content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# iframe does not fire onload event if the response's content-type is not # text/plain or text/html so this script exists if you want to test a 404 load # in an iframe.
[ 2, 611, 28073, 857, 407, 2046, 319, 2220, 1785, 611, 262, 2882, 338, 2695, 12, 4906, 318, 407, 198, 2, 2420, 14, 25638, 393, 2420, 14, 6494, 523, 428, 4226, 7160, 611, 345, 765, 284, 1332, 257, 32320, 3440, 198, 2, 287, 281, 611, 28073, 13, 198 ]
3.595745
47
# -*- coding: utf-8 -*- from __future__ import absolute_import import pytest import salt.modules.chocolatey as choco import salt.utils.platform from tests.support.case import ModuleCase from tests.support.helpers import destructiveTest from tests.support.unit import skipIf @skipIf(not salt.utils.platform.is_windows(), "Tests for only Windows") @pytest.mark.windows_whitelisted class ChocolateyModuleTest(ModuleCase): """ Validate Chocolatey module """ @destructiveTest def setUp(self): """ Ensure that Chocolatey is installed """ self._chocolatey_bin = choco._find_chocolatey() if "ERROR" in self._chocolatey_bin: # self.fail("Chocolatey is not installed") self.run_function("chocolatey.bootstrap") super(ChocolateyModuleTest, self).setUp()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 12972, 9288, 198, 11748, 8268, 13, 18170, 13, 354, 9140, 88, 355, 442, 25634, 198, 11748, 8268, 13, 26791, 13, 24254, 198, 6738, 5254, 13, 11284, 13, 7442, 1330, 19937, 20448, 198, 6738, 5254, 13, 11284, 13, 16794, 364, 1330, 17656, 14402, 198, 6738, 5254, 13, 11284, 13, 20850, 1330, 14267, 1532, 628, 198, 31, 48267, 1532, 7, 1662, 8268, 13, 26791, 13, 24254, 13, 271, 62, 28457, 22784, 366, 51, 3558, 329, 691, 3964, 4943, 198, 31, 9078, 9288, 13, 4102, 13, 28457, 62, 1929, 270, 417, 6347, 198, 4871, 24777, 88, 26796, 14402, 7, 26796, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3254, 20540, 24777, 88, 8265, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 35678, 425, 14402, 198, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 326, 24777, 88, 318, 6589, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 354, 9140, 88, 62, 8800, 796, 442, 25634, 13557, 19796, 62, 354, 9140, 88, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 24908, 1, 287, 2116, 13557, 354, 9140, 88, 62, 8800, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 2116, 13, 32165, 7203, 1925, 9140, 88, 318, 407, 6589, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5143, 62, 8818, 7203, 354, 9140, 88, 13, 18769, 26418, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 1925, 9140, 88, 26796, 14402, 11, 2116, 737, 2617, 4933, 3419, 198 ]
2.684713
314
# Desenvolva um algoritmo em Python que exiba os números de 1 a 10 for i in range(1,11,1): print(i)
[ 2, 2935, 268, 10396, 6862, 23781, 435, 7053, 270, 5908, 795, 11361, 8358, 409, 23718, 28686, 299, 21356, 647, 418, 390, 352, 257, 838, 628, 198, 1640, 1312, 287, 2837, 7, 16, 11, 1157, 11, 16, 2599, 198, 220, 3601, 7, 72, 8 ]
2.395349
43
""" Authentication Managment API """ import json from flask import jsonify, request from flask_restful import Resource, reqparse from aaxus import rest_api from aaxus.models.user import User from aaxus.models.token import RevokedToken from aaxus.services.confirm_email import generate_confirmation_token, confirm_token from itsdangerous import URLSafeTimedSerializer from flask_jwt_extended import (create_access_token, create_refresh_token, jwt_required, jwt_refresh_token_required, get_jwt_identity, get_raw_jwt) parser = reqparse.RequestParser() parser.add_argument('username', help = 'This field cannot be blank', required = True) parser.add_argument('password', help = 'This field cannot be blank', required = True)
[ 37811, 48191, 1869, 363, 434, 7824, 37227, 198, 11748, 33918, 198, 6738, 42903, 1330, 33918, 1958, 11, 2581, 198, 6738, 42903, 62, 2118, 913, 1330, 20857, 11, 43089, 29572, 198, 6738, 257, 897, 385, 1330, 1334, 62, 15042, 198, 6738, 257, 897, 385, 13, 27530, 13, 7220, 1330, 11787, 198, 6738, 257, 897, 385, 13, 27530, 13, 30001, 1330, 5416, 6545, 30642, 198, 6738, 257, 897, 385, 13, 30416, 13, 10414, 2533, 62, 12888, 1330, 7716, 62, 10414, 36241, 62, 30001, 11, 6216, 62, 30001, 198, 6738, 663, 38537, 516, 1330, 37902, 6561, 8635, 14967, 276, 32634, 7509, 198, 6738, 42903, 62, 73, 46569, 62, 2302, 1631, 1330, 357, 17953, 62, 15526, 62, 30001, 11, 2251, 62, 5420, 3447, 62, 30001, 11, 474, 46569, 62, 35827, 11, 474, 46569, 62, 5420, 3447, 62, 30001, 62, 35827, 11, 651, 62, 73, 46569, 62, 738, 414, 11, 651, 62, 1831, 62, 73, 46569, 8, 198, 198, 48610, 796, 43089, 29572, 13, 18453, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 10786, 29460, 3256, 1037, 796, 705, 1212, 2214, 2314, 307, 9178, 3256, 2672, 796, 6407, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 28712, 3256, 1037, 796, 705, 1212, 2214, 2314, 307, 9178, 3256, 2672, 796, 6407, 8 ]
3.5
206
from widgets.button import DraggableButton from prefabs.inputter import pressed from base_node import get_surface from widgets.progressbar import * from prefabs.surface import blit from shape import Circle import pygame __all__ = [ 'HSeekbar' ]
[ 6738, 40803, 13, 16539, 1330, 1583, 9460, 540, 21864, 198, 6738, 7694, 8937, 13, 15414, 353, 1330, 12070, 198, 6738, 2779, 62, 17440, 1330, 651, 62, 42029, 198, 6738, 40803, 13, 33723, 5657, 1330, 1635, 198, 6738, 7694, 8937, 13, 42029, 1330, 698, 270, 198, 6738, 5485, 1330, 16291, 198, 11748, 12972, 6057, 628, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 39, 4653, 988, 5657, 6, 198, 60, 198 ]
3.405405
74
from flask import current_app from flask_login import UserMixin, AnonymousUserMixin import hashlib from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from werkzeug.security import generate_password_hash, check_password_hash from . import db, login_manager login_manager.anonymous_user = AnonymousUser @login_manager.user_loader # 积分兑换商品
[ 6738, 42903, 1330, 1459, 62, 1324, 198, 6738, 42903, 62, 38235, 1330, 11787, 35608, 259, 11, 19200, 12982, 35608, 259, 198, 11748, 12234, 8019, 198, 6738, 663, 38537, 516, 1330, 5045, 276, 40386, 13908, 11712, 1300, 32634, 7509, 355, 23283, 7509, 198, 6738, 266, 9587, 2736, 1018, 13, 12961, 1330, 7716, 62, 28712, 62, 17831, 11, 2198, 62, 28712, 62, 17831, 198, 6738, 764, 1330, 20613, 11, 17594, 62, 37153, 628, 628, 628, 198, 38235, 62, 37153, 13, 272, 6704, 62, 7220, 796, 19200, 12982, 628, 198, 31, 38235, 62, 37153, 13, 7220, 62, 29356, 628, 628, 198, 2, 13328, 100, 107, 26344, 228, 17739, 239, 162, 235, 95, 161, 243, 228, 161, 241, 223 ]
3.2
115
""" Utility functions to support logging for the fitbenchmarking project. """ import logging import sys def setup_logger(log_file='./fitbenchmarking.log', name='fitbenchmarking', append=False, level='INFO'): """ Define the location and style of the log file. :param log_file: path to the log file, defaults to './fitbenchmarking.log' :type log_file: str, optional :param name: The name of the logger to run the setup for, defaults to fitbenchmarking :type name: str, optional :param append: Whether to append to the log or create a new one, defaults to False :type append: bool, optional :param level: The level of error to print, defaults to 'INFO' :type level: str, optional """ FORMAT = '[%(asctime)s] %(levelname)s %(filename)s: %(message)s' formatter = logging.Formatter(FORMAT, "%H:%M:%S") handler = logging.FileHandler(log_file, mode='a' if append else 'w') handler.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) for h in logger.handlers: logger.removeHandler(h) logger.addHandler(handler) # Define a Handler which writes <level> or higher messages to console levels = {'CRITICAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'WARNING': logging.WARNING, 'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'NOTSET': logging.NOTSET} log_level = levels.get(level.upper(), logging.INFO) console = logging.StreamHandler(sys.stdout) console.setLevel(log_level) logger.addHandler(console) logger.propagate = False def get_logger(name='fitbenchmarking'): """ Get the unique logger for the given name. This is a straight pass through but will be more intutive for people who have not used python logging. :param name: Name of the logger to use, defaults to 'fitbenchmarking' :type name: str, optional :return: The named logger :rtype: logging.Logger """ return logging.getLogger(name)
[ 37811, 198, 18274, 879, 5499, 284, 1104, 18931, 329, 262, 4197, 26968, 4102, 278, 198, 16302, 13, 198, 37811, 198, 11748, 18931, 198, 11748, 25064, 628, 198, 4299, 9058, 62, 6404, 1362, 7, 6404, 62, 7753, 28, 4458, 14, 11147, 26968, 4102, 278, 13, 6404, 3256, 1438, 11639, 11147, 26968, 4102, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24443, 28, 25101, 11, 1241, 11639, 10778, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2896, 500, 262, 4067, 290, 3918, 286, 262, 2604, 2393, 13, 628, 220, 220, 220, 1058, 17143, 2604, 62, 7753, 25, 3108, 284, 262, 2604, 2393, 11, 26235, 284, 705, 19571, 11147, 26968, 4102, 278, 13, 6404, 6, 198, 220, 220, 220, 1058, 4906, 2604, 62, 7753, 25, 965, 11, 11902, 198, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 262, 49706, 284, 1057, 262, 9058, 329, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26235, 284, 4197, 26968, 4102, 278, 198, 220, 220, 220, 1058, 4906, 1438, 25, 965, 11, 11902, 198, 220, 220, 220, 1058, 17143, 24443, 25, 10127, 284, 24443, 284, 262, 2604, 393, 2251, 257, 649, 530, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26235, 284, 10352, 198, 220, 220, 220, 1058, 4906, 24443, 25, 20512, 11, 11902, 198, 220, 220, 220, 1058, 17143, 1241, 25, 383, 1241, 286, 4049, 284, 3601, 11, 26235, 284, 705, 10778, 6, 198, 220, 220, 220, 1058, 4906, 1241, 25, 965, 11, 11902, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7473, 41636, 796, 44438, 4, 7, 292, 310, 524, 8, 82, 60, 220, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 34345, 8, 82, 25, 4064, 7, 20500, 8, 82, 6, 198, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7, 21389, 1404, 11, 36521, 39, 25, 4, 44, 25, 4, 50, 4943, 628, 220, 220, 220, 21360, 796, 18931, 13, 8979, 25060, 7, 6404, 62, 7753, 11, 4235, 11639, 64, 6, 611, 24443, 2073, 705, 86, 11537, 198, 220, 220, 220, 21360, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 628, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 3672, 8, 198, 220, 220, 220, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 628, 220, 220, 220, 329, 289, 287, 49706, 13, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 28956, 25060, 7, 71, 8, 628, 220, 220, 220, 49706, 13, 2860, 25060, 7, 30281, 8, 628, 220, 220, 220, 1303, 2896, 500, 257, 32412, 543, 6797, 1279, 5715, 29, 393, 2440, 6218, 284, 8624, 198, 220, 220, 220, 2974, 796, 1391, 6, 9419, 2043, 20151, 10354, 18931, 13, 9419, 2043, 20151, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24908, 10354, 18931, 13, 24908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31502, 10354, 18931, 13, 31502, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10778, 10354, 18931, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30531, 10354, 18931, 13, 30531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11929, 28480, 10354, 18931, 13, 11929, 28480, 92, 198, 220, 220, 220, 2604, 62, 5715, 796, 2974, 13, 1136, 7, 5715, 13, 45828, 22784, 18931, 13, 10778, 8, 198, 220, 220, 220, 8624, 796, 18931, 13, 12124, 25060, 7, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 8624, 13, 2617, 4971, 7, 6404, 62, 5715, 8, 198, 220, 220, 220, 49706, 13, 2860, 25060, 7, 41947, 8, 198, 220, 220, 220, 49706, 13, 22930, 37861, 796, 10352, 628, 198, 4299, 651, 62, 6404, 1362, 7, 3672, 11639, 11147, 26968, 4102, 278, 6, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 3748, 49706, 329, 262, 1813, 1438, 13, 198, 220, 220, 220, 770, 318, 257, 3892, 1208, 832, 475, 481, 307, 517, 493, 8827, 329, 661, 508, 198, 220, 220, 220, 423, 407, 973, 21015, 18931, 13, 628, 220, 220, 220, 1058, 17143, 1438, 25, 6530, 286, 262, 49706, 284, 779, 11, 26235, 284, 705, 11147, 26968, 4102, 278, 6, 198, 220, 220, 220, 1058, 4906, 1438, 25, 965, 11, 11902, 628, 220, 220, 220, 1058, 7783, 25, 383, 3706, 49706, 198, 220, 220, 220, 1058, 81, 4906, 25, 18931, 13, 11187, 1362, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 18931, 13, 1136, 11187, 1362, 7, 3672, 8, 198 ]
2.644472
796
import numpy as np from astropy.wcs import WCS from glue.core import Data, DataCollection from glue.plugins.wcs_autolinking.wcs_autolinking import wcs_autolink, WCSLink from glue.core.link_helpers import MultiLink from glue.core.tests.test_state import clone from glue.dialogs.link_editor.state import EditableLinkFunctionState
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 6468, 28338, 13, 12712, 1330, 45410, 198, 6738, 22749, 13, 7295, 1330, 6060, 11, 6060, 36307, 198, 6738, 22749, 13, 37390, 13, 12712, 62, 2306, 349, 8040, 13, 12712, 62, 2306, 349, 8040, 1330, 266, 6359, 62, 2306, 349, 676, 11, 45410, 11280, 198, 6738, 22749, 13, 7295, 13, 8726, 62, 16794, 364, 1330, 15237, 11280, 198, 6738, 22749, 13, 7295, 13, 41989, 13, 9288, 62, 5219, 1330, 17271, 198, 6738, 22749, 13, 38969, 18463, 13, 8726, 62, 35352, 13, 5219, 1330, 1717, 4674, 11280, 22203, 9012, 628, 628, 628, 628, 198 ]
3.37
100
import logging import logging.config import yaml class StderrFilter(logging.Filter): """Simple filter which only outputs the following levels: WARNING, ERROR, CRITICAL. """ class FormatRecordFactory(logging.LogRecord): """A factory which formats messages with str.format.""" def getMessage(self): """ Return the message for this LogRecord, formatted with str.format. Return the message for this LogRecord after merging any user-supplied arguments with the message by using str.format. """ msg = str(self.msg) if self.args: msg = msg.format(self.args) return msg
[ 11748, 18931, 198, 11748, 18931, 13, 11250, 198, 11748, 331, 43695, 628, 198, 4871, 520, 1082, 81, 22417, 7, 6404, 2667, 13, 22417, 2599, 198, 220, 220, 220, 37227, 26437, 8106, 543, 691, 23862, 262, 1708, 2974, 25, 39410, 11, 33854, 11, 8740, 2043, 20151, 13, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 18980, 23739, 22810, 7, 6404, 2667, 13, 11187, 23739, 2599, 198, 220, 220, 220, 37227, 32, 8860, 543, 17519, 6218, 351, 965, 13, 18982, 526, 15931, 198, 220, 220, 220, 825, 651, 12837, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 3275, 329, 428, 5972, 23739, 11, 39559, 351, 965, 13, 18982, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 3275, 329, 428, 5972, 23739, 706, 35981, 597, 2836, 12, 18608, 18511, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 351, 262, 3275, 416, 1262, 965, 13, 18982, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 965, 7, 944, 13, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 31456, 13, 18982, 7, 944, 13, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 31456, 198 ]
2.832618
233
from django.shortcuts import render, redirect from django.views.generic import TemplateView from .forms import BrukerForm from .models import bruker from vaskelister.models import Vaskeliste from studentby.models import studentby from kollektiv.models import kollektiv
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 6738, 764, 23914, 1330, 8274, 6122, 8479, 198, 6738, 764, 27530, 1330, 18145, 6122, 198, 6738, 34439, 7750, 1694, 13, 27530, 1330, 23663, 365, 4868, 68, 198, 6738, 3710, 1525, 13, 27530, 1330, 3710, 1525, 198, 6738, 479, 349, 293, 21841, 452, 13, 27530, 1330, 479, 349, 293, 21841, 452, 628 ]
3.69863
73
# -*- coding: utf-8 -*- # @Time : 2020/12/27 10:58 PM # @Author : Kevin from src.utils.sentence_process import cut_sentence_by_character from tqdm import tqdm from src import config if __name__ == '__main__': # cut_chat_data_by_character() clean_blank_pair()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 12131, 14, 1065, 14, 1983, 838, 25, 3365, 3122, 198, 2, 2488, 13838, 220, 1058, 7939, 198, 6738, 12351, 13, 26791, 13, 34086, 594, 62, 14681, 1330, 2005, 62, 34086, 594, 62, 1525, 62, 22769, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 12351, 1330, 4566, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 2005, 62, 17006, 62, 7890, 62, 1525, 62, 22769, 3419, 198, 220, 220, 220, 3424, 62, 27190, 62, 24874, 3419, 198 ]
2.513761
109
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button import math from scipy.optimize import fsolve #Define Link Lengths l1 = 2 l2 = 4.977 l3 = 2 l4 = 4 l5 = 1.5 l6 = 6 #Initial Motorized Joint Angles theta_1 = -(math.pi/180)*110 theta_4 = -(math.pi/180)*80 #Fixed Joint A Position A_x = 0 A_y = 0 #Fixed Joint E Position E_x = 1.5 E_y = 0 #Initial Joint B Position B_x = l1*math.cos(theta_1) B_y = l1*math.sin(theta_1) #Initial Joint D Position D_x = l5+l4*math.cos(theta_4) D_y = l4*math.sin(theta_4) #Initial Joint C Position C_x = 2.194879908034972 C_y = -5.93923099142825 theta_3 = -math.acos((C_x-D_x)/math.sqrt(((C_x-D_x)**2+(C_y-D_y)**2))) print(theta_3) #Initial Joint F Position F_x = C_x+l6*math.cos(theta_3) F_y = C_y+l6*math.sin(theta_3) def calc_distance(p1, p2): ''' p1: coordinates of the first point; it is a tuple p2: coordinates of the second point; it is a tuple returns the distance ''' distance = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2) return distance # Create the figure and the line that we will manipulate fig, ax = plt.subplots() link1, = plt.plot([A_x, B_x], [A_y, B_y], color="black") link2, = plt.plot([C_x, B_x], [C_y, B_y], color="black") link3, = plt.plot([C_x, D_x], [C_y, D_y], color="black") link4, = plt.plot([E_x, D_x], [E_y, D_y], color="black") link6, = plt.plot([C_x, F_x], [C_y, F_y], color="black") jointA, = plt.plot(A_x, A_y, 'o', markersize=3, color="red") jointB, = plt.plot(B_x, B_y, 'o', markersize=3, color="red") jointC, = plt.plot(C_x, C_y, 'o', markersize=3, color="red") jointD, = plt.plot(D_x, D_y, 'o', markersize=3, color="red") jointE, = plt.plot(E_x, E_y, 'o', markersize=3, color="red") jointF, = plt.plot(F_x, F_y, 'o', markersize=3, color="red") ax.set_xlim(-3, 6) ax.set_ylim(-15, 1) # adjust the main plot to make room for the sliders plt.subplots_adjust(left=0.25, bottom=0.25) # Make a horizontal slider to control the frequency. ax_motor1 = plt.axes([0.25, 0.1, 0.65, 0.03]) motor1 = Slider( ax=ax_motor1, label='Motor 1', valmin=-math.pi, valmax=math.pi/4, valinit=theta_1, ) # Make a vertically oriented slider to control the amplitude ax_motor2 = plt.axes([0.1, 0.25, 0.0225, 0.63]) motor2 = Slider( ax=ax_motor2, label="Motor 2", valmin=-7*math.pi/6, valmax=0, valinit=theta_4, orientation="vertical" ) # register the update function with each slider motor1.on_changed(update) motor2.on_changed(update) # Create a `matplotlib.widgets.Button` to reset the sliders to initial values. resetax = plt.axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', hovercolor='0.975') button.on_clicked(reset) plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 28029, 11407, 1330, 3454, 1304, 11, 20969, 198, 11748, 10688, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 43458, 6442, 628, 198, 2, 7469, 500, 7502, 22313, 82, 198, 75, 16, 796, 362, 198, 75, 17, 796, 604, 13, 24, 3324, 198, 75, 18, 796, 362, 198, 75, 19, 796, 604, 198, 75, 20, 796, 352, 13, 20, 198, 75, 21, 796, 718, 198, 198, 2, 24243, 12533, 1143, 16798, 2895, 829, 198, 1169, 8326, 62, 16, 796, 532, 7, 11018, 13, 14415, 14, 15259, 27493, 11442, 198, 1169, 8326, 62, 19, 796, 532, 7, 11018, 13, 14415, 14, 15259, 27493, 1795, 198, 198, 2, 13715, 16798, 317, 23158, 198, 32, 62, 87, 796, 657, 198, 32, 62, 88, 796, 657, 198, 198, 2, 13715, 16798, 412, 23158, 198, 36, 62, 87, 796, 352, 13, 20, 198, 36, 62, 88, 796, 657, 198, 198, 2, 24243, 16798, 347, 23158, 198, 33, 62, 87, 796, 300, 16, 9, 11018, 13, 6966, 7, 1169, 8326, 62, 16, 8, 198, 33, 62, 88, 796, 300, 16, 9, 11018, 13, 31369, 7, 1169, 8326, 62, 16, 8, 198, 198, 2, 24243, 16798, 360, 23158, 198, 35, 62, 87, 796, 300, 20, 10, 75, 19, 9, 11018, 13, 6966, 7, 1169, 8326, 62, 19, 8, 198, 35, 62, 88, 796, 300, 19, 9, 11018, 13, 31369, 7, 1169, 8326, 62, 19, 8, 198, 198, 2, 24243, 16798, 327, 23158, 198, 34, 62, 87, 796, 362, 13, 1129, 35133, 2079, 33057, 27371, 4761, 220, 198, 34, 62, 88, 796, 532, 20, 13, 24, 2670, 19214, 2079, 1415, 2078, 1495, 198, 198, 1169, 8326, 62, 18, 796, 532, 11018, 13, 330, 418, 19510, 34, 62, 87, 12, 35, 62, 87, 20679, 11018, 13, 31166, 17034, 19510, 7, 34, 62, 87, 12, 35, 62, 87, 8, 1174, 17, 33747, 34, 62, 88, 12, 35, 62, 88, 8, 1174, 17, 22305, 198, 4798, 7, 1169, 8326, 62, 18, 8, 198, 198, 2, 24243, 16798, 376, 23158, 198, 37, 62, 87, 796, 327, 62, 87, 10, 75, 21, 9, 11018, 13, 6966, 7, 1169, 8326, 62, 18, 8, 198, 37, 62, 88, 796, 327, 62, 88, 10, 75, 21, 9, 11018, 13, 31369, 7, 1169, 8326, 62, 18, 8, 198, 198, 4299, 42302, 62, 30246, 7, 79, 16, 11, 279, 17, 2599, 198, 197, 7061, 6, 198, 197, 79, 16, 25, 22715, 286, 262, 717, 966, 26, 340, 318, 257, 46545, 198, 197, 79, 17, 25, 22715, 286, 262, 1218, 966, 26, 340, 318, 257, 46545, 628, 197, 7783, 82, 262, 5253, 198, 197, 7061, 6, 198, 197, 30246, 796, 10688, 13, 31166, 17034, 19510, 79, 16, 58, 15, 45297, 79, 17, 58, 15, 12962, 1174, 17, 33747, 79, 16, 58, 16, 45297, 79, 17, 58, 16, 12962, 1174, 17, 8, 628, 197, 7783, 5253, 198, 198, 2, 13610, 262, 3785, 290, 262, 1627, 326, 356, 481, 18510, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 198, 8726, 16, 11, 796, 458, 83, 13, 29487, 26933, 32, 62, 87, 11, 347, 62, 87, 4357, 685, 32, 62, 88, 11, 347, 62, 88, 4357, 3124, 2625, 13424, 4943, 198, 8726, 17, 11, 796, 458, 83, 13, 29487, 26933, 34, 62, 87, 11, 347, 62, 87, 4357, 685, 34, 62, 88, 11, 347, 62, 88, 4357, 3124, 2625, 13424, 4943, 198, 8726, 18, 11, 796, 458, 83, 13, 29487, 26933, 34, 62, 87, 11, 360, 62, 87, 4357, 685, 34, 62, 88, 11, 360, 62, 88, 4357, 3124, 2625, 13424, 4943, 198, 8726, 19, 11, 796, 458, 83, 13, 29487, 26933, 36, 62, 87, 11, 360, 62, 87, 4357, 685, 36, 62, 88, 11, 360, 62, 88, 4357, 3124, 2625, 13424, 4943, 198, 8726, 21, 11, 796, 458, 83, 13, 29487, 26933, 34, 62, 87, 11, 376, 62, 87, 4357, 685, 34, 62, 88, 11, 376, 62, 88, 4357, 3124, 2625, 13424, 4943, 198, 198, 73, 1563, 32, 11, 796, 458, 83, 13, 29487, 7, 32, 62, 87, 11, 317, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 73, 1563, 33, 11, 796, 458, 83, 13, 29487, 7, 33, 62, 87, 11, 347, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 73, 1563, 34, 11, 796, 458, 83, 13, 29487, 7, 34, 62, 87, 11, 327, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 73, 1563, 35, 11, 796, 458, 83, 13, 29487, 7, 35, 62, 87, 11, 360, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 73, 1563, 36, 11, 796, 458, 83, 13, 29487, 7, 36, 62, 87, 11, 412, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 73, 1563, 37, 11, 796, 458, 83, 13, 29487, 7, 37, 62, 87, 11, 376, 62, 88, 11, 705, 78, 3256, 19736, 1096, 28, 18, 11, 3124, 2625, 445, 4943, 198, 198, 897, 13, 2617, 62, 87, 2475, 32590, 18, 11, 718, 8, 198, 897, 13, 2617, 62, 88, 2475, 32590, 1314, 11, 352, 8, 198, 198, 2, 4532, 262, 1388, 7110, 284, 787, 2119, 329, 262, 1017, 4157, 198, 489, 83, 13, 7266, 489, 1747, 62, 23032, 7, 9464, 28, 15, 13, 1495, 11, 4220, 28, 15, 13, 1495, 8, 198, 198, 2, 6889, 257, 16021, 28982, 284, 1630, 262, 8373, 13, 198, 897, 62, 76, 20965, 16, 796, 458, 83, 13, 897, 274, 26933, 15, 13, 1495, 11, 657, 13, 16, 11, 657, 13, 2996, 11, 657, 13, 3070, 12962, 198, 76, 20965, 16, 796, 3454, 1304, 7, 198, 220, 220, 220, 7877, 28, 897, 62, 76, 20965, 16, 11, 198, 220, 220, 220, 6167, 11639, 34919, 352, 3256, 198, 220, 220, 220, 1188, 1084, 10779, 11018, 13, 14415, 11, 198, 220, 220, 220, 1188, 9806, 28, 11018, 13, 14415, 14, 19, 11, 198, 220, 220, 220, 1188, 15003, 28, 1169, 8326, 62, 16, 11, 198, 8, 198, 198, 2, 6889, 257, 31677, 25921, 28982, 284, 1630, 262, 37188, 198, 897, 62, 76, 20965, 17, 796, 458, 83, 13, 897, 274, 26933, 15, 13, 16, 11, 657, 13, 1495, 11, 657, 13, 2999, 1495, 11, 657, 13, 5066, 12962, 198, 76, 20965, 17, 796, 3454, 1304, 7, 198, 220, 220, 220, 7877, 28, 897, 62, 76, 20965, 17, 11, 198, 220, 220, 220, 6167, 2625, 34919, 362, 1600, 198, 220, 220, 220, 1188, 1084, 10779, 22, 9, 11018, 13, 14415, 14, 21, 11, 198, 220, 220, 220, 1188, 9806, 28, 15, 11, 198, 220, 220, 220, 1188, 15003, 28, 1169, 8326, 62, 19, 11, 198, 220, 220, 220, 12852, 2625, 1851, 605, 1, 198, 8, 628, 198, 2, 7881, 262, 4296, 2163, 351, 1123, 28982, 198, 76, 20965, 16, 13, 261, 62, 40985, 7, 19119, 8, 198, 76, 20965, 17, 13, 261, 62, 40985, 7, 19119, 8, 198, 198, 2, 13610, 257, 4600, 6759, 29487, 8019, 13, 28029, 11407, 13, 21864, 63, 284, 13259, 262, 1017, 4157, 284, 4238, 3815, 13, 198, 42503, 897, 796, 458, 83, 13, 897, 274, 26933, 15, 13, 23, 11, 657, 13, 36629, 11, 657, 13, 16, 11, 657, 13, 3023, 12962, 198, 16539, 796, 20969, 7, 42503, 897, 11, 705, 4965, 316, 3256, 20599, 8043, 11639, 15, 13, 42716, 11537, 628, 198, 16539, 13, 261, 62, 565, 9484, 7, 42503, 8, 628, 198, 489, 83, 13, 12860, 3419, 628, 628 ]
2.149525
1,264
import unittest import numpy as np from RyStats.common import entropy, hypersphere, procrustes_rotation class TestCommonFunctions(unittest.TestCase): """Tests fixture for the common functions.""" def test_entropy(self): """Testing entropy calculations.""" # One value in each column should have zero entropy dataset = np.eye((10)) result = entropy(dataset, axis=1) self.assertAlmostEqual(result, 0.0, delta=1e-4) result = entropy(dataset, axis=0) self.assertAlmostEqual(result, 0.0, delta=1e-4) # Constant data dataset = np.ones((10, 5)) result = entropy(dataset, axis=1) expected = np.log(5) * 10 self.assertAlmostEqual(result, expected, delta=1e-4) dataset = np.ones((10, 5)) result = entropy(dataset, axis=0) expected = np.log(10) * 5 self.assertAlmostEqual(result, expected, delta=1e-4) def test_hypersphere(self): """Testing hypersphere calculations.""" # Testing random angles -> cartesian -> angles rng = np.random.default_rng(34321) random_angles = rng.uniform(0, np.pi, size=9) cartesian = hypersphere.hyperspherical_vector(random_angles) reconstructed_angles = hypersphere.hyperspherical_angles(cartesian) np.testing.assert_allclose(random_angles, reconstructed_angles) # Testing cartesian -> angles -> cartesian cartesian = rng.uniform(-1, 1, 10) cartesian /= np.linalg.norm(cartesian) angles = hypersphere.hyperspherical_angles(cartesian) reconstructed_cartesian = hypersphere.hyperspherical_vector(angles) np.testing.assert_allclose(cartesian, reconstructed_cartesian) def test_procustes(self): """Testing procustes rotation.""" rng = np.random.default_rng(84913) dataset = rng.standard_normal(size=(30, 4)) rotation_matrix = rng.uniform(-2, 2, size=(40, 4)) rotation_matrix = rotation_matrix.T @ rotation_matrix rotation_matrix, _, _ = np.linalg.svd(rotation_matrix) rotated_dataset = dataset @ rotation_matrix.T recovered_rotation = procrustes_rotation(dataset, rotated_dataset) np.testing.assert_allclose(rotation_matrix, recovered_rotation) if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11089, 29668, 13, 11321, 1330, 40709, 11, 45086, 79, 1456, 11, 386, 6098, 436, 274, 62, 10599, 341, 198, 198, 4871, 6208, 17227, 24629, 2733, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 51, 3558, 29220, 329, 262, 2219, 5499, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 298, 28338, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44154, 40709, 16765, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1881, 1988, 287, 1123, 5721, 815, 423, 6632, 40709, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 45941, 13, 25379, 19510, 940, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 40709, 7, 19608, 292, 316, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 20274, 11, 657, 13, 15, 11, 25979, 28, 16, 68, 12, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 40709, 7, 19608, 292, 316, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 20274, 11, 657, 13, 15, 11, 25979, 28, 16, 68, 12, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20217, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 45941, 13, 1952, 19510, 940, 11, 642, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 40709, 7, 19608, 292, 316, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 796, 45941, 13, 6404, 7, 20, 8, 1635, 838, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 20274, 11, 2938, 11, 25979, 28, 16, 68, 12, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 45941, 13, 1952, 19510, 940, 11, 642, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 40709, 7, 19608, 292, 316, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 796, 45941, 13, 6404, 7, 940, 8, 1635, 642, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23379, 36, 13255, 7, 20274, 11, 2938, 11, 25979, 28, 16, 68, 12, 19, 8, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 825, 1332, 62, 36362, 364, 79, 1456, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44154, 45086, 79, 1456, 16765, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23983, 4738, 18333, 4613, 6383, 35610, 4613, 18333, 198, 220, 220, 220, 220, 220, 220, 220, 374, 782, 796, 45941, 13, 25120, 13, 12286, 62, 81, 782, 7, 32118, 2481, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 27787, 796, 374, 782, 13, 403, 6933, 7, 15, 11, 45941, 13, 14415, 11, 2546, 28, 24, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6383, 35610, 796, 45086, 79, 1456, 13, 36362, 364, 17042, 605, 62, 31364, 7, 25120, 62, 27787, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49594, 62, 27787, 796, 45086, 79, 1456, 13, 36362, 364, 17042, 605, 62, 27787, 7, 26674, 35610, 8, 628, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 439, 19836, 7, 25120, 62, 27787, 11, 49594, 62, 27787, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23983, 6383, 35610, 4613, 18333, 4613, 6383, 35610, 198, 220, 220, 220, 220, 220, 220, 220, 6383, 35610, 796, 374, 782, 13, 403, 6933, 32590, 16, 11, 352, 11, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6383, 35610, 1220, 28, 45941, 13, 75, 1292, 70, 13, 27237, 7, 26674, 35610, 8, 628, 220, 220, 220, 220, 220, 220, 220, 18333, 796, 45086, 79, 1456, 13, 36362, 364, 17042, 605, 62, 27787, 7, 26674, 35610, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49594, 62, 26674, 35610, 796, 45086, 79, 1456, 13, 36362, 364, 17042, 605, 62, 31364, 7, 27787, 8, 628, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 439, 19836, 7, 26674, 35610, 11, 49594, 62, 26674, 35610, 8, 628, 220, 220, 220, 825, 1332, 62, 36942, 436, 274, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44154, 13834, 436, 274, 13179, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 374, 782, 796, 45941, 13, 25120, 13, 12286, 62, 81, 782, 7, 23, 2920, 1485, 8, 628, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 374, 782, 13, 20307, 62, 11265, 7, 7857, 16193, 1270, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 62, 6759, 8609, 796, 374, 782, 13, 403, 6933, 32590, 17, 11, 362, 11, 2546, 16193, 1821, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 62, 6759, 8609, 796, 13179, 62, 6759, 8609, 13, 51, 2488, 13179, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 62, 6759, 8609, 11, 4808, 11, 4808, 796, 45941, 13, 75, 1292, 70, 13, 82, 20306, 7, 10599, 341, 62, 6759, 8609, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 38375, 62, 19608, 292, 316, 796, 27039, 2488, 13179, 62, 6759, 8609, 13, 51, 628, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 10599, 341, 796, 386, 6098, 436, 274, 62, 10599, 341, 7, 19608, 292, 316, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38375, 62, 19608, 292, 316, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 439, 19836, 7, 10599, 341, 62, 6759, 8609, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11911, 62, 10599, 341, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
2.279851
1,072
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Util functions for rasterization tests.""" import os import numpy as np import tensorflow as tf from tensorflow_graphics.geometry.transformation import look_at from tensorflow_graphics.rendering.camera import perspective from tensorflow_graphics.util import shape def make_perspective_matrix(image_width=None, image_height=None): """Generates perspective matrix for a given image size. Args: image_width: int representing image width. image_height: int representing image height. Returns: Perspective matrix, tensor of shape [4, 4]. Note: Golden tests require image size to be fixed and equal to the size of golden image examples. The rest of the camera parameters are set such that resulting image will be equal to the baseline image. """ field_of_view = (40 * np.math.pi / 180,) near_plane = (0.01,) far_plane = (10.0,) return perspective.right_handed(field_of_view, (float(image_width) / float(image_height),), near_plane, far_plane) def make_look_at_matrix( camera_origin=(0.0, 0.0, 0.0), look_at_point=(0.0, 0.0, 0.0)): """Shortcut util function to creat model-to-eye matrix for tests.""" camera_up = (0.0, 1.0, 0.0) return look_at.right_handed(camera_origin, look_at_point, camera_up) def compare_images(test_case, baseline_image, image, max_outlier_fraction=0.005, pixel_error_threshold=0.04): """Compares two image arrays. The comparison is soft: the images are considered identical if fewer than max_outlier_fraction of the pixels differ by more than pixel_error_threshold of the full color value. Differences in JPEG encoding can produce pixels with pretty large variation, so by default we use 0.04 (4%) for pixel_error_threshold and 0.005 (0.5%) for max_outlier_fraction. Args: test_case: test_case.TestCase instance this util function is used in. baseline_image: tensor of shape [batch, height, width, channels] containing the baseline image. image: tensor of shape [batch, height, width, channels] containing the result image. max_outlier_fraction: fraction of pixels that may vary by more than the error threshold. 0.005 means 0.5% of pixels. Number of outliers are computed and compared per image. pixel_error_threshold: pixel values are considered to differ if their difference exceeds this amount. Range is 0.0 - 1.0. Returns: Tuple of a boolean and string error message. Boolean indicates whether images are close to each other or not. Error message contains details of two images mismatch. """ tf.assert_equal(baseline_image.shape, image.shape) if baseline_image.dtype != image.dtype: return False, ("Image types %s and %s do not match" % (baseline_image.dtype, image.dtype)) shape.check_static( tensor=baseline_image, tensor_name="baseline_image", has_rank=4) shape.check_static(tensor=image, tensor_name="image", has_rank=4) # Flatten height, width and channels dimensions since we're interested in # error per image. image_height, image_width = image.shape[1:3] baseline_image = tf.reshape(baseline_image, [baseline_image.shape[0]] + [-1]) image = tf.reshape(image, [image.shape[0]] + [-1]) abs_diff = tf.abs(baseline_image - image) outliers = tf.math.greater(abs_diff, pixel_error_threshold) num_outliers = tf.math.reduce_sum(tf.cast(outliers, tf.int32)) perc_outliers = num_outliers / (image_height * image_width) error_msg = "{:.2%} pixels are not equal to baseline image pixels.".format( test_case.evaluate(perc_outliers) * 100.0) return test_case.evaluate(perc_outliers < max_outlier_fraction), error_msg def load_baseline_image(filename, image_shape=None): """Loads baseline image and makes sure it is of the right shape. Args: filename: file name of the image to load. image_shape: expected shape of the image. Returns: tf.Tensor with baseline image """ image_path = tf.compat.v1.resource_loader.get_path_to_datafile( os.path.join("test_data", filename)) file = tf.io.read_file(image_path) baseline_image = tf.cast(tf.image.decode_image(file), tf.float32) / 255.0 baseline_image = tf.expand_dims(baseline_image, axis=0) if image_shape is not None: # Graph-mode requires image shape to be known in advance. baseline_image = tf.ensure_shape(baseline_image, image_shape) return baseline_image
[ 2, 15069, 12131, 383, 309, 22854, 37535, 46665, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 18274, 346, 5499, 329, 374, 1603, 1634, 5254, 526, 15931, 198, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 11192, 273, 11125, 62, 70, 11549, 13, 469, 15748, 13, 7645, 1161, 1330, 804, 62, 265, 198, 6738, 11192, 273, 11125, 62, 70, 11549, 13, 13287, 278, 13, 25695, 1330, 6650, 198, 6738, 11192, 273, 11125, 62, 70, 11549, 13, 22602, 1330, 5485, 628, 198, 4299, 787, 62, 19276, 806, 425, 62, 6759, 8609, 7, 9060, 62, 10394, 28, 14202, 11, 2939, 62, 17015, 28, 14202, 2599, 198, 220, 37227, 8645, 689, 6650, 17593, 329, 257, 1813, 2939, 2546, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 2939, 62, 10394, 25, 493, 10200, 2939, 9647, 13, 198, 220, 220, 220, 2939, 62, 17015, 25, 493, 10200, 2939, 6001, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 42051, 17593, 11, 11192, 273, 286, 5485, 685, 19, 11, 604, 4083, 628, 220, 5740, 25, 8407, 5254, 2421, 2939, 2546, 284, 307, 5969, 290, 4961, 284, 262, 2546, 286, 198, 220, 10861, 2939, 6096, 13, 383, 1334, 286, 262, 4676, 10007, 389, 900, 884, 326, 198, 220, 7186, 2939, 481, 307, 4961, 284, 262, 14805, 2939, 13, 198, 220, 37227, 628, 220, 2214, 62, 1659, 62, 1177, 796, 357, 1821, 1635, 45941, 13, 11018, 13, 14415, 1220, 11546, 35751, 198, 220, 1474, 62, 14382, 796, 357, 15, 13, 486, 35751, 198, 220, 1290, 62, 14382, 796, 357, 940, 13, 15, 35751, 198, 220, 1441, 6650, 13, 3506, 62, 13638, 7, 3245, 62, 1659, 62, 1177, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 7, 9060, 62, 10394, 8, 1220, 12178, 7, 9060, 62, 17015, 828, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1474, 62, 14382, 11, 1290, 62, 14382, 8, 628, 198, 4299, 787, 62, 5460, 62, 265, 62, 6759, 8609, 7, 198, 220, 220, 220, 4676, 62, 47103, 16193, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 828, 804, 62, 265, 62, 4122, 16193, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 8, 2599, 198, 220, 37227, 16438, 8968, 7736, 2163, 284, 1827, 2746, 12, 1462, 12, 25379, 17593, 329, 5254, 526, 15931, 198, 220, 4676, 62, 929, 796, 357, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 8, 198, 220, 1441, 804, 62, 265, 13, 3506, 62, 13638, 7, 25695, 62, 47103, 11, 804, 62, 265, 62, 4122, 11, 4676, 62, 929, 8, 628, 198, 198, 4299, 8996, 62, 17566, 7, 9288, 62, 7442, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14805, 62, 9060, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 448, 2505, 62, 69, 7861, 28, 15, 13, 22544, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17465, 62, 18224, 62, 400, 10126, 28, 15, 13, 3023, 2599, 198, 220, 37227, 7293, 3565, 734, 2939, 26515, 13, 628, 220, 383, 7208, 318, 2705, 25, 262, 4263, 389, 3177, 10411, 611, 7380, 621, 198, 220, 3509, 62, 448, 2505, 62, 69, 7861, 286, 262, 17848, 13238, 416, 517, 621, 17465, 62, 18224, 62, 400, 10126, 198, 220, 286, 262, 1336, 3124, 1988, 13, 628, 220, 41937, 287, 48561, 21004, 460, 4439, 17848, 351, 2495, 1588, 12291, 11, 198, 220, 523, 416, 4277, 356, 779, 657, 13, 3023, 357, 19, 4407, 329, 17465, 62, 18224, 62, 400, 10126, 290, 657, 13, 22544, 357, 15, 13, 20, 4407, 329, 198, 220, 3509, 62, 448, 2505, 62, 69, 7861, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 1332, 62, 7442, 25, 1332, 62, 7442, 13, 14402, 20448, 4554, 428, 7736, 2163, 318, 973, 287, 13, 198, 220, 220, 220, 14805, 62, 9060, 25, 11192, 273, 286, 5485, 685, 43501, 11, 6001, 11, 9647, 11, 9619, 60, 7268, 198, 220, 220, 220, 220, 220, 262, 14805, 2939, 13, 198, 220, 220, 220, 2939, 25, 11192, 273, 286, 5485, 685, 43501, 11, 6001, 11, 9647, 11, 9619, 60, 7268, 262, 198, 220, 220, 220, 220, 220, 1255, 2939, 13, 198, 220, 220, 220, 3509, 62, 448, 2505, 62, 69, 7861, 25, 13390, 286, 17848, 326, 743, 7565, 416, 517, 621, 262, 198, 220, 220, 220, 220, 220, 4049, 11387, 13, 657, 13, 22544, 1724, 657, 13, 20, 4, 286, 17848, 13, 7913, 286, 41528, 3183, 389, 198, 220, 220, 220, 220, 220, 29231, 290, 3688, 583, 2939, 13, 198, 220, 220, 220, 17465, 62, 18224, 62, 400, 10126, 25, 17465, 3815, 389, 3177, 284, 13238, 611, 511, 198, 220, 220, 220, 220, 220, 3580, 21695, 428, 2033, 13, 13667, 318, 657, 13, 15, 532, 352, 13, 15, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 309, 29291, 286, 257, 25131, 290, 4731, 4049, 3275, 13, 41146, 9217, 198, 220, 220, 220, 1771, 4263, 389, 1969, 284, 1123, 584, 393, 407, 13, 13047, 3275, 4909, 198, 220, 220, 220, 3307, 286, 734, 4263, 46318, 13, 198, 220, 37227, 198, 220, 48700, 13, 30493, 62, 40496, 7, 12093, 4470, 62, 9060, 13, 43358, 11, 2939, 13, 43358, 8, 198, 220, 611, 14805, 62, 9060, 13, 67, 4906, 14512, 2939, 13, 67, 4906, 25, 198, 220, 220, 220, 1441, 10352, 11, 5855, 5159, 3858, 4064, 82, 290, 4064, 82, 466, 407, 2872, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 12093, 4470, 62, 9060, 13, 67, 4906, 11, 2939, 13, 67, 4906, 4008, 198, 220, 5485, 13, 9122, 62, 12708, 7, 198, 220, 220, 220, 220, 220, 11192, 273, 28, 12093, 4470, 62, 9060, 11, 11192, 273, 62, 3672, 2625, 12093, 4470, 62, 9060, 1600, 468, 62, 43027, 28, 19, 8, 198, 220, 5485, 13, 9122, 62, 12708, 7, 83, 22854, 28, 9060, 11, 11192, 273, 62, 3672, 2625, 9060, 1600, 468, 62, 43027, 28, 19, 8, 198, 220, 1303, 1610, 41769, 6001, 11, 9647, 290, 9619, 15225, 1201, 356, 821, 4609, 287, 198, 220, 1303, 4049, 583, 2939, 13, 198, 220, 2939, 62, 17015, 11, 2939, 62, 10394, 796, 2939, 13, 43358, 58, 16, 25, 18, 60, 198, 220, 14805, 62, 9060, 796, 48700, 13, 3447, 1758, 7, 12093, 4470, 62, 9060, 11, 685, 12093, 4470, 62, 9060, 13, 43358, 58, 15, 11907, 1343, 25915, 16, 12962, 198, 220, 2939, 796, 48700, 13, 3447, 1758, 7, 9060, 11, 685, 9060, 13, 43358, 58, 15, 11907, 1343, 25915, 16, 12962, 198, 220, 2352, 62, 26069, 796, 48700, 13, 8937, 7, 12093, 4470, 62, 9060, 532, 2939, 8, 198, 220, 41528, 3183, 796, 48700, 13, 11018, 13, 18223, 263, 7, 8937, 62, 26069, 11, 17465, 62, 18224, 62, 400, 10126, 8, 198, 220, 997, 62, 448, 75, 3183, 796, 48700, 13, 11018, 13, 445, 7234, 62, 16345, 7, 27110, 13, 2701, 7, 448, 75, 3183, 11, 48700, 13, 600, 2624, 4008, 198, 220, 583, 66, 62, 448, 75, 3183, 796, 997, 62, 448, 75, 3183, 1220, 357, 9060, 62, 17015, 1635, 2939, 62, 10394, 8, 198, 220, 4049, 62, 19662, 796, 45144, 25, 13, 17, 4, 92, 17848, 389, 407, 4961, 284, 14805, 2939, 17848, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 1332, 62, 7442, 13, 49786, 7, 525, 66, 62, 448, 75, 3183, 8, 1635, 1802, 13, 15, 8, 198, 220, 1441, 1332, 62, 7442, 13, 49786, 7, 525, 66, 62, 448, 75, 3183, 1279, 3509, 62, 448, 2505, 62, 69, 7861, 828, 4049, 62, 19662, 628, 198, 4299, 3440, 62, 12093, 4470, 62, 9060, 7, 34345, 11, 2939, 62, 43358, 28, 14202, 2599, 198, 220, 37227, 8912, 82, 14805, 2939, 290, 1838, 1654, 340, 318, 286, 262, 826, 5485, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 29472, 25, 2393, 1438, 286, 262, 2939, 284, 3440, 13, 198, 220, 220, 220, 2939, 62, 43358, 25, 2938, 5485, 286, 262, 2939, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 48700, 13, 51, 22854, 351, 14805, 2939, 198, 220, 37227, 198, 220, 2939, 62, 6978, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 31092, 62, 29356, 13, 1136, 62, 6978, 62, 1462, 62, 7890, 7753, 7, 198, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7203, 9288, 62, 7890, 1600, 29472, 4008, 198, 220, 2393, 796, 48700, 13, 952, 13, 961, 62, 7753, 7, 9060, 62, 6978, 8, 198, 220, 14805, 62, 9060, 796, 48700, 13, 2701, 7, 27110, 13, 9060, 13, 12501, 1098, 62, 9060, 7, 7753, 828, 48700, 13, 22468, 2624, 8, 1220, 14280, 13, 15, 198, 220, 14805, 62, 9060, 796, 48700, 13, 11201, 392, 62, 67, 12078, 7, 12093, 4470, 62, 9060, 11, 16488, 28, 15, 8, 198, 220, 611, 2939, 62, 43358, 318, 407, 6045, 25, 198, 220, 220, 220, 1303, 29681, 12, 14171, 4433, 2939, 5485, 284, 307, 1900, 287, 5963, 13, 198, 220, 220, 220, 14805, 62, 9060, 796, 48700, 13, 641, 495, 62, 43358, 7, 12093, 4470, 62, 9060, 11, 2939, 62, 43358, 8, 198, 220, 1441, 14805, 62, 9060, 198 ]
2.909505
1,757
from config import get_config from utils import prepare_dirs_and_logger, save_config if __name__ == "__main__": config, unparsed = get_config() main(config)
[ 6738, 4566, 1330, 651, 62, 11250, 198, 6738, 3384, 4487, 1330, 8335, 62, 15908, 82, 62, 392, 62, 6404, 1362, 11, 3613, 62, 11250, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4566, 11, 8593, 945, 276, 796, 651, 62, 11250, 3419, 198, 220, 220, 220, 1388, 7, 11250, 8, 198 ]
2.8
60
import os PROJECT_ROOT_DIR = os.path.abspath(os.path.join(__file__, os.pardir, os.pardir))
[ 11748, 28686, 198, 198, 31190, 23680, 62, 13252, 2394, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 28686, 13, 26037, 343, 11, 28686, 13, 26037, 343, 4008 ]
2.275
40
import time from collections import deque from models.eligibility_trace_tf.world.memory.n_step_replay_memory import NStepReplayMemory, Transition, NStepTransition
[ 11748, 640, 198, 198, 6738, 17268, 1330, 390, 4188, 198, 198, 6738, 4981, 13, 417, 328, 2247, 62, 40546, 62, 27110, 13, 6894, 13, 31673, 13, 77, 62, 9662, 62, 260, 1759, 62, 31673, 1330, 399, 8600, 3041, 1759, 30871, 11, 40658, 11, 399, 8600, 8291, 653, 628 ]
3.458333
48
import re
[ 11748, 302, 628, 198 ]
3
4
from util.functions import * from util import * from tqdm import tqdm import matplotlib.pyplot as plt import itertools def probabilistic_ordinal_embedding_prepare_data_for_training(dataset, model): """ """ triplets = [] for word_index, word in tqdm(enumerate(dataset)): # Get words within windows similar_window_words = dataset[ max(word_index-similar_window_size, 0): min(word_index+similar_window_size+1, len(dataset))] dissimilar_window_words = dataset[ max(word_index-similar_window_size-window_margin-dissimilar_window_size, 0): min(word_index+similar_window_size+window_margin+dissimilar_window_size+1, len(dataset))] buffer = dataset[ max(word_index-similar_window_size-window_margin, 0): min(word_index+similar_window_size+window_margin+1, len(dataset))] # Remove excess words dissimilar_window_words = [word for word in dissimilar_window_words if word not in buffer] similar_window_words.remove(word) # Add to triplets for pos_neg in itertools.product(similar_window_words, dissimilar_window_words): triplets.append([word, pos_neg[0], pos_neg[1]]) model.X_train = triplets model.initialize(synthetic_vocab_size)
[ 6738, 7736, 13, 12543, 2733, 1330, 1635, 198, 6738, 7736, 1330, 1635, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 340, 861, 10141, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 1861, 14991, 2569, 62, 585, 1292, 62, 20521, 12083, 62, 46012, 533, 62, 7890, 62, 1640, 62, 34409, 7, 19608, 292, 316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15055, 912, 796, 17635, 198, 220, 220, 220, 329, 1573, 62, 9630, 11, 1573, 287, 256, 80, 36020, 7, 268, 6975, 378, 7, 19608, 292, 316, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 2456, 1626, 9168, 198, 220, 220, 220, 220, 220, 220, 220, 2092, 62, 17497, 62, 10879, 796, 220, 220, 220, 220, 220, 27039, 58, 220, 220, 220, 3509, 7, 4775, 62, 9630, 12, 38610, 62, 17497, 62, 7857, 11, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 4775, 62, 9630, 10, 38610, 62, 17497, 62, 7857, 10, 16, 11, 18896, 7, 19608, 292, 316, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6249, 49941, 62, 17497, 62, 10879, 796, 220, 220, 27039, 58, 220, 220, 220, 3509, 7, 4775, 62, 9630, 12, 38610, 62, 17497, 62, 7857, 12, 17497, 62, 36153, 12, 67, 747, 49941, 62, 17497, 62, 7857, 11, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 4775, 62, 9630, 10, 38610, 62, 17497, 62, 7857, 10, 17497, 62, 36153, 10, 67, 747, 49941, 62, 17497, 62, 7857, 10, 16, 11, 18896, 7, 19608, 292, 316, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11876, 796, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 58, 220, 220, 220, 3509, 7, 4775, 62, 9630, 12, 38610, 62, 17497, 62, 7857, 12, 17497, 62, 36153, 11, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 7, 4775, 62, 9630, 10, 38610, 62, 17497, 62, 7857, 10, 17497, 62, 36153, 10, 16, 11, 18896, 7, 19608, 292, 316, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 6992, 2456, 198, 220, 220, 220, 220, 220, 220, 220, 6249, 49941, 62, 17497, 62, 10879, 796, 685, 4775, 329, 1573, 287, 6249, 49941, 62, 17497, 62, 10879, 611, 1573, 407, 287, 11876, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2092, 62, 17497, 62, 10879, 13, 28956, 7, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 284, 15055, 912, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1426, 62, 12480, 287, 340, 861, 10141, 13, 11167, 7, 38610, 62, 17497, 62, 10879, 11, 6249, 49941, 62, 17497, 62, 10879, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15055, 912, 13, 33295, 26933, 4775, 11, 1426, 62, 12480, 58, 15, 4357, 1426, 62, 12480, 58, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2746, 13, 55, 62, 27432, 796, 15055, 912, 198, 220, 220, 220, 2746, 13, 36733, 1096, 7, 1837, 429, 6587, 62, 18893, 397, 62, 7857, 8 ]
1.993455
764
# -*- coding: utf-8 -*- """ Created on Sun Nov 12 17:17:09 2017 @author: sh """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import pickle import tools_lib as tool import math load_predata_path = 'F:\\tcds\\shop\\predata\\' file = open(load_predata_path + 'data_mall_shop.pkl', 'rb') mall = pickle.load(file) mall_shop = pickle.load(file) file.close() df = pd.read_hdf(load_predata_path + 'train_data.h5') #提取商场为制定的样本 df_new = df[df.mall_id=='m_5085'] df_new.index =range(len(df_new)) #转换商场-商店对应关系为dataframe shops = mall[df_new['mall_id'][0]] df_shop = pd.DataFrame(index = range(len(shops)),columns = ['shop_id','category_id','longitude','latitude','price']) i = 0 for shop in shops: df_shop['shop_id'][i] = list(shop.keys())[0] df_shop['category_id'][i] = int(list(shop.values())[0][0].strip('c_')) df_shop['longitude'][i] = list(shop.values())[0][1] df_shop['latitude'][i] = list(shop.values())[0][2] df_shop['price'][i] = list(shop.values())[0][3] i += 1 #创建样本 df_sample = pd.DataFrame(index = range(len(df_new)), columns = ['index','delt_x','delt_y','delt_D','S','time','c','p','wifi_on']) for i in range(len(df_new)): for j in range(len(df_shop)): if df_new['shop_id'][i] == df_shop['shop_id'][j]: index = j delt_x = df_new['longitude'][i] - df_shop['longitude'][j] delt_y = df_new['latitude'][i] - df_shop['latitude'][j] S = 2*math.asin(math.sqrt(math.sin(delt_x*math.pi/180/2)**2 + math.cos(df_new['latitude'][i]*math.pi/180) * math.cos(df_shop['latitude'][j]*math.pi/180) * math.sin(delt_x*math.pi/180/2)**2))*math.pi/180 *63781370 delt_D = math.sqrt(delt_x**2 + delt_y**2) time = int(df_new['time_stamp'][i][1].replace(':', '')) time_c = df_shop['category_id'][j] time_p = df_shop['price'][j] wifi_on = 0 for wifi in df_new['wifi_info'][i]: if wifi[2]: wifi_on = 1 df_sample['index'][i] = index df_sample['delt_x'][i] = abs(delt_x) df_sample['delt_y'][i] = abs(delt_y) df_sample['delt_D'][i] = delt_D df_sample['S'][i] = S df_sample['time'][i] = time df_sample['c'][i] = time_c df_sample['p'][i] = time_p df_sample['wifi_on'][i] = wifi_on continue #贝叶斯分类器 limits_z =[ np.array([[0,1e-5],[1e-5,1e-3],[1e-3,1]]) , np.array([[0,1e-5],[1e-5,1e-3],[1e-3,1]]) , np.array([[0,5],[5,10],[10,20],[20,50],[50,1e4]]) , np.array([[0,1100],[1100,1300],[1300,1700],[1700,2000],[2000,2400]]) , np.array([[0,15],[15,30],[30,50]]) , np.array([[0,40],[40,60],[60,100]])] lenght = len(df_shop) str1 = 'index' data = df_sample P_z = np.zeros([1,len(df_shop)]) for i in range(len(df_shop)): P_z[0,i] = len(df_sample[df_sample['index'] == i])/len(df_sample) P_x_delt = tool.caculate_p(data=data ,str1=str1,str2 = 'delt_x',lenght=lenght ,limits = limits_z[0] ) P_y_delt = tool.caculate_p(data=data ,str1=str1,str2 = 'delt_y',lenght=lenght ,limits =limits_z[1]) P_s = tool.caculate_p(data=data ,str1=str1,str2 = 'S',lenght=lenght,limits =limits_z[2]) P_t = tool.caculate_p(data=data ,str1=str1 ,str2 = 'time',lenght=lenght ,limits =limits_z[3]) P_c = tool.caculate_p(data=data ,str1=str1 ,str2 = 'c',lenght=lenght ,limits =limits_z[4]) P_p = tool.caculate_p(data=data ,str1=str1 ,str2 = 'p',lenght=lenght ,limits =limits_z[5]) P = [P_z, P_x_delt,P_y_delt,P_s,P_t,P_c ] #使用分类器预测 x_test = [0.01,0.0001,3,1100,33,60] indexs = [] k=0 for limits in limits_z: for i in range(len(limits)): if limits[i][0] <= x_test[k] <= limits[i][1]: index = i break k+=1 indexs.append(i) P_caculate = P[0] * P[1][indexs[1],:] * P[2][indexs[2],:] * P[3][indexs[3],:] * P[4][indexs[4],:] * P[5][indexs[5],:] * P[6][indexs[6],:] c = list(P_caculate[0]) re= c.index(max(c)) final_result = df_shop['shop_id'][re] print(final_result)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 3825, 5267, 1105, 1596, 25, 1558, 25, 2931, 2177, 201, 198, 201, 198, 31, 9800, 25, 427, 201, 198, 37811, 201, 198, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 11748, 2298, 293, 201, 198, 11748, 4899, 62, 8019, 355, 2891, 201, 198, 11748, 10688, 201, 198, 201, 198, 2220, 62, 28764, 1045, 62, 6978, 796, 705, 37, 25, 6852, 23047, 9310, 6852, 24643, 6852, 28764, 1045, 6852, 6, 201, 198, 7753, 796, 1280, 7, 2220, 62, 28764, 1045, 62, 6978, 1343, 705, 7890, 62, 76, 439, 62, 24643, 13, 79, 41582, 3256, 705, 26145, 11537, 201, 198, 76, 439, 796, 2298, 293, 13, 2220, 7, 7753, 8, 201, 198, 76, 439, 62, 24643, 796, 2298, 293, 13, 2220, 7, 7753, 8, 201, 198, 7753, 13, 19836, 3419, 201, 198, 7568, 796, 279, 67, 13, 961, 62, 71, 7568, 7, 2220, 62, 28764, 1045, 62, 6978, 1343, 705, 27432, 62, 7890, 13, 71, 20, 11537, 201, 198, 201, 198, 2, 162, 237, 238, 20998, 244, 161, 243, 228, 28839, 118, 10310, 118, 26344, 114, 22522, 248, 21410, 43718, 115, 17312, 105, 220, 220, 220, 220, 220, 201, 198, 7568, 62, 3605, 796, 47764, 58, 7568, 13, 76, 439, 62, 312, 855, 6, 76, 62, 1120, 5332, 20520, 201, 198, 7568, 62, 3605, 13, 9630, 796, 9521, 7, 11925, 7, 7568, 62, 3605, 4008, 201, 198, 2, 164, 121, 105, 162, 235, 95, 161, 243, 228, 28839, 118, 12, 161, 243, 228, 41753, 245, 43380, 117, 41753, 242, 17739, 111, 163, 111, 119, 10310, 118, 7890, 14535, 201, 198, 1477, 2840, 796, 17374, 58, 7568, 62, 3605, 17816, 76, 439, 62, 312, 6, 7131, 15, 11907, 201, 198, 201, 198, 7568, 62, 24643, 796, 279, 67, 13, 6601, 19778, 7, 9630, 796, 2837, 7, 11925, 7, 1477, 2840, 36911, 28665, 82, 796, 37250, 24643, 62, 312, 41707, 22872, 62, 312, 41707, 6511, 3984, 41707, 15460, 3984, 41707, 20888, 6, 12962, 220, 201, 198, 72, 796, 657, 220, 220, 201, 198, 1640, 6128, 287, 12437, 25, 201, 198, 220, 220, 220, 47764, 62, 24643, 17816, 24643, 62, 312, 6, 7131, 72, 60, 796, 220, 1351, 7, 24643, 13, 13083, 28955, 58, 15, 60, 201, 198, 220, 220, 220, 47764, 62, 24643, 17816, 22872, 62, 312, 6, 7131, 72, 60, 796, 493, 7, 4868, 7, 24643, 13, 27160, 28955, 58, 15, 7131, 15, 4083, 36311, 10786, 66, 62, 6, 4008, 201, 198, 220, 220, 220, 47764, 62, 24643, 17816, 6511, 3984, 6, 7131, 72, 60, 796, 1351, 7, 24643, 13, 27160, 28955, 58, 15, 7131, 16, 60, 201, 198, 220, 220, 220, 47764, 62, 24643, 17816, 15460, 3984, 6, 7131, 72, 60, 796, 1351, 7, 24643, 13, 27160, 28955, 58, 15, 7131, 17, 60, 201, 198, 220, 220, 220, 47764, 62, 24643, 17816, 20888, 6, 7131, 72, 60, 796, 1351, 7, 24643, 13, 27160, 28955, 58, 15, 7131, 18, 60, 201, 198, 220, 220, 220, 1312, 15853, 352, 201, 198, 2, 26344, 249, 161, 119, 118, 43718, 115, 17312, 105, 201, 198, 7568, 62, 39873, 796, 279, 67, 13, 6601, 19778, 7, 9630, 796, 2837, 7, 11925, 7, 7568, 62, 3605, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 796, 37250, 9630, 41707, 67, 2120, 62, 87, 41707, 67, 2120, 62, 88, 41707, 67, 2120, 62, 35, 41707, 50, 41707, 2435, 41707, 66, 41707, 79, 41707, 86, 22238, 62, 261, 6, 12962, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 7568, 62, 3605, 8, 2599, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 11925, 7, 7568, 62, 24643, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 47764, 62, 3605, 17816, 24643, 62, 312, 6, 7131, 72, 60, 6624, 47764, 62, 24643, 17816, 24643, 62, 312, 6, 7131, 73, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 474, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 83, 62, 87, 796, 47764, 62, 3605, 17816, 6511, 3984, 6, 7131, 72, 60, 532, 47764, 62, 24643, 17816, 6511, 3984, 6, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 83, 62, 88, 796, 47764, 62, 3605, 17816, 15460, 3984, 6, 7131, 72, 60, 532, 47764, 62, 24643, 17816, 15460, 3984, 6, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 796, 362, 9, 11018, 13, 47337, 7, 11018, 13, 31166, 17034, 7, 11018, 13, 31369, 7, 67, 2120, 62, 87, 9, 11018, 13, 14415, 14, 15259, 14, 17, 8, 1174, 17, 1343, 10688, 13, 6966, 7, 7568, 62, 3605, 17816, 15460, 3984, 6, 7131, 72, 60, 9, 11018, 13, 14415, 14, 15259, 8, 1635, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 13, 6966, 7, 7568, 62, 24643, 17816, 15460, 3984, 6, 7131, 73, 60, 9, 11018, 13, 14415, 14, 15259, 8, 1635, 10688, 13, 31369, 7, 67, 2120, 62, 87, 9, 11018, 13, 14415, 14, 15259, 14, 17, 8, 1174, 17, 4008, 9, 11018, 13, 14415, 14, 15259, 1635, 21, 30695, 1485, 2154, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 83, 62, 35, 796, 10688, 13, 31166, 17034, 7, 67, 2120, 62, 87, 1174, 17, 1343, 1619, 83, 62, 88, 1174, 17, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 796, 493, 7, 7568, 62, 3605, 17816, 2435, 62, 301, 696, 6, 7131, 72, 7131, 16, 4083, 33491, 7, 10354, 3256, 10148, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 66, 796, 47764, 62, 24643, 17816, 22872, 62, 312, 6, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 79, 796, 47764, 62, 24643, 17816, 20888, 6, 7131, 73, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43121, 62, 261, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 43121, 287, 47764, 62, 3605, 17816, 86, 22238, 62, 10951, 6, 7131, 72, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 43121, 58, 17, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43121, 62, 261, 796, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 9630, 6, 7131, 72, 60, 796, 6376, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 67, 2120, 62, 87, 6, 7131, 72, 60, 796, 2352, 7, 67, 2120, 62, 87, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 67, 2120, 62, 88, 6, 7131, 72, 60, 796, 2352, 7, 67, 2120, 62, 88, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 67, 2120, 62, 35, 6, 7131, 72, 60, 796, 1619, 83, 62, 35, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 50, 6, 7131, 72, 60, 796, 311, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 2435, 6, 7131, 72, 60, 796, 640, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 66, 6, 7131, 72, 60, 796, 640, 62, 66, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 79, 6, 7131, 72, 60, 796, 640, 62, 79, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 39873, 17816, 86, 22238, 62, 261, 6, 7131, 72, 60, 796, 43121, 62, 261, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 2, 164, 112, 251, 20998, 114, 23877, 107, 26344, 228, 163, 109, 119, 161, 247, 101, 201, 198, 49196, 62, 89, 796, 58, 45941, 13, 18747, 26933, 58, 15, 11, 16, 68, 12, 20, 38430, 16, 68, 12, 20, 11, 16, 68, 12, 18, 38430, 16, 68, 12, 18, 11, 16, 11907, 8, 837, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 58, 15, 11, 16, 68, 12, 20, 38430, 16, 68, 12, 20, 11, 16, 68, 12, 18, 38430, 16, 68, 12, 18, 11, 16, 11907, 8, 837, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 58, 15, 11, 20, 38430, 20, 11, 940, 38430, 940, 11, 1238, 38430, 1238, 11, 1120, 38430, 1120, 11, 16, 68, 19, 11907, 8, 220, 837, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 58, 15, 11, 42060, 38430, 42060, 11, 1485, 405, 38430, 1485, 405, 11, 1558, 405, 38430, 1558, 405, 11, 11024, 38430, 11024, 11, 1731, 405, 11907, 8, 220, 837, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 58, 15, 11, 1314, 38430, 1314, 11, 1270, 38430, 1270, 11, 1120, 11907, 8, 837, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 58, 15, 11, 1821, 38430, 1821, 11, 1899, 38430, 1899, 11, 3064, 11907, 15437, 201, 198, 11925, 456, 83, 796, 18896, 7, 7568, 62, 24643, 8, 220, 220, 220, 220, 201, 198, 2536, 16, 796, 705, 9630, 6, 201, 198, 7890, 796, 47764, 62, 39873, 201, 198, 47, 62, 89, 796, 45941, 13, 9107, 418, 26933, 16, 11, 11925, 7, 7568, 62, 24643, 8, 12962, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 7568, 62, 24643, 8, 2599, 201, 198, 220, 220, 220, 350, 62, 89, 58, 15, 11, 72, 60, 796, 18896, 7, 7568, 62, 39873, 58, 7568, 62, 39873, 17816, 9630, 20520, 6624, 1312, 12962, 14, 11925, 7, 7568, 62, 39873, 8, 201, 198, 201, 198, 47, 62, 87, 62, 67, 2120, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 11, 2536, 17, 796, 705, 67, 2120, 62, 87, 3256, 11925, 456, 83, 28, 11925, 456, 83, 837, 49196, 796, 7095, 62, 89, 58, 15, 60, 1267, 201, 198, 47, 62, 88, 62, 67, 2120, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 11, 2536, 17, 796, 705, 67, 2120, 62, 88, 3256, 11925, 456, 83, 28, 11925, 456, 83, 837, 49196, 796, 49196, 62, 89, 58, 16, 12962, 201, 198, 47, 62, 82, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 11, 2536, 17, 796, 705, 50, 3256, 11925, 456, 83, 28, 11925, 456, 83, 11, 49196, 796, 49196, 62, 89, 58, 17, 12962, 201, 198, 47, 62, 83, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 837, 2536, 17, 796, 705, 2435, 3256, 11925, 456, 83, 28, 11925, 456, 83, 837, 49196, 796, 49196, 62, 89, 58, 18, 12962, 201, 198, 47, 62, 66, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 837, 2536, 17, 796, 705, 66, 3256, 11925, 456, 83, 28, 11925, 456, 83, 837, 49196, 796, 49196, 62, 89, 58, 19, 12962, 201, 198, 47, 62, 79, 796, 2891, 13, 66, 330, 5039, 62, 79, 7, 7890, 28, 7890, 837, 2536, 16, 28, 2536, 16, 837, 2536, 17, 796, 705, 79, 3256, 11925, 456, 83, 28, 11925, 456, 83, 837, 49196, 796, 49196, 62, 89, 58, 20, 12962, 201, 198, 47, 796, 685, 47, 62, 89, 11, 350, 62, 87, 62, 67, 2120, 11, 47, 62, 88, 62, 67, 2120, 11, 47, 62, 82, 11, 47, 62, 83, 11, 47, 62, 66, 2361, 201, 198, 201, 198, 2, 45635, 18796, 101, 26344, 228, 163, 109, 119, 161, 247, 101, 165, 95, 226, 38184, 233, 201, 198, 87, 62, 9288, 796, 685, 15, 13, 486, 11, 15, 13, 18005, 11, 18, 11, 42060, 11, 2091, 11, 1899, 60, 201, 198, 9630, 82, 796, 17635, 201, 198, 74, 28, 15, 201, 198, 1640, 7095, 287, 7095, 62, 89, 25, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 49196, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7095, 58, 72, 7131, 15, 60, 19841, 2124, 62, 9288, 58, 74, 60, 19841, 7095, 58, 72, 7131, 16, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 1312, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 479, 47932, 16, 201, 198, 220, 220, 220, 6376, 82, 13, 33295, 7, 72, 8, 201, 198, 47, 62, 66, 330, 5039, 796, 350, 58, 15, 60, 1635, 350, 58, 16, 7131, 9630, 82, 58, 16, 4357, 47715, 1635, 350, 58, 17, 7131, 9630, 82, 58, 17, 4357, 47715, 1635, 350, 58, 18, 7131, 9630, 82, 58, 18, 4357, 47715, 1635, 350, 58, 19, 7131, 9630, 82, 58, 19, 4357, 47715, 1635, 350, 58, 20, 7131, 9630, 82, 58, 20, 4357, 47715, 1635, 350, 58, 21, 7131, 9630, 82, 58, 21, 4357, 47715, 201, 198, 66, 796, 1351, 7, 47, 62, 66, 330, 5039, 58, 15, 12962, 201, 198, 260, 28, 269, 13, 9630, 7, 9806, 7, 66, 4008, 201, 198, 20311, 62, 20274, 796, 47764, 62, 24643, 17816, 24643, 62, 312, 6, 7131, 260, 60, 201, 198, 4798, 7, 20311, 62, 20274, 8, 201, 198 ]
1.769715
2,384
import logging import threading from time import sleep import pytest from parla import Parla, TaskEnvironment from parla.cpu import cpu from parla.environments import EnvironmentComponentInstance, EnvironmentComponentDescriptor from parla.tasks import * logger = logging.getLogger(__name__) def repetitions(): """Return an iterable of the repetitions to perform for probabilistic/racy tests.""" return range(5) def sleep_until(predicate, timeout=2, period=0.05): """Sleep until either `predicate()` is true or 2 seconds have passed.""" for _ in range(int(timeout/period)): if predicate(): break sleep(period) assert predicate(), "sleep_until timed out ({}s)".format(timeout) thread_locals = threading.local() @pytest.mark.skipif(len(cpu.devices) < 2, reason="Run with PARLA_CPU_ARCHITECTURE=cores") @pytest.mark.skipif(len(cpu.devices) < 2, reason="Run with PARLA_CPU_ARCHITECTURE=cores") @pytest.mark.skipif(len(cpu.devices) < 2, reason="Run with PARLA_CPU_ARCHITECTURE=cores") @pytest.mark.skipif(len(cpu.devices) < 2, reason="Run with PARLA_CPU_ARCHITECTURE=cores") @pytest.mark.skipif(len(cpu.devices) < 5, reason="Run with PARLA_CPU_ARCHITECTURE=cores")
[ 11748, 18931, 198, 11748, 4704, 278, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 1582, 5031, 1330, 2547, 5031, 11, 15941, 31441, 198, 6738, 1582, 5031, 13, 36166, 1330, 42804, 198, 6738, 1582, 5031, 13, 268, 12103, 1330, 9344, 21950, 33384, 11, 9344, 21950, 24564, 1968, 273, 198, 6738, 1582, 5031, 13, 83, 6791, 1330, 1635, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4299, 46152, 1756, 33529, 198, 220, 220, 220, 37227, 13615, 281, 11629, 540, 286, 262, 46152, 1756, 284, 1620, 329, 1861, 14991, 2569, 14, 81, 1590, 5254, 526, 15931, 198, 220, 220, 220, 1441, 2837, 7, 20, 8, 628, 198, 4299, 3993, 62, 28446, 7, 28764, 5344, 11, 26827, 28, 17, 11, 2278, 28, 15, 13, 2713, 2599, 198, 220, 220, 220, 37227, 40555, 1566, 2035, 4600, 28764, 5344, 3419, 63, 318, 2081, 393, 362, 4201, 423, 3804, 526, 15931, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 600, 7, 48678, 14, 41007, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 44010, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 41007, 8, 198, 220, 220, 220, 6818, 44010, 22784, 366, 42832, 62, 28446, 28805, 503, 37913, 92, 82, 8, 1911, 18982, 7, 48678, 8, 628, 198, 16663, 62, 17946, 874, 796, 4704, 278, 13, 12001, 3419, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 11925, 7, 36166, 13, 42034, 8, 1279, 362, 11, 1738, 2625, 10987, 351, 29463, 13534, 62, 36037, 62, 31315, 2043, 9782, 11335, 28, 66, 2850, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 11925, 7, 36166, 13, 42034, 8, 1279, 362, 11, 1738, 2625, 10987, 351, 29463, 13534, 62, 36037, 62, 31315, 2043, 9782, 11335, 28, 66, 2850, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 11925, 7, 36166, 13, 42034, 8, 1279, 362, 11, 1738, 2625, 10987, 351, 29463, 13534, 62, 36037, 62, 31315, 2043, 9782, 11335, 28, 66, 2850, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 11925, 7, 36166, 13, 42034, 8, 1279, 362, 11, 1738, 2625, 10987, 351, 29463, 13534, 62, 36037, 62, 31315, 2043, 9782, 11335, 28, 66, 2850, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 361, 7, 11925, 7, 36166, 13, 42034, 8, 1279, 642, 11, 1738, 2625, 10987, 351, 29463, 13534, 62, 36037, 62, 31315, 2043, 9782, 11335, 28, 66, 2850, 4943, 198 ]
2.846868
431
from unittest import mock from datetime import date from django.test import SimpleTestCase from mtp_common.dates import WorkdayChecker TEST_HOLIDAYS = {'england-and-wales': { 'division': 'england-and-wales', 'events': [ {'title': 'Boxing Day', 'date': '2016-12-26', 'notes': '', 'bunting': True}, {'title': 'Christmas Day', 'date': '2016-12-27', 'notes': 'Substitute day', 'bunting': True}] }}
[ 6738, 555, 715, 395, 1330, 15290, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 17427, 14402, 20448, 198, 198, 6738, 285, 34788, 62, 11321, 13, 19581, 1330, 5521, 820, 9787, 263, 198, 198, 51, 6465, 62, 39, 3535, 2389, 4792, 50, 796, 1391, 6, 1516, 1044, 12, 392, 12, 86, 2040, 10354, 1391, 198, 220, 220, 220, 705, 21426, 10354, 705, 1516, 1044, 12, 392, 12, 86, 2040, 3256, 198, 220, 220, 220, 705, 31534, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 7839, 10354, 705, 14253, 278, 3596, 3256, 705, 4475, 10354, 705, 5304, 12, 1065, 12, 2075, 3256, 705, 17815, 10354, 705, 3256, 705, 65, 403, 889, 10354, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 7839, 10354, 705, 44614, 3596, 3256, 705, 4475, 10354, 705, 5304, 12, 1065, 12, 1983, 3256, 705, 17815, 10354, 705, 7004, 301, 3678, 1110, 3256, 705, 65, 403, 889, 10354, 6407, 92, 60, 198, 11709, 628 ]
2.511905
168
""" Test attention networks on ImageNet. """ gpu = input('GPU: ') type_category_set = input('Category-set type in {diff, sem, sim, size}: ') version_wnids = input('Version number (WNIDs): ') version_weights = input('Version number (weights): ') start = int(input('Start category set: ')) stop = int(input('Stop category set (inclusive): ')) import os os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = gpu import csv import numpy as np import pandas as pd from ..utils.paths import (path_category_sets, path_imagenet, path_init_model, path_results, path_weights) from ..utils.models import build_model from ..utils.testing import predict_model, evaluate_predictions ind_attention = 19 model = build_model(train=False, attention_position=ind_attention) model.save_weights(path_init_model) path_cat_sets = ( path_category_sets/f'{type_category_set}_v{version_wnids}_wnids.csv') category_sets = [row for row in csv.reader(open(path_cat_sets), delimiter=',')] scores_in, scores_out = [], [] for i in range(start, stop+1): name_weights = f'{type_category_set}_v{version_weights}_{i:02}' print(f'\nTesting on {name_weights}') weights = np.load(path_weights/f'{name_weights}_weights.npy') model.load_weights(path_init_model) model.layers[ind_attention].set_weights([weights]) predictions, generator = predict_model( model, 'dir', path_imagenet/'val_white/') wnid2ind = generator.class_indices labels = generator.classes inds_in = [] for wnid in category_sets[i]: inds_in.extend(np.flatnonzero(labels==wnid2ind[wnid])) inds_out = np.setdiff1d(range(generator.n), inds_in) print(f''' In category_set: {len(inds_in)} examples Out of category_set: {len(inds_out)} examples''') scores_in.append(evaluate_predictions(predictions, labels, inds_in)) scores_out.append(evaluate_predictions(predictions, labels, inds_out)) cols_array = ['loss_in', 'acc_top1_in', 'acc_top5_in', 'loss_out', 'acc_top1_out', 'acc_top5_out'] cols_save = ['loss_in', 'loss_out', 'acc_top1_in', 'acc_top1_out', 'acc_top5_in', 'acc_top5_out'] scores_all = np.concatenate((np.array(scores_in), np.array(scores_out)), axis=1) scores_df = pd.DataFrame(scores_all, columns=cols_array) scores_df[cols_save].to_csv( (path_results/ f'{type_category_set}_v{version_weights}_{start:02}-{stop:02}_results.csv'))
[ 37811, 198, 14402, 3241, 7686, 319, 7412, 7934, 13, 198, 37811, 198, 198, 46999, 796, 5128, 10786, 33346, 25, 705, 8, 198, 4906, 62, 22872, 62, 2617, 796, 5128, 10786, 27313, 12, 2617, 2099, 287, 1391, 26069, 11, 5026, 11, 985, 11, 2546, 38362, 705, 8, 198, 9641, 62, 675, 2340, 796, 5128, 10786, 14815, 1271, 357, 29767, 47954, 2599, 705, 8, 198, 9641, 62, 43775, 796, 5128, 10786, 14815, 1271, 357, 43775, 2599, 705, 8, 198, 9688, 796, 493, 7, 15414, 10786, 10434, 6536, 900, 25, 705, 4008, 198, 11338, 796, 493, 7, 15414, 10786, 19485, 6536, 900, 357, 259, 5731, 2599, 705, 4008, 198, 198, 11748, 28686, 198, 418, 13, 268, 2268, 17816, 43633, 5631, 62, 7206, 27389, 62, 12532, 1137, 20520, 796, 705, 5662, 40, 62, 45346, 62, 2389, 6, 198, 418, 13, 268, 2268, 17816, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 20520, 796, 308, 19944, 198, 198, 11748, 269, 21370, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 11485, 26791, 13, 6978, 82, 1330, 357, 6978, 62, 22872, 62, 28709, 11, 3108, 62, 320, 11286, 316, 11, 3108, 62, 15003, 62, 19849, 11, 198, 220, 220, 220, 3108, 62, 43420, 11, 3108, 62, 43775, 8, 198, 6738, 11485, 26791, 13, 27530, 1330, 1382, 62, 19849, 198, 6738, 11485, 26791, 13, 33407, 1330, 4331, 62, 19849, 11, 13446, 62, 28764, 9278, 198, 198, 521, 62, 1078, 1463, 796, 678, 198, 19849, 796, 1382, 62, 19849, 7, 27432, 28, 25101, 11, 3241, 62, 9150, 28, 521, 62, 1078, 1463, 8, 198, 19849, 13, 21928, 62, 43775, 7, 6978, 62, 15003, 62, 19849, 8, 198, 6978, 62, 9246, 62, 28709, 796, 357, 198, 220, 220, 220, 3108, 62, 22872, 62, 28709, 14, 69, 6, 90, 4906, 62, 22872, 62, 2617, 92, 62, 85, 90, 9641, 62, 675, 2340, 92, 62, 675, 2340, 13, 40664, 11537, 198, 22872, 62, 28709, 796, 685, 808, 329, 5752, 287, 269, 21370, 13, 46862, 7, 9654, 7, 6978, 62, 9246, 62, 28709, 828, 46728, 2676, 28, 3256, 11537, 60, 198, 1416, 2850, 62, 259, 11, 8198, 62, 448, 796, 685, 4357, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 9688, 11, 2245, 10, 16, 2599, 198, 220, 220, 220, 1438, 62, 43775, 796, 277, 6, 90, 4906, 62, 22872, 62, 2617, 92, 62, 85, 90, 9641, 62, 43775, 92, 23330, 72, 25, 2999, 92, 6, 198, 220, 220, 220, 3601, 7, 69, 6, 59, 77, 44154, 319, 1391, 3672, 62, 43775, 92, 11537, 198, 220, 220, 220, 19590, 796, 45941, 13, 2220, 7, 6978, 62, 43775, 14, 69, 6, 90, 3672, 62, 43775, 92, 62, 43775, 13, 77, 9078, 11537, 198, 220, 220, 220, 2746, 13, 2220, 62, 43775, 7, 6978, 62, 15003, 62, 19849, 8, 198, 220, 220, 220, 2746, 13, 75, 6962, 58, 521, 62, 1078, 1463, 4083, 2617, 62, 43775, 26933, 43775, 12962, 198, 220, 220, 220, 16277, 11, 17301, 796, 4331, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 11, 705, 15908, 3256, 3108, 62, 320, 11286, 316, 14, 6, 2100, 62, 11186, 14, 11537, 198, 220, 220, 220, 266, 77, 312, 17, 521, 796, 17301, 13, 4871, 62, 521, 1063, 198, 220, 220, 220, 14722, 796, 17301, 13, 37724, 198, 220, 220, 220, 773, 82, 62, 259, 796, 17635, 198, 220, 220, 220, 329, 266, 77, 312, 287, 6536, 62, 28709, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 773, 82, 62, 259, 13, 2302, 437, 7, 37659, 13, 38568, 13159, 22570, 7, 23912, 1424, 855, 675, 312, 17, 521, 58, 675, 312, 60, 4008, 198, 220, 220, 220, 773, 82, 62, 448, 796, 45941, 13, 2617, 26069, 16, 67, 7, 9521, 7, 8612, 1352, 13, 77, 828, 773, 82, 62, 259, 8, 198, 220, 220, 220, 3601, 7, 69, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 554, 6536, 62, 2617, 25, 1391, 11925, 7, 521, 82, 62, 259, 38165, 6096, 198, 220, 220, 220, 220, 220, 220, 220, 3806, 286, 6536, 62, 2617, 25, 1391, 11925, 7, 521, 82, 62, 448, 38165, 6096, 7061, 11537, 198, 220, 220, 220, 8198, 62, 259, 13, 33295, 7, 49786, 62, 28764, 9278, 7, 28764, 9278, 11, 14722, 11, 773, 82, 62, 259, 4008, 198, 220, 220, 220, 8198, 62, 448, 13, 33295, 7, 49786, 62, 28764, 9278, 7, 28764, 9278, 11, 14722, 11, 773, 82, 62, 448, 4008, 198, 198, 4033, 82, 62, 18747, 796, 37250, 22462, 62, 259, 3256, 705, 4134, 62, 4852, 16, 62, 259, 3256, 705, 4134, 62, 4852, 20, 62, 259, 3256, 705, 22462, 62, 448, 3256, 198, 220, 220, 220, 705, 4134, 62, 4852, 16, 62, 448, 3256, 705, 4134, 62, 4852, 20, 62, 448, 20520, 198, 4033, 82, 62, 21928, 796, 37250, 22462, 62, 259, 3256, 705, 22462, 62, 448, 3256, 705, 4134, 62, 4852, 16, 62, 259, 3256, 705, 4134, 62, 4852, 16, 62, 448, 3256, 198, 220, 220, 220, 705, 4134, 62, 4852, 20, 62, 259, 3256, 705, 4134, 62, 4852, 20, 62, 448, 20520, 198, 198, 1416, 2850, 62, 439, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 37659, 13, 18747, 7, 1416, 2850, 62, 259, 828, 45941, 13, 18747, 7, 1416, 2850, 62, 448, 36911, 16488, 28, 16, 8, 198, 1416, 2850, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 1416, 2850, 62, 439, 11, 15180, 28, 4033, 82, 62, 18747, 8, 198, 1416, 2850, 62, 7568, 58, 4033, 82, 62, 21928, 4083, 1462, 62, 40664, 7, 198, 220, 220, 220, 357, 6978, 62, 43420, 14, 198, 220, 220, 220, 277, 6, 90, 4906, 62, 22872, 62, 2617, 92, 62, 85, 90, 9641, 62, 43775, 92, 23330, 9688, 25, 2999, 92, 12, 90, 11338, 25, 2999, 92, 62, 43420, 13, 40664, 6, 4008, 198 ]
2.50675
963
statement = """"Institute of Medical Biology, Chinese Academy of Medical Sciences",Vaccine,Inactivated virus,Phase II,Phase II began June 2020,Inactivated,NCT04412538,Unknown,,,N/A,https://docs.google.com/document/d/1Y4nCJJ4njzD1wiHbufCY6gqfRmj49Qn_qNgOJD62Wik/edit,6/23/2020""" parseRowToCell(statement)
[ 26090, 796, 13538, 15931, 6310, 3678, 286, 8366, 24698, 11, 3999, 8581, 286, 8366, 13473, 1600, 53, 4134, 500, 11, 818, 33106, 9471, 11, 35645, 2873, 11, 35645, 2873, 2540, 2795, 12131, 11, 818, 33106, 11, 45, 4177, 43977, 11623, 2548, 11, 20035, 9832, 11, 45, 14, 32, 11, 5450, 1378, 31628, 13, 13297, 13, 785, 14, 22897, 14, 67, 14, 16, 56, 19, 77, 34, 32178, 19, 77, 73, 89, 35, 16, 37686, 39, 29325, 34, 56, 21, 70, 80, 69, 49, 76, 73, 2920, 48, 77, 62, 80, 45, 70, 46, 37882, 5237, 33010, 14, 19312, 11, 21, 14, 1954, 14, 42334, 37811, 628, 198, 29572, 25166, 2514, 28780, 7, 26090, 8 ]
2.684211
114
from PyQt5 import QtWidgets, QtGui, QtCore # import PyQt5 widgets from cats import cat
[ 6738, 9485, 48, 83, 20, 1330, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 11, 33734, 14055, 220, 1303, 1330, 9485, 48, 83, 20, 40803, 198, 198, 6738, 11875, 1330, 3797, 628 ]
2.8125
32
""" Helper class to train models using Ray backend """ import ray from ray.tune import Trainable from sklearn.base import clone from sklearn.model_selection import cross_validate from sklearn.utils.metaestimators import _safe_split import numpy as np import os from pickle import PicklingError import ray.cloudpickle as cpickle import warnings from tune_sklearn._detect_xgboost import is_xgboost_model from tune_sklearn.utils import (check_warm_start, check_partial_fit, _aggregate_score_dicts) class _Trainable(Trainable): """Class to be passed in as the first argument of tune.run to train models. Overrides Ray Tune's Trainable class to specify the setup, train, save, and restore routines. """ estimator_list = None @property def _setup(self, config): """Sets up Trainable attributes during initialization. Also sets up parameters for the sklearn estimator passed in. Args: config (dict): contains necessary parameters to complete the `fit` routine for the estimator. Also includes parameters for early stopping if it is set to true. """ self.estimator_list = clone(config.pop("estimator_list")) self.early_stopping = config.pop("early_stopping") X_id = config.pop("X_id") self.X = ray.get(X_id) y_id = config.pop("y_id") self.y = ray.get(y_id) self.groups = config.pop("groups") self.fit_params = config.pop("fit_params") self.scoring = config.pop("scoring") self.max_iters = config.pop("max_iters") self.cv = config.pop("cv") self.return_train_score = config.pop("return_train_score") self.n_jobs = config.pop("n_jobs") self.estimator_config = config self.train_accuracy = None self.test_accuracy = None self.saved_models = [] # XGBoost specific if self.early_stopping: assert self._can_early_start() n_splits = self.cv.get_n_splits(self.X, self.y) self.fold_scores = np.empty(n_splits, dtype=dict) self.fold_train_scores = np.empty(n_splits, dtype=dict) if not self._can_partial_fit() and self._can_warm_start(): # max_iter here is different than the max_iters the user sets. # max_iter is to make sklearn only fit for one epoch, # while max_iters (which the user can set) is the usual max # number of calls to _trainable. self.estimator_config["warm_start"] = True self.estimator_config["max_iter"] = 1 for i in range(n_splits): self.estimator_list[i].set_params(**self.estimator_config) if self._is_xgb(): self.saved_models = [None for _ in range(n_splits)] else: self.main_estimator.set_params(**self.estimator_config) def _train(self): """Trains one iteration of the model called when ``tune.run`` is called. Different routines are run depending on if the ``early_stopping`` attribute is True or not. If ``self.early_stopping`` is not None, each fold is fit with `partial_fit`, which stops training the model if the validation score is not improving for a particular fold. Otherwise, run the full cross-validation procedure. In both cases, the average test accuracy is returned over all folds, as well as the individual folds' accuracies as a dictionary. Returns: ret (:obj:`dict): Dictionary of results as a basis for ``cv_results_`` for one of the cross-validation interfaces. """ if self.early_stopping: for i, (train, test) in enumerate(self.cv.split(self.X, self.y)): X_train, y_train = _safe_split(self.estimator_list[i], self.X, self.y, train) X_test, y_test = _safe_split( self.estimator_list[i], self.X, self.y, test, train_indices=train) if self._can_partial_fit(): self.estimator_list[i].partial_fit(X_train, y_train, np.unique(self.y)) elif self._is_xgb(): self.estimator_list[i].fit( X_train, y_train, xgb_model=self.saved_models[i]) self.saved_models[i] = self.estimator_list[i].get_booster() elif self._can_warm_start(): self.estimator_list[i].fit(X_train, y_train) else: raise RuntimeError( "Early stopping set but model is not: " "xgb model, supports partial fit, or warm-startable.") if self.return_train_score: self.fold_train_scores[i] = { name: score(self.estimator_list[i], X_train, y_train) for name, score in self.scoring.items() } self.fold_scores[i] = { name: score(self.estimator_list[i], X_test, y_test) for name, score in self.scoring.items() } ret = {} agg_fold_scores = _aggregate_score_dicts(self.fold_scores) for name, scores in agg_fold_scores.items(): total = 0 for i, score in enumerate(scores): total += score key_str = f"split{i}_test_%s" % name ret[key_str] = score self.mean_score = total / len(scores) ret["average_test_%s" % name] = self.mean_score if self.return_train_score: agg_fold_train_scores = _aggregate_score_dicts( self.fold_train_scores) for name, scores in agg_fold_train_scores.items(): total = 0 for i, score in enumerate(scores): total += score key_str = f"split{i}_train_%s" % name ret[key_str] = score self.mean_train_score = total / len(scores) ret["average_train_%s" % name] = self.mean_train_score return ret else: try: scores = cross_validate( self.main_estimator, self.X, self.y, cv=self.cv, n_jobs=self.n_jobs, fit_params=self.fit_params, groups=self.groups, scoring=self.scoring, return_train_score=self.return_train_score, ) except PicklingError: warnings.warn("An error occurred in parallelizing the cross " "validation. Proceeding to cross validate with " "one core.") scores = cross_validate( self.main_estimator, self.X, self.y, cv=self.cv, fit_params=self.fit_params, groups=self.groups, scoring=self.scoring, return_train_score=self.return_train_score, ) ret = {} for name in self.scoring: for i, score in enumerate(scores["test_%s" % name]): key_str = f"split{i}_test_%s" % name ret[key_str] = score self.test_accuracy = sum(scores["test_%s" % name]) / len( scores["test_%s" % name]) ret["average_test_%s" % name] = self.test_accuracy if self.return_train_score: for name in self.scoring: for i, score in enumerate(scores["train_%s" % name]): key_str = f"split{i}_train_%s" % name ret[key_str] = score self.train_accuracy = sum(scores["train_%s" % name]) / len( scores["train_%s" % name]) ret["average_train_%s" % name] = self.train_accuracy return ret def _save(self, checkpoint_dir): """Creates a checkpoint in ``checkpoint_dir``, creating a pickle file. Args: checkpoint_dir (str): file path to store pickle checkpoint. Returns: path (str): file path to the pickled checkpoint file. """ path = os.path.join(checkpoint_dir, "checkpoint") try: with open(path, "wb") as f: cpickle.dump(self.estimator_list, f) except Exception: warnings.warn("Unable to save estimator.", category=RuntimeWarning) return path def _restore(self, checkpoint): """Loads a checkpoint created from `save`. Args: checkpoint (str): file path to pickled checkpoint file. """ try: with open(checkpoint, "rb") as f: self.estimator_list = cpickle.load(f) except Exception: warnings.warn("No estimator restored", category=RuntimeWarning)
[ 37811, 5053, 525, 1398, 284, 4512, 4981, 1262, 7760, 30203, 198, 37811, 198, 198, 11748, 26842, 198, 6738, 26842, 13, 83, 1726, 1330, 16835, 540, 198, 6738, 1341, 35720, 13, 8692, 1330, 17271, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 3272, 62, 12102, 378, 198, 6738, 1341, 35720, 13, 26791, 13, 28961, 395, 320, 2024, 1330, 4808, 21230, 62, 35312, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 2298, 293, 1330, 12346, 1359, 12331, 198, 11748, 26842, 13, 17721, 27729, 293, 355, 269, 27729, 293, 198, 11748, 14601, 198, 198, 6738, 14009, 62, 8135, 35720, 13557, 15255, 478, 62, 87, 70, 39521, 1330, 318, 62, 87, 70, 39521, 62, 19849, 198, 6738, 14009, 62, 8135, 35720, 13, 26791, 1330, 357, 9122, 62, 31975, 62, 9688, 11, 2198, 62, 47172, 62, 11147, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9460, 49373, 62, 26675, 62, 11600, 82, 8, 628, 198, 4871, 4808, 44077, 540, 7, 44077, 540, 2599, 198, 220, 220, 220, 37227, 9487, 284, 307, 3804, 287, 355, 262, 717, 4578, 286, 14009, 13, 5143, 284, 4512, 4981, 13, 628, 220, 220, 220, 3827, 81, 1460, 7760, 42587, 338, 16835, 540, 1398, 284, 11986, 262, 9058, 11, 4512, 11, 3613, 11, 198, 220, 220, 220, 290, 11169, 31878, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3959, 1352, 62, 4868, 796, 6045, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 4808, 40406, 7, 944, 11, 4566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 510, 16835, 540, 12608, 1141, 37588, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4418, 5621, 510, 10007, 329, 262, 1341, 35720, 3959, 1352, 3804, 287, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 357, 11600, 2599, 4909, 3306, 10007, 284, 1844, 262, 4600, 11147, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8027, 329, 262, 3959, 1352, 13, 4418, 3407, 10007, 329, 1903, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12225, 611, 340, 318, 900, 284, 2081, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 796, 17271, 7, 11250, 13, 12924, 7203, 395, 320, 1352, 62, 4868, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11458, 62, 301, 33307, 796, 4566, 13, 12924, 7203, 11458, 62, 301, 33307, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 312, 796, 4566, 13, 12924, 7203, 55, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 796, 26842, 13, 1136, 7, 55, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 331, 62, 312, 796, 4566, 13, 12924, 7203, 88, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 796, 26842, 13, 1136, 7, 88, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24432, 796, 4566, 13, 12924, 7203, 24432, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11147, 62, 37266, 796, 4566, 13, 12924, 7203, 11147, 62, 37266, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46536, 796, 4566, 13, 12924, 7203, 46536, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 270, 364, 796, 4566, 13, 12924, 7203, 9806, 62, 270, 364, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33967, 796, 4566, 13, 12924, 7203, 33967, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7783, 62, 27432, 62, 26675, 796, 4566, 13, 12924, 7203, 7783, 62, 27432, 62, 26675, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 43863, 796, 4566, 13, 12924, 7203, 77, 62, 43863, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 11250, 796, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 4134, 23843, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 62, 4134, 23843, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 9586, 62, 27530, 796, 17635, 220, 1303, 1395, 4579, 78, 455, 2176, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11458, 62, 301, 33307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13557, 5171, 62, 11458, 62, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 22018, 896, 796, 2116, 13, 33967, 13, 1136, 62, 77, 62, 22018, 896, 7, 944, 13, 55, 11, 2116, 13, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 62, 1416, 2850, 796, 45941, 13, 28920, 7, 77, 62, 22018, 896, 11, 288, 4906, 28, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 62, 27432, 62, 1416, 2850, 796, 45941, 13, 28920, 7, 77, 62, 22018, 896, 11, 288, 4906, 28, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 5171, 62, 47172, 62, 11147, 3419, 290, 2116, 13557, 5171, 62, 31975, 62, 9688, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 62, 2676, 994, 318, 1180, 621, 262, 3509, 62, 270, 364, 262, 2836, 5621, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3509, 62, 2676, 318, 284, 787, 1341, 35720, 691, 4197, 329, 530, 36835, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 981, 3509, 62, 270, 364, 357, 4758, 262, 2836, 460, 900, 8, 318, 262, 6678, 3509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1271, 286, 3848, 284, 4808, 27432, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 11250, 14692, 31975, 62, 9688, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 11250, 14692, 9806, 62, 2676, 8973, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 62, 22018, 896, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4083, 2617, 62, 37266, 7, 1174, 944, 13, 395, 320, 1352, 62, 11250, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 271, 62, 87, 22296, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 9586, 62, 27530, 796, 685, 14202, 329, 4808, 287, 2837, 7, 77, 62, 22018, 896, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12417, 62, 395, 320, 1352, 13, 2617, 62, 37266, 7, 1174, 944, 13, 395, 320, 1352, 62, 11250, 8, 628, 220, 220, 220, 825, 4808, 27432, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2898, 1299, 530, 24415, 286, 262, 2746, 1444, 618, 7559, 83, 1726, 13, 5143, 15506, 318, 1444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 20615, 31878, 389, 1057, 6906, 319, 611, 262, 7559, 11458, 62, 301, 33307, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 11688, 318, 6407, 393, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 7559, 944, 13, 11458, 62, 301, 33307, 15506, 318, 407, 6045, 11, 1123, 5591, 318, 4197, 351, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 47172, 62, 11147, 47671, 543, 9911, 3047, 262, 2746, 611, 262, 21201, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 318, 407, 10068, 329, 257, 1948, 5591, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15323, 11, 1057, 262, 1336, 3272, 12, 12102, 341, 8771, 13, 628, 220, 220, 220, 220, 220, 220, 220, 554, 1111, 2663, 11, 262, 2811, 1332, 9922, 318, 4504, 625, 477, 38744, 11, 198, 220, 220, 220, 220, 220, 220, 220, 355, 880, 355, 262, 1981, 38744, 6, 4431, 13433, 355, 257, 22155, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 357, 25, 26801, 25, 63, 11600, 2599, 28261, 286, 2482, 355, 257, 4308, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 33967, 62, 43420, 62, 15506, 329, 530, 286, 262, 3272, 12, 12102, 341, 20314, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11458, 62, 301, 33307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 357, 27432, 11, 1332, 8, 287, 27056, 378, 7, 944, 13, 33967, 13, 35312, 7, 944, 13, 55, 11, 2116, 13, 88, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 11, 331, 62, 27432, 796, 4808, 21230, 62, 35312, 7, 944, 13, 395, 320, 1352, 62, 4868, 58, 72, 4357, 2116, 13, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 11, 4512, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 9288, 11, 331, 62, 9288, 796, 4808, 21230, 62, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 521, 1063, 28, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 5171, 62, 47172, 62, 11147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4083, 47172, 62, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 34642, 7, 944, 13, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 271, 62, 87, 22296, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4083, 11147, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 11, 331, 62, 27432, 11, 2124, 22296, 62, 19849, 28, 944, 13, 82, 9586, 62, 27530, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 9586, 62, 27530, 58, 72, 60, 796, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4083, 1136, 62, 2127, 6197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 5171, 62, 31975, 62, 9688, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 58, 72, 4083, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20457, 12225, 900, 475, 2746, 318, 407, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 22296, 2746, 11, 6971, 13027, 4197, 11, 393, 5814, 12, 9688, 540, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7783, 62, 27432, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 62, 27432, 62, 1416, 2850, 58, 72, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 4776, 7, 944, 13, 395, 320, 1352, 62, 4868, 58, 72, 4357, 1395, 62, 27432, 11, 331, 62, 27432, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 4776, 287, 2116, 13, 46536, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 62, 1416, 2850, 58, 72, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 4776, 7, 944, 13, 395, 320, 1352, 62, 4868, 58, 72, 4357, 1395, 62, 9288, 11, 331, 62, 9288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 4776, 287, 2116, 13, 46536, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4194, 62, 11379, 62, 1416, 2850, 796, 4808, 9460, 49373, 62, 26675, 62, 11600, 82, 7, 944, 13, 11379, 62, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 8198, 287, 4194, 62, 11379, 62, 1416, 2850, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4776, 287, 27056, 378, 7, 1416, 2850, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2536, 796, 277, 1, 35312, 90, 72, 92, 62, 9288, 62, 4, 82, 1, 4064, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 2539, 62, 2536, 60, 796, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 62, 26675, 796, 2472, 1220, 18896, 7, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 23913, 62, 9288, 62, 4, 82, 1, 4064, 1438, 60, 796, 2116, 13, 32604, 62, 26675, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7783, 62, 27432, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4194, 62, 11379, 62, 27432, 62, 1416, 2850, 796, 4808, 9460, 49373, 62, 26675, 62, 11600, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 62, 27432, 62, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 8198, 287, 4194, 62, 11379, 62, 27432, 62, 1416, 2850, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4776, 287, 27056, 378, 7, 1416, 2850, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2536, 796, 277, 1, 35312, 90, 72, 92, 62, 27432, 62, 4, 82, 1, 4064, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 2539, 62, 2536, 60, 796, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 62, 27432, 62, 26675, 796, 2472, 1220, 18896, 7, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 23913, 62, 27432, 62, 4, 82, 1, 4064, 1438, 60, 796, 2116, 13, 32604, 62, 27432, 62, 26675, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 3272, 62, 12102, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12417, 62, 395, 320, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 28, 944, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4197, 62, 37266, 28, 944, 13, 11147, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2628, 28, 944, 13, 24432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9689, 28, 944, 13, 46536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 27432, 62, 26675, 28, 944, 13, 7783, 62, 27432, 62, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12346, 1359, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 2025, 4049, 5091, 287, 10730, 2890, 262, 3272, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12102, 341, 13, 24889, 278, 284, 3272, 26571, 351, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 505, 4755, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 3272, 62, 12102, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12417, 62, 395, 320, 1352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 28, 944, 13, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4197, 62, 37266, 28, 944, 13, 11147, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2628, 28, 944, 13, 24432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9689, 28, 944, 13, 46536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 27432, 62, 26675, 28, 944, 13, 7783, 62, 27432, 62, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2116, 13, 46536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4776, 287, 27056, 378, 7, 1416, 2850, 14692, 9288, 62, 4, 82, 1, 4064, 1438, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2536, 796, 277, 1, 35312, 90, 72, 92, 62, 9288, 62, 4, 82, 1, 4064, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 2539, 62, 2536, 60, 796, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 62, 4134, 23843, 796, 2160, 7, 1416, 2850, 14692, 9288, 62, 4, 82, 1, 4064, 1438, 12962, 1220, 18896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 14692, 9288, 62, 4, 82, 1, 4064, 1438, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 23913, 62, 9288, 62, 4, 82, 1, 4064, 1438, 60, 796, 2116, 13, 9288, 62, 4134, 23843, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7783, 62, 27432, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2116, 13, 46536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4776, 287, 27056, 378, 7, 1416, 2850, 14692, 27432, 62, 4, 82, 1, 4064, 1438, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 2536, 796, 277, 1, 35312, 90, 72, 92, 62, 27432, 62, 4, 82, 1, 4064, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 2539, 62, 2536, 60, 796, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 4134, 23843, 796, 2160, 7, 1416, 2850, 14692, 27432, 62, 4, 82, 1, 4064, 1438, 12962, 1220, 18896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 14692, 27432, 62, 4, 82, 1, 4064, 1438, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 23913, 62, 27432, 62, 4, 82, 1, 4064, 1438, 60, 796, 2116, 13, 27432, 62, 4134, 23843, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 825, 4808, 21928, 7, 944, 11, 26954, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16719, 274, 257, 26954, 287, 7559, 9122, 4122, 62, 15908, 15506, 11, 4441, 257, 2298, 293, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 357, 2536, 2599, 2393, 3108, 284, 3650, 2298, 293, 26954, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 2393, 3108, 284, 262, 2298, 992, 26954, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 9122, 4122, 62, 15908, 11, 366, 9122, 4122, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 366, 39346, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 27729, 293, 13, 39455, 7, 944, 13, 395, 320, 1352, 62, 4868, 11, 277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 3118, 540, 284, 3613, 3959, 1352, 33283, 6536, 28, 41006, 20361, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3108, 628, 220, 220, 220, 825, 4808, 2118, 382, 7, 944, 11, 26954, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 82, 257, 26954, 2727, 422, 4600, 21928, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 357, 2536, 2599, 2393, 3108, 284, 2298, 992, 26954, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 9122, 4122, 11, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 395, 320, 1352, 62, 4868, 796, 269, 27729, 293, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 2949, 3959, 1352, 15032, 1600, 6536, 28, 41006, 20361, 8, 198 ]
1.935352
4,888
from typing import List, Tuple, Callable from dsfs.linalg.vector import Vector Matrix = List[List[float]]
[ 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 4889, 540, 198, 198, 6738, 288, 82, 9501, 13, 75, 1292, 70, 13, 31364, 1330, 20650, 198, 198, 46912, 796, 7343, 58, 8053, 58, 22468, 11907, 628, 628, 628 ]
3.054054
37
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np dataset = pd.read_json('../data/renttherunway_final_data.json.gz', lines=True) dataset = dataset.dropna() train_data, validation_data, test_data = np.split(dataset.sample(frac=1, random_state=42), [int(.7*len(dataset)), int(.85*len(dataset))])
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 628, 198, 19608, 292, 316, 796, 279, 67, 13, 961, 62, 17752, 10786, 40720, 7890, 14, 1156, 490, 403, 1014, 62, 20311, 62, 7890, 13, 17752, 13, 34586, 3256, 3951, 28, 17821, 8, 198, 19608, 292, 316, 796, 27039, 13, 14781, 2616, 3419, 628, 198, 27432, 62, 7890, 11, 21201, 62, 7890, 11, 1332, 62, 7890, 796, 45941, 13, 35312, 7, 19608, 292, 316, 13, 39873, 7, 31944, 28, 16, 11, 4738, 62, 5219, 28, 3682, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 600, 7, 13, 22, 9, 11925, 7, 19608, 292, 316, 36911, 493, 7, 13, 5332, 9, 11925, 7, 19608, 292, 316, 4008, 12962, 628, 198 ]
2.059783
184
from django.contrib.postgres.search import SearchVector from ...product.models import Product from ...order.models import Order from ...userprofile.models import User def search_products(phrase): '''Dashboard full text product search''' sv = SearchVector('name', 'description') return Product.objects.annotate(search=sv).filter(search=phrase) def search_orders(phrase): '''Dashboard full text order search When phrase is convertable to int, no full text search is performed, just order with according id is looked up. ''' try: order_id = int(phrase.strip()) return Order.objects.filter(id=order_id) except ValueError: pass sv = SearchVector('user__default_shipping_address__first_name', 'user__default_shipping_address__last_name', 'user__email') return Order.objects.annotate(search=sv).filter(search=phrase) def search_users(phrase): '''Dashboard full text user search''' sv = SearchVector('email', 'default_billing_address__first_name', 'default_billing_address__last_name') return User.objects.annotate(search=sv).filter(search=phrase) def search(phrase): '''Dashboard full text postgres products, orders and users search Composes independent search querysets into dictionary result. Args: phrase (str): searched phrase ''' return {'products': search_products(phrase), 'orders': search_orders(phrase), 'users': search_users(phrase)}
[ 6738, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 12947, 1330, 11140, 38469, 198, 198, 6738, 2644, 11167, 13, 27530, 1330, 8721, 198, 6738, 2644, 2875, 13, 27530, 1330, 8284, 198, 6738, 2644, 7220, 13317, 13, 27530, 1330, 11787, 628, 198, 4299, 2989, 62, 29498, 7, 34675, 2599, 198, 220, 220, 220, 705, 7061, 43041, 3526, 1336, 2420, 1720, 2989, 7061, 6, 198, 220, 220, 220, 38487, 796, 11140, 38469, 10786, 3672, 3256, 705, 11213, 11537, 198, 220, 220, 220, 1441, 8721, 13, 48205, 13, 34574, 378, 7, 12947, 28, 21370, 737, 24455, 7, 12947, 28, 34675, 8, 628, 198, 4299, 2989, 62, 6361, 7, 34675, 2599, 198, 220, 220, 220, 705, 7061, 43041, 3526, 1336, 2420, 1502, 2989, 628, 220, 220, 220, 1649, 9546, 318, 10385, 540, 284, 493, 11, 645, 1336, 2420, 2989, 318, 6157, 11, 198, 220, 220, 220, 655, 1502, 351, 1864, 4686, 318, 3114, 510, 13, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 62, 312, 796, 493, 7, 34675, 13, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8284, 13, 48205, 13, 24455, 7, 312, 28, 2875, 62, 312, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 38487, 796, 11140, 38469, 10786, 7220, 834, 12286, 62, 1477, 4501, 62, 21975, 834, 11085, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 834, 12286, 62, 1477, 4501, 62, 21975, 834, 12957, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 834, 12888, 11537, 198, 220, 220, 220, 1441, 8284, 13, 48205, 13, 34574, 378, 7, 12947, 28, 21370, 737, 24455, 7, 12947, 28, 34675, 8, 628, 198, 4299, 2989, 62, 18417, 7, 34675, 2599, 198, 220, 220, 220, 705, 7061, 43041, 3526, 1336, 2420, 2836, 2989, 7061, 6, 198, 220, 220, 220, 38487, 796, 11140, 38469, 10786, 12888, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 62, 65, 4509, 62, 21975, 834, 11085, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 62, 65, 4509, 62, 21975, 834, 12957, 62, 3672, 11537, 198, 220, 220, 220, 1441, 11787, 13, 48205, 13, 34574, 378, 7, 12947, 28, 21370, 737, 24455, 7, 12947, 28, 34675, 8, 628, 198, 4299, 2989, 7, 34675, 2599, 198, 220, 220, 220, 705, 7061, 43041, 3526, 1336, 2420, 1281, 34239, 3186, 11, 6266, 290, 2985, 2989, 628, 220, 220, 220, 955, 4832, 4795, 2989, 42517, 893, 1039, 656, 22155, 1255, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9546, 357, 2536, 2599, 16499, 9546, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 1391, 6, 29498, 10354, 2989, 62, 29498, 7, 34675, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6361, 10354, 2989, 62, 6361, 7, 34675, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18417, 10354, 2989, 62, 18417, 7, 34675, 38165, 198 ]
2.729167
576
from math import log, floor from two_thinning.strategies.strategy_base import StrategyBase
[ 6738, 10688, 1330, 2604, 11, 4314, 198, 198, 6738, 734, 62, 400, 23062, 13, 2536, 2397, 444, 13, 2536, 4338, 62, 8692, 1330, 20561, 14881, 628 ]
3.576923
26
# -*- enconding:utf-8 -*- from django import template from menubuilder.models import Menu register = template.Library() @register.inclusion_tag("tags/menu.html", takes_context=True)
[ 2, 532, 9, 12, 2207, 42703, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 198, 6738, 1450, 549, 3547, 263, 13, 27530, 1330, 21860, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 198, 198, 31, 30238, 13, 259, 4717, 62, 12985, 7203, 31499, 14, 26272, 13, 6494, 1600, 2753, 62, 22866, 28, 17821, 8, 198 ]
3
62
from ArbitrageGraph import ArbitrageGraph from ArbitrageGraphNeo import ArbitrageGraphNeo from FeeStore import FeeStore from OrderBook import OrderBook, OrderBookPair, Asset from PriceStore import PriceStore import datetime import logging from FWLiveParams import FWLiveParams import asyncio from utilities import timed from TradingStrategy import TradingStrategy from aiokafka import AIOKafkaProducer import json from multiprocessing import Process, Pipe, Queue import numbers from threading import Thread from DealUUIDGenerator import DealUUIDGenerator import time logger = logging.getLogger('CryptoArbitrageApp')
[ 6738, 33619, 8394, 37065, 1330, 33619, 8394, 37065, 198, 6738, 33619, 8394, 37065, 8199, 78, 1330, 33619, 8394, 37065, 8199, 78, 198, 6738, 28522, 22658, 1330, 28522, 22658, 198, 6738, 8284, 10482, 1330, 8284, 10482, 11, 8284, 10482, 47, 958, 11, 31433, 198, 6738, 7886, 22658, 1330, 7886, 22658, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 6738, 48849, 18947, 10044, 4105, 1330, 48849, 18947, 10044, 4105, 198, 11748, 30351, 952, 198, 6738, 20081, 1330, 28805, 198, 6738, 25469, 13290, 4338, 1330, 25469, 13290, 4338, 198, 6738, 257, 72, 482, 1878, 4914, 1330, 317, 9399, 42, 1878, 4914, 11547, 2189, 198, 11748, 33918, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 11, 36039, 11, 4670, 518, 198, 11748, 3146, 198, 6738, 4704, 278, 1330, 14122, 198, 6738, 15138, 52, 27586, 8645, 1352, 1330, 15138, 52, 27586, 8645, 1352, 198, 11748, 640, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 23919, 78, 3163, 2545, 8394, 4677, 11537, 628 ]
3.8625
160
#!/usr/bin/env/python # ============================================================================= # MODULE DOCSTRING # ============================================================================= """ Module which houses all the handling instructions for reading and writing to netCDF files for a given type. This exists as its own module to keep the main storage module file smaller since any number of types may need to be saved which special instructions for each. """ # ============================================================================= # GLOBAL IMPORTS # ============================================================================= import os import abc import yaml import warnings import importlib import collections import numpy as np import netCDF4 as nc from sys import getsizeof try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper try: from openmm import unit except ImportError: # OpenMM < 7.6 from simtk import unit from ..utils import typename, quantity_from_string # TODO: Use the `with_metaclass` from .utils when we merge it in ABC = abc.ABCMeta('ABC', (object,), {}) # compatible with Python 2 *and* 3 # ============================================================================= # MODULE VARIABLES # ============================================================================= # ============================================================================= # MODULE FUNCTIONS # ============================================================================= def decompose_path(path): """ Break a path down into individual parts Parameters ---------- path : string Path to variable on the Returns ------- structure : tuple of strings Tuple of split apart path """ return tuple((path_entry for path_entry in path.split('/') if path_entry != '')) def normalize_path(path): """ Remove trailing/leading slashes from each part of the path and combine them into a clean, normalized path Similar to os.path.normpath, but just its own function Parameters ---------- path : string Path variable to normalize Returns ------- normalized_path : string Normalized path as a single string """ split_path = decompose_path(path) return '/'.join([path_part.strip('/ ') for path_part in split_path if path_part is not '']) # ============================================================================= # CUSTOM EXCEPTIONS # ============================================================================= # ============================================================================= # ABSTRACT DRIVER # ============================================================================= class StorageIODriver(ABC): """ Abstract class to define the basic functions any storage driver needs to read/write to the disk. The specific driver for a type of storage should be a subclass of this with its own encoders and decoders for specific file types. Each type of variable codec should subclass :class:`Codec` which has the minimum ``write``, ``read``, and ``append`` methods Parameters ---------- file_name : string Name of the file to read/write to of a given storage type access_mode : string or None, Default None, accepts 'w', 'r', 'a' Define how to access the file in either write, read, or append mode None should behave like Python "a+" in which a file is created if not present, or opened in append if it is. How this is implemented is up to the subclass """ def set_codec(self, type_key, codec): """ Add new codifier to the specific driver class. This coder must know how to read/write and append to disk. This method also acts to overwrite any existing type <-> codec map, however, will not overwrite any codec already in use by a variable. E.g. Variable X of type T has codec A as the codecs have {T:A}. The maps is changed by set_codec(T,B) so now {T:B}, but X will still be on codec A. Unloading X and then reloading X will bind it to codec B. Parameters ---------- type_key : Unique immutable object Unique key that will be added to identify this de_encoder as part of the class codec : Specific codifier class Class to handle all of the encoding of decoding of the variables """ self._codec_type_maps[type_key] = codec @abc.abstractmethod def create_storage_variable(self, path, type_key): """ Create a new variable on the disk and at the path location and store it as the given type. Parameters ---------- path : string The way to identify the variable on the storage system. This can be either a variable name or a full path (such as in NetCDF files) type_key : Immutable object Type specifies the key identifier in the _codec_type_maps added by the set_codec function. If type is not in _codec_type_maps variable, an error is raised. Returns ------- bound_codec : Codec which is linked to a specific reference on the disk. """ raise NotImplementedError("create_variable has not been implemented!") @abc.abstractmethod def get_storage_variable(self, path): """ Get a variable IO object from disk at path. Raises a KeyError or AttributeError if no storage object exists at that level Parameters ---------- path : string Path to the variable/storage object on disk Returns ------- bound_codec : Codec which is linked to a specific reference on the disk. """ raise NotImplementedError("get_storage_variable has not been implemented!") @abc.abstractmethod def get_directory(self, path, create=True): """ Get a directory-like object located at path from disk. Parameters ---------- path : string Path to directory-like object on disk create: boolean, default: True Should create the stack of directories on the way down, similar function to `mkdir -p` in shell Returns ------- directory_handler : directory object as its stored on disk """ raise NotImplementedError("get_directory method has not been implemented!") @abc.abstractmethod def close(self): """ Instruct how to safely close down the file. """ raise NotImplementedError("close method has not been implemented!") @abc.abstractmethod def add_metadata(self, name, value, path=''): """ Function to add metadata to the file. This can be treated as optional and can simply be a `pass` if you do not want your storage system to handle additional metadata Parameters ---------- name : string Name of the attribute you wish to assign value : any, but preferred string Extra meta data to add to the variable path : string, Default: '' Extra path pointer to add metadata to a specific location if platform allows it """ raise NotImplementedError("add_metadata has not been implemented!") @property def file_name(self): """File name of on hard drive""" return self._file_name @property def access_mode(self): """Access mode of file on disk""" return self._access_mode # ============================================================================= # NetCDF IO Driver # ============================================================================= class NetCDFIODriver(StorageIODriver): """ Driver to handle all NetCDF IO operations, variable creation, and other operations. Can be extended to add new or modified type codecs """ def get_directory(self, path, create=True): """ Get the group (directory) on the NetCDF file, create the full path if not present Parameters ---------- path : string Path to group on the disk create: boolean, default: True Should create the directory/ies on the way down, similar function to `mkdir -p` in shell If False, raise KeyError if not in the stack Returns ------- group : NetCDF Group Group object requested from file. All subsequent groups are created on the way down and can be accessed the same way. """ self._check_bind_to_file() path = normalize_path(path) try: group = self._groups[path] except KeyError: if create: group = self._bind_group(path) else: split_path = decompose_path(path) target = self.ncfile for index, fragment in enumerate(split_path): target = target.groups[fragment] # Do a proper bind group now since all other fragments now exist group = self._bind_group(path) finally: return group def get_storage_variable(self, path): """ Get a variable IO object from disk at path. Raises an error if no storage object exists at that level Parameters ---------- path : string Path to the variable/storage object on disk Returns ------- codec : Subclass of NCVariableCodec The codec tied to a specific variable and bound to it on the disk """ self._check_bind_to_file() path = normalize_path(path) try: # Check if the codec is already known to this instance codec = self._variables[path] except KeyError: try: # Attempt to read the disk and bind to that variable # Navigate the path down from top NC file to last entry head_group = self.ncfile split_path = decompose_path(path) for header in split_path[:-1]: head_group = head_group.groups[header] # Check if this is a group type is_group = False if split_path[-1] in head_group.groups: # Check if storage object IS a group (e.g. dict) try: obj = head_group.groups[split_path[-1]] store_type = obj.getncattr('IODriver_Storage_Type') if store_type == 'groups': variable = obj is_group = True except AttributeError: # Trap the case of no group name in head_group, non-fatal pass if not is_group: # Bind to the specific variable instead since its not a group variable = head_group.variables[split_path[-1]] except KeyError: raise KeyError("No variable found at {} on file!".format(path)) try: # Bind to the storage type by mapping IODriver_Type -> Known Codec data_type = variable.getncattr('IODriver_Type') head_path = '/'.join(split_path[:-1]) target_name = split_path[-1] # Remember the group for the future while also getting storage binder if head_path == '': storage_object = self.ncfile else: storage_object = self._bind_group(head_path) uninstanced_codec = self._IOMetaDataReaders[data_type] self._variables[path] = uninstanced_codec(self, target_name, storage_object=storage_object) codec = self._variables[path] except AttributeError: raise AttributeError("Cannot auto-detect variable type, ensure that 'IODriver_Type' is a set ncattr") except KeyError: raise KeyError("No mapped type codecs known for 'IODriver_Type' = '{}'".format(data_type)) return codec def check_scalar_dimension(self): """ Check that the `scalar` dimension exists on file and create it if not """ self._check_bind_to_file() if 'scalar' not in self.ncfile.dimensions: self.ncfile.createDimension('scalar', 1) # scalar dimension def check_infinite_dimension(self, name='iteration'): """ Check that the arbitrary infinite dimension exists on file and create it if not. Parameters ---------- name : string, optional, Default: 'iteration' Name of the dimension """ self._check_bind_to_file() if name not in self.ncfile.dimensions: self.ncfile.createDimension(name, 0) def check_iterable_dimension(self, length=0): """ Check that the dimension of appropriate size for a given iterable exists on file and create it if not Parameters ---------- length : int, Default: 0 Length of the dimension, leave as 0 for infinite length """ if type(length) is not int: raise TypeError("length must be an integer, not {}!".format(type(length))) if length < 0: raise ValueError("length must be >= 0") name = 'iterable{}'.format(length) if name not in self.ncfile.dimensions: self.ncfile.createDimension(name, length) def generate_infinite_dimension(self): """ Generate a new infinite dimension and return the name of that dimension Returns ------- infinite_dim_name : string Name of the new infinite dimension on file """ self._check_bind_to_file() created_dim = False while not created_dim: infinite_dim_name = 'unlimited{}'.format(self._auto_iterable_count) if infinite_dim_name not in self.ncfile.dimensions: self.ncfile.createDimension(infinite_dim_name, 0) created_dim = True else: self._auto_iterable_count += 1 return infinite_dim_name def add_metadata(self, name, value, path='/'): """ Add metadata to self on disk, extra bits of information that can be used for flags or other variables Parameters ---------- name : string Name of the attribute you wish to assign value : any, but preferred string Extra meta data to add to the variable path : string, optional, Default: '/' Path to the object to assign metadata. If the object does not exist, an error is raised Not passing a path in attaches the data to the top level file """ self._check_bind_to_file() path = normalize_path(path) split_path = decompose_path(path) if len(split_path) == 0: self.ncfile.setncattr(name, value) elif split_path[0].strip() == '': # Split this into its own elif since if the first is true this will fail self.ncfile.setncattr(name, value) elif path in self._groups: self._groups[path].setncattr(name, value) elif path in self._variables: self._variables[path].add_metadata(name, value) else: raise KeyError("Cannot assign metadata at path {} since no known object exists there! " "Try get_directory or get_storage_variable first.".format(path)) def _bind_group(self, path): """ Bind a group to a particular path on the nc file. Note that this method creates the cascade of groups all the way to the final object if it can. Parameters ---------- path : string Absolute path to the group as it appears on the NetCDF file. Returns ------- group : NetCDF Group The group that path points to. Can be accessed by path through the ._groups dictionary after binding """ # NetCDF4 creates the cascade of groups automatically or returns the group if already present # To simplify code, the cascade of groups is not stored in this class until called self._check_bind_to_file() path = normalize_path(path) self._groups[path] = self.ncfile.createGroup(path) return self._groups[path] def _check_bind_to_file(self): """ Bind to and create the file if it does not already exist (depending on access_mode) """ if self.ncfile is None: if self.access_mode is None: if os.path.isfile(self.file_name): self.ncfile = nc.Dataset(self.file_name, 'a') else: self.ncfile = nc.Dataset(self.file_name, 'w') else: self.ncfile = nc.Dataset(self.file_name, self.access_mode) # ============================================================================= # ABSTRACT TYPE Codecs # ============================================================================= class Codec(ABC): """ Basic abstract codec class laying out all the methods which must be implemented in every Codec. All codec need a ``write``, ``read``, and ``append`` method. Parameters ---------- parent_driver : Parent StorageIODriver driver Driver this instance of the codec is bound to which can manipulate the top level file and possible meta data handling target : string String of the name of the object. Not explicitly a variable nor a group since the object could be either """ @abc.abstractmethod def read(self): """ Return the property read from the file Returns ------- Given property read from the file and cast into the correct Python data type """ raise NotImplementedError() @abc.abstractmethod def write(self, data, at_index=None): """ Tell this writer how to write to the file given the final object that it is bound to Alternately, tell a variable which is normally appended to to write a specific entry on the index at_index Parameters ---------- data : any data you wish to write at_index : None or Int, optional, default=None Specify the index of a variable created by append to write specific data at the index entry. When None, this option is ignored The integer of at_index must be <= to the size of the appended data """ raise NotImplementedError() @abc.abstractmethod def append(self, data): """ Tell this codec how to append to the file given the final object that it is bound to. This should allways write to the end of the currently existing data. Some :class:`StorageIODriver``'s may not be able to append due to the type of storage medium. In this case, this method should be implemented and raise a ``NotImplementedError`` or ``RuntimeError`` with an appropriate message To overwrite data at a specific index of the already appended data, use the :func:`write`` method with the ``at_index`` keyword. Parameters ---------- data : any data you wish to append """ raise NotImplementedError class NCVariableCodec(Codec): """ Pointer class which provides instructions on how to handle a given nc_variable Bind to a given nc_storage_object on ncfile with given final_target_name, If no nc_storage_object is None, it defaults to the top level ncfile Parameters ---------- parent_driver : Parent NetCDF driver Class which can manipulate the NetCDF file at the top level for dimension creation and meta handling target : string String of the name of the object. Not explicitly a variable nor a group since the object could be either storage_object : NetCDF file or NetCDF group, optional, Default to ncfile on parent_driver Object the variable/object will be written onto """ @abc.abstractproperty # TODO: Depreciate when we move to Python 3 fully with @abc.abstractmethod + @property def dtype(self): """ Define the Python data type for this variable Returns ------- dtype : type """ raise NotImplementedError("dtype property has not been implemented in this subclass yet!") # @abc.abstractproperty @staticmethod def dtype_string(): """ Short name of variable for strings and errors Returns ------- string """ # TODO: Replace with @abstractstaticmethod when on Python 3 raise NotImplementedError("dtype_string has not been implemented in this subclass yet!") @abc.abstractproperty def _encoder(self): """ Define the encoder used to convert from Python Data -> netcdf Returns ------- encoder : function Returns the encoder function """ raise NotImplementedError("Encoder has not yet been set!") @abc.abstractproperty def _decoder(self): """ Define the decoder used to convert from netCDF -> Python Data Returns ------- decoder : function Returns the decoder function """ raise NotImplementedError("Decoder has not yet been set!") def _bind_read(self): """ A one time event that binds this class to the object on disk. This method should set self._bound_target This function is unique to the read() function in that no data is attempted to write to the disk. Should raise error if the object is not found on disk (i.e. no data has been written to this location yet) Should raise error if the object on disk is incompatible with this type of Codec. This is normally a common action among codecs, but can be redefined as needed in subclasses Returns ------- None, but should set self._bound_target """ self._attempt_storage_read() # Handle variable size objects # This line will not happen unless target is real, so output_mode will return the correct value if self._output_mode is 'a': self._save_shape = self._bound_target.shape[1:] else: self._save_shape = self._bound_target.shape @abc.abstractmethod def _bind_write(self, data): """ A one time event that binds this class to the object on disk. This method should set self._bound_target This function is unique to the write() function in that the data passed in should help create the storage object if not already on disk and prepare it for a write operation. Last action of this method should always be dump_metadata_buffer. Parameters ---------- data : Any type this Codec can process Data which will be stored to disk of type. The data should not be written at this stage, but inspected to configure the storage as needed. In some cases, you may not even need the data. Returns ------- None, but should set self._bound_target """ raise NotImplementedError("_bind_write function has not been implemented in this subclass yet!") @abc.abstractmethod def _bind_append(self, data): """ A one time event that binds this class to the object on disk. This method should set self._bound_target This function is unique to the append() function in that the data passed in should append what is at the location, or should create the object, then write the data with the first dimension infinite in size. Last action of this method should always be dump_metadata_buffer. Parameters ---------- data : Any type this Codec can process Data which will be stored to disk of type. The data should not be written at this stage, but inspected to configure the storage as needed. In some cases, you may not even need the data. Returns ------- None, but should set self._bound_target """ raise NotImplementedError("_bind_append function has not been implemented in this subclass yet!") def read(self): """ Return the property read from the ncfile Returns ------- Given property read from the nc file and cast into the correct Python data type """ if self._bound_target is None: self._bind_read() return self._decoder(self._bound_target) def _common_bind_output_actions(self, type_string, append_mode, store_unit_string='NoneType'): """ Method to handle the common NetCDF variable/group Metadata actions when binding a new variable/group to the disk in write/append mode. This code should be called in all the _bind_write and _bind_append blocks inside the trapped error when _bind_read fails to find the object (i.e. new variable on disk creation) Parameters ---------- type_string : String Type of data being stored either as a single object, or the data being stored in the compound object. For simple objects like ints and floats, this should just be the typename(self.dtype) and will align with the codec's dtype_string For compound objects such as lists, tuples, and np.ndarray's, this should be the string of the data stored in the object and will be wholly different from the codec's dtype_string and dependent on what is being stored in the codec append_mode : Integer, 0 or 1 Integer boolean representation of if this is appended data or not. _bind_write methods should pass a 0 _bind_append methods should pass 1 store_unit_string : String, optional, Default: 'NoneType' String representation of the openmm.unit attached to this data. This string should be able to be fed into quantity_from_string(store_unit_string) and return a valid openmm.Unit object. Typically generated from str(unit). If no unit is assigned to the data, then the default of 'NoneType' should be given. """ if append_mode not in [0, 1]: raise ValueError('append_mode must be integer of 0 for _bind write, or 1 for _bind_append') self.add_metadata('IODriver_Type', self.dtype_string()) self.add_metadata('type', type_string) self._unit = store_unit_string self.add_metadata('IODriver_Unit', self._unit) # Specify the type of storage object this should tie to self.add_metadata('IODriver_Storage_Type', self.storage_type) self.add_metadata('IODriver_Appendable', append_mode) def write(self, data, at_index=None): """ Tell this writer how to write to the NetCDF file given the final object that it is bound to Alternately, tell a variable which is normally appended to to write a specific entry on the index at_index Parameters ---------- data : any data you wish to write at_index : None or Int, optional, default=None Specify the index of a variable created by append to write specific data at the index entry. When None, this option is ignored The integer of at_index must be <= to the size of the appended data """ # Check type if not isinstance(data, self.dtype): raise TypeError("Invalid data type on variable {}.".format(self._target)) if at_index is not None: self._write_to_append_at_index(data, at_index) return # Bind if self._bound_target is None: self._bind_write(data) self._check_storage_mode('w') self._check_data_shape_matching(data) # Save data packaged_data = self._encoder(data) self._bound_target[:] = packaged_data return def append(self, data): """ Tell this writer how to write to the NetCDF file given the final object that it is bound to To overwrite data at a specific index of the already appended data, use the .write(data, at_index=X) method Parameters ---------- data : """ # Check type if not isinstance(data, self.dtype): raise TypeError("Invalid data type on variable {}.".format(self._target)) # Bind if self._bound_target is None: self._bind_append(data) self._check_storage_mode('a') self._check_data_shape_matching(data) # Determine current current length and therefore the last index length = self._bound_target.shape[0] # Save data self._bound_target[length, :] = self._encoder(data) @abc.abstractmethod def _check_data_shape_matching(self, data): """ Check to make sure that the appendable data is the same shape/size/compatible with the other data on the appendable data. e.g. Lists should be the same length, NumPy arrays should be the same shape and dtype, etc For static shape objects such as Ints and Floats, the dtype alone is sufficient and this method can be implemented with a simple `pass` Parameters ---------- data """ raise NotImplementedError("I don't know how to compare data yet!") @abc.abstractproperty def storage_type(self): """ Tell the Codec what NetCDF storage type this Codec treats the data as. This is explicitly either 'variables' or 'groups' so the driver knows which property to call on the NetCDF storage object Returns ------- storage_type: string of either 'variables' or 'groups' """ raise NotImplementedError("I have not been set to 'variables' or 'groups'") def add_metadata(self, name, value): """ Add metadata to self on disk, extra bits of information that can be used for flags or other variables This is NOT a staticmethod of the top data set since you can buffer this before binding Parameters ---------- name : string Name of the attribute you wish to assign value : any, but preferred string Extra meta data to add to the variable """ if not self._bound_target: self._metadata_buffer[name] = value else: self._bound_target.setncattr(name, value) def _dump_metadata_buffer(self): """ Dump the metadata buffer to file """ if self._bound_target is None: raise UnboundLocalError("Cannot dump the metadata buffer to target since no target exists!") self._bound_target.setncatts(self._metadata_buffer) self._metadata_buffer = {} @staticmethod def _convert_netcdf_store_type(stored_type): """ Convert the stored NetCDF data type from string to type without relying on unsafe eval() function Parameters ---------- stored_type : string Read from ncfile.Variable.type Returns ------- proper_type : type Python or module type """ try: # Check if it's a builtin type try: # Python 2 module = importlib.import_module('__builtin__') except ImportError: # Python 3 module = importlib.import_module('builtins') proper_type = getattr(module, stored_type) except AttributeError: # if not, separate module and class module, stored_type = stored_type.rsplit(".", 1) module = importlib.import_module(module) proper_type = getattr(module, stored_type) return proper_type @property def _output_mode(self): """ Set the write and append flags. Code should only call this after being bound to a variable Returns ------- output_mode : string Either 'a' for append or 'w' for write """ if self._bound_target.getncattr('IODriver_Appendable'): output_mode = 'a' else: output_mode = 'w' return output_mode def _attempt_storage_read(self): """ This is a helper function to try and read the target from the disk then do some validation checks common to every _bind_read call. Helps cut down on recoding. Returns ------- None, but should try to set _bound_target from disk """ self._bound_target = getattr(self._storage_object, self.storage_type)[self._target] # Ensure that the target we bind to matches the type of driver try: if self._bound_target.getncattr('IODriver_Type') != self.dtype_string(): raise TypeError("Storage target on NetCDF file is of type {} but this driver is designed to handle " "type {}!".format(self._bound_target.getncattr('IODriver_Type'), self.dtype_string())) except AttributeError: warnings.warn("This Codec cannot detect storage type from on-disk variable. .write() and .append() " "operations will not work and .read() operations may work", RuntimeWarning) def _check_storage_mode(self, expected_mode): """ Check to see if the data stored at this codec is actually compatible with the type of write operation that was performed (write vs. append) Parameters ---------- expected_mode : string, either "w' or "a" Raises ------ TypeError if ._output_mode != expected mode """ # String fill in, uses the opposite of expected mode to raise warnings saved_as = {'w': 'appendable', 'a': 'statically written'} cannot = {'w': 'write', 'a': 'append'} must_use = {'w': 'append() or the to_index keyword of write()', 'a': 'write()'} if self._output_mode != expected_mode: raise TypeError("{target} at {type} was saved as {saved_as} data! Cannot {cannot}, must use " "{must_use}".format(target=self._target, type=self.dtype_string(), saved_as=saved_as[expected_mode], cannot=cannot[expected_mode], must_use=must_use[expected_mode]) ) def _write_to_append_at_index(self, data, index): """ Try to write data to a specific site on an append variable. This is a method which should be called in every `write` call if the index is defined by something other than None. Parameters ---------- data : Data to write to location on a previously appended variable index : Int, Index to write the data at, replacing what is already there If index > size of written data, crash """ if self._bound_target is None: try: self._bind_read() except KeyError: # Trap the NetCDF Key Error to raise an issue that data must exist first raise IOError("Cannot write to a specific index for data that does not exist!") if type(index) is not int: raise ValueError("to_index must be an integer!") self._check_storage_mode('a') # We want this in append mode self._check_data_shape_matching(data) # Determine current current length and therefore if the index is too large length = self._bound_target.shape[0] # Must actually compare to full length so people don't fill an infinite variable with garbage that is just # masked from empty entries if index >= length or abs(index) > length: raise ValueError("Cannot choose an index beyond the maximum length of the " "appended data of {}".format(length)) self._bound_target[index, :] = self._encoder(data) # ============================================================================= # NETCDF NON-COMPOUND TYPE CODECS # ============================================================================= # Decoders: Convert from NC variable to python type # Encoders: Decompose Python Type into something NC storable data # There really isn't anything that needs to happen here, arrays are the ideal type # Leaving these as explicit codecs in case we need to change them later # List and tuple iterables, assumes contents are the same type. # Use dictionaries for compound types # Encoder for float, int, iterable, and numpy arrays # Works for float and int # ============================================================================= # HDF5 CHUNK SIZE ROUTINES # ============================================================================= def determine_appendable_chunk_size(data, max_iteration=128, max_memory=104857600): """ Determine the chunk size of the appendable dimension, it will either be max_iterations in count or max_memory in bytes where the function will try to reduce the number of iterations until it is under the max chunk size down to a single iteration. Parameters ---------- data : Data that will be saved to disk of shape that will be saved This is a sample of what will be written at any one point in time. max_iteration : int, Default: 128 Maximum number of iterations that will be chunked, either this limit or max_memory will be hit first, reducing the max iterations by a factor of 2 until we are below the memory limit, to a minimum of 1 max_memory: int (bytes), Default: 104856700 (100MB) Maximum number of bytes the chunk is allowed to have, if the 100 iterations exceeds this size, then we reduce the number of iterations by half until we are below the memory limit Returns ------- iteration_chunk : int Chunksize of the iteration dimension """ if max_iteration < 1 or not isinstance(max_iteration, int): raise ValueError("max_iteration was {} but must be an integer greater than 1!".format(max_iteration)) iteration_chunk = int(max_iteration) data_size = getsizeof(data) while iteration_chunk * data_size > max_memory and iteration_chunk > 1: iteration_chunk /= 2 # Ceiling and int since np.ceil returns a float return int(np.ceil(iteration_chunk)) # ============================================================================= # REAL Codecs # ============================================================================= # Generic codecs for non-compound data types: inf, float, string class NCScalar(NCVariableCodec, ABC): """" This particular class is to minimize code duplication between some very basic data types such as int, str, float It is itself an abstract class and requires the following functions to be complete: dtype (@property) dtype_string (@staticmethod) """ @property @property def _on_disk_dtype(self): """ Allow overwriting the dtype for storage for extending this method to cast data as a different type on disk This is the property to overwrite the cast dtype if it is different than the input/output dtype """ return self.dtype class NCInt(NCScalar): """ NetCDF codec for Integers """ @property @property @property @staticmethod class NCFloat(NCScalar): """ NetCDF codec for Floats """ @property @property @property @staticmethod class NCString(NCScalar): """ NetCDF codec for String """ @property @property @property @staticmethod # Array class NCArray(NCVariableCodec): """ NetCDF Codec for numpy arrays """ @property @property @property @staticmethod @staticmethod @property class NCIterable(NCVariableCodec): """ NetCDF codec for lists and tuples """ @property @staticmethod @property @property @staticmethod @property class NCQuantity(NCVariableCodec): """ NetCDF codec for ALL openmm.unit.Quantity's """ @property @staticmethod @property @property @property # ============================================================================= # NETCDF DICT YAML HANDLERS # ============================================================================= class _DictYamlLoader(Loader): """PyYAML Loader that recognized !Quantity nodes, converts YAML output -> Python type""" @staticmethod class _DictYamlDumper(Dumper): """PyYAML Dumper that convert from Python -> YAML output""" @staticmethod def quantity_representer(dumper, data): """YAML Quantity representer.""" data_unit = data.unit data_value = data / data_unit data_dump = {'QuantityUnit': str(data_unit), 'QuantityValue': data_value} # Uses "self (DictYamlDumper)" as the dumper to allow nested !Quantity types return dumper.represent_mapping(u'!Quantity', data_dump) class NCDict(NCScalar): """ NetCDF codec for Dict, which we store in YAML as a glorified String with some extra processing """ @staticmethod @staticmethod @property @property @property @staticmethod @property
[ 2, 48443, 14629, 14, 8800, 14, 24330, 14, 29412, 198, 198, 2, 38093, 25609, 198, 2, 33893, 37760, 18601, 2751, 198, 2, 38093, 25609, 198, 198, 37811, 198, 26796, 543, 7777, 477, 262, 9041, 7729, 329, 3555, 290, 3597, 284, 2010, 34, 8068, 3696, 329, 257, 1813, 2099, 13, 198, 198, 1212, 7160, 355, 663, 898, 8265, 284, 1394, 262, 1388, 6143, 8265, 2393, 4833, 1201, 597, 1271, 286, 3858, 743, 761, 284, 307, 198, 82, 9586, 543, 2041, 7729, 329, 1123, 13, 198, 198, 37811, 198, 198, 2, 38093, 25609, 198, 2, 10188, 9864, 1847, 30023, 33002, 198, 2, 38093, 25609, 198, 198, 11748, 28686, 198, 11748, 450, 66, 198, 11748, 331, 43695, 198, 11748, 14601, 198, 11748, 1330, 8019, 198, 11748, 17268, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2010, 34, 8068, 19, 355, 299, 66, 198, 6738, 25064, 1330, 3011, 1096, 1659, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 331, 43695, 1330, 7852, 1170, 263, 355, 8778, 263, 11, 6458, 15829, 355, 360, 15829, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 331, 43695, 1330, 8778, 263, 11, 360, 15829, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 1280, 3020, 1330, 4326, 198, 16341, 17267, 12331, 25, 220, 1303, 4946, 12038, 1279, 767, 13, 21, 198, 220, 220, 220, 422, 985, 30488, 1330, 4326, 198, 198, 6738, 11485, 26791, 1330, 2170, 12453, 11, 12040, 62, 6738, 62, 8841, 198, 198, 2, 16926, 46, 25, 5765, 262, 4600, 4480, 62, 4164, 330, 31172, 63, 422, 764, 26791, 618, 356, 20121, 340, 287, 198, 24694, 796, 450, 66, 13, 24694, 48526, 10786, 24694, 3256, 357, 15252, 11, 828, 23884, 8, 220, 1303, 11670, 351, 11361, 362, 1635, 392, 9, 513, 628, 198, 2, 38093, 25609, 198, 2, 33893, 569, 1503, 3539, 9148, 1546, 198, 2, 38093, 25609, 198, 198, 2, 38093, 25609, 198, 2, 33893, 29397, 4177, 11053, 198, 2, 38093, 25609, 628, 198, 4299, 26969, 3455, 62, 6978, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12243, 257, 3108, 866, 656, 1981, 3354, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 7885, 319, 262, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4645, 1058, 46545, 286, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 286, 6626, 5475, 3108, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 46545, 19510, 6978, 62, 13000, 329, 3108, 62, 13000, 287, 3108, 13, 35312, 10786, 14, 11537, 611, 3108, 62, 13000, 14512, 10148, 4008, 628, 198, 4299, 3487, 1096, 62, 6978, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 25462, 14, 12294, 1017, 7465, 422, 1123, 636, 286, 262, 3108, 290, 12082, 606, 656, 257, 3424, 11, 39279, 3108, 198, 220, 220, 220, 11014, 284, 28686, 13, 6978, 13, 27237, 6978, 11, 475, 655, 663, 898, 2163, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 7885, 284, 3487, 1096, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 39279, 62, 6978, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 14435, 1143, 3108, 355, 257, 2060, 4731, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6626, 62, 6978, 796, 26969, 3455, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 1441, 31051, 4458, 22179, 26933, 6978, 62, 3911, 13, 36311, 10786, 14, 705, 8, 329, 3108, 62, 3911, 287, 6626, 62, 6978, 611, 3108, 62, 3911, 318, 407, 10148, 12962, 628, 198, 2, 38093, 25609, 198, 2, 327, 7759, 2662, 7788, 42006, 11053, 198, 2, 38093, 25609, 628, 198, 2, 38093, 25609, 198, 2, 9564, 18601, 10659, 10560, 38757, 198, 2, 38093, 25609, 198, 198, 4871, 20514, 40, 3727, 38291, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 1398, 284, 8160, 262, 4096, 5499, 597, 6143, 4639, 2476, 284, 1100, 14, 13564, 284, 262, 11898, 13, 198, 220, 220, 220, 383, 2176, 4639, 329, 257, 2099, 286, 6143, 815, 307, 257, 47611, 286, 428, 351, 663, 898, 198, 220, 220, 220, 2207, 375, 364, 290, 875, 375, 364, 329, 2176, 2393, 3858, 13, 628, 220, 220, 220, 5501, 2099, 286, 7885, 40481, 815, 47611, 1058, 4871, 25, 63, 43806, 721, 63, 543, 468, 262, 5288, 7559, 13564, 15506, 11, 7559, 961, 15506, 11, 290, 7559, 33295, 15506, 198, 220, 220, 220, 5050, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2393, 62, 3672, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 2393, 284, 1100, 14, 13564, 284, 286, 257, 1813, 6143, 2099, 198, 220, 220, 220, 1895, 62, 14171, 1058, 4731, 393, 6045, 11, 15161, 6045, 11, 18178, 705, 86, 3256, 705, 81, 3256, 705, 64, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 500, 703, 284, 1895, 262, 2393, 287, 2035, 3551, 11, 1100, 11, 393, 24443, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 815, 17438, 588, 11361, 366, 64, 10, 1, 287, 543, 257, 2393, 318, 2727, 611, 407, 1944, 11, 393, 4721, 287, 24443, 611, 340, 318, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1374, 428, 318, 9177, 318, 510, 284, 262, 47611, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 62, 19815, 721, 7, 944, 11, 2099, 62, 2539, 11, 40481, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 649, 14873, 7483, 284, 262, 2176, 4639, 1398, 13, 770, 269, 12342, 1276, 760, 703, 284, 1100, 14, 13564, 290, 24443, 284, 11898, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 635, 6529, 284, 49312, 597, 4683, 2099, 1279, 3784, 40481, 3975, 11, 2158, 11, 481, 407, 49312, 597, 40481, 198, 220, 220, 220, 220, 220, 220, 220, 1541, 287, 779, 416, 257, 7885, 13, 412, 13, 70, 13, 35748, 1395, 286, 2099, 309, 468, 40481, 317, 355, 262, 40481, 82, 423, 1391, 51, 25, 32, 27422, 383, 8739, 318, 198, 220, 220, 220, 220, 220, 220, 220, 3421, 416, 900, 62, 19815, 721, 7, 51, 11, 33, 8, 523, 783, 1391, 51, 25, 33, 5512, 475, 1395, 481, 991, 307, 319, 40481, 317, 13, 791, 25138, 1395, 290, 788, 18126, 278, 1395, 481, 198, 220, 220, 220, 220, 220, 220, 220, 11007, 340, 284, 40481, 347, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 2539, 1058, 30015, 40139, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30015, 1994, 326, 481, 307, 2087, 284, 5911, 428, 390, 62, 12685, 12342, 355, 636, 286, 262, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 40481, 1058, 17377, 14873, 7483, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5016, 284, 5412, 477, 286, 262, 21004, 286, 39938, 286, 262, 9633, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19815, 721, 62, 4906, 62, 31803, 58, 4906, 62, 2539, 60, 796, 40481, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 2251, 62, 35350, 62, 45286, 7, 944, 11, 3108, 11, 2099, 62, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 649, 7885, 319, 262, 11898, 290, 379, 262, 3108, 4067, 290, 3650, 340, 355, 262, 1813, 2099, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 835, 284, 5911, 262, 7885, 319, 262, 6143, 1080, 13, 770, 460, 307, 2035, 257, 7885, 1438, 393, 257, 1336, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 10508, 355, 287, 3433, 34, 8068, 3696, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 2539, 1058, 9543, 18187, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 26052, 262, 1994, 27421, 287, 262, 4808, 19815, 721, 62, 4906, 62, 31803, 2087, 416, 262, 900, 62, 19815, 721, 2163, 13, 1002, 2099, 318, 407, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 19815, 721, 62, 4906, 62, 31803, 7885, 11, 281, 4049, 318, 4376, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5421, 62, 19815, 721, 1058, 39298, 543, 318, 6692, 284, 257, 2176, 4941, 319, 262, 11898, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 17953, 62, 45286, 468, 407, 587, 9177, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 62, 35350, 62, 45286, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 7885, 24418, 2134, 422, 11898, 379, 3108, 13, 7567, 2696, 257, 7383, 12331, 393, 3460, 4163, 12331, 611, 645, 6143, 2134, 7160, 379, 198, 220, 220, 220, 220, 220, 220, 220, 326, 1241, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 7885, 14, 35350, 2134, 319, 11898, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5421, 62, 19815, 721, 1058, 39298, 543, 318, 6692, 284, 257, 2176, 4941, 319, 262, 11898, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 1136, 62, 35350, 62, 45286, 468, 407, 587, 9177, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 62, 34945, 7, 944, 11, 3108, 11, 2251, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 8619, 12, 2339, 2134, 5140, 379, 3108, 422, 11898, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 8619, 12, 2339, 2134, 319, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 25, 25131, 11, 4277, 25, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10358, 2251, 262, 8931, 286, 29196, 319, 262, 835, 866, 11, 2092, 2163, 284, 4600, 28015, 15908, 532, 79, 63, 287, 7582, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8619, 62, 30281, 1058, 8619, 2134, 355, 663, 8574, 319, 11898, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 1136, 62, 34945, 2446, 468, 407, 587, 9177, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20689, 703, 284, 11512, 1969, 866, 262, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 19836, 2446, 468, 407, 587, 9177, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 751, 62, 38993, 7, 944, 11, 1438, 11, 1988, 11, 3108, 28, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 751, 20150, 284, 262, 2393, 13, 770, 460, 307, 5716, 355, 11902, 290, 460, 2391, 307, 257, 4600, 6603, 63, 611, 345, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 765, 534, 6143, 1080, 284, 5412, 3224, 20150, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 11688, 345, 4601, 284, 8333, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 1058, 597, 11, 475, 9871, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17221, 13634, 1366, 284, 751, 284, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 11, 15161, 25, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17221, 3108, 17562, 284, 751, 20150, 284, 257, 2176, 4067, 611, 3859, 3578, 340, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 2860, 62, 38993, 468, 407, 587, 9177, 2474, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2393, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8979, 1438, 286, 319, 1327, 3708, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7753, 62, 3672, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1895, 62, 14171, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15457, 4235, 286, 2393, 319, 11898, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 15526, 62, 14171, 628, 198, 2, 38093, 25609, 198, 2, 3433, 34, 8068, 24418, 12434, 198, 2, 38093, 25609, 628, 198, 4871, 3433, 34, 8068, 40, 3727, 38291, 7, 31425, 40, 3727, 38291, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12434, 284, 5412, 477, 3433, 34, 8068, 24418, 4560, 11, 7885, 6282, 11, 290, 584, 4560, 13, 198, 220, 220, 220, 1680, 307, 7083, 284, 751, 649, 393, 9518, 2099, 40481, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 651, 62, 34945, 7, 944, 11, 3108, 11, 2251, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1448, 357, 34945, 8, 319, 262, 3433, 34, 8068, 2393, 11, 2251, 262, 1336, 3108, 611, 407, 1944, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 1448, 319, 262, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 25, 25131, 11, 4277, 25, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10358, 2251, 262, 8619, 14, 444, 319, 262, 835, 866, 11, 2092, 2163, 284, 4600, 28015, 15908, 532, 79, 63, 287, 7582, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 10352, 11, 5298, 7383, 12331, 611, 407, 287, 262, 8931, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 1058, 3433, 34, 8068, 4912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4912, 2134, 9167, 422, 2393, 13, 1439, 8840, 2628, 389, 2727, 319, 262, 835, 866, 290, 460, 307, 17535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 976, 835, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3487, 1096, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 2116, 13557, 24432, 58, 6978, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 2116, 13557, 21653, 62, 8094, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 6978, 796, 26969, 3455, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13, 10782, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 24225, 287, 27056, 378, 7, 35312, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2496, 13, 24432, 58, 8310, 363, 434, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2141, 257, 1774, 11007, 1448, 783, 1201, 477, 584, 21441, 783, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 2116, 13557, 21653, 62, 8094, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1448, 628, 220, 220, 220, 825, 651, 62, 35350, 62, 45286, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 257, 7885, 24418, 2134, 422, 11898, 379, 3108, 13, 7567, 2696, 281, 4049, 611, 645, 6143, 2134, 7160, 379, 326, 1241, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 7885, 14, 35350, 2134, 319, 11898, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 40481, 1058, 3834, 4871, 286, 8823, 43015, 43806, 721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 40481, 8165, 284, 257, 2176, 7885, 290, 5421, 284, 340, 319, 262, 11898, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3487, 1096, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 262, 40481, 318, 1541, 1900, 284, 428, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40481, 796, 2116, 13557, 25641, 2977, 58, 6978, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25770, 284, 1100, 262, 11898, 290, 11007, 284, 326, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13244, 10055, 262, 3108, 866, 422, 1353, 8823, 2393, 284, 938, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 62, 8094, 796, 2116, 13, 10782, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 6978, 796, 26969, 3455, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 13639, 287, 6626, 62, 6978, 58, 21912, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 62, 8094, 796, 1182, 62, 8094, 13, 24432, 58, 25677, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 428, 318, 257, 1448, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 8094, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6626, 62, 6978, 58, 12, 16, 60, 287, 1182, 62, 8094, 13, 24432, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 6143, 2134, 3180, 257, 1448, 357, 68, 13, 70, 13, 8633, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 1182, 62, 8094, 13, 24432, 58, 35312, 62, 6978, 58, 12, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3650, 62, 4906, 796, 26181, 13, 1136, 10782, 35226, 10786, 40, 3727, 38291, 62, 31425, 62, 6030, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3650, 62, 4906, 6624, 705, 24432, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 796, 26181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 8094, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 220, 1303, 21914, 262, 1339, 286, 645, 1448, 1438, 287, 1182, 62, 8094, 11, 1729, 12, 69, 10254, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 62, 8094, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41211, 284, 262, 2176, 7885, 2427, 1201, 663, 407, 257, 1448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 796, 1182, 62, 8094, 13, 25641, 2977, 58, 35312, 62, 6978, 58, 12, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 2949, 7885, 1043, 379, 23884, 319, 2393, 48220, 18982, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41211, 284, 262, 6143, 2099, 416, 16855, 314, 3727, 38291, 62, 6030, 4613, 29454, 39298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4906, 796, 7885, 13, 1136, 10782, 35226, 10786, 40, 3727, 38291, 62, 6030, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 62, 6978, 796, 31051, 4458, 22179, 7, 35312, 62, 6978, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 3672, 796, 6626, 62, 6978, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11436, 262, 1448, 329, 262, 2003, 981, 635, 1972, 6143, 275, 5540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1182, 62, 6978, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 15252, 796, 2116, 13, 10782, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 15252, 796, 2116, 13557, 21653, 62, 8094, 7, 2256, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 8625, 2903, 62, 19815, 721, 796, 2116, 13557, 40, 2662, 17167, 6601, 5569, 364, 58, 7890, 62, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25641, 2977, 58, 6978, 60, 796, 555, 8625, 2903, 62, 19815, 721, 7, 944, 11, 2496, 62, 3672, 11, 6143, 62, 15252, 28, 35350, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40481, 796, 2116, 13557, 25641, 2977, 58, 6978, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 7203, 34, 34574, 8295, 12, 15255, 478, 7885, 2099, 11, 4155, 326, 705, 40, 3727, 38291, 62, 6030, 6, 318, 257, 900, 299, 66, 35226, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 2949, 27661, 2099, 40481, 82, 1900, 329, 705, 40, 3727, 38291, 62, 6030, 6, 796, 705, 90, 92, 6, 1911, 18982, 7, 7890, 62, 4906, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 40481, 628, 220, 220, 220, 825, 2198, 62, 1416, 282, 283, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 326, 262, 4600, 1416, 282, 283, 63, 15793, 7160, 319, 2393, 290, 2251, 340, 611, 407, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 1416, 282, 283, 6, 407, 287, 2116, 13, 10782, 7753, 13, 27740, 5736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 17953, 29271, 3004, 10786, 1416, 282, 283, 3256, 352, 8, 220, 1303, 16578, 283, 15793, 628, 220, 220, 220, 825, 2198, 62, 10745, 9504, 62, 46156, 7, 944, 11, 1438, 11639, 2676, 341, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 326, 262, 14977, 15541, 15793, 7160, 319, 2393, 290, 2251, 340, 611, 407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4731, 11, 11902, 11, 15161, 25, 705, 2676, 341, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 15793, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 2116, 13, 10782, 7753, 13, 27740, 5736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 17953, 29271, 3004, 7, 3672, 11, 657, 8, 628, 220, 220, 220, 825, 2198, 62, 2676, 540, 62, 46156, 7, 944, 11, 4129, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 326, 262, 15793, 286, 5035, 2546, 329, 257, 1813, 11629, 540, 7160, 319, 2393, 290, 2251, 340, 611, 407, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 1058, 493, 11, 15161, 25, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22313, 286, 262, 15793, 11, 2666, 355, 657, 329, 15541, 4129, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 13664, 8, 318, 407, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 13664, 1276, 307, 281, 18253, 11, 407, 23884, 48220, 18982, 7, 4906, 7, 13664, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 13664, 1276, 307, 18189, 657, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 705, 2676, 540, 90, 92, 4458, 18982, 7, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 2116, 13, 10782, 7753, 13, 27740, 5736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 17953, 29271, 3004, 7, 3672, 11, 4129, 8, 628, 220, 220, 220, 825, 7716, 62, 10745, 9504, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 378, 257, 649, 15541, 15793, 290, 1441, 262, 1438, 286, 326, 15793, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 15541, 62, 27740, 62, 3672, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 649, 15541, 15793, 319, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 27740, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 981, 407, 2727, 62, 27740, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15541, 62, 27740, 62, 3672, 796, 705, 403, 10698, 90, 92, 4458, 18982, 7, 944, 13557, 23736, 62, 2676, 540, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15541, 62, 27740, 62, 3672, 407, 287, 2116, 13, 10782, 7753, 13, 27740, 5736, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 17953, 29271, 3004, 7, 10745, 9504, 62, 27740, 62, 3672, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 27740, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 23736, 62, 2676, 540, 62, 9127, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15541, 62, 27740, 62, 3672, 628, 220, 220, 220, 825, 751, 62, 38993, 7, 944, 11, 1438, 11, 1988, 11, 3108, 11639, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 20150, 284, 2116, 319, 11898, 11, 3131, 10340, 286, 1321, 326, 460, 307, 973, 329, 9701, 393, 584, 9633, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 11688, 345, 4601, 284, 8333, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 1058, 597, 11, 475, 9871, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17221, 13634, 1366, 284, 751, 284, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 11, 11902, 11, 15161, 25, 31051, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 2134, 284, 8333, 20150, 13, 1002, 262, 2134, 857, 407, 2152, 11, 281, 4049, 318, 4376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1892, 6427, 257, 3108, 287, 48262, 262, 1366, 284, 262, 1353, 1241, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3487, 1096, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 6978, 796, 26969, 3455, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 35312, 62, 6978, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 2617, 10782, 35226, 7, 3672, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6626, 62, 6978, 58, 15, 4083, 36311, 3419, 6624, 10148, 25, 220, 1303, 27758, 428, 656, 663, 898, 1288, 361, 1201, 611, 262, 717, 318, 2081, 428, 481, 2038, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 13, 2617, 10782, 35226, 7, 3672, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3108, 287, 2116, 13557, 24432, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24432, 58, 6978, 4083, 2617, 10782, 35226, 7, 3672, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3108, 287, 2116, 13557, 25641, 2977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25641, 2977, 58, 6978, 4083, 2860, 62, 38993, 7, 3672, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 34, 34574, 8333, 20150, 379, 3108, 23884, 1201, 645, 1900, 2134, 7160, 612, 0, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23433, 651, 62, 34945, 393, 651, 62, 35350, 62, 45286, 717, 526, 13, 18982, 7, 6978, 4008, 628, 220, 220, 220, 825, 4808, 21653, 62, 8094, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41211, 257, 1448, 284, 257, 1948, 3108, 319, 262, 299, 66, 2393, 13, 5740, 326, 428, 2446, 8075, 262, 44847, 286, 2628, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 835, 284, 262, 2457, 2134, 611, 340, 460, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36532, 3108, 284, 262, 1448, 355, 340, 3568, 319, 262, 3433, 34, 8068, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 1058, 3433, 34, 8068, 4912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1448, 326, 3108, 2173, 284, 13, 1680, 307, 17535, 416, 3108, 832, 262, 47540, 24432, 22155, 706, 12765, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3433, 34, 8068, 19, 8075, 262, 44847, 286, 2628, 6338, 393, 5860, 262, 1448, 611, 1541, 1944, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 30276, 2438, 11, 262, 44847, 286, 2628, 318, 407, 8574, 287, 428, 1398, 1566, 1444, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 21653, 62, 1462, 62, 7753, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 3487, 1096, 62, 6978, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24432, 58, 6978, 60, 796, 2116, 13, 10782, 7753, 13, 17953, 13247, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 24432, 58, 6978, 60, 628, 220, 220, 220, 825, 4808, 9122, 62, 21653, 62, 1462, 62, 7753, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41211, 284, 290, 2251, 262, 2393, 611, 340, 857, 407, 1541, 2152, 357, 44023, 319, 1895, 62, 14171, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10782, 7753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 15526, 62, 14171, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 944, 13, 7753, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 796, 299, 66, 13, 27354, 292, 316, 7, 944, 13, 7753, 62, 3672, 11, 705, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 796, 299, 66, 13, 27354, 292, 316, 7, 944, 13, 7753, 62, 3672, 11, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10782, 7753, 796, 299, 66, 13, 27354, 292, 316, 7, 944, 13, 7753, 62, 3672, 11, 2116, 13, 15526, 62, 14171, 8, 628, 198, 2, 38093, 25609, 198, 2, 9564, 18601, 10659, 41876, 39298, 82, 198, 2, 38093, 25609, 198, 198, 4871, 39298, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14392, 12531, 40481, 1398, 16299, 503, 477, 262, 5050, 543, 1276, 307, 9177, 287, 790, 39298, 13, 198, 220, 220, 220, 1439, 40481, 761, 257, 7559, 13564, 15506, 11, 7559, 961, 15506, 11, 290, 7559, 33295, 15506, 2446, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2560, 62, 26230, 1058, 16774, 20514, 40, 3727, 38291, 4639, 198, 220, 220, 220, 220, 220, 220, 220, 12434, 428, 4554, 286, 262, 40481, 318, 5421, 284, 543, 460, 18510, 262, 1353, 1241, 2393, 290, 1744, 13634, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 9041, 198, 220, 220, 220, 2496, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 286, 262, 1438, 286, 262, 2134, 13, 1892, 11777, 257, 7885, 4249, 257, 1448, 1201, 262, 2134, 714, 307, 2035, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 1100, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 3119, 1100, 422, 262, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 3119, 1100, 422, 262, 2393, 290, 3350, 656, 262, 3376, 11361, 1366, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 3551, 7, 944, 11, 1366, 11, 379, 62, 9630, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14026, 428, 6260, 703, 284, 3551, 284, 262, 2393, 1813, 262, 2457, 2134, 326, 340, 318, 5421, 284, 628, 220, 220, 220, 220, 220, 220, 220, 13243, 1286, 11, 1560, 257, 7885, 543, 318, 7685, 598, 1631, 284, 284, 3551, 257, 2176, 5726, 319, 262, 6376, 379, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 597, 1366, 345, 4601, 284, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 379, 62, 9630, 1058, 6045, 393, 2558, 11, 11902, 11, 4277, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 262, 6376, 286, 257, 7885, 2727, 416, 24443, 284, 3551, 2176, 1366, 379, 262, 6376, 5726, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1649, 6045, 11, 428, 3038, 318, 9514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 18253, 286, 379, 62, 9630, 1276, 307, 19841, 284, 262, 2546, 286, 262, 598, 1631, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 24443, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14026, 428, 40481, 703, 284, 24443, 284, 262, 2393, 1813, 262, 2457, 2134, 326, 340, 318, 5421, 284, 13, 770, 815, 477, 1322, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 886, 286, 262, 3058, 4683, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2773, 1058, 4871, 25, 63, 31425, 40, 3727, 38291, 15506, 6, 82, 743, 407, 307, 1498, 284, 24443, 2233, 284, 262, 2099, 286, 6143, 7090, 13, 554, 428, 1339, 11, 428, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 815, 307, 9177, 290, 5298, 257, 7559, 3673, 3546, 1154, 12061, 12331, 15506, 393, 7559, 41006, 12331, 15506, 351, 281, 5035, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 628, 220, 220, 220, 220, 220, 220, 220, 1675, 49312, 1366, 379, 257, 2176, 6376, 286, 262, 1541, 598, 1631, 1366, 11, 779, 262, 1058, 20786, 25, 63, 13564, 15506, 2446, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 265, 62, 9630, 15506, 21179, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 597, 1366, 345, 4601, 284, 24443, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 198, 4871, 8823, 43015, 43806, 721, 7, 43806, 721, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7695, 3849, 1398, 543, 3769, 7729, 319, 703, 284, 5412, 257, 1813, 299, 66, 62, 45286, 628, 220, 220, 220, 41211, 284, 257, 1813, 299, 66, 62, 35350, 62, 15252, 319, 299, 66, 7753, 351, 1813, 2457, 62, 16793, 62, 3672, 11, 198, 220, 220, 220, 1002, 645, 299, 66, 62, 35350, 62, 15252, 318, 6045, 11, 340, 26235, 284, 262, 1353, 1241, 299, 66, 7753, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2560, 62, 26230, 1058, 16774, 3433, 34, 8068, 4639, 198, 220, 220, 220, 220, 220, 220, 220, 5016, 543, 460, 18510, 262, 3433, 34, 8068, 2393, 379, 262, 1353, 1241, 329, 15793, 6282, 290, 13634, 9041, 198, 220, 220, 220, 2496, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 286, 262, 1438, 286, 262, 2134, 13, 1892, 11777, 257, 7885, 4249, 257, 1448, 1201, 262, 2134, 714, 307, 2035, 198, 220, 220, 220, 6143, 62, 15252, 1058, 3433, 34, 8068, 2393, 393, 3433, 34, 8068, 1448, 11, 11902, 11, 15161, 284, 299, 66, 7753, 319, 2560, 62, 26230, 198, 220, 220, 220, 220, 220, 220, 220, 9515, 262, 7885, 14, 15252, 481, 307, 3194, 4291, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 26745, 220, 1303, 16926, 46, 25, 2129, 29102, 378, 618, 356, 1445, 284, 11361, 513, 3938, 351, 2488, 39305, 13, 397, 8709, 24396, 1343, 2488, 26745, 198, 220, 220, 220, 825, 288, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 500, 262, 11361, 1366, 2099, 329, 428, 7885, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 1058, 2099, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 67, 4906, 3119, 468, 407, 587, 9177, 287, 428, 47611, 1865, 2474, 8, 628, 220, 220, 220, 1303, 2488, 39305, 13, 397, 8709, 26745, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 288, 4906, 62, 8841, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10073, 1438, 286, 7885, 329, 13042, 290, 8563, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 40177, 351, 2488, 397, 8709, 12708, 24396, 618, 319, 11361, 513, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 67, 4906, 62, 8841, 468, 407, 587, 9177, 287, 428, 47611, 1865, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 26745, 198, 220, 220, 220, 825, 4808, 12685, 12342, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 500, 262, 2207, 12342, 973, 284, 10385, 422, 11361, 6060, 4613, 2010, 66, 7568, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2207, 12342, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 27195, 12342, 468, 407, 1865, 587, 900, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 26745, 198, 220, 220, 220, 825, 4808, 12501, 12342, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2896, 500, 262, 875, 12342, 973, 284, 10385, 422, 2010, 34, 8068, 4613, 11361, 6060, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 875, 12342, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 875, 12342, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 10707, 12342, 468, 407, 1865, 587, 900, 2474, 8, 628, 220, 220, 220, 825, 4808, 21653, 62, 961, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 530, 640, 1785, 326, 37354, 428, 1398, 284, 262, 2134, 319, 11898, 13, 770, 2446, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 318, 3748, 284, 262, 1100, 3419, 2163, 287, 326, 645, 1366, 318, 7482, 284, 3551, 284, 262, 11898, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10358, 5298, 4049, 611, 262, 2134, 318, 407, 1043, 319, 11898, 357, 72, 13, 68, 13, 645, 1366, 468, 587, 3194, 284, 428, 4067, 1865, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10358, 5298, 4049, 611, 262, 2134, 319, 11898, 318, 27294, 351, 428, 2099, 286, 39298, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 7685, 257, 2219, 2223, 1871, 40481, 82, 11, 475, 460, 307, 2266, 18156, 355, 2622, 287, 850, 37724, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 475, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1078, 1791, 62, 35350, 62, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 7885, 2546, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 1627, 481, 407, 1645, 4556, 2496, 318, 1103, 11, 523, 5072, 62, 14171, 481, 1441, 262, 3376, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22915, 62, 14171, 318, 705, 64, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21928, 62, 43358, 796, 2116, 13557, 7784, 62, 16793, 13, 43358, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21928, 62, 43358, 796, 2116, 13557, 7784, 62, 16793, 13, 43358, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 21653, 62, 13564, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 530, 640, 1785, 326, 37354, 428, 1398, 284, 262, 2134, 319, 11898, 13, 770, 2446, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 318, 3748, 284, 262, 3551, 3419, 2163, 287, 326, 262, 1366, 3804, 287, 815, 1037, 2251, 262, 6143, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1541, 319, 11898, 290, 8335, 340, 329, 257, 3551, 4905, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4586, 2223, 286, 428, 2446, 815, 1464, 307, 10285, 62, 38993, 62, 22252, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 4377, 2099, 428, 39298, 460, 1429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6060, 543, 481, 307, 8574, 284, 11898, 286, 2099, 13, 383, 1366, 815, 407, 307, 3194, 379, 428, 3800, 11, 475, 34295, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17425, 262, 6143, 355, 2622, 13, 554, 617, 2663, 11, 345, 743, 407, 772, 761, 262, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 475, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 21653, 62, 13564, 2163, 468, 407, 587, 9177, 287, 428, 47611, 1865, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 21653, 62, 33295, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 530, 640, 1785, 326, 37354, 428, 1398, 284, 262, 2134, 319, 11898, 13, 770, 2446, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 318, 3748, 284, 262, 24443, 3419, 2163, 287, 326, 262, 1366, 3804, 287, 815, 24443, 644, 318, 379, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4067, 11, 393, 815, 2251, 262, 2134, 11, 788, 3551, 262, 1366, 351, 262, 717, 15793, 15541, 287, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4586, 2223, 286, 428, 2446, 815, 1464, 307, 10285, 62, 38993, 62, 22252, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 4377, 2099, 428, 39298, 460, 1429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6060, 543, 481, 307, 8574, 284, 11898, 286, 2099, 13, 383, 1366, 815, 407, 307, 3194, 379, 428, 3800, 11, 475, 34295, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17425, 262, 6143, 355, 2622, 13, 554, 617, 2663, 11, 345, 743, 407, 772, 761, 262, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 475, 815, 900, 2116, 13557, 7784, 62, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 62, 21653, 62, 33295, 2163, 468, 407, 587, 9177, 287, 428, 47611, 1865, 2474, 8, 628, 220, 220, 220, 825, 1100, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 3119, 1100, 422, 262, 299, 66, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 3119, 1100, 422, 262, 299, 66, 2393, 290, 3350, 656, 262, 3376, 11361, 1366, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21653, 62, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 12501, 12342, 7, 944, 13557, 7784, 62, 16793, 8, 628, 220, 220, 220, 825, 4808, 11321, 62, 21653, 62, 22915, 62, 4658, 7, 944, 11, 2099, 62, 8841, 11, 24443, 62, 14171, 11, 3650, 62, 20850, 62, 8841, 11639, 14202, 6030, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 5412, 262, 2219, 3433, 34, 8068, 7885, 14, 8094, 3395, 14706, 4028, 618, 12765, 257, 649, 7885, 14, 8094, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 11898, 287, 3551, 14, 33295, 4235, 13, 770, 2438, 815, 307, 1444, 287, 477, 262, 4808, 21653, 62, 13564, 290, 4808, 21653, 62, 33295, 7021, 2641, 198, 220, 220, 220, 220, 220, 220, 220, 262, 13640, 4049, 618, 4808, 21653, 62, 961, 10143, 284, 1064, 262, 2134, 357, 72, 13, 68, 13, 649, 7885, 319, 11898, 6282, 8, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 8841, 1058, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 1366, 852, 8574, 2035, 355, 257, 2060, 2134, 11, 393, 262, 1366, 852, 8574, 287, 262, 13061, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 2829, 5563, 588, 493, 82, 290, 36016, 11, 428, 815, 655, 307, 262, 2170, 12453, 7, 944, 13, 67, 4906, 8, 290, 481, 10548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 262, 40481, 338, 288, 4906, 62, 8841, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 13061, 5563, 884, 355, 8341, 11, 12777, 2374, 11, 290, 45941, 13, 358, 18747, 338, 11, 428, 815, 307, 262, 4731, 286, 262, 1366, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 2134, 290, 481, 307, 18174, 1180, 422, 262, 40481, 338, 288, 4906, 62, 8841, 290, 10795, 319, 644, 318, 852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8574, 287, 262, 40481, 198, 220, 220, 220, 220, 220, 220, 220, 24443, 62, 14171, 1058, 34142, 11, 657, 393, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34142, 25131, 10552, 286, 611, 428, 318, 598, 1631, 1366, 393, 407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 21653, 62, 13564, 5050, 815, 1208, 257, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 21653, 62, 33295, 5050, 815, 1208, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3650, 62, 20850, 62, 8841, 1058, 10903, 11, 11902, 11, 15161, 25, 705, 14202, 6030, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10903, 10552, 286, 262, 1280, 3020, 13, 20850, 7223, 284, 428, 1366, 13, 770, 4731, 815, 307, 1498, 284, 307, 11672, 656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12040, 62, 6738, 62, 8841, 7, 8095, 62, 20850, 62, 8841, 8, 290, 1441, 257, 4938, 1280, 3020, 13, 26453, 2134, 13, 27095, 7560, 422, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 20850, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 645, 4326, 318, 8686, 284, 262, 1366, 11, 788, 262, 4277, 286, 705, 14202, 6030, 6, 815, 307, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 24443, 62, 14171, 407, 287, 685, 15, 11, 352, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 33295, 62, 14171, 1276, 307, 18253, 286, 657, 329, 4808, 21653, 3551, 11, 393, 352, 329, 4808, 21653, 62, 33295, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 38993, 10786, 40, 3727, 38291, 62, 6030, 3256, 2116, 13, 67, 4906, 62, 8841, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 38993, 10786, 4906, 3256, 2099, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20850, 796, 3650, 62, 20850, 62, 8841, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 38993, 10786, 40, 3727, 38291, 62, 26453, 3256, 2116, 13557, 20850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18291, 1958, 262, 2099, 286, 6143, 2134, 428, 815, 9839, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 38993, 10786, 40, 3727, 38291, 62, 31425, 62, 6030, 3256, 2116, 13, 35350, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 38993, 10786, 40, 3727, 38291, 62, 4677, 437, 540, 3256, 24443, 62, 14171, 8, 628, 220, 220, 220, 825, 3551, 7, 944, 11, 1366, 11, 379, 62, 9630, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14026, 428, 6260, 703, 284, 3551, 284, 262, 3433, 34, 8068, 2393, 1813, 262, 2457, 2134, 326, 340, 318, 5421, 284, 628, 220, 220, 220, 220, 220, 220, 220, 13243, 1286, 11, 1560, 257, 7885, 543, 318, 7685, 598, 1631, 284, 284, 3551, 257, 2176, 5726, 319, 262, 6376, 379, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 597, 1366, 345, 4601, 284, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 379, 62, 9630, 1058, 6045, 393, 2558, 11, 11902, 11, 4277, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 262, 6376, 286, 257, 7885, 2727, 416, 24443, 284, 3551, 2176, 1366, 379, 262, 6376, 5726, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1649, 6045, 11, 428, 3038, 318, 9514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 18253, 286, 379, 62, 9630, 1276, 307, 19841, 284, 262, 2546, 286, 262, 598, 1631, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 7890, 11, 2116, 13, 67, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 44651, 1366, 2099, 319, 7885, 23884, 526, 13, 18982, 7, 944, 13557, 16793, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 379, 62, 9630, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13564, 62, 1462, 62, 33295, 62, 265, 62, 9630, 7, 7890, 11, 379, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41211, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21653, 62, 13564, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 35350, 62, 14171, 10786, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 7890, 62, 43358, 62, 15699, 278, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 25555, 62, 7890, 796, 2116, 13557, 12685, 12342, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 58, 47715, 796, 25555, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 24443, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14026, 428, 6260, 703, 284, 3551, 284, 262, 3433, 34, 8068, 2393, 1813, 262, 2457, 2134, 326, 340, 318, 5421, 284, 628, 220, 220, 220, 220, 220, 220, 220, 1675, 49312, 1366, 379, 257, 2176, 6376, 286, 262, 1541, 598, 1631, 1366, 11, 779, 262, 764, 13564, 7, 7890, 11, 379, 62, 9630, 28, 55, 8, 2446, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 7890, 11, 2116, 13, 67, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 44651, 1366, 2099, 319, 7885, 23884, 526, 13, 18982, 7, 944, 13557, 16793, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41211, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21653, 62, 33295, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 35350, 62, 14171, 10786, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 7890, 62, 43358, 62, 15699, 278, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 1459, 1459, 4129, 290, 4361, 262, 938, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 2116, 13557, 7784, 62, 16793, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 58, 13664, 11, 1058, 60, 796, 2116, 13557, 12685, 12342, 7, 7890, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 9122, 62, 7890, 62, 43358, 62, 15699, 278, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 284, 787, 1654, 326, 262, 24443, 540, 1366, 318, 262, 976, 5485, 14, 7857, 14, 38532, 351, 262, 584, 1366, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 24443, 540, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 44968, 815, 307, 262, 976, 4129, 11, 31835, 20519, 26515, 815, 307, 262, 976, 5485, 290, 288, 4906, 11, 3503, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 9037, 5485, 5563, 884, 355, 2558, 82, 290, 29075, 1381, 11, 262, 288, 4906, 3436, 318, 6751, 290, 428, 2446, 460, 307, 198, 220, 220, 220, 220, 220, 220, 220, 9177, 351, 257, 2829, 4600, 6603, 63, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 40, 836, 470, 760, 703, 284, 8996, 1366, 1865, 2474, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 26745, 198, 220, 220, 220, 825, 6143, 62, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14026, 262, 39298, 644, 3433, 34, 8068, 6143, 2099, 428, 39298, 18432, 262, 1366, 355, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 11777, 2035, 705, 25641, 2977, 6, 393, 705, 24432, 6, 523, 262, 4639, 4206, 543, 3119, 284, 869, 319, 262, 3433, 34, 8068, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 4906, 25, 4731, 286, 2035, 705, 25641, 2977, 6, 393, 705, 24432, 6, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 40, 423, 407, 587, 900, 284, 705, 25641, 2977, 6, 393, 705, 24432, 6, 4943, 628, 220, 220, 220, 825, 751, 62, 38993, 7, 944, 11, 1438, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 20150, 284, 2116, 319, 11898, 11, 3131, 10340, 286, 1321, 326, 460, 307, 973, 329, 9701, 393, 584, 9633, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 5626, 257, 9037, 24396, 286, 262, 1353, 1366, 900, 1201, 345, 460, 11876, 428, 878, 12765, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 262, 11688, 345, 4601, 284, 8333, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 1058, 597, 11, 475, 9871, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17221, 13634, 1366, 284, 751, 284, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 7784, 62, 16793, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 38993, 62, 22252, 58, 3672, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 13, 2617, 10782, 35226, 7, 3672, 11, 1988, 8, 628, 220, 220, 220, 825, 4808, 39455, 62, 38993, 62, 22252, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 931, 262, 20150, 11876, 284, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 791, 7784, 14565, 12331, 7203, 34, 34574, 10285, 262, 20150, 11876, 284, 2496, 1201, 645, 2496, 7160, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 13, 2617, 77, 9246, 912, 7, 944, 13557, 38993, 62, 22252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 38993, 62, 22252, 796, 23884, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 1102, 1851, 62, 3262, 66, 7568, 62, 8095, 62, 4906, 7, 301, 1850, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 262, 8574, 3433, 34, 8068, 1366, 2099, 422, 4731, 284, 2099, 1231, 17965, 319, 21596, 5418, 3419, 2163, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8574, 62, 4906, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4149, 422, 299, 66, 7753, 13, 43015, 13, 4906, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1774, 62, 4906, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11361, 393, 8265, 2099, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 340, 338, 257, 3170, 259, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 220, 1303, 11361, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 1330, 8019, 13, 11748, 62, 21412, 10786, 834, 18780, 259, 834, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 17267, 12331, 25, 220, 1303, 11361, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 1330, 8019, 13, 11748, 62, 21412, 10786, 18780, 1040, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1774, 62, 4906, 796, 651, 35226, 7, 21412, 11, 8574, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 11, 4553, 8265, 290, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 11, 8574, 62, 4906, 796, 8574, 62, 4906, 13, 3808, 489, 270, 7203, 33283, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 1330, 8019, 13, 11748, 62, 21412, 7, 21412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1774, 62, 4906, 796, 651, 35226, 7, 21412, 11, 8574, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1774, 62, 4906, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 22915, 62, 14171, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3551, 290, 24443, 9701, 13, 6127, 815, 691, 869, 428, 706, 852, 5421, 284, 257, 7885, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14171, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15467, 705, 64, 6, 329, 24443, 393, 705, 86, 6, 329, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 13, 1136, 10782, 35226, 10786, 40, 3727, 38291, 62, 4677, 437, 540, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14171, 796, 705, 64, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14171, 796, 705, 86, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 62, 14171, 628, 220, 220, 220, 825, 4808, 1078, 1791, 62, 35350, 62, 961, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 257, 31904, 2163, 284, 1949, 290, 1100, 262, 2496, 422, 262, 11898, 788, 466, 617, 21201, 8794, 2219, 284, 198, 220, 220, 220, 220, 220, 220, 220, 790, 4808, 21653, 62, 961, 869, 13, 5053, 862, 2005, 866, 319, 664, 7656, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 475, 815, 1949, 284, 900, 4808, 7784, 62, 16793, 422, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 796, 651, 35226, 7, 944, 13557, 35350, 62, 15252, 11, 2116, 13, 35350, 62, 4906, 38381, 944, 13557, 16793, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 326, 262, 2496, 356, 11007, 284, 7466, 262, 2099, 286, 4639, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 13, 1136, 10782, 35226, 10786, 40, 3727, 38291, 62, 6030, 11537, 14512, 2116, 13, 67, 4906, 62, 8841, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 31425, 2496, 319, 3433, 34, 8068, 2393, 318, 286, 2099, 23884, 475, 428, 4639, 318, 3562, 284, 5412, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 23884, 48220, 18982, 7, 944, 13557, 7784, 62, 16793, 13, 1136, 10782, 35226, 10786, 40, 3727, 38291, 62, 6030, 33809, 2116, 13, 67, 4906, 62, 8841, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 1212, 39298, 2314, 4886, 6143, 2099, 422, 319, 12, 39531, 7885, 13, 764, 13564, 3419, 290, 764, 33295, 3419, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3575, 602, 481, 407, 670, 290, 764, 961, 3419, 4560, 743, 670, 1600, 43160, 20361, 8, 628, 220, 220, 220, 825, 4808, 9122, 62, 35350, 62, 14171, 7, 944, 11, 2938, 62, 14171, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 284, 766, 611, 262, 1366, 8574, 379, 428, 40481, 318, 1682, 11670, 351, 262, 2099, 286, 3551, 4905, 326, 373, 198, 220, 220, 220, 220, 220, 220, 220, 6157, 357, 13564, 3691, 13, 24443, 8, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 14171, 1058, 4731, 11, 2035, 366, 86, 6, 393, 366, 64, 1, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 611, 47540, 22915, 62, 14171, 14512, 2938, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10903, 6070, 287, 11, 3544, 262, 6697, 286, 2938, 4235, 284, 5298, 14601, 198, 220, 220, 220, 220, 220, 220, 220, 7448, 62, 292, 796, 1391, 6, 86, 10354, 705, 33295, 540, 3256, 705, 64, 10354, 705, 301, 4142, 3194, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2314, 796, 1391, 6, 86, 10354, 705, 13564, 3256, 705, 64, 10354, 705, 33295, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1276, 62, 1904, 796, 1391, 6, 86, 10354, 705, 33295, 3419, 393, 262, 284, 62, 9630, 21179, 286, 3551, 3419, 3256, 705, 64, 10354, 705, 13564, 3419, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22915, 62, 14171, 14512, 2938, 62, 14171, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 90, 16793, 92, 379, 1391, 4906, 92, 373, 7448, 355, 1391, 82, 9586, 62, 292, 92, 1366, 0, 26003, 1391, 66, 34574, 5512, 1276, 779, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 27238, 62, 1904, 92, 1911, 18982, 7, 16793, 28, 944, 13557, 16793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 944, 13, 67, 4906, 62, 8841, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7448, 62, 292, 28, 82, 9586, 62, 292, 58, 40319, 62, 14171, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2314, 28, 66, 34574, 58, 40319, 62, 14171, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1276, 62, 1904, 28, 27238, 62, 1904, 58, 40319, 62, 14171, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 13564, 62, 1462, 62, 33295, 62, 265, 62, 9630, 7, 944, 11, 1366, 11, 6376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9993, 284, 3551, 1366, 284, 257, 2176, 2524, 319, 281, 24443, 7885, 13, 770, 318, 257, 2446, 543, 815, 307, 1444, 287, 198, 220, 220, 220, 220, 220, 220, 220, 790, 4600, 13564, 63, 869, 611, 262, 6376, 318, 5447, 416, 1223, 584, 621, 6045, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 6060, 284, 3551, 284, 4067, 319, 257, 4271, 598, 1631, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 1058, 2558, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 284, 3551, 262, 1366, 379, 11, 13586, 644, 318, 1541, 612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6376, 1875, 2546, 286, 3194, 1366, 11, 7014, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 7784, 62, 16793, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21653, 62, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21914, 262, 3433, 34, 8068, 7383, 13047, 284, 5298, 281, 2071, 326, 1366, 1276, 2152, 717, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 7203, 34, 34574, 3551, 284, 257, 2176, 6376, 329, 1366, 326, 857, 407, 2152, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 9630, 8, 318, 407, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 1462, 62, 9630, 1276, 307, 281, 18253, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 35350, 62, 14171, 10786, 64, 11537, 220, 1303, 775, 765, 428, 287, 24443, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 7890, 62, 43358, 62, 15699, 278, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 1459, 1459, 4129, 290, 4361, 611, 262, 6376, 318, 1165, 1588, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 2116, 13557, 7784, 62, 16793, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12039, 1682, 8996, 284, 1336, 4129, 523, 661, 836, 470, 6070, 281, 15541, 7885, 351, 15413, 326, 318, 655, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29229, 422, 6565, 12784, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 18189, 4129, 393, 2352, 7, 9630, 8, 1875, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 34, 34574, 3853, 281, 6376, 3675, 262, 5415, 4129, 286, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1324, 1631, 1366, 286, 23884, 1911, 18982, 7, 13664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7784, 62, 16793, 58, 9630, 11, 1058, 60, 796, 2116, 13557, 12685, 12342, 7, 7890, 8, 628, 198, 2, 38093, 25609, 198, 2, 30502, 34, 8068, 44521, 12, 9858, 47, 15919, 41876, 327, 3727, 2943, 50, 198, 2, 38093, 25609, 198, 198, 2, 4280, 375, 364, 25, 38240, 422, 8823, 7885, 284, 21015, 2099, 198, 2, 14711, 375, 364, 25, 4280, 3361, 577, 11361, 5994, 656, 1223, 8823, 336, 10475, 1366, 628, 198, 198, 2, 1318, 1107, 2125, 470, 1997, 326, 2476, 284, 1645, 994, 11, 26515, 389, 262, 7306, 2099, 198, 2, 38068, 777, 355, 7952, 40481, 82, 287, 1339, 356, 761, 284, 1487, 606, 1568, 628, 198, 2, 7343, 290, 46545, 11629, 2977, 11, 18533, 10154, 389, 262, 976, 2099, 13, 198, 2, 5765, 48589, 3166, 329, 13061, 3858, 628, 198, 2, 14711, 12342, 329, 12178, 11, 493, 11, 11629, 540, 11, 290, 299, 32152, 26515, 628, 198, 2, 10933, 329, 12178, 290, 493, 628, 198, 2, 38093, 25609, 198, 2, 5572, 37, 20, 5870, 4944, 42, 311, 35400, 371, 12425, 1268, 1546, 198, 2, 38093, 25609, 198, 198, 4299, 5004, 62, 33295, 540, 62, 354, 2954, 62, 7857, 7, 7890, 11, 3509, 62, 2676, 341, 28, 12762, 11, 3509, 62, 31673, 28, 940, 2780, 3553, 8054, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45559, 3810, 262, 16058, 2546, 286, 262, 24443, 540, 15793, 11, 340, 481, 2035, 307, 3509, 62, 2676, 602, 287, 954, 393, 3509, 62, 31673, 287, 198, 220, 220, 220, 9881, 810, 262, 2163, 481, 1949, 284, 4646, 262, 1271, 286, 34820, 1566, 340, 318, 739, 262, 3509, 16058, 2546, 866, 284, 198, 220, 220, 220, 257, 2060, 24415, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 6060, 326, 481, 307, 7448, 284, 11898, 286, 5485, 326, 481, 307, 7448, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 257, 6291, 286, 644, 481, 307, 3194, 379, 597, 530, 966, 287, 640, 13, 198, 220, 220, 220, 3509, 62, 2676, 341, 1058, 493, 11, 15161, 25, 13108, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 1271, 286, 34820, 326, 481, 307, 16058, 276, 11, 2035, 428, 4179, 393, 3509, 62, 31673, 481, 307, 2277, 717, 11, 8868, 198, 220, 220, 220, 220, 220, 220, 220, 262, 3509, 34820, 416, 257, 5766, 286, 362, 1566, 356, 389, 2174, 262, 4088, 4179, 11, 284, 257, 5288, 286, 352, 198, 220, 220, 220, 3509, 62, 31673, 25, 493, 357, 33661, 828, 15161, 25, 838, 32642, 3134, 405, 357, 3064, 10744, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 1271, 286, 9881, 262, 16058, 318, 3142, 284, 423, 11, 611, 262, 1802, 34820, 21695, 428, 2546, 11, 788, 356, 198, 220, 220, 220, 220, 220, 220, 220, 4646, 262, 1271, 286, 34820, 416, 2063, 1566, 356, 389, 2174, 262, 4088, 4179, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 24415, 62, 354, 2954, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 609, 14125, 1096, 286, 262, 24415, 15793, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3509, 62, 2676, 341, 1279, 352, 393, 407, 318, 39098, 7, 9806, 62, 2676, 341, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 9806, 62, 2676, 341, 373, 23884, 475, 1276, 307, 281, 18253, 3744, 621, 352, 48220, 18982, 7, 9806, 62, 2676, 341, 4008, 198, 220, 220, 220, 24415, 62, 354, 2954, 796, 493, 7, 9806, 62, 2676, 341, 8, 198, 220, 220, 220, 1366, 62, 7857, 796, 3011, 1096, 1659, 7, 7890, 8, 198, 220, 220, 220, 981, 24415, 62, 354, 2954, 1635, 1366, 62, 7857, 1875, 3509, 62, 31673, 290, 24415, 62, 354, 2954, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24415, 62, 354, 2954, 1220, 28, 362, 198, 220, 220, 220, 1303, 20101, 4386, 290, 493, 1201, 45941, 13, 344, 346, 5860, 257, 12178, 198, 220, 220, 220, 1441, 493, 7, 37659, 13, 344, 346, 7, 2676, 341, 62, 354, 2954, 4008, 628, 198, 2, 38093, 25609, 198, 2, 32744, 39298, 82, 198, 2, 38093, 25609, 198, 198, 2, 42044, 40481, 82, 329, 1729, 12, 5589, 633, 1366, 3858, 25, 1167, 11, 12178, 11, 4731, 198, 198, 4871, 8823, 3351, 282, 283, 7, 7792, 43015, 43806, 721, 11, 9738, 2599, 628, 220, 220, 220, 13538, 15931, 198, 220, 220, 220, 770, 1948, 1398, 318, 284, 17775, 2438, 50124, 1022, 617, 845, 4096, 1366, 3858, 884, 355, 493, 11, 965, 11, 12178, 628, 220, 220, 220, 632, 318, 2346, 281, 12531, 1398, 290, 4433, 262, 1708, 5499, 284, 307, 1844, 25, 198, 220, 220, 220, 288, 4906, 4275, 26745, 8, 198, 220, 220, 220, 288, 4906, 62, 8841, 4275, 12708, 24396, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 261, 62, 39531, 62, 67, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22507, 6993, 799, 278, 262, 288, 4906, 329, 6143, 329, 16610, 428, 2446, 284, 3350, 1366, 355, 257, 1180, 2099, 319, 11898, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 3119, 284, 49312, 262, 3350, 288, 4906, 611, 340, 318, 1180, 621, 262, 5128, 14, 22915, 288, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 67, 4906, 628, 198, 4871, 8823, 5317, 7, 7792, 3351, 282, 283, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 15995, 364, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 8823, 43879, 7, 7792, 3351, 282, 283, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 29075, 1381, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 8823, 10100, 7, 7792, 3351, 282, 283, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 10903, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 2, 15690, 198, 198, 4871, 8823, 19182, 7, 7792, 43015, 43806, 721, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 39298, 329, 299, 32152, 26515, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 198, 4871, 8823, 29993, 540, 7, 7792, 43015, 43806, 721, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 8341, 290, 12777, 2374, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 198, 4871, 8823, 31208, 7, 7792, 43015, 43806, 721, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 11096, 1280, 3020, 13, 20850, 13, 31208, 338, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 198, 2, 38093, 25609, 198, 2, 30502, 34, 8068, 360, 18379, 575, 2390, 43, 367, 6981, 43, 4877, 198, 2, 38093, 25609, 198, 198, 4871, 4808, 35, 713, 56, 43695, 17401, 7, 17401, 2599, 198, 220, 220, 220, 37227, 20519, 56, 2390, 43, 8778, 263, 326, 8018, 5145, 31208, 13760, 11, 26161, 575, 2390, 43, 5072, 4613, 11361, 2099, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 4871, 4808, 35, 713, 56, 43695, 35, 15829, 7, 35, 15829, 2599, 198, 220, 220, 220, 37227, 20519, 56, 2390, 43, 360, 15829, 326, 10385, 422, 11361, 4613, 575, 2390, 43, 5072, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 12040, 62, 15603, 263, 7, 67, 15829, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 56, 2390, 43, 39789, 2380, 263, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 20850, 796, 1366, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 8367, 796, 1366, 1220, 1366, 62, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 39455, 796, 1391, 6, 31208, 26453, 10354, 965, 7, 7890, 62, 20850, 828, 705, 31208, 11395, 10354, 1366, 62, 8367, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 36965, 366, 944, 357, 35, 713, 56, 43695, 35, 15829, 16725, 355, 262, 288, 15829, 284, 1249, 28376, 5145, 31208, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 15829, 13, 15603, 62, 76, 5912, 7, 84, 6, 0, 31208, 3256, 1366, 62, 39455, 8, 628, 198, 4871, 399, 8610, 713, 7, 7792, 3351, 282, 283, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3433, 34, 8068, 40481, 329, 360, 713, 11, 543, 356, 3650, 287, 575, 2390, 43, 355, 257, 26996, 1431, 10903, 351, 617, 3131, 7587, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 26745, 198 ]
2.684033
15,701
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from django.utils import timezone from .models import RegVerifyMailModel, REG_EXPIRE_TIME from package import mail_client # 检查该用户当前是否可以推送验证码邮件 # 检查邮件和验证码是否正确 # 推送验证码邮件 # 推送订阅邮件(都调用这个api推送) # 推送启动邮件邮件(都调用这个api推送)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 764, 27530, 1330, 3310, 13414, 1958, 25804, 17633, 11, 23337, 62, 6369, 11901, 2200, 62, 34694, 198, 6738, 5301, 1330, 6920, 62, 16366, 628, 198, 2, 10545, 96, 222, 162, 253, 98, 46237, 98, 18796, 101, 22755, 115, 37605, 241, 30298, 235, 42468, 28938, 99, 20998, 107, 20015, 98, 162, 236, 101, 34460, 223, 165, 103, 234, 46237, 223, 163, 254, 223, 165, 224, 106, 20015, 114, 628, 198, 2, 10545, 96, 222, 162, 253, 98, 165, 224, 106, 20015, 114, 161, 240, 234, 165, 103, 234, 46237, 223, 163, 254, 223, 42468, 28938, 99, 29826, 96, 163, 94, 106, 628, 198, 2, 10545, 236, 101, 34460, 223, 165, 103, 234, 46237, 223, 163, 254, 223, 165, 224, 106, 20015, 114, 628, 198, 2, 10545, 236, 101, 34460, 223, 164, 106, 95, 165, 11805, 165, 224, 106, 20015, 114, 171, 120, 230, 32849, 121, 164, 108, 225, 18796, 101, 32573, 247, 10310, 103, 15042, 162, 236, 101, 34460, 223, 171, 120, 231, 628, 198, 2, 10545, 236, 101, 34460, 223, 28938, 107, 27950, 101, 165, 224, 106, 20015, 114, 165, 224, 106, 20015, 114, 171, 120, 230, 32849, 121, 164, 108, 225, 18796, 101, 32573, 247, 10310, 103, 15042, 162, 236, 101, 34460, 223, 171, 120, 231, 198 ]
1.11157
242
import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) x = np.random.rand(10) y = np.random.rand(10) z = np.sqrt(x**2 + y**2) fig, axs = plt.subplots(2, 3, sharex=True, sharey=True) # marker symbol axs[0, 0].scatter(x, y, s=80, c=z, marker=">") axs[0, 0].set_title("marker='>'") plt.tight_layout() plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 13268, 278, 4738, 1181, 329, 8186, 66, 2247, 198, 37659, 13, 25120, 13, 28826, 7, 25272, 28362, 486, 8, 198, 198, 87, 796, 45941, 13, 25120, 13, 25192, 7, 940, 8, 198, 88, 796, 45941, 13, 25120, 13, 25192, 7, 940, 8, 198, 89, 796, 45941, 13, 31166, 17034, 7, 87, 1174, 17, 1343, 331, 1174, 17, 8, 198, 198, 5647, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 17, 11, 513, 11, 2648, 87, 28, 17821, 11, 2648, 88, 28, 17821, 8, 198, 198, 2, 18364, 6194, 198, 897, 82, 58, 15, 11, 657, 4083, 1416, 1436, 7, 87, 11, 331, 11, 264, 28, 1795, 11, 269, 28, 89, 11, 18364, 2625, 29, 4943, 198, 897, 82, 58, 15, 11, 657, 4083, 2617, 62, 7839, 7203, 4102, 263, 11639, 29, 6, 4943, 198, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 12860, 3419 ]
2.211765
170
import copy import csv import json import numpy as np import os import pickle import random import torch from torch.utils.data.sampler import Sampler import pdb class ASMRSampler(Sampler): """ Total videos: 2794. The sampler ends when last $BATCH_SIZE videos are left. """
[ 11748, 4866, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 4738, 198, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 13, 37687, 20053, 1330, 3409, 20053, 198, 198, 11748, 279, 9945, 198, 198, 4871, 7054, 44, 6998, 321, 20053, 7, 16305, 20053, 2599, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7472, 5861, 25, 2681, 5824, 13, 383, 6072, 20053, 5645, 618, 938, 720, 33, 11417, 62, 33489, 5861, 389, 1364, 13, 220, 198, 220, 220, 220, 37227, 198 ]
2.989691
97
"""Leetcode 714. Best Time to Buy and Sell Stock with Transaction Fee Medium URL: https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/ Your are given an array of integers prices, for which the i-th element is the price of a given stock on day i; and a non-negative integer fee representing a transaction fee. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.) Return the maximum profit you can make. Example 1: Input: prices = [1, 3, 2, 8, 4, 9], fee = 2 Output: 8 Explanation: The maximum profit can be achieved by: - Buying at prices[0] = 1 - Selling at prices[3] = 8 - Buying at prices[4] = 4 - Selling at prices[5] = 9 The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8. Note: - 0 < prices.length <= 50000. - 0 < prices[i] < 50000. - 0 <= fee < 50000. """ if __name__ == '__main__': main()
[ 37811, 3123, 316, 8189, 767, 1415, 13, 6705, 3862, 284, 11763, 290, 25688, 10500, 351, 45389, 28522, 198, 31205, 198, 198, 21886, 25, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 13466, 12, 2435, 12, 1462, 12, 17846, 12, 392, 12, 7255, 12, 13578, 12, 4480, 12, 7645, 2673, 12, 39071, 14, 198, 198, 7120, 389, 1813, 281, 7177, 286, 37014, 4536, 11, 329, 543, 262, 1312, 12, 400, 5002, 318, 262, 2756, 286, 198, 64, 1813, 4283, 319, 1110, 1312, 26, 290, 257, 1729, 12, 31591, 18253, 6838, 10200, 257, 8611, 6838, 13, 198, 198, 1639, 743, 1844, 355, 867, 8945, 355, 345, 588, 11, 475, 345, 761, 284, 1414, 262, 8611, 198, 39071, 329, 1123, 8611, 13, 921, 743, 407, 2822, 517, 621, 352, 2648, 286, 257, 4283, 379, 257, 640, 198, 7, 494, 13, 345, 1276, 3677, 262, 4283, 2648, 878, 345, 2822, 757, 2014, 198, 198, 13615, 262, 5415, 7630, 345, 460, 787, 13, 198, 198, 16281, 352, 25, 198, 20560, 25, 4536, 796, 685, 16, 11, 513, 11, 362, 11, 807, 11, 604, 11, 860, 4357, 6838, 796, 362, 198, 26410, 25, 807, 198, 3109, 11578, 341, 25, 383, 5415, 7630, 460, 307, 8793, 416, 25, 198, 12, 9842, 1112, 379, 4536, 58, 15, 60, 796, 352, 198, 12, 47919, 379, 4536, 58, 18, 60, 796, 807, 198, 12, 9842, 1112, 379, 4536, 58, 19, 60, 796, 604, 198, 12, 47919, 379, 4536, 58, 20, 60, 796, 860, 198, 464, 2472, 7630, 318, 14808, 23, 532, 352, 8, 532, 362, 8, 1343, 14808, 24, 532, 604, 8, 532, 362, 8, 796, 807, 13, 198, 198, 6425, 25, 198, 12, 657, 1279, 4536, 13, 13664, 19841, 642, 2388, 13, 198, 12, 657, 1279, 4536, 58, 72, 60, 1279, 642, 2388, 13, 198, 12, 657, 19841, 6838, 1279, 642, 2388, 13, 198, 37811, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.091185
329
#!/usr/bin/env python import ngs_utils.ensembl as ebl import os import shutil from optparse import OptionParser, SUPPRESS_HELP from os.path import isfile, join, basename, dirname, pardir from ngs_utils import logger from ngs_utils.file_utils import file_transaction, adjust_path, safe_mkdir, verify_file ''' Generates coding_regions BED file Example usage: python {__file__} -g GRCh37 --canonical | grep -v ^MT | grep -v ^GL | sort -k1,1V -k2,2n | bedtools merge -i - > coding_regions.canonical.clean.sort.merged.bed ''' if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 299, 14542, 62, 26791, 13, 1072, 2022, 75, 355, 304, 2436, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 6738, 2172, 29572, 1330, 16018, 46677, 11, 19549, 32761, 62, 39, 3698, 47, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 11, 4654, 11, 1615, 12453, 11, 26672, 3672, 11, 41746, 343, 198, 6738, 299, 14542, 62, 26791, 1330, 49706, 198, 6738, 299, 14542, 62, 26791, 13, 7753, 62, 26791, 1330, 2393, 62, 7645, 2673, 11, 4532, 62, 6978, 11, 3338, 62, 28015, 15908, 11, 11767, 62, 7753, 628, 198, 7061, 6, 2980, 689, 19617, 62, 2301, 507, 347, 1961, 2393, 628, 220, 220, 220, 17934, 8748, 25, 220, 198, 220, 220, 220, 21015, 1391, 834, 7753, 834, 92, 532, 70, 10863, 1925, 2718, 1377, 49883, 605, 930, 42717, 532, 85, 10563, 13752, 930, 42717, 532, 85, 10563, 8763, 930, 3297, 532, 74, 16, 11, 16, 53, 532, 74, 17, 11, 17, 77, 930, 3996, 31391, 20121, 532, 72, 532, 1875, 19617, 62, 2301, 507, 13, 49883, 605, 13, 27773, 13, 30619, 13, 647, 2004, 13, 3077, 198, 7061, 6, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.746411
209
import unittest import asyncio import moses.io as io from . import dummy
[ 11748, 555, 715, 395, 198, 11748, 30351, 952, 198, 11748, 285, 4629, 13, 952, 355, 33245, 198, 6738, 764, 1330, 31548, 628, 198 ]
3.26087
23
import threading thread_01 = threading.Thread( # name='t1', target=target_function, kwargs={'person_01': 'Bruno', 'person_02': 'Hanna'}) thread_01.start() thread_01.join() print('executed after join thread 01')
[ 11748, 4704, 278, 628, 197, 197, 198, 198, 16663, 62, 486, 796, 4704, 278, 13, 16818, 7, 198, 197, 2, 1438, 11639, 83, 16, 3256, 220, 198, 197, 16793, 28, 16793, 62, 8818, 11, 220, 198, 197, 46265, 22046, 34758, 6, 6259, 62, 486, 10354, 705, 33, 5143, 78, 3256, 705, 6259, 62, 2999, 10354, 705, 39, 7697, 6, 30072, 198, 198, 16663, 62, 486, 13, 9688, 3419, 198, 198, 16663, 62, 486, 13, 22179, 3419, 198, 198, 4798, 10786, 18558, 7241, 706, 4654, 4704, 5534, 11537, 198 ]
2.545455
88
"""Methods for building convolutional LSTM.""" import numpy import keras from gewittergefahr.gg_utils import error_checking from gewittergefahr.deep_learning import architecture_utils from ml4tc.machine_learning import cnn_architecture INPUT_DIMENSIONS_KEY = 'input_dimensions' NUM_LAYERS_BY_BLOCK_KEY = 'num_layers_by_block' NUM_CHANNELS_KEY = 'num_channels_by_layer' DROPOUT_RATES_KEY = 'dropout_rate_by_layer' KEEP_TIME_DIMENSION_KEY = 'keep_time_dimension' ACTIVATION_FUNCTION_KEY = 'activation_function_name' ACTIVATION_FUNCTION_ALPHA_KEY = 'activation_function_alpha' L2_WEIGHT_KEY = 'l2_weight' USE_BATCH_NORM_KEY = 'use_batch_normalization' NUM_NEURONS_KEY = cnn_architecture.NUM_NEURONS_KEY INNER_ACTIV_FUNCTION_KEY = cnn_architecture.INNER_ACTIV_FUNCTION_KEY INNER_ACTIV_FUNCTION_ALPHA_KEY = cnn_architecture.INNER_ACTIV_FUNCTION_ALPHA_KEY OUTPUT_ACTIV_FUNCTION_KEY = cnn_architecture.OUTPUT_ACTIV_FUNCTION_KEY OUTPUT_ACTIV_FUNCTION_ALPHA_KEY = ( cnn_architecture.OUTPUT_ACTIV_FUNCTION_ALPHA_KEY ) DEFAULT_OPTION_DICT_GRIDDED_SAT = { NUM_LAYERS_BY_BLOCK_KEY: numpy.array([2, 2, 2, 2, 2, 2, 2], dtype=int), NUM_CHANNELS_KEY: numpy.array( [8, 8, 16, 16, 24, 24, 32, 32, 48, 48, 64, 64, 128, 128], dtype=int ), DROPOUT_RATES_KEY: numpy.full(14, 0.), ACTIVATION_FUNCTION_KEY: architecture_utils.RELU_FUNCTION_STRING, ACTIVATION_FUNCTION_ALPHA_KEY: 0.2, USE_BATCH_NORM_KEY: True } DEFAULT_OPTION_DICT_UNGRIDDED_SAT = { NUM_CHANNELS_KEY: numpy.array([100], dtype=int), ACTIVATION_FUNCTION_KEY: architecture_utils.RELU_FUNCTION_STRING, ACTIVATION_FUNCTION_ALPHA_KEY: 0.2, USE_BATCH_NORM_KEY: True } DEFAULT_OPTION_DICT_SHIPS = { NUM_CHANNELS_KEY: numpy.array([1000], dtype=int), ACTIVATION_FUNCTION_KEY: architecture_utils.RELU_FUNCTION_STRING, ACTIVATION_FUNCTION_ALPHA_KEY: 0.2, USE_BATCH_NORM_KEY: True } DEFAULT_OPTION_DICT_DENSE = { INNER_ACTIV_FUNCTION_KEY: architecture_utils.RELU_FUNCTION_STRING, INNER_ACTIV_FUNCTION_ALPHA_KEY: 0.2, USE_BATCH_NORM_KEY: True } # TODO(thunderhoser): Do I also need to pass normal (non-recurrent) activation # and dropout rate to methods that create an LSTM layer? def _get_lstm_layer( num_output_units, recurrent_activation_func_or_name, recurrent_dropout_rate, regularization_func, return_sequences): """Creates simple LSTM layer (with no convolution). :param num_output_units: Number of output units. :param recurrent_activation_func_or_name: Activation function for recurrent step (may be passed as a function or string). :param recurrent_dropout_rate: Dropout rate for recurrent step. :param regularization_func: Regularization function (will be used for main kernel weights, recurrent-kernel weights, and biases). If you do not want regularization, make this None. :param return_sequences: Boolean flag. If True (False), layer will return full sequence (last output in output sequence). :return: layer_object: Instance of `keras.layers.LSTM`. """ error_checking.assert_is_integer(num_output_units) error_checking.assert_is_geq(num_output_units, 1) error_checking.assert_is_boolean(return_sequences) error_checking.assert_is_less_than(recurrent_dropout_rate, 1.) if not recurrent_dropout_rate > 0.: recurrent_dropout_rate = 0. return keras.layers.LSTM( units=num_output_units, activation=None, use_bias=True, recurrent_activation=recurrent_activation_func_or_name, kernel_initializer='glorot_uniform', bias_initializer='zeros', recurrent_initializer='orthogonal', unit_forget_bias=True, kernel_regularizer=regularization_func, recurrent_regularizer=regularization_func, bias_regularizer=regularization_func, activity_regularizer=None, return_sequences=return_sequences, dropout=0., recurrent_dropout=recurrent_dropout_rate ) def _get_2d_conv_lstm_layer( num_kernel_rows, num_kernel_columns, num_rows_per_stride, num_columns_per_stride, num_filters, use_padding, recurrent_activation_func_or_name, recurrent_dropout_rate, regularization_func, return_sequences): """Creates LSTM layer with 2-D convolution. :param num_kernel_rows: Number of spatial rows in convolutional filters. :param num_kernel_columns: Number of spatial columns in convolutional filters. :param num_rows_per_stride: Number of spatial rows per filter stride. :param num_columns_per_stride: Number of spatial columns per filter stride. :param num_filters: Number of convolutional filters. :param use_padding: Boolean flag. If True (False), will (not) pad edges after convolution. :param recurrent_activation_func_or_name: See doc for `_get_lstm_layer`. :param recurrent_dropout_rate: Same. :param regularization_func: Same. :param return_sequences: Same. :return: layer_object: Instance of `keras.layers.ConvLSTM2D`. """ error_checking.assert_is_integer(num_kernel_rows) error_checking.assert_is_geq(num_kernel_rows, 1) error_checking.assert_is_integer(num_kernel_columns) error_checking.assert_is_geq(num_kernel_columns, 1) error_checking.assert_is_integer(num_rows_per_stride) error_checking.assert_is_geq(num_rows_per_stride, 1) error_checking.assert_is_integer(num_columns_per_stride) error_checking.assert_is_geq(num_columns_per_stride, 1) error_checking.assert_is_integer(num_filters) error_checking.assert_is_geq(num_filters, 1) error_checking.assert_is_boolean(use_padding) error_checking.assert_is_boolean(return_sequences) error_checking.assert_is_less_than(recurrent_dropout_rate, 1.) if not recurrent_dropout_rate > 0.: recurrent_dropout_rate = 0. return keras.layers.ConvLSTM2D( filters=num_filters, kernel_size=(num_kernel_rows, num_kernel_columns), strides=(num_rows_per_stride, num_columns_per_stride), padding='same' if use_padding else 'valid', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, recurrent_activation=recurrent_activation_func_or_name, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=regularization_func, recurrent_regularizer=regularization_func, bias_regularizer=regularization_func, return_sequences=return_sequences, dropout=0.0, recurrent_dropout=recurrent_dropout_rate ) def _create_layers_gridded_sat(option_dict): """Creates layers for gridded satellite data. B = number of conv blocks C = total number of conv layers :param option_dict: Dictionary with the following keys. option_dict['input_dimensions']: length-4 numpy array with input dimensions: (num_grid_rows, num_grid_columns, num_lag_times, num_channels). option_dict['num_layers_by_block']: length-B numpy array with number of conv layers for each block. option_dict['num_channels_by_layer']: length-C numpy array with number of channels for each conv layer. option_dict['dropout_rate_by_layer']: length-C numpy array with dropout rate for each conv layer. Use number <= 0 for no dropout. option_dict['keep_time_dimension']: Boolean flag. If True, will keep time dimension until the end and repeat conv-LSTM layers until the end. If False, will remove time dimension after first conv-LSTM layer, then do conv without LSTM. option_dict['activation_function_name']: Name of activation function for all conv layers. Must be accepted by `architecture_utils.check_activation_function`. option_dict['activation_function_alpha']: Alpha (slope parameter) for activation function for all conv layers. Applies only to ReLU and eLU. option_dict['l2_weight']: Weight for L_2 regularization in conv layers. option_dict['use_batch_normalization']: Boolean flag. If True, will use batch normalization after each conv layer. :return: input_layer_object: Input layer for gridded satellite data (instance of `keras.layers.Input`). :return: last_layer_object: Last layer for processing only gridded satellite data (instance of `keras.layers`). """ # Check input args. input_dimensions = option_dict[INPUT_DIMENSIONS_KEY] num_layers_by_block = option_dict[NUM_LAYERS_BY_BLOCK_KEY] num_channels_by_layer = option_dict[NUM_CHANNELS_KEY] dropout_rate_by_layer = option_dict[DROPOUT_RATES_KEY] keep_time_dimension = option_dict[KEEP_TIME_DIMENSION_KEY] activation_function_name = option_dict[ACTIVATION_FUNCTION_KEY] activation_function_alpha = option_dict[ACTIVATION_FUNCTION_ALPHA_KEY] l2_weight = option_dict[L2_WEIGHT_KEY] use_batch_normalization = option_dict[USE_BATCH_NORM_KEY] error_checking.assert_is_numpy_array( input_dimensions, exact_dimensions=numpy.array([4], dtype=int) ) error_checking.assert_is_integer_numpy_array(input_dimensions) error_checking.assert_is_greater_numpy_array(input_dimensions, 0) error_checking.assert_is_numpy_array(num_layers_by_block, num_dimensions=1) error_checking.assert_is_integer_numpy_array(num_layers_by_block) error_checking.assert_is_geq_numpy_array(num_layers_by_block, 1) num_blocks = len(num_layers_by_block) num_layers = numpy.sum(num_layers_by_block) error_checking.assert_is_geq(num_blocks, 6) error_checking.assert_is_leq(num_blocks, 7) error_checking.assert_is_numpy_array( num_channels_by_layer, exact_dimensions=numpy.array([num_layers], dtype=int) ) error_checking.assert_is_integer_numpy_array(num_channels_by_layer) error_checking.assert_is_geq_numpy_array(num_channels_by_layer, 1) error_checking.assert_is_numpy_array( dropout_rate_by_layer, exact_dimensions=numpy.array([num_layers], dtype=int) ) error_checking.assert_is_leq_numpy_array(dropout_rate_by_layer, 1.) error_checking.assert_is_boolean(keep_time_dimension) error_checking.assert_is_geq(l2_weight, 0.) error_checking.assert_is_boolean(use_batch_normalization) # Do actual stuff. input_layer_object = keras.layers.Input( shape=tuple(input_dimensions.tolist()) ) layer_object = keras.layers.Permute(dims=(3, 1, 2, 4))(input_layer_object) regularization_func = architecture_utils.get_weight_regularizer( l2_weight=l2_weight ) num_blocks = len(num_layers_by_block) num_layers = numpy.sum(num_layers_by_block) k = -1 return_sequences = True for i in range(num_blocks): for _ in range(num_layers_by_block[i]): k += 1 return_sequences = keep_time_dimension and k != num_layers - 1 if keep_time_dimension or k == 0: layer_object = _get_2d_conv_lstm_layer( num_kernel_rows=3, num_kernel_columns=3, num_rows_per_stride=1, num_columns_per_stride=1, num_filters=num_channels_by_layer[k], use_padding=True, recurrent_activation_func_or_name='hard_sigmoid', recurrent_dropout_rate=0., regularization_func=regularization_func, return_sequences=return_sequences )(layer_object) else: layer_object = architecture_utils.get_2d_conv_layer( num_kernel_rows=3, num_kernel_columns=3, num_rows_per_stride=1, num_columns_per_stride=1, num_filters=num_channels_by_layer[k], padding_type_string=architecture_utils.YES_PADDING_STRING, weight_regularizer=regularization_func )(layer_object) layer_object = architecture_utils.get_activation_layer( activation_function_string=activation_function_name, alpha_for_relu=activation_function_alpha, alpha_for_elu=activation_function_alpha )(layer_object) if dropout_rate_by_layer[k] > 0: layer_object = architecture_utils.get_dropout_layer( dropout_fraction=dropout_rate_by_layer[k] )(layer_object) if use_batch_normalization: layer_object = architecture_utils.get_batch_norm_layer()( layer_object ) if return_sequences: layer_object = architecture_utils.get_3d_pooling_layer( num_rows_in_window=1, num_columns_in_window=2, num_heights_in_window=2, num_rows_per_stride=1, num_columns_per_stride=2, num_heights_per_stride=2, pooling_type_string=architecture_utils.MAX_POOLING_STRING )(layer_object) else: layer_object = architecture_utils.get_2d_pooling_layer( num_rows_in_window=2, num_columns_in_window=2, num_rows_per_stride=2, num_columns_per_stride=2, pooling_type_string=architecture_utils.MAX_POOLING_STRING )(layer_object) layer_object = architecture_utils.get_flattening_layer()(layer_object) return input_layer_object, layer_object def _create_layers_ungridded(option_dict): """Creates layers for ungridded data. L = number of LSTM layers :param option_dict: Dictionary with the following keys. option_dict['input_dimensions']: length-2 numpy array with input dimensions: (num_lag_times, num_channels). option_dict['num_channels_by_layer']: length-L numpy array with number of channels for each LSTM layer. option_dict['dropout_rate_by_layer']: length-L numpy array with dropout rate for each LSTM layer. Use number <= 0 for no dropout. option_dict['activation_function_name']: Name of activation function for all LSTM layers. Must be accepted by `architecture_utils.check_activation_function`. option_dict['activation_function_alpha']: Alpha (slope parameter) for activation function for all LSTM layers. Applies only to ReLU and eLU. option_dict['l2_weight']: Weight for L_2 regularization in LSTM layers. option_dict['use_batch_normalization']: Boolean flag. If True, will use batch normalization after each LSTM layer. :return: input_layer_object: Input layer for ungridded data (instance of `keras.layers.Input`). :return: last_layer_object: Last layer for processing only this set of ungridded data (instance of `keras.layers`). """ # Check input args. input_dimensions = option_dict[INPUT_DIMENSIONS_KEY] num_channels_by_layer = option_dict[NUM_CHANNELS_KEY] dropout_rate_by_layer = option_dict[DROPOUT_RATES_KEY] activation_function_name = option_dict[ACTIVATION_FUNCTION_KEY] activation_function_alpha = option_dict[ACTIVATION_FUNCTION_ALPHA_KEY] l2_weight = option_dict[L2_WEIGHT_KEY] use_batch_normalization = option_dict[USE_BATCH_NORM_KEY] error_checking.assert_is_numpy_array( input_dimensions, exact_dimensions=numpy.array([2], dtype=int) ) error_checking.assert_is_integer_numpy_array(input_dimensions) error_checking.assert_is_greater_numpy_array(input_dimensions, 0) error_checking.assert_is_numpy_array( num_channels_by_layer, num_dimensions=1 ) error_checking.assert_is_integer_numpy_array(num_channels_by_layer) error_checking.assert_is_geq_numpy_array(num_channels_by_layer, 1) num_layers = len(num_channels_by_layer) error_checking.assert_is_numpy_array( dropout_rate_by_layer, exact_dimensions=numpy.array([num_layers], dtype=int) ) error_checking.assert_is_leq_numpy_array(dropout_rate_by_layer, 1.) error_checking.assert_is_geq(l2_weight, 0.) error_checking.assert_is_boolean(use_batch_normalization) # Do actual stuff. input_layer_object = keras.layers.Input( shape=tuple(input_dimensions.tolist()) ) regularization_func = architecture_utils.get_weight_regularizer( l2_weight=l2_weight ) num_layers = len(num_channels_by_layer) layer_object = None for i in range(num_layers): if layer_object is None: this_input_layer_object = input_layer_object else: this_input_layer_object = layer_object layer_object = _get_lstm_layer( num_output_units=num_channels_by_layer[i], recurrent_activation_func_or_name='hard_sigmoid', recurrent_dropout_rate=0., regularization_func=regularization_func, return_sequences=i != num_layers - 1 )(this_input_layer_object) layer_object = architecture_utils.get_activation_layer( activation_function_string=activation_function_name, alpha_for_relu=activation_function_alpha, alpha_for_elu=activation_function_alpha )(layer_object) if dropout_rate_by_layer[i] > 0: layer_object = architecture_utils.get_dropout_layer( dropout_fraction=dropout_rate_by_layer[i] )(layer_object) if use_batch_normalization: layer_object = architecture_utils.get_batch_norm_layer()( layer_object ) layer_object = architecture_utils.get_flattening_layer()(layer_object) return input_layer_object, layer_object def create_model( option_dict_gridded_sat, option_dict_ungridded_sat, option_dict_ships, option_dict_dense, loss_function, metric_functions): """Creates conv-LSTM model. :param option_dict_gridded_sat: See doc for `_create_layers_gridded_sat`. If you do not want to use gridded satellite data, make this None. :param option_dict_ungridded_sat: See doc for `_create_layers_ungridded`. If you do not want to use ungridded satellite data, make this None. :param option_dict_ships: See doc for `_create_layers_ungridded`. If you do not want to use SHIPS data, make this None. :param option_dict_dense: See doc for `cnn_architecture.create_dense_layers`. :param loss_function: Loss function. :param metric_functions: 1-D list of metric functions. :return: model_object: Untrained conv-LSTM model (instance of `keras.models.Model`). """ input_layer_objects = [] flattening_layer_objects = [] if option_dict_gridded_sat is not None: option_dict_gridded_sat_orig = option_dict_gridded_sat.copy() option_dict_gridded_sat = DEFAULT_OPTION_DICT_GRIDDED_SAT.copy() option_dict_gridded_sat.update(option_dict_gridded_sat_orig) this_input_layer_object, this_flattening_layer_object = ( _create_layers_gridded_sat(option_dict_gridded_sat) ) input_layer_objects.append(this_input_layer_object) flattening_layer_objects.append(this_flattening_layer_object) if option_dict_ungridded_sat is not None: option_dict_ungridded_sat_orig = option_dict_ungridded_sat.copy() option_dict_ungridded_sat = DEFAULT_OPTION_DICT_UNGRIDDED_SAT.copy() option_dict_ungridded_sat.update(option_dict_ungridded_sat_orig) this_input_layer_object, this_flattening_layer_object = ( _create_layers_ungridded(option_dict_ungridded_sat) ) input_layer_objects.append(this_input_layer_object) flattening_layer_objects.append(this_flattening_layer_object) if option_dict_ships is not None: option_dict_ships_orig = option_dict_ships.copy() option_dict_ships = DEFAULT_OPTION_DICT_SHIPS.copy() option_dict_ships.update(option_dict_ships_orig) this_input_layer_object, this_flattening_layer_object = ( _create_layers_ungridded(option_dict_ships) ) input_layer_objects.append(this_input_layer_object) flattening_layer_objects.append(this_flattening_layer_object) option_dict_dense_orig = option_dict_dense.copy() option_dict_dense = DEFAULT_OPTION_DICT_DENSE.copy() option_dict_dense.update(option_dict_dense_orig) if len(flattening_layer_objects) > 1: layer_object = keras.layers.concatenate(flattening_layer_objects) else: layer_object = flattening_layer_objects[0] layer_object = cnn_architecture.create_dense_layers( input_layer_object=layer_object, option_dict=option_dict_dense ) model_object = keras.models.Model( inputs=input_layer_objects, outputs=layer_object ) model_object.compile( loss=loss_function, optimizer=keras.optimizers.Adam(), metrics=metric_functions ) model_object.summary() return model_object
[ 37811, 46202, 329, 2615, 3063, 2122, 282, 406, 2257, 44, 526, 15931, 198, 198, 11748, 299, 32152, 198, 11748, 41927, 292, 198, 6738, 308, 413, 1967, 469, 69, 993, 81, 13, 1130, 62, 26791, 1330, 4049, 62, 41004, 198, 6738, 308, 413, 1967, 469, 69, 993, 81, 13, 22089, 62, 40684, 1330, 10959, 62, 26791, 198, 6738, 25962, 19, 23047, 13, 30243, 62, 40684, 1330, 269, 20471, 62, 998, 5712, 495, 198, 198, 1268, 30076, 62, 35, 3955, 16938, 11053, 62, 20373, 796, 705, 15414, 62, 27740, 5736, 6, 198, 41359, 62, 43, 4792, 4877, 62, 17513, 62, 9148, 11290, 62, 20373, 796, 705, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 6, 198, 41359, 62, 3398, 22846, 37142, 62, 20373, 796, 705, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 6, 198, 7707, 3185, 12425, 62, 49, 29462, 62, 20373, 796, 705, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 6, 198, 42, 35238, 62, 34694, 62, 35, 3955, 16938, 2849, 62, 20373, 796, 705, 14894, 62, 2435, 62, 46156, 6, 198, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 796, 705, 48545, 62, 8818, 62, 3672, 6, 198, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 796, 705, 48545, 62, 8818, 62, 26591, 6, 198, 43, 17, 62, 8845, 9947, 62, 20373, 796, 705, 75, 17, 62, 6551, 6, 198, 19108, 62, 33, 11417, 62, 35510, 44, 62, 20373, 796, 705, 1904, 62, 43501, 62, 11265, 1634, 6, 198, 198, 41359, 62, 12161, 4261, 19213, 62, 20373, 796, 269, 20471, 62, 998, 5712, 495, 13, 41359, 62, 12161, 4261, 19213, 62, 20373, 198, 1268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 20373, 796, 269, 20471, 62, 998, 5712, 495, 13, 1268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 20373, 198, 1268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 796, 269, 20471, 62, 998, 5712, 495, 13, 1268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 198, 2606, 7250, 3843, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 20373, 796, 269, 20471, 62, 998, 5712, 495, 13, 2606, 7250, 3843, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 20373, 198, 2606, 7250, 3843, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 796, 357, 198, 220, 220, 220, 269, 20471, 62, 998, 5712, 495, 13, 2606, 7250, 3843, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 198, 8, 198, 198, 7206, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 10761, 2389, 35, 1961, 62, 50, 1404, 796, 1391, 198, 220, 220, 220, 36871, 62, 43, 4792, 4877, 62, 17513, 62, 9148, 11290, 62, 20373, 25, 299, 32152, 13, 18747, 26933, 17, 11, 362, 11, 362, 11, 362, 11, 362, 11, 362, 11, 362, 4357, 288, 4906, 28, 600, 828, 198, 220, 220, 220, 36871, 62, 3398, 22846, 37142, 62, 20373, 25, 299, 32152, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 23, 11, 807, 11, 1467, 11, 1467, 11, 1987, 11, 1987, 11, 3933, 11, 3933, 11, 4764, 11, 4764, 11, 5598, 11, 5598, 11, 13108, 11, 13108, 4357, 288, 4906, 28, 600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 10560, 3185, 12425, 62, 49, 29462, 62, 20373, 25, 299, 32152, 13, 12853, 7, 1415, 11, 657, 12179, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 25, 10959, 62, 26791, 13, 16448, 52, 62, 42296, 4177, 2849, 62, 18601, 2751, 11, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 25, 657, 13, 17, 11, 198, 220, 220, 220, 23210, 62, 33, 11417, 62, 35510, 44, 62, 20373, 25, 6407, 198, 92, 198, 198, 7206, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 4944, 10761, 2389, 35, 1961, 62, 50, 1404, 796, 1391, 198, 220, 220, 220, 36871, 62, 3398, 22846, 37142, 62, 20373, 25, 299, 32152, 13, 18747, 26933, 3064, 4357, 288, 4906, 28, 600, 828, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 25, 10959, 62, 26791, 13, 16448, 52, 62, 42296, 4177, 2849, 62, 18601, 2751, 11, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 25, 657, 13, 17, 11, 198, 220, 220, 220, 23210, 62, 33, 11417, 62, 35510, 44, 62, 20373, 25, 6407, 198, 92, 198, 198, 7206, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 9693, 47643, 796, 1391, 198, 220, 220, 220, 36871, 62, 3398, 22846, 37142, 62, 20373, 25, 299, 32152, 13, 18747, 26933, 12825, 4357, 288, 4906, 28, 600, 828, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 25, 10959, 62, 26791, 13, 16448, 52, 62, 42296, 4177, 2849, 62, 18601, 2751, 11, 198, 220, 220, 220, 11741, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 25, 657, 13, 17, 11, 198, 220, 220, 220, 23210, 62, 33, 11417, 62, 35510, 44, 62, 20373, 25, 6407, 198, 92, 198, 198, 7206, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 35, 24290, 796, 1391, 198, 220, 220, 220, 3268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 20373, 25, 10959, 62, 26791, 13, 16448, 52, 62, 42296, 4177, 2849, 62, 18601, 2751, 11, 198, 220, 220, 220, 3268, 21479, 62, 10659, 3824, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 25, 657, 13, 17, 11, 198, 220, 220, 220, 23210, 62, 33, 11417, 62, 35510, 44, 62, 20373, 25, 6407, 198, 92, 198, 198, 2, 16926, 46, 7, 400, 4625, 71, 13416, 2599, 2141, 314, 635, 761, 284, 1208, 3487, 357, 13159, 12, 8344, 6657, 8, 14916, 198, 2, 290, 4268, 448, 2494, 284, 5050, 326, 2251, 281, 406, 2257, 44, 7679, 30, 628, 198, 4299, 4808, 1136, 62, 75, 301, 76, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 62, 41667, 11, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 11, 3218, 1634, 62, 20786, 11, 1441, 62, 3107, 3007, 2599, 198, 220, 220, 220, 37227, 16719, 274, 2829, 406, 2257, 44, 7679, 357, 4480, 645, 3063, 2122, 737, 628, 220, 220, 220, 1058, 17143, 997, 62, 22915, 62, 41667, 25, 7913, 286, 5072, 4991, 13, 198, 220, 220, 220, 1058, 17143, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 25, 13144, 341, 2163, 329, 42465, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 357, 11261, 307, 3804, 355, 257, 2163, 393, 4731, 737, 198, 220, 220, 220, 1058, 17143, 42465, 62, 14781, 448, 62, 4873, 25, 14258, 448, 2494, 329, 42465, 2239, 13, 198, 220, 220, 220, 1058, 17143, 3218, 1634, 62, 20786, 25, 23603, 1634, 2163, 357, 10594, 307, 973, 329, 1388, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 19590, 11, 42465, 12, 33885, 19590, 11, 290, 29275, 737, 220, 1002, 345, 466, 407, 198, 220, 220, 220, 220, 220, 220, 220, 765, 3218, 1634, 11, 787, 428, 6045, 13, 198, 220, 220, 220, 1058, 17143, 1441, 62, 3107, 3007, 25, 41146, 6056, 13, 220, 1002, 6407, 357, 25101, 828, 7679, 481, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 8379, 357, 12957, 5072, 287, 5072, 8379, 737, 198, 220, 220, 220, 1058, 7783, 25, 7679, 62, 15252, 25, 2262, 590, 286, 4600, 6122, 292, 13, 75, 6962, 13, 43, 2257, 44, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 22915, 62, 41667, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 22915, 62, 41667, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 7783, 62, 3107, 3007, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 1203, 62, 14813, 7, 8344, 6657, 62, 14781, 448, 62, 4873, 11, 352, 2014, 198, 220, 220, 220, 611, 407, 42465, 62, 14781, 448, 62, 4873, 1875, 657, 11207, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 796, 657, 13, 628, 220, 220, 220, 1441, 41927, 292, 13, 75, 6962, 13, 43, 2257, 44, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4991, 28, 22510, 62, 22915, 62, 41667, 11, 14916, 28, 14202, 11, 779, 62, 65, 4448, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 48545, 28, 8344, 6657, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 36733, 7509, 11639, 70, 4685, 313, 62, 403, 6933, 3256, 10690, 62, 36733, 7509, 11639, 9107, 418, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 36733, 7509, 11639, 1506, 519, 20996, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 1640, 1136, 62, 65, 4448, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10690, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3842, 62, 16338, 7509, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 3107, 3007, 28, 7783, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 15, 1539, 42465, 62, 14781, 448, 28, 8344, 6657, 62, 14781, 448, 62, 4873, 198, 220, 220, 220, 1267, 628, 198, 4299, 4808, 1136, 62, 17, 67, 62, 42946, 62, 75, 301, 76, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 33885, 62, 8516, 11, 997, 62, 33885, 62, 28665, 82, 11, 997, 62, 8516, 62, 525, 62, 2536, 485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 11, 997, 62, 10379, 1010, 11, 779, 62, 39231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 11, 3218, 1634, 62, 20786, 11, 1441, 62, 3107, 3007, 2599, 198, 220, 220, 220, 37227, 16719, 274, 406, 2257, 44, 7679, 351, 362, 12, 35, 3063, 2122, 13, 628, 220, 220, 220, 1058, 17143, 997, 62, 33885, 62, 8516, 25, 7913, 286, 21739, 15274, 287, 3063, 2122, 282, 16628, 13, 198, 220, 220, 220, 1058, 17143, 997, 62, 33885, 62, 28665, 82, 25, 7913, 286, 21739, 15180, 287, 3063, 2122, 282, 198, 220, 220, 220, 220, 220, 220, 220, 16628, 13, 198, 220, 220, 220, 1058, 17143, 997, 62, 8516, 62, 525, 62, 2536, 485, 25, 7913, 286, 21739, 15274, 583, 8106, 33769, 13, 198, 220, 220, 220, 1058, 17143, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 25, 7913, 286, 21739, 15180, 583, 8106, 33769, 13, 198, 220, 220, 220, 1058, 17143, 997, 62, 10379, 1010, 25, 7913, 286, 3063, 2122, 282, 16628, 13, 198, 220, 220, 220, 1058, 17143, 779, 62, 39231, 25, 41146, 6056, 13, 220, 1002, 6407, 357, 25101, 828, 481, 357, 1662, 8, 14841, 13015, 198, 220, 220, 220, 220, 220, 220, 220, 706, 3063, 2122, 13, 198, 220, 220, 220, 1058, 17143, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 25, 4091, 2205, 329, 4600, 62, 1136, 62, 75, 301, 76, 62, 29289, 44646, 198, 220, 220, 220, 1058, 17143, 42465, 62, 14781, 448, 62, 4873, 25, 16766, 13, 198, 220, 220, 220, 1058, 17143, 3218, 1634, 62, 20786, 25, 16766, 13, 198, 220, 220, 220, 1058, 17143, 1441, 62, 3107, 3007, 25, 16766, 13, 198, 220, 220, 220, 1058, 7783, 25, 7679, 62, 15252, 25, 2262, 590, 286, 4600, 6122, 292, 13, 75, 6962, 13, 3103, 85, 43, 2257, 44, 17, 35, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 33885, 62, 8516, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 33885, 62, 8516, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 33885, 62, 28665, 82, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 33885, 62, 28665, 82, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 8516, 62, 525, 62, 2536, 485, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 8516, 62, 525, 62, 2536, 485, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 28665, 82, 62, 525, 62, 2536, 485, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 28665, 82, 62, 525, 62, 2536, 485, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 7, 22510, 62, 10379, 1010, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 10379, 1010, 11, 352, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 1904, 62, 39231, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 7783, 62, 3107, 3007, 8, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 1203, 62, 14813, 7, 8344, 6657, 62, 14781, 448, 62, 4873, 11, 352, 2014, 198, 220, 220, 220, 611, 407, 42465, 62, 14781, 448, 62, 4873, 1875, 657, 11207, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 796, 657, 13, 628, 220, 220, 220, 1441, 41927, 292, 13, 75, 6962, 13, 3103, 85, 43, 2257, 44, 17, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 22510, 62, 10379, 1010, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 7857, 16193, 22510, 62, 33885, 62, 8516, 11, 997, 62, 33885, 62, 28665, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 35002, 16193, 22510, 62, 8516, 62, 525, 62, 2536, 485, 11, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 828, 198, 220, 220, 220, 220, 220, 220, 220, 24511, 11639, 31642, 6, 611, 779, 62, 39231, 2073, 705, 12102, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 18982, 11639, 354, 8961, 62, 12957, 3256, 288, 10520, 62, 4873, 16193, 16, 11, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 14202, 11, 779, 62, 65, 4448, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 48545, 28, 8344, 6657, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 36733, 7509, 11639, 70, 4685, 313, 62, 403, 6933, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 36733, 7509, 11639, 1506, 519, 20996, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 10690, 62, 36733, 7509, 11639, 9107, 418, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10690, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 3107, 3007, 28, 7783, 62, 3107, 3007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 28, 15, 13, 15, 11, 42465, 62, 14781, 448, 28, 8344, 6657, 62, 14781, 448, 62, 4873, 198, 220, 220, 220, 1267, 628, 198, 4299, 4808, 17953, 62, 75, 6962, 62, 2164, 1638, 276, 62, 49720, 7, 18076, 62, 11600, 2599, 198, 220, 220, 220, 37227, 16719, 274, 11685, 329, 1036, 1638, 276, 11210, 1366, 13, 628, 220, 220, 220, 347, 796, 1271, 286, 3063, 7021, 198, 220, 220, 220, 327, 796, 2472, 1271, 286, 3063, 11685, 628, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 25, 28261, 351, 262, 1708, 8251, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 15414, 62, 27740, 5736, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 12, 19, 299, 32152, 7177, 351, 5128, 15225, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 62, 25928, 62, 8516, 11, 997, 62, 25928, 62, 28665, 82, 11, 997, 62, 30909, 62, 22355, 11, 997, 62, 354, 8961, 737, 198, 220, 220, 220, 3038, 62, 11600, 17816, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 6, 5974, 4129, 12, 33, 299, 32152, 7177, 351, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 11685, 329, 1123, 2512, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 6, 5974, 4129, 12, 34, 299, 32152, 7177, 351, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 329, 1123, 3063, 7679, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 6, 5974, 4129, 12, 34, 299, 32152, 7177, 351, 4268, 448, 2494, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 3063, 7679, 13, 220, 5765, 1271, 19841, 657, 329, 645, 4268, 448, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 14894, 62, 2435, 62, 46156, 6, 5974, 41146, 6056, 13, 220, 1002, 6407, 11, 481, 1394, 640, 198, 220, 220, 220, 220, 220, 220, 220, 15793, 1566, 262, 886, 290, 9585, 3063, 12, 43, 2257, 44, 11685, 1566, 262, 886, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 10352, 11, 481, 4781, 640, 15793, 706, 717, 3063, 12, 43, 2257, 44, 7679, 11, 788, 466, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 1231, 406, 2257, 44, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 48545, 62, 8818, 62, 3672, 6, 5974, 6530, 286, 14916, 2163, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 11685, 13, 220, 12039, 307, 6292, 416, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 998, 5712, 495, 62, 26791, 13, 9122, 62, 48545, 62, 8818, 44646, 198, 220, 220, 220, 3038, 62, 11600, 17816, 48545, 62, 8818, 62, 26591, 6, 5974, 12995, 357, 6649, 3008, 11507, 8, 329, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 2163, 329, 477, 3063, 11685, 13, 220, 2034, 13508, 691, 284, 797, 41596, 290, 304, 41596, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 75, 17, 62, 6551, 6, 5974, 14331, 329, 406, 62, 17, 3218, 1634, 287, 3063, 11685, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 1904, 62, 43501, 62, 11265, 1634, 6, 5974, 41146, 6056, 13, 220, 1002, 6407, 11, 481, 779, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 3487, 1634, 706, 1123, 3063, 7679, 13, 628, 220, 220, 220, 1058, 7783, 25, 5128, 62, 29289, 62, 15252, 25, 23412, 7679, 329, 1036, 1638, 276, 11210, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 357, 39098, 286, 4600, 6122, 292, 13, 75, 6962, 13, 20560, 63, 737, 198, 220, 220, 220, 1058, 7783, 25, 938, 62, 29289, 62, 15252, 25, 4586, 7679, 329, 7587, 691, 1036, 1638, 276, 11210, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 357, 39098, 286, 4600, 6122, 292, 13, 75, 6962, 63, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 6822, 5128, 26498, 13, 198, 220, 220, 220, 5128, 62, 27740, 5736, 796, 3038, 62, 11600, 58, 1268, 30076, 62, 35, 3955, 16938, 11053, 62, 20373, 60, 198, 220, 220, 220, 997, 62, 75, 6962, 62, 1525, 62, 9967, 796, 3038, 62, 11600, 58, 41359, 62, 43, 4792, 4877, 62, 17513, 62, 9148, 11290, 62, 20373, 60, 198, 220, 220, 220, 997, 62, 354, 8961, 62, 1525, 62, 29289, 796, 3038, 62, 11600, 58, 41359, 62, 3398, 22846, 37142, 62, 20373, 60, 198, 220, 220, 220, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 796, 3038, 62, 11600, 58, 7707, 3185, 12425, 62, 49, 29462, 62, 20373, 60, 198, 220, 220, 220, 1394, 62, 2435, 62, 46156, 796, 3038, 62, 11600, 58, 42, 35238, 62, 34694, 62, 35, 3955, 16938, 2849, 62, 20373, 60, 198, 220, 220, 220, 14916, 62, 8818, 62, 3672, 796, 3038, 62, 11600, 58, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 60, 198, 220, 220, 220, 14916, 62, 8818, 62, 26591, 796, 3038, 62, 11600, 58, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 60, 198, 220, 220, 220, 300, 17, 62, 6551, 796, 3038, 62, 11600, 58, 43, 17, 62, 8845, 9947, 62, 20373, 60, 198, 220, 220, 220, 779, 62, 43501, 62, 11265, 1634, 796, 3038, 62, 11600, 58, 19108, 62, 33, 11417, 62, 35510, 44, 62, 20373, 60, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 27740, 5736, 11, 2748, 62, 27740, 5736, 28, 77, 32152, 13, 18747, 26933, 19, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 62, 77, 32152, 62, 18747, 7, 15414, 62, 27740, 5736, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 18223, 263, 62, 77, 32152, 62, 18747, 7, 15414, 62, 27740, 5736, 11, 657, 8, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 11, 997, 62, 27740, 5736, 28, 16, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 62, 77, 32152, 62, 18747, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 62, 77, 32152, 62, 18747, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 11, 352, 8, 628, 220, 220, 220, 997, 62, 27372, 796, 18896, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 8, 198, 220, 220, 220, 997, 62, 75, 6962, 796, 299, 32152, 13, 16345, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 22510, 62, 27372, 11, 718, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 293, 80, 7, 22510, 62, 27372, 11, 767, 8, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 354, 8961, 62, 1525, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2748, 62, 27740, 5736, 28, 77, 32152, 13, 18747, 26933, 22510, 62, 75, 6962, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 62, 77, 32152, 62, 18747, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 62, 77, 32152, 62, 18747, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 11, 352, 8, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2748, 62, 27740, 5736, 28, 77, 32152, 13, 18747, 26933, 22510, 62, 75, 6962, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 293, 80, 62, 77, 32152, 62, 18747, 7, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 11, 352, 2014, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 14894, 62, 2435, 62, 46156, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 75, 17, 62, 6551, 11, 657, 2014, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 1904, 62, 43501, 62, 11265, 1634, 8, 628, 220, 220, 220, 1303, 2141, 4036, 3404, 13, 198, 220, 220, 220, 5128, 62, 29289, 62, 15252, 796, 41927, 292, 13, 75, 6962, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 28, 83, 29291, 7, 15414, 62, 27740, 5736, 13, 83, 349, 396, 28955, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 7679, 62, 15252, 796, 41927, 292, 13, 75, 6962, 13, 5990, 76, 1133, 7, 67, 12078, 16193, 18, 11, 352, 11, 362, 11, 604, 4008, 7, 15414, 62, 29289, 62, 15252, 8, 628, 220, 220, 220, 3218, 1634, 62, 20786, 796, 10959, 62, 26791, 13, 1136, 62, 6551, 62, 16338, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 62, 6551, 28, 75, 17, 62, 6551, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 997, 62, 27372, 796, 18896, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 8, 198, 220, 220, 220, 997, 62, 75, 6962, 796, 299, 32152, 13, 16345, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 8, 198, 220, 220, 220, 479, 796, 532, 16, 198, 220, 220, 220, 1441, 62, 3107, 3007, 796, 6407, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 27372, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 22510, 62, 75, 6962, 62, 1525, 62, 9967, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 3107, 3007, 796, 1394, 62, 2435, 62, 46156, 290, 479, 14512, 997, 62, 75, 6962, 532, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1394, 62, 2435, 62, 46156, 393, 479, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 4808, 1136, 62, 17, 67, 62, 42946, 62, 75, 301, 76, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 33885, 62, 8516, 28, 18, 11, 997, 62, 33885, 62, 28665, 82, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 525, 62, 2536, 485, 28, 16, 11, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 10379, 1010, 28, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 58, 74, 4357, 779, 62, 39231, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11639, 10424, 62, 82, 17225, 1868, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3218, 1634, 62, 20786, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 3107, 3007, 28, 7783, 62, 3107, 3007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 17, 67, 62, 42946, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 33885, 62, 8516, 28, 18, 11, 997, 62, 33885, 62, 28665, 82, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 525, 62, 2536, 485, 28, 16, 11, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 10379, 1010, 28, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 58, 74, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 62, 4906, 62, 8841, 28, 998, 5712, 495, 62, 26791, 13, 43335, 62, 47, 29266, 2751, 62, 18601, 2751, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 16338, 7509, 28, 16338, 1634, 62, 20786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 48545, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 8818, 62, 8841, 28, 48545, 62, 8818, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 1640, 62, 260, 2290, 28, 48545, 62, 8818, 62, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 1640, 62, 417, 84, 28, 48545, 62, 8818, 62, 26591, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 58, 74, 60, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 14781, 448, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 69, 7861, 28, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 43501, 62, 11265, 1634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 43501, 62, 27237, 62, 29289, 3419, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 3107, 3007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 18, 67, 62, 7742, 278, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 259, 62, 17497, 28, 16, 11, 997, 62, 28665, 82, 62, 259, 62, 17497, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 258, 2337, 62, 259, 62, 17497, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 525, 62, 2536, 485, 28, 16, 11, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 258, 2337, 62, 525, 62, 2536, 485, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5933, 278, 62, 4906, 62, 8841, 28, 998, 5712, 495, 62, 26791, 13, 22921, 62, 16402, 3535, 2751, 62, 18601, 2751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 17, 67, 62, 7742, 278, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 259, 62, 17497, 28, 17, 11, 997, 62, 28665, 82, 62, 259, 62, 17497, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8516, 62, 525, 62, 2536, 485, 28, 17, 11, 997, 62, 28665, 82, 62, 525, 62, 2536, 485, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5933, 278, 62, 4906, 62, 8841, 28, 998, 5712, 495, 62, 26791, 13, 22921, 62, 16402, 3535, 2751, 62, 18601, 2751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 2704, 1078, 3101, 62, 29289, 3419, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 1441, 5128, 62, 29289, 62, 15252, 11, 7679, 62, 15252, 628, 198, 4299, 4808, 17953, 62, 75, 6962, 62, 2150, 81, 1638, 276, 7, 18076, 62, 11600, 2599, 198, 220, 220, 220, 37227, 16719, 274, 11685, 329, 555, 2164, 1638, 276, 1366, 13, 628, 220, 220, 220, 406, 796, 1271, 286, 406, 2257, 44, 11685, 628, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 25, 28261, 351, 262, 1708, 8251, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 15414, 62, 27740, 5736, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 12, 17, 299, 32152, 7177, 351, 5128, 15225, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 62, 30909, 62, 22355, 11, 997, 62, 354, 8961, 737, 198, 220, 220, 220, 3038, 62, 11600, 17816, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 6, 5974, 4129, 12, 43, 299, 32152, 7177, 351, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 9619, 329, 1123, 406, 2257, 44, 7679, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 6, 5974, 4129, 12, 43, 299, 32152, 7177, 351, 4268, 448, 2494, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 406, 2257, 44, 7679, 13, 220, 5765, 1271, 19841, 657, 329, 645, 4268, 448, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 48545, 62, 8818, 62, 3672, 6, 5974, 6530, 286, 14916, 2163, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 406, 2257, 44, 11685, 13, 220, 12039, 307, 6292, 416, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 998, 5712, 495, 62, 26791, 13, 9122, 62, 48545, 62, 8818, 44646, 198, 220, 220, 220, 3038, 62, 11600, 17816, 48545, 62, 8818, 62, 26591, 6, 5974, 12995, 357, 6649, 3008, 11507, 8, 329, 198, 220, 220, 220, 220, 220, 220, 220, 14916, 2163, 329, 477, 406, 2257, 44, 11685, 13, 220, 2034, 13508, 691, 284, 797, 41596, 290, 304, 41596, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 75, 17, 62, 6551, 6, 5974, 14331, 329, 406, 62, 17, 3218, 1634, 287, 406, 2257, 44, 11685, 13, 198, 220, 220, 220, 3038, 62, 11600, 17816, 1904, 62, 43501, 62, 11265, 1634, 6, 5974, 41146, 6056, 13, 220, 1002, 6407, 11, 481, 779, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 3487, 1634, 706, 1123, 406, 2257, 44, 7679, 13, 628, 220, 220, 220, 1058, 7783, 25, 5128, 62, 29289, 62, 15252, 25, 23412, 7679, 329, 555, 2164, 1638, 276, 1366, 357, 39098, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 6122, 292, 13, 75, 6962, 13, 20560, 63, 737, 198, 220, 220, 220, 1058, 7783, 25, 938, 62, 29289, 62, 15252, 25, 4586, 7679, 329, 7587, 691, 428, 900, 286, 198, 220, 220, 220, 220, 220, 220, 220, 555, 2164, 1638, 276, 1366, 357, 39098, 286, 4600, 6122, 292, 13, 75, 6962, 63, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 6822, 5128, 26498, 13, 198, 220, 220, 220, 5128, 62, 27740, 5736, 796, 3038, 62, 11600, 58, 1268, 30076, 62, 35, 3955, 16938, 11053, 62, 20373, 60, 198, 220, 220, 220, 997, 62, 354, 8961, 62, 1525, 62, 29289, 796, 3038, 62, 11600, 58, 41359, 62, 3398, 22846, 37142, 62, 20373, 60, 198, 220, 220, 220, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 796, 3038, 62, 11600, 58, 7707, 3185, 12425, 62, 49, 29462, 62, 20373, 60, 198, 220, 220, 220, 14916, 62, 8818, 62, 3672, 796, 3038, 62, 11600, 58, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 20373, 60, 198, 220, 220, 220, 14916, 62, 8818, 62, 26591, 796, 3038, 62, 11600, 58, 10659, 3824, 6234, 62, 42296, 4177, 2849, 62, 1847, 47, 7801, 62, 20373, 60, 198, 220, 220, 220, 300, 17, 62, 6551, 796, 3038, 62, 11600, 58, 43, 17, 62, 8845, 9947, 62, 20373, 60, 198, 220, 220, 220, 779, 62, 43501, 62, 11265, 1634, 796, 3038, 62, 11600, 58, 19108, 62, 33, 11417, 62, 35510, 44, 62, 20373, 60, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 27740, 5736, 11, 2748, 62, 27740, 5736, 28, 77, 32152, 13, 18747, 26933, 17, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 62, 77, 32152, 62, 18747, 7, 15414, 62, 27740, 5736, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 18223, 263, 62, 77, 32152, 62, 18747, 7, 15414, 62, 27740, 5736, 11, 657, 8, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 354, 8961, 62, 1525, 62, 29289, 11, 997, 62, 27740, 5736, 28, 16, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 41433, 62, 77, 32152, 62, 18747, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 62, 77, 32152, 62, 18747, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 11, 352, 8, 628, 220, 220, 220, 997, 62, 75, 6962, 796, 18896, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 8, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 77, 32152, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2748, 62, 27740, 5736, 28, 77, 32152, 13, 18747, 26933, 22510, 62, 75, 6962, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 293, 80, 62, 77, 32152, 62, 18747, 7, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 11, 352, 2014, 628, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 469, 80, 7, 75, 17, 62, 6551, 11, 657, 2014, 198, 220, 220, 220, 4049, 62, 41004, 13, 30493, 62, 271, 62, 2127, 21052, 7, 1904, 62, 43501, 62, 11265, 1634, 8, 628, 220, 220, 220, 1303, 2141, 4036, 3404, 13, 198, 220, 220, 220, 5128, 62, 29289, 62, 15252, 796, 41927, 292, 13, 75, 6962, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 28, 83, 29291, 7, 15414, 62, 27740, 5736, 13, 83, 349, 396, 28955, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3218, 1634, 62, 20786, 796, 10959, 62, 26791, 13, 1136, 62, 6551, 62, 16338, 7509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 62, 6551, 28, 75, 17, 62, 6551, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 997, 62, 75, 6962, 796, 18896, 7, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 8, 198, 220, 220, 220, 7679, 62, 15252, 796, 6045, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 75, 6962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7679, 62, 15252, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 62, 15414, 62, 29289, 62, 15252, 796, 5128, 62, 29289, 62, 15252, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 62, 15414, 62, 29289, 62, 15252, 796, 7679, 62, 15252, 628, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 4808, 1136, 62, 75, 301, 76, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 62, 41667, 28, 22510, 62, 354, 8961, 62, 1525, 62, 29289, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 48545, 62, 20786, 62, 273, 62, 3672, 11639, 10424, 62, 82, 17225, 1868, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42465, 62, 14781, 448, 62, 4873, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3218, 1634, 62, 20786, 28, 16338, 1634, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 3107, 3007, 28, 72, 14512, 997, 62, 75, 6962, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 5661, 62, 15414, 62, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 48545, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 8818, 62, 8841, 28, 48545, 62, 8818, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 1640, 62, 260, 2290, 28, 48545, 62, 8818, 62, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 62, 1640, 62, 417, 84, 28, 48545, 62, 8818, 62, 26591, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4268, 448, 62, 4873, 62, 1525, 62, 29289, 58, 72, 60, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 14781, 448, 62, 29289, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 69, 7861, 28, 14781, 448, 62, 4873, 62, 1525, 62, 29289, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 43501, 62, 11265, 1634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 43501, 62, 27237, 62, 29289, 3419, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 7679, 62, 15252, 796, 10959, 62, 26791, 13, 1136, 62, 2704, 1078, 3101, 62, 29289, 3419, 7, 29289, 62, 15252, 8, 628, 220, 220, 220, 1441, 5128, 62, 29289, 62, 15252, 11, 7679, 62, 15252, 628, 198, 4299, 2251, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 11, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 11, 3038, 62, 11600, 62, 26313, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 67, 1072, 11, 2994, 62, 8818, 11, 18663, 62, 12543, 2733, 2599, 198, 220, 220, 220, 37227, 16719, 274, 3063, 12, 43, 2257, 44, 2746, 13, 628, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 25, 4091, 2205, 329, 4600, 62, 17953, 62, 75, 6962, 62, 2164, 1638, 276, 62, 49720, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 345, 466, 407, 765, 284, 779, 1036, 1638, 276, 11210, 1366, 11, 787, 428, 6045, 13, 198, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 25, 4091, 2205, 329, 4600, 62, 17953, 62, 75, 6962, 62, 2150, 81, 1638, 276, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 345, 466, 407, 765, 284, 779, 555, 2164, 1638, 276, 11210, 1366, 11, 787, 428, 6045, 13, 198, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 62, 26313, 25, 4091, 2205, 329, 4600, 62, 17953, 62, 75, 6962, 62, 2150, 81, 1638, 276, 44646, 220, 1002, 345, 466, 198, 220, 220, 220, 220, 220, 220, 220, 407, 765, 284, 779, 6006, 47643, 1366, 11, 787, 428, 6045, 13, 198, 220, 220, 220, 1058, 17143, 3038, 62, 11600, 62, 67, 1072, 25, 4091, 2205, 329, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 66, 20471, 62, 998, 5712, 495, 13, 17953, 62, 67, 1072, 62, 75, 6962, 44646, 198, 220, 220, 220, 1058, 17143, 2994, 62, 8818, 25, 22014, 2163, 13, 198, 220, 220, 220, 1058, 17143, 18663, 62, 12543, 2733, 25, 352, 12, 35, 1351, 286, 18663, 5499, 13, 198, 220, 220, 220, 1058, 7783, 25, 2746, 62, 15252, 25, 26970, 13363, 3063, 12, 43, 2257, 44, 2746, 357, 39098, 286, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 6122, 292, 13, 27530, 13, 17633, 63, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 5128, 62, 29289, 62, 48205, 796, 17635, 198, 220, 220, 220, 27172, 3101, 62, 29289, 62, 48205, 796, 17635, 628, 220, 220, 220, 611, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 62, 11612, 796, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 796, 5550, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 10761, 2389, 35, 1961, 62, 50, 1404, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 13, 19119, 7, 18076, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 62, 11612, 8, 628, 220, 220, 220, 220, 220, 220, 220, 428, 62, 15414, 62, 29289, 62, 15252, 11, 428, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 17953, 62, 75, 6962, 62, 2164, 1638, 276, 62, 49720, 7, 18076, 62, 11600, 62, 2164, 1638, 276, 62, 49720, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 15414, 62, 29289, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27172, 3101, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 8, 628, 220, 220, 220, 611, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 62, 11612, 796, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 796, 5550, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 4944, 10761, 2389, 35, 1961, 62, 50, 1404, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 13, 19119, 7, 18076, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 62, 11612, 8, 628, 220, 220, 220, 220, 220, 220, 220, 428, 62, 15414, 62, 29289, 62, 15252, 11, 428, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 17953, 62, 75, 6962, 62, 2150, 81, 1638, 276, 7, 18076, 62, 11600, 62, 2150, 81, 1638, 276, 62, 49720, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 15414, 62, 29289, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27172, 3101, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 8, 628, 220, 220, 220, 611, 3038, 62, 11600, 62, 26313, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 26313, 62, 11612, 796, 3038, 62, 11600, 62, 26313, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 26313, 796, 5550, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 9693, 47643, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 11600, 62, 26313, 13, 19119, 7, 18076, 62, 11600, 62, 26313, 62, 11612, 8, 628, 220, 220, 220, 220, 220, 220, 220, 428, 62, 15414, 62, 29289, 62, 15252, 11, 428, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 17953, 62, 75, 6962, 62, 2150, 81, 1638, 276, 7, 18076, 62, 11600, 62, 26313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 15414, 62, 29289, 62, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27172, 3101, 62, 29289, 62, 48205, 13, 33295, 7, 5661, 62, 2704, 1078, 3101, 62, 29289, 62, 15252, 8, 628, 220, 220, 220, 3038, 62, 11600, 62, 67, 1072, 62, 11612, 796, 3038, 62, 11600, 62, 67, 1072, 13, 30073, 3419, 198, 220, 220, 220, 3038, 62, 11600, 62, 67, 1072, 796, 5550, 38865, 62, 3185, 24131, 62, 35, 18379, 62, 35, 24290, 13, 30073, 3419, 198, 220, 220, 220, 3038, 62, 11600, 62, 67, 1072, 13, 19119, 7, 18076, 62, 11600, 62, 67, 1072, 62, 11612, 8, 628, 220, 220, 220, 611, 18896, 7, 2704, 1078, 3101, 62, 29289, 62, 48205, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 41927, 292, 13, 75, 6962, 13, 1102, 9246, 268, 378, 7, 2704, 1078, 3101, 62, 29289, 62, 48205, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 15252, 796, 27172, 3101, 62, 29289, 62, 48205, 58, 15, 60, 628, 220, 220, 220, 7679, 62, 15252, 796, 269, 20471, 62, 998, 5712, 495, 13, 17953, 62, 67, 1072, 62, 75, 6962, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 29289, 62, 15252, 28, 29289, 62, 15252, 11, 3038, 62, 11600, 28, 18076, 62, 11600, 62, 67, 1072, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2746, 62, 15252, 796, 41927, 292, 13, 27530, 13, 17633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 28, 15414, 62, 29289, 62, 48205, 11, 23862, 28, 29289, 62, 15252, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2746, 62, 15252, 13, 5589, 576, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 28, 22462, 62, 8818, 11, 6436, 7509, 28, 6122, 292, 13, 40085, 11341, 13, 23159, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 20731, 28, 4164, 1173, 62, 12543, 2733, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2746, 62, 15252, 13, 49736, 3419, 628, 220, 220, 220, 1441, 2746, 62, 15252, 198 ]
2.363954
8,872
"""Module defining Machinery, Species and ProcessingMap classes.""" # python 2/3 compatibility from __future__ import division, print_function, absolute_import # global imports from collections import namedtuple from scipy.sparse import ( csr_matrix, csc_matrix, lil_matrix, coo_matrix, hstack, eye ) import numpy # class storing machinery-related information Machinery = namedtuple('Machinery', 'composition processing_cost weight') class Species(object): """ Species-related information. Parameters ---------- ids : list of str Identifiers of species stored (metabolites/macromolecules). production : sparse matrix Production matrix (in terms of metabolites). prod_proc_cost : sparse matrix Production processing cost matrix. degradation : sparse matrix Degradation matrix (in terms of metabolites). deg_proc_cost : sparsematrix Degradation processing cost matrix. weight : sparse matrix Weight matrix (in terms of compartments). """ def __init__(self, data, metabolites): """Constructor.""" self._metabolites = metabolites # extract composition of base species self.ids = (metabolites + [m.id for m in data.proteins.macromolecules] + [m.id for m in data.rnas.macromolecules] + [m.id for m in data.dna.macromolecules]) # polymers and metabolites are allowed to have the same identifier # by looping on reversed list, we ensure that the index of the # metabolite is returned self._index = {m: i for i, m in reversed(list(enumerate(self.ids)))} # metabolites (weights and processing costs are zero) nb_comp = len(data.metabolism.compartments) nb_met = len(metabolites) nb_processes = len(data.processes.processes) met_comp = -eye(nb_met) met_proc = csr_matrix((nb_processes, nb_met)) met_deg = eye(nb_met) met_deg_proc = csr_matrix((nb_processes, nb_met)) met_weight = csr_matrix((nb_comp, nb_met)) # macromolecules [macro_comp, macro_proc, macro_deg, macro_deg_proc, macro_weight] \ = compute_macromolecule_composition(data, metabolites) self.production = hstack([met_comp, macro_comp]).tocsr() self.prod_proc_cost = hstack([met_proc, macro_proc]).tocsr() self.degradation = hstack([met_deg, macro_deg]).tocsr() self.deg_proc_cost = hstack([met_deg_proc, macro_deg_proc]).tocsr() self.weight = hstack([met_weight, macro_weight]).tocsr() def create_machinery(self, machinery_set): """ Create machineries from a list of RBA machinery composition structures. Parameters ---------- machinery_set : list of rba.xml.MachineryComposition Machinery compositions. Returns ------- Machinery object Contains the composition, processing cost and weight matrices of machineries provided as input. """ species = lil_matrix((len(self.ids), len(machinery_set))) for col, machinery in enumerate(machinery_set): for reac in machinery.reactants: species[self._index[reac.species], col] += reac.stoichiometry for prod in machinery.products: species[self._index[prod.species], col] -= prod.stoichiometry return Machinery(self.production*species, self.prod_proc_cost*species, self.weight*species) def metabolite_synthesis(self): """ Create reactions corresponding to synthesis of macrometabolites. Macrometabolites are species that are both a metabolite and a macromolecule (typically tRNAs). Returns ------- Tuple of 2 elements First element is a list of stoichiometries vectors, each vector representing a reaction. The second element are the ids of the metabolites being synthesized by these reactions. """ names = [] reactions = [] nb_met = len(self._metabolites) macrometabolites = self.ids[nb_met:] for index, macro in enumerate(macrometabolites): # if a macromolecule is also a metabolite, # it appears twice in the species list. met_index = self._index[macro] macro_index = nb_met + index if met_index < nb_met: # create biosynthesis reaction reaction = self.production[:, macro_index].tolil() reaction[met_index, 0] = 1 reactions.append(reaction) names.append(macro + '_synthesis') return reactions, names def compute_macromolecule_composition(data, metabolites): """ Compute base information of macromolecules. Returns ------- (production, production_processing_cost, degradation, degradation_processing_cost, weight) tuple """ nb_processes = len(data.processes.processes) compartments = [c.id for c in data.metabolism.compartments] # get base macromolecule information proteins = MacromoleculeSet(data.proteins, compartments, metabolites, nb_processes) rnas = MacromoleculeSet(data.rnas, compartments, metabolites, nb_processes) dna = MacromoleculeSet(data.dna, compartments, metabolites, nb_processes) # apply processing maps macro_sets = {'protein': proteins, 'rna': rnas, 'dna': dna} maps = {m.id: m for m in data.processes.processing_maps} for p_index, process in enumerate(data.processes.processes): for prod in process.processings.productions: inputs = [i.species for i in prod.inputs] macro_sets[prod.set].apply_production_map( maps[prod.processing_map], p_index, inputs ) for deg in process.processings.degradations: inputs = [i.species for i in deg.inputs] macro_sets[deg.set].apply_degradation_map( maps[deg.processing_map], p_index, inputs ) # aggregate matrices across sets production_metabolites = [s.production for s in (proteins, rnas, dna)] production_cost = [s.production_cost for s in (proteins, rnas, dna)] degradation_metabolites = [s.degradation for s in (proteins, rnas, dna)] degradation_cost = [s.degradation_cost for s in (proteins, rnas, dna)] weight = [s.weight for s in (proteins, rnas, dna)] return (hstack(production_metabolites), hstack(production_cost), hstack(degradation_metabolites), hstack(degradation_cost), hstack(weight)) class MacromoleculeSet(object): """Macromolecule information.""" def __init__(self, macro_set, compartments, metabolites, nb_processes): """Initialize set with zero production/degradation costs.""" self.components = [c.id for c in macro_set.components] self._molecule_index = { m.id: i for i, m in enumerate(macro_set.macromolecules) } self._component_matrix = self._extract_component_matrix(macro_set) self.weight = self._extract_weight_matrix( macro_set, self._component_matrix, compartments ) self._metabolites = metabolites nb_met = len(metabolites) nb_mol = len(self._molecule_index) self.production = coo_matrix((nb_met, nb_mol)) self.degradation = coo_matrix((nb_met, nb_mol)) self.production_cost = coo_matrix((nb_processes, nb_mol)) self.degradation_cost = coo_matrix((nb_processes, nb_mol)) def _extract_component_matrix(self, macro_set): """ Extract component matrix from macromolecule data. A component matrix is the description of macromolecules in terms of components (e.g. amino acids). Compare composition matrix, the description in terms of metabolites consumed and produced for synthesizing one macromolecule. """ nb_macros = len(macro_set.macromolecules) C = lil_matrix((len(self.components), nb_macros)) for col, macro in enumerate(macro_set.macromolecules): for c in macro.composition: C[self.components.index(c.component), col] = c.stoichiometry return C.tocsr() def _extract_weight_matrix(self, macro_set, C, compartments): """Compute weight and associate weight with location.""" # we first compute weight per component, then weight per molecule w = csr_matrix([c.weight for c in macro_set.components], dtype='float') location = [compartments.index(m.compartment) for m in macro_set.macromolecules] nb_macros = len(macro_set.macromolecules) W = csr_matrix(((w*C).toarray().ravel(), (location, range(nb_macros))), shape=(len(compartments), nb_macros)) return W class ProcessingMap(object): """Class storing processing maps.""" def __init__(self, map_, components, metabolites): """ Constructor. Parameters ---------- map_ : rba.xml.ProcessingMap Structure containing processing map. components : list of rba.xml.Components Components handled by component map. metabolites : list of str Metabolites. """ nb_metabolites = len(metabolites) nb_components = len(components) met_index = {m: i for i, m in enumerate(metabolites)} # store constant costs self._metabolite_constant \ = self._cost_vector(map_.constant_processing, met_index) self._processing_constant = numpy.zeros(1) # store component based costs self._metabolite_table = numpy.zeros([nb_metabolites, nb_components]) self._processing_table = numpy.zeros(nb_components) for proc in map_.component_processings: c_index = components.index(proc.component) self._processing_table[c_index] += proc.machinery_cost self._metabolite_table[:, c_index] += self._cost_vector(proc, met_index) def _cost_vector(self, proc, met_index): """Transform processing data into a metabolite vector.""" result = numpy.zeros(len(met_index)) for reac in proc.reactants: result[met_index[reac.species]] -= reac.stoichiometry for prod in proc.products: result[met_index[prod.species]] += prod.stoichiometry return result def apply_map(self, component_matrix): """ Transform component matrix to metabolite matrix. Parameters ---------- component_matrix: matrix Description of macromolecules in terms of components (columns are macromolecules, rows are components). Returns ------- (composition, processing_cost) tuple composition is a metabolite matrix describing metabolites consumed/produced during macromolecule synthesis/degradation (depending on definition of the map). Columns are macromolecules. Rows are metabolites. A negative coefficient means the metabolite is *produced* (this is a composition matrix, not a reaction matrix). processing_cost is a matrix where columns are macromolecules and lines are processes. It describes how many resources of a process are used during macromolecule synthesis/degradation. """ # column selector used to duplicate vectors to match final matrix size cols = numpy.zeros(component_matrix.shape[1], dtype = int) metab_cost = (csr_matrix(self._metabolite_table) * component_matrix + csr_matrix(self._metabolite_constant).T[:, cols]) proc_cost = (csr_matrix(self._processing_table) * component_matrix + csr_matrix(self._processing_constant).T[:, cols]) return metab_cost, proc_cost
[ 37811, 26796, 16215, 7080, 15451, 11, 28540, 290, 28403, 13912, 6097, 526, 15931, 198, 198, 2, 21015, 362, 14, 18, 17764, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 11, 4112, 62, 11748, 198, 198, 2, 3298, 17944, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 357, 198, 220, 220, 220, 269, 27891, 62, 6759, 8609, 11, 269, 1416, 62, 6759, 8609, 11, 42280, 62, 6759, 8609, 11, 763, 78, 62, 6759, 8609, 11, 289, 25558, 11, 4151, 198, 220, 220, 220, 1267, 198, 11748, 299, 32152, 198, 198, 2, 1398, 23069, 20230, 12, 5363, 1321, 198, 49999, 15451, 796, 3706, 83, 29291, 10786, 49999, 15451, 3256, 705, 785, 9150, 7587, 62, 15805, 3463, 11537, 628, 198, 4871, 28540, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28540, 12, 5363, 1321, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 2340, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11440, 13350, 286, 4693, 8574, 357, 4164, 28426, 2737, 14, 20285, 398, 2305, 13930, 737, 198, 220, 220, 220, 3227, 1058, 29877, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 19174, 17593, 357, 259, 2846, 286, 49574, 737, 198, 220, 220, 220, 40426, 62, 36942, 62, 15805, 1058, 29877, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 19174, 7587, 1575, 17593, 13, 198, 220, 220, 220, 27486, 1058, 29877, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 1024, 26317, 17593, 357, 259, 2846, 286, 49574, 737, 198, 220, 220, 220, 3396, 62, 36942, 62, 15805, 1058, 29877, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 1024, 26317, 7587, 1575, 17593, 13, 198, 220, 220, 220, 3463, 1058, 29877, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 17593, 357, 259, 2846, 286, 552, 32514, 737, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1366, 11, 49574, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 273, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4164, 28426, 2737, 796, 49574, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 11742, 286, 2779, 4693, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2340, 796, 357, 4164, 28426, 2737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 685, 76, 13, 312, 329, 285, 287, 1366, 13, 1676, 660, 1040, 13, 20285, 398, 2305, 13930, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 685, 76, 13, 312, 329, 285, 287, 1366, 13, 81, 24716, 13, 20285, 398, 2305, 13930, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 685, 76, 13, 312, 329, 285, 287, 1366, 13, 67, 2616, 13, 20285, 398, 2305, 13930, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7514, 11056, 290, 49574, 389, 3142, 284, 423, 262, 976, 27421, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 416, 9052, 278, 319, 17687, 1351, 11, 356, 4155, 326, 262, 6376, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14623, 578, 318, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9630, 796, 1391, 76, 25, 1312, 329, 1312, 11, 285, 287, 17687, 7, 4868, 7, 268, 6975, 378, 7, 944, 13, 2340, 22305, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49574, 357, 43775, 290, 7587, 3484, 389, 6632, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 5589, 796, 18896, 7, 7890, 13, 4164, 28426, 1042, 13, 785, 3911, 902, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 4164, 796, 18896, 7, 4164, 28426, 2737, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 14681, 274, 796, 18896, 7, 7890, 13, 14681, 274, 13, 14681, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 5589, 796, 532, 25379, 7, 46803, 62, 4164, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 36942, 796, 269, 27891, 62, 6759, 8609, 19510, 46803, 62, 14681, 274, 11, 299, 65, 62, 4164, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 13500, 796, 4151, 7, 46803, 62, 4164, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 13500, 62, 36942, 796, 269, 27891, 62, 6759, 8609, 19510, 46803, 62, 14681, 274, 11, 299, 65, 62, 4164, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 6551, 796, 269, 27891, 62, 6759, 8609, 19510, 46803, 62, 5589, 11, 299, 65, 62, 4164, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8352, 398, 2305, 13930, 198, 220, 220, 220, 220, 220, 220, 220, 685, 20285, 305, 62, 5589, 11, 15021, 62, 36942, 11, 15021, 62, 13500, 11, 15021, 62, 13500, 62, 36942, 11, 15021, 62, 6551, 60, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 24061, 62, 20285, 398, 2305, 23172, 62, 785, 9150, 7, 7890, 11, 49574, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25493, 796, 289, 25558, 26933, 4164, 62, 5589, 11, 15021, 62, 5589, 35944, 40301, 27891, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 67, 62, 36942, 62, 15805, 796, 289, 25558, 26933, 4164, 62, 36942, 11, 15021, 62, 36942, 35944, 40301, 27891, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13500, 6335, 341, 796, 289, 25558, 26933, 4164, 62, 13500, 11, 15021, 62, 13500, 35944, 40301, 27891, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13500, 62, 36942, 62, 15805, 796, 289, 25558, 26933, 4164, 62, 13500, 62, 36942, 11, 15021, 62, 13500, 62, 36942, 35944, 40301, 27891, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6551, 796, 289, 25558, 26933, 4164, 62, 6551, 11, 15021, 62, 6551, 35944, 40301, 27891, 3419, 628, 220, 220, 220, 825, 2251, 62, 76, 620, 15451, 7, 944, 11, 20230, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 3235, 48858, 422, 257, 1351, 286, 371, 4339, 20230, 11742, 8573, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 20230, 62, 2617, 1058, 1351, 286, 374, 7012, 13, 19875, 13, 49999, 15451, 5377, 9150, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7080, 15451, 33543, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 7080, 15451, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49850, 262, 11742, 11, 7587, 1575, 290, 3463, 2603, 45977, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3235, 48858, 2810, 355, 5128, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4693, 796, 42280, 62, 6759, 8609, 19510, 11925, 7, 944, 13, 2340, 828, 18896, 7, 76, 620, 15451, 62, 2617, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 329, 951, 11, 20230, 287, 27056, 378, 7, 76, 620, 15451, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 302, 330, 287, 20230, 13, 45018, 1187, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4693, 58, 944, 13557, 9630, 58, 260, 330, 13, 35448, 4357, 951, 60, 15853, 302, 330, 13, 301, 78, 16590, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 40426, 287, 20230, 13, 29498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4693, 58, 944, 13557, 9630, 58, 1676, 67, 13, 35448, 4357, 951, 60, 48185, 40426, 13, 301, 78, 16590, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7080, 15451, 7, 944, 13, 25493, 9, 35448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 67, 62, 36942, 62, 15805, 9, 35448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6551, 9, 35448, 8, 628, 220, 220, 220, 825, 14623, 578, 62, 1837, 429, 8497, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 12737, 11188, 284, 21263, 286, 8352, 398, 316, 28426, 2737, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4100, 398, 316, 28426, 2737, 389, 4693, 326, 389, 1111, 257, 14623, 578, 290, 257, 198, 220, 220, 220, 220, 220, 220, 220, 8352, 398, 2305, 23172, 357, 48126, 256, 42336, 1722, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 309, 29291, 286, 362, 4847, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3274, 5002, 318, 257, 1351, 286, 3995, 16590, 908, 1678, 30104, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1123, 15879, 10200, 257, 6317, 13, 383, 1218, 5002, 389, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 286, 262, 49574, 852, 24983, 1143, 416, 777, 12737, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 12737, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 4164, 796, 18896, 7, 944, 13557, 4164, 28426, 2737, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8352, 398, 316, 28426, 2737, 796, 2116, 13, 2340, 58, 46803, 62, 4164, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 15021, 287, 27056, 378, 7, 20285, 398, 316, 28426, 2737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 257, 8352, 398, 2305, 23172, 318, 635, 257, 14623, 578, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 340, 3568, 5403, 287, 262, 4693, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 9630, 796, 2116, 13557, 9630, 58, 20285, 305, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15021, 62, 9630, 796, 299, 65, 62, 4164, 1343, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1138, 62, 9630, 1279, 299, 65, 62, 4164, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 37140, 44411, 6317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6317, 796, 2116, 13, 25493, 58, 45299, 15021, 62, 9630, 4083, 83, 349, 346, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6317, 58, 4164, 62, 9630, 11, 657, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12737, 13, 33295, 7, 260, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 13, 33295, 7, 20285, 305, 1343, 705, 62, 1837, 429, 8497, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12737, 11, 3891, 628, 198, 4299, 24061, 62, 20285, 398, 2305, 23172, 62, 785, 9150, 7, 7890, 11, 49574, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 2779, 1321, 286, 8352, 398, 2305, 13930, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 357, 25493, 11, 3227, 62, 36948, 62, 15805, 11, 27486, 11, 198, 220, 220, 220, 220, 27486, 62, 36948, 62, 15805, 11, 3463, 8, 46545, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 65, 62, 14681, 274, 796, 18896, 7, 7890, 13, 14681, 274, 13, 14681, 274, 8, 198, 220, 220, 220, 552, 32514, 796, 685, 66, 13, 312, 329, 269, 287, 1366, 13, 4164, 28426, 1042, 13, 785, 3911, 902, 60, 198, 220, 220, 220, 1303, 651, 2779, 8352, 398, 2305, 23172, 1321, 198, 220, 220, 220, 15568, 796, 4100, 398, 2305, 23172, 7248, 7, 7890, 13, 1676, 660, 1040, 11, 552, 32514, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49574, 11, 299, 65, 62, 14681, 274, 8, 198, 220, 220, 220, 374, 24716, 796, 4100, 398, 2305, 23172, 7248, 7, 7890, 13, 81, 24716, 11, 552, 32514, 11, 49574, 11, 299, 65, 62, 14681, 274, 8, 198, 220, 220, 220, 288, 2616, 796, 4100, 398, 2305, 23172, 7248, 7, 7890, 13, 67, 2616, 11, 552, 32514, 11, 49574, 11, 299, 65, 62, 14681, 274, 8, 198, 220, 220, 220, 1303, 4174, 7587, 8739, 198, 220, 220, 220, 15021, 62, 28709, 796, 1391, 6, 48693, 10354, 15568, 11, 705, 81, 2616, 10354, 374, 24716, 11, 705, 67, 2616, 10354, 288, 2616, 92, 198, 220, 220, 220, 8739, 796, 1391, 76, 13, 312, 25, 285, 329, 285, 287, 1366, 13, 14681, 274, 13, 36948, 62, 31803, 92, 198, 220, 220, 220, 329, 279, 62, 9630, 11, 1429, 287, 27056, 378, 7, 7890, 13, 14681, 274, 13, 14681, 274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 40426, 287, 1429, 13, 14681, 654, 13, 11167, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 72, 13, 35448, 329, 1312, 287, 40426, 13, 15414, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15021, 62, 28709, 58, 1676, 67, 13, 2617, 4083, 39014, 62, 25493, 62, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8739, 58, 1676, 67, 13, 36948, 62, 8899, 4357, 279, 62, 9630, 11, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3396, 287, 1429, 13, 14681, 654, 13, 13500, 6335, 602, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 796, 685, 72, 13, 35448, 329, 1312, 287, 3396, 13, 15414, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15021, 62, 28709, 58, 13500, 13, 2617, 4083, 39014, 62, 13500, 6335, 341, 62, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8739, 58, 13500, 13, 36948, 62, 8899, 4357, 279, 62, 9630, 11, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 19406, 2603, 45977, 1973, 5621, 198, 220, 220, 220, 3227, 62, 4164, 28426, 2737, 796, 685, 82, 13, 25493, 329, 264, 287, 357, 1676, 660, 1040, 11, 374, 24716, 11, 288, 2616, 15437, 198, 220, 220, 220, 3227, 62, 15805, 796, 685, 82, 13, 25493, 62, 15805, 329, 264, 287, 357, 1676, 660, 1040, 11, 374, 24716, 11, 288, 2616, 15437, 198, 220, 220, 220, 27486, 62, 4164, 28426, 2737, 796, 685, 82, 13, 13500, 6335, 341, 329, 264, 287, 357, 1676, 660, 1040, 11, 374, 24716, 11, 288, 2616, 15437, 198, 220, 220, 220, 27486, 62, 15805, 796, 685, 82, 13, 13500, 6335, 341, 62, 15805, 329, 264, 287, 357, 1676, 660, 1040, 11, 374, 24716, 11, 288, 2616, 15437, 198, 220, 220, 220, 3463, 796, 685, 82, 13, 6551, 329, 264, 287, 357, 1676, 660, 1040, 11, 374, 24716, 11, 288, 2616, 15437, 198, 220, 220, 220, 1441, 357, 71, 25558, 7, 25493, 62, 4164, 28426, 2737, 828, 289, 25558, 7, 25493, 62, 15805, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 25558, 7, 13500, 6335, 341, 62, 4164, 28426, 2737, 828, 289, 25558, 7, 13500, 6335, 341, 62, 15805, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 25558, 7, 6551, 4008, 628, 198, 4871, 4100, 398, 2305, 23172, 7248, 7, 15252, 2599, 198, 220, 220, 220, 37227, 14155, 398, 2305, 23172, 1321, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 15021, 62, 2617, 11, 552, 32514, 11, 49574, 11, 299, 65, 62, 14681, 274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 900, 351, 6632, 3227, 14, 13500, 6335, 341, 3484, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5589, 3906, 796, 685, 66, 13, 312, 329, 269, 287, 15021, 62, 2617, 13, 5589, 3906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 76, 2305, 23172, 62, 9630, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 312, 25, 1312, 329, 1312, 11, 285, 287, 27056, 378, 7, 20285, 305, 62, 2617, 13, 20285, 398, 2305, 13930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 42895, 62, 6759, 8609, 796, 2116, 13557, 2302, 974, 62, 42895, 62, 6759, 8609, 7, 20285, 305, 62, 2617, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6551, 796, 2116, 13557, 2302, 974, 62, 6551, 62, 6759, 8609, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15021, 62, 2617, 11, 2116, 13557, 42895, 62, 6759, 8609, 11, 552, 32514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4164, 28426, 2737, 796, 49574, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 4164, 796, 18896, 7, 4164, 28426, 2737, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 43132, 796, 18896, 7, 944, 13557, 76, 2305, 23172, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25493, 796, 763, 78, 62, 6759, 8609, 19510, 46803, 62, 4164, 11, 299, 65, 62, 43132, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13500, 6335, 341, 796, 763, 78, 62, 6759, 8609, 19510, 46803, 62, 4164, 11, 299, 65, 62, 43132, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25493, 62, 15805, 796, 763, 78, 62, 6759, 8609, 19510, 46803, 62, 14681, 274, 11, 299, 65, 62, 43132, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13500, 6335, 341, 62, 15805, 796, 763, 78, 62, 6759, 8609, 19510, 46803, 62, 14681, 274, 11, 299, 65, 62, 43132, 4008, 628, 220, 220, 220, 825, 4808, 2302, 974, 62, 42895, 62, 6759, 8609, 7, 944, 11, 15021, 62, 2617, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29677, 7515, 17593, 422, 8352, 398, 2305, 23172, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 317, 7515, 17593, 318, 262, 6764, 286, 8352, 398, 2305, 13930, 287, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 286, 6805, 357, 68, 13, 70, 13, 23206, 17045, 737, 27814, 11742, 17593, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 220, 287, 2846, 286, 49574, 13529, 290, 198, 220, 220, 220, 220, 220, 220, 220, 4635, 329, 24983, 2890, 530, 8352, 398, 2305, 23172, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 20285, 4951, 796, 18896, 7, 20285, 305, 62, 2617, 13, 20285, 398, 2305, 13930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 796, 42280, 62, 6759, 8609, 19510, 11925, 7, 944, 13, 5589, 3906, 828, 299, 65, 62, 20285, 4951, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 951, 11, 15021, 287, 27056, 378, 7, 20285, 305, 62, 2617, 13, 20285, 398, 2305, 13930, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 15021, 13, 785, 9150, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 58, 944, 13, 5589, 3906, 13, 9630, 7, 66, 13, 42895, 828, 951, 60, 796, 269, 13, 301, 78, 16590, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 327, 13, 40301, 27891, 3419, 628, 220, 220, 220, 825, 4808, 2302, 974, 62, 6551, 62, 6759, 8609, 7, 944, 11, 15021, 62, 2617, 11, 327, 11, 552, 32514, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 1133, 3463, 290, 11602, 3463, 351, 4067, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 717, 24061, 3463, 583, 7515, 11, 788, 3463, 583, 27756, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 269, 27891, 62, 6759, 8609, 26933, 66, 13, 6551, 329, 269, 287, 15021, 62, 2617, 13, 5589, 3906, 4357, 288, 4906, 11639, 22468, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4067, 796, 685, 785, 3911, 902, 13, 9630, 7, 76, 13, 5589, 1823, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 15021, 62, 2617, 13, 20285, 398, 2305, 13930, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 20285, 4951, 796, 18896, 7, 20285, 305, 62, 2617, 13, 20285, 398, 2305, 13930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 370, 796, 269, 27891, 62, 6759, 8609, 19510, 7, 86, 9, 34, 737, 1462, 18747, 22446, 25843, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 24886, 11, 2837, 7, 46803, 62, 20285, 4951, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 16193, 11925, 7, 785, 3911, 902, 828, 299, 65, 62, 20285, 4951, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 370, 628, 198, 4871, 28403, 13912, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9487, 23069, 7587, 8739, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3975, 62, 11, 6805, 11, 49574, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 1058, 374, 7012, 13, 19875, 13, 18709, 278, 13912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32522, 7268, 7587, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6805, 1058, 1351, 286, 374, 7012, 13, 19875, 13, 7293, 3906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36109, 12118, 416, 7515, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 49574, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3395, 28426, 2737, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 4164, 28426, 2737, 796, 18896, 7, 4164, 28426, 2737, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 5589, 3906, 796, 18896, 7, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 9630, 796, 1391, 76, 25, 1312, 329, 1312, 11, 285, 287, 27056, 378, 7, 4164, 28426, 2737, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 6937, 3484, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4164, 28426, 578, 62, 9979, 415, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2116, 13557, 15805, 62, 31364, 7, 8899, 44807, 9979, 415, 62, 36948, 11, 1138, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36948, 62, 9979, 415, 796, 299, 32152, 13, 9107, 418, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 7515, 1912, 3484, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4164, 28426, 578, 62, 11487, 796, 299, 32152, 13, 9107, 418, 26933, 46803, 62, 4164, 28426, 2737, 11, 299, 65, 62, 5589, 3906, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36948, 62, 11487, 796, 299, 32152, 13, 9107, 418, 7, 46803, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13834, 287, 3975, 44807, 42895, 62, 14681, 654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 9630, 796, 6805, 13, 9630, 7, 36942, 13, 42895, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36948, 62, 11487, 58, 66, 62, 9630, 60, 15853, 13834, 13, 76, 620, 15451, 62, 15805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4164, 28426, 578, 62, 11487, 58, 45299, 269, 62, 9630, 60, 15853, 2116, 13557, 15805, 62, 31364, 7, 36942, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 62, 9630, 8, 628, 220, 220, 220, 825, 4808, 15805, 62, 31364, 7, 944, 11, 13834, 11, 1138, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 41762, 7587, 1366, 656, 257, 14623, 578, 15879, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 299, 32152, 13, 9107, 418, 7, 11925, 7, 4164, 62, 9630, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 302, 330, 287, 13834, 13, 45018, 1187, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 4164, 62, 9630, 58, 260, 330, 13, 35448, 11907, 48185, 302, 330, 13, 301, 78, 16590, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 329, 40426, 287, 13834, 13, 29498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 4164, 62, 9630, 58, 1676, 67, 13, 35448, 11907, 15853, 40426, 13, 301, 78, 16590, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 4174, 62, 8899, 7, 944, 11, 7515, 62, 6759, 8609, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26981, 7515, 17593, 284, 14623, 578, 17593, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 7515, 62, 6759, 8609, 25, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12489, 286, 8352, 398, 2305, 13930, 287, 2846, 286, 6805, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 28665, 82, 389, 8352, 398, 2305, 13930, 11, 15274, 389, 6805, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 357, 785, 9150, 11, 7587, 62, 15805, 8, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11742, 318, 257, 14623, 578, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12059, 49574, 13529, 14, 32783, 1141, 8352, 398, 2305, 23172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21263, 14, 13500, 6335, 341, 357, 44023, 319, 6770, 286, 262, 3975, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 82, 389, 8352, 398, 2305, 13930, 13, 371, 1666, 389, 49574, 13, 317, 4633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35381, 1724, 262, 14623, 578, 318, 1635, 32783, 9, 357, 5661, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11742, 17593, 11, 407, 257, 6317, 17593, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7587, 62, 15805, 318, 257, 17593, 810, 15180, 389, 8352, 398, 2305, 13930, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 389, 7767, 13, 632, 8477, 703, 867, 4133, 286, 257, 1429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 973, 1141, 8352, 398, 2305, 23172, 21263, 14, 13500, 6335, 341, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5721, 31870, 973, 284, 23418, 30104, 284, 2872, 2457, 17593, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 951, 82, 796, 299, 32152, 13, 9107, 418, 7, 42895, 62, 6759, 8609, 13, 43358, 58, 16, 4357, 288, 4906, 796, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10523, 62, 15805, 796, 357, 6359, 81, 62, 6759, 8609, 7, 944, 13557, 4164, 28426, 578, 62, 11487, 8, 1635, 7515, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 269, 27891, 62, 6759, 8609, 7, 944, 13557, 4164, 28426, 578, 62, 9979, 415, 737, 51, 58, 45299, 951, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 15805, 796, 357, 6359, 81, 62, 6759, 8609, 7, 944, 13557, 36948, 62, 11487, 8, 1635, 7515, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 269, 27891, 62, 6759, 8609, 7, 944, 13557, 36948, 62, 9979, 415, 737, 51, 58, 45299, 951, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10523, 62, 15805, 11, 13834, 62, 15805, 198 ]
2.378068
5,134
# GNU MediaGoblin -- federated, autonomous media hosting # Copyright (C) 2011, 2012 MediaGoblin contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging import os from mediagoblin.tools.pluginapi import get_config from mediagoblin.db.models import MediaEntry from mediagoblin.tools import pluginapi _log = logging.getLogger(__name__) PLUGIN_DIR = os.path.dirname(__file__) hooks = { 'setup': setup_plugin, 'template_context_prerender': make_stats }
[ 2, 22961, 6343, 38, 672, 2815, 1377, 28062, 515, 11, 18284, 2056, 13662, 198, 2, 15069, 357, 34, 8, 2813, 11, 2321, 6343, 38, 672, 2815, 20420, 13, 220, 4091, 37195, 20673, 13, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 6708, 3529, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 6708, 3529, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 6708, 3529, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 628, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 16957, 363, 672, 2815, 13, 31391, 13, 33803, 15042, 1330, 651, 62, 11250, 198, 6738, 16957, 363, 672, 2815, 13, 9945, 13, 27530, 1330, 6343, 30150, 198, 6738, 16957, 363, 672, 2815, 13, 31391, 1330, 13877, 15042, 198, 198, 62, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 6489, 7340, 1268, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 628, 198, 25480, 82, 796, 1391, 198, 220, 220, 220, 705, 40406, 10354, 9058, 62, 33803, 11, 198, 220, 220, 220, 705, 28243, 62, 22866, 62, 3866, 13287, 10354, 787, 62, 34242, 198, 220, 220, 220, 1782, 198 ]
3.461059
321
#!/usr/bin/env python import sys import os import glob import numpy as np from astropy.io import ascii import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import astropy.table as at from numpy.lib.recfunctions import append_fields from scipy.stats import linregress import pymc3 as pm import pandas as pd from collections import OrderedDict if __name__=='__main__': sys.exit(main())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 6468, 28338, 13, 952, 1330, 355, 979, 72, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 12315, 1330, 350, 7568, 47798, 198, 11748, 6468, 28338, 13, 11487, 355, 379, 198, 6738, 299, 32152, 13, 8019, 13, 8344, 12543, 2733, 1330, 24443, 62, 25747, 198, 6738, 629, 541, 88, 13, 34242, 1330, 9493, 2301, 601, 198, 11748, 279, 4948, 66, 18, 355, 9114, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
2.979167
144
import logging from django.test import Client, TestCase, override_settings from everbug.middleware import Header
[ 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 9288, 1330, 20985, 11, 6208, 20448, 11, 20957, 62, 33692, 198, 198, 6738, 1683, 25456, 13, 27171, 1574, 1330, 48900, 628 ]
4
29
from django.core.paginator import Paginator from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views.generic.edit import CreateView, DeleteView, UpdateView from .forms import RegForm from .models import Cups, Participants, Races
[ 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 11, 8543, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 13610, 7680, 11, 23520, 7680, 11, 10133, 7680, 198, 198, 6738, 764, 23914, 1330, 3310, 8479, 198, 6738, 764, 27530, 1330, 41611, 11, 26122, 11, 45134, 628, 628, 628, 628 ]
3.607595
79
self.description = "transferred file with glob characters that match a removed file" lp = pmpkg("foo") lp.files = ["foo/b*r", "foo/bar"] self.addpkg2db("local", lp) sp1 = pmpkg("foo", "1.0-2") self.addpkg(sp1) sp2 = pmpkg("bar", "1.0-2") sp2.files = ["foo/b*r"] self.addpkg(sp2) self.args = "-U %s %s" % (sp1.filename(), sp2.filename()) self.addrule("PKG_VERSION=foo|1.0-2") self.addrule("PKG_VERSION=bar|1.0-2") self.addrule("FILE_EXIST=foo/b*r") self.addrule("!FILE_EXIST=foo/bar")
[ 944, 13, 11213, 796, 366, 7645, 18186, 2393, 351, 15095, 3435, 326, 2872, 257, 4615, 2393, 1, 198, 198, 34431, 796, 279, 3149, 10025, 7203, 21943, 4943, 198, 34431, 13, 16624, 796, 14631, 21943, 14, 65, 9, 81, 1600, 366, 21943, 14, 5657, 8973, 198, 944, 13, 2860, 35339, 17, 9945, 7203, 12001, 1600, 300, 79, 8, 198, 198, 2777, 16, 796, 279, 3149, 10025, 7203, 21943, 1600, 366, 16, 13, 15, 12, 17, 4943, 198, 944, 13, 2860, 35339, 7, 2777, 16, 8, 198, 198, 2777, 17, 796, 279, 3149, 10025, 7203, 5657, 1600, 366, 16, 13, 15, 12, 17, 4943, 198, 2777, 17, 13, 16624, 796, 14631, 21943, 14, 65, 9, 81, 8973, 198, 944, 13, 2860, 35339, 7, 2777, 17, 8, 198, 198, 944, 13, 22046, 796, 27444, 52, 4064, 82, 4064, 82, 1, 4064, 357, 2777, 16, 13, 34345, 22784, 599, 17, 13, 34345, 28955, 198, 198, 944, 13, 2860, 25135, 7203, 40492, 38, 62, 43717, 28, 21943, 91, 16, 13, 15, 12, 17, 4943, 198, 944, 13, 2860, 25135, 7203, 40492, 38, 62, 43717, 28, 5657, 91, 16, 13, 15, 12, 17, 4943, 198, 944, 13, 2860, 25135, 7203, 25664, 62, 6369, 8808, 28, 21943, 14, 65, 9, 81, 4943, 198, 944, 13, 2860, 25135, 7203, 0, 25664, 62, 6369, 8808, 28, 21943, 14, 5657, 4943, 198 ]
2.202703
222
# minent.utils # Project level utilities # # Author: Benjamin Bengfort <[email protected]> # Created: Thu Oct 23 14:09:04 2014 -0400 # # Copyright (C) 2014 Bengfort.com # For license information, see LICENSE.txt # # ID: utils.py [24fa113] [email protected] $ """ Project level utilities """ ########################################################################## ## Imports ########################################################################## import re import time import base64 import bleach import hashlib from functools import wraps from markdown import markdown from dateutil.relativedelta import relativedelta ########################################################################## ## Utilities ########################################################################## ## Nullable kwargs for models nullable = { 'blank': True, 'null': True, 'default':None } ## Not nullable kwargs for models notnullable = { 'blank': False, 'null': False } ########################################################################## ## Helper functions ########################################################################## def normalize(text): """ Normalizes the text by removing all punctuation and spaces as well as making the string completely lowercase. """ return re.sub(r'[^a-z0-9]+', '', text.lower()) def signature(text): """ This helper method normalizes text and takes the SHA1 hash of it, returning the base64 encoded result. The normalization method includes the removal of punctuation and white space as well as making the case completely lowercase. These signatures will help us discover textual similarities between questions. """ text = normalize(text).encode('utf-8') return base64.b64encode(hashlib.sha1(text).digest()) def htmlize(text): """ This helper method renders Markdown then uses Bleach to sanitize it as well as convert all links to actual links. """ text = bleach.clean(text, strip=True) # Clean the text by stripping bad HTML tags text = markdown(text) # Convert the markdown to HTML text = bleach.linkify(text) # Add links from the text and add nofollow to existing links return text # Compile regular expression functions for query normalization find_terms = re.compile(r'"([^"]+)"|(\S+)').findall norm_space = re.compile(r'\s{2,}').sub def normalize_query(terms): """ Splits the query string in individual keywords, getting rid of extra spaces and grouping quoted words together. Example: >>> normalize_query(' some random words "with quotes " and spaces') ['some', 'random', 'words', 'with quotes', 'and', 'spaces'] """ return [ norm_space(' ', (t[0] or t[1]).strip()) for t in find_terms(terms) ] ########################################################################## ## Memoization ########################################################################## def memoized(fget): """ Return a property attribute for new-style classes that only calls its getter on the first access. The result is stored and on subsequent accesses is returned, preventing the need to call the getter any more. https://github.com/estebistec/python-memoized-property """ attr_name = '_{0}'.format(fget.__name__) @wraps(fget) return property(fget_memoized) ########################################################################## ## Timer functions ########################################################################## class Timer(object): """ A context object timer. Usage: >>> with Timer() as timer: ... do_something() >>> print timer.interval """ def __init__(self, wall_clock=True): """ If wall_clock is True then use time.time() to get the number of actually elapsed seconds. If wall_clock is False, use time.clock to get the process time instead. """ self.wall_clock = wall_clock self.time = time.time if wall_clock else time.clock def timeit(func, wall_clock=True): """ Returns the number of seconds that a function took along with the result """ @wraps(func) def timer_wrapper(*args, **kwargs): """ Inner function that uses the Timer context object """ with Timer(wall_clock) as timer: result = func(*args, **kwargs) return result, timer return timer_wrapper def humanizedelta(*args, **kwargs): """ Wrapper around dateutil.relativedelta (same construtor args) and returns a humanized string representing the detla in a meaningful way. """ delta = relativedelta(*args, **kwargs) attrs = ('years', 'months', 'days', 'hours', 'minutes', 'seconds') parts = [ '%d %s' % (getattr(delta, attr), getattr(delta, attr) > 1 and attr or attr[:-1]) for attr in attrs if getattr(delta, attr) ] return " ".join(parts)
[ 2, 949, 298, 13, 26791, 198, 2, 4935, 1241, 20081, 198, 2, 198, 2, 6434, 25, 220, 220, 14533, 14964, 3319, 1279, 11722, 13337, 31, 65, 1516, 3319, 13, 785, 29, 198, 2, 15622, 25, 220, 26223, 2556, 2242, 1478, 25, 2931, 25, 3023, 1946, 532, 3023, 405, 198, 2, 198, 2, 15069, 357, 34, 8, 1946, 14964, 3319, 13, 785, 198, 2, 1114, 5964, 1321, 11, 766, 38559, 24290, 13, 14116, 198, 2, 198, 2, 4522, 25, 3384, 4487, 13, 9078, 685, 1731, 13331, 16616, 60, 1888, 13337, 31, 65, 1516, 3319, 13, 785, 720, 198, 198, 37811, 198, 16775, 1241, 20081, 198, 37811, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 1846, 3742, 198, 29113, 29113, 7804, 2235, 198, 198, 11748, 302, 198, 11748, 640, 198, 11748, 2779, 2414, 198, 11748, 49024, 198, 11748, 12234, 8019, 198, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 6738, 1317, 2902, 1330, 1317, 2902, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 41086, 198, 29113, 29113, 7804, 2235, 198, 198, 2235, 35886, 540, 479, 86, 22046, 329, 4981, 198, 8423, 540, 796, 1391, 705, 27190, 10354, 6407, 11, 705, 8423, 10354, 6407, 11, 705, 12286, 10354, 14202, 1782, 198, 198, 2235, 1892, 9242, 540, 479, 86, 22046, 329, 4981, 198, 1662, 8423, 540, 796, 1391, 705, 27190, 10354, 10352, 11, 705, 8423, 10354, 10352, 1782, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 5053, 525, 5499, 198, 29113, 29113, 7804, 2235, 198, 198, 4299, 3487, 1096, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14435, 4340, 262, 2420, 416, 10829, 477, 21025, 2288, 290, 9029, 355, 880, 355, 198, 220, 220, 220, 1642, 262, 4731, 3190, 2793, 7442, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 6, 58, 61, 64, 12, 89, 15, 12, 24, 48688, 3256, 705, 3256, 2420, 13, 21037, 28955, 628, 198, 4299, 9877, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 31904, 2446, 3487, 4340, 2420, 290, 2753, 262, 25630, 16, 12234, 286, 340, 11, 198, 220, 220, 220, 8024, 262, 2779, 2414, 30240, 1255, 13, 383, 3487, 1634, 2446, 3407, 198, 220, 220, 220, 262, 9934, 286, 21025, 2288, 290, 2330, 2272, 355, 880, 355, 1642, 262, 1339, 198, 220, 220, 220, 3190, 2793, 7442, 13, 2312, 17239, 481, 1037, 514, 7073, 40577, 198, 220, 220, 220, 20594, 1022, 2683, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 3487, 1096, 7, 5239, 737, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 1441, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 17831, 8019, 13, 26270, 16, 7, 5239, 737, 12894, 395, 28955, 628, 198, 4299, 27711, 1096, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 31904, 2446, 30111, 2940, 2902, 788, 3544, 48469, 284, 5336, 270, 1096, 340, 355, 198, 220, 220, 220, 880, 355, 10385, 477, 6117, 284, 4036, 6117, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 49024, 13, 27773, 7, 5239, 11, 10283, 28, 17821, 8, 220, 220, 220, 1303, 5985, 262, 2420, 416, 37727, 2089, 11532, 15940, 198, 220, 220, 220, 2420, 796, 1317, 2902, 7, 5239, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 1317, 2902, 284, 11532, 198, 220, 220, 220, 2420, 796, 49024, 13, 8726, 1958, 7, 5239, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 6117, 422, 262, 2420, 290, 751, 645, 27780, 284, 4683, 6117, 628, 220, 220, 220, 1441, 2420, 628, 198, 2, 3082, 576, 3218, 5408, 5499, 329, 12405, 3487, 1634, 198, 19796, 62, 38707, 796, 302, 13, 5589, 576, 7, 81, 6, 18109, 58, 61, 8973, 10, 16725, 91, 38016, 50, 28988, 27691, 19796, 439, 198, 27237, 62, 13200, 796, 302, 13, 5589, 576, 7, 81, 6, 59, 82, 90, 17, 11, 92, 27691, 7266, 198, 198, 4299, 3487, 1096, 62, 22766, 7, 38707, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13341, 896, 262, 12405, 4731, 287, 1981, 26286, 11, 1972, 5755, 286, 3131, 198, 220, 220, 220, 9029, 290, 36115, 10947, 2456, 1978, 13, 628, 220, 220, 220, 17934, 25, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 3487, 1096, 62, 22766, 10786, 617, 4738, 220, 2456, 366, 4480, 220, 220, 13386, 366, 290, 9029, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 37250, 11246, 3256, 705, 25120, 3256, 705, 10879, 3256, 705, 4480, 13386, 3256, 705, 392, 3256, 705, 2777, 2114, 20520, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 13200, 10786, 46083, 357, 83, 58, 15, 60, 393, 256, 58, 16, 35944, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 1064, 62, 38707, 7, 38707, 8, 198, 220, 220, 220, 2361, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 4942, 78, 1634, 198, 29113, 29113, 7804, 2235, 198, 198, 4299, 16155, 1143, 7, 69, 1136, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 3119, 11688, 329, 649, 12, 7635, 6097, 326, 691, 3848, 663, 198, 220, 220, 220, 651, 353, 319, 262, 717, 1895, 13, 383, 1255, 318, 8574, 290, 319, 8840, 198, 220, 220, 220, 1895, 274, 318, 4504, 11, 12174, 262, 761, 284, 869, 262, 651, 353, 597, 517, 13, 628, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 395, 1765, 396, 721, 14, 29412, 12, 11883, 78, 1143, 12, 26745, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 708, 81, 62, 3672, 796, 705, 23330, 15, 92, 4458, 18982, 7, 69, 1136, 13, 834, 3672, 834, 8, 628, 220, 220, 220, 2488, 29988, 862, 7, 69, 1136, 8, 628, 220, 220, 220, 1441, 3119, 7, 69, 1136, 62, 11883, 78, 1143, 8, 628, 198, 29113, 29113, 7804, 2235, 198, 2235, 5045, 263, 5499, 198, 29113, 29113, 7804, 2235, 198, 198, 4871, 5045, 263, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4732, 2134, 19781, 13, 29566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 351, 5045, 263, 3419, 355, 19781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 466, 62, 18927, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 19781, 13, 3849, 2100, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3355, 62, 15750, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 3355, 62, 15750, 318, 6407, 788, 779, 640, 13, 2435, 3419, 284, 651, 262, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1682, 42118, 4201, 13, 1002, 3355, 62, 15750, 318, 10352, 11, 779, 640, 13, 15750, 284, 198, 220, 220, 220, 220, 220, 220, 220, 651, 262, 1429, 640, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11930, 62, 15750, 796, 3355, 62, 15750, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 796, 640, 13, 2435, 611, 3355, 62, 15750, 2073, 640, 13, 15750, 628, 198, 4299, 640, 270, 7, 20786, 11, 3355, 62, 15750, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1271, 286, 4201, 326, 257, 2163, 1718, 1863, 351, 262, 1255, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 29988, 862, 7, 20786, 8, 198, 220, 220, 220, 825, 19781, 62, 48553, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 24877, 2163, 326, 3544, 262, 5045, 263, 4732, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 5045, 263, 7, 11930, 62, 15750, 8, 355, 19781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 25439, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 11, 19781, 198, 220, 220, 220, 1441, 19781, 62, 48553, 628, 198, 4299, 1692, 1143, 12514, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 1088, 3128, 22602, 13, 2411, 265, 1572, 12514, 357, 31642, 1500, 81, 38409, 26498, 8, 290, 5860, 198, 220, 220, 220, 257, 1692, 1143, 4731, 10200, 262, 1062, 5031, 287, 257, 11570, 835, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25979, 796, 48993, 1572, 12514, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 708, 3808, 796, 19203, 19002, 3256, 705, 41537, 3256, 705, 12545, 3256, 705, 24425, 3256, 705, 1084, 1769, 3256, 705, 43012, 11537, 198, 220, 220, 220, 3354, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4, 67, 4064, 82, 6, 4064, 357, 1136, 35226, 7, 67, 12514, 11, 708, 81, 828, 651, 35226, 7, 67, 12514, 11, 708, 81, 8, 1875, 352, 290, 708, 81, 393, 708, 81, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 287, 708, 3808, 611, 651, 35226, 7, 67, 12514, 11, 708, 81, 8, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 1441, 366, 27071, 22179, 7, 42632, 8, 198 ]
3.16206
1,592
#!/usr/bin/env python3 x = 0 # NOLINT
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 87, 796, 657, 220, 1303, 399, 3535, 12394, 198 ]
2
20
import os import sys import bokeh.layouts as bkl import bokeh.plotting as bkp import numpy as np from bokeh.models import Label from bokeh.io import export_svgs import cairosvg # make it so we can import models/etc from parent folder sys.path.insert(1, os.path.join(sys.path[0], '../common')) from plotting import * from skimage import measure print('Loading data') x = np.load('../data/prices2018.npy') for trial_num in [1, 2, 3, 4]: latbds = (x[:, 0].min(), x[:, 0].max()) lonbds = (x[:, 1].min(), x[:, 1].max()) lats = np.linspace(latbds[0], latbds[1], 100) lons = np.linspace(lonbds[0], lonbds[1], 100) longrid, latgrid = np.meshgrid(lons, lats) contour_percentiles = np.linspace(0, 100, 10) c = contour_percentiles / contour_percentiles.max() contour_colors = ['#%02x%02x%02x' % (int(r), int(b), int(g)) for (r, b, g) in zip(255 * c, 0 * np.ones(c.shape[0]), 255 * (1. - c))] # algorithm / trial + Ms to plot #nm = ('SVI', 'SparseVI') nm = ('IHT-2', 'A-IHT II') Ms = [220, 260, 300] # plot the sequence of coreset pts and comparison of nonopt + opt res = np.load('results/results_' + nm[0] + '_' + str(trial_num) + '.npz') x = res['x'] wt = res['w'] mup = res['mup'] Sigp = res['Sigp'] muwt = res['muw'] Sigwt = res['Sigw'] basis_scales = res['basis_scales'] basis_locs = res['basis_locs'] datastd = res['datastd'] figs = [] # true posterior figure fig = bkp.figure(x_range=lonbds, y_range=latbds, plot_width=1000, plot_height=1000) # for f in [fig, fig_opt]: for f in [fig]: preprocess_plot(f, '32pt', False, False) # plot data and coreset pts f.scatter(x[:, 1], x[:, 0], fill_color='black', size=12, alpha=0.01, line_color=None) # compute posterior mean regression on the grid reg = np.zeros(longrid.shape) for i in range(basis_scales.shape[0]): reg += mup[i] * np.exp( -(longrid - basis_locs[i, 1]) ** 2 / (2 * basis_scales[i] ** 2) - (latgrid - basis_locs[i, 0]) ** 2 / ( 2 * basis_scales[i] ** 2)) # contour_levels contour_levels = [np.percentile(reg, p) for p in contour_percentiles] # plot contours for color, level in zip(contour_colors, contour_levels): contours = measure.find_contours(reg, level) for contour in contours: # interpolate values latlons = np.hstack((np.interp(contour[:, 0], np.arange(lats.shape[0]), lats)[:, np.newaxis], np.interp(contour[:, 1], np.arange(lons.shape[0]), lons)[:, np.newaxis])) f.line(latlons[:, 1], latlons[:, 0], line_width=2, line_color=color) for f in [fig]: postprocess_plot(f, '32pt', orientation='horizontal', glyph_width=40) f.legend.background_fill_alpha = 0. f.legend.border_line_alpha = 0. # f.legend.visible=False f.xaxis.visible = False f.yaxis.visible = False countour_legend = Label(x=50, y=900, x_units='screen', y_units='screen', text='True Posterior', text_font_size='32pt') f.add_layout(countour_legend) figs.append([fig]) # true contour fig.output_backend = 'svg' fig_name = 'exp2-contour_' + 'true_' + 'id_' + str(trial_num) export_svgs(fig, filename=fig_name + '.svg') # cairosvg.svg2pdf(url=fig_name+'.svg', write_to=fig_name+'.pdf') cairosvg.svg2pdf( file_obj=open(fig_name + '.svg', "rb"), write_to=fig_name + '.pdf') # coreset figures for m in Ms: fig = bkp.figure(x_range=lonbds, y_range=latbds, plot_width=1000, plot_height=1000) preprocess_plot(fig, '32pt', False, False) # plot data and coreset pts fig.scatter(x[:, 1], x[:, 0], fill_color='black', size=12, alpha=0.01, line_color=None) # fig.scatter(x[:, 1], x[:, 0], fill_color='black', size=10*(wt[m, :]>0)+10*wt[m,:]/wt[m,:].max(), line_color=None) fig.scatter(x[:, 1], x[:, 0], fill_color='black', size=30 * np.power(wt[m, :] / wt[m, :].max(), 0.4), line_color=None) # compute posterior mean regression on the grid reg = np.zeros(longrid.shape) for i in range(basis_scales.shape[0]): reg += muwt[m, i] * np.exp( -(longrid - basis_locs[i, 1]) ** 2 / (2 * basis_scales[i] ** 2) - (latgrid - basis_locs[i, 0]) ** 2 / ( 2 * basis_scales[i] ** 2)) # plot contours for color, level in zip(contour_colors, contour_levels): contours = measure.find_contours(reg, level) for contour in contours: # interpolate values latlons = np.hstack((np.interp(contour[:, 0], np.arange(lats.shape[0]), lats)[:, np.newaxis], np.interp(contour[:, 1], np.arange(lons.shape[0]), lons)[:, np.newaxis])) fig.line(latlons[:, 1], latlons[:, 0], line_width=2, line_color=color) postprocess_plot(fig, '32pt', orientation='horizontal', glyph_width=40) fig.legend.background_fill_alpha = 0. fig.legend.border_line_alpha = 0. fig.xaxis.visible = False fig.yaxis.visible = False countour_legend = Label(x=50, y=900, x_units='screen', y_units='screen', text=nm[1] + ' Corset Posterior '+ 'Coreset size: ' + str(m), text_font_size='32pt') fig.add_layout(countour_legend) figs.append([fig]) fig.output_backend = 'svg' fig_name = 'exp2-contour_' + nm[0] + '_m' + str(m)+ '_id_' + str(trial_num) export_svgs(fig, filename=fig_name + '.svg') # cairosvg.svg2pdf(url=fig_name+'.svg', write_to=fig_name+'.pdf') cairosvg.svg2pdf( file_obj=open(fig_name + '.svg', "rb"), write_to=fig_name + '.pdf')
[ 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 1489, 365, 71, 13, 10724, 5269, 355, 275, 41582, 198, 11748, 1489, 365, 71, 13, 29487, 889, 355, 275, 74, 79, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1489, 365, 71, 13, 27530, 1330, 36052, 198, 6738, 1489, 365, 71, 13, 952, 1330, 10784, 62, 21370, 14542, 198, 11748, 1275, 72, 4951, 45119, 198, 198, 2, 787, 340, 523, 356, 460, 1330, 4981, 14, 14784, 422, 2560, 9483, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 28686, 13, 6978, 13, 22179, 7, 17597, 13, 6978, 58, 15, 4357, 705, 40720, 11321, 6, 4008, 198, 6738, 29353, 1330, 1635, 198, 6738, 1341, 9060, 1330, 3953, 198, 198, 4798, 10786, 19031, 1366, 11537, 198, 87, 796, 45941, 13, 2220, 10786, 40720, 7890, 14, 1050, 1063, 7908, 13, 77, 9078, 11537, 198, 198, 1640, 4473, 62, 22510, 287, 685, 16, 11, 362, 11, 513, 11, 604, 5974, 628, 220, 220, 220, 3042, 65, 9310, 796, 357, 87, 58, 45299, 657, 4083, 1084, 22784, 2124, 58, 45299, 657, 4083, 9806, 28955, 198, 220, 220, 220, 300, 261, 65, 9310, 796, 357, 87, 58, 45299, 352, 4083, 1084, 22784, 2124, 58, 45299, 352, 4083, 9806, 28955, 628, 220, 220, 220, 300, 1381, 796, 45941, 13, 21602, 10223, 7, 15460, 65, 9310, 58, 15, 4357, 3042, 65, 9310, 58, 16, 4357, 1802, 8, 198, 220, 220, 220, 300, 684, 796, 45941, 13, 21602, 10223, 7, 14995, 65, 9310, 58, 15, 4357, 300, 261, 65, 9310, 58, 16, 4357, 1802, 8, 628, 220, 220, 220, 890, 6058, 11, 3042, 25928, 796, 45941, 13, 76, 5069, 25928, 7, 75, 684, 11, 300, 1381, 8, 628, 220, 220, 220, 542, 454, 62, 25067, 2915, 796, 45941, 13, 21602, 10223, 7, 15, 11, 1802, 11, 838, 8, 198, 220, 220, 220, 269, 796, 542, 454, 62, 25067, 2915, 1220, 542, 454, 62, 25067, 2915, 13, 9806, 3419, 198, 220, 220, 220, 542, 454, 62, 4033, 669, 796, 37250, 2, 4, 2999, 87, 4, 2999, 87, 4, 2999, 87, 6, 4064, 357, 600, 7, 81, 828, 493, 7, 65, 828, 493, 7, 70, 4008, 329, 357, 81, 11, 275, 11, 308, 8, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 7, 13381, 1635, 269, 11, 657, 1635, 45941, 13, 1952, 7, 66, 13, 43358, 58, 15, 46570, 14280, 1635, 357, 16, 13, 532, 269, 4008, 60, 628, 220, 220, 220, 1303, 11862, 1220, 4473, 1343, 6997, 284, 7110, 198, 220, 220, 220, 1303, 21533, 796, 19203, 50, 12861, 3256, 705, 50, 29572, 12861, 11537, 198, 220, 220, 220, 28642, 796, 19203, 40, 6535, 12, 17, 3256, 705, 32, 12, 40, 6535, 2873, 11537, 628, 198, 220, 220, 220, 6997, 796, 685, 17572, 11, 21148, 11, 5867, 60, 628, 220, 220, 220, 1303, 7110, 262, 8379, 286, 4755, 2617, 43344, 290, 7208, 286, 1729, 8738, 1343, 2172, 198, 220, 220, 220, 581, 796, 45941, 13, 2220, 10786, 43420, 14, 43420, 62, 6, 1343, 28642, 58, 15, 60, 1343, 705, 62, 6, 1343, 965, 7, 45994, 62, 22510, 8, 1343, 45302, 37659, 89, 11537, 198, 220, 220, 220, 2124, 796, 581, 17816, 87, 20520, 198, 220, 220, 220, 266, 83, 796, 581, 17816, 86, 20520, 198, 220, 220, 220, 285, 929, 796, 581, 17816, 76, 929, 20520, 198, 220, 220, 220, 21984, 79, 796, 581, 17816, 50, 328, 79, 20520, 198, 220, 220, 220, 38779, 46569, 796, 581, 17816, 30300, 86, 20520, 198, 220, 220, 220, 21984, 46569, 796, 581, 17816, 50, 328, 86, 20520, 198, 220, 220, 220, 4308, 62, 1416, 2040, 796, 581, 17816, 12093, 271, 62, 1416, 2040, 20520, 198, 220, 220, 220, 4308, 62, 17946, 82, 796, 581, 17816, 12093, 271, 62, 17946, 82, 20520, 198, 220, 220, 220, 4818, 459, 67, 796, 581, 17816, 19608, 459, 67, 20520, 628, 220, 220, 220, 2336, 82, 796, 17635, 628, 220, 220, 220, 1303, 2081, 34319, 3785, 198, 220, 220, 220, 2336, 796, 275, 74, 79, 13, 26875, 7, 87, 62, 9521, 28, 14995, 65, 9310, 11, 331, 62, 9521, 28, 15460, 65, 9310, 11, 7110, 62, 10394, 28, 12825, 11, 7110, 62, 17015, 28, 12825, 8, 198, 220, 220, 220, 1303, 329, 277, 287, 685, 5647, 11, 2336, 62, 8738, 5974, 198, 220, 220, 220, 329, 277, 287, 685, 5647, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 662, 14681, 62, 29487, 7, 69, 11, 705, 2624, 457, 3256, 10352, 11, 10352, 8, 628, 220, 220, 220, 1303, 7110, 1366, 290, 4755, 2617, 43344, 198, 220, 220, 220, 277, 13, 1416, 1436, 7, 87, 58, 45299, 352, 4357, 2124, 58, 45299, 657, 4357, 6070, 62, 8043, 11639, 13424, 3256, 2546, 28, 1065, 11, 17130, 28, 15, 13, 486, 11, 1627, 62, 8043, 28, 14202, 8, 198, 220, 220, 220, 1303, 24061, 34319, 1612, 20683, 319, 262, 10706, 198, 220, 220, 220, 842, 796, 45941, 13, 9107, 418, 7, 6511, 6058, 13, 43358, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 12093, 271, 62, 1416, 2040, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 842, 15853, 285, 929, 58, 72, 60, 1635, 45941, 13, 11201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7, 6511, 6058, 532, 4308, 62, 17946, 82, 58, 72, 11, 352, 12962, 12429, 362, 1220, 357, 17, 1635, 4308, 62, 1416, 2040, 58, 72, 60, 12429, 362, 8, 532, 357, 15460, 25928, 532, 4308, 62, 17946, 82, 58, 72, 11, 657, 12962, 12429, 362, 1220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1635, 4308, 62, 1416, 2040, 58, 72, 60, 12429, 362, 4008, 198, 220, 220, 220, 1303, 542, 454, 62, 46170, 198, 220, 220, 220, 542, 454, 62, 46170, 796, 685, 37659, 13, 25067, 576, 7, 2301, 11, 279, 8, 329, 279, 287, 542, 454, 62, 25067, 2915, 60, 198, 220, 220, 220, 1303, 7110, 542, 4662, 198, 220, 220, 220, 329, 3124, 11, 1241, 287, 19974, 7, 3642, 454, 62, 4033, 669, 11, 542, 454, 62, 46170, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 542, 4662, 796, 3953, 13, 19796, 62, 3642, 4662, 7, 2301, 11, 1241, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 542, 454, 287, 542, 4662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 39555, 378, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 75, 684, 796, 45941, 13, 71, 25558, 19510, 37659, 13, 3849, 79, 7, 3642, 454, 58, 45299, 657, 4357, 45941, 13, 283, 858, 7, 75, 1381, 13, 43358, 58, 15, 46570, 300, 1381, 38381, 45299, 45941, 13, 3605, 22704, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 3849, 79, 7, 3642, 454, 58, 45299, 352, 4357, 45941, 13, 283, 858, 7, 75, 684, 13, 43358, 58, 15, 46570, 300, 684, 38381, 45299, 45941, 13, 3605, 22704, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 1370, 7, 15460, 75, 684, 58, 45299, 352, 4357, 3042, 75, 684, 58, 45299, 657, 4357, 1627, 62, 10394, 28, 17, 11, 1627, 62, 8043, 28, 8043, 8, 628, 220, 220, 220, 329, 277, 287, 685, 5647, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 14681, 62, 29487, 7, 69, 11, 705, 2624, 457, 3256, 12852, 11639, 17899, 38342, 3256, 25874, 62, 10394, 28, 1821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 1455, 437, 13, 25249, 62, 20797, 62, 26591, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 1455, 437, 13, 20192, 62, 1370, 62, 26591, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 277, 13, 1455, 437, 13, 23504, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 87, 22704, 13, 23504, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 88, 22704, 13, 23504, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 954, 454, 62, 1455, 437, 796, 36052, 7, 87, 28, 1120, 11, 331, 28, 12865, 11, 2124, 62, 41667, 11639, 9612, 3256, 331, 62, 41667, 11639, 9612, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 11639, 17821, 44996, 1504, 3256, 2420, 62, 10331, 62, 7857, 11639, 2624, 457, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 2860, 62, 39786, 7, 9127, 454, 62, 1455, 437, 8, 628, 220, 220, 220, 2336, 82, 13, 33295, 26933, 5647, 12962, 628, 220, 220, 220, 1303, 2081, 542, 454, 198, 220, 220, 220, 2336, 13, 22915, 62, 1891, 437, 796, 705, 21370, 70, 6, 198, 220, 220, 220, 2336, 62, 3672, 796, 705, 11201, 17, 12, 3642, 454, 62, 6, 1343, 705, 7942, 62, 6, 1343, 705, 312, 62, 6, 1343, 965, 7, 45994, 62, 22510, 8, 198, 220, 220, 220, 10784, 62, 21370, 14542, 7, 5647, 11, 29472, 28, 5647, 62, 3672, 1343, 45302, 21370, 70, 11537, 198, 220, 220, 220, 1303, 1275, 72, 4951, 45119, 13, 21370, 70, 17, 12315, 7, 6371, 28, 5647, 62, 3672, 10, 4458, 21370, 70, 3256, 3551, 62, 1462, 28, 5647, 62, 3672, 10, 4458, 12315, 11537, 198, 220, 220, 220, 1275, 72, 4951, 45119, 13, 21370, 70, 17, 12315, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 26801, 28, 9654, 7, 5647, 62, 3672, 1343, 45302, 21370, 70, 3256, 366, 26145, 12340, 3551, 62, 1462, 28, 5647, 62, 3672, 1343, 45302, 12315, 11537, 628, 220, 220, 220, 1303, 4755, 2617, 5538, 198, 220, 220, 220, 329, 285, 287, 6997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 275, 74, 79, 13, 26875, 7, 87, 62, 9521, 28, 14995, 65, 9310, 11, 331, 62, 9521, 28, 15460, 65, 9310, 11, 7110, 62, 10394, 28, 12825, 11, 7110, 62, 17015, 28, 12825, 8, 198, 220, 220, 220, 220, 220, 220, 220, 662, 14681, 62, 29487, 7, 5647, 11, 705, 2624, 457, 3256, 10352, 11, 10352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 1366, 290, 4755, 2617, 43344, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 1416, 1436, 7, 87, 58, 45299, 352, 4357, 2124, 58, 45299, 657, 4357, 6070, 62, 8043, 11639, 13424, 3256, 2546, 28, 1065, 11, 17130, 28, 15, 13, 486, 11, 1627, 62, 8043, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2336, 13, 1416, 1436, 7, 87, 58, 45299, 352, 4357, 2124, 58, 45299, 657, 4357, 6070, 62, 8043, 11639, 13424, 3256, 2546, 28, 940, 9, 7, 46569, 58, 76, 11, 1058, 60, 29, 15, 47762, 940, 9, 46569, 58, 76, 11, 47715, 14, 46569, 58, 76, 11, 25, 4083, 9806, 22784, 1627, 62, 8043, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 1416, 1436, 7, 87, 58, 45299, 352, 4357, 2124, 58, 45299, 657, 4357, 6070, 62, 8043, 11639, 13424, 3256, 2546, 28, 1270, 1635, 45941, 13, 6477, 7, 46569, 58, 76, 11, 1058, 60, 1220, 266, 83, 58, 76, 11, 1058, 4083, 9806, 22784, 657, 13, 19, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 34319, 1612, 20683, 319, 262, 10706, 198, 220, 220, 220, 220, 220, 220, 220, 842, 796, 45941, 13, 9107, 418, 7, 6511, 6058, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 12093, 271, 62, 1416, 2040, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 842, 15853, 38779, 46569, 58, 76, 11, 1312, 60, 1635, 45941, 13, 11201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7, 6511, 6058, 532, 4308, 62, 17946, 82, 58, 72, 11, 352, 12962, 12429, 362, 1220, 357, 17, 1635, 4308, 62, 1416, 2040, 58, 72, 60, 12429, 362, 8, 532, 357, 15460, 25928, 532, 4308, 62, 17946, 82, 58, 72, 11, 657, 12962, 12429, 362, 1220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1635, 4308, 62, 1416, 2040, 58, 72, 60, 12429, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7110, 542, 4662, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3124, 11, 1241, 287, 19974, 7, 3642, 454, 62, 4033, 669, 11, 542, 454, 62, 46170, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 542, 4662, 796, 3953, 13, 19796, 62, 3642, 4662, 7, 2301, 11, 1241, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 542, 454, 287, 542, 4662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 39555, 378, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 75, 684, 796, 45941, 13, 71, 25558, 19510, 37659, 13, 3849, 79, 7, 3642, 454, 58, 45299, 657, 4357, 45941, 13, 283, 858, 7, 75, 1381, 13, 43358, 58, 15, 46570, 300, 1381, 38381, 45299, 45941, 13, 3605, 22704, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 3849, 79, 7, 3642, 454, 58, 45299, 352, 4357, 45941, 13, 283, 858, 7, 75, 684, 13, 43358, 58, 15, 46570, 300, 684, 38381, 45299, 45941, 13, 3605, 22704, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 1370, 7, 15460, 75, 684, 58, 45299, 352, 4357, 3042, 75, 684, 58, 45299, 657, 4357, 1627, 62, 10394, 28, 17, 11, 1627, 62, 8043, 28, 8043, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1281, 14681, 62, 29487, 7, 5647, 11, 705, 2624, 457, 3256, 12852, 11639, 17899, 38342, 3256, 25874, 62, 10394, 28, 1821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 1455, 437, 13, 25249, 62, 20797, 62, 26591, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 1455, 437, 13, 20192, 62, 1370, 62, 26591, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 87, 22704, 13, 23504, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 88, 22704, 13, 23504, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 954, 454, 62, 1455, 437, 796, 36052, 7, 87, 28, 1120, 11, 331, 28, 12865, 11, 2124, 62, 41667, 11639, 9612, 3256, 331, 62, 41667, 11639, 9612, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 28, 21533, 58, 16, 60, 1343, 705, 26978, 316, 44996, 1504, 705, 10, 705, 14055, 2617, 2546, 25, 705, 1343, 965, 7, 76, 828, 2420, 62, 10331, 62, 7857, 11639, 2624, 457, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 39786, 7, 9127, 454, 62, 1455, 437, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 82, 13, 33295, 26933, 5647, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 22915, 62, 1891, 437, 796, 705, 21370, 70, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 62, 3672, 796, 705, 11201, 17, 12, 3642, 454, 62, 6, 1343, 28642, 58, 15, 60, 1343, 705, 62, 76, 6, 1343, 965, 7, 76, 47762, 705, 62, 312, 62, 6, 1343, 965, 7, 45994, 62, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10784, 62, 21370, 14542, 7, 5647, 11, 29472, 28, 5647, 62, 3672, 1343, 45302, 21370, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1275, 72, 4951, 45119, 13, 21370, 70, 17, 12315, 7, 6371, 28, 5647, 62, 3672, 10, 4458, 21370, 70, 3256, 3551, 62, 1462, 28, 5647, 62, 3672, 10, 4458, 12315, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1275, 72, 4951, 45119, 13, 21370, 70, 17, 12315, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 26801, 28, 9654, 7, 5647, 62, 3672, 1343, 45302, 21370, 70, 3256, 366, 26145, 12340, 3551, 62, 1462, 28, 5647, 62, 3672, 1343, 45302, 12315, 11537, 628 ]
2.067135
2,845
import os import stat import time import re import pwd import logSupport import condorPrivsep from pidSupport import register_sighandler, unregister_sighandler MY_USERNAME = pwd.getpwuid(os.getuid())[0] cleaners = Cleanup() class CredCleanup(Cleanup): """ Cleans up old credential files. """ cred_cleaners = CredCleanup() # this class is used for cleanup # INTERNAL # return a dictionary of fpaths each having the os.lstat output # this may reimplemented by the children # this class is used for cleanup class PrivsepDirCleanupCredentials(DirCleanup): """ Used to cleanup old credential files saved to disk by the factory for glidein submission (based on ctime). """
[ 11748, 28686, 198, 11748, 1185, 198, 11748, 640, 198, 11748, 302, 198, 11748, 279, 16993, 198, 11748, 2604, 15514, 198, 11748, 1779, 273, 20184, 325, 79, 198, 6738, 46514, 15514, 1330, 7881, 62, 82, 394, 392, 1754, 11, 555, 30238, 62, 82, 394, 392, 1754, 198, 198, 26708, 62, 29904, 20608, 796, 279, 16993, 13, 1136, 79, 86, 27112, 7, 418, 13, 1136, 27112, 28955, 58, 15, 60, 198, 198, 27773, 364, 796, 5985, 929, 3419, 198, 198, 4871, 327, 445, 32657, 929, 7, 32657, 929, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3779, 504, 510, 1468, 49920, 3696, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 66, 445, 62, 27773, 364, 796, 327, 445, 32657, 929, 3419, 198, 198, 2, 428, 1398, 318, 973, 329, 27425, 628, 220, 220, 220, 1303, 23255, 45, 1847, 198, 220, 220, 220, 1303, 1441, 257, 22155, 286, 277, 6978, 82, 1123, 1719, 262, 28686, 13, 75, 14269, 5072, 628, 220, 220, 220, 1303, 428, 743, 21123, 1154, 12061, 416, 262, 1751, 198, 198, 2, 428, 1398, 318, 973, 329, 27425, 628, 198, 4871, 9243, 325, 79, 35277, 32657, 929, 34, 445, 14817, 7, 35277, 32657, 929, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16718, 284, 27425, 1468, 49920, 3696, 7448, 284, 11898, 416, 262, 8860, 329, 48089, 259, 14498, 357, 3106, 319, 269, 2435, 737, 198, 220, 220, 220, 37227, 198 ]
2.947154
246
from . import database
[ 6738, 764, 1330, 6831, 628 ]
4.8
5
import sys from partsdb.partsdb import PartsDB from tables import * marpodb = PartsDB('postgresql:///'+sys.argv[1], Base = Base) session = marpodb.Session() n=0 i=0 for gene in session.query(Gene).all(): n = session.query(InterProHit).filter(InterProHit.targetID == gene.cds.id).count() if n == 0: session.query(BlastpHit).filter(BlastpHit.targetID == gene.cds.id).delete() session.delete(gene) n = n+1 if i % 10 == 0: print "Processed {0} genes" i = i+1 session.commit() print "Deleted {0} genes".format(n)
[ 11748, 25064, 198, 6738, 3354, 9945, 13, 42632, 9945, 1330, 22349, 11012, 198, 6738, 8893, 1330, 1635, 198, 198, 3876, 33320, 65, 796, 22349, 11012, 10786, 7353, 34239, 13976, 1378, 14, 6, 10, 17597, 13, 853, 85, 58, 16, 4357, 7308, 796, 7308, 8, 198, 198, 29891, 796, 1667, 33320, 65, 13, 36044, 3419, 198, 198, 77, 28, 15, 198, 72, 28, 15, 198, 198, 1640, 9779, 287, 6246, 13, 22766, 7, 39358, 737, 439, 33529, 198, 197, 77, 796, 6246, 13, 22766, 7, 9492, 2964, 17889, 737, 24455, 7, 9492, 2964, 17889, 13, 16793, 2389, 6624, 9779, 13, 66, 9310, 13, 312, 737, 9127, 3419, 198, 197, 198, 197, 361, 299, 6624, 657, 25, 198, 197, 197, 29891, 13, 22766, 7, 3629, 459, 79, 17889, 737, 24455, 7, 3629, 459, 79, 17889, 13, 16793, 2389, 6624, 9779, 13, 66, 9310, 13, 312, 737, 33678, 3419, 198, 197, 197, 29891, 13, 33678, 7, 70, 1734, 8, 198, 197, 197, 77, 796, 299, 10, 16, 628, 197, 361, 1312, 4064, 838, 6624, 657, 25, 198, 197, 197, 4798, 366, 18709, 276, 1391, 15, 92, 10812, 1, 628, 197, 72, 796, 1312, 10, 16, 198, 198, 29891, 13, 41509, 3419, 198, 4798, 366, 5005, 33342, 1391, 15, 92, 10812, 1911, 18982, 7, 77, 8 ]
2.490566
212
from unittest import TestCase import hummingbot.client.config.config_validators as config_validators
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 11748, 41465, 13645, 13, 16366, 13, 11250, 13, 11250, 62, 12102, 2024, 355, 4566, 62, 12102, 2024, 628 ]
3.814815
27
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import yaml
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 198, 11748, 331, 43695, 628 ]
2.21875
32
from functools import partial class F(partial): """ Python Pipe. e.g.`range(10) | F(filter, lambda x: x % 2) | F(sum)` WARNING: There will be a small performance loss when building a pipeline. Please do not use it in performance-sensitive locations. """ class FF(partial): """ Python Pipe. e.g.`("f", 10) | FF(lambda letter, num: letter * num)` WARNING: There will be a small performance loss when building a pipeline. Please do not use it in performance-sensitive locations. """
[ 6738, 1257, 310, 10141, 1330, 13027, 628, 198, 4871, 376, 7, 47172, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11361, 36039, 13, 304, 13, 70, 13, 63, 9521, 7, 940, 8, 930, 376, 7, 24455, 11, 37456, 2124, 25, 2124, 4064, 362, 8, 930, 376, 7, 16345, 8, 63, 628, 220, 220, 220, 39410, 25, 1318, 481, 307, 257, 1402, 2854, 2994, 618, 2615, 257, 198, 220, 220, 220, 11523, 13, 4222, 466, 407, 779, 340, 287, 2854, 12, 30176, 7064, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 18402, 7, 47172, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11361, 36039, 13, 304, 13, 70, 13, 63, 7203, 69, 1600, 838, 8, 930, 18402, 7, 50033, 3850, 11, 997, 25, 3850, 1635, 997, 8, 63, 628, 220, 220, 220, 39410, 25, 1318, 481, 307, 257, 1402, 2854, 2994, 618, 2615, 257, 198, 220, 220, 220, 11523, 13, 4222, 466, 407, 779, 340, 287, 2854, 12, 30176, 7064, 13, 198, 220, 220, 220, 37227, 628 ]
3.081871
171
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Travis Yates """Tests for object_detection.utils.test_utils.""" import numpy as np import tensorflow as tf from object_detection.utils import test_utils if __name__ == '__main__': tf.test.main()
[ 2, 15069, 2177, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 19804, 34916, 198, 198, 37811, 51, 3558, 329, 2134, 62, 15255, 3213, 13, 26791, 13, 9288, 62, 26791, 526, 15931, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 2134, 62, 15255, 3213, 13, 26791, 1330, 1332, 62, 26791, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 48700, 13, 9288, 13, 12417, 3419, 198 ]
3.127907
86
import keyboard keyboard.hook(abc) keyboard.wait()
[ 11748, 10586, 628, 198, 198, 2539, 3526, 13, 25480, 7, 39305, 8, 198, 2539, 3526, 13, 17077, 3419, 198 ]
2.842105
19
"""Consolidate repository data from several previous steps. Use -h or --help for more information. """ import argparse import csv import logging import sys from util.parse import \ parse_repo_to_package_file, \ consolidate_data __log__ = logging.getLogger(__name__) FIELDNAMES = [ 'id', 'name', 'full_name', 'description', 'size', 'private', 'fork', 'archived', 'created_at', 'updated_at', 'pushed_at', 'language', 'default_branch', 'homepage', 'forks_count', 'stargazers_count', 'subscribers_count', 'watchers_count', 'network_count', 'has_downloads', 'has_issues', 'has_pages', 'has_projects', 'has_wiki', 'owner_id', 'owner_login', 'owner_type', 'parent_id', 'source_id', 'commit_count', 'has_gradle_files', 'renamed_to', 'not_found', 'clone_status', 'clone_project_name', 'clone_project_id', 'clone_project_path', 'packages' ] def define_cmdline_arguments(parser: argparse.ArgumentParser): """Add arguments to parser.""" parser.add_argument( 'ORIGINAL_REPO_LIST', type=argparse.FileType('r'), help='''CSV file as created by subcommand 'get_repo_data' and augmented by subcommand 'add_gradle_info'. This original file is necessary because later versions have non ASCII characters wrongly encoded. ''') parser.add_argument( 'NEW_REPO_LIST', type=argparse.FileType('r'), help='''CSV file generated by external script to import GitHub repositories to a local Gitlab instance. This file has the same content as 'original_file' with some additional columns. Unfortunately, there is an encoding issue.''') parser.add_argument( 'MIRRORED_REPO_LIST', type=argparse.FileType('r'), help='''CSV file generated by subcommand 'mirror_empty_repos'. This file contains updated information on the snapshot repository in Gitlab.''') parser.add_argument( 'PACKAGE_LIST', type=argparse.FileType('r'), help='''CSV file that lists package name and repository name in a column each. The file should not have a header.''') parser.add_argument( 'RENAMED_REPOS_LIST', type=argparse.FileType('r'), help='''CSV file which lists GitHub IDs and new repo names of some renamed repos.''') parser.add_argument( '-o', '--output', type=argparse.FileType('w'), default=sys.stdout, help='File to write output CSV to. Default: stdout.') parser.set_defaults(func=_main) def _main(args: argparse.Namespace): """Pass arguments to respective function.""" __log__.info('------- Arguments: -------') __log__.info('ORIGINAL_REPO_LIST: %s', args.ORIGINAL_REPO_LIST) __log__.info('NEW_REPO_LIST: %s', args.NEW_REPO_LIST.name) __log__.info('MIRRORED_REPO_LIST: %s', args.MIRRORED_REPO_LIST.name) __log__.info('PACKAGE_LIST: %s', args.PACKAGE_LIST.name) __log__.info('RENAMED_REPOS_LIST: %s', args.RENAMED_REPOS_LIST.name) __log__.info('--output: %s', args.output.name) __log__.info('------- Arguments end -------') packages_by_repo = parse_repo_to_package_file(args.PACKAGE_LIST) renamed_repos = {row['github_id']: row for row in csv.DictReader( args.RENAMED_REPOS_LIST)} data = consolidate_data( args.ORIGINAL_REPO_LIST, args.NEW_REPO_LIST, args.MIRRORED_REPO_LIST, renamed_repos, packages_by_repo) writer = csv.DictWriter(args.output, FIELDNAMES) writer.writeheader() num_repos = 0 for row in data: num_repos += 1 writer.writerow(row) __log__.info('Number of successfully matched repos: %d', num_repos)
[ 37811, 9444, 10180, 378, 16099, 1366, 422, 1811, 2180, 4831, 13, 198, 198, 11041, 532, 71, 393, 1377, 16794, 329, 517, 1321, 13, 198, 37811, 198, 11748, 1822, 29572, 198, 11748, 269, 21370, 198, 11748, 18931, 198, 11748, 25064, 198, 198, 6738, 7736, 13, 29572, 1330, 3467, 198, 220, 220, 220, 21136, 62, 260, 7501, 62, 1462, 62, 26495, 62, 7753, 11, 3467, 198, 220, 220, 220, 38562, 62, 7890, 628, 198, 834, 6404, 834, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 44603, 45, 29559, 796, 685, 198, 220, 220, 220, 705, 312, 3256, 198, 220, 220, 220, 705, 3672, 3256, 198, 220, 220, 220, 705, 12853, 62, 3672, 3256, 198, 220, 220, 220, 705, 11213, 3256, 198, 220, 220, 220, 705, 7857, 3256, 198, 220, 220, 220, 705, 19734, 3256, 198, 220, 220, 220, 705, 32523, 3256, 198, 220, 220, 220, 705, 998, 1572, 3256, 198, 220, 220, 220, 705, 25598, 62, 265, 3256, 198, 220, 220, 220, 705, 43162, 62, 265, 3256, 198, 220, 220, 220, 705, 79, 7474, 62, 265, 3256, 198, 220, 220, 220, 705, 16129, 3256, 198, 220, 220, 220, 705, 12286, 62, 1671, 3702, 3256, 198, 220, 220, 220, 705, 11195, 7700, 3256, 198, 220, 220, 220, 705, 1640, 591, 62, 9127, 3256, 198, 220, 220, 220, 705, 301, 853, 1031, 364, 62, 9127, 3256, 198, 220, 220, 220, 705, 7266, 40075, 364, 62, 9127, 3256, 198, 220, 220, 220, 705, 47261, 3533, 62, 9127, 3256, 198, 220, 220, 220, 705, 27349, 62, 9127, 3256, 198, 220, 220, 220, 705, 10134, 62, 15002, 82, 3256, 198, 220, 220, 220, 705, 10134, 62, 37165, 3256, 198, 220, 220, 220, 705, 10134, 62, 31126, 3256, 198, 220, 220, 220, 705, 10134, 62, 42068, 3256, 198, 220, 220, 220, 705, 10134, 62, 15466, 3256, 198, 220, 220, 220, 705, 18403, 62, 312, 3256, 198, 220, 220, 220, 705, 18403, 62, 38235, 3256, 198, 220, 220, 220, 705, 18403, 62, 4906, 3256, 198, 220, 220, 220, 705, 8000, 62, 312, 3256, 198, 220, 220, 220, 705, 10459, 62, 312, 3256, 198, 220, 220, 220, 705, 41509, 62, 9127, 3256, 198, 220, 220, 220, 705, 10134, 62, 9744, 293, 62, 16624, 3256, 198, 220, 220, 220, 705, 918, 2434, 62, 1462, 3256, 198, 220, 220, 220, 705, 1662, 62, 9275, 3256, 198, 220, 220, 220, 705, 21018, 62, 13376, 3256, 198, 220, 220, 220, 705, 21018, 62, 16302, 62, 3672, 3256, 198, 220, 220, 220, 705, 21018, 62, 16302, 62, 312, 3256, 198, 220, 220, 220, 705, 21018, 62, 16302, 62, 6978, 3256, 198, 220, 220, 220, 705, 43789, 6, 198, 220, 220, 220, 2361, 628, 198, 4299, 8160, 62, 28758, 1370, 62, 853, 2886, 7, 48610, 25, 1822, 29572, 13, 28100, 1713, 46677, 2599, 198, 220, 220, 220, 37227, 4550, 7159, 284, 30751, 526, 15931, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1581, 3528, 17961, 62, 2200, 16402, 62, 45849, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 28, 7061, 6, 7902, 53, 2393, 355, 2727, 416, 850, 21812, 705, 1136, 62, 260, 7501, 62, 7890, 6, 290, 30259, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 416, 850, 21812, 705, 2860, 62, 9744, 293, 62, 10951, 4458, 770, 2656, 2393, 318, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 780, 1568, 6300, 423, 1729, 37101, 3435, 31238, 30240, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13965, 62, 2200, 16402, 62, 45849, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 28, 7061, 6, 7902, 53, 2393, 7560, 416, 7097, 4226, 284, 1330, 21722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38072, 284, 257, 1957, 15151, 23912, 4554, 13, 770, 2393, 468, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 355, 705, 14986, 62, 7753, 6, 351, 617, 3224, 15180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8989, 11, 612, 318, 281, 21004, 2071, 2637, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44, 4663, 16411, 1961, 62, 2200, 16402, 62, 45849, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 28, 7061, 6, 7902, 53, 2393, 7560, 416, 850, 21812, 705, 10793, 1472, 62, 28920, 62, 260, 1930, 4458, 770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 4909, 6153, 1321, 319, 262, 27479, 16099, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15151, 23912, 2637, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47, 8120, 11879, 62, 45849, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 28, 7061, 6, 7902, 53, 2393, 326, 8341, 5301, 1438, 290, 16099, 1438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 5721, 1123, 13, 383, 2393, 815, 407, 423, 257, 13639, 2637, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 49, 1677, 2390, 1961, 62, 35316, 2640, 62, 45849, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 28, 7061, 6, 7902, 53, 2393, 543, 8341, 21722, 32373, 290, 649, 29924, 3891, 286, 617, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25121, 1128, 418, 2637, 7061, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12, 78, 3256, 705, 438, 22915, 3256, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 86, 33809, 4277, 28, 17597, 13, 19282, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 8979, 284, 3551, 5072, 44189, 284, 13, 15161, 25, 14367, 448, 2637, 8, 198, 220, 220, 220, 30751, 13, 2617, 62, 12286, 82, 7, 20786, 28, 62, 12417, 8, 628, 198, 4299, 4808, 12417, 7, 22046, 25, 1822, 29572, 13, 36690, 10223, 2599, 198, 220, 220, 220, 37227, 14478, 7159, 284, 11756, 2163, 526, 15931, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 26866, 20559, 2886, 25, 35656, 11537, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 1581, 3528, 17961, 62, 2200, 16402, 62, 45849, 25, 4064, 82, 3256, 26498, 13, 1581, 3528, 17961, 62, 2200, 16402, 62, 45849, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 13965, 62, 2200, 16402, 62, 45849, 25, 4064, 82, 3256, 26498, 13, 13965, 62, 2200, 16402, 62, 45849, 13, 3672, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 44, 4663, 16411, 1961, 62, 2200, 16402, 62, 45849, 25, 4064, 82, 3256, 26498, 13, 44, 4663, 16411, 1961, 62, 2200, 16402, 62, 45849, 13, 3672, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 47, 8120, 11879, 62, 45849, 25, 4064, 82, 3256, 26498, 13, 47, 8120, 11879, 62, 45849, 13, 3672, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 49, 1677, 2390, 1961, 62, 35316, 2640, 62, 45849, 25, 4064, 82, 3256, 26498, 13, 49, 1677, 2390, 1961, 62, 35316, 2640, 62, 45849, 13, 3672, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 438, 22915, 25, 4064, 82, 3256, 26498, 13, 22915, 13, 3672, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 26866, 20559, 2886, 886, 35656, 11537, 628, 220, 220, 220, 10392, 62, 1525, 62, 260, 7501, 796, 21136, 62, 260, 7501, 62, 1462, 62, 26495, 62, 7753, 7, 22046, 13, 47, 8120, 11879, 62, 45849, 8, 198, 220, 220, 220, 25121, 62, 260, 1930, 796, 1391, 808, 17816, 12567, 62, 312, 6, 5974, 5752, 329, 5752, 287, 269, 21370, 13, 35, 713, 33634, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 49, 1677, 2390, 1961, 62, 35316, 2640, 62, 45849, 38165, 198, 220, 220, 220, 1366, 796, 38562, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 1581, 3528, 17961, 62, 2200, 16402, 62, 45849, 11, 26498, 13, 13965, 62, 2200, 16402, 62, 45849, 11, 26498, 13, 44, 4663, 16411, 1961, 62, 2200, 16402, 62, 45849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25121, 62, 260, 1930, 11, 10392, 62, 1525, 62, 260, 7501, 8, 198, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 22046, 13, 22915, 11, 18930, 24639, 45, 29559, 8, 198, 220, 220, 220, 6260, 13, 13564, 25677, 3419, 198, 220, 220, 220, 997, 62, 260, 1930, 796, 657, 198, 220, 220, 220, 329, 5752, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 260, 1930, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 16002, 322, 7, 808, 8, 198, 220, 220, 220, 11593, 6404, 834, 13, 10951, 10786, 15057, 286, 7675, 14451, 1128, 418, 25, 4064, 67, 3256, 997, 62, 260, 1930, 8, 198 ]
2.385777
1,589
import unittest from pubmed.package1.example_mod2 import ExampleMod2 if __name__ == '__main__': # Run tests with the warning such as below ignored (not shown). # InsecureRequestWarning: Unverified HTTPS request # ResourceWarning: unclosed <ssl.SSLSocket fd=5, ... unittest.main(warnings='ignore')
[ 11748, 555, 715, 395, 198, 198, 6738, 2240, 1150, 13, 26495, 16, 13, 20688, 62, 4666, 17, 1330, 17934, 5841, 17, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 5660, 5254, 351, 262, 6509, 884, 355, 2174, 9514, 357, 1662, 3402, 737, 198, 220, 220, 220, 1303, 554, 22390, 18453, 20361, 25, 791, 47684, 38288, 2581, 198, 220, 220, 220, 1303, 20857, 20361, 25, 555, 20225, 1279, 45163, 13, 5432, 6561, 5459, 277, 67, 28, 20, 11, 2644, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 40539, 654, 11639, 46430, 11537, 198 ]
3.048077
104
# The following code is of week one of python print("Hello my name is George!") print("This is my dog Max!") print('o----') print(' ||||') # some maths! print(50 - 10) # let's make a variable for year I was born in by inputting! # make sure to click on the black screen to type an press enter! year = input("What year are you born in? ") # Now lets see how old I am! Remeber to turn the variable into a number using int() print(2019 - int(year))
[ 2, 383, 1708, 2438, 318, 286, 1285, 530, 286, 21015, 198, 4798, 7203, 15496, 616, 1438, 318, 4502, 2474, 8, 198, 198, 4798, 7203, 1212, 318, 616, 3290, 5436, 2474, 8, 198, 4798, 10786, 78, 650, 11537, 198, 4798, 10786, 8614, 15886, 11537, 198, 198, 2, 617, 47761, 0, 198, 4798, 7, 1120, 532, 838, 8, 198, 198, 2, 1309, 338, 787, 257, 7885, 329, 614, 314, 373, 4642, 287, 416, 5128, 889, 0, 198, 2, 787, 1654, 284, 3904, 319, 262, 2042, 3159, 284, 2099, 281, 1803, 3802, 0, 198, 1941, 796, 5128, 7203, 2061, 614, 389, 345, 4642, 287, 30, 366, 8, 198, 2, 2735, 8781, 766, 703, 1468, 314, 716, 0, 3982, 68, 527, 284, 1210, 262, 7885, 656, 257, 1271, 1262, 493, 3419, 198, 4798, 7, 23344, 532, 493, 7, 1941, 4008, 198 ]
3.277372
137
import sys from pyspark import SparkContext sc = SparkContext(appName="WordCountExample") lines = sc.textFile(sys.argv[1]) counts = lines.flatMap(lambda x: x.split(' ')) \ .map(lambda x: (x, 1)) \ .reduceByKey(lambda x, y: x+y) output = counts.collect() for (word, count) in output: print("%s: %i" % (word, count)) sc.stop()
[ 11748, 25064, 201, 198, 6738, 279, 893, 20928, 1330, 17732, 21947, 201, 198, 1416, 796, 17732, 21947, 7, 1324, 5376, 2625, 26449, 12332, 16281, 4943, 201, 198, 6615, 796, 629, 13, 5239, 8979, 7, 17597, 13, 853, 85, 58, 16, 12962, 201, 198, 9127, 82, 796, 3951, 13, 38568, 13912, 7, 50033, 2124, 25, 2124, 13, 35312, 10786, 705, 4008, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8899, 7, 50033, 2124, 25, 357, 87, 11, 352, 4008, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 445, 7234, 3886, 9218, 7, 50033, 2124, 11, 331, 25, 2124, 10, 88, 8, 201, 198, 22915, 796, 9853, 13, 33327, 3419, 201, 198, 1640, 357, 4775, 11, 954, 8, 287, 5072, 25, 201, 198, 220, 220, 220, 3601, 7203, 4, 82, 25, 4064, 72, 1, 4064, 357, 4775, 11, 954, 4008, 201, 198, 1416, 13, 11338, 3419, 201, 198 ]
2.186047
172
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ModelSearchOptions(Model): """Model Search Options. :param search_keyword: Gets or sets keyword for model search. Searches within pre-defined properties. :type search_keyword: str :param model_type: Gets or sets the type of the model. Possible values include: 'Interface', 'Undetermined' :type model_type: str or ~pnp.models.enum :param model_state: Gets or sets the state of the model. Possible values include: 'Created', 'Listed' :type model_state: str or ~pnp.models.enum :param publisher_id: Gets or sets the publisher identifier. :type publisher_id: str :param created_by: Gets or sets the created by. :type created_by: str """ _attribute_map = { 'search_keyword': {'key': 'searchKeyword', 'type': 'str'}, 'model_type': {'key': 'modelType', 'type': 'str'}, 'model_state': {'key': 'modelState', 'type': 'str'}, 'publisher_id': {'key': 'publisherId', 'type': 'str'}, 'created_by': {'key': 'createdBy', 'type': 'str'}, }
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 16529, 35937, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 13, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 198, 2, 16935, 515, 13, 198, 2, 16529, 35937, 198, 198, 6738, 13845, 2118, 13, 46911, 1634, 1330, 9104, 628, 198, 4871, 9104, 18243, 29046, 7, 17633, 2599, 198, 220, 220, 220, 37227, 17633, 11140, 18634, 13, 628, 220, 220, 220, 1058, 17143, 2989, 62, 2539, 4775, 25, 29620, 393, 5621, 21179, 329, 2746, 2989, 13, 42016, 2052, 198, 220, 220, 220, 220, 1626, 662, 12, 23211, 6608, 13, 198, 220, 220, 220, 1058, 4906, 2989, 62, 2539, 4775, 25, 965, 198, 220, 220, 220, 1058, 17143, 2746, 62, 4906, 25, 29620, 393, 5621, 262, 2099, 286, 262, 2746, 13, 33671, 3815, 198, 220, 220, 220, 220, 2291, 25, 705, 39317, 3256, 705, 31319, 23444, 6, 198, 220, 220, 220, 1058, 4906, 2746, 62, 4906, 25, 965, 393, 5299, 21999, 79, 13, 27530, 13, 44709, 198, 220, 220, 220, 1058, 17143, 2746, 62, 5219, 25, 29620, 393, 5621, 262, 1181, 286, 262, 2746, 13, 33671, 3815, 198, 220, 220, 220, 220, 2291, 25, 705, 41972, 3256, 705, 43, 6347, 6, 198, 220, 220, 220, 1058, 4906, 2746, 62, 5219, 25, 965, 393, 5299, 21999, 79, 13, 27530, 13, 44709, 198, 220, 220, 220, 1058, 17143, 9991, 62, 312, 25, 29620, 393, 5621, 262, 9991, 27421, 13, 198, 220, 220, 220, 1058, 4906, 9991, 62, 312, 25, 965, 198, 220, 220, 220, 1058, 17143, 2727, 62, 1525, 25, 29620, 393, 5621, 262, 2727, 416, 13, 198, 220, 220, 220, 1058, 4906, 2727, 62, 1525, 25, 965, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12947, 62, 2539, 4775, 10354, 1391, 6, 2539, 10354, 705, 12947, 9218, 4775, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 4906, 10354, 1391, 6, 2539, 10354, 705, 19849, 6030, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 5219, 10354, 1391, 6, 2539, 10354, 705, 19849, 9012, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12984, 8191, 62, 312, 10354, 1391, 6, 2539, 10354, 705, 12984, 8191, 7390, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 62, 1525, 10354, 1391, 6, 2539, 10354, 705, 25598, 3886, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 1782, 198 ]
3.203704
486
#%% import configparser config = configparser.ConfigParser() config.read('map_indicators.ini') config.sections() tables = config['Database']['tables'].split() print(tables) # %% import configparser def init(inifile : str) -> bool: ''' check if everything is ok prior to entering the main loop ''' config = configparser.ConfigParser() config.read(inifile) if 'Database' in config and 'Sessions' in config: return True else: return False assert init('map_indicators.ini') is True assert init('m') is False # %% import os import platform print(os.name) print(platform.system()) # %% @decorate l = ['t1', 't2'] select(l) # %% # Notre fonction décorée @decorate # Appel de la fonction foobar("A", "B", "C", "D") # %% # It’s not black magic, you just have to let the wrapper # pass the argument: # Since when you are calling the function returned by the decorator, you are # calling the wrapper, passing arguments to the wrapper will let it pass them to # the decorated function @a_decorator_passing_arguments print_full_name("Peter", "Venkman") # outputs: #I got args! Look: Peter Venkman #My name is Peter Venkman # %% @add_prefix('jules') l = ['t1', 't2'] select(l) # %% myvar = 'content' print('content of variable {v.__name__} {v}'.format(v=myvar)) # %% import datetime print(datetime.datetime.today()) # %% context = 'datetime' current_context = datetime.date.today() if context == 'date' else datetime.datetime.today() print(current_context) # %% var = '/path/to/Session-2022-05-14-14' session = var[var.rfind('-')+1:] print(session) # %% returned_paths = ['/path/to/Session-2022-05-14-14', '/path/to/Session-2022-05-14-2'] current_context = str(datetime.date.today() if context == 'date' else datetime.datetime.today()) separator = '-' sessions = [1] for path in returned_paths: sessions.append(int(path[path.rfind('-')+1:])) x = max(sessions) path_to_create = current_context+separator+str((max(sessions)+1)) print(path_to_create) print(sessions) print(x) # %% from prompt_toolkit import print_formatted_text, HTML, prompt from prompt_toolkit.validation import Validator validator_yn = Validator.from_callable( is_ync, error_message='enter (y)es; (n)o, (c)ancel', move_cursor_to_end=True) inputt = prompt('Your choice : (y/n/c) : ') # %% ask_ok('?') # %% @decorate("Arg 1", "Arg 2", "Arg 3") foobar() #%% tables = ['adm_user', 'adm_profile_user'] tool_tables = ['user_acess', 'path'] query = 'select * from adm_user join adm_profile_user on a=a where access = user_access.access_enseigne' brand = 'jules' separator = '_' print(query) query = brand_query(query=query, tables=tables, brand=brand, separator=separator) print(query) #%% s = "The quick brown fox jumps over the lazy dog" for r in (("brown", "red"), ("lazy", "quick")): s = s.replace(*r) print(s) #%% l = [] f('5') print(l) print(id(l)) f('6') print(l) print(isinstance(l, list)) for x in l: print(f'l:{x}') f(None) print(l)
[ 2, 16626, 198, 11748, 4566, 48610, 198, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 11250, 13, 961, 10786, 8899, 62, 521, 44549, 13, 5362, 11537, 198, 11250, 13, 23946, 3419, 198, 83, 2977, 796, 4566, 17816, 38105, 6, 7131, 6, 83, 2977, 6, 4083, 35312, 3419, 198, 4798, 7, 83, 2977, 8, 198, 198, 2, 43313, 198, 11748, 4566, 48610, 198, 198, 4299, 2315, 7, 259, 361, 576, 1058, 965, 8, 4613, 20512, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 611, 2279, 318, 12876, 3161, 284, 8218, 262, 1388, 9052, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4566, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 220, 220, 220, 4566, 13, 961, 7, 259, 361, 576, 8, 198, 220, 220, 220, 611, 705, 38105, 6, 287, 4566, 290, 705, 50, 6202, 6, 287, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 30493, 2315, 10786, 8899, 62, 521, 44549, 13, 5362, 11537, 318, 6407, 198, 30493, 2315, 10786, 76, 11537, 318, 10352, 628, 628, 198, 2, 43313, 198, 11748, 28686, 198, 11748, 3859, 198, 4798, 7, 418, 13, 3672, 8, 198, 4798, 7, 24254, 13, 10057, 28955, 198, 2, 43313, 628, 198, 31, 12501, 16262, 198, 198, 75, 796, 37250, 83, 16, 3256, 705, 83, 17, 20520, 198, 19738, 7, 75, 8, 628, 628, 198, 198, 2, 43313, 198, 198, 2, 23382, 277, 261, 596, 39073, 10215, 22161, 198, 31, 12501, 16262, 198, 198, 2, 2034, 417, 390, 8591, 277, 261, 596, 198, 6513, 30973, 7203, 32, 1600, 366, 33, 1600, 366, 34, 1600, 366, 35, 4943, 198, 2, 43313, 198, 2, 632, 447, 247, 82, 407, 2042, 5536, 11, 345, 655, 423, 284, 1309, 262, 29908, 220, 198, 2, 1208, 262, 4578, 25, 198, 198, 2, 4619, 618, 345, 389, 4585, 262, 2163, 4504, 416, 262, 11705, 1352, 11, 345, 389, 198, 2, 4585, 262, 29908, 11, 6427, 7159, 284, 262, 29908, 481, 1309, 340, 1208, 606, 284, 220, 198, 2, 262, 24789, 2163, 198, 198, 31, 64, 62, 12501, 273, 1352, 62, 6603, 278, 62, 853, 2886, 198, 220, 220, 220, 220, 198, 4798, 62, 12853, 62, 3672, 7203, 19727, 1600, 366, 37522, 74, 805, 4943, 198, 2, 23862, 25, 198, 2, 40, 1392, 26498, 0, 6803, 25, 5613, 9932, 74, 805, 198, 2, 3666, 1438, 318, 5613, 9932, 74, 805, 198, 2, 43313, 628, 198, 31, 2860, 62, 40290, 10786, 73, 5028, 11537, 198, 198, 75, 796, 37250, 83, 16, 3256, 705, 83, 17, 20520, 198, 19738, 7, 75, 8, 198, 198, 2, 43313, 198, 1820, 7785, 796, 705, 11299, 6, 198, 4798, 10786, 11299, 286, 7885, 1391, 85, 13, 834, 3672, 834, 92, 1391, 85, 92, 4458, 18982, 7, 85, 28, 1820, 7785, 4008, 198, 2, 43313, 198, 11748, 4818, 8079, 198, 4798, 7, 19608, 8079, 13, 19608, 8079, 13, 40838, 28955, 198, 2, 43313, 198, 22866, 796, 705, 19608, 8079, 6, 198, 14421, 62, 22866, 796, 4818, 8079, 13, 4475, 13, 40838, 3419, 611, 4732, 6624, 705, 4475, 6, 2073, 4818, 8079, 13, 19608, 8079, 13, 40838, 3419, 198, 4798, 7, 14421, 62, 22866, 8, 198, 2, 43313, 198, 7785, 796, 31051, 6978, 14, 1462, 14, 36044, 12, 1238, 1828, 12, 2713, 12, 1415, 12, 1415, 6, 198, 29891, 796, 1401, 58, 7785, 13, 81, 19796, 10786, 12, 11537, 10, 16, 47715, 198, 4798, 7, 29891, 8, 198, 2, 43313, 198, 7783, 276, 62, 6978, 82, 796, 685, 26488, 6978, 14, 1462, 14, 36044, 12, 1238, 1828, 12, 2713, 12, 1415, 12, 1415, 3256, 31051, 6978, 14, 1462, 14, 36044, 12, 1238, 1828, 12, 2713, 12, 1415, 12, 17, 20520, 198, 14421, 62, 22866, 796, 965, 7, 19608, 8079, 13, 4475, 13, 40838, 3419, 611, 4732, 6624, 705, 4475, 6, 2073, 4818, 8079, 13, 19608, 8079, 13, 40838, 28955, 198, 25512, 1352, 796, 705, 19355, 198, 82, 6202, 796, 685, 16, 60, 198, 1640, 3108, 287, 4504, 62, 6978, 82, 25, 198, 220, 220, 220, 10991, 13, 33295, 7, 600, 7, 6978, 58, 6978, 13, 81, 19796, 10786, 12, 11537, 10, 16, 47715, 4008, 198, 87, 796, 3509, 7, 82, 6202, 8, 198, 6978, 62, 1462, 62, 17953, 796, 1459, 62, 22866, 10, 25512, 1352, 10, 2536, 19510, 9806, 7, 82, 6202, 47762, 16, 4008, 198, 4798, 7, 6978, 62, 1462, 62, 17953, 8, 198, 4798, 7, 82, 6202, 8, 198, 4798, 7, 87, 8, 198, 198, 2, 43313, 198, 6738, 6152, 62, 25981, 15813, 1330, 3601, 62, 687, 16898, 62, 5239, 11, 11532, 11, 6152, 198, 6738, 6152, 62, 25981, 15813, 13, 12102, 341, 1330, 48951, 1352, 198, 198, 12102, 1352, 62, 2047, 796, 48951, 1352, 13, 6738, 62, 13345, 540, 7, 198, 220, 220, 220, 318, 62, 13361, 11, 198, 220, 220, 220, 4049, 62, 20500, 11639, 9255, 357, 88, 8, 274, 26, 357, 77, 8, 78, 11, 357, 66, 8, 21130, 3256, 198, 220, 220, 220, 1445, 62, 66, 21471, 62, 1462, 62, 437, 28, 17821, 8, 198, 198, 15414, 83, 796, 6152, 10786, 7120, 3572, 1058, 357, 88, 14, 77, 14, 66, 8, 1058, 705, 8, 198, 2, 43313, 198, 198, 2093, 62, 482, 10786, 8348, 8, 198, 2, 43313, 198, 198, 31, 12501, 16262, 7203, 28100, 352, 1600, 366, 28100, 362, 1600, 366, 28100, 513, 4943, 198, 198, 6513, 30973, 3419, 198, 2, 16626, 198, 83, 2977, 796, 37250, 324, 76, 62, 7220, 3256, 705, 324, 76, 62, 13317, 62, 7220, 20520, 198, 25981, 62, 83, 2977, 796, 37250, 7220, 62, 330, 408, 3256, 705, 6978, 20520, 198, 22766, 796, 705, 19738, 1635, 422, 6178, 62, 7220, 4654, 6178, 62, 13317, 62, 7220, 319, 257, 28, 64, 810, 1895, 796, 2836, 62, 15526, 13, 15526, 62, 1072, 48946, 6, 198, 17938, 796, 705, 73, 5028, 6, 198, 25512, 1352, 796, 705, 62, 6, 198, 198, 4798, 7, 22766, 8, 198, 22766, 796, 4508, 62, 22766, 7, 22766, 28, 22766, 11, 8893, 28, 83, 2977, 11, 4508, 28, 17938, 11, 2880, 1352, 28, 25512, 1352, 8, 198, 4798, 7, 22766, 8, 198, 2, 16626, 198, 82, 796, 366, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 1, 198, 1640, 374, 287, 357, 7203, 33282, 1600, 366, 445, 12340, 5855, 75, 12582, 1600, 366, 24209, 4943, 2599, 198, 220, 220, 220, 264, 796, 264, 13, 33491, 46491, 81, 8, 198, 4798, 7, 82, 8, 198, 2, 16626, 198, 75, 796, 17635, 198, 198, 69, 10786, 20, 11537, 198, 4798, 7, 75, 8, 198, 4798, 7, 312, 7, 75, 4008, 198, 69, 10786, 21, 11537, 198, 4798, 7, 75, 8, 198, 4798, 7, 271, 39098, 7, 75, 11, 1351, 4008, 198, 1640, 2124, 287, 300, 25, 198, 220, 220, 220, 3601, 7, 69, 6, 75, 29164, 87, 92, 11537, 198, 69, 7, 14202, 8, 198, 4798, 7, 75, 8 ]
2.602431
1,152
#!/usr/bin/env python import pandas as pd #Full outer join on the 3 tables produced based on the 3 XML Orphanet files. filename1 = "orphanet_xml1_parsed" filename4 = "orphanet_xml4_parsed" filename6 = "orphanet_xml6_parsed" f1_df = pd.read_csv(filename1, sep="\t", index_col=False, dtype=str, na_filter = False, encoding="latin") f4_df = pd.read_csv(filename4, sep="\t", index_col=False, dtype=str, na_filter = False, encoding="latin") f6_df = pd.read_csv(filename6, sep="\t", index_col=False, dtype=str, na_filter = False, encoding="latin") df_merge1 = pd.merge(f1_df, f6_df, on='orphanet_id', how='outer') df_merge2 = pd.merge(df_merge1, f4_df, on='orphanet_id', how='outer') df_merge2.to_csv("orphanet_all_parsed.txt", sep="\t", na_rep="NA", index=False, encoding='utf-8')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 19798, 292, 355, 279, 67, 198, 2, 13295, 12076, 4654, 319, 262, 513, 8893, 4635, 1912, 319, 262, 513, 23735, 1471, 19080, 316, 3696, 13, 198, 34345, 16, 796, 366, 13425, 272, 316, 62, 19875, 16, 62, 79, 945, 276, 1, 198, 34345, 19, 796, 366, 13425, 272, 316, 62, 19875, 19, 62, 79, 945, 276, 1, 198, 34345, 21, 796, 366, 13425, 272, 316, 62, 19875, 21, 62, 79, 945, 276, 1, 198, 69, 16, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 34345, 16, 11, 41767, 2625, 59, 83, 1600, 6376, 62, 4033, 28, 25101, 11, 288, 4906, 28, 2536, 11, 12385, 62, 24455, 796, 10352, 11, 21004, 2625, 75, 10680, 4943, 198, 69, 19, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 34345, 19, 11, 41767, 2625, 59, 83, 1600, 6376, 62, 4033, 28, 25101, 11, 288, 4906, 28, 2536, 11, 12385, 62, 24455, 796, 10352, 11, 21004, 2625, 75, 10680, 4943, 198, 69, 21, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 34345, 21, 11, 41767, 2625, 59, 83, 1600, 6376, 62, 4033, 28, 25101, 11, 288, 4906, 28, 2536, 11, 12385, 62, 24455, 796, 10352, 11, 21004, 2625, 75, 10680, 4943, 198, 198, 7568, 62, 647, 469, 16, 796, 279, 67, 13, 647, 469, 7, 69, 16, 62, 7568, 11, 277, 21, 62, 7568, 11, 319, 11639, 13425, 272, 316, 62, 312, 3256, 703, 11639, 39605, 11537, 198, 7568, 62, 647, 469, 17, 796, 279, 67, 13, 647, 469, 7, 7568, 62, 647, 469, 16, 11, 277, 19, 62, 7568, 11, 319, 11639, 13425, 272, 316, 62, 312, 3256, 703, 11639, 39605, 11537, 198, 7568, 62, 647, 469, 17, 13, 1462, 62, 40664, 7203, 13425, 272, 316, 62, 439, 62, 79, 945, 276, 13, 14116, 1600, 41767, 2625, 59, 83, 1600, 12385, 62, 7856, 2625, 4535, 1600, 6376, 28, 25101, 11, 220, 21004, 11639, 40477, 12, 23, 11537, 628 ]
2.360606
330
import tixte import discord client = discord.Client(intents=discord.Intents.all(), command_prefix='!') client.tixte = tixte.Client('your-master-token') @client.event
[ 11748, 256, 844, 660, 198, 11748, 36446, 198, 198, 16366, 796, 36446, 13, 11792, 7, 600, 658, 28, 15410, 585, 13, 5317, 658, 13, 439, 22784, 3141, 62, 40290, 11639, 0, 11537, 198, 16366, 13, 83, 844, 660, 796, 256, 844, 660, 13, 11792, 10786, 14108, 12, 9866, 12, 30001, 11537, 198, 198, 31, 16366, 13, 15596 ]
2.929825
57
import logging from PIL import Image from pyscreenshot.plugins.backend import CBackend from pyscreenshot.util import platform_is_osx, py2 if py2(): to_bytes = buffer else: to_bytes = bytes log = logging.getLogger(__name__) # based on: # http://stackoverflow.com/questions/69645/take-a-screenshot-via-a-python-script-linux app = None
[ 11748, 18931, 198, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 279, 28349, 26892, 13, 37390, 13, 1891, 437, 1330, 327, 7282, 437, 198, 6738, 279, 28349, 26892, 13, 22602, 1330, 3859, 62, 271, 62, 418, 87, 11, 12972, 17, 198, 198, 361, 12972, 17, 33529, 198, 220, 220, 220, 284, 62, 33661, 796, 11876, 198, 17772, 25, 198, 220, 220, 220, 284, 62, 33661, 796, 9881, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 2, 1912, 319, 25, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 38205, 2231, 14, 20657, 12, 64, 12, 1416, 26892, 12, 8869, 12, 64, 12, 29412, 12, 12048, 12, 23289, 628, 198, 198, 1324, 796, 6045, 628 ]
2.784
125
from .api import call # Retrieve arrival timings for all buses operating for specified bus stop. Each bus has 3 recurring timings. # Retrieve data of all operating bus services. # Retrieve data of all operating bus routes. # Retrieve data of bus stops. Max number of records per page is 500.
[ 6738, 764, 15042, 1330, 869, 198, 198, 2, 4990, 30227, 10325, 4628, 654, 329, 477, 16893, 5361, 329, 7368, 1323, 2245, 13, 5501, 1323, 468, 513, 24824, 4628, 654, 13, 628, 198, 2, 4990, 30227, 1366, 286, 477, 5361, 1323, 2594, 13, 628, 198, 2, 4990, 30227, 1366, 286, 477, 5361, 1323, 11926, 13, 628, 198, 2, 4990, 30227, 1366, 286, 1323, 9911, 13, 5436, 1271, 286, 4406, 583, 2443, 318, 5323, 13, 198 ]
4.040541
74
# -*- coding: utf-8 -*- """ Malort Tests Test Runner: PyTest Notes: * Expected values for string samples are any values that the sample could contain, not the exact values. """ import os import unittest import pytest import malort as mt from malort.test_helpers import TestHelpers, TEST_FILES_1, TEST_FILES_2
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 15029, 419, 30307, 198, 198, 14402, 21529, 25, 9485, 14402, 198, 198, 16130, 25, 198, 9, 1475, 7254, 3815, 329, 4731, 8405, 389, 597, 3815, 326, 262, 6291, 198, 24089, 3994, 11, 407, 262, 2748, 3815, 13, 198, 198, 37811, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 11748, 12972, 9288, 198, 198, 11748, 6428, 419, 355, 45079, 198, 6738, 6428, 419, 13, 9288, 62, 16794, 364, 1330, 6208, 12621, 19276, 11, 43001, 62, 46700, 1546, 62, 16, 11, 43001, 62, 46700, 1546, 62, 17, 628, 628 ]
3.019048
105
from .labelsmoothing import LabelSmoothingLoss
[ 6738, 764, 23912, 1424, 76, 1025, 722, 1330, 36052, 7556, 1025, 722, 43, 793 ]
3.285714
14
import numpy as np import itertools from pyquil import Program from pyquil.gates import MEASURE # all references are to chapter 4 of Gottesman's thesis, chapter 4 # https://arxiv.org/pdf/quant-ph/9705052.pdf tuple2pauli = {(0,0):'I', (0,1): 'Z', (1,0): 'X', (1,1): 'Y'}
[ 11748, 299, 32152, 355, 45941, 198, 11748, 340, 861, 10141, 198, 6738, 12972, 421, 346, 1330, 6118, 198, 6738, 12972, 421, 346, 13, 70, 689, 1330, 11948, 1921, 11335, 198, 198, 2, 477, 10288, 389, 284, 6843, 604, 286, 39451, 274, 805, 338, 21554, 11, 6843, 604, 198, 2, 3740, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 40972, 12, 746, 14, 43587, 1120, 4309, 13, 12315, 198, 198, 83, 29291, 17, 79, 2518, 72, 796, 1391, 7, 15, 11, 15, 2599, 6, 40, 3256, 357, 15, 11, 16, 2599, 705, 57, 3256, 357, 16, 11, 15, 2599, 705, 55, 3256, 357, 16, 11, 16, 2599, 705, 56, 6, 92, 628 ]
2.4375
112
__author__ = "Prakash Manandhar" __copyright__ = "Copyright 2021, Prakash Manandhar" __credits__ = ["Prakash Manandhar"] __license__ = "MIT" __version__ = "1.1" __maintainer__ = "Prakash Manandhar" __email__ = "[email protected]" __status__ = "Production" import argparse import re import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials """ Source: https://developers.google.com/docs/api/samples/extract-text#python """ def read_paragraph_element(element): """Returns the text in the given ParagraphElement. Args: element: a ParagraphElement from a Google Doc. """ text_run = element.get('textRun') if not text_run: return '' return text_run.get('content') """ Source: https://developers.google.com/docs/api/samples/extract-text#python """ def read_strucutural_elements(elements): """Recurses through a list of Structural Elements to read a document's text where text may be in nested elements. Args: elements: a list of Structural Elements. """ text = '' for value in elements: if 'paragraph' in value: elements = value.get('paragraph').get('elements') for elem in elements: text += read_paragraph_element(elem) elif 'table' in value: # The text in table cells are in nested Structural Elements and tables may be # nested. table = value.get('table') for row in table.get('tableRows'): cells = row.get('tableCells') for cell in cells: text += read_strucutural_elements(cell.get('content')) elif 'tableOfContents' in value: # The text in the TOC is also in a Structural Element. toc = value.get('tableOfContents') text += read_strucutural_elements(toc.get('content')) return text if __name__ == "__main__": parser = init_argparse() args, unknwon_args = parser.parse_known_args() SCOPES = ['https://www.googleapis.com/auth/documents.readonly'] creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(args.token): creds = Credentials.from_authorized_user_file(args.token, SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( args.secret, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(args.token, 'w') as token: token.write(creds.to_json()) service = build('docs', 'v1', credentials=creds) # Retrieve the documents contents from the Docs service. print("Retrieving document ....") document = service.documents().get(documentId=args.id).execute() doc_content = document.get('body').get('content') doc_text = read_strucutural_elements(doc_content) find_text(doc_text, args.regex, args.outfile)
[ 834, 9800, 834, 796, 366, 47, 17716, 1077, 1869, 392, 9869, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 33448, 11, 350, 17716, 1077, 1869, 392, 9869, 1, 198, 834, 66, 20696, 834, 796, 14631, 47, 17716, 1077, 1869, 392, 9869, 8973, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 9641, 834, 796, 366, 16, 13, 16, 1, 198, 834, 76, 2913, 10613, 834, 796, 366, 47, 17716, 1077, 1869, 392, 9869, 1, 198, 834, 12888, 834, 796, 366, 79, 17716, 1077, 76, 31, 282, 388, 13, 2781, 13, 15532, 1, 198, 834, 13376, 834, 796, 366, 35027, 1, 198, 198, 11748, 1822, 29572, 198, 11748, 302, 198, 11748, 28686, 13, 6978, 198, 6738, 23645, 499, 291, 75, 1153, 13, 67, 40821, 1330, 1382, 198, 6738, 23645, 62, 18439, 62, 12162, 1071, 8019, 13, 11125, 1330, 2262, 4262, 4677, 37535, 198, 6738, 23645, 13, 18439, 13, 7645, 634, 13, 8897, 3558, 1330, 19390, 198, 6738, 23645, 13, 12162, 1071, 17, 13, 66, 445, 14817, 1330, 327, 445, 14817, 198, 198, 37811, 198, 7416, 25, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 31628, 14, 15042, 14, 82, 12629, 14, 2302, 974, 12, 5239, 2, 29412, 198, 37811, 198, 4299, 1100, 62, 20360, 62, 30854, 7, 30854, 2599, 198, 220, 220, 220, 37227, 35561, 262, 2420, 287, 262, 1813, 2547, 6111, 20180, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5002, 25, 257, 2547, 6111, 20180, 422, 257, 3012, 14432, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 62, 5143, 796, 5002, 13, 1136, 10786, 5239, 10987, 11537, 198, 220, 220, 220, 611, 407, 2420, 62, 5143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 1441, 2420, 62, 5143, 13, 1136, 10786, 11299, 11537, 198, 198, 37811, 198, 7416, 25, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 31628, 14, 15042, 14, 82, 12629, 14, 2302, 974, 12, 5239, 2, 29412, 198, 37811, 198, 4299, 1100, 62, 19554, 8968, 1523, 62, 68, 3639, 7, 68, 3639, 2599, 198, 220, 220, 220, 37227, 6690, 46998, 832, 257, 1351, 286, 32112, 1523, 26632, 284, 1100, 257, 3188, 338, 2420, 810, 2420, 743, 307, 198, 220, 220, 220, 220, 220, 220, 220, 287, 28376, 4847, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4847, 25, 257, 1351, 286, 32112, 1523, 26632, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 10148, 198, 220, 220, 220, 329, 1988, 287, 4847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 20360, 6, 287, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4847, 796, 1988, 13, 1136, 10786, 20360, 27691, 1136, 10786, 68, 3639, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9766, 76, 287, 4847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 15853, 1100, 62, 20360, 62, 30854, 7, 68, 10671, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 11487, 6, 287, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 2420, 287, 3084, 4778, 389, 287, 28376, 32112, 1523, 26632, 290, 8893, 743, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 1988, 13, 1136, 10786, 11487, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 3084, 13, 1136, 10786, 11487, 49, 1666, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4778, 796, 5752, 13, 1136, 10786, 11487, 34, 19187, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2685, 287, 4778, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 15853, 1100, 62, 19554, 8968, 1523, 62, 68, 3639, 7, 3846, 13, 1136, 10786, 11299, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 11487, 5189, 15842, 6, 287, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 2420, 287, 262, 309, 4503, 318, 635, 287, 257, 32112, 1523, 11703, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 66, 796, 1988, 13, 1136, 10786, 11487, 5189, 15842, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 15853, 1100, 62, 19554, 8968, 1523, 62, 68, 3639, 7, 40301, 13, 1136, 10786, 11299, 6, 4008, 198, 220, 220, 220, 1441, 2420, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 2315, 62, 853, 29572, 3419, 198, 220, 220, 220, 26498, 11, 555, 15418, 26502, 62, 22046, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6374, 3185, 1546, 796, 37250, 5450, 1378, 2503, 13, 13297, 499, 271, 13, 785, 14, 18439, 14, 15390, 2886, 13, 961, 8807, 20520, 628, 220, 220, 220, 2600, 82, 796, 6045, 198, 220, 220, 220, 1303, 383, 2393, 11241, 13, 17752, 7000, 262, 2836, 338, 1895, 290, 14976, 16326, 11, 290, 318, 198, 220, 220, 220, 1303, 2727, 6338, 618, 262, 19601, 5202, 32543, 329, 262, 717, 198, 220, 220, 220, 1303, 640, 13, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 22046, 13, 30001, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2600, 82, 796, 327, 445, 14817, 13, 6738, 62, 19721, 62, 7220, 62, 7753, 7, 22046, 13, 30001, 11, 6374, 3185, 1546, 8, 198, 220, 220, 220, 1303, 1002, 612, 389, 645, 357, 12102, 8, 18031, 1695, 11, 1309, 262, 2836, 2604, 287, 13, 198, 220, 220, 220, 611, 407, 2600, 82, 393, 407, 2600, 82, 13, 12102, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2600, 82, 290, 2600, 82, 13, 1069, 6474, 290, 2600, 82, 13, 5420, 3447, 62, 30001, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2600, 82, 13, 5420, 3447, 7, 18453, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5202, 796, 2262, 4262, 4677, 37535, 13, 6738, 62, 16366, 62, 2363, 8004, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 21078, 11, 6374, 3185, 1546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2600, 82, 796, 5202, 13, 5143, 62, 12001, 62, 15388, 7, 634, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 262, 18031, 329, 262, 1306, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 22046, 13, 30001, 11, 705, 86, 11537, 355, 11241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 13, 13564, 7, 66, 445, 82, 13, 1462, 62, 17752, 28955, 628, 220, 220, 220, 2139, 796, 1382, 10786, 31628, 3256, 705, 85, 16, 3256, 18031, 28, 66, 445, 82, 8, 628, 220, 220, 220, 1303, 4990, 30227, 262, 4963, 10154, 422, 262, 14432, 82, 2139, 13, 198, 220, 220, 220, 3601, 7203, 9781, 37418, 3188, 19424, 4943, 198, 220, 220, 220, 3188, 796, 2139, 13, 15390, 2886, 22446, 1136, 7, 22897, 7390, 28, 22046, 13, 312, 737, 41049, 3419, 628, 220, 220, 220, 2205, 62, 11299, 796, 3188, 13, 1136, 10786, 2618, 27691, 1136, 10786, 11299, 11537, 198, 220, 220, 220, 2205, 62, 5239, 796, 1100, 62, 19554, 8968, 1523, 62, 68, 3639, 7, 15390, 62, 11299, 8, 628, 220, 220, 220, 1064, 62, 5239, 7, 15390, 62, 5239, 11, 26498, 13, 260, 25636, 11, 26498, 13, 448, 7753, 8, 628, 220, 220, 220, 220 ]
2.505503
1,363
# -*- coding: utf-8 -*- """ Created on Mon Jun 27 13:53:50 2016 @author: au194693 """ import numpy as np import scipy.io as sio import pandas as pd from my_settings import (tf_folder, subjects_ctl) data = sio.loadmat("/Volumes/My_Passport/agency_connectivity/" + "results/data_all_Ctrl.mat")["data_all"] b_df = pd.DataFrame() for j in range(len(data)): baseline = data[j, 0].mean() invol_trials = data[j, 3].squeeze() if len(invol_trials) is 90: invol_trials = invol_trials[1:] error = (np.std(data[j, 3]) * 2 + invol_trials.mean(), -np.std(data[j, 3]) * 2 + invol_trials.mean()) for i in range(len(invol_trials)): row = pd.DataFrame([{ "subject": "p%s" % (j + 21), "group": "ctl", "condition": "invol", "binding": invol_trials[i] - baseline, "trial_number": i + 1, "trial_status": error[1] <= (invol_trials[i] - baseline) <= error[0], "error": error, "raw_trial": invol_trials[i], "baseline": baseline }]) b_df = b_df.append(row, ignore_index=True) # b_df = pd.DataFrame() for subject in subjects_ctl[:1]: eeg = np.load(tf_folder + "%s_test_HT-comp.npy" % subject) eeg_data = eeg[:, 52, 768:1024, 4] if eeg_data.shape[0] is 90: eeg_data = eeg_data[1:, :] eeg_data = np.mean(np.abs(eeg_data)**2, axis=1) test_eeg = eeg_data[b_df[b_df.subject == subject] .trial_status.values].mean() test_binding = b_df[b_df.subject == subject][b_df[b_df.subject == subject].trial_status == True].binding.values.mean()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 2892, 7653, 2681, 1511, 25, 4310, 25, 1120, 1584, 198, 198, 31, 9800, 25, 35851, 22913, 48528, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 616, 62, 33692, 1330, 357, 27110, 62, 43551, 11, 7481, 62, 34168, 8, 198, 198, 7890, 796, 264, 952, 13, 2220, 6759, 7203, 14, 16598, 8139, 14, 3666, 62, 14478, 634, 14, 40955, 62, 8443, 3458, 30487, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43420, 14, 7890, 62, 439, 62, 40069, 13, 6759, 4943, 14692, 7890, 62, 439, 8973, 198, 198, 65, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 1640, 474, 287, 2837, 7, 11925, 7, 7890, 8, 2599, 198, 220, 220, 220, 14805, 796, 1366, 58, 73, 11, 657, 4083, 32604, 3419, 198, 220, 220, 220, 1876, 62, 28461, 874, 796, 1366, 58, 73, 11, 513, 4083, 16485, 1453, 2736, 3419, 628, 220, 220, 220, 611, 18896, 7, 259, 10396, 62, 28461, 874, 8, 318, 4101, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1876, 62, 28461, 874, 796, 1876, 62, 28461, 874, 58, 16, 47715, 628, 220, 220, 220, 4049, 796, 357, 37659, 13, 19282, 7, 7890, 58, 73, 11, 513, 12962, 1635, 362, 1343, 1876, 62, 28461, 874, 13, 32604, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 37659, 13, 19282, 7, 7890, 58, 73, 11, 513, 12962, 1635, 362, 1343, 1876, 62, 28461, 874, 13, 32604, 28955, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 259, 10396, 62, 28461, 874, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 279, 67, 13, 6601, 19778, 26933, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32796, 1298, 366, 79, 4, 82, 1, 4064, 357, 73, 1343, 2310, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8094, 1298, 366, 34168, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31448, 1298, 366, 259, 10396, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30786, 1298, 1876, 62, 28461, 874, 58, 72, 60, 532, 14805, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45994, 62, 17618, 1298, 1312, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45994, 62, 13376, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 58, 16, 60, 19841, 357, 259, 10396, 62, 28461, 874, 58, 72, 60, 532, 14805, 8, 19841, 4049, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18224, 1298, 4049, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1831, 62, 45994, 1298, 1876, 62, 28461, 874, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12093, 4470, 1298, 14805, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 7568, 796, 275, 62, 7568, 13, 33295, 7, 808, 11, 8856, 62, 9630, 28, 17821, 8, 198, 198, 2, 275, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 198, 1640, 2426, 287, 7481, 62, 34168, 58, 25, 16, 5974, 198, 220, 220, 220, 304, 1533, 796, 45941, 13, 2220, 7, 27110, 62, 43551, 1343, 36521, 82, 62, 9288, 62, 6535, 12, 5589, 13, 77, 9078, 1, 4064, 2426, 8, 198, 220, 220, 220, 304, 1533, 62, 7890, 796, 304, 1533, 58, 45299, 6740, 11, 46720, 25, 35500, 11, 604, 60, 628, 220, 220, 220, 611, 304, 1533, 62, 7890, 13, 43358, 58, 15, 60, 318, 4101, 25, 198, 220, 220, 220, 220, 220, 220, 220, 304, 1533, 62, 7890, 796, 304, 1533, 62, 7890, 58, 16, 45299, 1058, 60, 628, 220, 220, 220, 304, 1533, 62, 7890, 796, 45941, 13, 32604, 7, 37659, 13, 8937, 7, 1453, 70, 62, 7890, 8, 1174, 17, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 1332, 62, 1453, 70, 796, 304, 1533, 62, 7890, 58, 65, 62, 7568, 58, 65, 62, 7568, 13, 32796, 6624, 2426, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 45994, 62, 13376, 13, 27160, 4083, 32604, 3419, 198, 220, 220, 220, 1332, 62, 30786, 796, 275, 62, 7568, 58, 65, 62, 7568, 13, 32796, 6624, 2426, 7131, 65, 62, 7568, 58, 65, 62, 7568, 13, 32796, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 4083, 45994, 62, 13376, 6624, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 4083, 30786, 13, 27160, 13, 32604, 3419, 198 ]
1.909774
931
#!/usr/bin/env python """ lambdata - a collection of Data Science helper functions """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 220, 198, 2543, 65, 7890, 532, 257, 4947, 286, 6060, 5800, 31904, 5499, 220, 198, 37811, 628, 628, 198 ]
3.133333
30
# -*- coding: utf-8 -*- """ @time : 2020/05/10 12:14 @author : 姚明伟 """ import json import pickle from flask import request, jsonify, make_response from info.modules.search_content.search_script_conf import get_tips_word from info.utils.content import search_content_indistinct, search_content_exact from info.utils.thread_return_value import MyThread from loggers import * from config import r_decode, r from tools.response_code import RET from . import search_content_blu TREE = None @search_content_blu.route('/', methods=['GET']) @search_content_blu.route('/update/', methods=['GET']) @search_content_blu.route('/su/') def index(): """ 搜索提示功能 根据输入的值自动联想,支持中文,英文,英文首字母 :return: response """ start_time = time.time() # 输入词转小写 wd = request.args.get('wd').lower() user_id = request.args.get('user_id') if user_id and user_id != 'None': print(user_id) print(type(user_id)) if not wd: return make_response("""queryList({"q":"","p":false,"bs":"","csor":"0","status":770,"s":[]});""") # 搜索词(支持中文,英文,英文首字母) s = wd # result = search_script_conf.get_tips_word(search_script_conf.sug, search_script_conf.data, s) # # print('前缀:',result) global TREE if TREE is None: # 第一次为空,需要在接口中加载一次已经生成好的字典树,pickle.loads这一步耗时接近1s temp = r.get('tree') TREE = pickle.loads(temp) # 内容中有字典树,直接获取 suggest = get_tips_word(TREE[0], TREE[1], s) print('前缀:', suggest) data_top = {} if len(suggest) > 0: # 从redis获取热度值 heat_list = r_decode.hmget("hot_word_heat", suggest) _map = dict(zip(suggest, heat_list)) # 按照热度值排序 data = dict(sorted(_map.items(), key=lambda x: int(x[1]), reverse=True)) print("热度值排序:", data) # TODO 获取个性化搜索结果展示 suggest = list(data.keys())[:15] data_top = {i: data[i] for i in suggest} response = make_response( """queryList({'q':'""" + wd + """','p':false,'s':""" + str(suggest) + """});""") response.headers['Content-Type'] = 'text/javascript; charset=utf-8' end_time = time.time() # 记录日志 ret = dict() ret['code'] = 200 ret['msg'] = "ok" ret['search_word'] = wd ret['search_suggest'] = suggest ret['heat_rank'] = data_top ret['search_type'] = 'search_suggest' ret['gmt_created'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) ret['user_id'] = '' ret['platformCode'] = '' ret['total_time'] = end_time - start_time info(json.dumps(ret, ensure_ascii=False)) return response
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 2435, 220, 220, 1058, 12131, 14, 2713, 14, 940, 1105, 25, 1415, 198, 31, 9800, 1058, 10263, 100, 248, 23626, 236, 27670, 253, 198, 37811, 198, 198, 11748, 33918, 198, 11748, 2298, 293, 198, 198, 6738, 42903, 1330, 2581, 11, 33918, 1958, 11, 787, 62, 26209, 198, 198, 6738, 7508, 13, 18170, 13, 12947, 62, 11299, 13, 12947, 62, 12048, 62, 10414, 1330, 651, 62, 41315, 62, 4775, 198, 6738, 7508, 13, 26791, 13, 11299, 1330, 2989, 62, 11299, 62, 521, 396, 4612, 11, 2989, 62, 11299, 62, 1069, 529, 198, 6738, 7508, 13, 26791, 13, 16663, 62, 7783, 62, 8367, 1330, 2011, 16818, 198, 6738, 2604, 5355, 1330, 1635, 198, 6738, 4566, 1330, 374, 62, 12501, 1098, 11, 374, 198, 198, 6738, 4899, 13, 26209, 62, 8189, 1330, 30826, 198, 6738, 764, 1330, 2989, 62, 11299, 62, 65, 2290, 198, 198, 51, 11587, 796, 6045, 628, 198, 198, 31, 12947, 62, 11299, 62, 65, 2290, 13, 38629, 10786, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 12947, 62, 11299, 62, 65, 2290, 13, 38629, 10786, 14, 19119, 14, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 12947, 62, 11299, 62, 65, 2290, 13, 38629, 10786, 14, 2385, 14, 11537, 198, 4299, 6376, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 238, 250, 163, 112, 95, 162, 237, 238, 163, 97, 118, 27950, 253, 47797, 121, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 164, 122, 241, 17739, 98, 21410, 161, 222, 120, 164, 229, 103, 27950, 101, 164, 223, 242, 46349, 111, 11, 162, 242, 107, 162, 234, 223, 40792, 23877, 229, 11, 164, 233, 109, 23877, 229, 11, 164, 233, 109, 23877, 229, 165, 99, 244, 27764, 245, 162, 107, 235, 198, 220, 220, 220, 1058, 7783, 25, 2882, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 1303, 5525, 122, 241, 17739, 98, 46237, 235, 164, 121, 105, 22887, 237, 37863, 247, 198, 220, 220, 220, 266, 67, 796, 2581, 13, 22046, 13, 1136, 10786, 16993, 27691, 21037, 3419, 628, 220, 220, 220, 2836, 62, 312, 796, 2581, 13, 22046, 13, 1136, 10786, 7220, 62, 312, 11537, 198, 220, 220, 220, 611, 2836, 62, 312, 290, 2836, 62, 312, 14512, 705, 14202, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7220, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4906, 7, 7220, 62, 312, 4008, 628, 220, 220, 220, 611, 407, 266, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 7203, 15931, 22766, 8053, 7, 4895, 80, 34713, 79, 1298, 9562, 553, 1443, 34713, 6359, 273, 2404, 15, 2430, 13376, 1298, 41820, 553, 82, 20598, 60, 22133, 15931, 4943, 628, 220, 220, 220, 1303, 10545, 238, 250, 163, 112, 95, 46237, 235, 7, 162, 242, 107, 162, 234, 223, 40792, 23877, 229, 171, 120, 234, 164, 233, 109, 23877, 229, 171, 120, 234, 164, 233, 109, 23877, 229, 165, 99, 244, 27764, 245, 162, 107, 235, 8, 198, 220, 220, 220, 264, 796, 266, 67, 628, 220, 220, 220, 1303, 1255, 796, 2989, 62, 12048, 62, 10414, 13, 1136, 62, 41315, 62, 4775, 7, 12947, 62, 12048, 62, 10414, 13, 82, 1018, 11, 2989, 62, 12048, 62, 10414, 13, 7890, 11, 264, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 3601, 10786, 30298, 235, 163, 120, 222, 171, 120, 248, 3256, 20274, 8, 198, 220, 220, 220, 3298, 309, 11587, 198, 220, 220, 220, 611, 309, 11587, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13328, 105, 105, 31660, 162, 105, 94, 10310, 118, 163, 102, 118, 171, 120, 234, 165, 250, 222, 17358, 223, 28839, 101, 162, 236, 98, 20998, 96, 40792, 27950, 254, 164, 121, 121, 31660, 162, 105, 94, 32432, 110, 163, 119, 237, 37955, 22755, 238, 25001, 121, 21410, 27764, 245, 17739, 116, 43718, 239, 171, 120, 234, 27729, 293, 13, 46030, 32573, 247, 31660, 29826, 98, 32003, 245, 33768, 35050, 236, 98, 32573, 239, 16, 82, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 374, 13, 1136, 10786, 21048, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 309, 11587, 796, 2298, 293, 13, 46030, 7, 29510, 8, 628, 220, 220, 220, 1303, 10263, 228, 227, 22522, 117, 40792, 17312, 231, 27764, 245, 17739, 116, 43718, 239, 171, 120, 234, 33566, 112, 162, 236, 98, 164, 236, 115, 20998, 244, 198, 220, 220, 220, 1950, 796, 651, 62, 41315, 62, 4775, 7, 51, 11587, 58, 15, 4357, 309, 11587, 58, 16, 4357, 264, 8, 198, 220, 220, 220, 3601, 10786, 30298, 235, 163, 120, 222, 171, 120, 248, 3256, 1950, 8, 628, 220, 220, 220, 1366, 62, 4852, 796, 23884, 198, 220, 220, 220, 611, 18896, 7, 47811, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 20015, 236, 445, 271, 164, 236, 115, 20998, 244, 163, 225, 255, 41753, 99, 161, 222, 120, 198, 220, 220, 220, 220, 220, 220, 220, 4894, 62, 4868, 796, 374, 62, 12501, 1098, 13, 23940, 1136, 7203, 8940, 62, 4775, 62, 25080, 1600, 1950, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 8899, 796, 8633, 7, 13344, 7, 47811, 11, 4894, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 234, 231, 163, 227, 100, 163, 225, 255, 41753, 99, 161, 222, 120, 162, 236, 240, 41753, 237, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 8633, 7, 82, 9741, 28264, 8899, 13, 23814, 22784, 1994, 28, 50033, 2124, 25, 493, 7, 87, 58, 16, 46570, 9575, 28, 17821, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 163, 225, 255, 41753, 99, 161, 222, 120, 162, 236, 240, 41753, 237, 25, 1600, 1366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 5525, 236, 115, 20998, 244, 10310, 103, 45250, 100, 44293, 244, 162, 238, 250, 163, 112, 95, 163, 119, 241, 162, 252, 250, 161, 109, 243, 163, 97, 118, 198, 220, 220, 220, 220, 220, 220, 220, 1950, 796, 1351, 7, 7890, 13, 13083, 28955, 58, 25, 1314, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4852, 796, 1391, 72, 25, 1366, 58, 72, 60, 329, 1312, 287, 1950, 92, 628, 220, 220, 220, 2882, 796, 787, 62, 26209, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22766, 8053, 15090, 6, 80, 10354, 6, 37811, 1343, 266, 67, 1343, 37227, 41707, 79, 10354, 9562, 4032, 82, 10354, 37811, 1343, 965, 7, 47811, 8, 1343, 13538, 20662, 1776, 15931, 4943, 628, 220, 220, 220, 2882, 13, 50145, 17816, 19746, 12, 6030, 20520, 796, 705, 5239, 14, 37495, 26, 34534, 316, 28, 40477, 12, 23, 6, 628, 220, 220, 220, 886, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 1303, 5525, 106, 108, 37605, 243, 33768, 98, 33232, 245, 198, 220, 220, 220, 1005, 796, 8633, 3419, 198, 220, 220, 220, 1005, 17816, 8189, 20520, 796, 939, 198, 220, 220, 220, 1005, 17816, 19662, 20520, 796, 366, 482, 1, 198, 220, 220, 220, 1005, 17816, 12947, 62, 4775, 20520, 796, 266, 67, 198, 220, 220, 220, 1005, 17816, 12947, 62, 47811, 20520, 796, 1950, 198, 220, 220, 220, 1005, 17816, 25080, 62, 43027, 20520, 796, 1366, 62, 4852, 198, 220, 220, 220, 1005, 17816, 12947, 62, 4906, 20520, 796, 705, 12947, 62, 47811, 6, 198, 220, 220, 220, 1005, 17816, 70, 16762, 62, 25598, 20520, 796, 640, 13, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 3256, 640, 13, 12001, 2435, 7, 2435, 13, 2435, 3419, 4008, 198, 220, 220, 220, 1005, 17816, 7220, 62, 312, 20520, 796, 10148, 198, 220, 220, 220, 1005, 17816, 24254, 10669, 20520, 796, 10148, 198, 220, 220, 220, 1005, 17816, 23350, 62, 2435, 20520, 796, 886, 62, 2435, 532, 923, 62, 2435, 198, 220, 220, 220, 7508, 7, 17752, 13, 67, 8142, 7, 1186, 11, 4155, 62, 292, 979, 72, 28, 25101, 4008, 198, 220, 220, 220, 1441, 2882, 198 ]
1.875453
1,381
# Copyright 2015 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import iso8601 import mock from watcher.common import exception from watcher.common import rpc from watcher.common import utils as w_utils from watcher.db.sqlalchemy import api as db_api from watcher import notifications from watcher import objects from watcher.tests.db import base from watcher.tests.db import utils from watcher.tests.objects import utils as objutils
[ 2, 15069, 1853, 4946, 25896, 5693, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 4818, 8079, 198, 198, 11748, 47279, 4521, 486, 198, 11748, 15290, 198, 198, 6738, 4383, 2044, 13, 11321, 1330, 6631, 198, 6738, 4383, 2044, 13, 11321, 1330, 374, 14751, 198, 6738, 4383, 2044, 13, 11321, 1330, 3384, 4487, 355, 266, 62, 26791, 198, 6738, 4383, 2044, 13, 9945, 13, 25410, 282, 26599, 1330, 40391, 355, 20613, 62, 15042, 198, 6738, 4383, 2044, 1330, 19605, 198, 6738, 4383, 2044, 1330, 5563, 198, 6738, 4383, 2044, 13, 41989, 13, 9945, 1330, 2779, 198, 6738, 4383, 2044, 13, 41989, 13, 9945, 1330, 3384, 4487, 198, 6738, 4383, 2044, 13, 41989, 13, 48205, 1330, 3384, 4487, 355, 26181, 26791, 628, 628 ]
3.517123
292
import os import torch import torch.nn.functional as F from collections import OrderedDict import argparse from ptsemseg.models import get_model from ptsemseg.utils import convert_state_dict import numpy as np #based on https://github.com/ducha-aiki/ucn-pytorch/blob/master/Utils.py ; commit de5bdec from Oct 4, 2017 #optimized uint8 HWC BGR -> float 1CHW directly in CUDA/pytorch code if __name__ == "__main__": sys.exit(main_export_onnx(sys.argv[1:]))
[ 11748, 28686, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 1822, 29572, 198, 198, 6738, 42975, 43616, 325, 70, 13, 27530, 1330, 651, 62, 19849, 198, 6738, 42975, 43616, 325, 70, 13, 26791, 1330, 10385, 62, 5219, 62, 11600, 198, 198, 11748, 299, 32152, 355, 45941, 220, 220, 220, 220, 198, 2, 3106, 319, 3740, 1378, 12567, 13, 785, 14, 646, 11693, 12, 64, 5580, 14, 1229, 77, 12, 9078, 13165, 354, 14, 2436, 672, 14, 9866, 14, 18274, 4487, 13, 9078, 2162, 4589, 390, 20, 65, 12501, 422, 2556, 604, 11, 2177, 198, 198, 2, 40085, 1143, 20398, 23, 367, 27353, 347, 10761, 4613, 12178, 352, 3398, 54, 220, 3264, 287, 29369, 5631, 14, 9078, 13165, 354, 2438, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 62, 39344, 62, 261, 77, 87, 7, 17597, 13, 853, 85, 58, 16, 47715, 4008, 198 ]
2.747059
170
from django import forms from .models.taste_note import TasteNoteModel
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 764, 27530, 13, 83, 4594, 62, 11295, 1330, 29633, 6425, 17633, 628 ]
3.789474
19
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ * Copyright (C) 2017 Hendrik van Essen * * This file is subject to the terms and conditions of the MIT License * See the file LICENSE in the top level directory for more details. """ """setup script""" """ BASIC SYSTEM PRIVATE COMPUTER sudo apt-get install python3-pip sudo apt-get install python-pip sudo apt-get install python-zmq ARDUINO sudo apt-get install minicom python3-serial Kookye FM-70 http://kookye.com/2016/07/24/use-arduino-drive-fingerprint-sensor/ unzip and copy to <arduinosketchfolder>/libraries/ cd <arduinosketchfolder>/libraries/ git clone https://github.com/adafruit/DHT-sensor-library git clone https://github.com/adafruit/Adafruit_Sensor install ArduinoJson within Arduino IDE from Library Manager (Sketch -> Include Library -> Manage Libraries) """ """ BASIC SYSTEM RASPBERRY PI enable SSH change lines in /etc/ssh/sshd_config #################################################### PermitRootLogin no PasswordAuthentication no #################################################### banning ips trying to login with wrong credentials sudo apt-get install fail2ban DISPLAY https://learn.adafruit.com/adafruit-2-2-pitft-hat-320-240-primary-display-for-raspberry-pi/detailed-installation SOUND sudo apt-get install python3-pygame sudo apt-get install python-pygame Dynamic DNS client with NoIP.com (https://www.noip.com/support/knowledgebase/installing-the-linux-dynamic-update-client-on-ubuntu/) cd /usr/local/src/ wget http://www.no-ip.com/client/linux/noip-duc-linux.tar.gz tar xf noip-duc-linux.tar.gz cd noip-2.1.9-1/ make install Autostart noip2 on boot sudo nano /etc/systemd/system/noip2.service script from https://gist.github.com/NathanGiesbrecht/da6560f21e55178bcea7fdd9ca2e39b5 #################################################### [Unit] Description=No-ip.com dynamic IP address updater After=network.target After=syslog.target [Install] WantedBy=multi-user.target Alias=noip.service [Service] # Start main service ExecStart=/usr/local/bin/noip2 Restart=always Type=forking #################################################### sudo systemctl enable noip2 sudo systemctl start noip2 APACHE sudo a2enmod cgi /etc/apache2/sites-available/mypidrei.ddns.net.conf #################################### <VirtualHost *:80> <Directory /var/www/my_pi_drei/webserver/www/> Options +ExecCGI DirectoryIndex index.py </Directory> AddHandler cgi-script .py ServerAdmin webmaster@localhost DocumentRoot /var/www/my_pi_drei/webserver/www/ ServerName mypidrei.ddns.net </VirtualHost> #################################### sudo a2ensite mypidrei.ddns.net.conf disable indexing in /etc/apache2/apache2.conf #################################### <Directory /var/www/> Options Indexes FollowSymLinks AllowOverride None Require all granted </Directory> #################################### to #################################### <Directory /var/www/> Options -Indexes +FollowSymLinks AllowOverride None Require all granted </Directory> #################################### sudo service apache2 restart add in /etc/hosts #################################### 127.0.0.2 mypidrei.com #################################### You will need to forward port 80 (Webserver) and 22 (SSH, optional) in your router settings SSL For Apache using Certbot You will need to forward port 443 (HTTPS) in your router settings sudo apt-get install python-certbot-apache sudo certbot --apache -d mypidrei.ddns.net (needs user input. Recommended option "Secure"(redirection of http to https)) CONFIG copy from webserver/config config_example and rename the copy to config.py -> replace all placeholder in the file """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 1635, 15069, 357, 34, 8, 2177, 14666, 12602, 5719, 11985, 268, 198, 1635, 198, 1635, 770, 2393, 318, 2426, 284, 262, 2846, 290, 3403, 286, 262, 17168, 13789, 198, 1635, 4091, 262, 2393, 38559, 24290, 287, 262, 1353, 1241, 8619, 329, 517, 3307, 13, 198, 37811, 198, 198, 37811, 40406, 4226, 37811, 198, 198, 37811, 198, 33, 1921, 2149, 36230, 4810, 3824, 6158, 24301, 3843, 1137, 198, 24032, 15409, 12, 1136, 2721, 21015, 18, 12, 79, 541, 198, 24032, 15409, 12, 1136, 2721, 21015, 12, 79, 541, 198, 24032, 15409, 12, 1136, 2721, 21015, 12, 89, 76, 80, 198, 198, 9795, 52, 46016, 198, 24032, 15409, 12, 1136, 2721, 949, 291, 296, 21015, 18, 12, 46911, 198, 198, 42, 566, 5948, 18695, 12, 2154, 198, 4023, 1378, 74, 566, 5948, 13, 785, 14, 5304, 14, 2998, 14, 1731, 14, 1904, 12, 446, 84, 2879, 12, 19472, 12, 35461, 4798, 12, 82, 22854, 14, 198, 403, 13344, 290, 4866, 284, 220, 1279, 446, 84, 11996, 7126, 354, 43551, 29, 14, 75, 11127, 14, 198, 198, 10210, 1279, 446, 84, 11996, 7126, 354, 43551, 29, 14, 75, 11127, 14, 220, 198, 18300, 17271, 3740, 1378, 12567, 13, 785, 14, 324, 1878, 4872, 14, 35, 6535, 12, 82, 22854, 12, 32016, 198, 18300, 17271, 3740, 1378, 12567, 13, 785, 14, 324, 1878, 4872, 14, 2782, 1878, 4872, 62, 47864, 198, 198, 17350, 27634, 41, 1559, 1626, 27634, 33497, 422, 10074, 9142, 357, 50, 7126, 354, 4613, 40348, 10074, 4613, 1869, 496, 46267, 8, 198, 37811, 628, 198, 37811, 198, 33, 1921, 2149, 36230, 371, 1921, 47, 13246, 18276, 30434, 198, 21633, 33825, 198, 3803, 3951, 287, 1220, 14784, 14, 45824, 14, 824, 31298, 62, 11250, 198, 29113, 14468, 4242, 198, 5990, 2781, 30016, 47790, 645, 198, 35215, 47649, 3299, 645, 198, 29113, 14468, 4242, 198, 198, 3820, 768, 220, 2419, 2111, 284, 17594, 351, 2642, 18031, 198, 24032, 15409, 12, 1136, 2721, 2038, 17, 3820, 198, 198, 26288, 31519, 198, 5450, 1378, 35720, 13, 324, 1878, 4872, 13, 785, 14, 324, 1878, 4872, 12, 17, 12, 17, 12, 15544, 701, 12, 5183, 12, 19504, 12, 16102, 12, 39754, 12, 13812, 12, 1640, 12, 81, 17653, 12, 14415, 14, 15255, 6255, 12, 17350, 341, 198, 198, 50, 15919, 198, 24032, 15409, 12, 1136, 2721, 21015, 18, 12, 9078, 6057, 198, 24032, 15409, 12, 1136, 2721, 21015, 12, 9078, 6057, 628, 198, 44090, 18538, 5456, 351, 1400, 4061, 13, 785, 198, 7, 5450, 1378, 2503, 13, 3919, 541, 13, 785, 14, 11284, 14, 45066, 8692, 14, 8625, 9221, 12, 1169, 12, 23289, 12, 67, 28995, 12, 19119, 12, 16366, 12, 261, 12, 32230, 34729, 198, 198, 10210, 1220, 14629, 14, 12001, 14, 10677, 14, 198, 86, 1136, 2638, 1378, 2503, 13, 3919, 12, 541, 13, 785, 14, 16366, 14, 23289, 14, 3919, 541, 12, 6077, 12, 23289, 13, 18870, 13, 34586, 198, 18870, 2124, 69, 645, 541, 12, 6077, 12, 23289, 13, 18870, 13, 34586, 198, 10210, 645, 541, 12, 17, 13, 16, 13, 24, 12, 16, 14, 198, 15883, 2721, 198, 198, 16541, 455, 433, 645, 541, 17, 319, 6297, 198, 198, 24032, 38706, 1220, 14784, 14, 10057, 67, 14, 10057, 14, 3919, 541, 17, 13, 15271, 198, 198, 12048, 422, 3740, 1378, 70, 396, 13, 12567, 13, 785, 14, 45, 6696, 38, 444, 4679, 21474, 14, 6814, 2996, 1899, 69, 2481, 68, 2816, 23188, 65, 344, 64, 22, 69, 1860, 24, 6888, 17, 68, 2670, 65, 20, 198, 29113, 14468, 4242, 198, 58, 26453, 60, 198, 11828, 28, 2949, 12, 541, 13, 785, 8925, 6101, 2209, 2325, 729, 198, 3260, 28, 27349, 13, 16793, 198, 3260, 28, 17597, 6404, 13, 16793, 198, 198, 58, 15798, 60, 198, 54, 4126, 3886, 28, 41684, 12, 7220, 13, 16793, 198, 40489, 28, 3919, 541, 13, 15271, 198, 198, 58, 16177, 60, 198, 2, 7253, 1388, 2139, 198, 23002, 10434, 33223, 14629, 14, 12001, 14, 8800, 14, 3919, 541, 17, 198, 19452, 433, 28, 33770, 198, 6030, 28, 32523, 278, 198, 29113, 14468, 4242, 198, 198, 24032, 1080, 34168, 7139, 645, 541, 17, 198, 24032, 1080, 34168, 923, 645, 541, 17, 628, 198, 2969, 2246, 13909, 198, 198, 24032, 257, 17, 268, 4666, 269, 12397, 198, 198, 14, 14784, 14, 43073, 17, 14, 49315, 12, 15182, 14, 1820, 35317, 260, 72, 13, 1860, 5907, 13, 3262, 13, 10414, 198, 29113, 4242, 198, 27, 37725, 17932, 1635, 25, 1795, 29, 628, 220, 220, 220, 220, 220, 220, 220, 1279, 43055, 1220, 7785, 14, 2503, 14, 1820, 62, 14415, 62, 67, 260, 72, 14, 732, 1443, 18497, 14, 2503, 15913, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18634, 1343, 23002, 34, 18878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27387, 15732, 6376, 13, 9078, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 43055, 29, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 25060, 269, 12397, 12, 12048, 764, 9078, 628, 220, 220, 220, 220, 220, 220, 220, 9652, 46787, 3992, 9866, 31, 36750, 198, 220, 220, 220, 220, 220, 220, 220, 16854, 30016, 1220, 7785, 14, 2503, 14, 1820, 62, 14415, 62, 67, 260, 72, 14, 732, 1443, 18497, 14, 2503, 14, 198, 220, 220, 220, 220, 220, 220, 220, 9652, 5376, 616, 35317, 260, 72, 13, 1860, 5907, 13, 3262, 198, 198, 3556, 37725, 17932, 29, 198, 29113, 4242, 198, 24032, 257, 17, 641, 578, 616, 35317, 260, 72, 13, 1860, 5907, 13, 3262, 13, 10414, 198, 198, 40223, 6376, 278, 287, 1220, 14784, 14, 43073, 17, 14, 43073, 17, 13, 10414, 198, 29113, 4242, 198, 27, 43055, 1220, 7785, 14, 2503, 15913, 198, 220, 220, 220, 220, 220, 220, 220, 18634, 12901, 274, 7281, 43094, 31815, 198, 220, 220, 220, 220, 220, 220, 220, 22507, 37961, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 9394, 557, 477, 7520, 198, 3556, 43055, 29, 198, 29113, 4242, 198, 1462, 198, 29113, 4242, 198, 27, 43055, 1220, 7785, 14, 2503, 15913, 198, 220, 220, 220, 220, 220, 220, 220, 18634, 532, 15732, 274, 1343, 7155, 43094, 31815, 198, 220, 220, 220, 220, 220, 220, 220, 22507, 37961, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 9394, 557, 477, 7520, 198, 3556, 43055, 29, 198, 29113, 4242, 198, 198, 24032, 2139, 2471, 4891, 17, 15765, 628, 198, 2860, 287, 1220, 14784, 14, 4774, 82, 198, 29113, 4242, 198, 16799, 13, 15, 13, 15, 13, 17, 220, 220, 220, 220, 220, 220, 616, 35317, 260, 72, 13, 785, 198, 29113, 4242, 198, 198, 1639, 481, 761, 284, 2651, 2493, 4019, 357, 1135, 1443, 18497, 8, 290, 2534, 357, 5432, 39, 11, 11902, 8, 287, 534, 20264, 6460, 628, 198, 31127, 1114, 24843, 1262, 14965, 13645, 198, 1639, 481, 761, 284, 2651, 2493, 40384, 357, 6535, 28820, 8, 287, 534, 20264, 6460, 198, 198, 24032, 15409, 12, 1136, 2721, 21015, 12, 22583, 13645, 12, 43073, 198, 24032, 5051, 13645, 1377, 43073, 532, 67, 616, 35317, 260, 72, 13, 1860, 5907, 13, 3262, 357, 50032, 2836, 5128, 13, 31117, 3038, 366, 49793, 18109, 445, 4154, 286, 2638, 284, 3740, 4008, 628, 198, 10943, 16254, 198, 30073, 422, 2639, 18497, 14, 11250, 4566, 62, 20688, 290, 36265, 262, 4866, 284, 4566, 13, 9078, 198, 220, 220, 220, 4613, 6330, 477, 46076, 287, 262, 2393, 628, 198, 37811 ]
3.067254
1,249
import re import sys import nltk import json import argparse import pandas as pd from nltk.corpus import stopwords from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer from sklearn.feature_extraction.text import TfidfVectorizer # creates a genre predictor/classifier which does multi-class (many genres) and multi-label (each movie may have more than one genre) classification # init function of the class where the classifier training occurs # function for cleaning descriptive text # the output of the program is the json version of this class # create an argument parser to input the title and description from command line in the required format try: parser=argparse.ArgumentParser() parser.add_argument('--title', help='the movie title', type= str) parser.add_argument('--description', help='the movie description', type= str) args=parser.parse_args() if(len(args.title)==0 or len(args.description)==0): print("Both title and description are mandatory non-empty strings. Please re-run command with non-empty inputs.") raise Exception except: print("Error in input format. Run command using this format:\npython3 movie_genre_predictor.py --title <title> --description <description>") sys.exit() # create the predictor using the arguments passed try: mgp = MovieGenrePredictor() description = args.description description = mgp.clean_text(str(description)) description_tfidf = mgp.tfidf_vectorizer.transform(pd.Series(description)) output_genre_vector = mgp.classifier.predict(description_tfidf) output_genre = mgp.multilabel_binarizer.inverse_transform(output_genre_vector) except IOError: print("Error occured on trying to read data file.") sys.exit() except: print("Error occured while performing classification.") sys.exit() # create the object of Output class which is then dumped as json and printed as output. try: output = Output(args.title,args.description,output_genre[0]) j = json.dumps(output.__dict__, indent = 4) print(j) except: print("Error occurred during conversion of predicted target output to json format.") sys.exit()
[ 11748, 302, 198, 11748, 25064, 198, 11748, 299, 2528, 74, 198, 11748, 33918, 198, 11748, 1822, 29572, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 277, 16, 62, 26675, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 82, 14761, 1330, 44800, 50, 15922, 198, 6738, 1341, 35720, 13, 16680, 291, 31172, 1330, 1881, 23266, 19452, 9487, 7483, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 15237, 33986, 33, 22050, 7509, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 309, 69, 312, 69, 38469, 7509, 628, 198, 2, 8075, 257, 12121, 41568, 14, 4871, 7483, 543, 857, 5021, 12, 4871, 357, 21834, 27962, 8, 290, 5021, 12, 18242, 357, 27379, 3807, 743, 423, 517, 621, 530, 12121, 8, 17923, 198, 220, 220, 220, 1303, 2315, 2163, 286, 262, 1398, 810, 262, 1398, 7483, 3047, 8833, 628, 220, 220, 220, 220, 1303, 2163, 329, 12724, 35644, 2420, 198, 198, 2, 262, 5072, 286, 262, 1430, 318, 262, 33918, 2196, 286, 428, 1398, 198, 198, 2, 2251, 281, 4578, 30751, 284, 5128, 262, 3670, 290, 6764, 422, 3141, 1627, 287, 262, 2672, 5794, 198, 28311, 25, 198, 220, 220, 220, 30751, 28, 853, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7839, 3256, 1037, 11639, 1169, 3807, 3670, 3256, 2099, 28, 965, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 11213, 3256, 1037, 11639, 1169, 3807, 6764, 3256, 2099, 28, 965, 8, 198, 220, 220, 220, 26498, 28, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 7, 11925, 7, 22046, 13, 7839, 8, 855, 15, 393, 18896, 7, 22046, 13, 11213, 8, 855, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10265, 3670, 290, 6764, 389, 13677, 1729, 12, 28920, 13042, 13, 4222, 302, 12, 5143, 3141, 351, 1729, 12, 28920, 17311, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 12331, 287, 5128, 5794, 13, 5660, 3141, 1262, 428, 5794, 7479, 77, 29412, 18, 3807, 62, 35850, 62, 79, 17407, 273, 13, 9078, 1377, 7839, 1279, 7839, 29, 1377, 11213, 1279, 11213, 29, 4943, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 2, 2251, 262, 41568, 1262, 262, 7159, 3804, 198, 28311, 25, 198, 220, 220, 220, 10527, 79, 796, 15875, 13746, 260, 47, 17407, 273, 3419, 198, 220, 220, 220, 6764, 796, 26498, 13, 11213, 198, 220, 220, 220, 6764, 796, 10527, 79, 13, 27773, 62, 5239, 7, 2536, 7, 11213, 4008, 198, 220, 220, 220, 6764, 62, 27110, 312, 69, 796, 10527, 79, 13, 27110, 312, 69, 62, 31364, 7509, 13, 35636, 7, 30094, 13, 27996, 7, 11213, 4008, 198, 220, 220, 220, 5072, 62, 35850, 62, 31364, 796, 10527, 79, 13, 4871, 7483, 13, 79, 17407, 7, 11213, 62, 27110, 312, 69, 8, 198, 220, 220, 220, 5072, 62, 35850, 796, 10527, 79, 13, 16680, 346, 9608, 62, 8800, 283, 7509, 13, 259, 4399, 62, 35636, 7, 22915, 62, 35850, 62, 31364, 8, 198, 16341, 24418, 12331, 25, 198, 220, 220, 220, 3601, 7203, 12331, 1609, 1522, 319, 2111, 284, 1100, 1366, 2393, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 12331, 1609, 1522, 981, 9489, 17923, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 2, 2251, 262, 2134, 286, 25235, 1398, 543, 318, 788, 24105, 355, 33918, 290, 10398, 355, 5072, 13, 198, 28311, 25, 198, 220, 220, 220, 5072, 796, 25235, 7, 22046, 13, 7839, 11, 22046, 13, 11213, 11, 22915, 62, 35850, 58, 15, 12962, 198, 220, 220, 220, 474, 796, 33918, 13, 67, 8142, 7, 22915, 13, 834, 11600, 834, 11, 33793, 796, 604, 8, 198, 220, 220, 220, 3601, 7, 73, 8, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 12331, 5091, 1141, 11315, 286, 11001, 2496, 5072, 284, 33918, 5794, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198 ]
3.347639
699
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import precision_recall_curve, roc_curve, auc import pandas as pd import numpy as np def pearsonr_cor(pred, label): """ Return Pearson's correlation between prediction and label """ cor, _ = pearsonr(pred, label) return cor def spearmanr_cor(pred, label): """ Return Spearman's correlation between prediction and label """ cor, _ = spearmanr(pred, label) return cor def compute_auroc(pred, label): """ Calculate AUROC of predictions in terms of label """ #label = np.array(label) #pred = np.array(pred) fpr, tpr, thresholds = roc_curve(label, pred, pos_label =1) auroc = auc(fpr, tpr) return auroc def compute_auprc(pred, label): """ Calculate AUPRC of predictions in terms of label """ #label = np.array(label) #pred = np.array(pred) precision, recall, thresholds = precision_recall_curve(label, pred) auprc = auc(recall, precision) return auprc def c_index(pred, label): """ Compute C-idex of the predictions in terms of ground truth Parameters: ----------- pred: list prediction label: list ground truth pred and label are the same length Yields: ------- cidx: float C-index (between 0 to 1) """ from itertools import permutations pred = list(pred) label = list(label) perm = permutations(list(range(len(pred))), 2) survive = 0 total = 0 for i, j in perm: if label[i]<label[j]: total +=1 if pred[i]<pred[j]: survive += 1 cidx = survive/total return cidx def boostrapping_confidence_interval(pred_all, gs_all, eva_func, ci): """ Boostrapping to get a 95 confidence interval for prediction performance Parameters: ----------- pred_all: list all predictions from k-fold cross-validations gs_all: list all gold standards from k-fold cross-validations eva_func: function evaludation function ci: confidence interval Yields: ------- mb: float middle bound lb: float lower bound ub: float upper bound """ import numpy as np import random # set random seed random.seed(0) # prediction-groundtruth pairs from all five fold cross validation tmp = np.array([pred_all, gs_all]).T # calculate overall correlation mb = eva_func(tmp[:,0], tmp[:,1]) # start boostrapping ... eva_all = [] for i in range(100): tmp_new = random.choices(tmp, k = len(tmp)) tmp_new = np.array(tmp_new) eva = eva_func(tmp_new[:,0], tmp_new[:,1]) eva_all.append(eva) eva_all = sorted(eva_all) #print(eva_all) lb = eva_all[round(100*(0.5-ci*0.5))] ub = eva_all[round(100*(0.5+ci*0.5))] return mb, lb, ub
[ 6738, 629, 541, 88, 13, 34242, 1330, 25286, 1559, 81, 11, 17514, 805, 81, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 15440, 62, 8344, 439, 62, 22019, 303, 11, 686, 66, 62, 22019, 303, 11, 257, 1229, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 4299, 25286, 1559, 81, 62, 10215, 7, 28764, 11, 6167, 2599, 198, 220, 220, 220, 37227, 8229, 31074, 338, 16096, 1022, 17724, 290, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1162, 11, 4808, 796, 25286, 1559, 81, 7, 28764, 11, 6167, 8, 198, 220, 220, 220, 1441, 1162, 198, 198, 4299, 17514, 805, 81, 62, 10215, 7, 28764, 11, 6167, 2599, 198, 220, 220, 220, 37227, 8229, 27836, 805, 338, 16096, 1022, 17724, 290, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1162, 11, 4808, 796, 17514, 805, 81, 7, 28764, 11, 6167, 8, 198, 220, 220, 220, 1441, 1162, 198, 198, 4299, 24061, 62, 559, 12204, 7, 28764, 11, 6167, 2599, 198, 220, 220, 220, 37227, 27131, 378, 317, 4261, 4503, 286, 16277, 287, 2846, 286, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 18242, 796, 45941, 13, 18747, 7, 18242, 8, 198, 220, 220, 220, 1303, 28764, 796, 45941, 13, 18747, 7, 28764, 8, 198, 220, 220, 220, 277, 1050, 11, 256, 1050, 11, 40885, 796, 686, 66, 62, 22019, 303, 7, 18242, 11, 2747, 11, 1426, 62, 18242, 796, 16, 8, 198, 220, 220, 220, 257, 1434, 66, 796, 257, 1229, 7, 69, 1050, 11, 256, 1050, 8, 198, 220, 220, 220, 1441, 257, 1434, 66, 198, 198, 4299, 24061, 62, 559, 1050, 66, 7, 28764, 11, 6167, 2599, 198, 220, 220, 220, 37227, 27131, 378, 27548, 4805, 34, 286, 16277, 287, 2846, 286, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 18242, 796, 45941, 13, 18747, 7, 18242, 8, 198, 220, 220, 220, 1303, 28764, 796, 45941, 13, 18747, 7, 28764, 8, 198, 220, 220, 220, 15440, 11, 10014, 11, 40885, 796, 15440, 62, 8344, 439, 62, 22019, 303, 7, 18242, 11, 2747, 8, 198, 220, 220, 220, 257, 929, 6015, 796, 257, 1229, 7, 8344, 439, 11, 15440, 8, 198, 220, 220, 220, 1441, 257, 929, 6015, 628, 198, 4299, 269, 62, 9630, 7, 28764, 11, 6167, 2599, 198, 220, 220, 220, 37227, 3082, 1133, 327, 12, 485, 87, 286, 262, 16277, 287, 2846, 286, 2323, 3872, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 2747, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 198, 220, 220, 220, 6167, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 2323, 3872, 198, 220, 220, 220, 2747, 290, 6167, 389, 262, 976, 4129, 198, 220, 220, 220, 220, 198, 220, 220, 220, 575, 1164, 82, 25, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 269, 312, 87, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 327, 12, 9630, 357, 23395, 657, 284, 352, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 340, 861, 10141, 1330, 9943, 32855, 198, 220, 220, 220, 2747, 796, 1351, 7, 28764, 8, 198, 220, 220, 220, 6167, 796, 1351, 7, 18242, 8, 198, 220, 220, 220, 9943, 796, 9943, 32855, 7, 4868, 7, 9521, 7, 11925, 7, 28764, 4008, 828, 362, 8, 198, 220, 220, 220, 7866, 796, 657, 198, 220, 220, 220, 2472, 796, 657, 198, 220, 220, 220, 329, 1312, 11, 474, 287, 9943, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6167, 58, 72, 60, 27, 18242, 58, 73, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2747, 58, 72, 60, 27, 28764, 58, 73, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7866, 15853, 352, 198, 220, 220, 220, 269, 312, 87, 796, 7866, 14, 23350, 198, 220, 220, 220, 1441, 269, 312, 87, 198, 198, 4299, 5750, 430, 2105, 62, 39745, 62, 3849, 2100, 7, 28764, 62, 439, 11, 308, 82, 62, 439, 11, 819, 64, 62, 20786, 11, 269, 72, 2599, 198, 220, 220, 220, 37227, 19835, 430, 2105, 284, 651, 257, 6957, 6628, 16654, 329, 17724, 2854, 198, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 2747, 62, 439, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 477, 16277, 422, 479, 12, 11379, 3272, 12, 12102, 602, 198, 220, 220, 220, 308, 82, 62, 439, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 477, 3869, 5423, 422, 479, 12, 11379, 3272, 12, 12102, 602, 198, 220, 220, 220, 819, 64, 62, 20786, 25, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 463, 341, 2163, 198, 220, 220, 220, 269, 72, 25, 6628, 16654, 628, 220, 220, 220, 575, 1164, 82, 25, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 285, 65, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3504, 5421, 198, 220, 220, 220, 18360, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 2793, 5421, 198, 220, 220, 220, 20967, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 6727, 5421, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 1330, 4738, 198, 220, 220, 220, 1303, 900, 4738, 9403, 198, 220, 220, 220, 4738, 13, 28826, 7, 15, 8, 628, 220, 220, 220, 1303, 17724, 12, 2833, 35310, 14729, 422, 477, 1936, 5591, 3272, 21201, 198, 220, 220, 220, 45218, 796, 45941, 13, 18747, 26933, 28764, 62, 439, 11, 308, 82, 62, 439, 35944, 51, 198, 220, 220, 220, 1303, 15284, 4045, 16096, 198, 220, 220, 220, 285, 65, 796, 819, 64, 62, 20786, 7, 22065, 58, 45299, 15, 4357, 45218, 58, 45299, 16, 12962, 198, 220, 220, 220, 1303, 923, 5750, 430, 2105, 2644, 198, 220, 220, 220, 819, 64, 62, 439, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 3605, 796, 4738, 13, 6679, 1063, 7, 22065, 11, 479, 796, 18896, 7, 22065, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 3605, 796, 45941, 13, 18747, 7, 22065, 62, 3605, 8, 198, 220, 220, 220, 220, 220, 220, 220, 819, 64, 796, 819, 64, 62, 20786, 7, 22065, 62, 3605, 58, 45299, 15, 4357, 45218, 62, 3605, 58, 45299, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 819, 64, 62, 439, 13, 33295, 7, 48855, 8, 198, 220, 220, 220, 819, 64, 62, 439, 796, 23243, 7, 48855, 62, 439, 8, 198, 220, 220, 220, 1303, 4798, 7, 48855, 62, 439, 8, 198, 220, 220, 220, 18360, 796, 819, 64, 62, 439, 58, 744, 7, 3064, 9, 7, 15, 13, 20, 12, 979, 9, 15, 13, 20, 4008, 60, 198, 220, 220, 220, 20967, 796, 819, 64, 62, 439, 58, 744, 7, 3064, 9, 7, 15, 13, 20, 10, 979, 9, 15, 13, 20, 4008, 60, 198, 220, 220, 220, 1441, 285, 65, 11, 18360, 11, 20967, 198 ]
2.375927
1,213
#!/usr/bin/env python3 # # Copyright (c) 2018, Intel Corporation # # SPDX-License-Identifier: BSD-3-Clause # # Show installed versions of doc building tools import os.path import sys import pkg_resources import subprocess # Check all requirements listed in requirements.txt and print out version installed (if any) print ("doc build tool versions found on your system...\n") rf = open(os.path.join(sys.path[0], "requirements.txt"),"r") for reqs in pkg_resources.parse_requirements(rf): try: ver = pkg_resources.get_distribution(reqs.project_name).version print (" " + reqs.project_name.ljust(25," ") + " version: " + ver) except: print (color.RED + color.BOLD + reqs.project_name + " is missing." + color.END + " (Hint: install all dependencies with " + color.YELLOW + "\"pip3 install --user -r scripts/requirements.txt\"" + color.END + ")") rf.close() # Print out the version of Doxygen (not installed via pip3) print (" " + "doxygen".ljust(25," ") + " version: " + subprocess.check_output(["doxygen", "-v"]).decode("utf-8"))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 198, 2, 15069, 357, 66, 8, 2864, 11, 8180, 10501, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 2, 198, 2, 5438, 6589, 6300, 286, 2205, 2615, 4899, 198, 198, 11748, 28686, 13, 6978, 198, 11748, 25064, 198, 11748, 279, 10025, 62, 37540, 198, 11748, 850, 14681, 198, 198, 2, 6822, 477, 5359, 5610, 287, 5359, 13, 14116, 290, 3601, 503, 2196, 6589, 357, 361, 597, 8, 198, 4798, 5855, 15390, 1382, 2891, 6300, 1043, 319, 534, 1080, 986, 59, 77, 4943, 198, 198, 41871, 796, 1280, 7, 418, 13, 6978, 13, 22179, 7, 17597, 13, 6978, 58, 15, 4357, 366, 8897, 18883, 13, 14116, 4943, 553, 81, 4943, 198, 198, 1640, 43089, 82, 287, 279, 10025, 62, 37540, 13, 29572, 62, 8897, 18883, 7, 41871, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3326, 796, 279, 10025, 62, 37540, 13, 1136, 62, 17080, 3890, 7, 42180, 82, 13, 16302, 62, 3672, 737, 9641, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 5855, 220, 366, 1343, 43089, 82, 13, 16302, 62, 3672, 13, 75, 3137, 7, 1495, 553, 366, 8, 1343, 366, 2196, 25, 366, 1343, 3326, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 8043, 13, 22083, 1343, 3124, 13, 33, 15173, 1343, 43089, 82, 13, 16302, 62, 3672, 1343, 366, 318, 4814, 526, 1343, 3124, 13, 10619, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 357, 39, 600, 25, 2721, 477, 20086, 351, 366, 1343, 3124, 13, 56, 23304, 3913, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7879, 79, 541, 18, 2721, 1377, 7220, 532, 81, 14750, 14, 8897, 18883, 13, 14116, 7879, 1, 1343, 3124, 13, 10619, 1343, 366, 8, 4943, 198, 198, 41871, 13, 19836, 3419, 198, 198, 2, 12578, 503, 262, 2196, 286, 360, 23536, 5235, 357, 1662, 6589, 2884, 7347, 18, 8, 198, 4798, 5855, 220, 366, 1343, 366, 67, 23536, 5235, 1911, 75, 3137, 7, 1495, 553, 366, 8, 1343, 366, 2196, 25, 366, 1343, 850, 14681, 13, 9122, 62, 22915, 7, 14692, 67, 23536, 5235, 1600, 27444, 85, 8973, 737, 12501, 1098, 7203, 40477, 12, 23, 48774, 198 ]
2.700246
407
import FWCore.ParameterSet.Config as cms process = cms.Process("Demo") process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger = cms.Service("MessageLogger", debugModules = cms.untracked.vstring("*"), cout = cms.untracked.PSet( threshold = cms.untracked.string('DEBUG') ), destinations = cms.untracked.vstring('cout') ) # How to use the EmptyIOVSource: # the EmptyIOVSource will generate N events with a given interval. # the N events must be specified in the maxEvents as usual but the # first value, last value, timetype (runnumber, timestamp or lumiid) must be specified # in the EmptyIOVSource configuration block. It will then generate events with the given # interval. # To generate one event per run in a given range of runs you should then use: # - first - last value as the run range # - interval == 1 (means move of one run unit at a time) # - maxEvents = lastValue - firstValue (so that there is one event per run # otherwise it will stop before completing the range or it will go beyond (to infinity). process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(5) ) process.source = cms.Source("EmptyIOVSource", timetype = cms.string('runnumber'), firstValue = cms.uint64(97), lastValue = cms.uint64(102), interval = cms.uint64(1) ) #process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) # #process.source = cms.Source("PoolSource", # # replace 'myfile.root' with the source file you want to use # fileNames = cms.untracked.vstring( # 'file:myfile.root' # ) #) process.load("CalibTracker.SiStripESProducers.fake.Phase2TrackerConfigurableCablingESSource_cfi") process.demo = cms.EDAnalyzer('CheckPhase2Cabling') process.p = cms.Path(process.demo)
[ 11748, 48849, 14055, 13, 36301, 7248, 13, 16934, 355, 269, 907, 198, 198, 14681, 796, 269, 907, 13, 18709, 7203, 11522, 78, 4943, 198, 198, 14681, 13, 2220, 7203, 24160, 14055, 13, 12837, 16177, 13, 12837, 11187, 1362, 62, 66, 12463, 4943, 198, 14681, 13, 12837, 11187, 1362, 796, 269, 907, 13, 16177, 7203, 12837, 11187, 1362, 1600, 198, 220, 220, 220, 14257, 5841, 5028, 796, 269, 907, 13, 403, 2213, 6021, 13, 85, 8841, 7203, 9, 12340, 198, 220, 220, 220, 42304, 796, 269, 907, 13, 403, 2213, 6021, 13, 3705, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 269, 907, 13, 403, 2213, 6021, 13, 8841, 10786, 30531, 11537, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 23982, 796, 269, 907, 13, 403, 2213, 6021, 13, 85, 8841, 10786, 66, 448, 11537, 198, 8, 198, 198, 2, 1374, 284, 779, 262, 33523, 40, 8874, 7416, 25, 198, 2, 262, 33523, 40, 8874, 7416, 481, 7716, 399, 2995, 351, 257, 1813, 16654, 13, 198, 2, 262, 399, 2995, 1276, 307, 7368, 287, 262, 3509, 37103, 355, 6678, 475, 262, 198, 2, 717, 1988, 11, 938, 1988, 11, 4628, 2963, 431, 357, 5143, 17618, 11, 41033, 393, 300, 12994, 312, 8, 1276, 307, 7368, 198, 2, 287, 262, 33523, 40, 8874, 7416, 8398, 2512, 13, 632, 481, 788, 7716, 2995, 351, 262, 1813, 198, 2, 16654, 13, 198, 2, 1675, 7716, 530, 1785, 583, 1057, 287, 257, 1813, 2837, 286, 4539, 345, 815, 788, 779, 25, 198, 2, 532, 717, 532, 938, 1988, 355, 262, 1057, 2837, 198, 2, 532, 16654, 6624, 352, 357, 1326, 504, 1445, 286, 530, 1057, 4326, 379, 257, 640, 8, 198, 2, 532, 3509, 37103, 796, 938, 11395, 532, 717, 11395, 357, 568, 326, 612, 318, 530, 1785, 583, 1057, 198, 2, 4306, 340, 481, 2245, 878, 14339, 262, 2837, 393, 340, 481, 467, 3675, 357, 1462, 37174, 737, 198, 198, 14681, 13, 9806, 37103, 796, 269, 907, 13, 403, 2213, 6021, 13, 3705, 316, 7, 198, 220, 220, 220, 5128, 796, 269, 907, 13, 403, 2213, 6021, 13, 600, 2624, 7, 20, 8, 198, 8, 198, 14681, 13, 10459, 796, 269, 907, 13, 7416, 7203, 40613, 40, 8874, 7416, 1600, 198, 220, 220, 220, 4628, 2963, 431, 220, 220, 796, 269, 907, 13, 8841, 10786, 5143, 17618, 33809, 198, 220, 220, 220, 717, 11395, 796, 269, 907, 13, 28611, 2414, 7, 5607, 828, 198, 220, 220, 220, 938, 11395, 220, 796, 269, 907, 13, 28611, 2414, 7, 15377, 828, 198, 220, 220, 220, 16654, 796, 269, 907, 13, 28611, 2414, 7, 16, 8, 198, 8, 198, 198, 2, 14681, 13, 9806, 37103, 796, 269, 907, 13, 403, 2213, 6021, 13, 3705, 316, 7, 5128, 796, 269, 907, 13, 403, 2213, 6021, 13, 600, 2624, 32590, 16, 8, 1267, 198, 2, 198, 2, 14681, 13, 10459, 796, 269, 907, 13, 7416, 7203, 27201, 7416, 1600, 198, 2, 220, 220, 220, 1303, 6330, 705, 1820, 7753, 13, 15763, 6, 351, 262, 2723, 2393, 345, 765, 284, 779, 198, 2, 220, 220, 220, 2393, 36690, 796, 269, 907, 13, 403, 2213, 6021, 13, 85, 8841, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 25, 1820, 7753, 13, 15763, 6, 198, 2, 220, 220, 220, 1267, 198, 2, 8, 198, 198, 14681, 13, 2220, 7203, 9771, 571, 35694, 13, 42801, 1273, 5528, 1546, 11547, 7999, 13, 30706, 13, 35645, 17, 35694, 16934, 11970, 34, 11716, 1546, 7416, 62, 66, 12463, 4943, 198, 198, 14681, 13, 9536, 78, 796, 269, 907, 13, 1961, 37702, 9107, 10786, 9787, 35645, 17, 34, 11716, 11537, 198, 198, 14681, 13, 79, 796, 269, 907, 13, 15235, 7, 14681, 13, 9536, 78, 8, 198 ]
2.875606
619
import re cases = int(input()) for case in range(cases): try: re.compile(input()) print(True) except re.error: print(False)
[ 11748, 302, 198, 198, 33964, 796, 493, 7, 15414, 28955, 198, 198, 1640, 1339, 287, 2837, 7, 33964, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 302, 13, 5589, 576, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17821, 8, 198, 220, 220, 220, 2845, 302, 13, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198 ]
2.135135
74
import copy import io from collections import defaultdict import click import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from matplotlib import rcParams from matplotlib.backends.backend_pdf import PdfPages from openff.toolkit.topology import Molecule from PIL import Image from simtk import unit from tabulate import tabulate from visualization import show_oemol_struc PARTICLE = unit.mole.create_unit( 6.02214076e23 ** -1, "particle", "particle", ) HARTREE_PER_PARTICLE = unit.hartree / PARTICLE HARTREE_TO_KCALMOL = HARTREE_PER_PARTICLE.conversion_factor_to( unit.kilocalorie_per_mole ) BOLTZMANN_CONSTANT = unit.constants.BOLTZMANN_CONSTANT_kB REF_SPEC = "MP2/heavy-aug-cc-pVTZ" def get_mae_score(spec_ener_dict): """ Gives the RMSE of each key/spec :param spec_ener_dict: :return: """ ref_ener = spec_ener_dict[REF_SPEC] other_ener = copy.deepcopy(spec_ener_dict) other_ener.pop(REF_SPEC) score = defaultdict(float) for key, values in other_ener.items(): n_val = len(values) for i, value in enumerate(values): n_grid = len(value[1]) ener_diff_abs = np.abs(np.subtract(value[1], ref_ener[i][1])) score[key] += np.sum(ener_diff_abs / n_grid) score[key] = score[key] / n_val return score def get_rmse_score(spec_ener_dict): """ Gives the RMSE of each key/spec :param spec_ener_dict: :return: """ ref_ener = spec_ener_dict[REF_SPEC] other_ener = copy.deepcopy(spec_ener_dict) other_ener.pop(REF_SPEC) score = defaultdict(float) for key, values in other_ener.items(): n_val = len(values) for i, value in enumerate(values): n_grid = len(value[1]) ener_diff_sqrd = np.multiply( np.subtract(value[1], ref_ener[i][1]), np.subtract(value[1], ref_ener[i][1]), ) score[key] += np.sqrt(np.sum(ener_diff_sqrd / n_grid)) score[key] = score[key] / n_val return score @click.command() @click.option( "--data_pickle", "data_pickle", type=click.STRING, required=False, default="./torsiondrive_data.pkl", help="pickle file in which the energies dict is stored", ) if __name__ == "__main__": main()
[ 11748, 4866, 198, 11748, 33245, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 11748, 3904, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 6738, 2603, 29487, 8019, 1330, 48321, 10044, 4105, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 12315, 1330, 350, 7568, 47798, 198, 6738, 1280, 487, 13, 25981, 15813, 13, 4852, 1435, 1330, 25726, 23172, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 985, 30488, 1330, 4326, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 6738, 32704, 1330, 905, 62, 78, 368, 349, 62, 19554, 66, 198, 198, 30709, 31419, 796, 4326, 13, 76, 2305, 13, 17953, 62, 20850, 7, 198, 220, 220, 220, 718, 13, 44087, 1415, 2998, 21, 68, 1954, 12429, 532, 16, 11, 198, 220, 220, 220, 366, 3911, 1548, 1600, 198, 220, 220, 220, 366, 3911, 1548, 1600, 198, 8, 198, 39, 7227, 11587, 62, 18973, 62, 30709, 31419, 796, 4326, 13, 18647, 631, 1220, 16652, 31419, 198, 39, 7227, 11587, 62, 10468, 62, 36222, 1847, 44, 3535, 796, 367, 7227, 11587, 62, 18973, 62, 30709, 31419, 13, 1102, 9641, 62, 31412, 62, 1462, 7, 198, 220, 220, 220, 4326, 13, 34553, 4374, 19257, 62, 525, 62, 76, 2305, 198, 8, 198, 33, 3535, 51, 57, 10725, 45, 62, 10943, 2257, 8643, 796, 4326, 13, 9979, 1187, 13, 33, 3535, 51, 57, 10725, 45, 62, 10943, 2257, 8643, 62, 38841, 198, 31688, 62, 48451, 796, 366, 7378, 17, 14, 23701, 12, 7493, 12, 535, 12, 79, 36392, 57, 1, 628, 198, 4299, 651, 62, 2611, 68, 62, 26675, 7, 16684, 62, 877, 62, 11600, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 402, 1083, 262, 29820, 5188, 286, 1123, 1994, 14, 16684, 198, 220, 220, 220, 1058, 17143, 1020, 62, 877, 62, 11600, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1006, 62, 877, 796, 1020, 62, 877, 62, 11600, 58, 31688, 62, 48451, 60, 198, 220, 220, 220, 584, 62, 877, 796, 4866, 13, 22089, 30073, 7, 16684, 62, 877, 62, 11600, 8, 198, 220, 220, 220, 584, 62, 877, 13, 12924, 7, 31688, 62, 48451, 8, 198, 220, 220, 220, 4776, 796, 4277, 11600, 7, 22468, 8, 198, 220, 220, 220, 329, 1994, 11, 3815, 287, 584, 62, 877, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2100, 796, 18896, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1988, 287, 27056, 378, 7, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 25928, 796, 18896, 7, 8367, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2400, 62, 26069, 62, 8937, 796, 45941, 13, 8937, 7, 37659, 13, 7266, 83, 974, 7, 8367, 58, 16, 4357, 1006, 62, 877, 58, 72, 7131, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 58, 2539, 60, 15853, 45941, 13, 16345, 7, 877, 62, 26069, 62, 8937, 1220, 299, 62, 25928, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 58, 2539, 60, 796, 4776, 58, 2539, 60, 1220, 299, 62, 2100, 198, 220, 220, 220, 1441, 4776, 628, 198, 4299, 651, 62, 26224, 325, 62, 26675, 7, 16684, 62, 877, 62, 11600, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 402, 1083, 262, 29820, 5188, 286, 1123, 1994, 14, 16684, 198, 220, 220, 220, 1058, 17143, 1020, 62, 877, 62, 11600, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1006, 62, 877, 796, 1020, 62, 877, 62, 11600, 58, 31688, 62, 48451, 60, 198, 220, 220, 220, 584, 62, 877, 796, 4866, 13, 22089, 30073, 7, 16684, 62, 877, 62, 11600, 8, 198, 220, 220, 220, 584, 62, 877, 13, 12924, 7, 31688, 62, 48451, 8, 198, 220, 220, 220, 4776, 796, 4277, 11600, 7, 22468, 8, 198, 220, 220, 220, 329, 1994, 11, 3815, 287, 584, 62, 877, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2100, 796, 18896, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1988, 287, 27056, 378, 7, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 25928, 796, 18896, 7, 8367, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2400, 62, 26069, 62, 31166, 4372, 796, 45941, 13, 16680, 541, 306, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 7266, 83, 974, 7, 8367, 58, 16, 4357, 1006, 62, 877, 58, 72, 7131, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 7266, 83, 974, 7, 8367, 58, 16, 4357, 1006, 62, 877, 58, 72, 7131, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 58, 2539, 60, 15853, 45941, 13, 31166, 17034, 7, 37659, 13, 16345, 7, 877, 62, 26069, 62, 31166, 4372, 1220, 299, 62, 25928, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 58, 2539, 60, 796, 4776, 58, 2539, 60, 1220, 299, 62, 2100, 198, 220, 220, 220, 1441, 4776, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 7890, 62, 27729, 293, 1600, 198, 220, 220, 220, 366, 7890, 62, 27729, 293, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 18601, 2751, 11, 198, 220, 220, 220, 2672, 28, 25101, 11, 198, 220, 220, 220, 4277, 28, 1911, 14, 83, 669, 295, 19472, 62, 7890, 13, 79, 41582, 1600, 198, 220, 220, 220, 1037, 2625, 27729, 293, 2393, 287, 543, 262, 27598, 8633, 318, 8574, 1600, 198, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.251931
1,036
class elements(object): """docstring for elements""" class linkedList(object): """docstring for linkedList""" # l = linkedList() # x1 = elements(key=5) # x2 = elements(key=6) # x3 = elements(key=7) # x4 = elements(key=8) # x5 = elements(key=9) # l.list_insert(x1) # l.list_insert(x2) # l.list_insert(x3) # l.list_insert(x4) # l.list_insert(x5) # s1 = l.list_search(k=7) # print s1.key # l.list_delete(s1) # s1 = l.list_search(k=7) # print s1.key
[ 4871, 4847, 7, 15252, 2599, 198, 197, 37811, 15390, 8841, 329, 4847, 37811, 628, 198, 4871, 6692, 8053, 7, 15252, 2599, 198, 197, 37811, 15390, 8841, 329, 6692, 8053, 37811, 628, 198, 2, 300, 796, 6692, 8053, 3419, 198, 2, 2124, 16, 796, 4847, 7, 2539, 28, 20, 8, 198, 2, 2124, 17, 796, 4847, 7, 2539, 28, 21, 8, 198, 2, 2124, 18, 796, 4847, 7, 2539, 28, 22, 8, 198, 2, 2124, 19, 796, 4847, 7, 2539, 28, 23, 8, 198, 2, 2124, 20, 796, 4847, 7, 2539, 28, 24, 8, 198, 2, 300, 13, 4868, 62, 28463, 7, 87, 16, 8, 198, 2, 300, 13, 4868, 62, 28463, 7, 87, 17, 8, 198, 2, 300, 13, 4868, 62, 28463, 7, 87, 18, 8, 198, 2, 300, 13, 4868, 62, 28463, 7, 87, 19, 8, 198, 2, 300, 13, 4868, 62, 28463, 7, 87, 20, 8, 198, 2, 264, 16, 796, 300, 13, 4868, 62, 12947, 7, 74, 28, 22, 8, 198, 2, 3601, 264, 16, 13, 2539, 198, 2, 300, 13, 4868, 62, 33678, 7, 82, 16, 8, 198, 2, 264, 16, 796, 300, 13, 4868, 62, 12947, 7, 74, 28, 22, 8, 198, 2, 3601, 264, 16, 13, 2539, 628, 628, 198 ]
2.213592
206
from argparse import ArgumentParser from argparse import RawDescriptionHelpFormatter import sys import build import os from pathlib import Path args = get_args(sys.argv) if args.listadversaries == True: adversary_list = os.listdir(os.path.join(Path(__file__).parent, "adversary")) for item in adversary_list: if os.path.isdir(os.path.join(Path(__file__).parent, "adversary", item)) and "__" not in item: print(item) if not args.listadversaries and args.adversary and args.outdir: if os.path.isdir(args.outdir) == False: print("\n[!] outdir is either not defined or is not a valid folder path\n") raise ValueError build.build_files( adversary=args.adversary, out_dir=args.outdir, count=int(args.count), filetype=args.filetype, extension=args.extension, debug=args.debug )
[ 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 1822, 29572, 1330, 16089, 11828, 22087, 8479, 1436, 198, 11748, 25064, 198, 11748, 1382, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 22046, 796, 651, 62, 22046, 7, 17597, 13, 853, 85, 8, 198, 198, 361, 26498, 13, 4868, 324, 690, 3166, 6624, 6407, 25, 198, 220, 220, 220, 34114, 62, 4868, 796, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 15235, 7, 834, 7753, 834, 737, 8000, 11, 366, 324, 690, 560, 48774, 198, 220, 220, 220, 329, 2378, 287, 34114, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 418, 13, 6978, 13, 22179, 7, 15235, 7, 834, 7753, 834, 737, 8000, 11, 366, 324, 690, 560, 1600, 2378, 4008, 290, 366, 834, 1, 407, 287, 2378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9186, 8, 198, 198, 361, 407, 26498, 13, 4868, 324, 690, 3166, 290, 26498, 13, 324, 690, 560, 290, 26498, 13, 448, 15908, 25, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 22046, 13, 448, 15908, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 58, 36463, 503, 15908, 318, 2035, 407, 5447, 393, 318, 407, 257, 4938, 9483, 3108, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 628, 220, 220, 220, 1382, 13, 11249, 62, 16624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 34114, 28, 22046, 13, 324, 690, 560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 15908, 28, 22046, 13, 448, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 954, 28, 600, 7, 22046, 13, 9127, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 4906, 28, 22046, 13, 7753, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7552, 28, 22046, 13, 2302, 3004, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 22046, 13, 24442, 198, 220, 220, 220, 1267, 628 ]
2.505682
352
import sys import snowflake.connector from snowflake.sqlalchemy import URL from sqlalchemy import create_engine
[ 11748, 25064, 198, 11748, 6729, 47597, 13, 8443, 273, 198, 6738, 6729, 47597, 13, 25410, 282, 26599, 1330, 10289, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198 ]
3.862069
29
from typing import TYPE_CHECKING if TYPE_CHECKING: from model import Directory from model import NormalFile class VirusFile(NormalFile): """The VirusFile class is the structure that acts as a Virus File on the filesystem that still has lines of data but also deletes files that are not other virus files in the filesystem :param number: The number to give to the VirusFile :param name: The name to give to the VirusFile :param parent: The parent directory of this VirusFile """ IDENTIFYING_BYTES = [124, 56, 198, 248, 119, 64, 87, 12] # in hex: 7c, 38, c6, f8, 77, 40, 57, 0c # # # # # # # # # # # # # # # # # # # # def get_number(self) -> int: """Returns the number of this VirusFile""" return self.__number # # # # # # # # # # # # # # # # # # # # @staticmethod def from_json(json: dict): """Converts a JSON object into a VirusFile object :param json: The JSON object to convert :raises TypeError: When json.type is not 'VirusFile' :raises KeyError: When the VirusFile's number or name is not specified in the JSON object """ if json["type"] != "VirusFile": raise TypeError(f"Type of JSON object must match (\"{json['type']}\" != \"VirusFile\")") if "number" not in json: raise KeyError("\"number\" key must exist to create VirusFile object") if "name" not in json: raise KeyError("\"name\" key must exist to create VirusFile object") return VirusFile(json["number"], json["name"])
[ 6738, 19720, 1330, 41876, 62, 50084, 2751, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 2746, 1330, 27387, 198, 198, 6738, 2746, 1330, 14435, 8979, 628, 198, 4871, 40584, 8979, 7, 26447, 8979, 2599, 198, 220, 220, 220, 37227, 464, 40584, 8979, 1398, 318, 262, 4645, 326, 6529, 355, 257, 40584, 9220, 319, 262, 198, 220, 220, 220, 29905, 326, 991, 468, 3951, 286, 1366, 475, 635, 28128, 274, 3696, 326, 389, 198, 220, 220, 220, 407, 584, 9471, 3696, 287, 262, 29905, 628, 220, 220, 220, 1058, 17143, 1271, 25, 383, 1271, 284, 1577, 284, 262, 40584, 8979, 198, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 284, 1577, 284, 262, 40584, 8979, 198, 220, 220, 220, 1058, 17143, 2560, 25, 383, 2560, 8619, 286, 428, 40584, 8979, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4522, 3525, 5064, 45761, 62, 17513, 51, 1546, 796, 685, 17464, 11, 7265, 11, 2757, 11, 32996, 11, 15136, 11, 5598, 11, 10083, 11, 1105, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 17910, 25, 767, 66, 11, 4353, 11, 220, 269, 21, 11, 220, 277, 23, 11, 220, 8541, 11, 2319, 11, 7632, 11, 657, 66, 628, 220, 220, 220, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 628, 220, 220, 220, 825, 651, 62, 17618, 7, 944, 8, 4613, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 1271, 286, 428, 40584, 8979, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 17618, 628, 220, 220, 220, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 422, 62, 17752, 7, 17752, 25, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 24040, 257, 19449, 2134, 656, 257, 40584, 8979, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 33918, 25, 383, 19449, 2134, 284, 10385, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 5994, 12331, 25, 1649, 33918, 13, 4906, 318, 407, 705, 53, 19397, 8979, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 7383, 12331, 25, 1649, 262, 40584, 8979, 338, 1271, 393, 1438, 318, 407, 7368, 287, 262, 19449, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33918, 14692, 4906, 8973, 14512, 366, 53, 19397, 8979, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 69, 1, 6030, 286, 19449, 2134, 1276, 2872, 357, 7879, 90, 17752, 17816, 4906, 20520, 92, 7879, 14512, 19990, 53, 19397, 8979, 59, 4943, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 17618, 1, 407, 287, 33918, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 7879, 17618, 7879, 1994, 1276, 2152, 284, 2251, 40584, 8979, 2134, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3672, 1, 407, 287, 33918, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 7879, 3672, 7879, 1994, 1276, 2152, 284, 2251, 40584, 8979, 2134, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 40584, 8979, 7, 17752, 14692, 17618, 33116, 33918, 14692, 3672, 8973, 8, 198 ]
2.690878
592
#coding:utf-8 # K-means import numpy as np import sys import matplotlib.pyplot as plt argvs = sys.argv if __name__ == "__main__": data = np.genfromtxt(argvs[1], delimiter=",") print(data) #plt.subplot(2, 1, 1) plt.plot(data[:,3]) data2 = np.genfromtxt(argvs[2], delimiter=",") print(data2) #plt.subplot(2, 1, 2) plt.plot(data2[:,4]) plt.show() filename = argvs[1] + ".png" plt.savefig(filename)
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 2, 509, 12, 1326, 504, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 853, 14259, 796, 25064, 13, 853, 85, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1366, 796, 45941, 13, 5235, 6738, 14116, 7, 853, 14259, 58, 16, 4357, 46728, 2676, 28, 2430, 8, 198, 220, 220, 220, 3601, 7, 7890, 8, 628, 220, 220, 220, 1303, 489, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 352, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 7890, 58, 45299, 18, 12962, 628, 220, 220, 220, 1366, 17, 796, 45941, 13, 5235, 6738, 14116, 7, 853, 14259, 58, 17, 4357, 46728, 2676, 28, 2430, 8, 198, 220, 220, 220, 3601, 7, 7890, 17, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 489, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 362, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 7890, 17, 58, 45299, 19, 12962, 628, 220, 220, 220, 458, 83, 13, 12860, 3419, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 29472, 796, 1822, 14259, 58, 16, 60, 1343, 27071, 11134, 1, 198, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 34345, 8, 628 ]
1.982833
233
import copy import torch import torch.nn as nn import torch.nn.functional as F from libs.net_utils import NLM, NLM_dot, NLM_woSoft, NLM_NC_woSoft, Batch_Contrastive from torchvision.models import resnet18 from libs.autoencoder import encoder3, decoder3, encoder_res18, encoder_res50 from libs.utils import * import pdb def transform(aff, frame1): """ Given aff, copy from frame1 to construct frame2. INPUTS: - aff: (h*w)*(h*w) affinity matrix - frame1: n*c*h*w feature map """ b,c,h,w = frame1.size() frame1 = frame1.view(b,c,-1) frame2 = torch.bmm(frame1, aff) return frame2.view(b,c,h,w) class normalize(nn.Module): """Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the torch.*Tensor, i.e. channel = (channel - mean) / std """ def create_flat_grid(F_size, GPU=True): """ INPUTS: - F_size: feature size OUTPUT: - return a standard grid coordinate """ b, c, h, w = F_size theta = torch.tensor([[1,0,0],[0,1,0]]) theta = theta.unsqueeze(0).repeat(b,1,1) theta = theta.float() # grid is a uniform grid with left top (-1,1) and right bottom (1,1) # b * (h*w) * 2 grid = torch.nn.functional.affine_grid(theta, F_size) grid[:,:,:,0] = (grid[:,:,:,0]+1)/2 * w grid[:,:,:,1] = (grid[:,:,:,1]+1)/2 * h grid_flat = grid.view(b,-1,2) if(GPU): grid_flat = grid_flat.cuda() return grid_flat def coords2bbox(coords, patch_size, h_tar, w_tar): """ INPUTS: - coords: coordinates of pixels in the next frame - patch_size: patch size - h_tar: target image height - w_tar: target image widthg """ b = coords.size(0) center = torch.mean(coords, dim=1) # b * 2 center_repeat = center.unsqueeze(1).repeat(1,coords.size(1),1) dis_x = torch.sqrt(torch.pow(coords[:,:,0] - center_repeat[:,:,0], 2)) dis_x = torch.mean(dis_x, dim=1).detach() dis_y = torch.sqrt(torch.pow(coords[:,:,1] - center_repeat[:,:,1], 2)) dis_y = torch.mean(dis_y, dim=1).detach() left = (center[:,0] - dis_x*2).view(b,1) left[left < 0] = 0 right = (center[:,0] + dis_x*2).view(b,1) right[right > w_tar] = w_tar top = (center[:,1] - dis_y*2).view(b,1) top[top < 0] = 0 bottom = (center[:,1] + dis_y*2).view(b,1) bottom[bottom > h_tar] = h_tar new_center = torch.cat((left,right,top,bottom),dim=1) return new_center
[ 11748, 4866, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 9195, 82, 13, 3262, 62, 26791, 1330, 22879, 44, 11, 22879, 44, 62, 26518, 11, 22879, 44, 62, 21638, 18380, 11, 22879, 44, 62, 7792, 62, 21638, 18380, 11, 347, 963, 62, 4264, 5685, 425, 198, 6738, 28034, 10178, 13, 27530, 1330, 581, 3262, 1507, 198, 6738, 9195, 82, 13, 2306, 6571, 66, 12342, 1330, 2207, 12342, 18, 11, 875, 12342, 18, 11, 2207, 12342, 62, 411, 1507, 11, 2207, 12342, 62, 411, 1120, 198, 198, 6738, 9195, 82, 13, 26791, 1330, 1635, 198, 198, 11748, 279, 9945, 198, 198, 4299, 6121, 7, 2001, 11, 5739, 16, 2599, 198, 197, 37811, 198, 197, 15056, 1527, 11, 4866, 422, 5739, 16, 284, 5678, 5739, 17, 13, 198, 197, 1268, 30076, 50, 25, 198, 197, 532, 1527, 25, 357, 71, 9, 86, 27493, 7, 71, 9, 86, 8, 28430, 17593, 198, 197, 532, 5739, 16, 25, 299, 9, 66, 9, 71, 9, 86, 3895, 3975, 198, 197, 37811, 198, 197, 65, 11, 66, 11, 71, 11, 86, 796, 5739, 16, 13, 7857, 3419, 198, 197, 14535, 16, 796, 5739, 16, 13, 1177, 7, 65, 11, 66, 12095, 16, 8, 198, 197, 14535, 17, 796, 28034, 13, 65, 3020, 7, 14535, 16, 11, 1527, 8, 198, 197, 7783, 5739, 17, 13, 1177, 7, 65, 11, 66, 11, 71, 11, 86, 8, 198, 198, 4871, 3487, 1096, 7, 20471, 13, 26796, 2599, 198, 197, 37811, 15056, 1612, 25, 357, 49, 11, 402, 11, 347, 8, 290, 14367, 25, 357, 49, 11, 402, 11, 347, 828, 198, 197, 10594, 3487, 1096, 1123, 6518, 286, 262, 28034, 15885, 51, 22854, 11, 1312, 13, 68, 13, 198, 197, 17620, 796, 357, 17620, 532, 1612, 8, 1220, 14367, 198, 197, 37811, 198, 198, 4299, 2251, 62, 38568, 62, 25928, 7, 37, 62, 7857, 11, 11362, 28, 17821, 2599, 198, 197, 37811, 198, 197, 1268, 30076, 50, 25, 198, 197, 532, 376, 62, 7857, 25, 3895, 2546, 198, 197, 2606, 7250, 3843, 25, 198, 197, 532, 1441, 257, 3210, 10706, 20435, 198, 197, 37811, 198, 197, 65, 11, 269, 11, 289, 11, 266, 796, 376, 62, 7857, 198, 197, 1169, 8326, 796, 28034, 13, 83, 22854, 26933, 58, 16, 11, 15, 11, 15, 38430, 15, 11, 16, 11, 15, 11907, 8, 198, 197, 1169, 8326, 796, 262, 8326, 13, 13271, 421, 1453, 2736, 7, 15, 737, 44754, 7, 65, 11, 16, 11, 16, 8, 198, 197, 1169, 8326, 796, 262, 8326, 13, 22468, 3419, 628, 197, 2, 10706, 318, 257, 8187, 10706, 351, 1364, 1353, 13841, 16, 11, 16, 8, 290, 826, 4220, 357, 16, 11, 16, 8, 198, 197, 2, 275, 1635, 357, 71, 9, 86, 8, 1635, 362, 198, 197, 25928, 796, 28034, 13, 20471, 13, 45124, 13, 2001, 500, 62, 25928, 7, 1169, 8326, 11, 376, 62, 7857, 8, 198, 197, 25928, 58, 45299, 45299, 45299, 15, 60, 796, 357, 25928, 58, 45299, 45299, 45299, 15, 48688, 16, 20679, 17, 1635, 266, 198, 197, 25928, 58, 45299, 45299, 45299, 16, 60, 796, 357, 25928, 58, 45299, 45299, 45299, 16, 48688, 16, 20679, 17, 1635, 289, 198, 197, 25928, 62, 38568, 796, 10706, 13, 1177, 7, 65, 12095, 16, 11, 17, 8, 198, 197, 361, 7, 33346, 2599, 198, 197, 197, 25928, 62, 38568, 796, 10706, 62, 38568, 13, 66, 15339, 3419, 198, 197, 7783, 10706, 62, 38568, 628, 198, 4299, 763, 3669, 17, 65, 3524, 7, 1073, 3669, 11, 8529, 62, 7857, 11, 289, 62, 18870, 11, 266, 62, 18870, 2599, 198, 197, 37811, 198, 197, 1268, 30076, 50, 25, 198, 197, 532, 763, 3669, 25, 22715, 286, 17848, 287, 262, 1306, 5739, 198, 197, 532, 8529, 62, 7857, 25, 8529, 2546, 198, 197, 532, 289, 62, 18870, 25, 2496, 2939, 6001, 198, 197, 532, 266, 62, 18870, 25, 2496, 2939, 9647, 70, 198, 197, 37811, 198, 197, 65, 796, 763, 3669, 13, 7857, 7, 15, 8, 198, 197, 16159, 796, 28034, 13, 32604, 7, 1073, 3669, 11, 5391, 28, 16, 8, 1303, 275, 1635, 362, 198, 197, 16159, 62, 44754, 796, 3641, 13, 13271, 421, 1453, 2736, 7, 16, 737, 44754, 7, 16, 11, 1073, 3669, 13, 7857, 7, 16, 828, 16, 8, 198, 197, 6381, 62, 87, 796, 28034, 13, 31166, 17034, 7, 13165, 354, 13, 79, 322, 7, 1073, 3669, 58, 45299, 45299, 15, 60, 532, 3641, 62, 44754, 58, 45299, 45299, 15, 4357, 362, 4008, 198, 197, 6381, 62, 87, 796, 28034, 13, 32604, 7, 6381, 62, 87, 11, 5391, 28, 16, 737, 15255, 620, 3419, 198, 197, 6381, 62, 88, 796, 28034, 13, 31166, 17034, 7, 13165, 354, 13, 79, 322, 7, 1073, 3669, 58, 45299, 45299, 16, 60, 532, 3641, 62, 44754, 58, 45299, 45299, 16, 4357, 362, 4008, 198, 197, 6381, 62, 88, 796, 28034, 13, 32604, 7, 6381, 62, 88, 11, 5391, 28, 16, 737, 15255, 620, 3419, 198, 197, 9464, 796, 357, 16159, 58, 45299, 15, 60, 532, 595, 62, 87, 9, 17, 737, 1177, 7, 65, 11, 16, 8, 198, 197, 9464, 58, 9464, 1279, 657, 60, 796, 657, 198, 197, 3506, 796, 357, 16159, 58, 45299, 15, 60, 1343, 595, 62, 87, 9, 17, 737, 1177, 7, 65, 11, 16, 8, 198, 197, 3506, 58, 3506, 1875, 266, 62, 18870, 60, 796, 266, 62, 18870, 198, 197, 4852, 796, 357, 16159, 58, 45299, 16, 60, 532, 595, 62, 88, 9, 17, 737, 1177, 7, 65, 11, 16, 8, 198, 197, 4852, 58, 4852, 1279, 657, 60, 796, 657, 198, 197, 22487, 796, 357, 16159, 58, 45299, 16, 60, 1343, 595, 62, 88, 9, 17, 737, 1177, 7, 65, 11, 16, 8, 198, 197, 22487, 58, 22487, 1875, 289, 62, 18870, 60, 796, 289, 62, 18870, 198, 197, 3605, 62, 16159, 796, 28034, 13, 9246, 19510, 9464, 11, 3506, 11, 4852, 11, 22487, 828, 27740, 28, 16, 8, 198, 197, 7783, 649, 62, 16159, 628, 628, 198 ]
2.279397
995
import day11 as day from helper import loadingUtils INPUTFOLDER = day.get_path()
[ 11748, 1110, 1157, 355, 1110, 198, 6738, 31904, 1330, 11046, 18274, 4487, 198, 198, 1268, 30076, 37, 3535, 14418, 796, 1110, 13, 1136, 62, 6978, 3419, 628, 628, 628 ]
3
29
from unittest import TestCase, main import overdoses import pandas as pd from pandas.util.testing import assert_series_equal if __name__ == '__main__': main()
[ 6738, 555, 715, 395, 1330, 6208, 20448, 11, 1388, 198, 198, 11748, 49626, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 19798, 292, 13, 22602, 13, 33407, 1330, 6818, 62, 25076, 62, 40496, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.054545
55
"""wargame.test.test_wargame This module contains unit tests for various modules in wargame package. This module is compatible with Python 2.7.9. It contains supporting code for the book, Learning Python Application Development, Packt Publishing. :copyright: 2016, Ninad Sathaye :license: The MIT License (MIT) . See LICENSE file for further details. """ from __future__ import print_function import mock import unittest import sys if sys.version_info >= (3, 0): print("This code requires Python 2.7.9 ") print("Looks like you are trying to run this using " "Python version: %d.%d " % (sys.version_info[0], sys.version_info[1])) print("Exiting...") sys.exit(1) # Add the top level directory wargame to sys,path sys.path.append("../") from knight import Knight from orcrider import OrcRider from abstractgameunit import AbstractGameUnit from gameutils import weighted_random_selection from hut import Hut from attackoftheorcs import AttackOfTheOrcs class TestWarGame(unittest.TestCase): """This class contains unit tests for the game Attack of The Orcs.""" def setUp(self): """Overrides the setUp fixture of the superclass. This method is called just before the calling each unit test. Here, it creates instances of Knight and OrcRider for use by various unit tests. .. seealso:: TestCase.tearDown() """ self.knight = Knight() self.enemy = OrcRider() def test_injured_unit_selection(self): """Unit test to verify working of weighted_random_selection() .. seealso:: gameutils.weighted_random_selection """ print("\nCalling test_wargame.test_injured_unit_selection..") for i in range(100): injured_unit = weighted_random_selection(self.knight, self.enemy) self.assertIsInstance( injured_unit, AbstractGameUnit, "Injured unit must be an instance of AbstractGameUnit") def test_acquire_hut(self): """Unit test to ensure that when hut is 'acquired' The test asserts if the hut.occupant is updated to the Knight instance. """ print("\nCalling test_wargame.test_acquire_hut..") hut = Hut(4, None) hut.acquire(self.knight) self.assertIs(hut.occupant, self.knight) def test_occupy_huts(self): """Unittest to verify number of huts and the occupants. This test verifies that the total number of `hut` instance created and also checks the type of its `occupant` attribute. .. seealso:: :py:meth:`attackoftheorcs.AttackOfTheOrcs._occupy_huts` , :py:meth:`attackoftheorcs.AttackOfTheOrcs.setup_game_scenario` """ print("\nCalling test_wargame.test_occupy_huts..") game = AttackOfTheOrcs() game.setup_game_scenario() # Verify that only 5 huts are created. self.assertEqual(len(game.huts), 5) # Huts occupant must be an instance of a Knight or OrcRider # or it could be set to None. for hut in game.huts: assert((hut.occupant is None) or isinstance(hut.occupant, AbstractGameUnit)) def user_input_processor(self, prompt): """Simulate user input based on user prompt :param prompt: The question asked to the user :return: The simulated user input """ # The prompt can be either of the following: # 1. "choose a hut number to enter (1-5):" # 2. "...continue attack? (y/n):" # Check if some keywords exist in the prompt print("DEBUG: in user_input_processor") if 'hut' in prompt.lower(): # 'The prompt contains 'hut'..should be asking for a hut number. self.hut_selection_counter += 1 assert self.hut_selection_counter <= 5 return self.hut_selection_counter elif 'attack' in prompt.lower(): # This prompt should be asking permission to continue attack return 'y' else: raise Exception("Got an unexpected prompt!", prompt) ##@unittest.skip("skipping test test_play") def test_play(self): """Unit test to verify AttackOfTheOrcs.play method.""" print("\nCalling test_wargame.test_play..") game = AttackOfTheOrcs() self.hut_selection_counter = 0 # Python 2.7 compatibility : replace builtins.input with raw_input # TODO: Note that this patching technique does NOT work in Python 2.7 # It still seems to prompt the user input when the test is run. with mock.patch('__builtin__.raw_input', new=self.user_input_processor): game.play() # Create a list that collects information on whether the # huts are acquired. It is a boolean list acquired_hut_list = [h.is_acquired for h in game.huts] # Player wins if all huts are acquired AND the player health # is grater than 0. if all(acquired_hut_list): # All the huts are acquired (winning criteria). # check the player's health! self.assertTrue(game.player.health_meter > 0) else: # This is the losing criteria., Player health can not be # positive when he/she loses. self.assertFalse(game.player.health_meter > 0) if __name__ == '__main__': unittest.main()
[ 37811, 86, 853, 480, 13, 9288, 13, 9288, 62, 86, 853, 480, 198, 198, 1212, 8265, 4909, 4326, 5254, 329, 2972, 13103, 287, 266, 853, 480, 5301, 13, 198, 198, 1212, 8265, 318, 11670, 351, 11361, 362, 13, 22, 13, 24, 13, 632, 4909, 198, 11284, 278, 2438, 329, 262, 1492, 11, 18252, 11361, 15678, 7712, 11, 198, 11869, 83, 23499, 13, 198, 198, 25, 22163, 4766, 25, 1584, 11, 10516, 324, 311, 776, 48822, 198, 198, 25, 43085, 25, 383, 17168, 13789, 357, 36393, 8, 764, 4091, 38559, 24290, 2393, 329, 2252, 3307, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 15290, 198, 11748, 555, 715, 395, 198, 11748, 25064, 198, 198, 361, 25064, 13, 9641, 62, 10951, 18189, 357, 18, 11, 657, 2599, 198, 220, 220, 220, 3601, 7203, 1212, 2438, 4433, 11361, 362, 13, 22, 13, 24, 366, 8, 198, 220, 220, 220, 3601, 7203, 41102, 588, 345, 389, 2111, 284, 1057, 428, 1262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37906, 2196, 25, 4064, 67, 13, 4, 67, 366, 4064, 357, 17597, 13, 9641, 62, 10951, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 9641, 62, 10951, 58, 16, 60, 4008, 198, 220, 220, 220, 3601, 7203, 3109, 1780, 9313, 8, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 2, 3060, 262, 1353, 1241, 8619, 266, 853, 480, 284, 25064, 11, 6978, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 4943, 198, 198, 6738, 22062, 1330, 6700, 198, 6738, 393, 6098, 1304, 1330, 19083, 49, 1304, 198, 6738, 12531, 6057, 20850, 1330, 27741, 8777, 26453, 198, 6738, 983, 26791, 1330, 26356, 62, 25120, 62, 49283, 198, 6738, 40812, 1330, 32767, 198, 6738, 1368, 11205, 258, 273, 6359, 1330, 8307, 5189, 464, 5574, 6359, 628, 198, 4871, 6208, 13195, 8777, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 1212, 1398, 4909, 4326, 5254, 329, 262, 983, 8307, 286, 383, 1471, 6359, 526, 15931, 628, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5886, 81, 1460, 262, 900, 4933, 29220, 286, 262, 2208, 4871, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 1444, 655, 878, 262, 4585, 1123, 220, 4326, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 11, 340, 8075, 10245, 286, 6700, 290, 19083, 49, 1304, 329, 779, 416, 198, 220, 220, 220, 220, 220, 220, 220, 2972, 4326, 5254, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 6208, 20448, 13, 83, 451, 8048, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 74, 3847, 796, 6700, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46970, 796, 19083, 49, 1304, 3419, 628, 220, 220, 220, 825, 1332, 62, 259, 38608, 62, 20850, 62, 49283, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26453, 1332, 284, 11767, 1762, 286, 26356, 62, 25120, 62, 49283, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 983, 26791, 13, 6551, 276, 62, 25120, 62, 49283, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 48593, 1332, 62, 86, 853, 480, 13, 9288, 62, 259, 38608, 62, 20850, 62, 49283, 492, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6686, 62, 20850, 796, 26356, 62, 25120, 62, 49283, 7, 944, 13, 74, 3847, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46970, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 33384, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6686, 62, 20850, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27741, 8777, 26453, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 818, 38608, 4326, 1276, 307, 281, 4554, 286, 27741, 8777, 26453, 4943, 628, 220, 220, 220, 825, 1332, 62, 330, 29782, 62, 71, 315, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26453, 1332, 284, 4155, 326, 618, 40812, 318, 705, 43561, 1202, 6, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1332, 29348, 611, 262, 40812, 13, 19596, 415, 318, 6153, 284, 262, 6700, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 48593, 1332, 62, 86, 853, 480, 13, 9288, 62, 330, 29782, 62, 71, 315, 492, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 40812, 796, 32767, 7, 19, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40812, 13, 330, 29782, 7, 944, 13, 74, 3847, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 7, 71, 315, 13, 19596, 415, 11, 2116, 13, 74, 3847, 8, 628, 220, 220, 220, 825, 1332, 62, 19596, 88, 62, 71, 5500, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3118, 715, 395, 284, 11767, 1271, 286, 289, 5500, 290, 262, 35242, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 1332, 3326, 6945, 326, 262, 2472, 1271, 286, 4600, 71, 315, 63, 4554, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 635, 8794, 262, 2099, 286, 663, 4600, 19596, 415, 63, 11688, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9078, 25, 76, 2788, 25, 63, 20358, 11205, 258, 273, 6359, 13, 27732, 5189, 464, 5574, 6359, 13557, 19596, 88, 62, 71, 5500, 63, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9078, 25, 76, 2788, 25, 63, 20358, 11205, 258, 273, 6359, 13, 27732, 5189, 464, 5574, 6359, 13, 40406, 62, 6057, 62, 1416, 39055, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 48593, 1332, 62, 86, 853, 480, 13, 9288, 62, 19596, 88, 62, 71, 5500, 492, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 983, 796, 8307, 5189, 464, 5574, 6359, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 983, 13, 40406, 62, 6057, 62, 1416, 39055, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 326, 691, 642, 289, 5500, 389, 2727, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 6057, 13, 71, 5500, 828, 642, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 367, 5500, 47742, 1276, 307, 281, 4554, 286, 257, 6700, 393, 19083, 49, 1304, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 393, 340, 714, 307, 900, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 40812, 287, 983, 13, 71, 5500, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 19510, 71, 315, 13, 19596, 415, 318, 6045, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 39098, 7, 71, 315, 13, 19596, 415, 11, 27741, 8777, 26453, 4008, 628, 220, 220, 220, 825, 2836, 62, 15414, 62, 41341, 7, 944, 11, 6152, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8890, 5039, 2836, 5128, 1912, 319, 2836, 6152, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6152, 25, 383, 1808, 1965, 284, 262, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 28590, 2836, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 6152, 460, 307, 2035, 286, 262, 1708, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 13, 366, 6679, 577, 257, 40812, 1271, 284, 3802, 357, 16, 12, 20, 2599, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 13, 27896, 43043, 1368, 30, 357, 88, 14, 77, 2599, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 617, 26286, 2152, 287, 262, 6152, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 30531, 25, 287, 2836, 62, 15414, 62, 41341, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 71, 315, 6, 287, 6152, 13, 21037, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 464, 6152, 4909, 705, 71, 315, 6, 492, 21754, 307, 4737, 329, 257, 40812, 1271, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 315, 62, 49283, 62, 24588, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 71, 315, 62, 49283, 62, 24588, 19841, 642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 71, 315, 62, 49283, 62, 24588, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 20358, 6, 287, 6152, 13, 21037, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 6152, 815, 307, 4737, 7170, 284, 2555, 1368, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 88, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 30074, 281, 10059, 6152, 40754, 6152, 8, 628, 198, 220, 220, 220, 22492, 31, 403, 715, 395, 13, 48267, 7203, 20545, 2105, 1332, 1332, 62, 1759, 4943, 198, 220, 220, 220, 825, 1332, 62, 1759, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26453, 1332, 284, 11767, 8307, 5189, 464, 5574, 6359, 13, 1759, 2446, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 48593, 1332, 62, 86, 853, 480, 13, 9288, 62, 1759, 492, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 983, 796, 8307, 5189, 464, 5574, 6359, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 315, 62, 49283, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11361, 362, 13, 22, 17764, 1058, 6330, 3170, 1040, 13, 15414, 351, 8246, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 5740, 326, 428, 8529, 278, 8173, 857, 5626, 670, 287, 11361, 362, 13, 22, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 632, 991, 2331, 284, 6152, 262, 2836, 5128, 618, 262, 1332, 318, 1057, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 10786, 834, 18780, 259, 834, 13, 1831, 62, 15414, 3256, 649, 28, 944, 13, 7220, 62, 15414, 62, 41341, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 13, 1759, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 1351, 326, 26609, 1321, 319, 1771, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 289, 5500, 389, 9477, 13, 632, 318, 257, 25131, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9477, 62, 71, 315, 62, 4868, 796, 685, 71, 13, 271, 62, 43561, 1202, 329, 289, 287, 983, 13, 71, 5500, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7853, 7864, 611, 477, 289, 5500, 389, 9477, 5357, 262, 2137, 1535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 1036, 729, 621, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 477, 7, 43561, 1202, 62, 71, 315, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1439, 262, 289, 5500, 389, 9477, 357, 14463, 9987, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 262, 2137, 338, 1535, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 6057, 13, 7829, 13, 13948, 62, 27231, 1875, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 262, 6078, 9987, 1539, 7853, 1535, 460, 407, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3967, 618, 339, 14, 7091, 14754, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 6057, 13, 7829, 13, 13948, 62, 27231, 1875, 657, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.427269
2,303
from data.classes.players import *
[ 6738, 1366, 13, 37724, 13, 32399, 1330, 1635, 628, 628 ]
3.8
10
import os from glob import glob from ete3 import Tree from plot_module import * os.chdir("../DataEmpirical") exp_dirs = sorted( set(["_".join(i.split("_")[:-1]) for i in os.listdir("Experiments") if ("Replicates" in i) and ("Isopods" in i)])) os.makedirs("Analysis/DataFrame", exist_ok=True) file_format = "pdf" dataset = pd.read_csv("Isopods/dataset.tsv", delimiter="\t") for exp in exp_dirs: nhx_dict = dict() for exp_replicate in sorted(glob("Experiments/" + exp + "_*")): for nhx_path in sorted(glob(exp_replicate + "/*run*.nhx")): if nhx_path.count(" ") > 0: continue nhx_file = os.path.basename(nhx_path) if nhx_file not in nhx_dict: nhx_dict[nhx_file] = list() nhx_dict[nhx_file].append(exp_replicate) os.makedirs("Analysis/" + exp, exist_ok=True) for tree_name, folder_list in nhx_dict.items(): print(tree_name, folder_list) feature = remove_units(tree_name.split(".")[-2]) axis_dict, err_dict, taxa_dict = dict(), dict(), dict() nb_values = -1 for index, folder in enumerate(sorted(folder_list)): name = folder.split("_")[-1] with open(folder + "/" + tree_name, 'r') as tree_file: tree = Tree(remove_units(tree_file.readline()), format=1) values = np.array([to_float(getattr(n, feature)) for n in tree.traverse() if feature in n.features]) taxa_dict["Rep. {0}".format(index + 1)] = np.array( [to_float(getattr(n, feature)) for n in tree if feature in n.features]) if nb_values == -1: nb_values = len(values) if len(values) != nb_values: print(name + " don't have the same number of values") continue min_values = np.array( [to_float(getattr(n, feature + "_min")) for n in tree.traverse() if feature + "_min" in n.features]) max_values = np.array( [to_float(getattr(n, feature + "_max")) for n in tree.traverse() if feature + "_max" in n.features]) axis_dict[name] = values err_dict[name] = np.vstack((np.abs(values - min_values), np.abs(max_values - values))) plot_correlation("Analysis/" + exp + "/" + tree_name.replace(".nhx", '.' + file_format), axis_dict, err_dict, global_min_max=True) if ("LogPopulationSize" not in tree_name) and ("LogMutationRate" not in tree_name): continue df = pd.DataFrame.from_dict(taxa_dict) df = df.apply(np.exp) ratio = ["\\textbf{ " + "{0:.3g}".format(max(df[col]) / min(df[col])) + "}" for col in df] if "Isopods" in exp: label = label_transform(tree_name.split(".")[-2]) dict_trait = {"eco": "Habitat", "pig": "Pigmentation", "eye": "Ocular structure"} dict_trait_def = {"eco": {"epi": "Surface", "hypo": "Underground"}, "pig": {"D": "Depigmented", "DP": "Part. dep.", "P": "Pigmented"}, "eye": {"A": "Anophthalmia", "M": "Microphthalmia", "O": "Ocular"}} for trait, trait_name in dict_trait.items(): df[trait_name] = pd.Series([dict_trait_def[trait][dataset[dataset['code'] == i].iloc[0][trait]] for i in tree.get_leaf_names()]) axes = df.boxplot(column=list(taxa_dict.keys()), by=trait_name, figsize=(len(taxa_dict), 2), layout=(1, len(taxa_dict)), rot=90, fontsize=6) axes[0].set_ylabel(label, fontsize=6) for ax in axes: ax.set_xlabel("") ax.set_title(ax.get_title(), {'fontsize': 8}) plt.suptitle("") plt.tight_layout() plt.savefig("Analysis/{0}/{1}.{2}.{3}".format(exp, tree_name, trait, file_format), format=file_format) plt.clf() df["Code"] = pd.Series(tree.get_leaf_names()) taxa = [dataset[dataset['code'] == i].iloc[0]["morphosp"] for i in tree.get_leaf_names()] taxa = ["\\textit{" + " ".join(str(i).replace('nan', '-').split(" ")[:2]) + "}" for i in taxa] ratio += ['-'] * 4 frames = [] for k in taxa_dict.keys(): d = {label: df[k], 'Code': df["Code"], "Rep": [k] * len(df[k])} for trait_name in dict_trait.values(): d[trait_name] = df[trait_name] frames.append(pd.DataFrame(d)) merged = pd.concat(frames) for trait, trait_name in dict_trait.items(): bp = merged.boxplot(column=[label], by=trait_name, fontsize=18, notch=True, patch_artist=True, return_type="dict") [[item.set_linewidth(3) for item in bp[key]['boxes']] for key in bp.keys()] [[item.set_linewidth(3) for item in bp[key]['fliers']] for key in bp.keys()] [[item.set_linewidth(3) for item in bp[key]['medians']] for key in bp.keys()] [[item.set_linewidth(3) for item in bp[key]['whiskers']] for key in bp.keys()] [[item.set_linewidth(3) for item in bp[key]['caps']] for key in bp.keys()] [[item.set_color(BLUE) for item in bp[key]['boxes']] for key in bp.keys()] [[item.set_color("black") for item in bp[key]['fliers']] for key in bp.keys()] [[item.set_color(GREEN) for item in bp[key]['medians']] for key in bp.keys()] [[item.set_color(BLUE) for item in bp[key]['whiskers']] for key in bp.keys()] [[item.set_color("black") for item in bp[key]['caps']] for key in bp.keys()] ax = plt.gca() ax.set_ylabel(label, fontsize=22) ax.set_xlabel("") ax.set_title(trait_name, fontsize=26) plt.suptitle("") plt.tight_layout() plt.savefig("Analysis/{0}/{1}.{2}.merged.{3}".format(exp, tree_name, trait, file_format), format=file_format) plt.clf() merged.to_csv("Analysis/DataFrame/" + exp + "_merged_" + tree_name.replace(".nhx", '.tsv'), index=False, sep="\t") merged.to_latex("Analysis/DataFrame/" + exp + "_merged_" + tree_name.replace(".nhx", '.tex'), index=False, float_format="%.3g") else: taxa = [(("\\textit{" + i.replace('_', ' ') + "}") if ("_" in i) else i) for i in tree.get_leaf_names()] df["Taxon"] = pd.Series(taxa) df.loc[len(df.index)] = ratio + ["\\textbf{Maximum range}"] df.to_csv("Analysis/DataFrame/" + exp + "_" + tree_name.replace(".nhx", '.tsv'), index=False, sep="\t") df.to_latex("Analysis/DataFrame/" + exp + "_" + tree_name.replace(".nhx", '.tex'), index=False, escape=False, float_format=lambda x: ("{0:.3g}".format(x) if is_float(x) else x))
[ 11748, 28686, 198, 6738, 15095, 1330, 15095, 198, 6738, 304, 660, 18, 1330, 12200, 198, 6738, 7110, 62, 21412, 1330, 1635, 198, 198, 418, 13, 354, 15908, 7203, 40720, 6601, 36, 3149, 343, 605, 4943, 198, 11201, 62, 15908, 82, 796, 23243, 7, 198, 220, 220, 220, 900, 7, 14692, 62, 1911, 22179, 7, 72, 13, 35312, 7203, 62, 4943, 58, 21912, 16, 12962, 329, 1312, 287, 28686, 13, 4868, 15908, 7203, 20468, 6800, 4943, 611, 5855, 39232, 16856, 1, 287, 1312, 8, 290, 5855, 3792, 404, 12978, 1, 287, 1312, 15437, 4008, 198, 198, 418, 13, 76, 4335, 17062, 7203, 32750, 14, 6601, 19778, 1600, 2152, 62, 482, 28, 17821, 8, 198, 7753, 62, 18982, 796, 366, 12315, 1, 628, 628, 198, 19608, 292, 316, 796, 279, 67, 13, 961, 62, 40664, 7203, 3792, 404, 12978, 14, 19608, 292, 316, 13, 912, 85, 1600, 46728, 2676, 2625, 59, 83, 4943, 198, 198, 1640, 1033, 287, 1033, 62, 15908, 82, 25, 198, 220, 220, 220, 299, 71, 87, 62, 11600, 796, 8633, 3419, 198, 220, 220, 220, 329, 1033, 62, 35666, 5344, 287, 23243, 7, 4743, 672, 7203, 20468, 6800, 30487, 1343, 1033, 1343, 45434, 9, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 71, 87, 62, 6978, 287, 23243, 7, 4743, 672, 7, 11201, 62, 35666, 5344, 1343, 12813, 9, 5143, 24620, 77, 71, 87, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 71, 87, 62, 6978, 13, 9127, 7203, 366, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 71, 87, 62, 7753, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 77, 71, 87, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 71, 87, 62, 7753, 407, 287, 299, 71, 87, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 71, 87, 62, 11600, 58, 77, 71, 87, 62, 7753, 60, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 71, 87, 62, 11600, 58, 77, 71, 87, 62, 7753, 4083, 33295, 7, 11201, 62, 35666, 5344, 8, 628, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7203, 32750, 30487, 1343, 1033, 11, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 329, 5509, 62, 3672, 11, 9483, 62, 4868, 287, 299, 71, 87, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 21048, 62, 3672, 11, 9483, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 796, 4781, 62, 41667, 7, 21048, 62, 3672, 13, 35312, 7203, 19570, 58, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 11600, 11, 11454, 62, 11600, 11, 1687, 64, 62, 11600, 796, 8633, 22784, 8633, 22784, 8633, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 27160, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 9483, 287, 27056, 378, 7, 82, 9741, 7, 43551, 62, 4868, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 9483, 13, 35312, 7203, 62, 4943, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 43551, 1343, 12813, 1, 1343, 5509, 62, 3672, 11, 705, 81, 11537, 355, 5509, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 12200, 7, 28956, 62, 41667, 7, 21048, 62, 7753, 13, 961, 1370, 3419, 828, 5794, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 45941, 13, 18747, 26933, 1462, 62, 22468, 7, 1136, 35226, 7, 77, 11, 3895, 4008, 329, 299, 287, 5509, 13, 9535, 4399, 3419, 611, 3895, 287, 299, 13, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 64, 62, 11600, 14692, 6207, 13, 1391, 15, 92, 1911, 18982, 7, 9630, 1343, 352, 15437, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1462, 62, 22468, 7, 1136, 35226, 7, 77, 11, 3895, 4008, 329, 299, 287, 5509, 611, 3895, 287, 299, 13, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 65, 62, 27160, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 27160, 796, 18896, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27160, 8, 14512, 299, 65, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3672, 1343, 366, 836, 470, 423, 262, 976, 1271, 286, 3815, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 27160, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1462, 62, 22468, 7, 1136, 35226, 7, 77, 11, 3895, 1343, 45434, 1084, 48774, 329, 299, 287, 5509, 13, 9535, 4399, 3419, 611, 3895, 1343, 45434, 1084, 1, 287, 299, 13, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 27160, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1462, 62, 22468, 7, 1136, 35226, 7, 77, 11, 3895, 1343, 45434, 9806, 48774, 329, 299, 287, 5509, 13, 9535, 4399, 3419, 611, 3895, 1343, 45434, 9806, 1, 287, 299, 13, 40890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 11600, 58, 3672, 60, 796, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 62, 11600, 58, 3672, 60, 796, 45941, 13, 85, 25558, 19510, 37659, 13, 8937, 7, 27160, 532, 949, 62, 27160, 828, 45941, 13, 8937, 7, 9806, 62, 27160, 532, 3815, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 10215, 49501, 7203, 32750, 30487, 1343, 1033, 1343, 12813, 1, 1343, 5509, 62, 3672, 13, 33491, 7, 1911, 77, 71, 87, 1600, 705, 2637, 1343, 2393, 62, 18982, 828, 16488, 62, 11600, 11, 11454, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 1084, 62, 9806, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5855, 11187, 45251, 10699, 1, 407, 287, 5509, 62, 3672, 8, 290, 5855, 11187, 44, 7094, 32184, 1, 407, 287, 5509, 62, 3672, 2599, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 13, 6738, 62, 11600, 7, 19290, 64, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 39014, 7, 37659, 13, 11201, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8064, 796, 14631, 6852, 5239, 19881, 90, 366, 1343, 45144, 15, 25, 13, 18, 70, 92, 1911, 18982, 7, 9806, 7, 7568, 58, 4033, 12962, 1220, 949, 7, 7568, 58, 4033, 60, 4008, 1343, 366, 36786, 329, 951, 287, 47764, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3792, 404, 12978, 1, 287, 1033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 6167, 62, 35636, 7, 21048, 62, 3672, 13, 35312, 7203, 19570, 58, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 9535, 270, 796, 19779, 47704, 1298, 366, 39, 29968, 265, 1600, 366, 79, 328, 1298, 366, 47, 328, 14374, 1600, 366, 25379, 1298, 366, 46, 10440, 4645, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 9535, 270, 62, 4299, 796, 19779, 47704, 1298, 19779, 538, 72, 1298, 366, 14214, 2550, 1600, 366, 36362, 78, 1298, 366, 9203, 2833, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 328, 1298, 19779, 35, 1298, 366, 12156, 328, 12061, 1600, 366, 6322, 1298, 366, 7841, 13, 1207, 33283, 366, 47, 1298, 366, 47, 328, 12061, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25379, 1298, 19779, 32, 1298, 366, 2025, 2522, 11669, 20730, 1600, 366, 44, 1298, 366, 13031, 48118, 20730, 1600, 366, 46, 1298, 366, 46, 10440, 1, 11709, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16708, 11, 16708, 62, 3672, 287, 8633, 62, 9535, 270, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 9535, 270, 62, 3672, 60, 796, 279, 67, 13, 27996, 26933, 11600, 62, 9535, 270, 62, 4299, 58, 9535, 270, 7131, 19608, 292, 316, 58, 19608, 292, 316, 17816, 8189, 20520, 6624, 1312, 4083, 346, 420, 58, 15, 7131, 9535, 270, 11907, 329, 1312, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 1136, 62, 33201, 62, 14933, 3419, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 796, 47764, 13, 3524, 29487, 7, 28665, 28, 4868, 7, 19290, 64, 62, 11600, 13, 13083, 3419, 828, 416, 28, 9535, 270, 62, 3672, 11, 2336, 7857, 16193, 11925, 7, 19290, 64, 62, 11600, 828, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12461, 16193, 16, 11, 18896, 7, 19290, 64, 62, 11600, 36911, 5724, 28, 3829, 11, 10369, 7857, 28, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 58, 15, 4083, 2617, 62, 2645, 9608, 7, 18242, 11, 10369, 7857, 28, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7877, 287, 34197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 897, 13, 1136, 62, 7839, 22784, 1391, 6, 10331, 7857, 10354, 807, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2385, 457, 2578, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7203, 32750, 14, 90, 15, 92, 14, 90, 16, 27422, 90, 17, 27422, 90, 18, 92, 1911, 18982, 7, 11201, 11, 5509, 62, 3672, 11, 16708, 11, 2393, 62, 18982, 828, 5794, 28, 7753, 62, 18982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 14692, 10669, 8973, 796, 279, 67, 13, 27996, 7, 21048, 13, 1136, 62, 33201, 62, 14933, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 64, 796, 685, 19608, 292, 316, 58, 19608, 292, 316, 17816, 8189, 20520, 6624, 1312, 4083, 346, 420, 58, 15, 7131, 1, 24503, 2117, 8973, 329, 1312, 287, 5509, 13, 1136, 62, 33201, 62, 14933, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 64, 796, 14631, 6852, 5239, 270, 4895, 1343, 366, 27071, 22179, 7, 2536, 7, 72, 737, 33491, 10786, 12647, 3256, 705, 19355, 737, 35312, 7203, 366, 38381, 25, 17, 12962, 1343, 366, 36786, 329, 1312, 287, 1687, 64, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8064, 15853, 37250, 19355, 60, 1635, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13431, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 1687, 64, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 1391, 18242, 25, 47764, 58, 74, 4357, 705, 10669, 10354, 47764, 14692, 10669, 33116, 366, 6207, 1298, 685, 74, 60, 1635, 18896, 7, 7568, 58, 74, 12962, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16708, 62, 3672, 287, 8633, 62, 9535, 270, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 9535, 270, 62, 3672, 60, 796, 47764, 58, 9535, 270, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13431, 13, 33295, 7, 30094, 13, 6601, 19778, 7, 67, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23791, 796, 279, 67, 13, 1102, 9246, 7, 37805, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16708, 11, 16708, 62, 3672, 287, 8633, 62, 9535, 270, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 79, 796, 23791, 13, 3524, 29487, 7, 28665, 41888, 18242, 4357, 416, 28, 9535, 270, 62, 3672, 11, 10369, 7857, 28, 1507, 11, 29838, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8529, 62, 49016, 28, 17821, 11, 1441, 62, 4906, 2625, 11600, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 2815, 413, 5649, 7, 18, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 29305, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 2815, 413, 5649, 7, 18, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 2704, 3183, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 2815, 413, 5649, 7, 18, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 1150, 1547, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 2815, 413, 5649, 7, 18, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 1929, 1984, 364, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 2815, 413, 5649, 7, 18, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 27979, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 8043, 7, 9148, 8924, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 29305, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 8043, 7203, 13424, 4943, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 2704, 3183, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 8043, 7, 43016, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 1150, 1547, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 8043, 7, 9148, 8924, 8, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 1929, 1984, 364, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 9186, 13, 2617, 62, 8043, 7203, 13424, 4943, 329, 2378, 287, 275, 79, 58, 2539, 7131, 6, 27979, 6, 11907, 329, 1994, 287, 275, 79, 13, 13083, 3419, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 70, 6888, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 18242, 11, 10369, 7857, 28, 1828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 9535, 270, 62, 3672, 11, 10369, 7857, 28, 2075, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2385, 457, 2578, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7203, 32750, 14, 90, 15, 92, 14, 90, 16, 27422, 90, 17, 27422, 647, 2004, 13, 90, 18, 92, 1911, 18982, 7, 11201, 11, 5509, 62, 3672, 11, 16708, 11, 2393, 62, 18982, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 28, 7753, 62, 18982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 565, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23791, 13, 1462, 62, 40664, 7203, 32750, 14, 6601, 19778, 30487, 1343, 1033, 1343, 45434, 647, 2004, 62, 1, 1343, 5509, 62, 3672, 13, 33491, 7, 1911, 77, 71, 87, 1600, 45302, 912, 85, 33809, 6376, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23791, 13, 1462, 62, 17660, 87, 7203, 32750, 14, 6601, 19778, 30487, 1343, 1033, 1343, 45434, 647, 2004, 62, 1, 1343, 5509, 62, 3672, 13, 33491, 7, 1911, 77, 71, 87, 1600, 45302, 16886, 33809, 6376, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 62, 18982, 2625, 7225, 18, 70, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1687, 64, 796, 47527, 7203, 6852, 5239, 270, 4895, 1343, 1312, 13, 33491, 10786, 62, 3256, 705, 705, 8, 1343, 366, 92, 4943, 611, 5855, 62, 1, 287, 1312, 8, 2073, 1312, 8, 329, 1312, 287, 5509, 13, 1136, 62, 33201, 62, 14933, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 14692, 27017, 261, 8973, 796, 279, 67, 13, 27996, 7, 19290, 64, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 17946, 58, 11925, 7, 7568, 13, 9630, 15437, 796, 8064, 1343, 14631, 6852, 5239, 19881, 90, 40541, 2837, 92, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 1462, 62, 40664, 7203, 32750, 14, 6601, 19778, 30487, 1343, 1033, 1343, 45434, 1, 1343, 5509, 62, 3672, 13, 33491, 7, 1911, 77, 71, 87, 1600, 45302, 912, 85, 33809, 6376, 28, 25101, 11, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 1462, 62, 17660, 87, 7203, 32750, 14, 6601, 19778, 30487, 1343, 1033, 1343, 45434, 1, 1343, 5509, 62, 3672, 13, 33491, 7, 1911, 77, 71, 87, 1600, 45302, 16886, 33809, 6376, 28, 25101, 11, 6654, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 62, 18982, 28, 50033, 2124, 25, 5855, 90, 15, 25, 13, 18, 70, 92, 1911, 18982, 7, 87, 8, 611, 318, 62, 22468, 7, 87, 8, 2073, 2124, 4008, 198 ]
1.93237
3,667
import random import numpy as np from autotune.param_space import Param from typing import Callable from .hyper_param_opt import AbstractHyperParameterOptimizer
[ 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1960, 313, 1726, 13, 17143, 62, 13200, 1330, 25139, 198, 6738, 19720, 1330, 4889, 540, 198, 6738, 764, 49229, 62, 17143, 62, 8738, 1330, 27741, 38197, 36301, 27871, 320, 7509, 628, 198 ]
3.880952
42
# Test suite for DeriveAlive module # These lines should be included for Travis/Coverall import sys sys.path.append('../') import DeriveAlive.DeriveAlive as da import numpy as np import math def test_DeriveAlive_Var(): '''Test constructor of Var class to ensure proper variable initializations.''' # Run tests within test_DeriveAliveVar test_scalar_without_bracket() test_scalar_with_bracket() test_vector_input() test_with_preset_der() test_repr() def test_DeriveAlive_scalar_functions(): '''Test scalar functions split up by operation type.''' # Run tests within test_DeriveAlive_scalar_functions() test_neg() test_abs() test_constant() test_add() test_radd() test_sub() test_rsub() test_mul() test_rmul() test_truediv() test_rtruediv() test_sin() test_cos() test_tan() test_arcsin() test_arccos() test_arctan() test_sinh() test_cosh() test_tanh() test_pow() test_rpow() test_sqrt() test_log() test_exp() test_logistic() def test_DeriveAlive_vector_construction(): '''Test constructor of Var class to ensure proper variable initializations for vectors.''' test_vector_input() def test_DeriveAlive_vector_functions_m_to_1(): '''Test vector functions from m dimensions to 1 dimension, split up by operation type.''' # Run tests within test_DeriveAlive_vector_functions_m_to_1() test_neg() test_abs() test_constant() test_add() test_radd() test_sub() test_rsub() test_mul() test_rmul() test_truediv() test_rtruediv() test_sin() test_cos() test_tan() test_arcsin() test_arccos() test_arctan() test_sinh() test_cosh() test_tanh() test_pow() test_rpow() test_sqrt() test_log() test_exp() test_logistic() def test_DeriveAlive_vector_functions_1_to_n(): '''Test vector functions from 1 dimension to n dimensions, split up by operation type.''' # Run tests within test_DeriveAlive_vector_functions_1_to_n() test_neg() test_abs() test_constant() test_add() test_radd() test_sub() test_rsub() test_mul() test_rmul() test_truediv() test_rtruediv() test_sin() test_cos() test_tan() test_arcsin() test_arccos() test_arctan() test_sinh() test_cosh() test_tanh() test_pow() test_rpow() test_sqrt() test_log() test_exp() test_logistic() def test_DeriveAlive_vector_functions_m_to_n(): '''Test vector functions from m dimensions to n dimensions, split up by operation type.''' # Run tests within test_DeriveAlive_vector_functions_m_to_n() test_neg() test_abs() test_constant() test_add() test_radd() test_sub() test_rsub() test_mul() test_rmul() test_truediv() test_rtruediv() test_sin() test_cos() test_tan() test_arcsin() test_arccos() test_arctan() test_sinh() test_cosh() test_tanh() test_sqrt() test_pow() test_rpow() test_log() test_exp() test_logistic() # Without pytest, user can run these tests manually test_DeriveAlive_Var() test_DeriveAlive_vector_construction() test_DeriveAlive_scalar_functions() test_DeriveAlive_comparisons() test_DeriveAlive_vector_functions_1_to_n() test_DeriveAlive_vector_functions_m_to_1() test_DeriveAlive_vector_functions_m_to_n() print ("All tests passed!")
[ 2, 6208, 18389, 329, 9626, 425, 2348, 425, 8265, 198, 198, 2, 2312, 3951, 815, 307, 3017, 329, 19804, 14, 27245, 439, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 11537, 198, 198, 11748, 9626, 425, 2348, 425, 13, 28532, 425, 2348, 425, 355, 12379, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 19852, 33529, 198, 197, 7061, 6, 14402, 23772, 286, 12372, 1398, 284, 4155, 1774, 7885, 4238, 4582, 2637, 7061, 628, 197, 2, 5660, 5254, 1626, 1332, 62, 28532, 425, 2348, 425, 19852, 198, 197, 9288, 62, 1416, 282, 283, 62, 19419, 62, 1671, 8317, 3419, 198, 197, 9288, 62, 1416, 282, 283, 62, 4480, 62, 1671, 8317, 3419, 198, 197, 9288, 62, 31364, 62, 15414, 3419, 198, 197, 9288, 62, 4480, 62, 18302, 316, 62, 1082, 3419, 198, 197, 9288, 62, 260, 1050, 3419, 628, 198, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 1416, 282, 283, 62, 12543, 2733, 33529, 198, 197, 7061, 6, 14402, 16578, 283, 5499, 6626, 510, 416, 4905, 2099, 2637, 7061, 628, 197, 2, 5660, 5254, 1626, 1332, 62, 28532, 425, 2348, 425, 62, 1416, 282, 283, 62, 12543, 2733, 3419, 198, 197, 9288, 62, 12480, 3419, 198, 197, 9288, 62, 8937, 3419, 198, 197, 9288, 62, 9979, 415, 3419, 198, 197, 9288, 62, 2860, 3419, 198, 197, 9288, 62, 81, 2860, 3419, 198, 197, 9288, 62, 7266, 3419, 198, 197, 9288, 62, 3808, 549, 3419, 198, 197, 9288, 62, 76, 377, 3419, 198, 197, 9288, 62, 26224, 377, 3419, 198, 197, 9288, 62, 83, 21556, 452, 3419, 198, 197, 9288, 62, 17034, 21556, 452, 3419, 198, 197, 9288, 62, 31369, 3419, 198, 197, 9288, 62, 6966, 3419, 198, 197, 9288, 62, 38006, 3419, 198, 197, 9288, 62, 5605, 31369, 3419, 198, 197, 9288, 62, 283, 535, 418, 3419, 198, 197, 9288, 62, 283, 310, 272, 3419, 198, 197, 9288, 62, 31369, 71, 3419, 198, 197, 9288, 62, 66, 3768, 3419, 198, 197, 9288, 62, 38006, 71, 3419, 198, 197, 9288, 62, 79, 322, 3419, 198, 197, 9288, 62, 81, 79, 322, 3419, 198, 197, 9288, 62, 31166, 17034, 3419, 198, 197, 9288, 62, 6404, 3419, 198, 197, 9288, 62, 11201, 3419, 198, 197, 9288, 62, 6404, 2569, 3419, 628, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 9979, 2762, 33529, 198, 197, 7061, 6, 14402, 23772, 286, 12372, 1398, 284, 4155, 1774, 7885, 4238, 4582, 329, 30104, 2637, 7061, 197, 628, 197, 9288, 62, 31364, 62, 15414, 3419, 198, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 16, 33529, 198, 197, 7061, 6, 14402, 15879, 5499, 422, 285, 15225, 284, 352, 15793, 11, 6626, 510, 416, 4905, 2099, 2637, 7061, 628, 628, 197, 2, 5660, 5254, 1626, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 16, 3419, 198, 197, 9288, 62, 12480, 3419, 198, 197, 9288, 62, 8937, 3419, 198, 197, 9288, 62, 9979, 415, 3419, 198, 197, 9288, 62, 2860, 3419, 198, 197, 9288, 62, 81, 2860, 3419, 198, 197, 9288, 62, 7266, 3419, 198, 197, 9288, 62, 3808, 549, 3419, 198, 197, 9288, 62, 76, 377, 3419, 198, 197, 9288, 62, 26224, 377, 3419, 198, 197, 9288, 62, 83, 21556, 452, 3419, 198, 197, 9288, 62, 17034, 21556, 452, 3419, 198, 197, 9288, 62, 31369, 3419, 198, 197, 9288, 62, 6966, 3419, 198, 197, 9288, 62, 38006, 3419, 198, 197, 9288, 62, 5605, 31369, 3419, 198, 197, 9288, 62, 283, 535, 418, 3419, 198, 197, 9288, 62, 283, 310, 272, 3419, 198, 197, 9288, 62, 31369, 71, 3419, 198, 197, 9288, 62, 66, 3768, 3419, 198, 197, 9288, 62, 38006, 71, 3419, 198, 197, 9288, 62, 79, 322, 3419, 198, 197, 9288, 62, 81, 79, 322, 3419, 198, 197, 9288, 62, 31166, 17034, 3419, 198, 197, 9288, 62, 6404, 3419, 198, 197, 9288, 62, 11201, 3419, 198, 197, 9288, 62, 6404, 2569, 3419, 628, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 16, 62, 1462, 62, 77, 33529, 198, 197, 7061, 6, 14402, 15879, 5499, 422, 352, 15793, 284, 299, 15225, 11, 6626, 510, 416, 4905, 2099, 2637, 7061, 628, 198, 197, 2, 5660, 5254, 1626, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 16, 62, 1462, 62, 77, 3419, 198, 197, 9288, 62, 12480, 3419, 198, 197, 9288, 62, 8937, 3419, 198, 197, 9288, 62, 9979, 415, 3419, 198, 197, 9288, 62, 2860, 3419, 198, 197, 9288, 62, 81, 2860, 3419, 198, 197, 9288, 62, 7266, 3419, 198, 197, 9288, 62, 3808, 549, 3419, 198, 197, 9288, 62, 76, 377, 3419, 198, 197, 9288, 62, 26224, 377, 3419, 198, 197, 9288, 62, 83, 21556, 452, 3419, 198, 197, 9288, 62, 17034, 21556, 452, 3419, 198, 197, 9288, 62, 31369, 3419, 198, 197, 9288, 62, 6966, 3419, 198, 197, 9288, 62, 38006, 3419, 198, 197, 9288, 62, 5605, 31369, 3419, 198, 197, 9288, 62, 283, 535, 418, 3419, 198, 197, 9288, 62, 283, 310, 272, 3419, 198, 197, 9288, 62, 31369, 71, 3419, 198, 197, 9288, 62, 66, 3768, 3419, 198, 197, 9288, 62, 38006, 71, 3419, 198, 197, 9288, 62, 79, 322, 3419, 198, 197, 9288, 62, 81, 79, 322, 3419, 198, 197, 9288, 62, 31166, 17034, 3419, 198, 197, 9288, 62, 6404, 3419, 198, 197, 9288, 62, 11201, 3419, 198, 197, 9288, 62, 6404, 2569, 3419, 628, 198, 4299, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 77, 33529, 198, 197, 7061, 6, 14402, 15879, 5499, 422, 285, 15225, 284, 299, 15225, 11, 6626, 510, 416, 4905, 2099, 2637, 7061, 628, 198, 197, 2, 5660, 5254, 1626, 1332, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 77, 3419, 198, 197, 9288, 62, 12480, 3419, 198, 197, 9288, 62, 8937, 3419, 198, 197, 9288, 62, 9979, 415, 3419, 198, 197, 9288, 62, 2860, 3419, 198, 197, 9288, 62, 81, 2860, 3419, 198, 197, 9288, 62, 7266, 3419, 198, 197, 9288, 62, 3808, 549, 3419, 198, 197, 9288, 62, 76, 377, 3419, 198, 197, 9288, 62, 26224, 377, 3419, 198, 197, 9288, 62, 83, 21556, 452, 3419, 198, 197, 9288, 62, 17034, 21556, 452, 3419, 198, 197, 9288, 62, 31369, 3419, 198, 197, 9288, 62, 6966, 3419, 198, 197, 9288, 62, 38006, 3419, 198, 197, 9288, 62, 5605, 31369, 3419, 198, 197, 9288, 62, 283, 535, 418, 3419, 198, 197, 9288, 62, 283, 310, 272, 3419, 198, 197, 9288, 62, 31369, 71, 3419, 198, 197, 9288, 62, 66, 3768, 3419, 198, 197, 9288, 62, 38006, 71, 3419, 198, 197, 9288, 62, 31166, 17034, 3419, 198, 197, 9288, 62, 79, 322, 3419, 198, 197, 9288, 62, 81, 79, 322, 3419, 198, 197, 9288, 62, 6404, 3419, 198, 197, 9288, 62, 11201, 3419, 198, 197, 9288, 62, 6404, 2569, 3419, 628, 198, 2, 9170, 12972, 9288, 11, 2836, 460, 1057, 777, 5254, 14500, 198, 9288, 62, 28532, 425, 2348, 425, 62, 19852, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 31364, 62, 9979, 2762, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 1416, 282, 283, 62, 12543, 2733, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 785, 1845, 9886, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 16, 62, 1462, 62, 77, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 16, 3419, 198, 9288, 62, 28532, 425, 2348, 425, 62, 31364, 62, 12543, 2733, 62, 76, 62, 1462, 62, 77, 3419, 198, 4798, 5855, 3237, 5254, 3804, 2474, 8 ]
2.429348
1,288
"""Subpackage for handling import and export of sequencing data. """ import os from .GenomFeatureReader import GenomFeatureReader from .GenomReader import GenomReader from .SamReader import SamReader, SamAlignedRead from .BaseAlignedRead import BaseAlignedRead from .BedtoolsIntersectionReader import BedtoolsIntersectionReader, BedtoolsIntersectionItem _extension_to_reader = { "sam": SamReader.open, "fasta": GenomReader.open, "fa": GenomReader.open, "fna": GenomReader.open, "gff": GenomFeatureReader.open } def read(filename): """Tries to read a given filename. This function guesses the filetype based in the filename and returns the appropriate object or raises an exception if the filetype is unknown. Parameters ---------- filename : str The filename of the file to open. Returns ------- Reader A reader representing the file and offering methods to work with the file. Supported file formats ---------------------- A list of files supported by this function. .sam Sequence Alignment/Map ngsTools.io.SamReader .fa .fasta FASTA file format ngsTools.io.GenomReader """ basename = os.path.basename(filename) extension = basename.split(".")[-1] if extension not in _extension_to_reader: raise TypeError("ngsTools.io does not support this file extension «" + extension + "»") return _extension_to_reader[extension](filename)
[ 37811, 7004, 26495, 329, 9041, 1330, 290, 10784, 286, 32841, 1366, 13, 198, 198, 37811, 198, 198, 11748, 28686, 198, 198, 6738, 764, 13746, 296, 38816, 33634, 1330, 5215, 296, 38816, 33634, 198, 6738, 764, 13746, 296, 33634, 1330, 5215, 296, 33634, 198, 6738, 764, 16305, 33634, 1330, 3409, 33634, 11, 3409, 2348, 3916, 5569, 198, 6738, 764, 14881, 2348, 3916, 5569, 1330, 7308, 2348, 3916, 5569, 198, 6738, 764, 45896, 31391, 9492, 5458, 33634, 1330, 15585, 31391, 9492, 5458, 33634, 11, 15585, 31391, 9492, 5458, 7449, 198, 198, 62, 2302, 3004, 62, 1462, 62, 46862, 796, 1391, 198, 220, 220, 220, 366, 37687, 1298, 3409, 33634, 13, 9654, 11, 198, 220, 220, 220, 366, 7217, 64, 1298, 5215, 296, 33634, 13, 9654, 11, 198, 220, 220, 220, 366, 13331, 1298, 5215, 296, 33634, 13, 9654, 11, 198, 220, 220, 220, 366, 69, 2616, 1298, 5215, 296, 33634, 13, 9654, 11, 198, 220, 220, 220, 366, 70, 487, 1298, 5215, 296, 38816, 33634, 13, 9654, 198, 92, 628, 198, 4299, 1100, 7, 34345, 2599, 198, 220, 220, 220, 37227, 51, 1678, 284, 1100, 257, 1813, 29472, 13, 628, 220, 220, 220, 770, 2163, 44774, 262, 2393, 4906, 1912, 287, 262, 29472, 290, 5860, 198, 220, 220, 220, 262, 5035, 2134, 393, 12073, 281, 6631, 611, 262, 2393, 4906, 318, 6439, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 29472, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 29472, 286, 262, 2393, 284, 1280, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 25342, 198, 220, 220, 220, 220, 220, 220, 220, 317, 9173, 10200, 262, 2393, 290, 6011, 5050, 284, 670, 351, 262, 2393, 13, 628, 220, 220, 220, 36848, 2393, 17519, 198, 220, 220, 220, 41436, 438, 198, 220, 220, 220, 317, 1351, 286, 3696, 4855, 416, 428, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 764, 37687, 220, 220, 220, 220, 220, 45835, 978, 16747, 14, 13912, 220, 220, 220, 220, 299, 14542, 33637, 13, 952, 13, 16305, 33634, 198, 220, 220, 220, 220, 220, 220, 220, 764, 13331, 198, 220, 220, 220, 220, 220, 220, 220, 764, 7217, 64, 220, 220, 220, 376, 1921, 5603, 2393, 5794, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 14542, 33637, 13, 952, 13, 13746, 296, 33634, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1615, 12453, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 34345, 8, 198, 220, 220, 220, 7552, 796, 1615, 12453, 13, 35312, 7203, 19570, 58, 12, 16, 60, 628, 220, 220, 220, 611, 7552, 407, 287, 4808, 2302, 3004, 62, 1462, 62, 46862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 782, 82, 33637, 13, 952, 857, 407, 1104, 428, 2393, 7552, 21110, 1, 1343, 7552, 1343, 366, 17730, 4943, 628, 220, 220, 220, 1441, 4808, 2302, 3004, 62, 1462, 62, 46862, 58, 2302, 3004, 16151, 34345, 8, 198 ]
2.996
500
# -*- coding: utf-8 -*- # Author: Simon Bussy <[email protected]> import numpy as np from collections import defaultdict class History(): """A class to manage the history along iterations of a solver. """ def clear(self): """Reset history values""" self.values = defaultdict(list) def update(self, **kwargs): """Update the history along the iterations. For each keyword argument, we apply the history function corresponding to this keyword, and use its results in the history """ n_iter = kwargs["n_iter"] self.n_iter = n_iter history_func = self.history_func history = self.values for key, func in history_func.items(): history[key].append(func(**kwargs)) def set_print_order(self, *args): """Allows to set the print order of the solver's history """ self.print_order = list(*args) self.clear() return self def print_history(self): """Verbose the current line of history """ values = self.values n_iter = self.n_iter print_order = self.print_order # If this is the first iteration, plot the history's column names if n_iter == 0: min_width = self.minimum_col_width line = ' | '.join([name.center(min_width) for name in print_order if name in values]) names = [name.center(min_width) for name in print_order] self.col_widths = list(map(len, names)) print(line) col_widths = self.col_widths print_style = self.print_style line = ' | '.join([(print_style[name] % values[name][-1]) .rjust(col_widths[i]) for i, name in enumerate(print_order) if name in values]) print(line)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 6434, 25, 11288, 347, 14650, 1279, 14323, 261, 13, 65, 14650, 31, 14816, 13, 785, 29, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 17268, 1330, 4277, 11600, 628, 628, 628, 198, 4871, 7443, 33529, 198, 220, 220, 220, 37227, 32, 1398, 284, 6687, 262, 2106, 1863, 34820, 286, 257, 1540, 332, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1598, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 2106, 3815, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27160, 796, 4277, 11600, 7, 4868, 8, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 2106, 1863, 262, 34820, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1123, 21179, 4578, 11, 356, 4174, 262, 2106, 2163, 11188, 198, 220, 220, 220, 220, 220, 220, 220, 284, 428, 21179, 11, 290, 779, 663, 2482, 287, 262, 2106, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 796, 479, 86, 22046, 14692, 77, 62, 2676, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 2676, 796, 299, 62, 2676, 198, 220, 220, 220, 220, 220, 220, 220, 2106, 62, 20786, 796, 2116, 13, 23569, 62, 20786, 198, 220, 220, 220, 220, 220, 220, 220, 2106, 796, 2116, 13, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 25439, 287, 2106, 62, 20786, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2106, 58, 2539, 4083, 33295, 7, 20786, 7, 1174, 46265, 22046, 4008, 628, 220, 220, 220, 825, 900, 62, 4798, 62, 2875, 7, 944, 11, 1635, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34934, 284, 900, 262, 3601, 1502, 286, 262, 1540, 332, 338, 2106, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4798, 62, 2875, 796, 1351, 46491, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 3601, 62, 23569, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13414, 65, 577, 262, 1459, 1627, 286, 2106, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 2116, 13, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 796, 2116, 13, 77, 62, 2676, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 2875, 796, 2116, 13, 4798, 62, 2875, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 428, 318, 262, 717, 24415, 11, 7110, 262, 2106, 338, 5721, 3891, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 2676, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 10394, 796, 2116, 13, 39504, 62, 4033, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 705, 930, 45302, 22179, 26933, 3672, 13, 16159, 7, 1084, 62, 10394, 8, 329, 1438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 2875, 611, 1438, 287, 3815, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 685, 3672, 13, 16159, 7, 1084, 62, 10394, 8, 329, 1438, 287, 3601, 62, 2875, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 62, 10394, 82, 796, 1351, 7, 8899, 7, 11925, 11, 3891, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 951, 62, 10394, 82, 796, 2116, 13, 4033, 62, 10394, 82, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 7635, 796, 2116, 13, 4798, 62, 7635, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 705, 930, 45302, 22179, 26933, 7, 4798, 62, 7635, 58, 3672, 60, 4064, 3815, 58, 3672, 7131, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 81, 3137, 7, 4033, 62, 10394, 82, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1438, 287, 27056, 378, 7, 4798, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 287, 3815, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1370, 8, 198 ]
2.22468
859