10352, 628, 220, 220, 220, 13163, 318, 62, 4868, 88, 10786, 10163, 11537, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 318, 39098, 7, 26801, 11, 357, 4868, 11, 46545, 11, 900, 4008, 628, 198, 4299, 4155, 62, 4868, 88, 7, 26801, 2599, 198, 220, 220, 220, 37227, 641, 495, 2134, 318, 12908, 287, 257, 1351, 611, 340, 460, 470, 17438, 588, 530, 628, 220, 220, 220, 13163, 4155, 62, 4868, 88, 10786, 1662, 1351, 88, 11537, 198, 220, 220, 220, 37250, 1662, 1351, 88, 20520, 628, 220, 220, 220, 13163, 4155, 62, 4868, 88, 7, 17816, 282, 1493, 1351, 88, 6, 12962, 198, 220, 220, 220, 37250, 282, 1493, 1351, 88, 20520, 628, 220, 220, 220, 13163, 4155, 62, 4868, 88, 26933, 12962, 198, 220, 220, 220, 17635, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 62, 4868, 88, 7, 26801, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26181, 198, 220, 220, 220, 1441, 685, 26801, 60, 628, 628, 198, 4299, 18941, 62, 1462, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 13615, 257, 18941, 2882, 329, 257, 10289, 526, 15931, 198, 220, 220, 220, 1441, 2297, 1060, 273, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 1363, 7, 1177, 28, 14202, 2599, 198, 220, 220, 220, 37227, 7738, 1060, 284, 3586, 1363, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1570, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 62, 1462, 7, 6371, 62, 1640, 62, 7700, 7, 1177, 4008, 198, 220, 220, 220, 1441, 18941, 62, 1462, 7, 6371, 62, 1640, 62, 7700, 28955, 628, 198, 4299, 555, 271, 8635, 7, 2100, 2599, 198, 220, 220, 220, 37227, 21230, 306, 10385, 284, 28000, 1098, 628, 220, 220, 220, 13163, 555, 271, 8635, 7, 14202, 8, 198, 220, 220, 220, 10148, 628, 220, 220, 220, 13163, 555, 271, 8635, 7, 65, 6, 10163, 11537, 198, 220, 220, 220, 705, 10163, 6, 628, 220, 220, 220, 13163, 555, 271, 8635, 7, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 275, 6, 6852, 27705, 18, 6852, 87, 6659, 6852, 87, 6052, 6852, 27705, 18, 6852, 87, 6469, 6852, 87, 6052, 6852, 27705, 18, 6852, 87, 6659, 6852, 87, 397, 6852, 27705, 18, 6852, 87, 6659, 6, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 275, 6, 6852, 27865, 16, 6852, 27705, 18, 6852, 87, 6659, 6852, 87, 1878, 6852, 27705, 19, 6852, 30894, 23, 6852, 87, 4846, 6852, 27705, 22, 6852, 87, 3865, 6852, 87, 23, 66, 6, 198, 220, 220, 220, 2644, 1267, 198, 220, 220, 220, 705, 46036, 22174, 28618, 2515, 94, 31676, 10310, 244, 45911, 234, 6, 628, 220, 220, 220, 13163, 555, 271, 8635, 7, 16, 8, 198, 220, 220, 220, 705, 16, 6, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1188, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 2100, 11, 9881, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 1188, 13, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 1188, 13, 12501, 1098, 10786, 49022, 12, 16, 11537, 198, 220, 220, 220, 1288, 361, 407, 318, 39098, 7, 2100, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 965, 7, 2100, 8, 198, 220, 220, 220, 1441, 1188, 628, 198, 4299, 2639, 8635, 7, 11299, 2599, 198, 220, 220, 220, 37227, 13615, 27711, 421, 5191, 2196, 286, 2695, 628, 220, 220, 220, 13163, 2639, 8635, 7, 65, 6, 1212, 714, 307, 1279, 45573, 1512, 29, 11537, 198, 220, 220, 220, 705, 1212, 714, 307, 1222, 2528, 26, 45573, 1512, 5, 13655, 26, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 7808, 62, 16794, 364, 7, 6494, 22708, 7, 403, 271, 8635, 7, 11299, 22305, 628, 198, 4299, 27711, 22708, 7, 5239, 2599, 198, 220, 220, 220, 37227, 27195, 4147, 4600, 5239, 63, 329, 8246, 779, 287, 11532, 13, 628, 220, 220, 220, 13163, 27711, 22708, 7, 84, 1, 27, 6, 5, 6852, 5320, 4943, 198, 220, 220, 220, 705, 5, 2528, 26, 5, 2, 2670, 26, 5, 696, 26, 5, 421, 313, 26, 5, 13655, 26, 6, 628, 220, 220, 220, 13163, 27711, 22708, 7203, 27, 6, 5, 6852, 5320, 4943, 198, 220, 220, 220, 705, 5, 2528, 26, 5, 2, 2670, 26, 5, 696, 26, 5, 421, 313, 26, 5, 13655, 26, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36205, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 5, 3256, 705, 5, 696, 26, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 27, 3256, 705, 5, 2528, 26, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 29, 3256, 705, 5, 13655, 26, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 6, 1600, 705, 5, 2, 2670, 26, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1, 3256, 705, 5, 421, 313, 26, 33809, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 329, 9014, 287, 36205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 2420, 13, 33491, 46491, 35666, 5592, 8, 198, 220, 220, 220, 1441, 2420, 628, 198, 4299, 651, 62, 4102, 2902, 62, 1102, 332, 353, 33529, 198, 220, 220, 220, 37227, 13615, 257, 17839, 1317, 2902, 38394, 628, 220, 220, 220, 13163, 1317, 2902, 7203, 64, 16410, 20763, 346, 676, 11907, 1332, 4943, 198, 220, 220, 220, 705, 27, 79, 29, 64, 1279, 64, 1398, 2625, 20763, 346, 676, 1, 13291, 2625, 20763, 346, 676, 13, 6494, 5320, 20763, 346, 676, 3556, 64, 29, 1332, 3556, 79, 29, 6, 628, 220, 220, 220, 13163, 1317, 2902, 7203, 64, 16410, 20763, 346, 676, 13, 6494, 11907, 1332, 4943, 198, 220, 220, 220, 705, 27, 79, 29, 64, 16410, 20763, 346, 676, 13, 6494, 11907, 1332, 3556, 79, 29, 6, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 33849, 796, 37250, 83, 2977, 3256, 705, 4299, 62, 4868, 3256, 705, 20763, 346, 2973, 3256, 705, 40301, 20520, 198, 220, 220, 220, 4566, 82, 796, 1391, 6, 20763, 346, 2973, 10354, 685, 10786, 11249, 62, 6371, 3256, 19016, 62, 38272, 15437, 92, 198, 220, 220, 220, 38394, 796, 2940, 2902, 7, 2302, 5736, 28, 2302, 8847, 11, 7552, 62, 11250, 82, 28, 11250, 82, 8, 198, 220, 220, 220, 1441, 38394, 628, 198, 4102, 2902, 62, 1102, 332, 353, 796, 651, 62, 4102, 2902, 62, 1102, 332, 353, 3419, 220, 1303, 16926, 46, 25, 11705, 1352, 2427, 30, 628, 198, 4299, 1317, 2902, 7, 11299, 2599, 198, 220, 220, 220, 37227, 41762, 2695, 351, 1317, 2902, 628, 220, 220, 220, 13163, 1317, 2902, 10786, 5661, 12429, 271, 1174, 10758, 11537, 198, 220, 220, 220, 705, 27, 79, 29, 5661, 1279, 11576, 29, 271, 3556, 11576, 29, 10758, 3556, 79, 29, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1317, 2902, 62, 1102, 332, 353, 13, 1102, 1851, 7, 2213, 320, 7, 11299, 4008, 628, 198, 4299, 3440, 7, 6978, 3672, 11, 21004, 11639, 40477, 12, 23, 6, 2599, 198, 220, 220, 220, 37227, 5569, 257, 2393, 290, 1441, 262, 10154, 37811, 628, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 49706, 13, 24442, 10786, 2220, 4064, 81, 3256, 3108, 3672, 8, 198, 220, 220, 220, 351, 1280, 7, 6978, 3672, 11, 21004, 28, 12685, 7656, 8, 355, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9173, 13, 961, 3419, 628, 198, 4299, 3440, 62, 11299, 7, 6978, 3672, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8912, 257, 2695, 2393, 290, 779, 340, 284, 5794, 10007, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 318, 7753, 796, 28686, 13, 6978, 13, 4468, 576, 628, 220, 220, 220, 611, 407, 318, 7753, 7, 6978, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7552, 287, 37250, 6494, 3256, 705, 9132, 3256, 705, 14116, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 7753, 7, 6978, 3672, 1343, 705, 2637, 1343, 7552, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 3672, 796, 3108, 3672, 1343, 705, 2637, 1343, 7552, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 11055, 796, 3440, 7, 6978, 3672, 8, 198, 220, 220, 220, 611, 11055, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 4174, 62, 16794, 364, 7, 28243, 11, 6045, 11, 685, 46265, 22046, 35944, 18982, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3108, 3672, 13, 437, 2032, 342, 7, 4458, 6494, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1317, 2902, 7, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 198, 220, 220, 220, 1441, 10148, 628, 198, 4299, 3440, 62, 28243, 7, 3672, 11, 4277, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 257, 11055, 422, 262, 7505, 9483, 13, 628, 220, 220, 220, 5825, 17041, 3221, 423, 764, 6494, 2393, 18366, 290, 428, 8265, 198, 220, 220, 220, 481, 7048, 326, 338, 644, 318, 10348, 4556, 4306, 7368, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2524, 796, 19792, 13, 10057, 13, 25927, 13, 15654, 198, 220, 220, 220, 598, 796, 19792, 13, 10057, 13, 25927, 13, 1324, 198, 220, 220, 220, 24019, 62, 6978, 82, 796, 4648, 929, 7, 1324, 13, 11498, 17041, 62, 6978, 82, 1343, 2524, 13, 11498, 17041, 62, 6978, 82, 8, 628, 220, 220, 220, 611, 407, 705, 2637, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 1343, 45302, 6494, 6, 628, 220, 220, 220, 611, 31051, 6, 287, 1438, 393, 705, 6852, 6, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3118, 540, 284, 779, 7368, 11055, 3108, 13, 220, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12966, 17041, 389, 5140, 287, 7505, 24512, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1441, 705, 23442, 3404, 6, 198, 220, 220, 220, 1441, 2524, 13, 11498, 17041, 13, 2617, 12286, 7, 3672, 11, 3440, 62, 28243, 62, 7753, 7, 3672, 11, 4277, 4008, 198, 198, 4299, 651, 62, 28243, 7, 28243, 62, 3672, 11639, 12286, 3256, 7505, 11639, 12286, 6, 2599, 198, 220, 220, 220, 37227, 3855, 2524, 2443, 11055, 37811, 628, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 3108, 796, 19792, 13, 10057, 13, 15654, 13, 1169, 6880, 62, 6978, 628, 220, 220, 220, 3108, 3672, 796, 28686, 13, 6978, 13, 5305, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 7505, 11, 11055, 62, 3672, 1343, 45302, 6494, 11537, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 1136, 62, 28243, 4064, 81, 3256, 3108, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 3672, 11, 705, 26145, 11537, 355, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9173, 13, 961, 22446, 12501, 1098, 10786, 40477, 23, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11055, 62, 3672, 6624, 705, 12286, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 11055, 4064, 82, 4814, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 6978, 3672, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 19792, 13, 1069, 11755, 13, 47863, 30800, 43730, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19463, 11055, 4814, 4064, 81, 6, 4064, 3108, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28243, 4064, 81, 4814, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 62, 28243, 10786, 12286, 3256, 7505, 8, 198, 198, 4299, 40565, 3361, 776, 46491, 22046, 2599, 198, 220, 220, 220, 37227, 35561, 262, 4067, 286, 257, 3210, 40305, 11171, 37811, 198, 220, 220, 220, 1103, 6978, 796, 28686, 13, 6978, 13, 5305, 6978, 198, 220, 220, 220, 26672, 3672, 796, 28686, 13, 6978, 13, 15908, 3672, 198, 220, 220, 220, 4654, 796, 28686, 13, 6978, 13, 22179, 198, 220, 220, 220, 1441, 1103, 6978, 7, 22179, 7, 5305, 6978, 7, 15908, 3672, 7, 89, 4207, 13, 834, 7753, 834, 36911, 705, 492, 3256, 1635, 22046, 4008, 628, 198, 4299, 7808, 62, 16794, 364, 7, 11299, 2599, 198, 220, 220, 220, 37227, 3866, 1151, 31904, 7007, 422, 852, 5901, 37811, 198, 220, 220, 220, 1441, 2695, 13, 33491, 10786, 27007, 3256, 705, 30109, 1831, 13679, 737, 33491, 10786, 11709, 3256, 705, 12, 1831, 11907, 11537, 628, 198, 4299, 11169, 62, 16794, 364, 7, 11299, 2599, 198, 220, 220, 220, 37227, 19452, 2850, 2695, 49385, 284, 511, 6678, 1296, 37811, 198, 220, 220, 220, 1441, 2695, 13, 33491, 10786, 30109, 1831, 0, 3256, 705, 27007, 27691, 33491, 10786, 12, 1831, 11907, 3256, 705, 11709, 11537, 628 ]
2.369754
5,528
# -*- coding: utf-8 -*- import json import os import requests import urllib.request import time import re from bs4 import BeautifulSoup from slackclient import SlackClient from flask import Flask, request, make_response, render_template, jsonify from selenium import webdriver # 바꼈지롱 app = Flask(__name__) app.config['JSON_AS_ASCII'] = False with open('SlackBotKey.json') as f: slackKeys = json.load(f) slack_token = slackKeys["slack_token"] slack_client_id = slackKeys["slack_client_id"] slack_client_secret = slackKeys["slack_client_secret"] slack_verification = slackKeys["slack_verification"] sc = SlackClient(slack_token) # 메인페이지 함수 @app.route("/", methods=["GET"]) # 사용자의 입력에 대한 분석 결과를 return하는 함수. # DialogFlow를 통해 사용자의 입력에 대응하는 Intent와 Speech를 return. # event handle 함수 # 사용자의 입력을 처리하는 함수 # 사용자의 입력에 매칭되는 event를 찾는다. @app.route("/listening", methods=["GET", "POST"]) # Intent가 Bugs로 판단되면 실행. # 벅스뮤직 인기순위 1~10위 곡 제목 + 아티스트 크롤링 함수 # Intent가 Default Welcome Intent로 판단되면 실행. # Intent가 Road Address로 판단되면 실행. # Intent가 제대로 정의되지 않으면 실행. # Main함수 if __name__ == '__main__': app.run('0.0.0.0', port=8080)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 7007, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 640, 198, 11748, 302, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 30740, 16366, 1330, 36256, 11792, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 787, 62, 26209, 11, 8543, 62, 28243, 11, 33918, 1958, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 198, 2, 31619, 108, 242, 166, 120, 230, 168, 100, 222, 167, 94, 109, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 17816, 40386, 62, 1921, 62, 42643, 3978, 20520, 796, 10352, 198, 198, 4480, 1280, 10786, 11122, 441, 20630, 9218, 13, 17752, 11537, 355, 277, 25, 198, 220, 220, 220, 30740, 40729, 796, 33918, 13, 2220, 7, 69, 8, 198, 6649, 441, 62, 30001, 796, 30740, 40729, 14692, 6649, 441, 62, 30001, 8973, 198, 6649, 441, 62, 16366, 62, 312, 796, 30740, 40729, 14692, 6649, 441, 62, 16366, 62, 312, 8973, 198, 6649, 441, 62, 16366, 62, 21078, 796, 30740, 40729, 14692, 6649, 441, 62, 16366, 62, 21078, 8973, 198, 6649, 441, 62, 332, 2649, 796, 30740, 40729, 14692, 6649, 441, 62, 332, 2649, 8973, 198, 1416, 796, 36256, 11792, 7, 6649, 441, 62, 30001, 8, 628, 198, 2, 31619, 102, 242, 35975, 116, 169, 236, 246, 35975, 112, 168, 100, 222, 220, 47991, 101, 168, 230, 246, 198, 31, 1324, 13, 38629, 7203, 14, 1600, 5050, 28, 14692, 18851, 8973, 8, 628, 198, 198, 2, 23821, 8955, 168, 248, 102, 168, 252, 238, 35975, 246, 23821, 252, 227, 167, 254, 98, 168, 245, 238, 31619, 234, 222, 47991, 250, 31619, 114, 226, 168, 226, 251, 220, 166, 110, 108, 166, 111, 120, 167, 98, 120, 1441, 47991, 246, 167, 232, 242, 220, 47991, 101, 168, 230, 246, 13, 198, 2, 21269, 519, 37535, 167, 98, 120, 220, 169, 228, 113, 47991, 112, 23821, 8955, 168, 248, 102, 168, 252, 238, 35975, 246, 23821, 252, 227, 167, 254, 98, 168, 245, 238, 31619, 234, 222, 35975, 239, 47991, 246, 167, 232, 242, 39168, 168, 247, 222, 24709, 167, 98, 120, 1441, 13, 628, 198, 2, 1785, 5412, 220, 47991, 101, 168, 230, 246, 628, 198, 2, 23821, 8955, 168, 248, 102, 168, 252, 238, 35975, 246, 23821, 252, 227, 167, 254, 98, 35975, 226, 23821, 110, 246, 167, 99, 105, 47991, 246, 167, 232, 242, 220, 47991, 101, 168, 230, 246, 198, 2, 23821, 8955, 168, 248, 102, 168, 252, 238, 35975, 246, 23821, 252, 227, 167, 254, 98, 168, 245, 238, 31619, 100, 97, 168, 117, 255, 167, 238, 246, 167, 232, 242, 1785, 167, 98, 120, 23821, 108, 122, 167, 232, 242, 46695, 97, 13, 198, 31, 1324, 13, 38629, 7203, 14, 4868, 3101, 1600, 5050, 28, 14692, 18851, 1600, 366, 32782, 8973, 8, 628, 198, 2, 39168, 166, 108, 222, 44991, 167, 94, 250, 220, 169, 234, 238, 46695, 101, 167, 238, 246, 167, 102, 112, 23821, 233, 97, 169, 244, 231, 13, 198, 2, 31619, 110, 227, 168, 232, 97, 167, 106, 97, 168, 100, 223, 23821, 251, 116, 166, 116, 108, 168, 230, 250, 168, 250, 226, 352, 93, 940, 168, 250, 226, 220, 166, 111, 94, 23821, 254, 250, 167, 103, 102, 1343, 23821, 243, 226, 169, 233, 108, 168, 232, 97, 169, 232, 116, 220, 169, 223, 105, 167, 94, 97, 167, 100, 223, 220, 47991, 101, 168, 230, 246, 628, 198, 2, 39168, 166, 108, 222, 15161, 19134, 39168, 167, 94, 250, 220, 169, 234, 238, 46695, 101, 167, 238, 246, 167, 102, 112, 23821, 233, 97, 169, 244, 231, 13, 628, 198, 2, 39168, 166, 108, 222, 5567, 17917, 167, 94, 250, 220, 169, 234, 238, 46695, 101, 167, 238, 246, 167, 102, 112, 23821, 233, 97, 169, 244, 231, 13, 628, 198, 2, 39168, 166, 108, 222, 23821, 254, 250, 167, 234, 222, 167, 94, 250, 23821, 254, 243, 35975, 246, 167, 238, 246, 168, 100, 222, 23821, 243, 232, 168, 250, 120, 167, 102, 112, 23821, 233, 97, 169, 244, 231, 13, 628, 198, 2, 8774, 47991, 101, 168, 230, 246, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 10786, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 1795, 1795, 8, 198 ]
1.556164
730
"""A COCO annotation writer.""" import datetime import json from discolight.params.params import Params from .types import AnnotationWriter class COCO(AnnotationWriter): """A COCO annotation writer.""" def __init__(self, annotations_file): """Construct a COCO annotation writer.""" self.annotations_file = annotations_file self.coco_json = { "info": { "year": datetime.datetime.now().year, "version": 1, "description": "Discolight augmented images", "contributor": "", "url": "", "date_created": datetime.datetime.utcnow().replace( tzinfo=datetime.timezone.utc).isoformat(), }, "categories": [], "images": [], "annotations": [], "licenses": [], } self.image_counter = 0 self.annotation_counter = 0 self.category_counter = 0 self.license_counter = 0 self.unknown_license_id = None self.old_license_id_to_new = {} self.old_category_id_to_new = {} self.class_idx_category_id = {} def __enter__(self): """Open the annotation writer for writing.""" return self def __exit__(self, _exc_type, _exc_val, _exc_tb): """Close the annotation writer for writing.""" with open(self.annotations_file, "w") as annotations_fp: json.dump(self.coco_json, annotations_fp) @staticmethod def params(): """Return a Params object describing constructor parameters.""" return Params().add( "annotations_file", "The path to the JSON file to write the annotations to", str, "", True) def get_image_license_id(self, annotations): """Retrieve the license ID of an image based on its annotations.""" licens = None if len(annotations) > 1: licens = annotations[0].additional_info[ "image_license"] if "image_license" in annotations[ 0].additional_info else None if licens is None and self.unknown_license_id is None: self.unknown_license_id = self.license_counter self.license_counter += 1 self.coco_json["licenses"].append({ "id": self.unknown_license_id, "url": "", "name": "Unknown" }) return self.unknown_license_id if licens is None and self.unknown_license_id is not None: return self.unknown_license_id new_license_id = self.old_license_id_to_new.get( str(licens["id"]), None) if new_license_id is None: new_license_id = self.license_counter self.license_counter += 1 self.old_license_id_to_new[str(licens["id"])] = new_license_id self.coco_json["licenses"].append({ "id": new_license_id, "url": licens["url"], "name": licens["name"] }) return new_license_id return new_license_id def get_annotation_category_id(self, annotation): """Retrieve the category ID of an annotation.""" if "category" in annotation.additional_info: category = annotation.additional_info["category"] new_category_id = self.old_category_id_to_new.get( str(category["id"]), None) if new_category_id is None: new_category_id = self.category_counter self.category_counter += 1 self.old_category_id_to_new[str( category["id"])] = new_category_id self.coco_json["categories"].append({ "id": new_category_id, "name": category["name"], "supercategory": category["supercategory"] }) return new_category_id return new_category_id category_id = self.class_idx_category_id.get(str(annotation.class_idx), None) if category_id is None: category_id = self.category_counter self.category_counter += 1 self.class_idx_category_id[str(annotation.class_idx)] = category_id self.coco_json["categories"].append({ "id": category_id, "name": "class{}".format(annotation.class_idx), "supercategory": "none" }) return category_id return category_id def write_annotations_for_image(self, image_name, image, annotations): """Write annotations for the given image.""" height, width, _ = image.shape image_id = self.image_counter self.image_counter += 1 self.coco_json["images"].append({ "id": image_id, "license": self.get_image_license_id(annotations), "file_name": image_name, "height": height, "width": width, "date_captured": datetime.datetime.utcnow().replace( tzinfo=datetime.timezone.utc).isoformat() }) for annotation in annotations: annotation_id = self.annotation_counter self.annotation_counter += 1 self.coco_json["annotations"].append({ "id": annotation_id, "image_id": image_id, "category_id": self.get_annotation_category_id(annotation), "bbox": [ annotation.x_min, annotation.y_min, annotation.x_max - annotation.x_min, annotation.y_max - annotation.y_min ], "area": (annotation.x_max - annotation.x_min) * (annotation.y_max - annotation.y_max), "segmentation": [], "iscrowd": 0 })
[ 37811, 32, 327, 4503, 46, 23025, 6260, 526, 15931, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 6738, 1221, 349, 432, 13, 37266, 13, 37266, 1330, 2547, 4105, 198, 6738, 764, 19199, 1330, 1052, 38983, 34379, 628, 198, 4871, 327, 4503, 46, 7, 2025, 38983, 34379, 2599, 628, 220, 220, 220, 37227, 32, 327, 4503, 46, 23025, 6260, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 37647, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 257, 327, 4503, 46, 23025, 6260, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34574, 602, 62, 7753, 796, 37647, 62, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10951, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1941, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 1941, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15642, 349, 432, 30259, 4263, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3642, 2455, 273, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 62, 25598, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 22446, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 10951, 28, 19608, 8079, 13, 2435, 11340, 13, 315, 66, 737, 26786, 18982, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 26129, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17566, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34574, 602, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 677, 4541, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9060, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1236, 14221, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22872, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43085, 62, 24588, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34680, 62, 43085, 62, 312, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 43085, 62, 312, 62, 1462, 62, 3605, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 22872, 62, 312, 62, 1462, 62, 3605, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4871, 62, 312, 87, 62, 22872, 62, 312, 796, 23884, 628, 220, 220, 220, 825, 11593, 9255, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11505, 262, 23025, 6260, 329, 3597, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 11593, 37023, 834, 7, 944, 11, 4808, 41194, 62, 4906, 11, 4808, 41194, 62, 2100, 11, 4808, 41194, 62, 83, 65, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26125, 262, 23025, 6260, 329, 3597, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 34574, 602, 62, 7753, 11, 366, 86, 4943, 355, 37647, 62, 46428, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 944, 13, 66, 25634, 62, 17752, 11, 37647, 62, 46428, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 42287, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 2547, 4105, 2134, 12059, 23772, 10007, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2547, 4105, 22446, 2860, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34574, 602, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 3108, 284, 262, 19449, 2393, 284, 3551, 262, 37647, 284, 1600, 965, 11, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 8, 628, 220, 220, 220, 825, 651, 62, 9060, 62, 43085, 62, 312, 7, 944, 11, 37647, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 262, 5964, 4522, 286, 281, 2939, 1912, 319, 663, 37647, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 8240, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 34574, 602, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8240, 796, 37647, 58, 15, 4083, 2860, 1859, 62, 10951, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 62, 43085, 8973, 611, 366, 9060, 62, 43085, 1, 287, 37647, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 4083, 2860, 1859, 62, 10951, 2073, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8240, 318, 6045, 290, 2116, 13, 34680, 62, 43085, 62, 312, 318, 6045, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34680, 62, 43085, 62, 312, 796, 2116, 13, 43085, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43085, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 677, 4541, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 2116, 13, 34680, 62, 43085, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 20035, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 34680, 62, 43085, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8240, 318, 6045, 290, 2116, 13, 34680, 62, 43085, 62, 312, 318, 407, 6045, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 34680, 62, 43085, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 43085, 62, 312, 796, 2116, 13, 727, 62, 43085, 62, 312, 62, 1462, 62, 3605, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 677, 641, 14692, 312, 8973, 828, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 43085, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 43085, 62, 312, 796, 2116, 13, 43085, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43085, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 43085, 62, 312, 62, 1462, 62, 3605, 58, 2536, 7, 677, 641, 14692, 312, 8973, 15437, 796, 649, 62, 43085, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 677, 4541, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 649, 62, 43085, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6371, 1298, 8240, 14692, 6371, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 8240, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 43085, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 43085, 62, 312, 628, 220, 220, 220, 825, 651, 62, 1236, 14221, 62, 22872, 62, 312, 7, 944, 11, 23025, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 262, 6536, 4522, 286, 281, 23025, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 22872, 1, 287, 23025, 13, 2860, 1859, 62, 10951, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 796, 23025, 13, 2860, 1859, 62, 10951, 14692, 22872, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22872, 62, 312, 796, 2116, 13, 727, 62, 22872, 62, 312, 62, 1462, 62, 3605, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 22872, 14692, 312, 8973, 828, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 22872, 62, 312, 318, 6045, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22872, 62, 312, 796, 2116, 13, 22872, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22872, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 22872, 62, 312, 62, 1462, 62, 3605, 58, 2536, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 14692, 312, 8973, 15437, 796, 649, 62, 22872, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 66, 26129, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22872, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 14692, 3672, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16668, 22872, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 14692, 16668, 22872, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 22872, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 22872, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 312, 796, 2116, 13, 4871, 62, 312, 87, 62, 22872, 62, 312, 13, 1136, 7, 2536, 7, 1236, 14221, 13, 4871, 62, 312, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 6536, 62, 312, 318, 6045, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 312, 796, 2116, 13, 22872, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22872, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4871, 62, 312, 87, 62, 22872, 62, 312, 58, 2536, 7, 1236, 14221, 13, 4871, 62, 312, 87, 15437, 796, 6536, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 66, 26129, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6536, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4871, 90, 92, 1911, 18982, 7, 1236, 14221, 13, 4871, 62, 312, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16668, 22872, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23108, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6536, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6536, 62, 312, 628, 220, 220, 220, 825, 3551, 62, 34574, 602, 62, 1640, 62, 9060, 7, 944, 11, 2939, 62, 3672, 11, 2939, 11, 37647, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16594, 37647, 329, 262, 1813, 2939, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 11, 9647, 11, 4808, 796, 2939, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 312, 796, 2116, 13, 9060, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9060, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 17566, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43085, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 9060, 62, 43085, 62, 312, 7, 34574, 602, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17015, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10394, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 62, 27144, 1522, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 13, 315, 66, 2197, 22446, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 89, 10951, 28, 19608, 8079, 13, 2435, 11340, 13, 315, 66, 737, 26786, 18982, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 220, 220, 220, 220, 329, 23025, 287, 37647, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 62, 312, 796, 2116, 13, 1236, 14221, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1236, 14221, 62, 24588, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 25634, 62, 17752, 14692, 34574, 602, 1, 4083, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 62, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22872, 62, 312, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 1236, 14221, 62, 22872, 62, 312, 7, 1236, 14221, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 3524, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 13, 87, 62, 1084, 11, 23025, 13, 88, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 13, 87, 62, 9806, 532, 23025, 13, 87, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 13, 88, 62, 9806, 532, 23025, 13, 88, 62, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20337, 1298, 357, 1236, 14221, 13, 87, 62, 9806, 532, 23025, 13, 87, 62, 1084, 8, 1635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1236, 14221, 13, 88, 62, 9806, 532, 23025, 13, 88, 62, 9806, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 325, 5154, 341, 1298, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2304, 3986, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198 ]
1.924081
3,293
from django.conf import settings from django.utils.module_loading import import_string from rest_framework.exceptions import AuthenticationFailed from game.authentication.base_websocket_authentication import ( AbstractWebsocketAuthentication, ) from game.models import AppUser def authenticate_websocket(auth_header: str) -> AppUser: """Acts like authentication backends in Django. Takes auth string from websocket authentication event Returns AppUser instance or raises AuthenticationFailed """ for AuthClassString in settings.WEBSOCKET_AUTHENTICATION_CLASSES: AuthClass = import_string(AuthClassString) auth_instance: AbstractWebsocketAuthentication = AuthClass() response = auth_instance.authenticate_auth_header( auth_header=auth_header ) if response: return response[0] raise AuthenticationFailed( 'No suitable AUTHENTICATION_CLASS to authenticate ' f'auth header "{auth_header}"' )
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 26791, 13, 21412, 62, 25138, 1330, 1330, 62, 8841, 198, 6738, 1334, 62, 30604, 13, 1069, 11755, 1330, 48191, 37, 6255, 198, 198, 6738, 983, 13, 41299, 3299, 13, 8692, 62, 732, 1443, 5459, 62, 41299, 3299, 1330, 357, 198, 220, 220, 220, 27741, 1135, 1443, 5459, 47649, 3299, 11, 198, 8, 198, 6738, 983, 13, 27530, 1330, 2034, 12982, 628, 198, 4299, 8323, 5344, 62, 732, 1443, 5459, 7, 18439, 62, 25677, 25, 965, 8, 4613, 2034, 12982, 25, 198, 220, 220, 220, 37227, 6398, 82, 588, 18239, 736, 2412, 287, 37770, 13, 198, 220, 220, 220, 33687, 6284, 4731, 422, 2639, 5459, 18239, 1785, 198, 220, 220, 220, 16409, 2034, 12982, 4554, 393, 12073, 48191, 37, 6255, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 26828, 9487, 10100, 287, 6460, 13, 8845, 4462, 11290, 2767, 62, 32, 24318, 3525, 2149, 6234, 62, 31631, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26828, 9487, 796, 1330, 62, 8841, 7, 30515, 9487, 10100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 39098, 25, 27741, 1135, 1443, 5459, 47649, 3299, 796, 26828, 9487, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 6284, 62, 39098, 13, 41299, 5344, 62, 18439, 62, 25677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 25677, 28, 18439, 62, 25677, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 58, 15, 60, 198, 220, 220, 220, 5298, 48191, 37, 6255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2949, 11080, 37195, 3525, 2149, 6234, 62, 31631, 284, 8323, 5344, 705, 198, 220, 220, 220, 220, 220, 220, 220, 277, 6, 18439, 13639, 45144, 18439, 62, 25677, 92, 30543, 198, 220, 220, 220, 1267, 198 ]
3.012012
333
import spacy # Carga el modelo en_core_web_sm nlp = spacy.load("en_core_web_sm") # Imprime en pantalla los nombres de los componentes del pipeline print(nlp.pipe_names) # Imprime en pantalla el pipeline entero de tuples (name, component) print(nlp.pipeline)
[ 11748, 599, 1590, 198, 198, 2, 327, 853, 64, 1288, 2746, 78, 551, 62, 7295, 62, 12384, 62, 5796, 198, 21283, 79, 796, 599, 1590, 13, 2220, 7203, 268, 62, 7295, 62, 12384, 62, 5796, 4943, 198, 198, 2, 1846, 35505, 551, 15857, 30315, 22346, 299, 2381, 411, 390, 22346, 7515, 274, 1619, 11523, 198, 4798, 7, 21283, 79, 13, 34360, 62, 14933, 8, 198, 198, 2, 1846, 35505, 551, 15857, 30315, 1288, 11523, 920, 3529, 390, 12777, 2374, 357, 3672, 11, 7515, 8, 198, 4798, 7, 21283, 79, 13, 79, 541, 4470, 8, 198 ]
2.747368
95
#!/usr/bin/env python import lib_robotis_xm430 as xm430 import sys import time # import rospy # from o2as_precision_gripper.srv import * ###################################################################################################### #outer gripper related functions ############################################################################################################### #inner gripper related functions ####linear motor ########################################################################################## #for calibration of linear motor # if __name__ == "__main__": #initialise the class here gripper = PrecisionGripper() # rospy.init_node("combined_gripper_server") # # serial_port = rospy.get_param("serial_port") # # rospy.loginfo("Starting up on serial port: " + serial_port) # my_service = rospy.Service('combined_gripper_command', PrecisionGripperCommand, gripper.my_callback) # rospy.loginfo("Service combined_gripper is ready") # rospy.spin()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 9195, 62, 305, 13645, 271, 62, 87, 76, 31794, 355, 2124, 76, 31794, 198, 11748, 25064, 198, 11748, 640, 198, 2, 1330, 686, 2777, 88, 198, 2, 422, 267, 17, 292, 62, 3866, 16005, 62, 70, 380, 2848, 13, 27891, 85, 1330, 1635, 628, 220, 220, 220, 1303, 29113, 29113, 29113, 4242, 2, 198, 220, 220, 220, 1303, 39605, 11120, 2848, 3519, 5499, 198, 220, 220, 220, 1303, 29113, 29113, 29113, 7804, 4242, 2235, 198, 220, 220, 220, 1303, 5083, 11120, 2848, 3519, 5499, 198, 220, 220, 220, 1303, 21017, 29127, 5584, 198, 220, 220, 220, 1303, 29113, 29113, 14468, 7804, 2, 198, 220, 220, 220, 1303, 1640, 36537, 286, 14174, 5584, 628, 198, 2, 611, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 2, 36733, 786, 262, 1398, 994, 198, 70, 380, 2848, 796, 39281, 38, 380, 2848, 3419, 198, 2, 686, 2777, 88, 13, 15003, 62, 17440, 7203, 24011, 1389, 62, 70, 380, 2848, 62, 15388, 4943, 198, 2, 1303, 11389, 62, 634, 796, 686, 2777, 88, 13, 1136, 62, 17143, 7203, 46911, 62, 634, 4943, 198, 2, 1303, 686, 2777, 88, 13, 6404, 10951, 7203, 22851, 510, 319, 11389, 2493, 25, 366, 1343, 11389, 62, 634, 8, 198, 198, 2, 616, 62, 15271, 796, 686, 2777, 88, 13, 16177, 10786, 24011, 1389, 62, 70, 380, 2848, 62, 21812, 3256, 39281, 38, 380, 2848, 21575, 11, 11120, 2848, 13, 1820, 62, 47423, 8, 198, 2, 686, 2777, 88, 13, 6404, 10951, 7203, 16177, 5929, 62, 70, 380, 2848, 318, 3492, 4943, 198, 2, 686, 2777, 88, 13, 39706, 3419, 198 ]
3.658182
275
from . import test_adapters from . import test_explore from . import test_image from . import test_metrics from . import test_missing from . import test_numeric from . import test_shaping from . import test_text
[ 6738, 764, 1330, 1332, 62, 324, 12126, 198, 6738, 764, 1330, 1332, 62, 20676, 382, 198, 6738, 764, 1330, 1332, 62, 9060, 198, 6738, 764, 1330, 1332, 62, 4164, 10466, 198, 6738, 764, 1330, 1332, 62, 45688, 198, 6738, 764, 1330, 1332, 62, 77, 39223, 198, 6738, 764, 1330, 1332, 62, 1477, 9269, 198, 6738, 764, 1330, 1332, 62, 5239, 198 ]
3.47541
61
""" Provide quantilized form of torch.nn.modules.activation """ import torch import torch.nn as nn import torch.nn.functional as F from .number import directquant, alldirectquant
[ 37811, 198, 15946, 485, 5554, 346, 1143, 1296, 286, 28034, 13, 20471, 13, 18170, 13, 48545, 198, 37811, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 764, 17618, 1330, 1277, 40972, 11, 477, 12942, 40972, 628, 198 ]
3.45283
53
import dbus import logging import RequestQueue log = logging.getLogger(__name__) ## The main interface for the Charon file service. # # This contains the main interface definition for the Charon file service. # It is exposed over DBus as the "nl.ultimaker.charon" service, with # "/nl/ultimaker/charon" as its object path and all functions registered # in the "nl.ultimaker.charon" interface name. # # The file service maintains a queue of jobs that need to be processed. # See RequestQueue for details on this process. # # Note: This class does not currently use type hinting since type hints, # dbus-python decorators and Python 3.4 do not mix well.
[ 11748, 288, 10885, 198, 11748, 18931, 198, 198, 11748, 19390, 34991, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 2235, 220, 383, 1388, 7071, 329, 262, 3178, 261, 2393, 2139, 13, 198, 2, 198, 2, 220, 220, 770, 4909, 262, 1388, 7071, 6770, 329, 262, 3178, 261, 2393, 2139, 13, 198, 2, 220, 220, 632, 318, 7362, 625, 360, 16286, 355, 262, 366, 21283, 13, 586, 320, 3110, 13, 354, 8045, 1, 2139, 11, 351, 198, 2, 220, 220, 12813, 21283, 14, 586, 320, 3110, 14, 354, 8045, 1, 355, 663, 2134, 3108, 290, 477, 5499, 6823, 198, 2, 220, 220, 287, 262, 366, 21283, 13, 586, 320, 3110, 13, 354, 8045, 1, 7071, 1438, 13, 198, 2, 198, 2, 220, 220, 383, 2393, 2139, 16047, 257, 16834, 286, 3946, 326, 761, 284, 307, 13686, 13, 198, 2, 220, 220, 4091, 19390, 34991, 329, 3307, 319, 428, 1429, 13, 198, 2, 198, 2, 220, 220, 5740, 25, 770, 1398, 857, 407, 3058, 779, 2099, 9254, 278, 1201, 2099, 20269, 11, 198, 2, 220, 220, 288, 10885, 12, 29412, 11705, 2024, 290, 11361, 513, 13, 19, 466, 407, 5022, 880, 13, 198 ]
3.376884
199
from HelpersCsv import ParseCsv, WriteCsv import argparse import sys parser = argparse.ArgumentParser() parser.add_argument('--path', '-p', help="path of input data", type=str) parser.add_argument('--hasheaders', '-hh', help="if file has headers", type=int, default=0) parser.add_argument('--distance', '-d', help="pass 1 for manhattan and 2 for euclidean", type=int) if __name__ == '__main__': args = parser.parse_args() pcsv = ParseCsv(args.path, has_headers=args.hasheaders) data = pcsv.get_data() distances = calculate_distance(data, args.distance) wcsv = WriteCsv(filename='distances.txt') wcsv.write_data(distances)
[ 6738, 10478, 364, 34, 21370, 1330, 2547, 325, 34, 21370, 11, 19430, 34, 21370, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 6978, 3256, 705, 12, 79, 3256, 1037, 2625, 6978, 286, 5128, 1366, 1600, 2099, 28, 2536, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 10134, 50145, 3256, 705, 12, 12337, 3256, 1037, 2625, 361, 2393, 468, 24697, 1600, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 30246, 3256, 705, 12, 67, 3256, 1037, 2625, 6603, 352, 329, 582, 12904, 290, 362, 329, 304, 36616, 485, 272, 1600, 2099, 28, 600, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 279, 40664, 796, 2547, 325, 34, 21370, 7, 22046, 13, 6978, 11, 468, 62, 50145, 28, 22046, 13, 10134, 50145, 8, 198, 220, 220, 220, 1366, 796, 279, 40664, 13, 1136, 62, 7890, 3419, 628, 220, 220, 220, 18868, 796, 15284, 62, 30246, 7, 7890, 11, 26498, 13, 30246, 8, 628, 220, 220, 220, 266, 40664, 796, 19430, 34, 21370, 7, 34345, 11639, 17080, 1817, 13, 14116, 11537, 198, 220, 220, 220, 266, 40664, 13, 13564, 62, 7890, 7, 17080, 1817, 8, 198 ]
2.822511
231
#!/usr/bin/python # Launcher for building vcl import os import subprocess import sys def main(): """ VCL builder script """ # find path to helper script script_path = os.path.dirname(os.path.abspath(sys.argv[0])) vcl_build = f"{script_path}/{sys.argv[1]}" # find path to vpp/vcl source code base_path = os.path.dirname(os.path.abspath(sys.argv[1])) vpp_path = f"{base_path}/external/com_github_fdio_vpp_vcl" # find path to dst folder dst_path = os.path.dirname(os.path.abspath(sys.argv[2])) # build vcl subprocess.run([vcl_build, vpp_path, dst_path]) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 26385, 329, 2615, 410, 565, 198, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 25064, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 569, 5097, 27098, 4226, 37227, 628, 220, 220, 220, 1303, 1064, 3108, 284, 31904, 4226, 198, 220, 220, 220, 4226, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 17597, 13, 853, 85, 58, 15, 60, 4008, 198, 220, 220, 220, 410, 565, 62, 11249, 796, 277, 1, 90, 12048, 62, 6978, 92, 14, 90, 17597, 13, 853, 85, 58, 16, 60, 36786, 628, 220, 220, 220, 1303, 1064, 3108, 284, 410, 381, 14, 85, 565, 2723, 2438, 198, 220, 220, 220, 2779, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 17597, 13, 853, 85, 58, 16, 60, 4008, 198, 220, 220, 220, 410, 381, 62, 6978, 796, 277, 1, 90, 8692, 62, 6978, 92, 14, 22615, 14, 785, 62, 12567, 62, 16344, 952, 62, 85, 381, 62, 85, 565, 1, 628, 220, 220, 220, 1303, 1064, 3108, 284, 29636, 9483, 198, 220, 220, 220, 29636, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 17597, 13, 853, 85, 58, 17, 60, 4008, 628, 220, 220, 220, 1303, 1382, 410, 565, 198, 220, 220, 220, 850, 14681, 13, 5143, 26933, 85, 565, 62, 11249, 11, 410, 381, 62, 6978, 11, 29636, 62, 6978, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.3213
277
import hoomd from hoomd import md hoomd.context.initialize() # Create a 10x10x10 simple cubic lattice of particles with type name A hoomd.init.create_lattice( unitcell=hoomd.lattice.sc(a=2.0, type_name='A'), n=10) # Specify Lennard-Jones interactions between particle pairs nl = md.nlist.cell() lj = md.pair.lj(r_cut=3.0, nlist=nl) lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0) # Integrate at constant temperature md.integrate.mode_standard(dt=0.005) hoomd.md.integrate.langevin(group=hoomd.group.all(), kT=1.2, seed=4) hoomd.run(10e3) hoomd.dump.dcd('lj.dcd', period=1000, overwrite=True) hoomd.dump.gsd('lj.gsd', period=1000, group=hoomd.group.all(), overwrite=True) # Run for 10,000 time steps hoomd.run(10e3)
[ 11748, 289, 4207, 67, 198, 6738, 289, 4207, 67, 1330, 45243, 198, 71, 4207, 67, 13, 22866, 13, 36733, 1096, 3419, 198, 198, 2, 13610, 257, 838, 87, 940, 87, 940, 2829, 27216, 47240, 501, 286, 13166, 351, 2099, 1438, 317, 198, 71, 4207, 67, 13, 15003, 13, 17953, 62, 75, 1078, 501, 7, 198, 220, 220, 220, 4326, 3846, 28, 71, 4207, 67, 13, 75, 1078, 501, 13, 1416, 7, 64, 28, 17, 13, 15, 11, 2099, 62, 3672, 11639, 32, 33809, 299, 28, 940, 8, 198, 198, 2, 18291, 1958, 28423, 446, 12, 25784, 12213, 1022, 18758, 14729, 198, 21283, 796, 45243, 13, 77, 4868, 13, 3846, 3419, 198, 75, 73, 796, 45243, 13, 24874, 13, 75, 73, 7, 81, 62, 8968, 28, 18, 13, 15, 11, 299, 4868, 28, 21283, 8, 198, 75, 73, 13, 24874, 62, 1073, 14822, 13, 2617, 10786, 32, 3256, 705, 32, 3256, 304, 862, 33576, 28, 16, 13, 15, 11, 264, 13495, 28, 16, 13, 15, 8, 198, 198, 2, 15995, 4873, 379, 6937, 5951, 198, 9132, 13, 18908, 4873, 13, 14171, 62, 20307, 7, 28664, 28, 15, 13, 22544, 8, 198, 71, 4207, 67, 13, 9132, 13, 18908, 4873, 13, 75, 858, 7114, 7, 8094, 28, 71, 4207, 67, 13, 8094, 13, 439, 22784, 479, 51, 28, 16, 13, 17, 11, 9403, 28, 19, 8, 198, 198, 71, 4207, 67, 13, 5143, 7, 940, 68, 18, 8, 198, 198, 71, 4207, 67, 13, 39455, 13, 67, 10210, 10786, 75, 73, 13, 67, 10210, 3256, 2278, 28, 12825, 11, 49312, 28, 17821, 8, 198, 71, 4207, 67, 13, 39455, 13, 14542, 67, 10786, 75, 73, 13, 14542, 67, 3256, 2278, 28, 12825, 11, 1448, 28, 71, 4207, 67, 13, 8094, 13, 439, 22784, 49312, 28, 17821, 8, 198, 198, 2, 5660, 329, 838, 11, 830, 640, 4831, 198, 71, 4207, 67, 13, 5143, 7, 940, 68, 18, 8, 198 ]
2.299685
317
## # The MIT License (MIT) # # Copyright (c) 2016 Stefan Wendler # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ## from __future__ import unicode_literals import pygame import blockext import edubot.snapext from edubot.snapext.joystick.constants import ALL_JS, ALL_AXIS, ALL_BUTTONS, AXIS, BUTTONS from edubot.snapext.joystick.mappings import JS_MAPPINGS
[ 2235, 198, 2, 383, 17168, 13789, 357, 36393, 8, 198, 2, 198, 2, 15069, 357, 66, 8, 1584, 28842, 21042, 1754, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 2235, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 12972, 6057, 198, 198, 11748, 24003, 365, 742, 198, 11748, 1225, 549, 313, 13, 16184, 1758, 742, 198, 198, 6738, 1225, 549, 313, 13, 16184, 1758, 742, 13, 2633, 13915, 13, 9979, 1187, 1330, 11096, 62, 20120, 11, 11096, 62, 25922, 1797, 11, 11096, 62, 47526, 11357, 50, 11, 43051, 1797, 11, 21728, 11357, 50, 198, 6738, 1225, 549, 313, 13, 16184, 1758, 742, 13, 2633, 13915, 13, 76, 39242, 1330, 26755, 62, 44, 24805, 20754, 628, 198 ]
3.533505
388
from unittest import mock from know_me.profile import models def test_get_media_resource_upload_path(): """ Media Resources should be stored with their original filename in a folder titled ``know-me/users/{id}/media-resources``. """ resource = mock.Mock(name="Mock Media Resource") resource.km_user.id = 1 filename = "foo.jpg" expected = "know-me/users/{id}/media-resources/{file}".format( file=filename, id=resource.km_user.id ) result = models.get_media_resource_upload_path(resource, filename) assert result == expected def test_get_profile_item_image_upload_path(): """ Profile item images should be stored with their original filename in a directory titled ``know-me/users/{id}/profile-images``. """ profile_item = mock.Mock(name="Mock Profile Item") profile_item.topic.profile.km_user.id = 1 filename = "image.jpg" result = models.get_profile_item_image_upload_path(profile_item, filename) expected = "know-me/users/{id}/profile-images/{file}".format( file=filename, id=profile_item.topic.profile.km_user.id ) assert result == expected
[ 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 760, 62, 1326, 13, 13317, 1330, 4981, 628, 198, 4299, 1332, 62, 1136, 62, 11431, 62, 31092, 62, 25850, 62, 6978, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6343, 13864, 815, 307, 8574, 351, 511, 2656, 29472, 287, 257, 198, 220, 220, 220, 9483, 11946, 7559, 16275, 12, 1326, 14, 18417, 14, 90, 312, 92, 14, 11431, 12, 37540, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8271, 796, 15290, 13, 44, 735, 7, 3672, 2625, 44, 735, 6343, 20857, 4943, 198, 220, 220, 220, 8271, 13, 13276, 62, 7220, 13, 312, 796, 352, 628, 220, 220, 220, 29472, 796, 366, 21943, 13, 9479, 1, 628, 220, 220, 220, 2938, 796, 366, 16275, 12, 1326, 14, 18417, 14, 90, 312, 92, 14, 11431, 12, 37540, 14, 90, 7753, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 34345, 11, 4686, 28, 31092, 13, 13276, 62, 7220, 13, 312, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1255, 796, 4981, 13, 1136, 62, 11431, 62, 31092, 62, 25850, 62, 6978, 7, 31092, 11, 29472, 8, 198, 220, 220, 220, 6818, 1255, 6624, 2938, 628, 198, 4299, 1332, 62, 1136, 62, 13317, 62, 9186, 62, 9060, 62, 25850, 62, 6978, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13118, 2378, 4263, 815, 307, 8574, 351, 511, 2656, 29472, 287, 198, 220, 220, 220, 257, 8619, 11946, 7559, 16275, 12, 1326, 14, 18417, 14, 90, 312, 92, 14, 13317, 12, 17566, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7034, 62, 9186, 796, 15290, 13, 44, 735, 7, 3672, 2625, 44, 735, 13118, 9097, 4943, 198, 220, 220, 220, 7034, 62, 9186, 13, 26652, 13, 13317, 13, 13276, 62, 7220, 13, 312, 796, 352, 198, 220, 220, 220, 29472, 796, 366, 9060, 13, 9479, 1, 628, 220, 220, 220, 1255, 796, 4981, 13, 1136, 62, 13317, 62, 9186, 62, 9060, 62, 25850, 62, 6978, 7, 13317, 62, 9186, 11, 29472, 8, 198, 220, 220, 220, 2938, 796, 366, 16275, 12, 1326, 14, 18417, 14, 90, 312, 92, 14, 13317, 12, 17566, 14, 90, 7753, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 34345, 11, 4686, 28, 13317, 62, 9186, 13, 26652, 13, 13317, 13, 13276, 62, 7220, 13, 312, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 1255, 6624, 2938, 198 ]
2.803398
412
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ########################################### # (c) 2016-2020 Polyvios Pratikakis # [email protected] ########################################### #__all__ = ['utils'] ''' empty '''
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 29113, 7804, 21017, 198, 2, 357, 66, 8, 1584, 12, 42334, 12280, 85, 4267, 1736, 265, 1134, 27321, 198, 2, 7514, 85, 4267, 31, 873, 13, 25718, 13, 2164, 198, 29113, 7804, 21017, 198, 198, 2, 834, 439, 834, 796, 37250, 26791, 20520, 198, 7061, 6, 6565, 705, 7061, 198 ]
3.121622
74
# coding=utf-8 """List II - In-place functions: Reverse, Sort and Extend. Examples with in-place list functions. In-place functions changes the original object and return None after calling it. """ def do_something_magical(animes, tvshows): """Use some list methods.""" animes.reverse() print("Inverted anime list: {}".format(animes)) # >>> Inverted anime list: ['Sakurasou no Pet na Kanojo', 'Shigatsu Wa Kimi No Uso', 'Shingeki no Kyojin'] tvshows.sort() print("Sorted TV Shows list: {}".format(tvshows)) # >>> Sorted TV Shows list: ['Pirates Of The Caribean', 'Sherlock Holmes', 'Star Wars'] animes.extend(tvshows) new_list = animes print("Concatenated lists: {}".format(new_list)) # >>> Concatenated lists: ['Sakurasou no Pet na Kanojo', 'Shigatsu Wa Kimi No Uso', 'Shingeki no Kyojin', 'Pirates Of The Caribean', 'Sherlock Holmes', 'Star Wars'] if __name__ == '__main__': animes = ["Shingeki no Kyojin", "Shigatsu Wa Kimi No Uso", "Sakurasou no Pet na Kanojo"] tvshows = ["Star Wars", "Pirates Of The Caribean", "Sherlock Holmes"] print("Original Anime List: {}".format(animes)) # >>> Original Anime List: ['Shingeki no Kyojin', 'Shigatsu Wa Kimi No Uso', 'Sakurasou no Pet na Kanojo'] print("Original TV Shows List: {}".format(tvshows)) # >>> Original TV Shows List: ['Star Wars', 'Pirates Of The Caribean', 'Sherlock Holmes'] do_something_magical(animes, tvshows)
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 8053, 2873, 532, 554, 12, 5372, 5499, 25, 31849, 11, 33947, 290, 46228, 13, 628, 220, 220, 220, 21066, 351, 287, 12, 5372, 1351, 5499, 13, 554, 12, 5372, 5499, 2458, 198, 220, 220, 220, 262, 2656, 2134, 290, 1441, 6045, 706, 4585, 340, 13, 198, 37811, 628, 198, 4299, 466, 62, 18927, 62, 19726, 605, 7, 272, 999, 11, 31557, 49596, 2599, 198, 220, 220, 220, 37227, 11041, 617, 1351, 5050, 526, 15931, 198, 220, 220, 220, 281, 999, 13, 50188, 3419, 198, 220, 220, 220, 3601, 7203, 818, 13658, 11984, 1351, 25, 23884, 1911, 18982, 7, 272, 999, 4008, 198, 220, 220, 220, 1303, 13163, 554, 13658, 11984, 1351, 25, 37250, 50, 461, 17786, 280, 645, 4767, 12385, 509, 5733, 7639, 3256, 705, 2484, 328, 19231, 15329, 6502, 72, 1400, 471, 568, 3256, 705, 50, 722, 39548, 645, 509, 8226, 18594, 20520, 198, 220, 220, 220, 31557, 49596, 13, 30619, 3419, 198, 220, 220, 220, 3601, 7203, 50, 9741, 3195, 25156, 1351, 25, 23884, 1911, 18982, 7, 14981, 49596, 4008, 198, 220, 220, 220, 1303, 13163, 311, 9741, 3195, 25156, 1351, 25, 37250, 46772, 689, 3226, 383, 17152, 11025, 3256, 705, 28782, 5354, 17628, 3256, 705, 8248, 6176, 20520, 198, 220, 220, 220, 281, 999, 13, 2302, 437, 7, 14981, 49596, 8, 198, 220, 220, 220, 649, 62, 4868, 796, 281, 999, 198, 220, 220, 220, 3601, 7203, 3103, 9246, 268, 515, 8341, 25, 23884, 1911, 18982, 7, 3605, 62, 4868, 4008, 198, 220, 220, 220, 1303, 13163, 1482, 9246, 268, 515, 8341, 25, 37250, 50, 461, 17786, 280, 645, 4767, 12385, 509, 5733, 7639, 3256, 705, 2484, 328, 19231, 15329, 6502, 72, 1400, 471, 568, 3256, 705, 50, 722, 39548, 645, 509, 8226, 18594, 3256, 705, 46772, 689, 3226, 383, 17152, 11025, 3256, 705, 28782, 5354, 17628, 3256, 705, 8248, 6176, 20520, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 281, 999, 796, 14631, 50, 722, 39548, 645, 509, 8226, 18594, 1600, 366, 2484, 328, 19231, 15329, 6502, 72, 1400, 471, 568, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 461, 17786, 280, 645, 4767, 12385, 509, 5733, 7639, 8973, 198, 220, 220, 220, 31557, 49596, 796, 14631, 8248, 6176, 1600, 366, 46772, 689, 3226, 383, 17152, 11025, 1600, 366, 28782, 5354, 17628, 8973, 198, 220, 220, 220, 3601, 7203, 20556, 27812, 7343, 25, 23884, 1911, 18982, 7, 272, 999, 4008, 198, 220, 220, 220, 1303, 13163, 13745, 27812, 7343, 25, 37250, 50, 722, 39548, 645, 509, 8226, 18594, 3256, 705, 2484, 328, 19231, 15329, 6502, 72, 1400, 471, 568, 3256, 705, 50, 461, 17786, 280, 645, 4767, 12385, 509, 5733, 7639, 20520, 198, 220, 220, 220, 3601, 7203, 20556, 3195, 25156, 7343, 25, 23884, 1911, 18982, 7, 14981, 49596, 4008, 198, 220, 220, 220, 1303, 13163, 13745, 3195, 25156, 7343, 25, 37250, 8248, 6176, 3256, 705, 46772, 689, 3226, 383, 17152, 11025, 3256, 705, 28782, 5354, 17628, 20520, 198, 220, 220, 220, 466, 62, 18927, 62, 19726, 605, 7, 272, 999, 11, 31557, 49596, 8, 198 ]
2.8
525
import ald import numpy as np import h5py U0 = 1.0 tauR = 1.2 alpha = 1.2 particle = ald.Pareto(U0=U0, tauR=tauR, alpha=alpha) flow = ald.ZeroVelocity() domain = ald.Box() ic = ald.InitialConfig( x=ald.Uniform(domain.left, domain.right), y=ald.Uniform(domain.left, domain.right), theta=ald.Uniform(0, 2 * np.pi), ) cfg = ald.Config(particle, domain, N=204_800, dt=1e-4, Nt=40_000_000) kernel = ald.RTPFreespaceKernel() compiler = ald.RTPCompiler(kernel, cfg, flow, ic) compiler.compile() simulator = ald.RTPSimulator(cfg, compiler) file = "U{:.3f}tauR{:.3f}free.h5".format(U0, tauR) # create an empty file # with h5py.File(file, "w") as f: # pass configsaver = ald.ConfigSaver( ald.RangedRunner.from_backward_count(stop=cfg.Nt, freq=10000, count=200), file, variables=["x", "y"], unwrap=[True, True], ) # range to compute stats on configuration and print time. runner = ald.RangedRunner(start=0, stop=cfg.Nt, freq=10000) # setup callbacks. # x = ald.DisplacementMeanVariance(runner, "x", unwrap=True) # y = ald.DisplacementMeanVariance(runner, "y", unwrap=True) # y = ald.MeanVariance(runner, "y", unwrap=True) callbacks = [configsaver, ald.ETA(runner)] simulator.run(cfg, callbacks=callbacks) # save particle, domain and simulation attributes. cfg.save2h5(file) # # save mean variance of x # x.save2h5(file, "x") # y.save2h5(file, "y")
[ 11748, 257, 335, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 289, 20, 9078, 198, 198, 52, 15, 796, 352, 13, 15, 198, 83, 559, 49, 796, 352, 13, 17, 198, 26591, 796, 352, 13, 17, 198, 3911, 1548, 796, 257, 335, 13, 47, 533, 1462, 7, 52, 15, 28, 52, 15, 11, 256, 559, 49, 28, 83, 559, 49, 11, 17130, 28, 26591, 8, 198, 198, 11125, 796, 257, 335, 13, 28667, 46261, 11683, 3419, 198, 27830, 796, 257, 335, 13, 14253, 3419, 628, 198, 291, 796, 257, 335, 13, 24243, 16934, 7, 198, 220, 220, 220, 2124, 28, 1940, 13, 3118, 6933, 7, 27830, 13, 9464, 11, 7386, 13, 3506, 828, 198, 220, 220, 220, 331, 28, 1940, 13, 3118, 6933, 7, 27830, 13, 9464, 11, 7386, 13, 3506, 828, 198, 220, 220, 220, 262, 8326, 28, 1940, 13, 3118, 6933, 7, 15, 11, 362, 1635, 45941, 13, 14415, 828, 198, 8, 628, 198, 37581, 796, 257, 335, 13, 16934, 7, 3911, 1548, 11, 7386, 11, 399, 28, 18638, 62, 7410, 11, 288, 83, 28, 16, 68, 12, 19, 11, 399, 83, 28, 1821, 62, 830, 62, 830, 8, 198, 198, 33885, 796, 257, 335, 13, 49, 7250, 37, 6037, 10223, 42, 7948, 3419, 198, 5589, 5329, 796, 257, 335, 13, 14181, 5662, 3361, 5329, 7, 33885, 11, 30218, 70, 11, 5202, 11, 14158, 8, 198, 198, 5589, 5329, 13, 5589, 576, 3419, 198, 198, 14323, 8927, 796, 257, 335, 13, 14181, 3705, 320, 8927, 7, 37581, 11, 17050, 8, 198, 198, 7753, 796, 366, 52, 90, 25, 13, 18, 69, 92, 83, 559, 49, 90, 25, 13, 18, 69, 92, 5787, 13, 71, 20, 1911, 18982, 7, 52, 15, 11, 256, 559, 49, 8, 198, 2, 2251, 281, 6565, 2393, 198, 2, 351, 289, 20, 9078, 13, 8979, 7, 7753, 11, 366, 86, 4943, 355, 277, 25, 198, 2, 220, 220, 220, 220, 1208, 198, 11250, 82, 8770, 796, 257, 335, 13, 16934, 50, 8770, 7, 198, 220, 220, 220, 257, 335, 13, 49, 5102, 49493, 13, 6738, 62, 1891, 904, 62, 9127, 7, 11338, 28, 37581, 13, 45, 83, 11, 2030, 80, 28, 49388, 11, 954, 28, 2167, 828, 198, 220, 220, 220, 2393, 11, 198, 220, 220, 220, 9633, 28, 14692, 87, 1600, 366, 88, 33116, 198, 220, 220, 220, 7379, 2416, 41888, 17821, 11, 6407, 4357, 198, 8, 628, 198, 2, 2837, 284, 24061, 9756, 319, 8398, 290, 3601, 640, 13, 198, 16737, 796, 257, 335, 13, 49, 5102, 49493, 7, 9688, 28, 15, 11, 2245, 28, 37581, 13, 45, 83, 11, 2030, 80, 28, 49388, 8, 198, 2, 9058, 869, 10146, 13, 198, 2, 2124, 796, 257, 335, 13, 7279, 489, 5592, 5308, 272, 23907, 590, 7, 16737, 11, 366, 87, 1600, 7379, 2416, 28, 17821, 8, 198, 2, 331, 796, 257, 335, 13, 7279, 489, 5592, 5308, 272, 23907, 590, 7, 16737, 11, 366, 88, 1600, 7379, 2416, 28, 17821, 8, 198, 198, 2, 331, 796, 257, 335, 13, 5308, 272, 23907, 590, 7, 16737, 11, 366, 88, 1600, 7379, 2416, 28, 17821, 8, 198, 13345, 10146, 796, 685, 11250, 82, 8770, 11, 257, 335, 13, 20892, 7, 16737, 15437, 198, 198, 14323, 8927, 13, 5143, 7, 37581, 11, 869, 10146, 28, 13345, 10146, 8, 198, 198, 2, 3613, 18758, 11, 7386, 290, 18640, 12608, 13, 198, 37581, 13, 21928, 17, 71, 20, 7, 7753, 8, 198, 2, 1303, 3613, 1612, 24198, 286, 2124, 198, 2, 2124, 13, 21928, 17, 71, 20, 7, 7753, 11, 366, 87, 4943, 198, 2, 331, 13, 21928, 17, 71, 20, 7, 7753, 11, 366, 88, 4943, 198 ]
2.302829
601
#Skrip alfa from requests import get from bs4 import BeautifulSoup as bs import pandas as pd hari = input('Tanggal? (dua digit): \n') bulan = input('Bulan? (dua digit): \n') tahun = input('Tahun? (empat digit): \n') x = bulan+'/'+hari+'/'+tahun halaman_detik = [str(i) for i in range(1, 21)] #https://news.detik.com/indeks?date=12%2F10%2F2019 kabeh_sup_detik = [] kabeh_judul = [] kabeh_link = [] for i in halaman_detik: indeks_lengkap = 'https://news.detik.com/indeks/'+ i +'?date='+ x #print(indeks_lengkap) a = get(indeks_lengkap) sup_a = bs(a.text, 'html5lib') kabeh_sup_detik.append(sup_a) for i in sup_a.select('h3', class_="media-title"): a = i.get_text() #b = a.get_text() kabeh_judul.append(a) for i in sup_a.select('h3', class_="media-title"): a = i.find('a') b = a['href'] kabeh_link.append(b) #print(len(kabeh_link)) #print(len(kabeh_judul)) angka = [ada_angka(i) for i in kabeh_judul] #print(len(angka)) data_detik = pd.DataFrame({'judul': kabeh_judul, 'tautan' : kabeh_link, 'ada_angka': angka}) berita_dg_angka = data_detik.loc[data_detik['ada_angka'] == True] #print(berita_dg_angka) identitas = x.replace('/', '_') berita_dg_angka.to_csv(identitas+ '_' +'angka_dalam_detik.csv') from time import sleep for row in berita_dg_angka.itertuples(): print ("Judul : \n", row.judul) print ("Tautan : \n", row.tautan) sleep(1.5)
[ 2, 15739, 5528, 435, 13331, 198, 198, 6738, 7007, 1330, 651, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 355, 275, 82, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 49573, 796, 5128, 10786, 43909, 13528, 30, 357, 646, 64, 16839, 2599, 3467, 77, 11537, 198, 15065, 272, 796, 5128, 10786, 33481, 272, 30, 357, 646, 64, 16839, 2599, 3467, 77, 11537, 198, 83, 993, 403, 796, 5128, 10786, 51, 993, 403, 30, 357, 368, 8071, 16839, 2599, 3467, 77, 11537, 198, 87, 796, 4807, 272, 10, 26488, 6, 10, 49573, 10, 26488, 6, 10, 83, 993, 403, 198, 198, 14201, 10546, 62, 15255, 1134, 796, 685, 2536, 7, 72, 8, 329, 1312, 287, 2837, 7, 16, 11, 2310, 15437, 198, 198, 2, 5450, 1378, 10827, 13, 15255, 1134, 13, 785, 14, 521, 2573, 30, 4475, 28, 1065, 4, 17, 37, 940, 4, 17, 37, 23344, 198, 74, 11231, 71, 62, 37330, 62, 15255, 1134, 796, 17635, 198, 74, 11231, 71, 62, 10456, 377, 796, 17635, 198, 74, 11231, 71, 62, 8726, 796, 17635, 198, 1640, 1312, 287, 10284, 10546, 62, 15255, 1134, 25, 198, 220, 220, 220, 773, 2573, 62, 75, 1516, 74, 499, 796, 705, 5450, 1378, 10827, 13, 15255, 1134, 13, 785, 14, 521, 2573, 14, 6, 10, 1312, 1343, 30960, 4475, 11639, 10, 2124, 198, 220, 220, 220, 1303, 4798, 7, 521, 2573, 62, 75, 1516, 74, 499, 8, 198, 220, 220, 220, 257, 796, 651, 7, 521, 2573, 62, 75, 1516, 74, 499, 8, 198, 220, 220, 220, 7418, 62, 64, 796, 275, 82, 7, 64, 13, 5239, 11, 705, 6494, 20, 8019, 11537, 198, 220, 220, 220, 479, 11231, 71, 62, 37330, 62, 15255, 1134, 13, 33295, 7, 37330, 62, 64, 8, 628, 220, 220, 220, 329, 1312, 287, 7418, 62, 64, 13, 19738, 10786, 71, 18, 3256, 1398, 62, 2625, 11431, 12, 7839, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1312, 13, 1136, 62, 5239, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 65, 796, 257, 13, 1136, 62, 5239, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 479, 11231, 71, 62, 10456, 377, 13, 33295, 7, 64, 8, 198, 220, 220, 220, 329, 1312, 287, 7418, 62, 64, 13, 19738, 10786, 71, 18, 3256, 1398, 62, 2625, 11431, 12, 7839, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 1312, 13, 19796, 10786, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 257, 17816, 33257, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 479, 11231, 71, 62, 8726, 13, 33295, 7, 65, 8, 628, 198, 2, 4798, 7, 11925, 7, 74, 11231, 71, 62, 8726, 4008, 198, 2, 4798, 7, 11925, 7, 74, 11231, 71, 62, 10456, 377, 4008, 198, 648, 4914, 796, 685, 4763, 62, 648, 4914, 7, 72, 8, 329, 1312, 287, 479, 11231, 71, 62, 10456, 377, 60, 198, 2, 4798, 7, 11925, 7, 648, 4914, 4008, 198, 7890, 62, 15255, 1134, 796, 279, 67, 13, 6601, 19778, 15090, 6, 10456, 377, 10354, 479, 11231, 71, 62, 10456, 377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 83, 2306, 272, 6, 1058, 479, 11231, 71, 62, 8726, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4763, 62, 648, 4914, 10354, 3550, 4914, 30072, 628, 198, 527, 5350, 62, 67, 70, 62, 648, 4914, 796, 1366, 62, 15255, 1134, 13, 17946, 58, 7890, 62, 15255, 1134, 17816, 4763, 62, 648, 4914, 20520, 6624, 6407, 60, 198, 2, 4798, 7, 527, 5350, 62, 67, 70, 62, 648, 4914, 8, 198, 738, 21416, 796, 2124, 13, 33491, 10786, 14, 3256, 705, 62, 11537, 198, 527, 5350, 62, 67, 70, 62, 648, 4914, 13, 1462, 62, 40664, 7, 738, 21416, 10, 705, 62, 6, 1343, 6, 648, 4914, 62, 31748, 321, 62, 15255, 1134, 13, 40664, 11537, 198, 198, 6738, 640, 1330, 3993, 198, 198, 1640, 5752, 287, 18157, 5350, 62, 67, 70, 62, 648, 4914, 13, 270, 861, 84, 2374, 33529, 198, 220, 220, 220, 3601, 5855, 26141, 377, 1058, 3467, 77, 1600, 5752, 13, 10456, 377, 8, 198, 220, 220, 220, 3601, 5855, 51, 2306, 272, 1058, 3467, 77, 1600, 5752, 13, 83, 2306, 272, 8, 198, 220, 220, 220, 3993, 7, 16, 13, 20, 8, 198 ]
2.006849
730
from aws_cdk import ( aws_ec2 as ec2, core )
[ 6738, 3253, 82, 62, 10210, 74, 1330, 357, 198, 220, 220, 220, 3253, 82, 62, 721, 17, 355, 9940, 17, 11, 198, 220, 220, 220, 4755, 198, 8, 198 ]
1.827586
29
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # This script configures collectd to send metric data to the # logstash server port 25826 # The environment variable logstash_ip is expected to be set up import os with open("/etc/collectd/collectd.conf.d/tosca_elk.conf", "w") as fh: fh.write(""" LoadPlugin network <Plugin network> Server "%s" "25826" </Plugin> """ % (os.environ['logstash_ip']))
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 2, 770, 4226, 4566, 942, 2824, 67, 284, 3758, 18663, 1366, 284, 262, 198, 2, 2604, 301, 1077, 4382, 2493, 37528, 2075, 198, 2, 383, 2858, 7885, 2604, 301, 1077, 62, 541, 318, 2938, 284, 307, 900, 510, 198, 11748, 28686, 198, 4480, 1280, 7203, 14, 14784, 14, 33327, 67, 14, 33327, 67, 13, 10414, 13, 67, 14, 83, 418, 6888, 62, 417, 74, 13, 10414, 1600, 366, 86, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 277, 71, 13, 13564, 7203, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 37233, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 37233, 3127, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9652, 36521, 82, 1, 366, 25600, 2075, 1, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 37233, 29, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4064, 357, 418, 13, 268, 2268, 17816, 6404, 301, 1077, 62, 541, 20520, 4008, 198 ]
2.883721
344
from typing import List, Optional import signal import sys from . import __version__, __title__ from .api import Api from .github_handler import GithubHandler from .config_creator import ConfigCreator from .lib.ci_exception import SilentAbortException from .lib.gravity import define_arguments_recursive, construct_component from .lib.module_arguments import ModuleArgumentParser, ModuleNamespace, IncorrectParameterError from .lib.utils import Uninterruptible, format_traceback from .main import Main from .modules.error_state import GlobalErrorState from .nonci import Nonci from .poll import Poll from .submit import Submit if __name__ == "__main__": exit_code = main() sys.exit(exit_code)
[ 6738, 19720, 1330, 7343, 11, 32233, 198, 11748, 6737, 198, 11748, 25064, 198, 198, 6738, 764, 1330, 11593, 9641, 834, 11, 11593, 7839, 834, 198, 6738, 764, 15042, 1330, 5949, 72, 198, 6738, 764, 12567, 62, 30281, 1330, 38994, 25060, 198, 6738, 764, 11250, 62, 45382, 1330, 17056, 16719, 273, 198, 6738, 764, 8019, 13, 979, 62, 1069, 4516, 1330, 25083, 4826, 419, 16922, 198, 6738, 764, 8019, 13, 46453, 1330, 8160, 62, 853, 2886, 62, 8344, 30753, 11, 5678, 62, 42895, 198, 6738, 764, 8019, 13, 21412, 62, 853, 2886, 1330, 19937, 28100, 1713, 46677, 11, 19937, 36690, 10223, 11, 3457, 47315, 36301, 12331, 198, 6738, 764, 8019, 13, 26791, 1330, 791, 3849, 3622, 856, 11, 5794, 62, 40546, 1891, 198, 6738, 764, 12417, 1330, 8774, 198, 6738, 764, 18170, 13, 18224, 62, 5219, 1330, 8060, 12331, 9012, 198, 6738, 764, 13159, 979, 1330, 8504, 979, 198, 6738, 764, 30393, 1330, 12868, 198, 6738, 764, 46002, 1330, 39900, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 8420, 62, 8189, 796, 1388, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 37023, 62, 8189, 8, 198 ]
3.607143
196
# -*- coding: utf-8 -*- # __author__ : py_lee # __time__ : '18-12-14 下午2:54' import re from rest_framework import serializers from rest_framework.validators import UniqueTogetherValidator from user_operation.models import UserFav, UserLeavingMessage, UserAddress from goods.serializer import UserFavGoodsSerializers from DjangoVue.settings import MOBILE_REGSTER class UserFavDetialSerializers(serializers.ModelSerializer): """ 用户收藏的详情 为了能获取用户收藏的商品的详细信息,所以需要将GoodsSerializers进行嵌套 """ goods = UserFavGoodsSerializers() class LeaveMessageSerializers(serializers.ModelSerializer): """ 用户留言相关的Serializer """ # 自定义user字段,是个隐藏域,默认获取的是当前登录状态的user user = serializers.HiddenField( default=serializers.CurrentUserDefault() ) add_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M') class AddressSerializers(serializers.ModelSerializer): """ 用户收货地址相关的Serializer """ user = serializers.HiddenField( default=serializers.CurrentUserDefault() ) add_time = serializers.DateTimeField(read_only=True, format='%Y-%m-%d %H:%M') province = serializers.CharField(max_length=100, required=True, allow_null=False, label='省份', error_messages={ 'max_length': '格式有误', 'required': '省份必填' }) city = serializers.CharField(max_length=100, required=True, allow_null=False, label='城市', error_messages={ 'max_length': '格式有误', 'required': '城市必填' }) district = serializers.CharField(max_length=100, required=True, allow_null=False, label='区域', error_messages={ 'max_length': '格式有误', 'required': '区域必填' }) address = serializers.CharField(max_length=100, required=True, allow_null=False, label='详细地址', error_messages={ 'max_length': '格式有误', 'required': '详细地址必填' }) signer_name = serializers.CharField(max_length=100, required=True, allow_null=False, label='收件人', error_messages={ 'required': '必须填写姓名' }) signer_mobile = serializers.CharField(max_length=11, min_length=11, required=True, label='收件人手机号', allow_null=False)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 11593, 9800, 834, 1058, 12972, 62, 7197, 198, 2, 11593, 2435, 834, 220, 220, 1058, 705, 1507, 12, 1065, 12, 1415, 220, 10310, 233, 39355, 230, 17, 25, 4051, 6, 198, 11748, 302, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 1334, 62, 30604, 13, 12102, 2024, 1330, 30015, 41631, 47139, 1352, 198, 198, 6738, 2836, 62, 27184, 13, 27530, 1330, 11787, 37, 615, 11, 11787, 3123, 2703, 12837, 11, 11787, 20231, 198, 6738, 7017, 13, 46911, 7509, 1330, 11787, 37, 615, 10248, 82, 32634, 11341, 198, 6738, 37770, 53, 518, 13, 33692, 1330, 13070, 3483, 2538, 62, 31553, 41809, 628, 198, 198, 4871, 11787, 37, 615, 11242, 498, 32634, 11341, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 242, 101, 22755, 115, 162, 242, 114, 164, 245, 237, 21410, 46237, 99, 46349, 227, 198, 220, 220, 220, 220, 10310, 118, 12859, 228, 47797, 121, 164, 236, 115, 20998, 244, 18796, 101, 22755, 115, 162, 242, 114, 164, 245, 237, 21410, 161, 243, 228, 161, 241, 223, 21410, 46237, 99, 163, 119, 228, 46479, 94, 162, 223, 107, 11, 33699, 222, 20015, 98, 165, 250, 222, 17358, 223, 49546, 10248, 82, 32634, 11341, 32573, 249, 26193, 234, 161, 113, 234, 25001, 245, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7017, 796, 11787, 37, 615, 10248, 82, 32634, 11341, 3419, 628, 198, 4871, 17446, 12837, 32634, 11341, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 242, 101, 22755, 115, 45911, 247, 164, 101, 222, 33566, 116, 17739, 111, 21410, 32634, 7509, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 5525, 229, 103, 22522, 248, 20046, 231, 7220, 27764, 245, 162, 106, 113, 11, 42468, 10310, 103, 49694, 238, 164, 245, 237, 161, 253, 253, 11, 165, 119, 246, 164, 106, 97, 164, 236, 115, 20998, 244, 21410, 42468, 37605, 241, 30298, 235, 163, 247, 119, 37605, 243, 163, 232, 35050, 222, 223, 21410, 7220, 198, 220, 220, 220, 2836, 796, 11389, 11341, 13, 41691, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 46911, 11341, 13, 11297, 12982, 19463, 3419, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 751, 62, 2435, 796, 11389, 11341, 13, 10430, 7575, 15878, 7, 961, 62, 8807, 28, 17821, 11, 5794, 11639, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 11537, 628, 198, 4871, 17917, 32634, 11341, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 242, 101, 22755, 115, 162, 242, 114, 164, 112, 100, 28839, 108, 161, 251, 222, 33566, 116, 17739, 111, 21410, 32634, 7509, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2836, 796, 11389, 11341, 13, 41691, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 46911, 11341, 13, 11297, 12982, 19463, 3419, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 751, 62, 2435, 796, 11389, 11341, 13, 10430, 7575, 15878, 7, 961, 62, 8807, 28, 17821, 11, 5794, 11639, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 11537, 198, 220, 220, 220, 8473, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 2672, 28, 17821, 11, 1249, 62, 8423, 28, 25101, 11, 6167, 11639, 40367, 223, 20015, 121, 3256, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 13664, 10354, 705, 43718, 120, 28156, 237, 17312, 231, 46237, 107, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 705, 40367, 223, 20015, 121, 33232, 227, 161, 94, 104, 6, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 1748, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 2672, 28, 17821, 11, 1249, 62, 8423, 28, 25101, 11, 6167, 11639, 161, 253, 236, 30585, 224, 3256, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 13664, 10354, 705, 43718, 120, 28156, 237, 17312, 231, 46237, 107, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 705, 161, 253, 236, 30585, 224, 33232, 227, 161, 94, 104, 6, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 4783, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 2672, 28, 17821, 11, 1249, 62, 8423, 28, 25101, 11, 6167, 11639, 44293, 118, 161, 253, 253, 3256, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 13664, 10354, 705, 43718, 120, 28156, 237, 17312, 231, 46237, 107, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 705, 44293, 118, 161, 253, 253, 33232, 227, 161, 94, 104, 6, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 2209, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 2672, 28, 17821, 11, 1249, 62, 8423, 28, 25101, 11, 6167, 11639, 46237, 99, 163, 119, 228, 28839, 108, 161, 251, 222, 3256, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 13664, 10354, 705, 43718, 120, 28156, 237, 17312, 231, 46237, 107, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 705, 46237, 99, 163, 119, 228, 28839, 108, 161, 251, 222, 33232, 227, 161, 94, 104, 6, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 1051, 263, 62, 3672, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 11, 2672, 28, 17821, 11, 1249, 62, 8423, 28, 25101, 11, 6167, 11639, 162, 242, 114, 20015, 114, 21689, 3256, 4049, 62, 37348, 1095, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 705, 33232, 227, 165, 94, 119, 161, 94, 104, 37863, 247, 34650, 241, 28938, 235, 6, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 1051, 263, 62, 24896, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1157, 11, 949, 62, 13664, 28, 1157, 11, 2672, 28, 17821, 11, 6167, 11639, 162, 242, 114, 20015, 114, 21689, 33699, 233, 17312, 118, 20998, 115, 3256, 1249, 62, 8423, 28, 25101, 8, 198 ]
2.011396
1,053
from .utils import get_gitignored EXCLUDE_DOC = {'*.md', '*.doc', '*.docx', '*.txt', '*.pdf', } EXCLUDE_CONFIG = {'*.cfg', '*.ini', '*.conf', } EXCLUDE_YAML = {'*.yml', '*.yaml', } EXCLUDE_BASH = {'*.sh', } EXCLUDE_GIT = {'.git', '.gitignore', } EXCLUDE_DOCKER = {'Dockerfile', '.dockerignore', } EXCLUDE_VIRTUALENV = {'venv', 'virtualenv'} EXCLUDE_DEVELOPMENT_TOOLS = {'.idea', } EXCLUDE_IMAGES = {'*.png', '*.jpg', '*.jpeg', '*.bmp', '*.gif', } EXCLUDE_AUDIO = {'*.png', '*.jpg', '*.jpeg', '*.bmp', '*.gif', } EXCLUDE_VIDEO = {'*.mkv', '*.avi', } EXCLUDE_MEDIA = EXCLUDE_AUDIO | EXCLUDE_IMAGES | EXCLUDE_VIDEO EXCLUDE_PYCOMPILE = {'*.pyc', '__pycache__', } EXCLUDE_SETUPTOOLS_FILES = {'build', 'dist', '*.egg-info', } EXCLUDE_PYTHON_BUILD_FILES = EXCLUDE_PYCOMPILE | EXCLUDE_SETUPTOOLS_FILES EXCLUDE_GITIGNORED = get_gitignored() EXCLUDE_RECOMMENDED = EXCLUDE_DOC | EXCLUDE_GIT | EXCLUDE_DEVELOPMENT_TOOLS | EXCLUDE_VIRTUALENV | \ EXCLUDE_MEDIA | EXCLUDE_PYTHON_BUILD_FILES | EXCLUDE_GITIGNORED
[ 6738, 764, 26791, 1330, 651, 62, 18300, 570, 1850, 628, 198, 6369, 5097, 52, 7206, 62, 38715, 796, 1391, 6, 24620, 9132, 3256, 705, 24620, 15390, 3256, 705, 24620, 15390, 87, 3256, 705, 24620, 14116, 3256, 705, 24620, 12315, 3256, 1782, 198, 198, 6369, 5097, 52, 7206, 62, 10943, 16254, 796, 1391, 6, 24620, 37581, 3256, 705, 24620, 5362, 3256, 705, 24620, 10414, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 56, 2390, 43, 796, 1391, 6, 24620, 88, 4029, 3256, 705, 24620, 88, 43695, 3256, 1782, 198, 198, 6369, 5097, 52, 7206, 62, 33, 11211, 796, 1391, 6, 24620, 1477, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 38, 2043, 796, 1391, 4458, 18300, 3256, 45302, 18300, 46430, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 35, 11290, 1137, 796, 1391, 6, 35, 12721, 7753, 3256, 45302, 45986, 46430, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 53, 48771, 25620, 1677, 53, 796, 1391, 6, 574, 85, 3256, 705, 32844, 24330, 6, 92, 198, 6369, 5097, 52, 7206, 62, 7206, 18697, 3185, 10979, 62, 10468, 3535, 50, 796, 1391, 4458, 485, 64, 3256, 1782, 198, 198, 6369, 5097, 52, 7206, 62, 3955, 25552, 796, 1391, 6, 24620, 11134, 3256, 705, 24620, 9479, 3256, 705, 24620, 73, 22071, 3256, 705, 24620, 65, 3149, 3256, 705, 24620, 27908, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 48877, 9399, 796, 1391, 6, 24620, 11134, 3256, 705, 24620, 9479, 3256, 705, 24620, 73, 22071, 3256, 705, 24620, 65, 3149, 3256, 705, 24620, 27908, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 42937, 796, 1391, 6, 24620, 28015, 85, 3256, 705, 24620, 15820, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 30733, 3539, 796, 7788, 5097, 52, 7206, 62, 48877, 9399, 930, 7788, 5097, 52, 7206, 62, 3955, 25552, 930, 7788, 5097, 52, 7206, 62, 42937, 198, 198, 6369, 5097, 52, 7206, 62, 47, 56, 9858, 11901, 2538, 796, 1391, 6, 24620, 9078, 66, 3256, 705, 834, 9078, 23870, 834, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 28480, 8577, 10468, 3535, 50, 62, 46700, 1546, 796, 1391, 6, 11249, 3256, 705, 17080, 3256, 705, 24620, 33856, 12, 10951, 3256, 1782, 198, 6369, 5097, 52, 7206, 62, 47, 56, 4221, 1340, 62, 19499, 26761, 62, 46700, 1546, 796, 7788, 5097, 52, 7206, 62, 47, 56, 9858, 11901, 2538, 930, 7788, 5097, 52, 7206, 62, 28480, 8577, 10468, 3535, 50, 62, 46700, 1546, 198, 198, 6369, 5097, 52, 7206, 62, 38, 2043, 16284, 32023, 796, 651, 62, 18300, 570, 1850, 3419, 198, 198, 6369, 5097, 52, 7206, 62, 2200, 9858, 44, 49361, 796, 7788, 5097, 52, 7206, 62, 38715, 930, 7788, 5097, 52, 7206, 62, 38, 2043, 930, 7788, 5097, 52, 7206, 62, 7206, 18697, 3185, 10979, 62, 10468, 3535, 50, 930, 7788, 5097, 52, 7206, 62, 53, 48771, 25620, 1677, 53, 930, 3467, 198, 220, 220, 220, 7788, 5097, 52, 7206, 62, 30733, 3539, 930, 7788, 5097, 52, 7206, 62, 47, 56, 4221, 1340, 62, 19499, 26761, 62, 46700, 1546, 930, 7788, 5097, 52, 7206, 62, 38, 2043, 16284, 32023, 198 ]
1.990138
507
#Source: http://code.activestate.com/recipes/578948-flattening-an-arbitrarily-nested-list-in-python/ def flatten(lis): """Given a list, possibly nested to any level, return it flattened.""" new_lis = [] for item in lis: if type(item) == type([]): new_lis.extend(flatten(item)) else: new_lis.append(item) return new_lis
[ 198, 2, 7416, 25, 2638, 1378, 8189, 13, 15791, 44146, 13, 785, 14, 8344, 18636, 14, 3553, 4531, 2780, 12, 2704, 1078, 3101, 12, 272, 12, 283, 2545, 39000, 12, 77, 7287, 12, 4868, 12, 259, 12, 29412, 14, 198, 4299, 27172, 268, 7, 27999, 2599, 198, 220, 220, 220, 37227, 15056, 257, 1351, 11, 5457, 28376, 284, 597, 1241, 11, 1441, 340, 45096, 526, 15931, 198, 220, 220, 220, 649, 62, 27999, 796, 17635, 198, 220, 220, 220, 329, 2378, 287, 300, 271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 9186, 8, 6624, 2099, 7, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27999, 13, 2302, 437, 7, 2704, 41769, 7, 9186, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27999, 13, 33295, 7, 9186, 8, 198, 220, 220, 220, 1441, 649, 62, 27999, 198 ]
2.26506
166
from django.urls import path, re_path from . import views app_name = 'categorias' urlpatterns = [ path('', views.index, name='index'), path('crear_categoria', views.crear_categoria, name='crear_categoria'), path('process_new_categories', views.process_new_categories, name='process_new_categories'), path('ver_categoria/<int:categoria_id>', views.ver_categoria, name='ver_categoria'), re_path(r'^delete_category/(?P<pk>[0-9]+)/$', views.delete_category, name='delete_category'), path('index_flutter', views.index_flutter, name='index_flutter'), path('process_new_categories_flutter', views.process_new_categories_flutter, name='process_new_categories_flutter'), path('delete_category_flutter', views.delete_category_flutter, name='delete_category_flutter'), path('ver_categoria_flutter', views.ver_categoria_flutter, name='ver_categoria_flutter'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 302, 62, 6978, 201, 198, 6738, 764, 1330, 5009, 201, 198, 201, 198, 1324, 62, 3672, 796, 705, 66, 47467, 4448, 6, 201, 198, 6371, 33279, 82, 796, 685, 201, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 201, 198, 220, 220, 220, 3108, 10786, 7513, 283, 62, 66, 2397, 7661, 3256, 5009, 13, 7513, 283, 62, 66, 2397, 7661, 11, 1438, 11639, 7513, 283, 62, 66, 2397, 7661, 33809, 201, 198, 220, 220, 220, 3108, 10786, 14681, 62, 3605, 62, 66, 26129, 3256, 5009, 13, 14681, 62, 3605, 62, 66, 26129, 11, 1438, 11639, 14681, 62, 3605, 62, 66, 26129, 33809, 201, 198, 220, 220, 220, 3108, 10786, 332, 62, 66, 2397, 7661, 14, 27, 600, 25, 66, 2397, 7661, 62, 312, 29, 3256, 5009, 13, 332, 62, 66, 2397, 7661, 11, 1438, 11639, 332, 62, 66, 2397, 7661, 33809, 201, 198, 220, 220, 220, 302, 62, 6978, 7, 81, 6, 61, 33678, 62, 22872, 29006, 30, 47, 27, 79, 74, 36937, 15, 12, 24, 48688, 20679, 3, 3256, 5009, 13, 33678, 62, 22872, 11, 1438, 11639, 33678, 62, 22872, 33809, 201, 198, 220, 220, 220, 3108, 10786, 9630, 62, 2704, 10381, 3256, 5009, 13, 9630, 62, 2704, 10381, 11, 1438, 11639, 9630, 62, 2704, 10381, 33809, 201, 198, 220, 220, 220, 3108, 10786, 14681, 62, 3605, 62, 66, 26129, 62, 2704, 10381, 3256, 5009, 13, 14681, 62, 3605, 62, 66, 26129, 62, 2704, 10381, 11, 1438, 11639, 14681, 62, 3605, 62, 66, 26129, 62, 2704, 10381, 33809, 201, 198, 220, 220, 220, 3108, 10786, 33678, 62, 22872, 62, 2704, 10381, 3256, 5009, 13, 33678, 62, 22872, 62, 2704, 10381, 11, 1438, 11639, 33678, 62, 22872, 62, 2704, 10381, 33809, 201, 198, 220, 220, 220, 3108, 10786, 332, 62, 66, 2397, 7661, 62, 2704, 10381, 3256, 5009, 13, 332, 62, 66, 2397, 7661, 62, 2704, 10381, 11, 1438, 11639, 332, 62, 66, 2397, 7661, 62, 2704, 10381, 33809, 201, 198, 201, 198, 60, 201, 198 ]
2.643275
342
""" These meta-datasources operate on :class:`revscoring.Datasource`'s that return a flat `dict` of key-value pairs (aka a "table") and filter ("select") keys and/or weight values. .. autoclass:: revscoring.datasources.meta.selectors.tfidf .. autoclass:: revscoring.datasources.meta.selectors.filter_keys """ from collections import defaultdict from math import log from ..datasource import Datasource class tfidf(Datasource): """ Selects a subset of a frequency table based on term utility and applies TF-iDF weighting. :Parameters: table_datasource : :class:`revscoring.Datasource` A datasource that generates a dict of term frequency counts max_terms : `int` The maximum number of terms that will be selected. The terms with the highest proportional representation in a label class are selected. weight : `bool` Should TF-iDF weighting be applied to output counts? boolean : `bool` Normalize counts to 0 (not in document) and 1 (in document). Note that negative frequencies will be converted to -1. name : `str` A name for the datasource. """ class filter_keys(Datasource): """ Selects a subset of features (key/values) based a set of keys. :Parameters: table_datasource : :class:`revscoring.Datasource` A datasource that generates a table including only the specified keys keys : `iterable` ( `hashable` ) The keys to select from the table name : `str` A name for the datasource. """
[ 37811, 198, 4711, 13634, 12, 19608, 292, 2203, 8076, 319, 1058, 4871, 25, 63, 18218, 46536, 13, 27354, 292, 1668, 63, 6, 82, 326, 1441, 198, 64, 6228, 4600, 11600, 63, 286, 1994, 12, 8367, 14729, 357, 8130, 257, 366, 11487, 4943, 290, 8106, 5855, 19738, 4943, 8251, 198, 392, 14, 273, 3463, 3815, 13, 198, 198, 492, 1960, 420, 31172, 3712, 2710, 46536, 13, 19608, 292, 2203, 13, 28961, 13, 19738, 669, 13, 27110, 312, 69, 198, 198, 492, 1960, 420, 31172, 3712, 2710, 46536, 13, 19608, 292, 2203, 13, 28961, 13, 19738, 669, 13, 24455, 62, 13083, 198, 198, 37811, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 10688, 1330, 2604, 198, 198, 6738, 11485, 19608, 292, 1668, 1330, 16092, 292, 1668, 628, 198, 4871, 48700, 312, 69, 7, 27354, 292, 1668, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9683, 82, 257, 24637, 286, 257, 8373, 3084, 1912, 319, 3381, 10361, 290, 8991, 198, 220, 220, 220, 24958, 12, 72, 8068, 3463, 278, 13, 628, 220, 220, 220, 1058, 48944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 19608, 292, 1668, 1058, 1058, 4871, 25, 63, 18218, 46536, 13, 27354, 292, 1668, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 19395, 1668, 326, 18616, 257, 8633, 286, 3381, 8373, 9853, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 38707, 1058, 4600, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 2846, 326, 481, 307, 6163, 13, 220, 383, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 262, 4511, 27111, 10552, 287, 257, 6167, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 6163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3463, 1058, 4600, 30388, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10358, 24958, 12, 72, 8068, 3463, 278, 307, 5625, 284, 5072, 9853, 30, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 1058, 4600, 30388, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14435, 1096, 9853, 284, 657, 357, 1662, 287, 3188, 8, 290, 352, 357, 259, 3188, 737, 220, 5740, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 4633, 19998, 481, 307, 11513, 284, 532, 16, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1438, 329, 262, 19395, 1668, 13, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 8106, 62, 13083, 7, 27354, 292, 1668, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9683, 82, 257, 24637, 286, 3033, 357, 2539, 14, 27160, 8, 1912, 257, 900, 286, 8251, 13, 628, 220, 220, 220, 1058, 48944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 19608, 292, 1668, 1058, 1058, 4871, 25, 63, 18218, 46536, 13, 27354, 292, 1668, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 19395, 1668, 326, 18616, 257, 3084, 1390, 691, 262, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 1058, 4600, 2676, 540, 63, 357, 4600, 17831, 540, 63, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 8251, 284, 2922, 422, 262, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4600, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1438, 329, 262, 19395, 1668, 13, 198, 220, 220, 220, 37227, 198 ]
2.637821
624
import argparse import logging import os import time from .helper import notify from .state import QuitNow, TimedState if __name__ == '__main__': logging.basicConfig(format='%(asctime)s: %(message)s', level=logging.INFO) main()
[ 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 640, 198, 198, 6738, 764, 2978, 525, 1330, 19361, 198, 6738, 764, 5219, 1330, 48887, 3844, 11, 5045, 276, 9012, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 25, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 1388, 3419, 198 ]
2.892857
84
import os import scipy.misc # import numpy as np from model import DCGAN from utils import pp, visualize, to_json, show_all_variables import tensorflow as tf flags = tf.app.flags flags.DEFINE_integer("epoch", 25, "Epoch to train [25]") flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]") flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]") flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]") flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]") flags.DEFINE_integer("input_height", 108, "The size of image to use (will be center cropped). [108]") flags.DEFINE_integer("input_width", None, "The size of image to use (will be center cropped). If None, same value as input_height [None]") flags.DEFINE_integer("output_height", 64, "The size of the output images to produce [64]") flags.DEFINE_integer("output_width", None, "The size of the output images to produce. If None, same value as output_height [None]") flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, mnist, lsun]") flags.DEFINE_string("input_fname_pattern", "*.jpg", "Glob pattern of filename of input images [*]") flags.DEFINE_string("checkpoint_dir", "checkpoint", "Directory name to save the checkpoints [checkpoint]") flags.DEFINE_string("sample_dir", "samples", "Directory name to save the image samples [samples]") flags.DEFINE_boolean("train", False, "True for training, False for testing [False]") flags.DEFINE_boolean("crop", False, "True for training, False for testing [False]") flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]") FLAGS = flags.FLAGS
[ 11748, 28686, 198, 11748, 629, 541, 88, 13, 44374, 1303, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2746, 1330, 6257, 45028, 198, 6738, 3384, 4487, 1330, 9788, 11, 38350, 11, 284, 62, 17752, 11, 905, 62, 439, 62, 25641, 2977, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 33152, 796, 48700, 13, 1324, 13, 33152, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 538, 5374, 1600, 1679, 11, 366, 13807, 5374, 284, 4512, 685, 1495, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 40684, 62, 4873, 1600, 657, 13, 34215, 11, 366, 41730, 2494, 286, 329, 23197, 685, 15, 13, 34215, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 31361, 16, 1600, 657, 13, 20, 11, 366, 29252, 298, 388, 3381, 286, 23197, 685, 15, 13, 20, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 27432, 62, 7857, 1600, 45941, 13, 10745, 11, 366, 464, 2546, 286, 4512, 4263, 685, 37659, 13, 10745, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 43501, 62, 7857, 1600, 5598, 11, 366, 464, 2546, 286, 15458, 4263, 685, 2414, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 15414, 62, 17015, 1600, 15495, 11, 366, 464, 2546, 286, 2939, 284, 779, 357, 10594, 307, 3641, 48998, 737, 685, 15711, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 15414, 62, 10394, 1600, 6045, 11, 366, 464, 2546, 286, 2939, 284, 779, 357, 10594, 307, 3641, 48998, 737, 1002, 6045, 11, 976, 1988, 355, 5128, 62, 17015, 685, 14202, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22915, 62, 17015, 1600, 5598, 11, 366, 464, 2546, 286, 262, 5072, 4263, 284, 4439, 685, 2414, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22915, 62, 10394, 1600, 6045, 11, 366, 464, 2546, 286, 262, 5072, 4263, 284, 4439, 13, 1002, 6045, 11, 976, 1988, 355, 5072, 62, 17015, 685, 14202, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 19608, 292, 316, 1600, 366, 49840, 65, 32, 1600, 366, 464, 1438, 286, 27039, 685, 49840, 65, 32, 11, 285, 77, 396, 11, 300, 19155, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 15414, 62, 69, 3672, 62, 33279, 1600, 366, 24620, 9479, 1600, 366, 9861, 672, 3912, 286, 29472, 286, 5128, 4263, 36338, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 9122, 4122, 62, 15908, 1600, 366, 9122, 4122, 1600, 366, 43055, 1438, 284, 3613, 262, 36628, 685, 9122, 4122, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 39873, 62, 15908, 1600, 366, 82, 12629, 1600, 366, 43055, 1438, 284, 3613, 262, 2939, 8405, 685, 82, 12629, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 27432, 1600, 10352, 11, 366, 17821, 329, 3047, 11, 10352, 329, 4856, 685, 25101, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 31476, 1600, 10352, 11, 366, 17821, 329, 3047, 11, 10352, 329, 4856, 685, 25101, 60, 4943, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 41464, 1096, 1600, 10352, 11, 366, 17821, 329, 5874, 2890, 11, 10352, 329, 2147, 685, 25101, 60, 4943, 198, 38948, 50, 796, 9701, 13, 38948, 50 ]
3.144737
532
from .base_3droi_head import Base3DRoIHead from .bbox_heads import PartA2BboxHead from .mask_heads import PointwiseSemanticHead from .part_aggregation_roi_head import PartAggregationROIHead from .roi_extractors import Single3DRoIAwareExtractor, SingleRoIExtractor __all__ = [ 'Base3DRoIHead', 'PartAggregationROIHead', 'PointwiseSemanticHead', 'Single3DRoIAwareExtractor', 'PartA2BboxHead', 'SingleRoIExtractor' ]
[ 6738, 764, 8692, 62, 18, 22285, 72, 62, 2256, 1330, 7308, 18, 7707, 78, 40, 13847, 198, 6738, 764, 65, 3524, 62, 16600, 1330, 2142, 32, 17, 33, 3524, 13847, 198, 6738, 764, 27932, 62, 16600, 1330, 6252, 3083, 13900, 5109, 13847, 198, 6738, 764, 3911, 62, 9460, 43068, 62, 305, 72, 62, 2256, 1330, 2142, 46384, 43068, 13252, 40, 13847, 198, 6738, 764, 305, 72, 62, 2302, 974, 669, 1330, 14206, 18, 7707, 78, 3539, 1574, 11627, 40450, 11, 14206, 15450, 10008, 742, 40450, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 14881, 18, 7707, 78, 40, 13847, 3256, 705, 7841, 46384, 43068, 13252, 40, 13847, 3256, 705, 12727, 3083, 13900, 5109, 13847, 3256, 198, 220, 220, 220, 705, 28008, 18, 7707, 78, 3539, 1574, 11627, 40450, 3256, 705, 7841, 32, 17, 33, 3524, 13847, 3256, 705, 28008, 15450, 10008, 742, 40450, 6, 198, 60, 198 ]
2.801325
151
from pathlib import Path import pytest @pytest.fixture # type: ignore
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 69, 9602, 220, 1303, 2099, 25, 8856, 198 ]
3.083333
24
# path: lib/processors # filename: loop.py # description: WSGI application image file processors ''' # make python2 strings and dictionaries behave like python3 from __future__ import unicode_literals try: from builtins import dict, str except ImportError: from __builtin__ import dict, str Copyright 2017 Mark Madere Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' external imports ''' import copy ''' internal imports ''' import classes.processor ''' classes ''' class Loop(classes.processor.Processor): ''' Description: Loop over a set of data to do more processing Usage: type: lib.processors.loop.Loop '''
[ 2, 3108, 25, 9195, 14, 14681, 669, 198, 2, 29472, 25, 9052, 13, 9078, 198, 2, 6764, 25, 25290, 18878, 3586, 2939, 2393, 20399, 198, 7061, 6, 220, 198, 2, 787, 21015, 17, 13042, 290, 48589, 3166, 17438, 588, 21015, 18, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 28311, 25, 198, 197, 6738, 3170, 1040, 1330, 8633, 11, 965, 198, 16341, 17267, 12331, 25, 198, 197, 6738, 11593, 18780, 259, 834, 1330, 8633, 11, 965, 198, 197, 628, 197, 15269, 2177, 2940, 4627, 567, 628, 197, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 197, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 197, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 197, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 628, 197, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 197, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 197, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 197, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 197, 2475, 20597, 739, 262, 13789, 13, 198, 7061, 6, 198, 198, 7061, 6, 7097, 17944, 198, 7061, 6, 198, 11748, 4866, 198, 198, 7061, 6, 5387, 17944, 198, 7061, 6, 198, 11748, 6097, 13, 41341, 198, 198, 7061, 6, 6097, 198, 7061, 6, 198, 4871, 26304, 7, 37724, 13, 41341, 13, 18709, 273, 2599, 628, 197, 7061, 6, 198, 197, 11828, 25, 198, 197, 197, 198, 197, 197, 39516, 625, 257, 900, 286, 1366, 284, 466, 517, 7587, 198, 197, 198, 197, 28350, 25, 198, 197, 198, 197, 197, 4906, 25, 9195, 13, 14681, 669, 13, 26268, 13, 39516, 198, 197, 7061, 6 ]
3.478395
324
''' Copyright 2015 Serendio Inc. Author - Satish Palaniappan Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' __author__ = "Satish Palaniappan" import numpy as np from sklearn import cluster, datasets, preprocessing import pickle import gensim import time import re import tokenize from scipy import spatial # 3M word google dataset of pretrained 300D vectors model = gensim.models.Word2Vec.load_word2vec_format('vectors.bin', binary=True) model.init_sims(replace=True) #### getting all vecs from w2v using the inbuilt syn0 list see code # X = model.syn0 # ### scaling feature vecs # min_max_scaler = preprocessing.MinMaxScaler() # X_Scaled_Feature_Vecs = min_max_scaler.fit_transform(X) # X_Scaled_Feature_Vecs = X # W2V = dict(zip(model.vocab, X_Scaled_Feature_Vecs)) #Cosine Distance # from scipy import spatial # dataSetI = model["travel"] # dataSetII = model["travelling"] # result = 1 - spatial.distance.cosine(dataSetI, dataSetII) # print(result) X_Scaled_Feature_Vecs=[] for word in model.vocab: X_Scaled_Feature_Vecs.append(model[word]) # ######## Interested Categories cat = [ "advertising", "beauty", "business", "celebrity", "diy craft", "entertainment", "family", "fashion", "food", "general", "health", "lifestyle", "music", "news", "pop", "culture", "social", "media", "sports", "technology", "travel", "video games" ] nums = range(0,22) num2cat = dict(zip(nums, cat)) catVec=[] # load from C file output for c in cat: try: catVec.append(model[c.lower()]) except: words = c.split() A = np.add(np.array(model[words[0].lower()]),np.array(model[words[1].lower()])) M = np.multiply(A,A) lent=0 for i in M: lent+=i V = np.divide(A,lent) catVec.append(list(V)) # kmeans ##### better code t0 = time.time() # Assign Max_Iter to 1 (ONE) if u just want to fit vectors around seeds kmeans = cluster.KMeans(n_clusters=22, init=np.array(catVec), max_iter=1).fit(X_Scaled_Feature_Vecs) #kmeans = cluster.KMeans(n_clusters=22, init=np.array(catVec), max_iter=900).fit(X_Scaled_Feature_Vecs) print(str(time.time()-t0)) print(kmeans.inertia_) ###### After Fiting the Cluster Centers are recomputed : update catVec (Order Preserved) catVec = kmeans.cluster_centers_ # #test # for c in catVec: # print(num2cat[kmeans.predict(c)[0]]) ##### save best for future use save_obj(kmeans,"clusterSmall") KM = load_obj("clusterSmall") # Cluster_lookUP = dict(zip(model.vocab, KM.labels_)) Cluster_lookUP = dict() for word in model.vocab: Cluster_lookUP[word] = KM.predict(model[word])[0] ## Precomputing the cosine similarities Cosine_Similarity = dict() for k in Cluster_lookUP.keys(): Cosine_Similarity[k] = 1 - spatial.distance.cosine(model[k], catVec[Cluster_lookUP[k]]) #check print(num2cat[Cluster_lookUP["flight"]] + " "+str(Cosine_Similarity["flight"])) print(num2cat[Cluster_lookUP["gamecube"]] +" "+str(Cosine_Similarity["gamecube"])) #Saving Models save_obj(Cluster_lookUP,"Cluster_lookUP") save_obj(Cosine_Similarity,"Cosine_Similarity") save_obj(num2cat,"num2cat") save_obj(catVec,"catVec")
[ 7061, 6, 198, 15269, 1853, 30175, 358, 952, 3457, 13, 198, 13838, 532, 7031, 680, 3175, 5411, 381, 272, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 4023, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 43776, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 7061, 6, 198, 834, 9800, 834, 796, 366, 20245, 680, 3175, 5411, 381, 272, 1, 628, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1341, 35720, 1330, 13946, 11, 40522, 11, 662, 36948, 198, 11748, 2298, 293, 198, 11748, 308, 641, 320, 198, 11748, 640, 198, 11748, 302, 198, 11748, 11241, 1096, 198, 6738, 629, 541, 88, 1330, 21739, 628, 198, 2, 513, 44, 1573, 23645, 27039, 286, 2181, 13363, 5867, 35, 30104, 198, 19849, 796, 308, 641, 320, 13, 27530, 13, 26449, 17, 53, 721, 13, 2220, 62, 4775, 17, 35138, 62, 18982, 10786, 303, 5217, 13, 8800, 3256, 13934, 28, 17821, 8, 198, 19849, 13, 15003, 62, 82, 12078, 7, 33491, 28, 17821, 8, 198, 198, 4242, 1972, 477, 1569, 6359, 422, 266, 17, 85, 1262, 262, 287, 18780, 6171, 15, 1351, 766, 2438, 198, 198, 2, 1395, 796, 2746, 13, 28869, 15, 198, 198, 2, 44386, 20796, 3895, 1569, 6359, 198, 2, 949, 62, 9806, 62, 1416, 36213, 796, 662, 36948, 13, 9452, 11518, 3351, 36213, 3419, 198, 2, 1395, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 796, 949, 62, 9806, 62, 1416, 36213, 13, 11147, 62, 35636, 7, 55, 8, 198, 198, 2, 1395, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 796, 1395, 198, 198, 2, 370, 17, 53, 796, 8633, 7, 13344, 7, 19849, 13, 18893, 397, 11, 1395, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 4008, 198, 198, 2, 36734, 500, 34600, 198, 2, 422, 629, 541, 88, 1330, 21739, 198, 198, 2, 1366, 7248, 40, 796, 2746, 14692, 35927, 8973, 198, 2, 1366, 7248, 3978, 796, 2746, 14692, 83, 5758, 2680, 8973, 198, 2, 1255, 796, 352, 532, 21739, 13, 30246, 13, 6966, 500, 7, 7890, 7248, 40, 11, 1366, 7248, 3978, 8, 198, 2, 3601, 7, 20274, 8, 198, 198, 55, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 28, 21737, 198, 1640, 1573, 287, 2746, 13, 18893, 397, 25, 198, 220, 220, 220, 1395, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 13, 33295, 7, 19849, 58, 4775, 12962, 198, 198, 2, 46424, 21017, 12033, 276, 45486, 198, 9246, 796, 685, 198, 1, 34442, 1600, 198, 1, 40544, 88, 1600, 198, 1, 22680, 1600, 198, 1, 49840, 1671, 414, 1600, 198, 1, 67, 7745, 5977, 1600, 198, 1, 298, 1425, 434, 1600, 198, 1, 17989, 1600, 198, 1, 25265, 1600, 198, 1, 19425, 1600, 198, 1, 24622, 1600, 198, 1, 13948, 1600, 198, 1, 75, 42004, 1600, 198, 1, 28965, 1600, 198, 1, 10827, 1600, 198, 1, 12924, 1600, 198, 1, 25584, 1600, 198, 1, 14557, 1600, 198, 1, 11431, 1600, 198, 1, 32945, 1600, 198, 1, 45503, 1600, 198, 1, 35927, 1600, 198, 1, 15588, 1830, 1, 198, 60, 198, 198, 77, 5700, 796, 2837, 7, 15, 11, 1828, 8, 198, 22510, 17, 9246, 796, 8633, 7, 13344, 7, 77, 5700, 11, 3797, 4008, 198, 198, 9246, 53, 721, 28, 21737, 198, 2, 3440, 422, 327, 2393, 5072, 198, 1640, 269, 287, 3797, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3797, 53, 721, 13, 33295, 7, 19849, 58, 66, 13, 21037, 3419, 12962, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 269, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 45941, 13, 2860, 7, 37659, 13, 18747, 7, 19849, 58, 10879, 58, 15, 4083, 21037, 3419, 46570, 37659, 13, 18747, 7, 19849, 58, 10879, 58, 16, 4083, 21037, 3419, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 337, 796, 45941, 13, 16680, 541, 306, 7, 32, 11, 32, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26269, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 337, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26269, 47932, 72, 198, 220, 220, 220, 220, 220, 220, 220, 569, 796, 45941, 13, 7146, 485, 7, 32, 11, 75, 298, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3797, 53, 721, 13, 33295, 7, 4868, 7, 53, 4008, 198, 2, 479, 1326, 504, 198, 4242, 2, 1365, 2438, 198, 83, 15, 796, 640, 13, 2435, 3419, 198, 2, 2195, 570, 5436, 62, 29993, 284, 352, 357, 11651, 8, 611, 334, 655, 765, 284, 4197, 30104, 1088, 11904, 198, 74, 1326, 504, 796, 13946, 13, 42, 5308, 504, 7, 77, 62, 565, 13654, 28, 1828, 11, 2315, 28, 37659, 13, 18747, 7, 9246, 53, 721, 828, 3509, 62, 2676, 28, 16, 737, 11147, 7, 55, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 8, 198, 2, 74, 1326, 504, 796, 13946, 13, 42, 5308, 504, 7, 77, 62, 565, 13654, 28, 1828, 11, 2315, 28, 37659, 13, 18747, 7, 9246, 53, 721, 828, 3509, 62, 2676, 28, 12865, 737, 11147, 7, 55, 62, 3351, 3021, 62, 38816, 62, 53, 721, 82, 8, 198, 4798, 7, 2536, 7, 2435, 13, 2435, 3419, 12, 83, 15, 4008, 198, 4798, 7, 74, 1326, 504, 13, 259, 861, 544, 62, 8, 628, 198, 4242, 2235, 2293, 376, 1780, 262, 38279, 22223, 389, 664, 296, 17128, 1058, 4296, 3797, 53, 721, 357, 18743, 1763, 8520, 8, 198, 9246, 53, 721, 796, 479, 1326, 504, 13, 565, 5819, 62, 1087, 364, 62, 198, 198, 2, 1303, 9288, 198, 2, 329, 269, 287, 3797, 53, 721, 25, 198, 2, 220, 220, 220, 220, 3601, 7, 22510, 17, 9246, 58, 74, 1326, 504, 13, 79, 17407, 7, 66, 38381, 15, 11907, 8, 198, 198, 4242, 2, 3613, 1266, 329, 2003, 779, 198, 21928, 62, 26801, 7, 74, 1326, 504, 553, 565, 5819, 18712, 4943, 198, 42, 44, 796, 3440, 62, 26801, 7203, 565, 5819, 18712, 4943, 198, 2, 38279, 62, 5460, 8577, 796, 8633, 7, 13344, 7, 19849, 13, 18893, 397, 11, 46646, 13, 23912, 1424, 62, 4008, 198, 2601, 5819, 62, 5460, 8577, 796, 8633, 3419, 198, 1640, 1573, 287, 2746, 13, 18893, 397, 25, 198, 220, 220, 220, 38279, 62, 5460, 8577, 58, 4775, 60, 796, 46646, 13, 79, 17407, 7, 19849, 58, 4775, 12962, 58, 15, 60, 198, 198, 2235, 3771, 785, 48074, 262, 8615, 500, 20594, 198, 198, 36734, 500, 62, 18925, 414, 796, 8633, 3419, 198, 1640, 479, 287, 38279, 62, 5460, 8577, 13, 13083, 33529, 198, 220, 220, 220, 10437, 500, 62, 18925, 414, 58, 74, 60, 796, 352, 532, 21739, 13, 30246, 13, 6966, 500, 7, 19849, 58, 74, 4357, 3797, 53, 721, 58, 2601, 5819, 62, 5460, 8577, 58, 74, 11907, 8, 198, 198, 2, 9122, 198, 4798, 7, 22510, 17, 9246, 58, 2601, 5819, 62, 5460, 8577, 14692, 22560, 8973, 60, 1343, 366, 220, 220, 43825, 2536, 7, 36734, 500, 62, 18925, 414, 14692, 22560, 8973, 4008, 198, 4798, 7, 22510, 17, 9246, 58, 2601, 5819, 62, 5460, 8577, 14692, 6057, 40296, 8973, 60, 1343, 1, 220, 220, 43825, 2536, 7, 36734, 500, 62, 18925, 414, 14692, 6057, 40296, 8973, 4008, 198, 198, 2, 50, 2703, 32329, 198, 21928, 62, 26801, 7, 2601, 5819, 62, 5460, 8577, 553, 2601, 5819, 62, 5460, 8577, 4943, 198, 21928, 62, 26801, 7, 36734, 500, 62, 18925, 414, 553, 36734, 500, 62, 18925, 414, 4943, 198, 21928, 62, 26801, 7, 22510, 17, 9246, 553, 22510, 17, 9246, 4943, 198, 21928, 62, 26801, 7, 9246, 53, 721, 553, 9246, 53, 721, 4943, 198 ]
2.620262
1,372
from pgpelib.restore import to_torch_module from typing import List, Optional import sys import torch from torch import nn import numpy as np import gym import pybullet_envs from time import sleep from copy import deepcopy if __name__ == "__main__": main(*(sys.argv[1:]))
[ 6738, 23241, 30242, 571, 13, 2118, 382, 1330, 284, 62, 13165, 354, 62, 21412, 198, 6738, 19720, 1330, 7343, 11, 32233, 198, 11748, 25064, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11550, 198, 11748, 12972, 15065, 1616, 62, 268, 14259, 198, 6738, 640, 1330, 3993, 198, 6738, 4866, 1330, 2769, 30073, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 46491, 7, 17597, 13, 853, 85, 58, 16, 47715, 4008, 628 ]
3.122222
90
import pickle import numpy as np # import garage.misc.logger as logger from dowel import logger from dowel import tabular import ast_toolbox.mcts.MDP as MDP class ASTParams: """Structure that stores internal parameters for AST. Parameters ---------- max_steps : int, optional The maximum search depth. """ class AdaptiveStressTest: """The AST wrapper for MCTS using the actions in env.action_space. Parameters ---------- p : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTParams` The AST parameters env : :py:class:`ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv`. The environment. top_paths : :py:class:`ast_toolbox.mcts.BoundedPriorityQueues`, optional The bounded priority queue to store top-rewarded trajectories. """ def reset_step_count(self): """Reset the env step count. """ self.step_count = 0 def initialize(self): """Initialize training variables. Returns ---------- env_reset : The reset result from the env. """ self._isterminal = False self._reward = 0.0 self.action_seq = [] self.trajectory_reward = 0.0 return self.env.reset() def update(self, action): """Update the environment as well as the assosiated parameters. Parameters ---------- action : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTAction` The AST action. Returns ---------- obs : :py:class:`numpy.ndarry` The observation from the env step. reward : float The reward from the env step. done : bool The terminal indicator from the env step. info : dict The env info from the env step. """ self.step_count += 1 obs, reward, done, info = self.env.step(action.get()) self._isterminal = done self._reward = reward self.action_seq.append(action) self.trajectory_reward += reward if done: self.top_paths.enqueue(self.action_seq, self.trajectory_reward, make_copy=True) self.logging() return obs, reward, done, info def logging(self): """Logging the training information. """ if self.params.log_tabular and self.iter <= self.params.n_itr: if self.step_count % self.params.log_interval == 0: self.iter += 1 logger.log(' ') tabular.record('StepNum', self.step_count) record_num = 0 if self.params.log_dir is not None: if self.step_count == self.params.log_interval: # first time logging best_actions = [] else: with open(self.params.log_dir + '/best_actions.p', 'rb') as f: best_actions = pickle.load(f) best_actions.append(np.array([x.get() for x in self.top_paths.pq[0][0]])) with open(self.params.log_dir + '/best_actions.p', 'wb') as f: pickle.dump(best_actions, f) for (topi, path) in enumerate(self.top_paths): tabular.record('reward ' + str(topi), path[1]) record_num += 1 for topi_left in range(record_num, self.top_paths.N): tabular.record('reward ' + str(topi_left), 0) logger.log(tabular) logger.dump_all(self.step_count) tabular.clear() def isterminal(self): """Check whether the current path is finished. Returns ---------- isterinal : bool Whether the current path is finished. """ return self._isterminal def get_reward(self): """Get the current AST reward. Returns ---------- reward : bool The AST reward. """ return self._reward def random_action(self): """Randomly sample an action for the rollout. Returns ---------- action : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTAction` The sampled action. """ return ASTAction(self.env.action_space.sample()) def explore_action(self, s, tree): """Randomly sample an action for the exploration. Parameters ---------- s : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTState` The current state. tree : dict The searching tree. Returns ---------- action : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTAction` The sampled action. """ return ASTAction(self.env.action_space.sample()) def transition_model(self): """Generate the transition model used in MCTS. Returns ---------- transition_model : :py:class:`ast_toolbox.mcts.MDP.TransitionModel` The transition model. """ return MDP.TransitionModel(get_initial_state, get_next_state, isterminal, self.params.max_steps, go_to_state) class ASTState: """The AST state. Parameters ---------- t_index : int The index of the timestep. parent : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTState` The parent state. action : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTAction` The action leading to this state. """ def __hash__(self): """The redefined hashing method. Returns ---------- hash : int The hashing result. """ if self.parent is None: return hash((self.t_index, None, hash(self.action))) else: return hash((self.t_index, self.parent.hash, hash(self.action))) def __eq__(self, other): """The redefined equal method. Returns ---------- is_equal : bool Whether the two states are equal. """ return hash(self) == hash(other) def get_action_sequence(s): """Get the action sequence that leads to the state. Parameters ---------- s : :py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTState` The target state. Returns ---------- actions : list[:py:class:`ast_toolbox.mcts.AdaptiveStressTesting.ASTAction`] The action sequences leading to the target state. """ actions = [] while s.parent is not None: actions.append(s.action) s = s.parent actions = list(reversed(actions)) return actions
[ 11748, 2298, 293, 198, 198, 11748, 299, 32152, 355, 45941, 198, 2, 1330, 15591, 13, 44374, 13, 6404, 1362, 355, 49706, 198, 6738, 47276, 417, 1330, 49706, 198, 6738, 47276, 417, 1330, 7400, 934, 198, 198, 11748, 6468, 62, 25981, 3524, 13, 76, 310, 82, 13, 44, 6322, 355, 337, 6322, 628, 198, 4871, 29273, 10044, 4105, 25, 198, 220, 220, 220, 37227, 1273, 5620, 326, 7000, 5387, 10007, 329, 29273, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3509, 62, 20214, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 2989, 6795, 13, 628, 220, 220, 220, 37227, 628, 198, 4871, 30019, 425, 1273, 601, 14402, 25, 198, 220, 220, 220, 37227, 464, 29273, 29908, 329, 337, 4177, 50, 1262, 262, 4028, 287, 17365, 13, 2673, 62, 13200, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 279, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 7250, 283, 4105, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 29273, 10007, 198, 220, 220, 220, 17365, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 268, 14259, 13, 2188, 62, 20676, 382, 62, 459, 62, 24330, 13, 5247, 35433, 11262, 4834, 85, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2858, 13, 198, 220, 220, 220, 1353, 62, 6978, 82, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 33, 6302, 22442, 414, 15681, 947, 47671, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 49948, 8475, 16834, 284, 3650, 1353, 12, 260, 904, 276, 20134, 1749, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 13259, 62, 9662, 62, 9127, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 262, 17365, 2239, 954, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 9127, 796, 657, 628, 220, 220, 220, 825, 41216, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 3047, 9633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 17365, 62, 42503, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 13259, 1255, 422, 262, 17365, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1694, 1084, 282, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 260, 904, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2673, 62, 41068, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9535, 752, 652, 62, 260, 904, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 24330, 13, 42503, 3419, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 2223, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 2858, 355, 880, 355, 262, 840, 418, 12931, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 5603, 596, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 29273, 2223, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 1058, 1058, 9078, 25, 4871, 25, 63, 77, 32152, 13, 358, 6532, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 13432, 422, 262, 17365, 2239, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 6721, 422, 262, 17365, 2239, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1760, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 12094, 16916, 422, 262, 17365, 2239, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 17365, 7508, 422, 262, 17365, 2239, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 9127, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10201, 11, 6721, 11, 1760, 11, 7508, 796, 2116, 13, 24330, 13, 9662, 7, 2673, 13, 1136, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1694, 1084, 282, 796, 1760, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 260, 904, 796, 6721, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2673, 62, 41068, 13, 33295, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9535, 752, 652, 62, 260, 904, 15853, 6721, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4852, 62, 6978, 82, 13, 268, 36560, 7, 944, 13, 2673, 62, 41068, 11, 2116, 13, 9535, 752, 652, 62, 260, 904, 11, 787, 62, 30073, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 2667, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10201, 11, 6721, 11, 1760, 11, 7508, 628, 220, 220, 220, 825, 18931, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11187, 2667, 262, 3047, 1321, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 37266, 13, 6404, 62, 8658, 934, 290, 2116, 13, 2676, 19841, 2116, 13, 37266, 13, 77, 62, 270, 81, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9662, 62, 9127, 4064, 2116, 13, 37266, 13, 6404, 62, 3849, 2100, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2676, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 6404, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 934, 13, 22105, 10786, 8600, 33111, 3256, 2116, 13, 9662, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 22510, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 37266, 13, 6404, 62, 15908, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9662, 62, 9127, 6624, 2116, 13, 37266, 13, 6404, 62, 3849, 2100, 25, 220, 1303, 717, 640, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 4658, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 37266, 13, 6404, 62, 15908, 1343, 31051, 13466, 62, 4658, 13, 79, 3256, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 4658, 796, 2298, 293, 13, 2220, 7, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 4658, 13, 33295, 7, 37659, 13, 18747, 26933, 87, 13, 1136, 3419, 329, 2124, 287, 2116, 13, 4852, 62, 6978, 82, 13, 79, 80, 58, 15, 7131, 15, 11907, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 37266, 13, 6404, 62, 15908, 1343, 31051, 13466, 62, 4658, 13, 79, 3256, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 13466, 62, 4658, 11, 277, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 4852, 72, 11, 3108, 8, 287, 27056, 378, 7, 944, 13, 4852, 62, 6978, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 934, 13, 22105, 10786, 260, 904, 705, 1343, 965, 7, 4852, 72, 828, 3108, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 22510, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1353, 72, 62, 9464, 287, 2837, 7, 22105, 62, 22510, 11, 2116, 13, 4852, 62, 6978, 82, 13, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 934, 13, 22105, 10786, 260, 904, 705, 1343, 965, 7, 4852, 72, 62, 9464, 828, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 6404, 7, 8658, 934, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 39455, 62, 439, 7, 944, 13, 9662, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 934, 13, 20063, 3419, 628, 220, 220, 220, 825, 318, 23705, 282, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 1771, 262, 1459, 3108, 318, 5201, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 318, 353, 1292, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 1459, 3108, 318, 5201, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1694, 1084, 282, 628, 220, 220, 220, 825, 651, 62, 260, 904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 1459, 29273, 6721, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 29273, 6721, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 260, 904, 628, 220, 220, 220, 825, 4738, 62, 2673, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29531, 306, 6291, 281, 2223, 329, 262, 38180, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 5603, 596, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 35846, 2223, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29273, 12502, 7, 944, 13, 24330, 13, 2673, 62, 13200, 13, 39873, 28955, 628, 220, 220, 220, 825, 7301, 62, 2673, 7, 944, 11, 264, 11, 5509, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29531, 306, 6291, 281, 2223, 329, 262, 13936, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 264, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 11262, 9012, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1459, 1181, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10342, 5509, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 5603, 596, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 35846, 2223, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29273, 12502, 7, 944, 13, 24330, 13, 2673, 62, 13200, 13, 39873, 28955, 628, 220, 220, 220, 825, 6801, 62, 19849, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 378, 262, 6801, 2746, 973, 287, 337, 4177, 50, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6801, 62, 19849, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 44, 6322, 13, 8291, 653, 17633, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 6801, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 337, 6322, 13, 8291, 653, 17633, 7, 1136, 62, 36733, 62, 5219, 11, 651, 62, 19545, 62, 5219, 11, 318, 23705, 282, 11, 2116, 13, 37266, 13, 9806, 62, 20214, 11, 467, 62, 1462, 62, 5219, 8, 628, 198, 4871, 29273, 9012, 25, 198, 220, 220, 220, 37227, 464, 29273, 1181, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 256, 62, 9630, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6376, 286, 262, 4628, 395, 538, 13, 198, 220, 220, 220, 2560, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 11262, 9012, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2560, 1181, 13, 198, 220, 220, 220, 2223, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 5603, 596, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2223, 3756, 284, 428, 1181, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 17831, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 2266, 18156, 49544, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 12234, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 49544, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 8000, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12234, 19510, 944, 13, 83, 62, 9630, 11, 6045, 11, 12234, 7, 944, 13, 2673, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12234, 19510, 944, 13, 83, 62, 9630, 11, 2116, 13, 8000, 13, 17831, 11, 12234, 7, 944, 13, 2673, 22305, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 2266, 18156, 4961, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 40496, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 734, 2585, 389, 4961, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12234, 7, 944, 8, 6624, 12234, 7, 847, 8, 628, 198, 198, 4299, 651, 62, 2673, 62, 43167, 7, 82, 2599, 198, 220, 220, 220, 37227, 3855, 262, 2223, 8379, 326, 5983, 284, 262, 1181, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 264, 1058, 1058, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 11262, 9012, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2496, 1181, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4028, 1058, 1351, 58, 25, 9078, 25, 4871, 25, 63, 459, 62, 25981, 3524, 13, 76, 310, 82, 13, 48003, 425, 1273, 601, 44154, 13, 1921, 5603, 596, 63, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2223, 16311, 3756, 284, 262, 2496, 1181, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4028, 796, 17635, 198, 220, 220, 220, 981, 264, 13, 8000, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4028, 13, 33295, 7, 82, 13, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 264, 13, 8000, 198, 220, 220, 220, 4028, 796, 1351, 7, 260, 690, 276, 7, 4658, 4008, 198, 220, 220, 220, 1441, 4028, 198 ]
2.174012
3,086
# pylama:ignore=E722,E303 import json import sys import re from functools import update_wrapper from datetime import datetime import urllib.error import urllib.parse import urllib.request import time import m3u8
[ 2, 279, 2645, 1689, 25, 46430, 28, 36, 22, 1828, 11, 36, 22572, 198, 11748, 33918, 198, 11748, 25064, 198, 11748, 302, 198, 6738, 1257, 310, 10141, 1330, 4296, 62, 48553, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 2956, 297, 571, 13, 18224, 198, 11748, 2956, 297, 571, 13, 29572, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 640, 198, 198, 11748, 285, 18, 84, 23, 628, 628, 198 ]
3.013889
72
import os import matplotlib as mpl import matplotlib.pyplot as plt from .simulator import Simulator
[ 11748, 28686, 198, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 764, 14323, 8927, 1330, 13942, 628, 198 ]
3.25
32
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for fairness indicators metrics.""" from __future__ import absolute_import from __future__ import division # Standard __future__ imports from __future__ import print_function import math from absl.testing import parameterized import apache_beam as beam from apache_beam.testing import util import numpy as np import tensorflow as tf from tensorflow_model_analysis.addons.fairness.metrics import fairness_indicators from tensorflow_model_analysis.eval_saved_model import testutil from tensorflow_model_analysis.metrics import metric_types from tensorflow_model_analysis.metrics import metric_util # Todo(b/147497357): Add counter test once we have counter setup. if __name__ == '__main__': tf.test.main()
[ 2, 15069, 12131, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 51, 3558, 329, 22692, 21337, 20731, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 2, 8997, 11593, 37443, 834, 17944, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 10688, 198, 6738, 2352, 75, 13, 33407, 1330, 11507, 1143, 198, 11748, 2471, 4891, 62, 40045, 355, 15584, 198, 6738, 2471, 4891, 62, 40045, 13, 33407, 1330, 7736, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 62, 19849, 62, 20930, 13, 39996, 13, 22043, 1108, 13, 4164, 10466, 1330, 22692, 62, 521, 44549, 198, 6738, 11192, 273, 11125, 62, 19849, 62, 20930, 13, 18206, 62, 82, 9586, 62, 19849, 1330, 1332, 22602, 198, 6738, 11192, 273, 11125, 62, 19849, 62, 20930, 13, 4164, 10466, 1330, 18663, 62, 19199, 198, 6738, 11192, 273, 11125, 62, 19849, 62, 20930, 13, 4164, 10466, 1330, 18663, 62, 22602, 628, 198, 198, 2, 309, 24313, 7, 65, 14, 20198, 38073, 27277, 2599, 3060, 3753, 1332, 1752, 356, 423, 3753, 9058, 13, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 48700, 13, 9288, 13, 12417, 3419, 198 ]
3.702857
350
#!/usr/bin/python """ ZetCode wxPython tutorial In this example we work with wx.KeyEvent. author: Jan Bodnar website: www.zetcode.com last modified: April 2018 """ import wx if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 37811, 198, 57, 316, 10669, 266, 87, 37906, 11808, 198, 198, 818, 428, 1672, 356, 670, 351, 266, 87, 13, 9218, 9237, 13, 198, 198, 9800, 25, 2365, 26285, 23955, 198, 732, 12485, 25, 7324, 13, 89, 316, 8189, 13, 785, 198, 12957, 9518, 25, 3035, 2864, 198, 37811, 198, 198, 11748, 266, 87, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.638554
83
#! /usr/bin/env python # www7.py -- display the contents of a URL in a Text widget # - set window title # - make window resizable # - update display while reading import sys import urllib from Tkinter import * main()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 7324, 22, 13, 9078, 1377, 3359, 262, 10154, 286, 257, 10289, 287, 257, 8255, 26295, 198, 2, 532, 900, 4324, 3670, 198, 2, 532, 787, 4324, 581, 13821, 198, 2, 532, 4296, 3359, 981, 3555, 198, 198, 11748, 25064, 198, 11748, 2956, 297, 571, 198, 6738, 309, 74, 3849, 1330, 1635, 198, 198, 12417, 3419, 198 ]
3.235294
68
#!/usr/bin/env python # coding: utf-8 # Copyright © 2015 Wieland Hoffmann # License: MIT, see LICENSE for details from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy.dialects.postgresql import JSONB, UUID db = SQLAlchemy()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 10673, 1853, 370, 8207, 392, 21890, 9038, 198, 2, 13789, 25, 17168, 11, 766, 38559, 24290, 329, 3307, 198, 6738, 42903, 13, 2302, 13, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 7353, 34239, 13976, 1330, 19449, 33, 11, 471, 27586, 198, 198, 9945, 796, 16363, 2348, 26599, 3419, 628 ]
2.987179
78
import torch import torch.nn as nn import numpy as np import cv2 import matplotlib.pyplot as plt a=torch.randn(6,6,3) a_s = a.numpy() im=cv2.imread('./assets/dog.jpg') plt.imshow(im) plt.show()
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 64, 28, 13165, 354, 13, 25192, 77, 7, 21, 11, 21, 11, 18, 8, 198, 64, 62, 82, 796, 257, 13, 77, 32152, 3419, 198, 198, 320, 28, 33967, 17, 13, 320, 961, 7, 4458, 14, 19668, 14, 9703, 13, 9479, 11537, 198, 489, 83, 13, 320, 12860, 7, 320, 8, 198, 489, 83, 13, 12860, 3419 ]
2.142857
91
# -*- coding: utf-8 -*- from jetfactory.schema import fields, Schema
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 12644, 69, 9548, 13, 15952, 2611, 1330, 7032, 11, 10011, 2611, 628, 628 ]
2.517241
29
import sympy
[ 11748, 10558, 88, 628, 628 ]
3.2
5
# Generated by Django 3.2.2 on 2021-05-15 19:29 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 17, 319, 33448, 12, 2713, 12, 1314, 678, 25, 1959, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
import os.path from urllib.parse import urlparse class Link: """Represents a Link on a page, links are equivalent in the following circumstances: * They have the same domain * They have the same path (after being resolved to an absolute path) * They may have diffenent schemes (so https and http of the same link are considered equivalent) * They may not have a different port (so www.example.com and www.example.com:123 are considered different Attributes: url (string): The complete url, either as the normalised original href (if the path was absolute) or as derived from combining the href of the link with the page being crawled (if the href is relative) # Design note: This class is pretty complex, but knowing any old nonsense can be in the href of the links on webpages, and my desire to ensure I can _know_ that different looking hrefs lead to the same ultimate page (and to be able to easily compare two different links, no matter what they look like, and no matter where we are in the website heirachy) leads to this complexity. If this class can be comprehensive and correct then it makes the rest of this task _much_ easier and makes it trivial to avoid graphing loops when traversing a heirarch of pages. """ url = None def __init__(self, crawled_page, href): """Initialise Args: crawled_page: The domain that is being crawled, used to construct links from relative urls href: The href of the link to parse Raises: InvalidPathError: If the href tries to escape the root of the domain UnknownSchemeError: If the href is an unknown url scheme (only http, and https are known) """ self._raw_crawled_page = crawled_page self._raw_href = href self.crawled_scheme, self.crawled_netloc, self.crawled_path, _, _, _ = urlparse(crawled_page) self.scheme, self.netloc, self.path, _, _, _ = urlparse(href) self._raw_scheme = self.scheme if self.scheme == "": self.scheme = self.crawled_scheme self._raw_netloc = self.netloc if self.netloc == "": self.netloc = self.crawled_netloc # Parse the domains and ports self.crawled_domain, self.crawled_port = self._parse_netloc(self.crawled_netloc, self.crawled_scheme) self.domain, self.port = self._parse_netloc(self.netloc, self.scheme) # Parse the subpaths self.crawled_subdir = self._parse_subdir(self.crawled_path) self.subdir = self._parse_subdir(self.path) # Construct our final absolute path if self._is_relative_path(): self.absolute_path = self._join_paths(self.crawled_subdir, self.path) else: self.absolute_path = self.path # Test for paths that are escaping from the root of the domain self.normalised_netloc_and_path = self._join_netloc_and_path() self.url = self._construct_url() def in_crawled_domain(self): """Check if the link is within the originally crawled domain Returns: bool: True if the Link is within the crawled domain """ return self.domain == self.crawled_domain def _join_paths(self, subdir, path): """Joins a subdir with a path to produce a clean, absolute path """ abspath = self._path_to_abspath(path) if subdir == "": return abspath else: return "{subdir}{abspath}".format( subdir=subdir, abspath=abspath, ) def _construct_url(self): """Return a parsed and cleaned url Returns: string: The parsed and cleaned url with only scheme, domain, port, and path parts """ if self.scheme == "": scheme_separator = "" else: scheme_separator = ":" return "{scheme}{scheme_separator}//{netloc_and_path}".format( scheme=self.scheme, scheme_separator=scheme_separator, netloc_and_path=self.normalised_netloc_and_path ) def _join_netloc_and_path(self): """Join the netlocation and the path together and normalise the path Returns: None Raises: InvalidPathError: Raised if the path tries to escape the root of the domain (like www.example.com/../../foo.html) """ # If we join the netloc and the absolute path together and then normalise the string, # if does not start with the netloc we know there was enough upwards directory # traversal to escape from the root netloc_and_path = "{netloc}{path}".format(netloc=self.netloc, path=self.absolute_path) normalised_url = os.path.normpath(netloc_and_path) if not normalised_url.startswith(self.netloc): raise InvalidPathError() return normalised_url def _is_relative_path(self): """Checks if the href is a relative path Returns: bool: True if the href was a relative url """ href_is_relative = not self._raw_href.startswith("/") return self._raw_netloc == "" and href_is_relative def _parse_subdir(self, path): """Parses the subdir from the filepath Args: path (string): The path from the url Returns: string: The subdirectory the path includes """ return os.path.dirname(path) def _parse_netloc(self, netloc, scheme): """Parse a netloc to a domain and port Args: netloc (string): The netloc of the url scheme (string): The original scheme of the url Returns: tuple(domain: str, port: int): The domain and port """ if ":" in netloc: return tuple(netloc.split(":")) else: return ( netloc, self._default_port_for_scheme(scheme), ) def _default_port_for_scheme(self, scheme): """Returnt the default port for a particular scheme """ scheme_lower_case = scheme.lower() if scheme_lower_case == "http": return 80 elif scheme_lower_case == "https": return 443 else: raise UnknownSchemeError("Unknown scheme {}".format(scheme)) def __hash__(self): """We are implementing this so we can keep a dict of all the visited links making it trivial, and O(1) operation to know if we have already crawled """ return hash(self.normalised_netloc_and_path)
[ 11748, 28686, 13, 6978, 198, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 628, 628, 198, 4871, 7502, 25, 198, 220, 220, 220, 37227, 6207, 6629, 257, 7502, 319, 257, 2443, 11, 6117, 389, 7548, 287, 262, 1708, 5917, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1119, 423, 262, 976, 7386, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1119, 423, 262, 976, 3108, 357, 8499, 852, 12939, 284, 281, 4112, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1119, 743, 423, 814, 268, 298, 16546, 357, 568, 3740, 290, 2638, 286, 262, 976, 2792, 389, 3177, 7548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 1119, 743, 407, 423, 257, 1180, 2493, 357, 568, 7324, 13, 20688, 13, 785, 290, 7324, 13, 20688, 13, 785, 25, 10163, 389, 3177, 1180, 628, 220, 220, 220, 220, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 357, 8841, 2599, 383, 1844, 19016, 11, 2035, 355, 262, 3487, 1417, 2656, 13291, 357, 361, 262, 3108, 373, 4112, 8, 393, 355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10944, 422, 19771, 262, 13291, 286, 262, 2792, 351, 262, 2443, 852, 45668, 357, 361, 262, 13291, 318, 3585, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8495, 3465, 25, 770, 1398, 318, 2495, 3716, 11, 475, 6970, 597, 1468, 18149, 460, 307, 287, 262, 13291, 286, 262, 6117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 3992, 31126, 11, 290, 616, 6227, 284, 4155, 314, 460, 4808, 16275, 62, 326, 1180, 2045, 13291, 82, 1085, 284, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8713, 2443, 357, 392, 284, 307, 1498, 284, 3538, 8996, 734, 1180, 6117, 11, 645, 2300, 644, 484, 804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 588, 11, 290, 645, 2300, 810, 356, 389, 287, 262, 3052, 28625, 35586, 8, 5983, 284, 428, 13357, 13, 1002, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 460, 307, 9815, 290, 3376, 788, 340, 1838, 262, 1334, 286, 428, 4876, 4808, 29482, 62, 4577, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1838, 340, 20861, 284, 3368, 23360, 722, 23607, 618, 33038, 278, 257, 28625, 998, 286, 5468, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19016, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 45668, 62, 7700, 11, 13291, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 786, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45668, 62, 7700, 25, 383, 7386, 326, 318, 852, 45668, 11, 973, 284, 5678, 6117, 422, 3585, 2956, 7278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13291, 25, 383, 13291, 286, 262, 2792, 284, 21136, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17665, 15235, 12331, 25, 1002, 262, 13291, 8404, 284, 6654, 262, 6808, 286, 262, 7386, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16185, 27054, 1326, 12331, 25, 1002, 262, 13291, 318, 281, 6439, 19016, 7791, 357, 8807, 2638, 11, 290, 3740, 389, 1900, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1831, 62, 66, 49263, 62, 7700, 796, 45668, 62, 7700, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1831, 62, 33257, 796, 13291, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 49263, 62, 15952, 1326, 11, 2116, 13, 66, 49263, 62, 3262, 17946, 11, 2116, 13, 66, 49263, 62, 6978, 11, 4808, 11, 4808, 11, 4808, 796, 19016, 29572, 7, 66, 49263, 62, 7700, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15952, 1326, 11, 2116, 13, 3262, 17946, 11, 2116, 13, 6978, 11, 4808, 11, 4808, 11, 4808, 796, 19016, 29572, 7, 33257, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1831, 62, 15952, 1326, 796, 2116, 13, 15952, 1326, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15952, 1326, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15952, 1326, 796, 2116, 13, 66, 49263, 62, 15952, 1326, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1831, 62, 3262, 17946, 796, 2116, 13, 3262, 17946, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3262, 17946, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3262, 17946, 796, 2116, 13, 66, 49263, 62, 3262, 17946, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 18209, 290, 14090, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 49263, 62, 27830, 11, 2116, 13, 66, 49263, 62, 634, 796, 2116, 13557, 29572, 62, 3262, 17946, 7, 944, 13, 66, 49263, 62, 3262, 17946, 11, 2116, 13, 66, 49263, 62, 15952, 1326, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27830, 11, 2116, 13, 634, 796, 2116, 13557, 29572, 62, 3262, 17946, 7, 944, 13, 3262, 17946, 11, 2116, 13, 15952, 1326, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 850, 6978, 82, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 49263, 62, 7266, 15908, 796, 2116, 13557, 29572, 62, 7266, 15908, 7, 944, 13, 66, 49263, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 15908, 796, 2116, 13557, 29572, 62, 7266, 15908, 7, 944, 13, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 674, 2457, 4112, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 271, 62, 43762, 62, 6978, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48546, 62, 6978, 796, 2116, 13557, 22179, 62, 6978, 82, 7, 944, 13, 66, 49263, 62, 7266, 15908, 11, 2116, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48546, 62, 6978, 796, 2116, 13, 6978, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 329, 13532, 326, 389, 25071, 422, 262, 6808, 286, 262, 7386, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11265, 1417, 62, 3262, 17946, 62, 392, 62, 6978, 796, 2116, 13557, 22179, 62, 3262, 17946, 62, 392, 62, 6978, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 2116, 13557, 41571, 62, 6371, 3419, 628, 220, 220, 220, 825, 287, 62, 66, 49263, 62, 27830, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 611, 262, 2792, 318, 1626, 262, 6198, 45668, 7386, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 6407, 611, 262, 7502, 318, 1626, 262, 45668, 7386, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 27830, 6624, 2116, 13, 66, 49263, 62, 27830, 628, 220, 220, 220, 825, 4808, 22179, 62, 6978, 82, 7, 944, 11, 850, 15908, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9908, 1040, 257, 850, 15908, 351, 257, 3108, 284, 4439, 257, 3424, 11, 4112, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 6978, 796, 2116, 13557, 6978, 62, 1462, 62, 397, 2777, 776, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 850, 15908, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2352, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45144, 7266, 15908, 18477, 397, 2777, 776, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 15908, 28, 7266, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2352, 6978, 28, 397, 2777, 776, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 41571, 62, 6371, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 44267, 290, 20750, 19016, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 25, 383, 44267, 290, 20750, 19016, 351, 691, 7791, 11, 7386, 11, 2493, 11, 290, 3108, 3354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15952, 1326, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7791, 62, 25512, 1352, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7791, 62, 25512, 1352, 796, 366, 11097, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 45144, 15952, 1326, 18477, 15952, 1326, 62, 25512, 1352, 92, 1003, 90, 3262, 17946, 62, 392, 62, 6978, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7791, 28, 944, 13, 15952, 1326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7791, 62, 25512, 1352, 28, 15952, 1326, 62, 25512, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 17946, 62, 392, 62, 6978, 28, 944, 13, 11265, 1417, 62, 3262, 17946, 62, 392, 62, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 22179, 62, 3262, 17946, 62, 392, 62, 6978, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18234, 262, 2010, 24886, 290, 262, 3108, 1978, 290, 3487, 786, 262, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17665, 15235, 12331, 25, 7567, 1417, 611, 262, 3108, 8404, 284, 6654, 262, 6808, 286, 262, 7386, 357, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7324, 13, 20688, 13, 785, 14, 40720, 40720, 21943, 13, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 4654, 262, 2010, 17946, 290, 262, 4112, 3108, 1978, 290, 788, 3487, 786, 262, 4731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 857, 407, 923, 351, 262, 2010, 17946, 356, 760, 612, 373, 1576, 21032, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33038, 282, 284, 6654, 422, 262, 6808, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 17946, 62, 392, 62, 6978, 796, 45144, 3262, 17946, 18477, 6978, 92, 1911, 18982, 7, 3262, 17946, 28, 944, 13, 3262, 17946, 11, 3108, 28, 944, 13, 48546, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3487, 1417, 62, 6371, 796, 28686, 13, 6978, 13, 27237, 6978, 7, 3262, 17946, 62, 392, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3487, 1417, 62, 6371, 13, 9688, 2032, 342, 7, 944, 13, 3262, 17946, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15235, 12331, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3487, 1417, 62, 6371, 628, 220, 220, 220, 825, 4808, 271, 62, 43762, 62, 6978, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7376, 4657, 611, 262, 13291, 318, 257, 3585, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20512, 25, 6407, 611, 262, 13291, 373, 257, 3585, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13291, 62, 271, 62, 43762, 796, 407, 2116, 13557, 1831, 62, 33257, 13, 9688, 2032, 342, 7203, 14, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1831, 62, 3262, 17946, 6624, 13538, 290, 13291, 62, 271, 62, 43762, 628, 220, 220, 220, 825, 4808, 29572, 62, 7266, 15908, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 945, 274, 262, 850, 15908, 422, 262, 2393, 6978, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 8841, 2599, 383, 3108, 422, 262, 19016, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 25, 383, 850, 34945, 262, 3108, 3407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 6978, 13, 15908, 3672, 7, 6978, 8, 628, 220, 220, 220, 825, 4808, 29572, 62, 3262, 17946, 7, 944, 11, 2010, 17946, 11, 7791, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10044, 325, 257, 2010, 17946, 284, 257, 7386, 290, 2493, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 17946, 357, 8841, 2599, 383, 2010, 17946, 286, 262, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7791, 357, 8841, 2599, 383, 2656, 7791, 286, 262, 19016, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 7, 27830, 25, 965, 11, 2493, 25, 493, 2599, 383, 7386, 290, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 11097, 287, 2010, 17946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 46545, 7, 3262, 17946, 13, 35312, 7, 2404, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 17946, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12286, 62, 634, 62, 1640, 62, 15952, 1326, 7, 15952, 1326, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 12286, 62, 634, 62, 1640, 62, 15952, 1326, 7, 944, 11, 7791, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 333, 429, 262, 4277, 2493, 329, 257, 1948, 7791, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7791, 62, 21037, 62, 7442, 796, 7791, 13, 21037, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7791, 62, 21037, 62, 7442, 6624, 366, 4023, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4019, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7791, 62, 21037, 62, 7442, 6624, 366, 5450, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 40384, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 16185, 27054, 1326, 12331, 7203, 20035, 7791, 23884, 1911, 18982, 7, 15952, 1326, 4008, 628, 220, 220, 220, 825, 11593, 17831, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1135, 389, 15427, 428, 523, 356, 460, 1394, 257, 8633, 286, 477, 262, 8672, 6117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1642, 340, 20861, 11, 290, 440, 7, 16, 8, 4905, 284, 760, 611, 356, 423, 1541, 45668, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12234, 7, 944, 13, 11265, 1417, 62, 3262, 17946, 62, 392, 62, 6978, 8, 198 ]
2.391381
2,854
import os from utils import tsv, www from gig2 import _utils from gig2._utils import log
[ 11748, 28686, 198, 198, 6738, 3384, 4487, 1330, 256, 21370, 11, 7324, 198, 198, 6738, 12526, 17, 1330, 4808, 26791, 198, 6738, 12526, 17, 13557, 26791, 1330, 2604, 628 ]
3.172414
29
import onnx from onnx import optimizer from onnx import numpy_helper import numpy as np import argparse DATA_TYPES = { np.float32: 1, np.float16: 10 } if __name__ == "__main__": main()
[ 11748, 319, 77, 87, 198, 6738, 319, 77, 87, 1330, 6436, 7509, 198, 6738, 319, 77, 87, 1330, 299, 32152, 62, 2978, 525, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1822, 29572, 628, 198, 26947, 62, 9936, 47, 1546, 796, 1391, 198, 220, 220, 220, 45941, 13, 22468, 2624, 25, 352, 11, 220, 198, 220, 220, 220, 45941, 13, 22468, 1433, 25, 838, 198, 92, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.348315
89
# Generated by Django 3.1.4 on 2022-03-06 18:34 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 19, 319, 33160, 12, 3070, 12, 3312, 1248, 25, 2682, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
''' Created on Jun 28, 2017 @author: make ma ''' from threading import Thread class ServerProcess(Thread): ''' classdocs '''
[ 7061, 6, 198, 41972, 319, 7653, 2579, 11, 2177, 198, 198, 31, 9800, 25, 787, 17266, 198, 7061, 6, 198, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 4871, 9652, 18709, 7, 16818, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.257143
70
import inspect from collections.abc import Coroutine as CoroutineBase from functools import partial from types import CodeType, FunctionType from typing import Any
[ 11748, 10104, 198, 6738, 17268, 13, 39305, 1330, 2744, 28399, 355, 2744, 28399, 14881, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 3858, 1330, 6127, 6030, 11, 15553, 6030, 198, 6738, 19720, 1330, 4377, 628, 628, 628, 198 ]
4.358974
39
import os, json META = None PATH = os.path.dirname(os.path.realpath(__file__)) with open(f'{PATH}/META.json') as fp: META = json.load(fp) OUTPUT = [] for index in META: transmit_range = META[index]["transmit_range"] amount_nodes = META[index]["amount_nodes"] routing_protocol = META[index]["routing_protocol"] buffer_size = META[index]["buffer_size"] overhead_ratio = None latency_avg = None delivery_prob = None try: with open(f'{PATH}/the-one/reports/DTN_Simulation_{index}_MessageStatsReport.txt') as fp: for line in fp: if 'overhead_ratio' in line: overhead_ratio = float(line.replace('overhead_ratio: ', '')) elif 'latency_avg' in line: latency_avg = float(line.replace('latency_avg: ', '')) elif 'delivery_prob' in line: delivery_prob = float(line.replace('delivery_prob: ', '')) except: pass OUTPUT.append({ "routing_protocol": routing_protocol, "transmit_range": transmit_range, "buffer_size": buffer_size, "amount_nodes": amount_nodes, "overhead_ratio": overhead_ratio, "latency_avg": latency_avg, "delivery_prob": delivery_prob, }) with open(f'{PATH}/DATA.json', 'w') as fp: json.dump(OUTPUT, fp, indent=2)
[ 11748, 28686, 11, 33918, 198, 198, 44, 20892, 796, 6045, 198, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 198, 4480, 1280, 7, 69, 6, 90, 34219, 92, 14, 44, 20892, 13, 17752, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 337, 20892, 796, 33918, 13, 2220, 7, 46428, 8, 198, 198, 2606, 7250, 3843, 796, 17635, 198, 198, 1640, 6376, 287, 337, 20892, 25, 198, 220, 220, 220, 21937, 62, 9521, 796, 337, 20892, 58, 9630, 7131, 1, 7645, 2781, 62, 9521, 8973, 198, 220, 220, 220, 2033, 62, 77, 4147, 796, 337, 20892, 58, 9630, 7131, 1, 17287, 62, 77, 4147, 8973, 198, 220, 220, 220, 28166, 62, 11235, 4668, 796, 337, 20892, 58, 9630, 7131, 1, 81, 13660, 62, 11235, 4668, 8973, 198, 220, 220, 220, 11876, 62, 7857, 796, 337, 20892, 58, 9630, 7131, 1, 22252, 62, 7857, 8973, 198, 220, 220, 220, 16965, 62, 10366, 952, 796, 6045, 198, 220, 220, 220, 24812, 62, 615, 70, 796, 6045, 198, 220, 220, 220, 7585, 62, 1676, 65, 796, 6045, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 6, 90, 34219, 92, 14, 1169, 12, 505, 14, 48922, 14, 24544, 45, 62, 8890, 1741, 23330, 9630, 92, 62, 12837, 29668, 19100, 13, 14116, 11537, 355, 277, 79, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2502, 2256, 62, 10366, 952, 6, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16965, 62, 10366, 952, 796, 12178, 7, 1370, 13, 33491, 10786, 2502, 2256, 62, 10366, 952, 25, 46083, 10148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 15460, 1387, 62, 615, 70, 6, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24812, 62, 615, 70, 796, 12178, 7, 1370, 13, 33491, 10786, 15460, 1387, 62, 615, 70, 25, 46083, 10148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 12381, 6315, 62, 1676, 65, 6, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7585, 62, 1676, 65, 796, 12178, 7, 1370, 13, 33491, 10786, 12381, 6315, 62, 1676, 65, 25, 46083, 10148, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 16289, 30076, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 366, 81, 13660, 62, 11235, 4668, 1298, 28166, 62, 11235, 4668, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7645, 2781, 62, 9521, 1298, 21937, 62, 9521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22252, 62, 7857, 1298, 11876, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17287, 62, 77, 4147, 1298, 2033, 62, 77, 4147, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2502, 2256, 62, 10366, 952, 1298, 16965, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15460, 1387, 62, 615, 70, 1298, 24812, 62, 615, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12381, 6315, 62, 1676, 65, 1298, 7585, 62, 1676, 65, 11, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4480, 1280, 7, 69, 6, 90, 34219, 92, 14, 26947, 13, 17752, 3256, 705, 86, 11537, 355, 277, 79, 25, 198, 220, 220, 220, 33918, 13, 39455, 7, 2606, 7250, 3843, 11, 277, 79, 11, 33793, 28, 17, 8, 198 ]
2.052239
670
from src.database import SqliteDatabase
[ 6738, 12351, 13, 48806, 1330, 311, 13976, 578, 38105, 198, 197, 198, 197, 198, 197, 628, 197, 628 ]
2.777778
18
#!/usr/bin/env python3 import os import sys import time sys.path.append(os.getcwd()+'/CPDP') sys.path.append(os.getcwd()+'/JinEnv') sys.path.append(os.getcwd()+'/lib') import CPDP import JinEnv from casadi import * from scipy.integrate import solve_ivp import scipy.io as sio # ---------------------------------------load environment--------------------------------------- env = JinEnv.SinglePendulum() env.initDyn(l=1, m=1, damping_ratio=0.1) env.initCost(wu=.01) # ---------------------------create optimal control object ---------------------------------------- oc = CPDP.COCSys() beta = SX.sym('beta') dyn = beta*env.f oc.setAuxvarVariable(vertcat(beta,env.cost_auxvar)) oc.setStateVariable(env.X) oc.setControlVariable(env.U) oc.setDyn(dyn) path_cost = beta * env.path_cost oc.setPathCost(path_cost) oc.setFinalCost(env.final_cost) # set initial condition ini_state = [0.0, 0.0] # ---------------------- define the loss function and interface function ------------------ # define the interface (only for the state) interface_fn = Function('interface', [oc.state], [oc.state[0]]) diff_interface_fn = Function('diff_interface', [oc.state], [jacobian(oc.state[0], oc.state)]) # --------------------------- create waypoints using ground truth ---------------------------------------- T = 1 true_parameter = [2, 1, 1] true_time_grid, true_opt_sol = oc.cocSolver(ini_state, T, true_parameter) # env.play_animation(len=1, dt=true_time_grid[1] - true_time_grid[0], state_traj=true_opt_sol(true_time_grid)[:, 0:oc.n_state]) time_tau = true_time_grid[[1, 3, 6, 7, 9]] waypoints = np.zeros((time_tau.size, interface_fn.numel_out())) for k, t in enumerate(time_tau): waypoints[k,:] = interface_fn(true_opt_sol(t)[0:oc.n_state]).full().flatten() # --------------------------- learning process -------------------------------- lr = 1e-2 loss_trace, parameter_trace = [], [] current_parameter = np.array([1, 0.5, 1.5]) parameter_trace += [current_parameter.tolist()] for j in range(int(100)): # initial guess of trajectory based on initial parameters time_grid, opt_sol = oc.cocSolver(ini_state, T, current_parameter) # # Establish the auxiliary control system auxsys_sol = oc.auxSysSolver(time_grid, opt_sol, current_parameter) # Use the chain rule loss, diff_loss = getloss_corrections(time_tau, waypoints, opt_sol, auxsys_sol) # update current_parameter -= lr * diff_loss current_parameter[0] = fmax(current_parameter[0], 0.00000001) # projection loss_trace += [loss] parameter_trace += [current_parameter.tolist()] # print print('iter:', j, 'loss:', loss_trace[-1].tolist()) # save the results save_data = {'parameter_trace': parameter_trace, 'loss_trace': loss_trace, 'learning_rate': lr, 'true_parameter':true_parameter, 'waypoints':waypoints, 'time_grid':time_tau, 'T':T} # sio.savemat('../data/pendulum_results_2.mat', {'results': save_data})
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 1136, 66, 16993, 3419, 10, 26488, 34, 5760, 47, 11537, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 1136, 66, 16993, 3419, 10, 26488, 41, 259, 4834, 85, 11537, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 1136, 66, 16993, 3419, 10, 26488, 8019, 11537, 198, 11748, 327, 5760, 47, 198, 11748, 17297, 4834, 85, 198, 6738, 6124, 9189, 1330, 1635, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 8494, 62, 452, 79, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 628, 198, 2, 20368, 26866, 2220, 2858, 3880, 26866, 198, 24330, 796, 17297, 4834, 85, 13, 28008, 47, 437, 14452, 3419, 198, 24330, 13, 15003, 35, 2047, 7, 75, 28, 16, 11, 285, 28, 16, 11, 21151, 278, 62, 10366, 952, 28, 15, 13, 16, 8, 198, 24330, 13, 15003, 13729, 7, 43812, 28, 13, 486, 8, 198, 198, 2, 220, 22369, 6329, 17953, 16586, 1630, 2134, 20368, 982, 198, 420, 796, 327, 5760, 47, 13, 34, 4503, 44387, 3419, 198, 31361, 796, 44205, 13, 37047, 10786, 31361, 11537, 198, 67, 2047, 796, 12159, 9, 24330, 13, 69, 198, 420, 13, 2617, 32, 2821, 7785, 43015, 7, 1851, 9246, 7, 31361, 11, 24330, 13, 15805, 62, 14644, 7785, 4008, 198, 420, 13, 2617, 9012, 43015, 7, 24330, 13, 55, 8, 198, 420, 13, 2617, 15988, 43015, 7, 24330, 13, 52, 8, 198, 420, 13, 2617, 35, 2047, 7, 67, 2047, 8, 198, 6978, 62, 15805, 796, 12159, 1635, 17365, 13, 6978, 62, 15805, 198, 420, 13, 2617, 15235, 13729, 7, 6978, 62, 15805, 8, 198, 420, 13, 2617, 19006, 13729, 7, 24330, 13, 20311, 62, 15805, 8, 198, 2, 900, 4238, 4006, 198, 5362, 62, 5219, 796, 685, 15, 13, 15, 11, 657, 13, 15, 60, 628, 198, 2, 41436, 438, 8160, 262, 2994, 2163, 290, 7071, 2163, 34400, 438, 198, 2, 8160, 262, 7071, 357, 8807, 329, 262, 1181, 8, 198, 39994, 62, 22184, 796, 15553, 10786, 39994, 3256, 685, 420, 13, 5219, 4357, 685, 420, 13, 5219, 58, 15, 11907, 8, 198, 26069, 62, 39994, 62, 22184, 796, 15553, 10786, 26069, 62, 39994, 3256, 685, 420, 13, 5219, 4357, 685, 30482, 672, 666, 7, 420, 13, 5219, 58, 15, 4357, 267, 66, 13, 5219, 8, 12962, 628, 198, 2, 220, 22369, 6329, 2251, 835, 13033, 1262, 2323, 3872, 20368, 982, 198, 51, 796, 352, 198, 7942, 62, 17143, 2357, 796, 685, 17, 11, 352, 11, 352, 60, 198, 7942, 62, 2435, 62, 25928, 11, 2081, 62, 8738, 62, 34453, 796, 267, 66, 13, 66, 420, 50, 14375, 7, 5362, 62, 5219, 11, 309, 11, 2081, 62, 17143, 2357, 8, 198, 2, 17365, 13, 1759, 62, 11227, 341, 7, 11925, 28, 16, 11, 288, 83, 28, 7942, 62, 2435, 62, 25928, 58, 16, 60, 532, 2081, 62, 2435, 62, 25928, 58, 15, 4357, 1181, 62, 9535, 73, 28, 7942, 62, 8738, 62, 34453, 7, 7942, 62, 2435, 62, 25928, 38381, 45299, 657, 25, 420, 13, 77, 62, 5219, 12962, 198, 198, 2435, 62, 83, 559, 796, 2081, 62, 2435, 62, 25928, 30109, 16, 11, 513, 11, 718, 11, 767, 11, 860, 11907, 198, 1014, 13033, 796, 45941, 13, 9107, 418, 19510, 2435, 62, 83, 559, 13, 7857, 11, 7071, 62, 22184, 13, 22510, 417, 62, 448, 3419, 4008, 198, 1640, 479, 11, 256, 287, 27056, 378, 7, 2435, 62, 83, 559, 2599, 198, 220, 220, 220, 835, 13033, 58, 74, 11, 47715, 796, 7071, 62, 22184, 7, 7942, 62, 8738, 62, 34453, 7, 83, 38381, 15, 25, 420, 13, 77, 62, 5219, 35944, 12853, 22446, 2704, 41769, 3419, 628, 198, 2, 220, 22369, 6329, 4673, 1429, 20368, 198, 14050, 796, 352, 68, 12, 17, 198, 22462, 62, 40546, 11, 11507, 62, 40546, 796, 685, 4357, 17635, 198, 14421, 62, 17143, 2357, 796, 45941, 13, 18747, 26933, 16, 11, 657, 13, 20, 11, 352, 13, 20, 12962, 198, 17143, 2357, 62, 40546, 15853, 685, 14421, 62, 17143, 2357, 13, 83, 349, 396, 3419, 60, 198, 1640, 474, 287, 2837, 7, 600, 7, 3064, 8, 2599, 198, 220, 220, 220, 1303, 4238, 4724, 286, 22942, 1912, 319, 4238, 10007, 198, 220, 220, 220, 640, 62, 25928, 11, 2172, 62, 34453, 796, 267, 66, 13, 66, 420, 50, 14375, 7, 5362, 62, 5219, 11, 309, 11, 1459, 62, 17143, 2357, 8, 198, 220, 220, 220, 1303, 1303, 10062, 17148, 262, 37419, 1630, 1080, 198, 220, 220, 220, 27506, 17597, 62, 34453, 796, 267, 66, 13, 14644, 44387, 50, 14375, 7, 2435, 62, 25928, 11, 2172, 62, 34453, 11, 1459, 62, 17143, 2357, 8, 198, 220, 220, 220, 1303, 5765, 262, 6333, 3896, 198, 220, 220, 220, 2994, 11, 814, 62, 22462, 796, 651, 22462, 62, 30283, 507, 7, 2435, 62, 83, 559, 11, 835, 13033, 11, 2172, 62, 34453, 11, 27506, 17597, 62, 34453, 8, 198, 220, 220, 220, 1303, 4296, 198, 220, 220, 220, 1459, 62, 17143, 2357, 48185, 300, 81, 1635, 814, 62, 22462, 198, 220, 220, 220, 1459, 62, 17143, 2357, 58, 15, 60, 796, 277, 9806, 7, 14421, 62, 17143, 2357, 58, 15, 4357, 657, 13, 10535, 486, 8, 220, 1303, 20128, 198, 220, 220, 220, 2994, 62, 40546, 15853, 685, 22462, 60, 198, 220, 220, 220, 11507, 62, 40546, 15853, 685, 14421, 62, 17143, 2357, 13, 83, 349, 396, 3419, 60, 198, 220, 220, 220, 1303, 3601, 198, 220, 220, 220, 3601, 10786, 2676, 25, 3256, 474, 11, 705, 22462, 25, 3256, 2994, 62, 40546, 58, 12, 16, 4083, 83, 349, 396, 28955, 628, 198, 2, 3613, 262, 2482, 198, 21928, 62, 7890, 796, 1391, 6, 17143, 2357, 62, 40546, 10354, 11507, 62, 40546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22462, 62, 40546, 10354, 2994, 62, 40546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40684, 62, 4873, 10354, 300, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7942, 62, 17143, 2357, 10354, 7942, 62, 17143, 2357, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1014, 13033, 10354, 1014, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 62, 25928, 10354, 2435, 62, 83, 559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 51, 10354, 51, 92, 198, 198, 2, 264, 952, 13, 21928, 6759, 10786, 40720, 7890, 14, 37038, 14452, 62, 43420, 62, 17, 13, 6759, 3256, 1391, 6, 43420, 10354, 3613, 62, 7890, 30072 ]
2.67263
1,118
# simple math ab = input().split() cd = input().split() t = int(input()) dist_x = abs(int(ab[0]) - int(cd[0])) dist_y = abs(int(ab[1]) - int(cd[1])) dist = dist_x + dist_y if t >= dist and t % 2 == dist % 2: print("Y") else: print("N")
[ 2, 2829, 10688, 198, 198, 397, 796, 5128, 22446, 35312, 3419, 198, 10210, 796, 5128, 22446, 35312, 3419, 198, 83, 796, 493, 7, 15414, 28955, 198, 17080, 62, 87, 796, 2352, 7, 600, 7, 397, 58, 15, 12962, 532, 493, 7, 10210, 58, 15, 60, 4008, 198, 17080, 62, 88, 796, 2352, 7, 600, 7, 397, 58, 16, 12962, 532, 493, 7, 10210, 58, 16, 60, 4008, 198, 17080, 796, 1233, 62, 87, 1343, 1233, 62, 88, 198, 361, 256, 18189, 1233, 290, 256, 4064, 362, 6624, 1233, 4064, 362, 25, 198, 197, 4798, 7203, 56, 4943, 198, 17772, 25, 198, 197, 4798, 7203, 45, 4943 ]
2.245283
106
import requests
[ 11748, 7007, 198 ]
5.333333
3
from PyPDF3 import PdfFileReader, PdfFileWriter import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() path = filedialog.askopenfilename() file = open(path, "rb") pdf = PdfFileReader(file) writer = PdfFileWriter() writer.appendPagesFromReader(pdf) metadata = pdf.getDocumentInfo() writer.addMetadata(metadata) writer.addMetadata({"/Title": input("Enter title: ")}) writer.addMetadata({"/Author": input("Enter author: ")}) writer.addMetadata({"/Subject": input("Enter subject: ")}) writer.addMetadata({"/Keywords": input("Enter keywords: ")}) temp = path.split(".") temp[-2] += "_tagged" save_path = ".".join(temp) output = open(save_path, "wb") writer.write(output) output.close() file.close()
[ 6738, 9485, 20456, 18, 1330, 350, 7568, 8979, 33634, 11, 350, 7568, 8979, 34379, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 256, 74, 3849, 1330, 5717, 498, 519, 198, 198, 15763, 796, 256, 74, 13, 51, 74, 3419, 198, 15763, 13, 4480, 19334, 3419, 198, 198, 6978, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 3419, 198, 7753, 796, 1280, 7, 6978, 11, 366, 26145, 4943, 198, 12315, 796, 350, 7568, 8979, 33634, 7, 7753, 8, 198, 16002, 796, 350, 7568, 8979, 34379, 3419, 198, 198, 16002, 13, 33295, 47798, 4863, 33634, 7, 12315, 8, 198, 38993, 796, 37124, 13, 1136, 24941, 12360, 3419, 198, 16002, 13, 2860, 9171, 14706, 7, 38993, 8, 198, 198, 16002, 13, 2860, 9171, 14706, 7, 4895, 14, 19160, 1298, 5128, 7203, 17469, 3670, 25, 366, 8, 30072, 198, 16002, 13, 2860, 9171, 14706, 7, 4895, 14, 13838, 1298, 5128, 7203, 17469, 1772, 25, 366, 8, 30072, 198, 16002, 13, 2860, 9171, 14706, 7, 4895, 14, 19776, 1298, 5128, 7203, 17469, 2426, 25, 366, 8, 30072, 198, 16002, 13, 2860, 9171, 14706, 7, 4895, 14, 9218, 10879, 1298, 5128, 7203, 17469, 26286, 25, 366, 8, 30072, 198, 198, 29510, 796, 3108, 13, 35312, 7203, 19570, 198, 29510, 58, 12, 17, 60, 15853, 45434, 12985, 2004, 1, 198, 21928, 62, 6978, 796, 366, 526, 13, 22179, 7, 29510, 8, 198, 198, 22915, 796, 1280, 7, 21928, 62, 6978, 11, 366, 39346, 4943, 198, 16002, 13, 13564, 7, 22915, 8, 198, 22915, 13, 19836, 3419, 198, 7753, 13, 19836, 3419, 198 ]
2.832685
257
from __future__ import division import torch from torch import nn
[ 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 628, 628 ]
3.888889
18
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-07-17 16:42 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 22, 319, 2177, 12, 2998, 12, 1558, 1467, 25, 3682, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.73913
69
from django.shortcuts import render, get_object_or_404 from django.db.models import Q from django.utils import timezone from rest_framework import pagination, generics, views, status, mixins from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.parsers import JSONParser import socket import requests import uuid import re import json from .serializers import UserSerializer, PostSerializer, CommentSerializer, UserFriendSerializer from .paginators import PostPagination, CommentPagination from friends.models import Follow, FriendRequest,FollowManager from users.models import User, Node, NodeSetting from comments.models import Comment from posts.models import Post from friends.views import follows, standardize_url, get_user, friends from requests.auth import HTTPBasicAuth import requests import socket import uuid import traceback # Checks if we have enabled sharing posts with other servers # When you add a remote host as a user, you need to make sure to add the HOST # field. That way we know what the hostname is of the remote host. We need this # because some groups might not even send the remote host header, and so we # wouldn't know who they are. # TODO: Verify
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 198, 6738, 1334, 62, 30604, 1330, 42208, 1883, 11, 1152, 873, 11, 5009, 11, 3722, 11, 5022, 1040, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 79, 945, 364, 1330, 19449, 46677, 198, 198, 11748, 17802, 198, 11748, 7007, 198, 11748, 334, 27112, 198, 11748, 302, 198, 11748, 33918, 198, 6738, 764, 46911, 11341, 1330, 11787, 32634, 7509, 11, 2947, 32634, 7509, 11, 18957, 32634, 7509, 11, 11787, 23331, 32634, 7509, 198, 198, 6738, 764, 79, 23183, 2024, 1330, 2947, 47, 363, 1883, 11, 18957, 47, 363, 1883, 198, 198, 6738, 2460, 13, 27530, 1330, 7281, 11, 9182, 18453, 11, 7155, 13511, 198, 6738, 2985, 13, 27530, 1330, 11787, 11, 19081, 11, 19081, 34149, 198, 6738, 3651, 13, 27530, 1330, 18957, 198, 6738, 6851, 13, 27530, 1330, 2947, 198, 198, 6738, 2460, 13, 33571, 1330, 5679, 11, 3210, 1096, 62, 6371, 11, 651, 62, 7220, 11, 2460, 198, 198, 6738, 7007, 13, 18439, 1330, 14626, 26416, 30515, 198, 11748, 7007, 198, 11748, 17802, 198, 11748, 334, 27112, 198, 11748, 12854, 1891, 628, 198, 2, 47719, 611, 356, 423, 9343, 7373, 6851, 351, 584, 9597, 198, 198, 2, 1649, 345, 751, 257, 6569, 2583, 355, 257, 2836, 11, 345, 761, 284, 787, 1654, 284, 751, 262, 367, 10892, 198, 2, 2214, 13, 1320, 835, 356, 760, 644, 262, 2583, 3672, 318, 286, 262, 6569, 2583, 13, 775, 761, 428, 198, 2, 780, 617, 2628, 1244, 407, 772, 3758, 262, 6569, 2583, 13639, 11, 290, 523, 356, 198, 2, 3636, 470, 760, 508, 484, 389, 13, 628, 198, 2, 16926, 46, 25, 49899, 628, 628, 628, 198 ]
3.905956
319
# niw import re from nltk.tokenize import sent_tokenize from string import punctuation from solvers.solver_helpers import RubertForMasking, AbstractSolver
[ 2, 299, 14246, 198, 198, 11748, 302, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 1908, 62, 30001, 1096, 198, 6738, 4731, 1330, 21025, 2288, 198, 198, 6738, 1540, 690, 13, 82, 14375, 62, 16794, 364, 1330, 11667, 4835, 1890, 44, 30463, 11, 27741, 50, 14375, 628 ]
3.291667
48
""" This module provides classes to create and manage transactions. """ import uuid import datetime from fintool.db import DbFactory from fintool.logging import LoggingHelper class Error(Exception): """Base class for all errors in this module. """ class MissingFieldError(Error): """ Raised when trying to convert a dictionary that misses a required field into a transaction. """ class InvalidFieldValueError(Error): """ Raised when the user tries to assign an invalid value to some field. """ class InvalidTransactionError(Error): """ Raised when the user passes an invalid transaction object to the transaction manager. """ class InvalidFieldError(Error): """ Raised when the user requests a value for an invalid field. """ class Transaction: """ A type to define a transaction object. """ ID = 'id' TYPE = 'type' TAGS = 'tags' DATE = 'date' AMOUNT = 'amount' SUPPORTED_TYPES = {'income', 'outcome'} def __init__(self, t_type, t_tags, t_date, t_amount, t_id=None): """Do input validation on arguments and initialize fields. Raise InvalidFieldValueError if argument is not expected or has invalid format. Args: t_id (str): a guid t_type (str): transaction type (income/outcome) t_tags (str): a | separated list of words t_date (str): a date with YYYY-MM-DD format t_amount (float): a floating point number representing the exchanged amount """ if t_type in self.SUPPORTED_TYPES: self.type = t_type else: raise InvalidFieldValueError( f'Invalid value {t_type} for transaction type' ) try: self.tags = set(t_tags.split('|')) except AttributeError: raise InvalidFieldValueError( f'Invalid value {t_tags} for transaction tags' ) try: datetime.datetime.strptime(t_date, '%Y-%m-%d') self.date = t_date except ValueError: raise InvalidFieldValueError( f'Invalid value {t_date} for transaction date' ) try: self.amount = float(t_amount) except ValueError: raise InvalidFieldValueError( f"Invalid value {t_amount} for transaction amount" ) self.id = t_id if t_id else uuid.uuid4().hex self._fields = { self.ID: self.id, self.TYPE: self.type, self.DATE: self.date, self.AMOUNT: self.amount, self.TAGS: self.tags } @classmethod def from_dict(cls, data): """ Create a transaction instance from a dict object. """ try: transaction = Transaction( data[cls.TYPE], data[cls.TAGS], data[cls.DATE], data[cls.AMOUNT], data[cls.ID] if cls.ID in data else None ) except KeyError as key_error: raise MissingFieldError(f'Input dict is missing: {key_error}') # keep id if was provided in data if cls.ID in data: transaction.id = data[cls.ID] return transaction def serialize(self): """ Convert the transaction instance into a dictionary. """ return { self.ID: self.id, self.TYPE: self.type, self.DATE: self.date, self.AMOUNT: self.amount, self.TAGS: '|'.join(self.tags) } def get_value(self, field): """ Return the corresponding value for the given key. """ try: return self._fields[field] except KeyError: raise InvalidFieldError(f'{field} is not supported') def __str__(self): """ Return a human-readable representation of the transaction instance. """ return f'{self.id}\t{self.date}\t{self.type}\t{self.amount}'\ f'\t{self.tags}' class TransactionManager: """ A class to define the behavior of an object that knows how to manage transactions. """ TRANSACTION_COLLECTION = 'records' def __init__(self): """ Initialize instance. """ self._logger = LoggingHelper.get_logger(self.__class__.__name__) self._db = DbFactory.get_db('csv')() def create_transaction_list(self, dicts): """ Create a list of Transaction instances from a list of dictionaries. """ return [Transaction.from_dict(d) for d in dicts] def save_transaction(self, transaction): """Save a transaction in db. Args: transaction (Transaction): object to be saved in db """ # TODO: need to get db type from cfg # TODO: need to inject db object so that we can test with mock data self._logger.debug('saving transaction in db') self._db.add_record( record=transaction.serialize(), collection=self.TRANSACTION_COLLECTION ) def filter_transactions(self, transactions, filters): """ Filter a list of transaction based on a set of key-values """ result = [] # collect transactions matching any filter value only for transaction in transactions: for key, value in filters.items(): try: match = value & transaction.tags if key == Transaction.TAGS \ else value == transaction.get_value(key) if match: result.append(transaction) break except InvalidFieldError: pass # no problem, field doesn't exists return result def get_transactions(self, filters=None): """Get transactions from db and apply a set of filters. """ self._logger.debug( 'getting transactions from db using filters = %s', filters ) records = self._db.get_records(self.TRANSACTION_COLLECTION) transactions = self.create_transaction_list(records) if filters: transactions = self.filter_transactions(transactions, filters) return transactions def remove_transaction(self, data): """Make sure that data contains a value for id field and use it to remove a transaction from db. """ try: id_value = data[Transaction.ID] except KeyError: raise MissingFieldError(f'missing field {Transaction.ID}') self._logger.debug('removing transaction %s', id_value) self._db.remove_record( Transaction.ID, id_value, self.TRANSACTION_COLLECTION ) def update_transaction(self, data): """Update a transaction in db by using the provided id and data. """ self._logger.debug('updating transaction %s with %s', data.id, data) if isinstance(data, Transaction): self._db.edit_record( Transaction.ID, data.id, data.serialize(), self.TRANSACTION_COLLECTION ) else: raise InvalidTransactionError('invalid transaction object')
[ 37811, 198, 1212, 8265, 3769, 6097, 284, 2251, 290, 6687, 8945, 13, 198, 37811, 628, 198, 11748, 334, 27112, 198, 11748, 4818, 8079, 198, 198, 6738, 277, 600, 970, 13, 9945, 1330, 360, 65, 22810, 198, 6738, 277, 600, 970, 13, 6404, 2667, 1330, 5972, 2667, 47429, 628, 198, 4871, 13047, 7, 16922, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 477, 8563, 287, 428, 8265, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 25639, 15878, 12331, 7, 12331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 2111, 284, 10385, 257, 22155, 326, 18297, 257, 2672, 2214, 198, 220, 220, 220, 656, 257, 8611, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 17665, 15878, 11395, 12331, 7, 12331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 262, 2836, 8404, 284, 8333, 281, 12515, 1988, 284, 617, 2214, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 17665, 48720, 12331, 7, 12331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 262, 2836, 8318, 281, 12515, 8611, 2134, 284, 262, 198, 220, 220, 220, 8611, 4706, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 17665, 15878, 12331, 7, 12331, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 1417, 618, 262, 2836, 7007, 257, 1988, 329, 281, 12515, 2214, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 45389, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2099, 284, 8160, 257, 8611, 2134, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4522, 796, 705, 312, 6, 198, 220, 220, 220, 41876, 796, 705, 4906, 6, 198, 220, 220, 220, 37801, 50, 796, 705, 31499, 6, 198, 220, 220, 220, 360, 6158, 796, 705, 4475, 6, 198, 220, 220, 220, 3001, 28270, 796, 705, 17287, 6, 198, 220, 220, 220, 43333, 1961, 62, 9936, 47, 1546, 796, 1391, 6, 12519, 3256, 705, 448, 2958, 6, 92, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 256, 62, 4906, 11, 256, 62, 31499, 11, 256, 62, 4475, 11, 256, 62, 17287, 11, 256, 62, 312, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5211, 5128, 21201, 319, 7159, 290, 41216, 7032, 13, 628, 220, 220, 220, 220, 220, 220, 220, 35123, 17665, 15878, 11395, 12331, 611, 4578, 318, 407, 2938, 393, 468, 198, 220, 220, 220, 220, 220, 220, 220, 12515, 5794, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 312, 357, 2536, 2599, 220, 220, 220, 220, 220, 220, 220, 220, 257, 10103, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 4906, 357, 2536, 2599, 220, 220, 220, 220, 220, 220, 8611, 2099, 357, 12519, 14, 448, 2958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 31499, 357, 2536, 2599, 220, 220, 220, 220, 220, 220, 257, 930, 11266, 1351, 286, 2456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 4475, 357, 2536, 2599, 220, 220, 220, 220, 220, 220, 257, 3128, 351, 575, 26314, 56, 12, 12038, 12, 16458, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 17287, 357, 22468, 2599, 220, 220, 257, 12462, 966, 1271, 10200, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 22112, 2033, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 4906, 287, 2116, 13, 40331, 15490, 1961, 62, 9936, 47, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4906, 796, 256, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15878, 11395, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 44651, 1988, 1391, 83, 62, 4906, 92, 329, 8611, 2099, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31499, 796, 900, 7, 83, 62, 31499, 13, 35312, 10786, 91, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15878, 11395, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 44651, 1988, 1391, 83, 62, 31499, 92, 329, 8611, 15940, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 83, 62, 4475, 11, 705, 4, 56, 12, 4, 76, 12, 4, 67, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4475, 796, 256, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15878, 11395, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 44651, 1988, 1391, 83, 62, 4475, 92, 329, 8611, 3128, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17287, 796, 12178, 7, 83, 62, 17287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15878, 11395, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 44651, 1988, 1391, 83, 62, 17287, 92, 329, 8611, 2033, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 256, 62, 312, 611, 256, 62, 312, 2073, 334, 27112, 13, 12303, 312, 19, 22446, 33095, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25747, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2389, 25, 2116, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25216, 25, 2116, 13, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35, 6158, 25, 2116, 13, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2390, 28270, 25, 2116, 13, 17287, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42197, 50, 25, 2116, 13, 31499, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 11600, 7, 565, 82, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 8611, 4554, 422, 257, 8633, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8611, 796, 45389, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 565, 82, 13, 25216, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 565, 82, 13, 42197, 50, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 565, 82, 13, 35, 6158, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 565, 82, 13, 2390, 28270, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 565, 82, 13, 2389, 60, 611, 537, 82, 13, 2389, 287, 1366, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 355, 1994, 62, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 25639, 15878, 12331, 7, 69, 6, 20560, 8633, 318, 4814, 25, 1391, 2539, 62, 18224, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1394, 4686, 611, 373, 2810, 287, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 611, 537, 82, 13, 2389, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8611, 13, 312, 796, 1366, 58, 565, 82, 13, 2389, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 8611, 628, 220, 220, 220, 825, 11389, 1096, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 262, 8611, 4554, 656, 257, 22155, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2389, 25, 2116, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25216, 25, 2116, 13, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35, 6158, 25, 2116, 13, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2390, 28270, 25, 2116, 13, 17287, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42197, 50, 25, 705, 91, 4458, 22179, 7, 944, 13, 31499, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 651, 62, 8367, 7, 944, 11, 2214, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 11188, 1988, 329, 262, 1813, 1994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 25747, 58, 3245, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 15878, 12331, 7, 69, 6, 90, 3245, 92, 318, 407, 4855, 11537, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 257, 1692, 12, 46155, 10552, 286, 262, 8611, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 6, 90, 944, 13, 312, 32239, 83, 90, 944, 13, 4475, 32239, 83, 90, 944, 13, 4906, 32239, 83, 90, 944, 13, 17287, 92, 6, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 59, 83, 90, 944, 13, 31499, 92, 6, 628, 198, 4871, 45389, 13511, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 284, 8160, 262, 4069, 286, 281, 2134, 326, 4206, 703, 284, 6687, 198, 220, 220, 220, 8945, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44069, 44710, 62, 25154, 16779, 2849, 796, 705, 8344, 3669, 6, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 796, 5972, 2667, 47429, 13, 1136, 62, 6404, 1362, 7, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9945, 796, 360, 65, 22810, 13, 1136, 62, 9945, 10786, 40664, 11537, 3419, 628, 220, 220, 220, 825, 2251, 62, 7645, 2673, 62, 4868, 7, 944, 11, 8633, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 1351, 286, 45389, 10245, 422, 257, 1351, 286, 48589, 3166, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 48720, 13, 6738, 62, 11600, 7, 67, 8, 329, 288, 287, 8633, 82, 60, 628, 220, 220, 220, 825, 3613, 62, 7645, 2673, 7, 944, 11, 8611, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16928, 257, 8611, 287, 20613, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8611, 357, 48720, 2599, 2134, 284, 307, 7448, 287, 20613, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 761, 284, 651, 20613, 2099, 422, 30218, 70, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 761, 284, 8677, 20613, 2134, 523, 326, 356, 460, 1332, 351, 15290, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 24442, 10786, 29336, 8611, 287, 20613, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9945, 13, 2860, 62, 22105, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 28, 7645, 2673, 13, 46911, 1096, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 28, 944, 13, 5446, 15037, 44710, 62, 25154, 16779, 2849, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 8106, 62, 7645, 4658, 7, 944, 11, 8945, 11, 16628, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25853, 257, 1351, 286, 8611, 1912, 319, 257, 900, 286, 1994, 12, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2824, 8945, 12336, 597, 8106, 1988, 691, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8611, 287, 8945, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 16628, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 796, 1988, 1222, 8611, 13, 31499, 611, 1994, 6624, 45389, 13, 42197, 50, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1988, 6624, 8611, 13, 1136, 62, 8367, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 7645, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 17665, 15878, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 220, 1303, 645, 1917, 11, 2214, 1595, 470, 7160, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 651, 62, 7645, 4658, 7, 944, 11, 16628, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 8945, 422, 20613, 290, 4174, 257, 900, 286, 16628, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37210, 8945, 422, 20613, 1262, 16628, 796, 4064, 82, 3256, 16628, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4406, 796, 2116, 13557, 9945, 13, 1136, 62, 8344, 3669, 7, 944, 13, 5446, 15037, 44710, 62, 25154, 16779, 2849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8945, 796, 2116, 13, 17953, 62, 7645, 2673, 62, 4868, 7, 8344, 3669, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8945, 796, 2116, 13, 24455, 62, 7645, 4658, 7, 7645, 4658, 11, 16628, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 8945, 628, 220, 220, 220, 825, 4781, 62, 7645, 2673, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12050, 1654, 326, 1366, 4909, 257, 1988, 329, 4686, 2214, 290, 779, 340, 198, 220, 220, 220, 220, 220, 220, 220, 284, 4781, 257, 8611, 422, 20613, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 8367, 796, 1366, 58, 48720, 13, 2389, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 25639, 15878, 12331, 7, 69, 1101, 747, 278, 2214, 1391, 48720, 13, 2389, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 24442, 10786, 2787, 5165, 8611, 4064, 82, 3256, 4686, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9945, 13, 28956, 62, 22105, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45389, 13, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5446, 15037, 44710, 62, 25154, 16779, 2849, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4296, 62, 7645, 2673, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 257, 8611, 287, 20613, 416, 1262, 262, 2810, 4686, 290, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 24442, 10786, 929, 38734, 8611, 4064, 82, 351, 4064, 82, 3256, 1366, 13, 312, 11, 1366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 7890, 11, 45389, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9945, 13, 19312, 62, 22105, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45389, 13, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 46911, 1096, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5446, 15037, 44710, 62, 25154, 16779, 2849, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 48720, 12331, 10786, 259, 12102, 8611, 2134, 11537, 198 ]
2.198944
3,408
from algoplex.api.common.exchange_access import ExchangeAccess from algoplex.api.common.maket_data_subscriber import MarketDataSubscriber from algoplex.api.order import Order from algoplex.api.execution import Execution import time
[ 6738, 435, 70, 643, 87, 13, 15042, 13, 11321, 13, 1069, 3803, 62, 15526, 1330, 12516, 15457, 198, 6738, 435, 70, 643, 87, 13, 15042, 13, 11321, 13, 76, 461, 316, 62, 7890, 62, 7266, 1416, 24735, 1330, 5991, 6601, 7004, 1416, 24735, 198, 6738, 435, 70, 643, 87, 13, 15042, 13, 2875, 1330, 8284, 198, 6738, 435, 70, 643, 87, 13, 15042, 13, 18558, 1009, 1330, 37497, 198, 11748, 640, 628 ]
3.236111
72
import pytest import fnmatch import os from pathlib import Path from eobox.sampledata import get_dataset from eobox.vector import convert_polygons_to_lines from eobox.vector import calc_distance_to_border @pytest.fixture
[ 11748, 12972, 9288, 198, 11748, 24714, 15699, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 304, 672, 1140, 13, 37687, 10137, 1045, 1330, 651, 62, 19608, 292, 316, 198, 6738, 304, 672, 1140, 13, 31364, 1330, 10385, 62, 35428, 70, 684, 62, 1462, 62, 6615, 198, 6738, 304, 672, 1140, 13, 31364, 1330, 42302, 62, 30246, 62, 1462, 62, 20192, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198 ]
3.026667
75
#x= 'Global x' print("\nTesting Global and Local Scope") test() print(x) m=min([3,4,5,6]) print(m) print("\nTesting Enclosing Scope") outer()
[ 2, 87, 28, 705, 22289, 2124, 6, 198, 4798, 7203, 59, 77, 44154, 8060, 290, 10714, 41063, 4943, 198, 9288, 3419, 198, 4798, 7, 87, 8, 198, 198, 76, 28, 1084, 26933, 18, 11, 19, 11, 20, 11, 21, 12962, 198, 4798, 7, 76, 8, 198, 198, 4798, 7203, 59, 77, 44154, 2039, 565, 2752, 41063, 4943, 198, 198, 39605, 3419 ]
2.360656
61
''' Created on Sep 29, 2017 @author: Liza Dayoub ''' import requests from requests.packages.urllib3 import disable_warnings from requests.packages.urllib3.exceptions import InsecureRequestWarning class ApiSession(object): ''' classdocs ''' def __init__(self, **kwargs): ''' Constructor ''' self.url = kwargs.get('url') self.username = kwargs.get('username') self.password = kwargs.get('password') self.insecure = kwargs.get('insecure') or True self.auth = kwargs.get('auth') or False cfg = kwargs.get('cfg') if cfg: self.url = cfg.get('url') or self.url self.url = self.url.strip('/') self.username = cfg.get('username') or self.username self.password = cfg.get('password') or self.password if cfg.get('xpack'): self.auth = True if not self.url: raise AttributeError('URL can not be empty') self.session = requests.Session() if self.insecure: disable_warnings(InsecureRequestWarning) self.session.verify = False if self.auth and self.username and self.password: self.session.auth = (self.username, self.password)
[ 7061, 6, 198, 41972, 319, 8621, 2808, 11, 2177, 198, 198, 31, 9800, 25, 406, 23638, 3596, 12944, 198, 7061, 6, 198, 198, 11748, 7007, 198, 6738, 7007, 13, 43789, 13, 333, 297, 571, 18, 1330, 15560, 62, 40539, 654, 198, 6738, 7007, 13, 43789, 13, 333, 297, 571, 18, 13, 1069, 11755, 1330, 554, 22390, 18453, 20361, 628, 198, 4871, 5949, 72, 36044, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 479, 86, 22046, 13, 1136, 10786, 6371, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29460, 796, 479, 86, 22046, 13, 1136, 10786, 29460, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28712, 796, 479, 86, 22046, 13, 1136, 10786, 28712, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 22390, 796, 479, 86, 22046, 13, 1136, 10786, 259, 22390, 11537, 393, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18439, 796, 479, 86, 22046, 13, 1136, 10786, 18439, 11537, 393, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 30218, 70, 796, 479, 86, 22046, 13, 1136, 10786, 37581, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 30218, 70, 13, 1136, 10786, 6371, 11537, 393, 2116, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6371, 796, 2116, 13, 6371, 13, 36311, 10786, 14, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29460, 796, 30218, 70, 13, 1136, 10786, 29460, 11537, 393, 2116, 13, 29460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28712, 796, 30218, 70, 13, 1136, 10786, 28712, 11537, 393, 2116, 13, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 1136, 10786, 87, 8002, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18439, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 6371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 10786, 21886, 460, 407, 307, 6565, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29891, 796, 7007, 13, 36044, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 259, 22390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15560, 62, 40539, 654, 7, 818, 22390, 18453, 20361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29891, 13, 332, 1958, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 18439, 290, 2116, 13, 29460, 290, 2116, 13, 28712, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29891, 13, 18439, 796, 357, 944, 13, 29460, 11, 2116, 13, 28712, 8, 198 ]
2.223386
573
# Entry Point ####################################################### lengths = list(map(int, open('day10.txt').read().split(','))) string = hash(256, lengths) print(string[0] * string[1]) # = 46600
[ 198, 2, 21617, 6252, 1303, 29113, 14468, 4242, 2235, 198, 198, 13664, 82, 796, 1351, 7, 8899, 7, 600, 11, 1280, 10786, 820, 940, 13, 14116, 27691, 961, 22446, 35312, 7, 41707, 22305, 198, 8841, 796, 12234, 7, 11645, 11, 20428, 8, 198, 198, 4798, 7, 8841, 58, 15, 60, 1635, 4731, 58, 16, 12962, 1303, 796, 604, 2791, 405, 198 ]
3.311475
61
import os import subprocess import sys import git from tools.config import Config from tools.logger import log_error, log_info def exit_if_not_executed_in_ide_environment(): '''This part checks if environment variables is set or not.''' if not ("OSSRH_USER" and "OSSRH_PASSWD" and "GPG_SIGNING_PASSWD" and "BINTRAY_USER" and "BINTRAY_TOKEN") in os.environ: log_error("Please use CobiGen IDE initialized console and set the variables OSSRH_USER, OSSRH_PASSWD, GPG_SIGNING_PASSWD, BINTRAY_USER, and BINTRAY_TOKEN in the variables-customized.bat.") sys.exit() def is_valid_branch(config: Config) -> bool: '''This Method is responsible for checking branches in repository with branch entered by user''' if git.cmd.Git(config.root_path).execute( ["git", "ls-remote", "--heads", "origin", config.branch_to_be_released, "|", "wc", "-l"]) == "": log_info("Branch is not known remotely.") is_branch_valid = False else: log_info("Branch is valid.") is_branch_valid = True return is_branch_valid
[ 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 198, 11748, 17606, 198, 198, 6738, 4899, 13, 11250, 1330, 17056, 198, 6738, 4899, 13, 6404, 1362, 1330, 2604, 62, 18224, 11, 2604, 62, 10951, 628, 198, 4299, 8420, 62, 361, 62, 1662, 62, 18558, 7241, 62, 259, 62, 485, 62, 38986, 33529, 198, 220, 220, 220, 705, 7061, 1212, 636, 8794, 611, 2858, 9633, 318, 900, 393, 407, 2637, 7061, 198, 220, 220, 220, 611, 407, 5855, 2640, 12562, 39, 62, 29904, 1, 290, 366, 2640, 12562, 39, 62, 47924, 22332, 1, 290, 366, 38, 6968, 62, 50, 3528, 15871, 62, 47924, 22332, 1, 290, 366, 33, 12394, 30631, 62, 29904, 1, 290, 366, 33, 12394, 30631, 62, 10468, 43959, 4943, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 18224, 7203, 5492, 779, 327, 13411, 13746, 33497, 23224, 8624, 290, 900, 262, 9633, 440, 5432, 48587, 62, 29904, 11, 440, 5432, 48587, 62, 47924, 22332, 11, 402, 6968, 62, 50, 3528, 15871, 62, 47924, 22332, 11, 347, 12394, 30631, 62, 29904, 11, 290, 347, 12394, 30631, 62, 10468, 43959, 287, 262, 9633, 12, 23144, 1143, 13, 8664, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 198, 4299, 318, 62, 12102, 62, 1671, 3702, 7, 11250, 25, 17056, 8, 4613, 20512, 25, 198, 220, 220, 220, 705, 7061, 1212, 11789, 318, 4497, 329, 10627, 13737, 287, 16099, 351, 8478, 5982, 416, 2836, 7061, 6, 628, 220, 220, 220, 611, 17606, 13, 28758, 13, 38, 270, 7, 11250, 13, 15763, 62, 6978, 737, 41049, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 18300, 1600, 366, 7278, 12, 47960, 1600, 366, 438, 16600, 1600, 366, 47103, 1600, 4566, 13, 1671, 3702, 62, 1462, 62, 1350, 62, 30147, 11, 366, 91, 1600, 366, 86, 66, 1600, 27444, 75, 8973, 8, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 10951, 7203, 33, 25642, 318, 407, 1900, 19863, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1671, 3702, 62, 12102, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 10951, 7203, 33, 25642, 318, 4938, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1671, 3702, 62, 12102, 796, 6407, 198, 220, 220, 220, 1441, 318, 62, 1671, 3702, 62, 12102, 628, 198 ]
2.665012
403
#!/usr/bin/env python from flask import Flask, request, jsonify import numpy as np import deco import requests import csv import json import argparse parser = argparse.ArgumentParser(description='Exports keras model to serving format') parser.add_argument('--port', action="store", dest="port", default=4000) parser.add_argument('--vocab_path', action="store", dest="vocab_path") parser.add_argument('--model_path', action="store", dest="model_path") parser.add_argument('--serving_url', action="store", dest="serving_url") parser.add_argument('--static_folder', action="store", dest="static_folder", default="./static") args = parser.parse_args() tokenizer = deco.tokenizers.SentencepieceTokenizer(args.vocab_path, args.model_path) app = Flask(__name__, static_folder=args.static_folder', static_url_path="/static") SEQ_LEN = 128 @app.route('/predict', methods=['POST']) if __name__ == '__main__': app.run(host= '0.0.0.0',debug=True,port=args.port)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 33918, 1958, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 875, 78, 198, 11748, 7007, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 1822, 29572, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 3109, 3742, 41927, 292, 2746, 284, 7351, 5794, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 634, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 634, 1600, 4277, 28, 27559, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 18893, 397, 62, 6978, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 18893, 397, 62, 6978, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 19849, 62, 6978, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 19849, 62, 6978, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 31293, 62, 6371, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 31293, 62, 6371, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 12708, 62, 43551, 3256, 2223, 2625, 8095, 1600, 2244, 2625, 12708, 62, 43551, 1600, 4277, 28, 1911, 14, 12708, 4943, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 30001, 7509, 796, 875, 78, 13, 30001, 11341, 13, 31837, 594, 12239, 30642, 7509, 7, 22046, 13, 18893, 397, 62, 6978, 11, 26498, 13, 19849, 62, 6978, 8, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 11, 9037, 62, 43551, 28, 22046, 13, 12708, 62, 43551, 3256, 9037, 62, 6371, 62, 6978, 35922, 12708, 4943, 198, 5188, 48, 62, 43, 1677, 796, 13108, 198, 198, 31, 1324, 13, 38629, 10786, 14, 79, 17407, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 28, 705, 15, 13, 15, 13, 15, 13, 15, 3256, 24442, 28, 17821, 11, 634, 28, 22046, 13, 634, 8, 198 ]
3.028391
317
import csv import time import json import requests import urllib3 import importlib import sys import copy import arrow import os import pytz import configparser MAX_RETRY_NUM = 10 RETRY_WAIT_TIME_IN_SEC = 30 MAX_MESSAGE_LENGTH = 10000 MAX_DATA_SIZE = 4000000 MAX_PACKET_SIZE = 5000000 def send_data(log_data): """ Sends parsed metric data to InsightFinder """ send_data_time = time.time() # prepare data for metric streaming agent to_send_data_dict = {"metricData": json.dumps(log_data), "licenseKey": config_vars['license_key'], "projectName": config_vars['project_name'], "userName": config_vars['user_name'], "agentType": "LogFileReplay"} to_send_data_json = json.dumps(to_send_data_dict) # send the data post_url = config_vars['server_url'] + "/customprojectrawdata" send_data_to_receiver(post_url, to_send_data_json, len(log_data)) print("--- Send data time: %s seconds ---" + str(time.time() - send_data_time)) if __name__ == "__main__": urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) importlib.reload(sys) CHUNK_SIZE = 1000 config_vars, csv_vars = get_agent_config_vars() omit = csv_vars['omit_columns'] with open(config_vars['file_name'], encoding='utf-8') as csvfile: data = [] count = 0 size = 0 reader = csv.DictReader(csvfile) for row in reader: entry = {} entry['tag'] = row[csv_vars['instance_field']] timestamp = arrow.get(row[csv_vars['timestamp_field']], csv_vars['timestamp_format'], tzinfo=csv_vars['timestamp_timezone']) # convert timezone to utc required by api timestamp = timestamp.to(pytz.utc) entry['eventId'] = timestamp.timestamp() * 1000 entry['data'] = {} for header in row: if header not in omit: entry['data'][header] = row[header] new_entry = copy.deepcopy(entry) # Check length of log message and truncate if too long if len(new_entry['data']) > MAX_MESSAGE_LENGTH: new_entry['data'] = new_entry['data'][0:MAX_MESSAGE_LENGTH - 1] # Check size of entry and overall packet size entry_size = sys.getsizeof(json.dumps(new_entry)) if size + entry_size >= MAX_DATA_SIZE: send_data(data) size = 0 count = 0 data = [] # Add the log entry to send data.append(new_entry) size += entry_size count += 1 # Chunk number of log entries if count >= CHUNK_SIZE: send_data(data) size = 0 count = 0 data = [] if count != 0: send_data(data)
[ 11748, 269, 21370, 198, 11748, 640, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 2956, 297, 571, 18, 198, 11748, 1330, 8019, 198, 11748, 25064, 198, 11748, 4866, 198, 11748, 15452, 198, 11748, 28686, 198, 11748, 12972, 22877, 198, 11748, 4566, 48610, 198, 198, 22921, 62, 2200, 40405, 62, 41359, 796, 838, 198, 2200, 40405, 62, 15543, 2043, 62, 34694, 62, 1268, 62, 23683, 796, 1542, 198, 22921, 62, 44, 1546, 4090, 8264, 62, 43, 49494, 796, 33028, 198, 22921, 62, 26947, 62, 33489, 796, 604, 10535, 198, 22921, 62, 47, 8120, 2767, 62, 33489, 796, 642, 10535, 198, 198, 4299, 3758, 62, 7890, 7, 6404, 62, 7890, 2599, 198, 220, 220, 220, 37227, 311, 2412, 44267, 18663, 1366, 284, 39917, 37, 5540, 37227, 198, 220, 220, 220, 3758, 62, 7890, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 1303, 8335, 1366, 329, 18663, 11305, 5797, 198, 220, 220, 220, 284, 62, 21280, 62, 7890, 62, 11600, 796, 19779, 4164, 1173, 6601, 1298, 33918, 13, 67, 8142, 7, 6404, 62, 7890, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43085, 9218, 1298, 4566, 62, 85, 945, 17816, 43085, 62, 2539, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16302, 5376, 1298, 4566, 62, 85, 945, 17816, 16302, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 5376, 1298, 4566, 62, 85, 945, 17816, 7220, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25781, 6030, 1298, 366, 11187, 8979, 3041, 1759, 20662, 198, 220, 220, 220, 284, 62, 21280, 62, 7890, 62, 17752, 796, 33918, 13, 67, 8142, 7, 1462, 62, 21280, 62, 7890, 62, 11600, 8, 628, 220, 220, 220, 1303, 3758, 262, 1366, 198, 220, 220, 220, 1281, 62, 6371, 796, 4566, 62, 85, 945, 17816, 15388, 62, 6371, 20520, 1343, 12813, 23144, 16302, 1831, 7890, 1, 198, 220, 220, 220, 3758, 62, 7890, 62, 1462, 62, 260, 39729, 7, 7353, 62, 6371, 11, 284, 62, 21280, 62, 7890, 62, 17752, 11, 18896, 7, 6404, 62, 7890, 4008, 198, 220, 220, 220, 3601, 7203, 6329, 16290, 1366, 640, 25, 4064, 82, 4201, 11420, 1, 1343, 965, 7, 2435, 13, 2435, 3419, 532, 3758, 62, 7890, 62, 2435, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2956, 297, 571, 18, 13, 40223, 62, 40539, 654, 7, 333, 297, 571, 18, 13, 1069, 11755, 13, 818, 22390, 18453, 20361, 8, 198, 220, 220, 220, 1330, 8019, 13, 260, 2220, 7, 17597, 8, 198, 220, 220, 220, 5870, 4944, 42, 62, 33489, 796, 8576, 198, 220, 220, 220, 4566, 62, 85, 945, 11, 269, 21370, 62, 85, 945, 796, 651, 62, 25781, 62, 11250, 62, 85, 945, 3419, 198, 220, 220, 220, 42848, 796, 269, 21370, 62, 85, 945, 17816, 296, 270, 62, 28665, 82, 20520, 198, 220, 220, 220, 351, 1280, 7, 11250, 62, 85, 945, 17816, 7753, 62, 3672, 6, 4357, 21004, 11639, 40477, 12, 23, 11537, 355, 269, 21370, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 269, 21370, 13, 35, 713, 33634, 7, 40664, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 17816, 12985, 20520, 796, 5752, 58, 40664, 62, 85, 945, 17816, 39098, 62, 3245, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 15452, 13, 1136, 7, 808, 58, 40664, 62, 85, 945, 17816, 16514, 27823, 62, 3245, 20520, 4357, 269, 21370, 62, 85, 945, 17816, 16514, 27823, 62, 18982, 6, 4357, 256, 89, 10951, 28, 40664, 62, 85, 945, 17816, 16514, 27823, 62, 2435, 11340, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 640, 11340, 284, 3384, 66, 2672, 416, 40391, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 41033, 13, 1462, 7, 9078, 22877, 13, 315, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 17816, 15596, 7390, 20520, 796, 41033, 13, 16514, 27823, 3419, 1635, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 17816, 7890, 20520, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 13639, 287, 5752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13639, 407, 287, 42848, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 17816, 7890, 6, 7131, 25677, 60, 796, 5752, 58, 25677, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 13000, 796, 4866, 13, 22089, 30073, 7, 13000, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 4129, 286, 2604, 3275, 290, 40122, 378, 611, 1165, 890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 3605, 62, 13000, 17816, 7890, 6, 12962, 1875, 25882, 62, 44, 1546, 4090, 8264, 62, 43, 49494, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 13000, 17816, 7890, 20520, 796, 649, 62, 13000, 17816, 7890, 6, 7131, 15, 25, 22921, 62, 44, 1546, 4090, 8264, 62, 43, 49494, 532, 352, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 2546, 286, 5726, 290, 4045, 19638, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 7857, 796, 25064, 13, 11407, 1096, 1659, 7, 17752, 13, 67, 8142, 7, 3605, 62, 13000, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2546, 1343, 5726, 62, 7857, 18189, 25882, 62, 26947, 62, 33489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3758, 62, 7890, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 2604, 5726, 284, 3758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 3605, 62, 13000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 15853, 5726, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 609, 2954, 1271, 286, 2604, 12784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 5870, 4944, 42, 62, 33489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3758, 62, 7890, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3758, 62, 7890, 7, 7890, 8, 628 ]
2.069817
1,418
import pytest @pytest.mark.skip('not implemented')
[ 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 10786, 1662, 9177, 11537, 198 ]
3.117647
17
# -*-coding:utf-8 -*- """ 一个函数包括输入参数和输出参数 """ # 定义函数 # 调用函数 result = calulus(2) print(result) # 参数必须要正确地写入函数中,函数的参数也可以为多个 def fruit_function(fruit1, fruit2): """ fruits = fruit1 + " " + fruit2 return fruits """ lst = []; lst.append(fruit1) lst.append(fruit2) return lst # 调用函数 result = fruit_function("apple", "banana") print(result) # 取绝对值 # 调用函数 my_abs(-1) # 空函数 # 返回多个值,函数可以返回多个值吗?答案是肯定的额 import math x, y = move(100, 100, 60, math.pi / 6) print(x, y) r = move(100, 100, 60, math.pi / 6) print(r) # 乘方 # 调用函数 print("2^5:%d" % power(2, 5)) print(add_end()) # 函数的参数改为可变参数 print(calc(1, 2, 3, 4, 5, 6)) nums = [1, 2, 3] print(calc(*nums)) person('Michael', 30) person('Bob', 35, city='Beijing') person('Adam', 45, gender='M', job='Engineer') # *args是可变参数,args接收的是一个tuple; # **kw是关键字参数,kw接收的是一个dict func(1, 2) func(1, 2, c=3) func(1, 2, 3, 'a', 'b') func(1, 2, 3, 'a', 'b', x=99) args = (1, 2, 3, 4, 5) kw = {'x': 99} func(*args, **kw) # 递归函数 print("5!=%d" %fact(5)) # 尾递归优化 # 列表,偶数在前,奇数在后 A = [3,1,2,4] print(sortArrayByParity(A))
[ 2, 532, 9, 12, 66, 7656, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 31660, 10310, 103, 49035, 121, 46763, 108, 44293, 227, 162, 233, 105, 164, 122, 241, 17739, 98, 20998, 224, 46763, 108, 161, 240, 234, 164, 122, 241, 49035, 118, 20998, 224, 46763, 108, 198, 37811, 628, 198, 2, 10263, 106, 248, 20046, 231, 49035, 121, 46763, 108, 628, 198, 2, 5525, 108, 225, 18796, 101, 49035, 121, 46763, 108, 198, 20274, 796, 2386, 23515, 7, 17, 8, 198, 4798, 7, 20274, 8, 628, 198, 2, 10263, 237, 224, 46763, 108, 33232, 227, 165, 94, 119, 17358, 223, 29826, 96, 163, 94, 106, 28839, 108, 37863, 247, 17739, 98, 49035, 121, 46763, 108, 40792, 171, 120, 234, 49035, 121, 46763, 108, 21410, 20998, 224, 46763, 108, 20046, 253, 20998, 107, 20015, 98, 10310, 118, 13783, 248, 10310, 103, 198, 4299, 8234, 62, 8818, 7, 34711, 16, 11, 8234, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15921, 796, 8234, 16, 1343, 366, 366, 1343, 8234, 17, 198, 220, 220, 220, 1441, 15921, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 300, 301, 796, 25787, 198, 220, 220, 220, 300, 301, 13, 33295, 7, 34711, 16, 8, 198, 220, 220, 220, 300, 301, 13, 33295, 7, 34711, 17, 8, 198, 220, 220, 220, 1441, 300, 301, 628, 198, 2, 5525, 108, 225, 18796, 101, 49035, 121, 46763, 108, 198, 20274, 796, 8234, 62, 8818, 7203, 18040, 1600, 366, 3820, 2271, 4943, 198, 4798, 7, 20274, 8, 628, 198, 2, 10263, 237, 244, 163, 119, 251, 43380, 117, 161, 222, 120, 628, 198, 2, 5525, 108, 225, 18796, 101, 49035, 121, 46763, 108, 198, 1820, 62, 8937, 32590, 16, 8, 628, 198, 2, 13328, 102, 118, 49035, 121, 46763, 108, 628, 198, 2, 5525, 123, 242, 32368, 252, 13783, 248, 10310, 103, 161, 222, 120, 171, 120, 234, 49035, 121, 46763, 108, 20998, 107, 20015, 98, 32573, 242, 32368, 252, 13783, 248, 10310, 103, 161, 222, 120, 28938, 245, 171, 120, 253, 163, 18433, 162, 94, 230, 42468, 164, 224, 107, 22522, 248, 21410, 165, 95, 251, 198, 11748, 10688, 628, 198, 198, 87, 11, 331, 796, 1445, 7, 3064, 11, 1802, 11, 3126, 11, 10688, 13, 14415, 1220, 718, 8, 198, 4798, 7, 87, 11, 331, 8, 198, 81, 796, 1445, 7, 3064, 11, 1802, 11, 3126, 11, 10688, 13, 14415, 1220, 718, 8, 198, 4798, 7, 81, 8, 628, 198, 2, 220, 20046, 246, 43095, 628, 198, 2, 5525, 108, 225, 18796, 101, 49035, 121, 46763, 108, 198, 4798, 7203, 17, 61, 20, 25, 4, 67, 1, 4064, 1176, 7, 17, 11, 642, 4008, 628, 198, 198, 4798, 7, 2860, 62, 437, 28955, 628, 198, 2, 10263, 229, 121, 46763, 108, 21410, 20998, 224, 46763, 108, 162, 242, 117, 10310, 118, 20998, 107, 20998, 246, 20998, 224, 46763, 108, 628, 198, 4798, 7, 9948, 66, 7, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 4008, 198, 77, 5700, 796, 685, 16, 11, 362, 11, 513, 60, 198, 4798, 7, 9948, 66, 46491, 77, 5700, 4008, 628, 198, 198, 6259, 10786, 13256, 3256, 1542, 8, 198, 6259, 10786, 18861, 3256, 3439, 11, 1748, 11639, 3856, 11030, 11537, 198, 6259, 10786, 23159, 3256, 4153, 11, 5279, 11639, 44, 3256, 1693, 11639, 13798, 263, 11537, 628, 198, 2, 1635, 22046, 42468, 20998, 107, 20998, 246, 20998, 224, 46763, 108, 171, 120, 234, 22046, 162, 236, 98, 162, 242, 114, 21410, 42468, 31660, 10310, 103, 83, 29291, 26, 198, 2, 12429, 46265, 42468, 17739, 111, 165, 242, 106, 27764, 245, 20998, 224, 46763, 108, 11, 46265, 162, 236, 98, 162, 242, 114, 21410, 42468, 31660, 10310, 103, 11600, 628, 198, 20786, 7, 16, 11, 362, 8, 198, 20786, 7, 16, 11, 362, 11, 269, 28, 18, 8, 198, 20786, 7, 16, 11, 362, 11, 513, 11, 705, 64, 3256, 705, 65, 11537, 198, 20786, 7, 16, 11, 362, 11, 513, 11, 705, 64, 3256, 705, 65, 3256, 2124, 28, 2079, 8, 198, 198, 22046, 796, 357, 16, 11, 362, 11, 513, 11, 604, 11, 642, 8, 198, 46265, 796, 1391, 6, 87, 10354, 7388, 92, 198, 20786, 46491, 22046, 11, 12429, 46265, 8, 628, 198, 2, 16268, 222, 240, 37605, 240, 49035, 121, 46763, 108, 198, 4798, 7203, 20, 0, 28, 4, 67, 1, 4064, 22584, 7, 20, 4008, 198, 198, 2, 10263, 108, 122, 34460, 240, 37605, 240, 27670, 246, 44293, 244, 198, 198, 2, 10263, 230, 245, 26193, 101, 171, 120, 234, 161, 223, 35050, 243, 108, 28839, 101, 30298, 235, 171, 120, 234, 25001, 229, 46763, 108, 28839, 101, 28938, 236, 198, 198, 32, 796, 685, 18, 11, 16, 11, 17, 11, 19, 60, 198, 4798, 7, 30619, 19182, 3886, 47, 6806, 7, 32, 4008, 198 ]
1.388471
798
from . import class_
[ 6738, 764, 1330, 1398, 62, 628 ]
3.666667
6
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from aodhclient import client as ac from aodhclient import exceptions from heat.engine.clients import client_plugin CLIENT_NAME = 'aodh'
[ 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 6738, 257, 375, 71, 16366, 1330, 5456, 355, 936, 198, 6738, 257, 375, 71, 16366, 1330, 13269, 198, 198, 6738, 4894, 13, 18392, 13, 565, 2334, 1330, 5456, 62, 33803, 198, 198, 5097, 28495, 62, 20608, 796, 705, 64, 375, 71, 6, 628 ]
3.341121
214
#!/usr/bin/env python3 import argparse import asyncio import json import logging import os import socket import ssl import sys import time from queue import Queue import paho.mqtt.client as mqtt SERVER_ADDRESS = ('localhost', 2598) # Logging Configuration logging.basicConfig(level=logging.INFO, stream=sys.stdout) logger = logging.getLogger(__name__) handler = logging.FileHandler('n2kparserlite.log') handler.setLevel(logging.ERROR) formatter = logging.Formatter('%(asctime)s-%(name)s-%(message)s') handler.setFormatter(formatter) logger.addHandler(handler) # AsyncIO Event Loop event_loop = asyncio.get_event_loop() CONFIG = dict() DEVICE_NAME = '' DEVICE_ID = '' INFLUX_SOCKET = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) PAYLOAD_QUEUE = Queue(maxsize=50) def on_connect(mqttc, obj, flags, rc): """MQTT Callback Function upon connecting to MQTT Broker""" if rc == 0: logger.debug("MQTT CONNECT rc: " + str(rc)) logger.info("Succesfully Connected to MQTT Broker") def on_publish(mqttc, obj, mid): """MQTT Callback Function upon publishing to MQTT Broker""" logger.debug("MQTT PUBLISH: mid: " + str(mid)) def on_disconnect(mqttc, obj, rc): """MQTT Callback Fucntion upon diconnecting from Broker""" if rc == 0: logger.debug("MQTT DISCONNECTED: rc: " + str(rc)) logger.debug("Disconnected Successfully from MQTT Broker") def setup_mqtt_client(mqtt_conf, mqtt_client): """Configure MQTT Client based on Configuration""" if mqtt_conf['TLS']['enable']: logger.info("TLS Setup for Broker") logger.info("checking TLS_Version") tls = mqtt_conf['TLS']['tls_version'] if tls == 'tlsv1.2': tlsVersion = ssl.PROTOCOL_TLSv1_2 elif tls == "tlsv1.1": tlsVersion = ssl.PROTOCOL_TLSv1_1 elif tls == "tlsv1": tlsVersion = ssl.PROTOCOL_TLSv1 else: logger.info("Unknown TLS version - ignoring") tlsVersion = None if not mqtt_conf['TLS']['insecure']: logger.info("Searching for Certificates in certdir") CERTS_DIR = mqtt_conf['TLS']['certs']['certdir'] if os.path.isdir(CERTS_DIR): logger.info("certdir exists") CA_CERT_FILE = os.path.join(CERTS_DIR, mqtt_conf['TLS']['certs']['cafile']) CERT_FILE = os.path.join(CERTS_DIR, mqtt_conf['TLS']['certs']['certfile']) KEY_FILE = os.path.join(CERTS_DIR, mqtt_conf['TLS']['certs']['keyfile']) mqtt_client.tls_set(ca_certs=CA_CERT_FILE, certfile=CERT_FILE, keyfile=KEY_FILE, cert_reqs=ssl.CERT_REQUIRED, tls_version=tlsVersion) else: logger.error("certdir does not exist.. check path") sys.exit() else: mqtt_client.tls_set(ca_certs=None, certfile=None, keyfile=None, cert_reqs=ssl.CERT_NONE, tls_version=tlsVersion) mqtt_client.tls_insecure_set(True) if mqtt_conf['username'] and mqtt_conf['password']: logger.info("setting username and password for Broker") mqtt_client.username_pw_set(mqtt_conf['username'], mqtt_conf['password']) return mqtt_client async def nmea2k_stream_client(address, nmea2k_conf, mqttc): """Stream Client for reading incoming NMEA2000 Data""" global PAYLOAD_QUEUE PGNS = list(map(int, nmea2k_conf['pgnConfigs'].keys())) logger.debug('STREAM-CLIENT: Connecting To {} Port {}'.format(*address)) reader, _ = await asyncio.open_connection(*address) logger.info('STREAM-CLIENT: Reading from N2KD Stream Server') mqttc.loop_start() while True: try: data = await reader.readuntil(separator=b'\n') if data: raw_data = data.decode().split('\n')[0] nmea2k_data = json.loads(raw_data) del nmea2k_data['prio'] del nmea2k_data['dst'] if nmea2k_data['pgn'] in PGNS: logger.debug('STREAM-CLIENT:[PGN:{}] Description: {}'.format(nmea2k_data['pgn'], nmea2k_data['description'])) # logger.debug(nmea2k_data) if 'fromSource' in list(nmea2k_conf['pgnConfigs'][str(nmea2k_data['pgn'])].keys()): logger.info('STREAM-CLIENT:[PGN:{}] PGN Source Filter for {} ,SOURCE: {}'.format( nmea2k_data['pgn'], nmea2k_data['description'], nmea2k_data['src'], )) if nmea2k_data['src'] != nmea2k_conf['pgnConfigs'][str(nmea2k_data['pgn'])]['fromSource']: logger.info('STREAM-CLIENT:[PGN:{}] Skipping data: {} With SRC: {}'.format( nmea2k_data['pgn'], nmea2k_data['description'], nmea2k_data['src'], )) continue # go to next incoming data # Create a set of all available fields from the incoming frame incoming_fields = set(nmea2k_data['fields'].keys()) fields_from_conf = set(nmea2k_conf['pgnConfigs'][str(nmea2k_data['pgn'])]['fieldLabels']) logger.debug(f'STREAM-CLIENT: Fields To Log: {fields_from_conf.intersection(incoming_fields)}') try: for selected_field in fields_from_conf.intersection(incoming_fields): if isinstance(nmea2k_data['fields'][selected_field], str): lineproto_payload = '{},src=nmea2k,pgnSrc={} {}="{}" {}\n'.format( nmea2k_data['description'].replace(" ", "").lower(), nmea2k_data['src'], selected_field.replace(" ", "").lower(), nmea2k_data['fields'][selected_field], time.time_ns(), ) else: lineproto_payload = '{},src=nmea2k,pgnSrc={} {}={} {}\n'.format( nmea2k_data['description'].replace(" ", "").lower(), nmea2k_data['src'], selected_field.replace(" ", "").lower(), nmea2k_data['fields'][selected_field], time.time_ns(), ) if PAYLOAD_QUEUE.full(): logger.info('STREAM-CLIENT: Queue Full -> Publish Data') hf_task = asyncio.create_task(send_data(mqttc)) await hf_task else: # logger.info('STREAM-CLIENT: Pushing data to Payload Queue') PAYLOAD_QUEUE.put_nowait(lineproto_payload) except Exception as e: logger.error(e) else: log.error('STREAM-CLIENT: No Data') return time.sleep(0.1) except Exception as e: logger.error(e) logger.error('Error during Stream Reading') break mqttc.loop_stop() def parse_args(): """Parse Arguments for configuration file""" parser = argparse.ArgumentParser(description='CLI to store Actisense-NGT Gateway values to InfluxDB and publish via MQTT') parser.add_argument('--config', '-c', type=str, required=True, help='JSON configuraton file with path') return parser.parse_args() def main(): """Initialization""" args = parse_args() if not os.path.isfile(args.config): logger.error("configuration file not readable. Check path to configuration file") sys.exit() global CONFIG with open(args.config, 'r') as config_file: CONFIG = json.load(config_file) global DEVICE_NAME, DEVICE_ID DEVICE_NAME = CONFIG['device']['name'] DEVICE_ID = CONFIG['device']['ID'] MQTT_CONF = CONFIG['mqtt'] NMEA2K_CONF = CONFIG['nmea2k'] mqttc = mqtt.Client(client_id=f'{DEVICE_NAME}/{DEVICE_ID}-NMEA2K') mqttc = setup_mqtt_client(MQTT_CONF, mqttc) mqttc.on_connect = on_connect mqttc.on_publish = on_publish mqttc.on_disconnect = on_disconnect mqttc.connect(CONFIG['mqtt']['broker'], CONFIG['mqtt']['port']) logger.info('AsyncIO - Event Loop - Start reading from Stream Server') try: event_loop.run_until_complete( nmea2k_stream_client( SERVER_ADDRESS, NMEA2K_CONF, mqttc ) ) except KeyboardInterrupt: logger.exception('CTRL+C Pressed') pass finally: mqttc.disconnect() logger.info('closing event loop') PAYLOAD_QUEUE.queue.clear() event_loop.close() if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 1822, 29572, 198, 11748, 30351, 952, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 264, 6649, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 16834, 1330, 4670, 518, 198, 198, 11748, 279, 17108, 13, 76, 80, 926, 13, 16366, 355, 285, 80, 926, 198, 198, 35009, 5959, 62, 2885, 7707, 7597, 796, 19203, 36750, 3256, 1679, 4089, 8, 198, 198, 2, 5972, 2667, 28373, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 4269, 28, 17597, 13, 19282, 448, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 30281, 796, 18931, 13, 8979, 25060, 10786, 77, 17, 74, 48610, 36890, 13, 6404, 11537, 198, 30281, 13, 2617, 4971, 7, 6404, 2667, 13, 24908, 8, 198, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 12, 4, 7, 3672, 8, 82, 12, 4, 7, 20500, 8, 82, 11537, 198, 30281, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 198, 2, 1081, 13361, 9399, 8558, 26304, 198, 15596, 62, 26268, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 3419, 628, 198, 10943, 16254, 796, 8633, 3419, 198, 7206, 27389, 62, 20608, 796, 10148, 198, 7206, 27389, 62, 2389, 796, 10148, 198, 1268, 3697, 31235, 62, 50, 11290, 2767, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 35, 10761, 2390, 8, 198, 198, 4537, 56, 35613, 62, 48, 8924, 8924, 796, 4670, 518, 7, 9806, 7857, 28, 1120, 8, 628, 198, 4299, 319, 62, 8443, 7, 76, 80, 926, 66, 11, 26181, 11, 9701, 11, 48321, 2599, 198, 220, 220, 220, 37227, 49215, 15751, 4889, 1891, 15553, 2402, 14320, 284, 337, 48, 15751, 2806, 6122, 37811, 198, 220, 220, 220, 611, 48321, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 49215, 15751, 7102, 48842, 48321, 25, 366, 1343, 965, 7, 6015, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 5606, 535, 274, 2759, 8113, 276, 284, 337, 48, 15751, 2806, 6122, 4943, 628, 198, 4299, 319, 62, 12984, 1836, 7, 76, 80, 926, 66, 11, 26181, 11, 3095, 2599, 198, 220, 220, 220, 37227, 49215, 15751, 4889, 1891, 15553, 2402, 12407, 284, 337, 48, 15751, 2806, 6122, 37811, 198, 220, 220, 220, 49706, 13, 24442, 7203, 49215, 15751, 24676, 9148, 18422, 25, 3095, 25, 366, 1343, 965, 7, 13602, 4008, 628, 198, 4299, 319, 62, 6381, 8443, 7, 76, 80, 926, 66, 11, 26181, 11, 48321, 2599, 198, 220, 220, 220, 37227, 49215, 15751, 4889, 1891, 376, 1229, 429, 295, 2402, 288, 4749, 1606, 278, 422, 2806, 6122, 37811, 198, 220, 220, 220, 611, 48321, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 49215, 15751, 13954, 10943, 48842, 1961, 25, 48321, 25, 366, 1343, 965, 7, 6015, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 7279, 15236, 16282, 2759, 422, 337, 48, 15751, 2806, 6122, 4943, 198, 198, 4299, 9058, 62, 76, 80, 926, 62, 16366, 7, 76, 80, 926, 62, 10414, 11, 285, 80, 926, 62, 16366, 2599, 198, 220, 220, 220, 37227, 16934, 495, 337, 48, 15751, 20985, 1912, 319, 28373, 37811, 628, 220, 220, 220, 611, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 21633, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 51, 6561, 31122, 329, 2806, 6122, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 41004, 33855, 62, 14815, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 256, 7278, 796, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 83, 7278, 62, 9641, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 7278, 6624, 705, 83, 7278, 85, 16, 13, 17, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 7278, 14815, 796, 264, 6649, 13, 4805, 2394, 4503, 3535, 62, 51, 6561, 85, 16, 62, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 256, 7278, 6624, 366, 83, 7278, 85, 16, 13, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 7278, 14815, 796, 264, 6649, 13, 4805, 2394, 4503, 3535, 62, 51, 6561, 85, 16, 62, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 256, 7278, 6624, 366, 83, 7278, 85, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 7278, 14815, 796, 264, 6649, 13, 4805, 2394, 4503, 3535, 62, 51, 6561, 85, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 20035, 33855, 2196, 532, 15482, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 7278, 14815, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 259, 22390, 6, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 18243, 278, 329, 14965, 811, 689, 287, 5051, 15908, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 1137, 4694, 62, 34720, 796, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 22583, 82, 6, 7131, 6, 22583, 15908, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 34, 1137, 4694, 62, 34720, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 22583, 15908, 7160, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7257, 62, 34, 17395, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 34, 1137, 4694, 62, 34720, 11, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 22583, 82, 6, 7131, 6, 66, 1878, 576, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 17395, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 34, 1137, 4694, 62, 34720, 11, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 22583, 82, 6, 7131, 6, 22583, 7753, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35374, 62, 25664, 796, 28686, 13, 6978, 13, 22179, 7, 34, 1137, 4694, 62, 34720, 11, 285, 80, 926, 62, 10414, 17816, 51, 6561, 6, 7131, 6, 22583, 82, 6, 7131, 6, 2539, 7753, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 62, 16366, 13, 83, 7278, 62, 2617, 7, 6888, 62, 22583, 82, 28, 8141, 62, 34, 17395, 62, 25664, 11, 5051, 7753, 28, 34, 17395, 62, 25664, 11, 1994, 7753, 28, 20373, 62, 25664, 11, 5051, 62, 42180, 82, 28, 45163, 13, 34, 17395, 62, 2200, 10917, 37819, 11, 256, 7278, 62, 9641, 28, 83, 7278, 14815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 22583, 15908, 857, 407, 2152, 492, 2198, 3108, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 62, 16366, 13, 83, 7278, 62, 2617, 7, 6888, 62, 22583, 82, 28, 14202, 11, 5051, 7753, 28, 14202, 11, 1994, 7753, 28, 14202, 11, 5051, 62, 42180, 82, 28, 45163, 13, 34, 17395, 62, 45, 11651, 11, 256, 7278, 62, 9641, 28, 83, 7278, 14815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 62, 16366, 13, 83, 7278, 62, 259, 22390, 62, 2617, 7, 17821, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 285, 80, 926, 62, 10414, 17816, 29460, 20520, 290, 285, 80, 926, 62, 10414, 17816, 28712, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 33990, 20579, 290, 9206, 329, 2806, 6122, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 62, 16366, 13, 29460, 62, 79, 86, 62, 2617, 7, 76, 80, 926, 62, 10414, 17816, 29460, 6, 4357, 285, 80, 926, 62, 10414, 17816, 28712, 6, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 285, 80, 926, 62, 16366, 628, 198, 292, 13361, 825, 299, 1326, 64, 17, 74, 62, 5532, 62, 16366, 7, 21975, 11, 299, 1326, 64, 17, 74, 62, 10414, 11, 285, 80, 926, 66, 2599, 198, 220, 220, 220, 37227, 12124, 20985, 329, 3555, 15619, 399, 11682, 32, 11024, 6060, 37811, 198, 220, 220, 220, 3298, 38444, 35613, 62, 48, 8924, 8924, 198, 220, 220, 220, 23842, 8035, 796, 1351, 7, 8899, 7, 600, 11, 299, 1326, 64, 17, 74, 62, 10414, 17816, 79, 4593, 16934, 82, 6, 4083, 13083, 3419, 4008, 198, 220, 220, 220, 49706, 13, 24442, 10786, 2257, 32235, 12, 5097, 28495, 25, 8113, 278, 1675, 23884, 4347, 23884, 4458, 18982, 46491, 21975, 4008, 198, 220, 220, 220, 9173, 11, 4808, 796, 25507, 30351, 952, 13, 9654, 62, 38659, 46491, 21975, 8, 628, 220, 220, 220, 49706, 13, 10951, 10786, 2257, 32235, 12, 5097, 28495, 25, 11725, 422, 399, 17, 42, 35, 13860, 9652, 11537, 198, 220, 220, 220, 285, 80, 926, 66, 13, 26268, 62, 9688, 3419, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 25507, 9173, 13, 961, 28446, 7, 25512, 1352, 28, 65, 6, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7890, 796, 1366, 13, 12501, 1098, 22446, 35312, 10786, 59, 77, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 796, 33918, 13, 46030, 7, 1831, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 299, 1326, 64, 17, 74, 62, 7890, 17816, 3448, 78, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 299, 1326, 64, 17, 74, 62, 7890, 17816, 67, 301, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 20520, 287, 23842, 8035, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 10786, 2257, 32235, 12, 5097, 28495, 33250, 6968, 45, 29164, 92, 60, 12489, 25, 23884, 4458, 18982, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 4357, 299, 1326, 64, 17, 74, 62, 7890, 17816, 11213, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 24442, 7, 77, 1326, 64, 17, 74, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6738, 7416, 6, 287, 1351, 7, 77, 1326, 64, 17, 74, 62, 10414, 17816, 79, 4593, 16934, 82, 6, 7131, 2536, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 12962, 4083, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 2257, 32235, 12, 5097, 28495, 33250, 6968, 45, 29164, 92, 60, 350, 16630, 8090, 25853, 329, 23884, 837, 47690, 25, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 11213, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 10677, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1326, 64, 17, 74, 62, 7890, 17816, 10677, 20520, 14512, 299, 1326, 64, 17, 74, 62, 10414, 17816, 79, 4593, 16934, 82, 6, 7131, 2536, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 12962, 7131, 6, 6738, 7416, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 2257, 32235, 12, 5097, 28495, 33250, 6968, 45, 29164, 92, 60, 3661, 4501, 1366, 25, 23884, 2080, 311, 7397, 25, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 11213, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 10677, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 467, 284, 1306, 15619, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 900, 286, 477, 1695, 7032, 422, 262, 15619, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15619, 62, 25747, 796, 900, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 25747, 6, 4083, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 62, 6738, 62, 10414, 796, 900, 7, 77, 1326, 64, 17, 74, 62, 10414, 17816, 79, 4593, 16934, 82, 6, 7131, 2536, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 79, 4593, 6, 12962, 7131, 6, 3245, 17822, 1424, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 6, 2257, 32235, 12, 5097, 28495, 25, 23948, 1675, 5972, 25, 1391, 25747, 62, 6738, 62, 10414, 13, 3849, 5458, 7, 259, 4976, 62, 25747, 38165, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6163, 62, 3245, 287, 7032, 62, 6738, 62, 10414, 13, 3849, 5458, 7, 259, 4976, 62, 25747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 77, 1326, 64, 17, 74, 62, 7890, 17816, 25747, 6, 7131, 34213, 62, 3245, 4357, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 1676, 1462, 62, 15577, 2220, 796, 705, 90, 5512, 10677, 28, 77, 1326, 64, 17, 74, 11, 79, 4593, 50, 6015, 34758, 92, 23884, 2625, 90, 36786, 23884, 59, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 11213, 6, 4083, 33491, 7203, 33172, 366, 11074, 21037, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 10677, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 3245, 13, 33491, 7203, 33172, 366, 11074, 21037, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 25747, 6, 7131, 34213, 62, 3245, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 2435, 62, 5907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 1676, 1462, 62, 15577, 2220, 796, 705, 90, 5512, 10677, 28, 77, 1326, 64, 17, 74, 11, 79, 4593, 50, 6015, 34758, 92, 23884, 34758, 92, 23884, 59, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 11213, 6, 4083, 33491, 7203, 33172, 366, 11074, 21037, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 10677, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 3245, 13, 33491, 7203, 33172, 366, 11074, 21037, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 7890, 17816, 25747, 6, 7131, 34213, 62, 3245, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 2435, 62, 5907, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 38444, 35613, 62, 48, 8924, 8924, 13, 12853, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 2257, 32235, 12, 5097, 28495, 25, 4670, 518, 6462, 4613, 8525, 1836, 6060, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 69, 62, 35943, 796, 30351, 952, 13, 17953, 62, 35943, 7, 21280, 62, 7890, 7, 76, 80, 926, 66, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 289, 69, 62, 35943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 10951, 10786, 2257, 32235, 12, 5097, 28495, 25, 350, 8023, 1366, 284, 7119, 2220, 4670, 518, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38444, 35613, 62, 48, 8924, 8924, 13, 1996, 62, 2197, 4548, 7, 1370, 1676, 1462, 62, 15577, 2220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 10786, 2257, 32235, 12, 5097, 28495, 25, 1400, 6060, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 10786, 12331, 1141, 13860, 11725, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 198, 220, 220, 220, 285, 80, 926, 66, 13, 26268, 62, 11338, 3419, 628, 198, 4299, 21136, 62, 22046, 33529, 198, 220, 220, 220, 37227, 10044, 325, 20559, 2886, 329, 8398, 2393, 37811, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 5097, 40, 284, 3650, 2191, 271, 1072, 12, 10503, 51, 29916, 3815, 284, 4806, 22564, 11012, 290, 7715, 2884, 337, 48, 15751, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 11250, 3256, 705, 12, 66, 3256, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 1037, 11639, 40386, 4566, 333, 13951, 2393, 351, 3108, 11537, 198, 220, 220, 220, 1441, 30751, 13, 29572, 62, 22046, 3419, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 24243, 1634, 37811, 198, 220, 220, 220, 26498, 796, 21136, 62, 22046, 3419, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 22046, 13, 11250, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7203, 11250, 3924, 2393, 407, 31744, 13, 6822, 3108, 284, 8398, 2393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3298, 25626, 198, 220, 220, 220, 351, 1280, 7, 22046, 13, 11250, 11, 705, 81, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25626, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 628, 220, 220, 220, 3298, 5550, 27389, 62, 20608, 11, 5550, 27389, 62, 2389, 198, 220, 220, 220, 5550, 27389, 62, 20608, 796, 25626, 17816, 25202, 6, 7131, 6, 3672, 20520, 198, 220, 220, 220, 5550, 27389, 62, 2389, 796, 25626, 17816, 25202, 6, 7131, 6, 2389, 20520, 198, 220, 220, 220, 337, 48, 15751, 62, 10943, 37, 796, 25626, 17816, 76, 80, 926, 20520, 198, 220, 220, 220, 399, 11682, 32, 17, 42, 62, 10943, 37, 796, 25626, 17816, 77, 1326, 64, 17, 74, 20520, 628, 220, 220, 220, 285, 80, 926, 66, 796, 285, 80, 926, 13, 11792, 7, 16366, 62, 312, 28, 69, 6, 90, 7206, 27389, 62, 20608, 92, 14, 90, 7206, 27389, 62, 2389, 92, 12, 45, 11682, 32, 17, 42, 11537, 198, 220, 220, 220, 285, 80, 926, 66, 796, 9058, 62, 76, 80, 926, 62, 16366, 7, 49215, 15751, 62, 10943, 37, 11, 285, 80, 926, 66, 8, 628, 220, 220, 220, 285, 80, 926, 66, 13, 261, 62, 8443, 796, 319, 62, 8443, 198, 220, 220, 220, 285, 80, 926, 66, 13, 261, 62, 12984, 1836, 796, 319, 62, 12984, 1836, 198, 220, 220, 220, 285, 80, 926, 66, 13, 261, 62, 6381, 8443, 796, 319, 62, 6381, 8443, 628, 220, 220, 220, 285, 80, 926, 66, 13, 8443, 7, 10943, 16254, 17816, 76, 80, 926, 6, 7131, 6, 7957, 6122, 6, 4357, 25626, 17816, 76, 80, 926, 6, 7131, 6, 634, 6, 12962, 628, 220, 220, 220, 49706, 13, 10951, 10786, 42367, 9399, 532, 8558, 26304, 532, 7253, 3555, 422, 13860, 9652, 11537, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 26268, 13, 5143, 62, 28446, 62, 20751, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 1326, 64, 17, 74, 62, 5532, 62, 16366, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18871, 5959, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 11682, 32, 17, 42, 62, 10943, 37, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 4177, 7836, 10, 34, 350, 2790, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 80, 926, 66, 13, 6381, 8443, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 565, 2752, 1785, 9052, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 38444, 35613, 62, 48, 8924, 8924, 13, 36560, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 26268, 13, 19836, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.876097
4,899
#!/usr/bin/env python # coding: utf-8 # In[ ]: import tweepy import pandas as pd import numpy as np import webbrowser import time from tweepy import OAuthHandler import json import csv import re import string import os # In[ ]: key = "VEyxpXLGHG9USYhM7spHVKl36" secret = "FG61nlBuLR7mb6UCPGxHH4UdMqwYNwL6aFhDt9gQJcaChblOkL" callback_url = "oob" auth = tweepy.OAuthHandler(key, secret, callback_url) redirect_url = auth.get_authorization_url() webbrowser.open(redirect_url) pin_input = input("Enter Pin Value : ") auth.get_access_token(pin_input) # In[ ]: api = tweepy.API(auth) # In[ ]: lonely_list = 'need help OR lonely OR alone OR feeling lonely OR love me OR dead inside OR i want to die OR #Ineedtotalk OR i need OR all alone' anxiety_list = "I just can’t OR I’m fine OR Overthinking OR I tried OR I'm okay OR Help me OR I'm fine OR I need OR Left out OR Worry OR Nervous" stress_list = "very hard OR incredibly OR stressed OR sad OR tired OR It's not easy being OR tension OR selfcare OR insomnia OR trauma OR awake" # In[ ]: lonely_tweets = pd.DataFrame(columns = ['username', 'acctdesc', 'location', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags']) anxiety_tweets = pd.DataFrame(columns = ['username', 'acctdesc', 'location', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags']) stress_tweets = pd.DataFrame(columns = ['username', 'acctdesc', 'location', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags']) # In[ ]: # In[ ]: numTweets = 2500 numRuns = 1 # In[ ]: scraptweets(lonely_list, numTweets, numRuns, lonely_tweets) # In[ ]: scraptweets(anxiety_list, numTweets, numRuns, anxiety_tweets) # In[ ]: scraptweets(stress_list, numTweets, numRuns, stress_tweets) # In[ ]: lonely_tweets['text'] = lonely_tweets['text'].str.replace(r'[^\x00-\x7F]+', '', regex=True) # In[ ]: anxiety_tweets['text'] = anxiety_tweets['text'].str.replace(r'[^\x00-\x7F]+', '', regex=True) # In[ ]: stress_tweets['text'] = stress_tweets['text'].str.replace(r'[^\x00-\x7F]+', '', regex=True) # In[ ]: lonely_tweets.to_csv('lonely_tweets.csv') anxiety_tweets.to_csv('anxiety_tweets.csv') stress_tweets.to_csv('stress_tweets.csv') # In[ ]: normal_list = '-stress OR -lonely OR -anxious OR -alone OR -sad OR -tension OR -help OR -die OR -miss OR -need' # In[ ]: normal_tweets = pd.DataFrame(columns = ['username', 'acctdesc', 'location', 'usercreatedts', 'tweetcreatedts', 'retweetcount', 'text', 'hashtags']) # In[ ]: # In[ ]: numTweets_1 = 2000 numRuns_1 = 1 # In[ ]: scraprecenttweets(normal_list, numTweets_1, numRuns_1, normal_tweets) # In[ ]: normal_tweets.to_csv('normal_tweets.csv') # In[ ]: lonely_tweets.to_csv('lonely_tweets_2.csv') anxiety_tweets.to_csv('anxiety_tweets_2.csv') stress_tweets.to_csv('stress_tweets_2.csv') # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 11748, 4184, 538, 88, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 3992, 40259, 198, 11748, 640, 198, 6738, 4184, 538, 88, 1330, 440, 30515, 25060, 198, 11748, 33918, 198, 11748, 269, 21370, 198, 11748, 302, 198, 11748, 4731, 198, 11748, 28686, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 2539, 796, 366, 6089, 28391, 79, 32457, 17511, 38, 24, 2937, 56, 71, 44, 22, 2777, 39, 47191, 75, 2623, 1, 198, 21078, 796, 366, 30386, 5333, 21283, 38374, 35972, 22, 2022, 21, 9598, 6968, 87, 16768, 19, 52, 67, 44, 80, 86, 40760, 86, 43, 21, 64, 37, 71, 35, 83, 24, 70, 48, 41, 6888, 1925, 2436, 18690, 43, 1, 198, 47423, 62, 6371, 796, 366, 78, 672, 1, 198, 18439, 796, 4184, 538, 88, 13, 23621, 1071, 25060, 7, 2539, 11, 3200, 11, 23838, 62, 6371, 8, 198, 445, 1060, 62, 6371, 796, 6284, 13, 1136, 62, 9800, 1634, 62, 6371, 3419, 198, 732, 11848, 808, 2655, 13, 9654, 7, 445, 1060, 62, 6371, 8, 198, 11635, 62, 15414, 796, 5128, 7203, 17469, 13727, 11052, 1058, 366, 8, 198, 18439, 13, 1136, 62, 15526, 62, 30001, 7, 11635, 62, 15414, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 15042, 796, 4184, 538, 88, 13, 17614, 7, 18439, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 75, 505, 306, 62, 4868, 796, 705, 31227, 1037, 6375, 21757, 6375, 3436, 6375, 4203, 21757, 6375, 1842, 502, 6375, 2636, 2641, 6375, 1312, 765, 284, 4656, 6375, 1303, 40, 31227, 83, 313, 971, 6375, 1312, 761, 6375, 477, 3436, 6, 198, 272, 35753, 62, 4868, 796, 366, 40, 655, 460, 447, 247, 83, 6375, 314, 447, 247, 76, 3734, 6375, 3827, 28973, 6375, 314, 3088, 6375, 314, 1101, 8788, 6375, 10478, 502, 6375, 314, 1101, 3734, 6375, 314, 761, 6375, 9578, 503, 6375, 370, 5152, 6375, 399, 712, 516, 1, 198, 41494, 62, 4868, 796, 366, 548, 1327, 6375, 8131, 6375, 15033, 6375, 6507, 6375, 10032, 6375, 632, 338, 407, 2562, 852, 6375, 12097, 6375, 2116, 6651, 6375, 47104, 6375, 14649, 6375, 21693, 1, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 75, 505, 306, 62, 83, 732, 1039, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 796, 37250, 29460, 3256, 705, 330, 310, 20147, 3256, 705, 24886, 3256, 705, 43298, 15978, 912, 3256, 705, 83, 7277, 25598, 912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1186, 7277, 9127, 3256, 705, 5239, 3256, 705, 17831, 31499, 6, 12962, 198, 272, 35753, 62, 83, 732, 1039, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 796, 37250, 29460, 3256, 705, 330, 310, 20147, 3256, 705, 24886, 3256, 705, 43298, 15978, 912, 3256, 705, 83, 7277, 25598, 912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1186, 7277, 9127, 3256, 705, 5239, 3256, 705, 17831, 31499, 6, 12962, 198, 41494, 62, 83, 732, 1039, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 796, 37250, 29460, 3256, 705, 330, 310, 20147, 3256, 705, 24886, 3256, 705, 43298, 15978, 912, 3256, 705, 83, 7277, 25598, 912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1186, 7277, 9127, 3256, 705, 5239, 3256, 705, 17831, 31499, 6, 12962, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 22510, 32665, 1039, 796, 33507, 198, 22510, 10987, 82, 796, 352, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 1416, 430, 457, 732, 1039, 7, 75, 505, 306, 62, 4868, 11, 997, 32665, 1039, 11, 997, 10987, 82, 11, 21757, 62, 83, 732, 1039, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 1416, 430, 457, 732, 1039, 7, 272, 35753, 62, 4868, 11, 997, 32665, 1039, 11, 997, 10987, 82, 11, 9751, 62, 83, 732, 1039, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 1416, 430, 457, 732, 1039, 7, 41494, 62, 4868, 11, 997, 32665, 1039, 11, 997, 10987, 82, 11, 5503, 62, 83, 732, 1039, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 75, 505, 306, 62, 83, 732, 1039, 17816, 5239, 20520, 796, 21757, 62, 83, 732, 1039, 17816, 5239, 6, 4083, 2536, 13, 33491, 7, 81, 6, 58, 61, 59, 87, 405, 12, 59, 87, 22, 37, 48688, 3256, 705, 3256, 40364, 28, 17821, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 272, 35753, 62, 83, 732, 1039, 17816, 5239, 20520, 796, 9751, 62, 83, 732, 1039, 17816, 5239, 6, 4083, 2536, 13, 33491, 7, 81, 6, 58, 61, 59, 87, 405, 12, 59, 87, 22, 37, 48688, 3256, 705, 3256, 40364, 28, 17821, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 41494, 62, 83, 732, 1039, 17816, 5239, 20520, 796, 5503, 62, 83, 732, 1039, 17816, 5239, 6, 4083, 2536, 13, 33491, 7, 81, 6, 58, 61, 59, 87, 405, 12, 59, 87, 22, 37, 48688, 3256, 705, 3256, 40364, 28, 17821, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 75, 505, 306, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 75, 505, 306, 62, 83, 732, 1039, 13, 40664, 11537, 198, 272, 35753, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 272, 35753, 62, 83, 732, 1039, 13, 40664, 11537, 198, 41494, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 41494, 62, 83, 732, 1039, 13, 40664, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11265, 62, 4868, 796, 705, 12, 41494, 6375, 532, 75, 505, 306, 6375, 532, 272, 48392, 6375, 532, 17749, 6375, 532, 82, 324, 6375, 532, 83, 3004, 6375, 532, 16794, 6375, 532, 11979, 6375, 532, 3927, 6375, 532, 31227, 6, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11265, 62, 83, 732, 1039, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 796, 37250, 29460, 3256, 705, 330, 310, 20147, 3256, 705, 24886, 3256, 705, 43298, 15978, 912, 3256, 705, 83, 7277, 25598, 912, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1186, 7277, 9127, 3256, 705, 5239, 3256, 705, 17831, 31499, 6, 12962, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 22510, 32665, 1039, 62, 16, 796, 4751, 198, 22510, 10987, 82, 62, 16, 796, 352, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 1416, 2416, 49921, 83, 732, 1039, 7, 11265, 62, 4868, 11, 997, 32665, 1039, 62, 16, 11, 997, 10987, 82, 62, 16, 11, 3487, 62, 83, 732, 1039, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 11265, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 11265, 62, 83, 732, 1039, 13, 40664, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 75, 505, 306, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 75, 505, 306, 62, 83, 732, 1039, 62, 17, 13, 40664, 11537, 198, 272, 35753, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 272, 35753, 62, 83, 732, 1039, 62, 17, 13, 40664, 11537, 198, 41494, 62, 83, 732, 1039, 13, 1462, 62, 40664, 10786, 41494, 62, 83, 732, 1039, 62, 17, 13, 40664, 11537, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.239852
1,355
expected_output = { "version": { "build_time": "08:13:43 Apr 7, 2021", "firmware_ver": "18r.1.00h", "install_time": "07:14:32 Jun 1, 2021", "slot": { "L1/0": { "name": "L1/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L2/0": { "name": "L2/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L3/0": { "name": "L3/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L4/0": { "name": "L4/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L5/0": { "name": "L5/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L6/0": { "name": "L6/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L7/0": { "name": "L7/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "L8/0": { "name": "L8/0", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "M1": { "name": "M1", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "ACTIVE", }, "M2": { "name": "M2", "primary_ver": "18r.1.00h", "secondary_ver": "18r.1.00h", "status": "STANDBY", }, }, "system_uptime": "94days 8hrs 25mins 29secs", } }
[ 40319, 62, 22915, 796, 1391, 198, 220, 220, 220, 366, 9641, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11249, 62, 2435, 1298, 366, 2919, 25, 1485, 25, 3559, 2758, 220, 767, 11, 33448, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 69, 2533, 1574, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17350, 62, 2435, 1298, 366, 2998, 25, 1415, 25, 2624, 7653, 220, 352, 11, 33448, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 43384, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 16, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 16, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 17, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 17, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 18, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 18, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 19, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 19, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 20, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 20, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 21, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 22, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 23, 14, 15, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 43, 23, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44, 16, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 44, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 10659, 9306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44, 17, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 44, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38238, 62, 332, 1298, 366, 1507, 81, 13, 16, 13, 405, 71, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 2257, 6981, 17513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10057, 62, 37623, 524, 1298, 366, 5824, 12545, 807, 71, 3808, 1679, 42951, 2808, 2363, 82, 1600, 198, 220, 220, 220, 1782, 198, 92, 198 ]
1.435831
1,535
from .FPN import * from .PAN import *
[ 6738, 764, 5837, 45, 1330, 1635, 220, 198, 6738, 764, 47, 1565, 1330, 1635, 220 ]
2.6
15
def main(): """Generate reStructuredText README from Markdown. The ``main()`` function is also registered in the setup entry points. Convertion example:: import ipster.command_line ipster.command_line.main() """ readme_in = 'README.md' readme_out = 'README.rst' try: from pypandoc import convert_file readme = convert_file(readme_in, 'rst') with open(readme_out, 'w') as f: f.write(readme) except ImportError as e: print(e)
[ 4299, 1388, 33529, 198, 220, 220, 220, 37227, 8645, 378, 302, 44909, 1522, 8206, 20832, 11682, 422, 2940, 2902, 13, 198, 220, 220, 220, 383, 7559, 12417, 3419, 15506, 2163, 318, 635, 6823, 287, 262, 9058, 5726, 2173, 13, 628, 220, 220, 220, 38240, 295, 1672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 20966, 1706, 13, 21812, 62, 1370, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 1706, 13, 21812, 62, 1370, 13, 12417, 3419, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1100, 1326, 62, 259, 796, 705, 15675, 11682, 13, 9132, 6, 198, 220, 220, 220, 1100, 1326, 62, 448, 796, 705, 15675, 11682, 13, 81, 301, 6, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 279, 4464, 392, 420, 1330, 10385, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 1326, 796, 10385, 62, 7753, 7, 961, 1326, 62, 259, 11, 705, 81, 301, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 961, 1326, 62, 448, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 961, 1326, 8, 198, 220, 220, 220, 2845, 17267, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198 ]
2.29646
226
#!/usr/bin/env python # Thanks to https://github.com/ritchielawrence/cmdow # For providing help for treating Win32 API import re import os from argparse import ArgumentParser import win32gui import win32api import win32console import win32process from win32com.client import GetObject from win_maximize.parent_tree import parent_tree CURRENT_PROCESS_TREE = parent_tree(os.getpid()) # Check if found window handle is parent process of this script if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 6930, 284, 3740, 1378, 12567, 13, 785, 14, 46510, 8207, 707, 6784, 14, 28758, 322, 198, 2, 1114, 4955, 1037, 329, 13622, 7178, 2624, 7824, 198, 198, 11748, 302, 198, 11748, 28686, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 11748, 1592, 2624, 48317, 198, 11748, 1592, 2624, 15042, 198, 11748, 1592, 2624, 41947, 198, 11748, 1592, 2624, 14681, 198, 198, 6738, 1592, 2624, 785, 13, 16366, 1330, 3497, 10267, 198, 198, 6738, 1592, 62, 9806, 48439, 13, 8000, 62, 21048, 1330, 2560, 62, 21048, 628, 198, 198, 34, 39237, 62, 4805, 4503, 7597, 62, 51, 11587, 796, 2560, 62, 21048, 7, 418, 13, 1136, 35317, 28955, 628, 198, 220, 220, 220, 1303, 6822, 611, 1043, 4324, 5412, 318, 2560, 1429, 286, 428, 4226, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.210191
157
import json from django import template register = template.Library() @register.filter
[ 11748, 33918, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 31, 30238, 13, 24455, 198 ]
3.791667
24
from raccgen import generate build = generate.build pair = generate.racc
[ 6738, 3444, 66, 5235, 1330, 7716, 198, 198, 11249, 796, 7716, 13, 11249, 198, 24874, 796, 7716, 13, 81, 4134 ]
3.65
20
from django.db import models from django.core.exceptions import ValidationError from django.core.validators import MaxValueValidator, MinValueValidator import uuid # def validate_color(color): # match = re.search(r'^#(?:[0-9a-fA-F]{3}){1,2}$', color) # if match == False: # raise ValidationError( # _('%(color)s is not an even number'), # params={'color': color}, # ) class Car(models.Model): ''' Car Model ''' unique_id = models.UUIDField(default=uuid.uuid4(), editable=False) make = models.CharField(max_length=56, blank=False, null=False) color = models.CharField(max_length=56, blank=False, null=False) production_year = models.IntegerField(blank=False, validators=[ MaxValueValidator(2021), MinValueValidator(1960), ]) avg_fuel_consumption_per_100km = models.DecimalField(blank=False, null=False, max_digits=5, decimal_places=2, validators=[ MaxValueValidator(20), MinValueValidator(2), ]) max_passengers = models.PositiveIntegerField(blank=False, null=False, validators=[ MinValueValidator(1), MaxValueValidator(10), ]) created_at = models.DateTimeField(auto_now_add=True)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 7295, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 42625, 14208, 13, 7295, 13, 12102, 2024, 1330, 5436, 11395, 47139, 1352, 11, 1855, 11395, 47139, 1352, 198, 11748, 334, 27112, 628, 198, 2, 825, 26571, 62, 8043, 7, 8043, 2599, 198, 2, 220, 220, 220, 220, 2872, 796, 302, 13, 12947, 7, 81, 6, 61, 2, 7, 27514, 58, 15, 12, 24, 64, 12, 69, 32, 12, 37, 60, 90, 18, 92, 19953, 16, 11, 17, 92, 3, 3256, 3124, 8, 198, 2, 220, 220, 220, 220, 611, 2872, 6624, 10352, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3254, 24765, 12331, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 10786, 4, 7, 8043, 8, 82, 318, 407, 281, 772, 1271, 33809, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 34758, 6, 8043, 10354, 3124, 5512, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4871, 1879, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1879, 9104, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 3748, 62, 312, 796, 4981, 13, 52, 27586, 15878, 7, 12286, 28, 12303, 312, 13, 12303, 312, 19, 22784, 4370, 540, 28, 25101, 8, 198, 220, 220, 220, 787, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3980, 11, 9178, 28, 25101, 11, 9242, 28, 25101, 8, 198, 220, 220, 220, 3124, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3980, 11, 9178, 28, 25101, 11, 9242, 28, 25101, 8, 198, 220, 220, 220, 3227, 62, 1941, 796, 4981, 13, 46541, 15878, 7, 27190, 28, 25101, 11, 4938, 2024, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 5436, 11395, 47139, 1352, 7, 1238, 2481, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1855, 11395, 47139, 1352, 7, 38503, 828, 198, 220, 220, 220, 33761, 198, 220, 220, 220, 42781, 62, 25802, 62, 5936, 24098, 62, 525, 62, 3064, 13276, 796, 4981, 13, 10707, 4402, 15878, 7, 27190, 28, 25101, 11, 9242, 28, 25101, 11, 3509, 62, 12894, 896, 28, 20, 11, 32465, 62, 23625, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 2024, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 11395, 47139, 1352, 7, 1238, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1855, 11395, 47139, 1352, 7, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 3509, 62, 6603, 9302, 796, 4981, 13, 21604, 1800, 46541, 15878, 7, 27190, 28, 25101, 11, 9242, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 2024, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1855, 11395, 47139, 1352, 7, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5436, 11395, 47139, 1352, 7, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 2727, 62, 265, 796, 4981, 13, 10430, 7575, 15878, 7, 23736, 62, 2197, 62, 2860, 28, 17821, 8, 198 ]
1.801325
906
from __future__ import absolute_import, print_function, unicode_literals from wolframclient.language.expression import WLInputExpression, WLSymbolFactory wl = WLSymbolFactory() """A factory of :class:`~wolframclient.language.expression.WLSymbol` instances without any particular context. This instance of :class:`~wolframclient.language.expression.WLSymbolFactory` is conveniently used by calling its attributes. The following code represents various Wolfram Language expressions:: # Now wl.Now # Quantity[3, "Hours"] wl.Quantity(3, "Hours") # Select[PrimeQ, {1,2,3,4}] wl.Select(wl.PrimeQ, [1, 2, 3, 4]) Represent symbols in various contexts:: >>> wl.Developer.PackedArrayQ Developer`PackedArrayQ >>> wl.Global.f Global`f Specify a context and a subcontext:: >>> wl.MyContext.MySubContext.SymbolName MyContext`MySubContext`SymbolName """ System = wl.System """A factory of :class:`~wolframclient.language.expression.WLSymbol` instances having ``System``` context. See :class:`~wolframclient.language.expression.WLSymbolFactory` for more details. Represent a symbol in the System context:: >>> System.ImageIdentify System`ImageIdentify """ Global = wl.Global """A factory of :class:`~wolframclient.language.expression.WLSymbol` instances having ``Global``` context. See :class:`~wolframclient.language.expression.WLSymbolFactory` and :class:`~wolframclient.language.expression.WLSymbolFactory` for more details. Represent a symbol in the Global context:: >>> Global.mySymbol Global`mySymbol Represent a function call to a function:: >>> Global.myFunction('foo') Global`myFunction['foo'] """ # Sphinx seems to bug on this one, and picks an outdated the docstring when declared in __init__. wlexpr = WLInputExpression """ Represent Wolfram Language expressions with input form strings. Convenient alias for :class:`~wolframclient.language.expression.WLInputExpression`. Represent an expression:: >>> wlexpr('Select[Range[10], EvenQ]') (Select[Range[10], EvenQ]) Represent a pure function that squares an input argument:: >>> wlexpr('# ^ 2 &' ) (# ^ 2 &) """ __all__ = ["wl", "System", "Global", "wlexpr"]
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 17481, 859, 16366, 13, 16129, 13, 38011, 1330, 370, 43, 20560, 16870, 2234, 11, 370, 6561, 88, 23650, 22810, 198, 198, 40989, 796, 370, 6561, 88, 23650, 22810, 3419, 198, 37811, 32, 8860, 286, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 63, 10245, 1231, 597, 1948, 4732, 13, 198, 198, 1212, 4554, 286, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 22810, 63, 318, 29801, 973, 198, 1525, 4585, 663, 12608, 13, 383, 1708, 2438, 6870, 2972, 8662, 859, 15417, 14700, 3712, 628, 220, 220, 220, 1303, 2735, 198, 220, 220, 220, 266, 75, 13, 3844, 198, 220, 220, 220, 1303, 39789, 58, 18, 11, 366, 39792, 8973, 198, 220, 220, 220, 266, 75, 13, 31208, 7, 18, 11, 366, 39792, 4943, 198, 220, 220, 220, 1303, 9683, 58, 26405, 48, 11, 1391, 16, 11, 17, 11, 18, 11, 19, 92, 60, 198, 220, 220, 220, 266, 75, 13, 17563, 7, 40989, 13, 26405, 48, 11, 685, 16, 11, 362, 11, 513, 11, 604, 12962, 198, 198, 40171, 14354, 287, 2972, 26307, 3712, 628, 220, 220, 220, 13163, 266, 75, 13, 45351, 13, 47, 6021, 19182, 48, 198, 220, 220, 220, 23836, 63, 47, 6021, 19182, 48, 628, 220, 220, 220, 13163, 266, 75, 13, 22289, 13, 69, 198, 220, 220, 220, 8060, 63, 69, 198, 198, 22882, 1958, 257, 4732, 290, 257, 850, 22866, 3712, 628, 220, 220, 220, 13163, 266, 75, 13, 3666, 21947, 13, 3666, 7004, 21947, 13, 13940, 23650, 5376, 198, 220, 220, 220, 2011, 21947, 63, 3666, 7004, 21947, 63, 13940, 23650, 5376, 628, 198, 37811, 198, 198, 11964, 796, 266, 75, 13, 11964, 198, 37811, 32, 8860, 286, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 63, 10245, 1719, 7559, 11964, 15506, 63, 4732, 13, 198, 198, 6214, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 22810, 63, 329, 517, 3307, 13, 198, 198, 40171, 257, 6194, 287, 262, 4482, 4732, 3712, 628, 220, 220, 220, 13163, 4482, 13, 5159, 33234, 1958, 198, 220, 220, 220, 4482, 63, 5159, 33234, 1958, 198, 198, 37811, 198, 198, 22289, 796, 266, 75, 13, 22289, 198, 37811, 32, 8860, 286, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 63, 10245, 1719, 7559, 22289, 15506, 63, 4732, 13, 198, 198, 6214, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 22810, 63, 290, 198, 25, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 6561, 88, 23650, 22810, 63, 329, 517, 3307, 13, 198, 198, 40171, 257, 6194, 287, 262, 8060, 4732, 3712, 628, 220, 220, 220, 13163, 8060, 13, 1820, 13940, 23650, 198, 220, 220, 220, 8060, 63, 1820, 13940, 23650, 198, 198, 40171, 257, 2163, 869, 284, 257, 2163, 3712, 628, 220, 220, 220, 13163, 8060, 13, 1820, 22203, 10786, 21943, 11537, 198, 220, 220, 220, 8060, 63, 1820, 22203, 17816, 21943, 20520, 198, 198, 37811, 198, 198, 2, 45368, 28413, 2331, 284, 5434, 319, 428, 530, 11, 290, 11103, 281, 23572, 262, 2205, 8841, 618, 6875, 287, 11593, 15003, 834, 13, 198, 86, 2588, 1050, 796, 370, 43, 20560, 16870, 2234, 198, 37811, 10858, 8662, 859, 15417, 14700, 351, 5128, 1296, 13042, 13, 198, 198, 3103, 48109, 16144, 329, 1058, 4871, 25, 63, 93, 18829, 859, 16366, 13, 16129, 13, 38011, 13, 54, 43, 20560, 16870, 2234, 44646, 198, 198, 40171, 281, 5408, 3712, 628, 220, 220, 220, 13163, 266, 2588, 1050, 10786, 17563, 58, 17257, 58, 940, 4357, 3412, 48, 60, 11537, 198, 220, 220, 220, 357, 17563, 58, 17257, 58, 940, 4357, 3412, 48, 12962, 198, 198, 40171, 257, 5899, 2163, 326, 24438, 281, 5128, 4578, 3712, 628, 220, 220, 220, 13163, 266, 2588, 1050, 10786, 2, 10563, 362, 1222, 6, 1267, 198, 220, 220, 220, 17426, 10563, 362, 1222, 8, 198, 198, 37811, 628, 198, 834, 439, 834, 796, 14631, 40989, 1600, 366, 11964, 1600, 366, 22289, 1600, 366, 86, 2588, 1050, 8973, 198 ]
3.083218
721
import time from typing import Iterable, Optional, Sequence import orjson from django.http import HttpRequest, HttpResponse from django.utils.translation import ugettext as _ from zerver.decorator import REQ, has_request_variables, internal_notify_view, process_client from zerver.lib.response import json_error, json_success from zerver.lib.validator import ( check_bool, check_int, check_list, check_string, to_non_negative_int, ) from zerver.models import Client, UserProfile, get_client, get_user_profile_by_id from zerver.tornado.event_queue import fetch_events, get_client_descriptor, process_notification from zerver.tornado.exceptions import BadEventQueueIdError from zerver.tornado.handlers import AsyncDjangoHandler @internal_notify_view(True) @has_request_variables @internal_notify_view(True) @has_request_variables @has_request_variables
[ 11748, 640, 198, 6738, 19720, 1330, 40806, 540, 11, 32233, 11, 45835, 198, 198, 11748, 393, 17752, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 18453, 11, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 198, 6738, 1976, 18497, 13, 12501, 273, 1352, 1330, 4526, 48, 11, 468, 62, 25927, 62, 25641, 2977, 11, 5387, 62, 1662, 1958, 62, 1177, 11, 1429, 62, 16366, 198, 6738, 1976, 18497, 13, 8019, 13, 26209, 1330, 33918, 62, 18224, 11, 33918, 62, 13138, 198, 6738, 1976, 18497, 13, 8019, 13, 12102, 1352, 1330, 357, 198, 220, 220, 220, 2198, 62, 30388, 11, 198, 220, 220, 220, 2198, 62, 600, 11, 198, 220, 220, 220, 2198, 62, 4868, 11, 198, 220, 220, 220, 2198, 62, 8841, 11, 198, 220, 220, 220, 284, 62, 13159, 62, 31591, 62, 600, 11, 198, 8, 198, 6738, 1976, 18497, 13, 27530, 1330, 20985, 11, 11787, 37046, 11, 651, 62, 16366, 11, 651, 62, 7220, 62, 13317, 62, 1525, 62, 312, 198, 6738, 1976, 18497, 13, 45910, 4533, 13, 15596, 62, 36560, 1330, 21207, 62, 31534, 11, 651, 62, 16366, 62, 20147, 1968, 273, 11, 1429, 62, 1662, 2649, 198, 6738, 1976, 18497, 13, 45910, 4533, 13, 1069, 11755, 1330, 7772, 9237, 34991, 7390, 12331, 198, 6738, 1976, 18497, 13, 45910, 4533, 13, 4993, 8116, 1330, 1081, 13361, 35, 73, 14208, 25060, 628, 198, 31, 32538, 62, 1662, 1958, 62, 1177, 7, 17821, 8, 198, 198, 31, 10134, 62, 25927, 62, 25641, 2977, 198, 198, 31, 32538, 62, 1662, 1958, 62, 1177, 7, 17821, 8, 198, 31, 10134, 62, 25927, 62, 25641, 2977, 198, 198, 31, 10134, 62, 25927, 62, 25641, 2977, 198 ]
3.080702
285
"""Accessors for NAMD FEP datasets. """ from os.path import dirname, join from glob import glob from .. import Bunch def load_tyr2ala(): """Load the NAMD tyrosine to alanine mutation dataset. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: - 'data' : the data files by alchemical leg - 'DESCR': the full description of the dataset """ module_path = dirname(__file__) data = {'forward': glob(join(module_path, 'tyr2ala/in-aqua/forward/*.fepout.bz2')), 'backward': glob(join(module_path, 'tyr2ala/in-aqua/backward/*.fepout.bz2'))} with open(join(module_path, 'tyr2ala', 'descr.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, DESCR=fdescr)
[ 37811, 15457, 669, 329, 399, 28075, 376, 8905, 40522, 13, 198, 198, 37811, 198, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 198, 6738, 15095, 1330, 15095, 198, 198, 6738, 11485, 1330, 347, 3316, 198, 198, 4299, 3440, 62, 774, 81, 17, 6081, 33529, 198, 220, 220, 220, 37227, 8912, 262, 399, 28075, 1259, 4951, 500, 284, 435, 272, 500, 15148, 27039, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1366, 1058, 347, 3316, 198, 220, 220, 220, 220, 220, 220, 220, 28261, 12, 2339, 2134, 11, 262, 3499, 12608, 389, 25, 628, 220, 220, 220, 220, 220, 220, 220, 532, 705, 7890, 6, 1058, 262, 1366, 3696, 416, 435, 31379, 1232, 198, 220, 220, 220, 220, 220, 220, 220, 532, 705, 30910, 9419, 10354, 262, 1336, 6764, 286, 262, 27039, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 8265, 62, 6978, 796, 26672, 3672, 7, 834, 7753, 834, 8, 198, 220, 220, 220, 1366, 796, 1391, 6, 11813, 10354, 15095, 7, 22179, 7, 21412, 62, 6978, 11, 705, 774, 81, 17, 6081, 14, 259, 12, 36129, 64, 14, 11813, 15211, 13, 69, 538, 448, 13, 65, 89, 17, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1891, 904, 10354, 15095, 7, 22179, 7, 21412, 62, 6978, 11, 705, 774, 81, 17, 6081, 14, 259, 12, 36129, 64, 14, 1891, 904, 15211, 13, 69, 538, 448, 13, 65, 89, 17, 6, 4008, 92, 628, 220, 220, 220, 351, 1280, 7, 22179, 7, 21412, 62, 6978, 11, 705, 774, 81, 17, 6081, 3256, 705, 20147, 81, 13, 81, 301, 6, 4008, 355, 374, 301, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 20147, 81, 796, 374, 301, 62, 7753, 13, 961, 3419, 628, 220, 220, 220, 1441, 347, 3316, 7, 7890, 28, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 9419, 28, 16344, 3798, 81, 8, 628 ]
2.368732
339
import pandas as pd import ta # Load data df = pd.read_csv('ui.csv', sep=',') # Clean nan values df = ta.utils.dropna(df) print('roc') print(ta.momentum.roc(close=df['close']),40) print('-----------------------------------') print('rsi') print(ta.momentum.rsi(close=df['close']),14) print('-----------------------------------') print('bollinger_mavg') print(ta.volatility.bollinger_mavg(close=df['close']),200) print('-----------------------------------') print('aroon') print(ta.trend.aroon_up(close=df['close']),200) print(ta.trend.aroon_down(close=df['close']),200) print('-----------------------------------') print('dpo') print(ta.trend.dpo(close=df['close']),200) print('-----------------------------------') print('ema_indicator') print(ta.trend.ema_indicator(close=df['close']),200) print('-----------------------------------') print('sma_indicator') print(ta.trend.sma_indicator(close=df['close']),200) print('-----------------------------------') print('trix') print(ta.trend.trix(close=df['close']),200) print('-----------------------------------') print('cumulative_return') print(ta.others.cumulative_return(close=df['close']),200) print('-----------------------------------') print('daily_log_return') print(ta.others.daily_log_return(close=df['close']),200) print('-----------------------------------') print('daily_return') print(ta.others.daily_return(close=df['close']),200) print('-----------------------------------')
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 20486, 198, 198, 2, 8778, 1366, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 9019, 13, 40664, 3256, 41767, 28, 3256, 11537, 198, 198, 2, 5985, 15709, 3815, 198, 7568, 796, 20486, 13, 26791, 13, 14781, 2616, 7, 7568, 8, 198, 198, 4798, 10786, 12204, 11537, 198, 4798, 7, 8326, 13, 32542, 298, 388, 13, 12204, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 1821, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 3808, 72, 11537, 198, 4798, 7, 8326, 13, 32542, 298, 388, 13, 3808, 72, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 1415, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 65, 692, 3889, 62, 76, 615, 70, 11537, 198, 4798, 7, 8326, 13, 10396, 18486, 13, 65, 692, 3889, 62, 76, 615, 70, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 283, 2049, 11537, 198, 4798, 7, 8326, 13, 83, 10920, 13, 283, 2049, 62, 929, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 7, 8326, 13, 83, 10920, 13, 283, 2049, 62, 2902, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 67, 7501, 11537, 198, 4798, 7, 8326, 13, 83, 10920, 13, 67, 7501, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 19687, 62, 521, 26407, 11537, 198, 4798, 7, 8326, 13, 83, 10920, 13, 19687, 62, 521, 26407, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 82, 2611, 62, 521, 26407, 11537, 198, 4798, 7, 8326, 13, 83, 10920, 13, 82, 2611, 62, 521, 26407, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 83, 8609, 11537, 198, 4798, 7, 8326, 13, 83, 10920, 13, 83, 8609, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 36340, 13628, 62, 7783, 11537, 198, 4798, 7, 8326, 13, 847, 82, 13, 36340, 13628, 62, 7783, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 29468, 62, 6404, 62, 7783, 11537, 198, 4798, 7, 8326, 13, 847, 82, 13, 29468, 62, 6404, 62, 7783, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198, 4798, 10786, 29468, 62, 7783, 11537, 198, 4798, 7, 8326, 13, 847, 82, 13, 29468, 62, 7783, 7, 19836, 28, 7568, 17816, 19836, 20520, 828, 2167, 8, 198, 4798, 10786, 3880, 6329, 11537, 198 ]
3.132609
460
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: dpaslaru # @Date: 2014-09-17 18:36:03 # @Last Modified by: dpaslaru # @Last Modified time: 2014-09-17 19:40:59
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 13838, 25, 288, 44429, 75, 11493, 198, 2, 2488, 10430, 25, 220, 220, 1946, 12, 2931, 12, 1558, 1248, 25, 2623, 25, 3070, 198, 2, 2488, 5956, 40499, 416, 25, 220, 220, 288, 44429, 75, 11493, 198, 2, 2488, 5956, 40499, 640, 25, 1946, 12, 2931, 12, 1558, 678, 25, 1821, 25, 3270, 198 ]
2.177215
79
#!/usr/bin/env python3 """ Script for extracting a JSON payload for plotting from VarScan VCF files annotated with VEP. Only samples with calls are returned. If a file containing Ensembl IDs (one per line) is supplied, only records associated with the IDs are returned. Requirements: * Python 3.x * PyVCF 0.6.7 <https://pyvcf.readthedocs.org> * Click 5.1 <http://click.pocoo.org/> Input requirements: * VCF output from VarScan (may contain more than one samples). * May or may not be gzipped. * Must have been annotated using VEP with the `--allele_number` flag. This tool was tested using VCF files generated using: * VarScan v2.3.7 (mpileup2cns). * VEP (Ensembl tools 77, GRCh 38 assembly). Copyright (c) 2015 Leiden University Medical Center <http://lumc.nl> All rights reserved. """ import json import os import re import sys from functools import partial from os import path import click import vcf from pybedtools import BedTool, Interval __author__ = "Wibowo Arindrarto" __contact__ = "[email protected]" __all__ = [] # Mapping of VEP consequence to its predicted impact # Source: http://www.ensembl.org/info/genome/variation/predicted_data.html VEP_IMPACTS = { "TFBS_amplification": "MODIFIER", "regulatory_region_amplification": "MODIFIER", "5_prime_UTR_variant": "MODIFIER", "regulatory_region_ablation": "MODERATE", "start_lost": "HIGH", "intron_variant": "MODIFIER", "inframe_insertion": "HIGH", "non_coding_transcript_exon_variant": "MODIFIER", "synonymous_variant": "LOW", "mature_miRNA_variant": "MODIFIER", "splice_donor_variant": "MODERATE", "3_prime_UTR_variant": "MODIFIER", "feature_truncation": "MODIFIER", "TF_binding_site_variant": "MODIFIER", "splice_acceptor_variant": "MODERATE", "transcript_amplification": "HIGH", "upstream_gene_variant": "MODIFIER", "stop_lost": "HIGH", "stop_retained_variant": "LOW", "inframe_deletion": "HIGH", "TFBS_ablation": "MODIFIER", "stop_gained": "HIGH", "regulatory_region_variant": "MODIFIER", "incomplete_terminal_codon_variant": "LOW", "intergenic_variant": "MODIFIER", "downstream_gene_variant": "MODIFIER", "splice_region_variant": "LOW", "transcript_ablation": "HIGH", "protein_altering_variant": "HIGH", "frameshift_variant": "HIGH", "feature_elongation": "MODIFIER", "NMD_transcript_variant": "MODIFIER", "coding_sequence_variant": "MODIFIER", "missense_variant": "HIGH", "non_coding_transcript_variant": "MODIFIER", } CSQ_NAME = "CSQ" af_1kg_below_1pct = partial(af_below, 0.01, "1KG_P3_AF") af_1kg_below_5pct = partial(af_below, 0.05, "1KG_P3_AF") all_af_subpop_below_1pct = partial(all_af_subpop_below, 0.01) all_af_subpop_below_5pct = partial(all_af_subpop_below, 0.05) def vcfrec2interval(record): """Given a VCF record object, return a pybedtools Interval object.""" # NOTE: we need to do coordinate conversion manually return Interval(record.CHROM, record.POS - 1, record.POS) def make_record_extractor(reader, csq_info_name=CSQ_NAME): """Creates a function for extracting the records of the given VCF.""" # regex for checking whether a string can be converted to int is_int = re.compile(r'^([-+]?\d+)L?$') # regex for checking whether a string can be converted to float is_decimal = re.compile(r'^([-+]?\d*\.?\d+(?:[eE][-+]?[0-9]+)?)$') # samples in this VCF file samples = reader.samples split_attrs = set(["Consequence", "Existing_variation", "TREMBL"]) # Assumes the VEP formatting is given as the last space-separated # string in the VCF header. vep_keys = reader.infos[csq_info_name].desc.split(" ")[-1].split("|") def convert_token(tok): """Given a string token, tries to convert it to int or float if possible. Empty strings are converted to None.""" if isinstance(tok, str): if is_int.match(tok): return int(tok) if is_decimal.match(tok): return float(tok) if not tok: return return tok def get_s_alleles(sample_call, alleles): """Given a sample call and all the alleles present in a VCF record, return the alleles called in the sample and its number.""" phase_char = sample_call.gt_phase_char() num_alleles = sample_call.data.GT.split(phase_char) allele_nums = [int(n) for n in num_alleles] return [alleles.__getitem__(n) for n in allele_nums], allele_nums def get_vep_impact(vep_cons): """Given a VEP consequence string, return its impact. If there are multiple consequences, returns the most severe impact.""" if "&" in vep_cons: vep_conss = vep_cons.split("&") impacts = set([get_vep_impact(v) for v in vep_conss]) if len(impacts) == 1: return impacts.pop() elif "HIGH" in impacts: return "HIGH" elif "MODERATE" in impacts: return "MODERATE" elif "LOW" in impacts: return "LOW" elif "MODIFIER" in impacts: return "MODIFIER" assert False return VEP_IMPACTS.get(vep_cons, "UNKNOWN") def parse_raw_vep(raw_str, keep_ampersand): """Parses the given raw VEP string into a dictionary. If the number of fields and values do not match, None is returned.""" values = [convert_token(x) for x in raw_str.split("|")] if len(vep_keys) == len(values): res = {k: v for k, v in zip(vep_keys, values) if v is not None} assert "impact" not in res res["impact"] = get_vep_impact(res["Consequence"]) if not keep_ampersand: for attr in split_attrs: res = split_if_exists(res, attr) return res raise click.ClickException("Unexpected VEP values in string '{0}'" "".format(raw_str)) def extract_sample_data(record, sample, vep_data, hotspot_ivals): """Given a record, a sample name, and a parsed VEP annotation, return the sample data.""" alleles = [record.REF] + [str(x) for x in record.ALT] call = record.genotype(sample) data = call.data if data.GT is None or not call.called: vep_data = [] varscan_ok = {} else: s_alleles, s_allele_nums = get_s_alleles(call, alleles) vep_data = [v for v in vep_data if int(v.get("ALLELE_NUM")) in s_allele_nums] varscan_data = [(k, convert_token(getattr(data, k))) for k in data._fields] genotype = "{0}/{0}".format(s_alleles[0]) if len(s_alleles) == 1 \ else "/".join(s_alleles) varscan_data += [ ("CHROM", record.CHROM), ("POS", record.POS), ("REF", record.REF), ("ALT", [str(a) for a in record.ALT]), ("alleles", s_alleles), ("genotype", genotype)] in_hotspot = None if hotspot_ivals is not None: ival = vcfrec2interval(record) in_hotspot = bool(hotspot_ivals.any_hits(ival)) varscan_data.append(("is_in_hotspot", in_hotspot)) # custom af keys af = {} for custom_info_key in ("GONL", "GONL_AF", "P3", "P3_AF", "P3_AFR_AF", "P3_AMR_AF", "P3_EAS_AF", "P3_EUR_AF", "P3_SAS_AF"): key_val = vep_data[0].get(custom_info_key) if key_val is not None: key_val = list(map(str, [key_val])) custom_info_key = custom_info_key.replace("P3", "1KG_P3") key_val = map(lambda x: ":".join(x), zip([str(x) for x in record.ALT], key_val)) af[custom_info_key] = list(key_val) for k, v in af.items(): varscan_data.append((k, v)) varscan_ok = {k: v for k, v in varscan_data} filters = [] clean_bases_ratio = \ (varscan_ok["RD"] + varscan_ok["AD"]) / varscan_ok["DP"] clean_filter_ok = clean_bases_ratio > 0.2 if not af_1kg_below_5pct(varscan_ok, vep_data): filters.append("1KGAFAtLeast5Pct") if not all_af_subpop_below_5pct(varscan_ok, vep_data): filters.append("SubpopAFAtLeast5Pct") if not clean_filter_ok: filters.append("LowQualBases") assert "filters" not in varscan_ok varscan_ok["filters"] = filters return { "sample": sample, "vep": vep_data, "varscan": varscan_ok, } def extractor(gene_ids, keep_ampersand, filter_goi, hotspot_ivals, record): """Function for extracting records into a dictionary.""" toi_ids = set([toi_id for ids in gene_ids.values() for toi_id in ids]) onames_key = "Existing_variation" csq_values = record.INFO[csq_info_name] vep_data = [parse_raw_vep(x, keep_ampersand) for x in csq_values] # select only variants affecting genes of interest if filter_goi: goi_data = [x for x in vep_data if x.get("Gene") in gene_ids] else: goi_data = [x for x in vep_data] toi_data = list(map(annotate_toi, goi_data)) sample_data = [extract_sample_data(record, k, toi_data, hotspot_ivals) for k in samples] return sample_data return extractor def group(extracted_iter, sample_names, gene_ids): """Given the raw dictionary results, group into per-sample, per-gene dictionary.""" samples = {s: {} for s in sample_names} dns = ("vep", "varscan") for lined in extracted_iter: for sampled in lined: sample = sampled["sample"] entry = {dn: sampled[dn] for dn in dns} # select only variants with VEP annotation if entry["vep"]: for gene_id in gene_ids: if gene_id not in samples[sample]: samples[sample][gene_id] = [] gene_varscan = entry["varscan"] gene_vep = [x for x in entry["vep"] if x["Gene"] == gene_id] if gene_vep: gene_entry = { "vep": gene_vep, "varscan": gene_varscan, "sample": sample, "gene": gene_id } samples[sample][gene_id].append(gene_entry) return samples def parse_id_file(fh): """Parses the given ID file handle into a dictionary between ENSG IDs and ENST IDs.""" # discard header line fh.readline() id_mapping = {gid: tid.split(",") for gid, _, tid in (line.strip().split("\t") for line in fh)} return id_mapping @click.command() @click.argument("id_file", type=click.File()) @click.argument("input_vcf", type=click.Path(dir_okay=False)) @click.option("--keep-amp", default=False, is_flag=True, help="Whether to keep ampersand-separated VEP values as strings" "or split them into a list.") @click.option("--hotspots", default=None, type=click.Path(exists=True, file_okay=True, dir_okay=False), help="Path to a BED file containing hotspots region. The " "regions will be annotated in the output JSON file.") @click.option("--sample-id", type=str, help="Set VCF sample name to the given value. If there are " "more than one samples in the VCF, this flag is ignored.") # TODO: add option for pretty output (default now is compact) if __name__ == "__main__": main.__doc__ = __doc__ main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 198, 7391, 329, 37895, 257, 19449, 21437, 329, 29353, 422, 12372, 33351, 569, 22495, 3696, 198, 34574, 515, 351, 569, 8905, 13, 198, 198, 10049, 8405, 351, 3848, 389, 4504, 13, 198, 198, 1532, 257, 2393, 7268, 2039, 4428, 75, 32373, 357, 505, 583, 1627, 8, 318, 14275, 11, 691, 4406, 198, 32852, 351, 262, 32373, 389, 4504, 13, 198, 198, 42249, 25, 198, 220, 220, 220, 1635, 11361, 513, 13, 87, 198, 220, 220, 220, 1635, 9485, 15922, 37, 657, 13, 21, 13, 22, 1279, 5450, 1378, 9078, 85, 12993, 13, 961, 83, 704, 420, 82, 13, 2398, 29, 198, 220, 220, 220, 1635, 6914, 642, 13, 16, 1279, 4023, 1378, 12976, 13, 79, 420, 2238, 13, 2398, 15913, 198, 198, 20560, 5359, 25, 198, 220, 220, 220, 1635, 569, 22495, 5072, 422, 12372, 33351, 357, 11261, 3994, 517, 621, 530, 8405, 737, 198, 220, 220, 220, 1635, 1737, 393, 743, 407, 307, 308, 89, 3949, 13, 198, 220, 220, 220, 1635, 12039, 423, 587, 24708, 515, 1262, 569, 8905, 351, 262, 4600, 438, 6765, 293, 62, 17618, 63, 6056, 13, 198, 198, 1212, 2891, 373, 6789, 1262, 569, 22495, 3696, 7560, 1262, 25, 198, 220, 220, 220, 1635, 12372, 33351, 410, 17, 13, 18, 13, 22, 357, 3149, 576, 929, 17, 66, 5907, 737, 198, 220, 220, 220, 1635, 569, 8905, 357, 4834, 4428, 75, 4899, 8541, 11, 10863, 1925, 4353, 10474, 737, 628, 198, 15269, 357, 66, 8, 1853, 1004, 14029, 2059, 8366, 3337, 1279, 4023, 1378, 75, 388, 66, 13, 21283, 29, 198, 3237, 2489, 10395, 13, 198, 198, 37811, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 28686, 1330, 3108, 198, 198, 11748, 3904, 198, 11748, 410, 12993, 198, 6738, 12972, 3077, 31391, 1330, 15585, 25391, 11, 4225, 2100, 198, 198, 834, 9800, 834, 796, 366, 54, 571, 322, 78, 943, 521, 81, 433, 78, 1, 198, 834, 32057, 834, 796, 366, 86, 13, 283, 521, 81, 433, 78, 31, 75, 388, 66, 13, 21283, 1, 198, 198, 834, 439, 834, 796, 17635, 198, 198, 2, 337, 5912, 286, 569, 8905, 12921, 284, 663, 11001, 2928, 198, 2, 8090, 25, 2638, 1378, 2503, 13, 1072, 2022, 75, 13, 2398, 14, 10951, 14, 5235, 462, 14, 25641, 341, 14, 28764, 5722, 62, 7890, 13, 6494, 198, 6089, 47, 62, 3955, 44938, 4694, 796, 1391, 198, 220, 220, 220, 366, 10234, 4462, 62, 321, 489, 2649, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 2301, 21386, 62, 36996, 62, 321, 489, 2649, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 20, 62, 35505, 62, 3843, 49, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 2301, 21386, 62, 36996, 62, 397, 7592, 1298, 366, 33365, 1137, 6158, 1600, 198, 220, 220, 220, 366, 9688, 62, 33224, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 600, 1313, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 259, 14535, 62, 28463, 295, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 13159, 62, 66, 7656, 62, 7645, 6519, 62, 1069, 261, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 28869, 6704, 62, 25641, 415, 1298, 366, 43, 3913, 1600, 198, 220, 220, 220, 366, 76, 1300, 62, 11632, 27204, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 22018, 501, 62, 9099, 273, 62, 25641, 415, 1298, 366, 33365, 1137, 6158, 1600, 198, 220, 220, 220, 366, 18, 62, 35505, 62, 3843, 49, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 30053, 62, 2213, 19524, 341, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 10234, 62, 30786, 62, 15654, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 22018, 501, 62, 13635, 273, 62, 25641, 415, 1298, 366, 33365, 1137, 6158, 1600, 198, 220, 220, 220, 366, 7645, 6519, 62, 321, 489, 2649, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 929, 5532, 62, 70, 1734, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 11338, 62, 33224, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 11338, 62, 1186, 1328, 62, 25641, 415, 1298, 366, 43, 3913, 1600, 198, 220, 220, 220, 366, 259, 14535, 62, 2934, 1616, 295, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 10234, 4462, 62, 397, 7592, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 11338, 62, 70, 1328, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 2301, 21386, 62, 36996, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 259, 20751, 62, 23705, 282, 62, 19815, 261, 62, 25641, 415, 1298, 366, 43, 3913, 1600, 198, 220, 220, 220, 366, 3849, 38516, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 2902, 5532, 62, 70, 1734, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 22018, 501, 62, 36996, 62, 25641, 415, 1298, 366, 43, 3913, 1600, 198, 220, 220, 220, 366, 7645, 6519, 62, 397, 7592, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 48693, 62, 282, 20212, 62, 25641, 415, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 19298, 5069, 2135, 62, 25641, 415, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 30053, 62, 21537, 341, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 45, 12740, 62, 7645, 6519, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 66, 7656, 62, 43167, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 220, 220, 220, 366, 3927, 1072, 62, 25641, 415, 1298, 366, 39, 18060, 1600, 198, 220, 220, 220, 366, 13159, 62, 66, 7656, 62, 7645, 6519, 62, 25641, 415, 1298, 366, 33365, 5064, 38311, 1600, 198, 92, 198, 7902, 48, 62, 20608, 796, 366, 7902, 48, 1, 628, 628, 198, 1878, 62, 16, 10025, 62, 35993, 62, 16, 79, 310, 796, 13027, 7, 1878, 62, 35993, 11, 657, 13, 486, 11, 366, 16, 42, 38, 62, 47, 18, 62, 8579, 4943, 198, 1878, 62, 16, 10025, 62, 35993, 62, 20, 79, 310, 796, 13027, 7, 1878, 62, 35993, 11, 657, 13, 2713, 11, 366, 16, 42, 38, 62, 47, 18, 62, 8579, 4943, 198, 439, 62, 1878, 62, 7266, 12924, 62, 35993, 62, 16, 79, 310, 796, 13027, 7, 439, 62, 1878, 62, 7266, 12924, 62, 35993, 11, 657, 13, 486, 8, 198, 439, 62, 1878, 62, 7266, 12924, 62, 35993, 62, 20, 79, 310, 796, 13027, 7, 439, 62, 1878, 62, 7266, 12924, 62, 35993, 11, 657, 13, 2713, 8, 628, 198, 4299, 410, 12993, 8344, 17, 3849, 2100, 7, 22105, 2599, 198, 220, 220, 220, 37227, 15056, 257, 569, 22495, 1700, 2134, 11, 1441, 257, 12972, 3077, 31391, 4225, 2100, 2134, 526, 15931, 198, 220, 220, 220, 1303, 24550, 25, 356, 761, 284, 466, 20435, 11315, 14500, 198, 220, 220, 220, 1441, 4225, 2100, 7, 22105, 13, 3398, 33676, 11, 1700, 13, 37997, 532, 352, 11, 1700, 13, 37997, 8, 628, 198, 4299, 787, 62, 22105, 62, 2302, 40450, 7, 46862, 11, 269, 31166, 62, 10951, 62, 3672, 28, 7902, 48, 62, 20608, 2599, 198, 220, 220, 220, 37227, 16719, 274, 257, 2163, 329, 37895, 262, 4406, 286, 262, 1813, 569, 22495, 526, 15931, 628, 220, 220, 220, 1303, 40364, 329, 10627, 1771, 257, 4731, 460, 307, 11513, 284, 493, 198, 220, 220, 220, 318, 62, 600, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 26933, 19529, 60, 30, 59, 67, 28988, 43, 30, 3, 11537, 198, 220, 220, 220, 1303, 40364, 329, 10627, 1771, 257, 4731, 460, 307, 11513, 284, 12178, 198, 220, 220, 220, 318, 62, 12501, 4402, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 26933, 19529, 60, 30, 59, 67, 9, 17405, 30, 59, 67, 33747, 27514, 58, 68, 36, 7131, 19529, 60, 30, 58, 15, 12, 24, 60, 28988, 10091, 3, 11537, 198, 220, 220, 220, 1303, 8405, 287, 428, 569, 22495, 2393, 198, 220, 220, 220, 8405, 796, 9173, 13, 82, 12629, 198, 220, 220, 220, 6626, 62, 1078, 3808, 796, 900, 7, 14692, 34, 40819, 594, 1600, 366, 3109, 9665, 62, 25641, 341, 1600, 366, 51, 40726, 9148, 8973, 8, 198, 220, 220, 220, 1303, 2195, 8139, 262, 569, 8905, 33313, 318, 1813, 355, 262, 938, 2272, 12, 25512, 515, 198, 220, 220, 220, 1303, 4731, 287, 262, 569, 22495, 13639, 13, 198, 220, 220, 220, 1569, 79, 62, 13083, 796, 9173, 13, 10745, 418, 58, 6359, 80, 62, 10951, 62, 3672, 4083, 20147, 13, 35312, 7203, 366, 38381, 12, 16, 4083, 35312, 7203, 91, 4943, 628, 220, 220, 220, 825, 10385, 62, 30001, 7, 83, 482, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 257, 4731, 11241, 11, 8404, 284, 10385, 340, 284, 493, 393, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1744, 13, 33523, 13042, 389, 11513, 284, 6045, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 83, 482, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 600, 13, 15699, 7, 83, 482, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 83, 482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 12501, 4402, 13, 15699, 7, 83, 482, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12178, 7, 83, 482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 284, 74, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 284, 74, 628, 220, 220, 220, 825, 651, 62, 82, 62, 6765, 829, 7, 39873, 62, 13345, 11, 28654, 829, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 257, 6291, 869, 290, 477, 262, 28654, 829, 1944, 287, 257, 569, 22495, 1700, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 262, 28654, 829, 1444, 287, 262, 6291, 290, 663, 1271, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 10641, 796, 6291, 62, 13345, 13, 13655, 62, 40715, 62, 10641, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 6765, 829, 796, 6291, 62, 13345, 13, 7890, 13, 19555, 13, 35312, 7, 40715, 62, 10641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45907, 62, 77, 5700, 796, 685, 600, 7, 77, 8, 329, 299, 287, 997, 62, 6765, 829, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 6765, 829, 13, 834, 1136, 9186, 834, 7, 77, 8, 329, 299, 287, 45907, 62, 77, 5700, 4357, 45907, 62, 77, 5700, 628, 220, 220, 220, 825, 651, 62, 303, 79, 62, 48240, 7, 303, 79, 62, 5936, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 257, 569, 8905, 12921, 4731, 11, 1441, 663, 2928, 13, 1002, 612, 389, 198, 220, 220, 220, 220, 220, 220, 220, 3294, 6948, 11, 5860, 262, 749, 6049, 2928, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 5, 1, 287, 1569, 79, 62, 5936, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 79, 62, 5936, 82, 796, 1569, 79, 62, 5936, 13, 35312, 7203, 5, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12751, 796, 900, 26933, 1136, 62, 303, 79, 62, 48240, 7, 85, 8, 329, 410, 287, 1569, 79, 62, 5936, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 11011, 8656, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12751, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 39, 18060, 1, 287, 12751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 39, 18060, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 33365, 1137, 6158, 1, 287, 12751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 33365, 1137, 6158, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 43, 3913, 1, 287, 12751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 43, 3913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 33365, 5064, 38311, 1, 287, 12751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 33365, 5064, 38311, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 569, 8905, 62, 3955, 44938, 4694, 13, 1136, 7, 303, 79, 62, 5936, 11, 366, 4944, 44706, 4943, 628, 220, 220, 220, 825, 21136, 62, 1831, 62, 303, 79, 7, 1831, 62, 2536, 11, 1394, 62, 696, 364, 392, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 945, 274, 262, 1813, 8246, 569, 8905, 4731, 656, 257, 22155, 13, 1002, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 7032, 290, 3815, 466, 407, 2872, 11, 6045, 318, 4504, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 1102, 1851, 62, 30001, 7, 87, 8, 329, 2124, 287, 8246, 62, 2536, 13, 35312, 7203, 91, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 303, 79, 62, 13083, 8, 6624, 18896, 7, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 19974, 7, 303, 79, 62, 13083, 11, 3815, 8, 611, 410, 318, 407, 6045, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 366, 48240, 1, 407, 287, 581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 14692, 48240, 8973, 796, 651, 62, 303, 79, 62, 48240, 7, 411, 14692, 34, 40819, 594, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1394, 62, 696, 364, 392, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 287, 6626, 62, 1078, 3808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 6626, 62, 361, 62, 1069, 1023, 7, 411, 11, 708, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3904, 13, 8164, 16922, 7203, 52, 42072, 569, 8905, 3815, 287, 4731, 705, 90, 15, 92, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1911, 18982, 7, 1831, 62, 2536, 4008, 628, 220, 220, 220, 825, 7925, 62, 39873, 62, 7890, 7, 22105, 11, 6291, 11, 1569, 79, 62, 7890, 11, 33915, 13059, 62, 10336, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 257, 1700, 11, 257, 6291, 1438, 11, 290, 257, 44267, 569, 8905, 23025, 11, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 262, 6291, 1366, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 28654, 829, 796, 685, 22105, 13, 31688, 60, 1343, 685, 2536, 7, 87, 8, 329, 2124, 287, 1700, 13, 31429, 60, 198, 220, 220, 220, 220, 220, 220, 220, 869, 796, 1700, 13, 5235, 8690, 7, 39873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 869, 13, 7890, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 13, 19555, 318, 6045, 393, 407, 869, 13, 7174, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 79, 62, 7890, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 482, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 62, 6765, 829, 11, 264, 62, 6765, 293, 62, 77, 5700, 796, 651, 62, 82, 62, 6765, 829, 7, 13345, 11, 28654, 829, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1569, 79, 62, 7890, 796, 685, 85, 329, 410, 287, 1569, 79, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 493, 7, 85, 13, 1136, 7203, 1847, 2538, 2538, 62, 41359, 48774, 287, 264, 62, 6765, 293, 62, 77, 5700, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 7890, 796, 47527, 74, 11, 10385, 62, 30001, 7, 1136, 35226, 7, 7890, 11, 479, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 1366, 13557, 25747, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2429, 8690, 796, 45144, 15, 92, 14, 90, 15, 92, 1911, 18982, 7, 82, 62, 6765, 829, 58, 15, 12962, 611, 18896, 7, 82, 62, 6765, 829, 8, 6624, 352, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 12813, 1911, 22179, 7, 82, 62, 6765, 829, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 7890, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 3398, 33676, 1600, 1700, 13, 3398, 33676, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 37997, 1600, 1700, 13, 37997, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 31688, 1600, 1700, 13, 31688, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 31429, 1600, 685, 2536, 7, 64, 8, 329, 257, 287, 1700, 13, 31429, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 6765, 829, 1600, 264, 62, 6765, 829, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 5235, 8690, 1600, 2429, 8690, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 17398, 13059, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 33915, 13059, 62, 10336, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2473, 796, 410, 12993, 8344, 17, 3849, 2100, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 17398, 13059, 796, 20512, 7, 17398, 13059, 62, 10336, 13, 1092, 62, 71, 896, 7, 2473, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 7890, 13, 33295, 7, 7203, 271, 62, 259, 62, 17398, 13059, 1600, 287, 62, 17398, 13059, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2183, 6580, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6580, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2183, 62, 10951, 62, 2539, 287, 5855, 38, 1340, 43, 1600, 366, 38, 1340, 43, 62, 8579, 1600, 366, 47, 18, 1600, 366, 47, 18, 62, 8579, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 18, 62, 8579, 49, 62, 8579, 1600, 366, 47, 18, 62, 2390, 49, 62, 8579, 1600, 366, 47, 18, 62, 36, 1921, 62, 8579, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 18, 62, 36, 4261, 62, 8579, 1600, 366, 47, 18, 62, 50, 1921, 62, 8579, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2100, 796, 1569, 79, 62, 7890, 58, 15, 4083, 1136, 7, 23144, 62, 10951, 62, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 62, 2100, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2100, 796, 1351, 7, 8899, 7, 2536, 11, 685, 2539, 62, 2100, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2183, 62, 10951, 62, 2539, 796, 2183, 62, 10951, 62, 2539, 13, 33491, 7203, 47, 18, 1600, 366, 16, 42, 38, 62, 47, 18, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2100, 796, 3975, 7, 50033, 2124, 25, 366, 25, 1911, 22179, 7, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 26933, 2536, 7, 87, 8, 329, 2124, 287, 1700, 13, 31429, 4357, 1994, 62, 2100, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6580, 58, 23144, 62, 10951, 62, 2539, 60, 796, 1351, 7, 2539, 62, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 6580, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 7890, 13, 33295, 19510, 74, 11, 410, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 482, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 410, 945, 5171, 62, 7890, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 65, 1386, 62, 10366, 952, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 85, 945, 5171, 62, 482, 14692, 35257, 8973, 1343, 410, 945, 5171, 62, 482, 14692, 2885, 8973, 8, 1220, 410, 945, 5171, 62, 482, 14692, 6322, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 24455, 62, 482, 796, 3424, 62, 65, 1386, 62, 10366, 952, 1875, 657, 13, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6580, 62, 16, 10025, 62, 35993, 62, 20, 79, 310, 7, 85, 945, 5171, 62, 482, 11, 1569, 79, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 13, 33295, 7203, 16, 42, 38, 8579, 2953, 3123, 459, 20, 47, 310, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 62, 1878, 62, 7266, 12924, 62, 35993, 62, 20, 79, 310, 7, 85, 945, 5171, 62, 482, 11, 1569, 79, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 13, 33295, 7203, 7004, 12924, 8579, 2953, 3123, 459, 20, 47, 310, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3424, 62, 24455, 62, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 13, 33295, 7203, 20535, 46181, 33, 1386, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 366, 10379, 1010, 1, 407, 287, 410, 945, 5171, 62, 482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 945, 5171, 62, 482, 14692, 10379, 1010, 8973, 796, 16628, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39873, 1298, 6291, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 303, 79, 1298, 1569, 79, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 85, 945, 5171, 1298, 410, 945, 5171, 62, 482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 7925, 273, 7, 70, 1734, 62, 2340, 11, 1394, 62, 696, 364, 392, 11, 8106, 62, 2188, 72, 11, 33915, 13059, 62, 10336, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22203, 329, 37895, 4406, 656, 257, 22155, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 284, 72, 62, 2340, 796, 900, 26933, 1462, 72, 62, 312, 329, 220, 2340, 287, 9779, 62, 2340, 13, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 284, 72, 62, 312, 287, 220, 2340, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 319, 1047, 62, 2539, 796, 366, 3109, 9665, 62, 25641, 341, 1, 628, 220, 220, 220, 220, 220, 220, 220, 269, 31166, 62, 27160, 796, 1700, 13, 10778, 58, 6359, 80, 62, 10951, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 79, 62, 7890, 796, 685, 29572, 62, 1831, 62, 303, 79, 7, 87, 11, 1394, 62, 696, 364, 392, 8, 329, 2124, 287, 269, 31166, 62, 27160, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2922, 691, 17670, 13891, 10812, 286, 1393, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 2188, 72, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 467, 72, 62, 7890, 796, 685, 87, 329, 2124, 287, 1569, 79, 62, 7890, 611, 2124, 13, 1136, 7203, 39358, 4943, 287, 9779, 62, 2340, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 467, 72, 62, 7890, 796, 685, 87, 329, 2124, 287, 1569, 79, 62, 7890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 284, 72, 62, 7890, 796, 1351, 7, 8899, 7, 34574, 378, 62, 1462, 72, 11, 467, 72, 62, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 7890, 796, 685, 2302, 974, 62, 39873, 62, 7890, 7, 22105, 11, 479, 11, 284, 72, 62, 7890, 11, 33915, 13059, 62, 10336, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 8405, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6291, 62, 7890, 628, 220, 220, 220, 1441, 7925, 273, 628, 198, 4299, 1448, 7, 2302, 20216, 62, 2676, 11, 6291, 62, 14933, 11, 9779, 62, 2340, 2599, 198, 220, 220, 220, 37227, 15056, 262, 8246, 22155, 2482, 11, 1448, 656, 583, 12, 39873, 11, 198, 220, 220, 220, 583, 12, 70, 1734, 22155, 526, 15931, 198, 220, 220, 220, 8405, 796, 1391, 82, 25, 23884, 329, 264, 287, 6291, 62, 14933, 92, 198, 220, 220, 220, 288, 5907, 796, 5855, 303, 79, 1600, 366, 85, 945, 5171, 4943, 198, 220, 220, 220, 329, 16566, 287, 21242, 62, 2676, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 35846, 287, 16566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 35846, 14692, 39873, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 1391, 32656, 25, 35846, 58, 32656, 60, 329, 288, 77, 287, 288, 5907, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2922, 691, 17670, 351, 569, 8905, 23025, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 14692, 303, 79, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9779, 62, 312, 287, 9779, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 62, 312, 407, 287, 8405, 58, 39873, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 58, 39873, 7131, 70, 1734, 62, 312, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 85, 945, 5171, 796, 5726, 14692, 85, 945, 5171, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 303, 79, 796, 685, 87, 329, 2124, 287, 5726, 14692, 303, 79, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 14692, 39358, 8973, 6624, 9779, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9779, 62, 303, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 62, 13000, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 303, 79, 1298, 9779, 62, 303, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 85, 945, 5171, 1298, 9779, 62, 85, 945, 5171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39873, 1298, 6291, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 70, 1734, 1298, 9779, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 58, 39873, 7131, 70, 1734, 62, 312, 4083, 33295, 7, 70, 1734, 62, 13000, 8, 198, 220, 220, 220, 1441, 8405, 628, 198, 4299, 21136, 62, 312, 62, 7753, 7, 69, 71, 2599, 198, 220, 220, 220, 37227, 47, 945, 274, 262, 1813, 4522, 2393, 5412, 656, 257, 22155, 1022, 412, 8035, 38, 32373, 290, 198, 220, 220, 220, 12964, 2257, 32373, 526, 15931, 198, 220, 220, 220, 1303, 27537, 13639, 1627, 198, 220, 220, 220, 277, 71, 13, 961, 1370, 3419, 198, 220, 220, 220, 4686, 62, 76, 5912, 796, 1391, 70, 312, 25, 29770, 13, 35312, 7, 2430, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 312, 11, 4808, 11, 29770, 287, 357, 1370, 13, 36311, 22446, 35312, 7203, 59, 83, 4943, 329, 1627, 287, 277, 71, 38165, 198, 220, 220, 220, 1441, 4686, 62, 76, 5912, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 7203, 312, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 8979, 28955, 198, 31, 12976, 13, 49140, 7203, 15414, 62, 85, 12993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 15908, 62, 482, 323, 28, 25101, 4008, 198, 31, 12976, 13, 18076, 7203, 438, 14894, 12, 696, 1600, 4277, 28, 25101, 11, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15354, 284, 1394, 716, 19276, 392, 12, 25512, 515, 569, 8905, 3815, 355, 13042, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 273, 6626, 606, 656, 257, 1351, 19570, 198, 31, 12976, 13, 18076, 7203, 438, 17398, 40793, 1600, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 2393, 62, 482, 323, 28, 17821, 11, 26672, 62, 482, 323, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 257, 347, 1961, 2393, 7268, 33915, 40793, 3814, 13, 383, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2301, 507, 481, 307, 24708, 515, 287, 262, 5072, 19449, 2393, 19570, 198, 31, 12976, 13, 18076, 7203, 438, 39873, 12, 312, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 569, 22495, 6291, 1438, 284, 262, 1813, 1988, 13, 1002, 612, 389, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3549, 621, 530, 8405, 287, 262, 569, 22495, 11, 428, 6056, 318, 9514, 19570, 198, 2, 16926, 46, 25, 751, 3038, 329, 2495, 5072, 357, 12286, 783, 318, 16001, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1388, 13, 834, 15390, 834, 796, 11593, 15390, 834, 198, 220, 220, 220, 1388, 3419, 198 ]
2.057793
5,935
import simuvex from itertools import count fastpath_data_counter = count() #pylint:disable=arguments-differ from simuvex.s_options import ABSTRACT_MEMORY, CGC_NO_SYMBOLIC_RECEIVE_LENGTH
[ 11748, 985, 45177, 87, 198, 6738, 340, 861, 10141, 1330, 954, 198, 198, 7217, 6978, 62, 7890, 62, 24588, 796, 954, 3419, 198, 220, 220, 220, 1303, 79, 2645, 600, 25, 40223, 28, 853, 2886, 12, 26069, 263, 198, 198, 6738, 985, 45177, 87, 13, 82, 62, 25811, 1330, 9564, 18601, 10659, 62, 44, 3620, 15513, 11, 327, 15916, 62, 15285, 62, 23060, 10744, 3535, 2149, 62, 2200, 5222, 9306, 62, 43, 49494, 198 ]
2.594595
74
import datetime data = datetime.datetime.now() data1 = data.strftime("%d-%m-%Y %H:%M:%S") import pandas as pd url = 'https://raw.githubusercontent.com/AlanTurist/Greece_covid19/master/region_greece.csv' df = pd.read_csv(url,index_col=0, sep=",")
[ 11748, 4818, 8079, 198, 7890, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 7890, 16, 796, 1366, 13, 2536, 31387, 7203, 4, 67, 12, 4, 76, 12, 4, 56, 4064, 39, 25, 4, 44, 25, 4, 50, 4943, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 6371, 796, 705, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 36235, 17483, 396, 14, 38, 631, 344, 62, 66, 709, 312, 1129, 14, 9866, 14, 36996, 62, 70, 631, 344, 13, 40664, 6, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 6371, 11, 9630, 62, 4033, 28, 15, 11, 41767, 28, 2430, 8 ]
2.320755
106