content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/local/bin/python3 """ Author: Kelly Sovacool Email: [email protected] 28 Sep 2017 Usage: snp_subsample.py <snp-sites-dir> <output-filename-base> [--abundance-filter=<percent-cutoff> --output-filtered-fasta-dir=<filtered_dir> --skip-filter --num_subsamples=<num> --all-snps-all-loci --missing-cutoff=<percent-cutoff> --output-format=<fasta-or-strx>] snp_subsample.py --help Options: -h --help display this incredibly helpful message. --abundance-filter=<percent-cutoff> filter out SNPs below a percent abundance cutoff [default: 0.05]. --missing-cutoff=<percent-cutoff> filter out SNP sites with more than <percent-cutoff> of individuals missing data [default: 0.5]. --skip-filter skip the filtering step (e.g. if using already-filtered data). --num_subsamples=<num> number of subsamples [default: 1]. --all-snps-all-loci output a file containing all snps from all loci. --output-filtered-fasta-dir=<filtered_dir> output filtered snp-sites fastas to a directory. --output-format=<fasta-or-strx> output format for subsamples [default: strx]. """ import Bio.Seq import Bio.SeqIO import docopt import os import random # TODO: Redesign: clean up main fcn, better OOP design strx_extension = "_strx.txt" fasta_extension = ".fna" if __name__ == "__main__": arguments = docopt.docopt(__doc__) for arg in ("<snp-sites-dir>", "--output-filtered-fasta-dir"): if arguments[arg]: arguments[arg] = check_directory(arguments[arg]) main(arguments)
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 18, 198, 37811, 198, 13838, 25, 9077, 6917, 330, 970, 198, 15333, 25, 885, 12810, 47272, 330, 970, 31, 84, 2584, 13, 15532, 198, 2078, 8621, 2177, 198, 198, 28350, 25, 198, 220, 220, 220, 3013, 79, 62, 7266, 39873, 13, 9078, 1279, 16184, 79, 12, 49315, 12, 15908, 29, 1279, 22915, 12, 34345, 12, 8692, 29, 685, 438, 397, 917, 590, 12, 24455, 28, 27, 25067, 12, 8968, 2364, 29, 1377, 22915, 12, 10379, 4400, 12, 7217, 64, 12, 15908, 28, 27, 10379, 4400, 62, 15908, 29, 1377, 48267, 12, 24455, 1377, 22510, 62, 7266, 82, 12629, 28, 27, 22510, 29, 1377, 439, 12, 16184, 862, 12, 439, 12, 75, 1733, 1377, 45688, 12, 8968, 2364, 28, 27, 25067, 12, 8968, 2364, 29, 1377, 22915, 12, 18982, 28, 27, 7217, 64, 12, 273, 12, 2536, 87, 37981, 198, 220, 220, 220, 3013, 79, 62, 7266, 39873, 13, 9078, 1377, 16794, 198, 198, 29046, 25, 198, 220, 220, 220, 532, 71, 1377, 16794, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 428, 8131, 7613, 3275, 13, 198, 220, 220, 220, 1377, 397, 917, 590, 12, 24455, 28, 27, 25067, 12, 8968, 2364, 29, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 503, 11346, 12016, 2174, 257, 1411, 20038, 45616, 685, 12286, 25, 657, 13, 2713, 4083, 198, 220, 220, 220, 1377, 45688, 12, 8968, 2364, 28, 27, 25067, 12, 8968, 2364, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 503, 25632, 5043, 351, 517, 621, 1279, 25067, 12, 8968, 2364, 29, 286, 3925, 4814, 1366, 685, 12286, 25, 657, 13, 20, 4083, 198, 220, 220, 220, 1377, 48267, 12, 24455, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 262, 25431, 2239, 357, 68, 13, 70, 13, 611, 1262, 1541, 12, 10379, 4400, 1366, 737, 198, 220, 220, 220, 1377, 22510, 62, 7266, 82, 12629, 28, 27, 22510, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 6352, 12629, 685, 12286, 25, 352, 4083, 198, 220, 220, 220, 1377, 439, 12, 16184, 862, 12, 439, 12, 75, 1733, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 257, 2393, 7268, 477, 3013, 862, 422, 477, 1179, 72, 13, 198, 220, 220, 220, 1377, 22915, 12, 10379, 4400, 12, 7217, 64, 12, 15908, 28, 27, 10379, 4400, 62, 15908, 29, 220, 5072, 29083, 3013, 79, 12, 49315, 3049, 292, 284, 257, 8619, 13, 198, 220, 220, 220, 1377, 22915, 12, 18982, 28, 27, 7217, 64, 12, 273, 12, 2536, 87, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 5794, 329, 6352, 12629, 685, 12286, 25, 965, 87, 4083, 198, 37811, 198, 11748, 16024, 13, 4653, 80, 198, 11748, 16024, 13, 4653, 80, 9399, 198, 11748, 2205, 8738, 198, 11748, 28686, 198, 11748, 4738, 198, 2, 16926, 46, 25, 2297, 274, 570, 25, 3424, 510, 1388, 277, 31522, 11, 1365, 440, 3185, 1486, 198, 198, 2536, 87, 62, 2302, 3004, 796, 45434, 2536, 87, 13, 14116, 1, 198, 7217, 64, 62, 2302, 3004, 796, 27071, 69, 2616, 1, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 7159, 796, 2205, 8738, 13, 15390, 8738, 7, 834, 15390, 834, 8, 198, 220, 220, 220, 329, 1822, 287, 5855, 27, 16184, 79, 12, 49315, 12, 15908, 29, 1600, 366, 438, 22915, 12, 10379, 4400, 12, 7217, 64, 12, 15908, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7159, 58, 853, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7159, 58, 853, 60, 796, 2198, 62, 34945, 7, 853, 2886, 58, 853, 12962, 198, 220, 220, 220, 1388, 7, 853, 2886, 8, 198 ]
2.35785
707
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Tests for user profile models.""" import pytest from invenio_accounts.models import User from invenio_db import db from sqlalchemy.exc import IntegrityError from test_validators import test_usernames from invenio_userprofiles import InvenioUserProfiles, UserProfile def test_userprofiles(app): """Test UserProfile model.""" profile = UserProfile(User()) # Check the username validator works on the model profile.username = test_usernames['valid'] with pytest.raises(ValueError): profile.username = test_usernames['invalid_characters'] with pytest.raises(ValueError): profile.username = test_usernames['invalid_begins_with_number'] # Test non-validated attributes profile.first_name = 'Test' profile.last_name = 'User' assert profile.first_name == 'Test' assert profile.last_name == 'User' def test_case_insensitive_username(app): """Test case-insensitive uniqueness.""" with app.app_context(): with db.session.begin_nested(): u1 = User(email='[email protected]', username="INFO") db.session.add(u1) u2 = User(email='[email protected]', username="info") db.session.add(u2) pytest.raises(IntegrityError, db.session.commit) def test_case_preserving_username(app): """Test that username preserves the case.""" with app.app_context(): with db.session.begin_nested(): u1 = User(email='[email protected]', username="InFo") db.session.add(u1) db.session.commit() profile = UserProfile.get_by_username('info') assert profile.username == 'InFo' def test_delete_cascade(app): """Test that deletion of user, also removes profile.""" with app.app_context(): with db.session.begin_nested(): u = User(email='[email protected]', username="InFo") db.session.add(u) db.session.commit() assert UserProfile.get_by_userid(u.id) is not None db.session.delete(u) db.session.commit() assert UserProfile.get_by_userid(u.id) is None
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 554, 574, 952, 13, 198, 2, 15069, 357, 34, 8, 1853, 12, 7908, 327, 28778, 13, 198, 2, 198, 2, 554, 574, 952, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 198, 2, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 198, 37811, 51, 3558, 329, 2836, 7034, 4981, 526, 15931, 198, 198, 11748, 12972, 9288, 198, 6738, 287, 574, 952, 62, 23317, 82, 13, 27530, 1330, 11787, 198, 6738, 287, 574, 952, 62, 9945, 1330, 20613, 198, 6738, 44161, 282, 26599, 13, 41194, 1330, 39348, 12331, 198, 6738, 1332, 62, 12102, 2024, 1330, 1332, 62, 385, 1142, 1047, 198, 198, 6738, 287, 574, 952, 62, 7220, 5577, 2915, 1330, 554, 574, 952, 12982, 15404, 2915, 11, 11787, 37046, 628, 198, 4299, 1332, 62, 7220, 5577, 2915, 7, 1324, 2599, 198, 220, 220, 220, 37227, 14402, 11787, 37046, 2746, 526, 15931, 198, 220, 220, 220, 7034, 796, 11787, 37046, 7, 12982, 28955, 628, 220, 220, 220, 1303, 6822, 262, 20579, 4938, 1352, 2499, 319, 262, 2746, 198, 220, 220, 220, 7034, 13, 29460, 796, 1332, 62, 385, 1142, 1047, 17816, 12102, 20520, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7034, 13, 29460, 796, 1332, 62, 385, 1142, 1047, 17816, 259, 12102, 62, 10641, 19858, 20520, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7034, 13, 29460, 796, 1332, 62, 385, 1142, 1047, 17816, 259, 12102, 62, 1350, 29878, 62, 4480, 62, 17618, 20520, 628, 220, 220, 220, 1303, 6208, 1729, 12, 12102, 515, 12608, 198, 220, 220, 220, 7034, 13, 11085, 62, 3672, 796, 705, 14402, 6, 198, 220, 220, 220, 7034, 13, 12957, 62, 3672, 796, 705, 12982, 6, 198, 220, 220, 220, 6818, 7034, 13, 11085, 62, 3672, 6624, 705, 14402, 6, 198, 220, 220, 220, 6818, 7034, 13, 12957, 62, 3672, 6624, 705, 12982, 6, 628, 198, 4299, 1332, 62, 7442, 62, 1040, 18464, 62, 29460, 7, 1324, 2599, 198, 220, 220, 220, 37227, 14402, 1339, 12, 1040, 18464, 49650, 526, 15931, 198, 220, 220, 220, 351, 598, 13, 1324, 62, 22866, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20613, 13, 29891, 13, 27471, 62, 77, 7287, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 16, 796, 11787, 7, 12888, 11639, 9288, 31, 9288, 13, 2398, 3256, 20579, 2625, 10778, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 84, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 17, 796, 11787, 7, 12888, 11639, 9288, 17, 31, 9288, 13, 2398, 3256, 20579, 2625, 10951, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 84, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 430, 2696, 7, 34500, 10138, 12331, 11, 20613, 13, 29891, 13, 41509, 8, 628, 198, 4299, 1332, 62, 7442, 62, 18302, 14344, 62, 29460, 7, 1324, 2599, 198, 220, 220, 220, 37227, 14402, 326, 20579, 43759, 262, 1339, 526, 15931, 198, 220, 220, 220, 351, 598, 13, 1324, 62, 22866, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20613, 13, 29891, 13, 27471, 62, 77, 7287, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 16, 796, 11787, 7, 12888, 11639, 9288, 31, 9288, 13, 2398, 3256, 20579, 2625, 818, 37, 78, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 84, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7034, 796, 11787, 37046, 13, 1136, 62, 1525, 62, 29460, 10786, 10951, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7034, 13, 29460, 6624, 705, 818, 37, 78, 6, 628, 198, 4299, 1332, 62, 33678, 62, 66, 28966, 7, 1324, 2599, 198, 220, 220, 220, 37227, 14402, 326, 39948, 286, 2836, 11, 635, 20694, 7034, 526, 15931, 198, 220, 220, 220, 351, 598, 13, 1324, 62, 22866, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20613, 13, 29891, 13, 27471, 62, 77, 7287, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 796, 11787, 7, 12888, 11639, 9288, 31, 9288, 13, 2398, 3256, 20579, 2625, 818, 37, 78, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 2860, 7, 84, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 11787, 37046, 13, 1136, 62, 1525, 62, 7220, 312, 7, 84, 13, 312, 8, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 33678, 7, 84, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 11787, 37046, 13, 1136, 62, 1525, 62, 7220, 312, 7, 84, 13, 312, 8, 318, 6045, 198 ]
2.566038
901
import datetime import logging import time from colorama import Fore logging.getLogger('filelock').propagate = False logging.basicConfig( # filename='logger.log', level=logging.INFO, format='%(message)s' ) logger = Logger(classic=True, logger_name='Default-Logger')
[ 11748, 4818, 8079, 198, 11748, 18931, 198, 11748, 640, 198, 198, 6738, 3124, 1689, 1330, 4558, 198, 198, 6404, 2667, 13, 1136, 11187, 1362, 10786, 7753, 5354, 27691, 22930, 37861, 796, 10352, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 1303, 29472, 11639, 6404, 1362, 13, 6404, 3256, 198, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 5794, 11639, 4, 7, 20500, 8, 82, 6, 198, 8, 628, 198, 198, 6404, 1362, 796, 5972, 1362, 7, 49421, 28, 17821, 11, 49706, 62, 3672, 11639, 19463, 12, 11187, 1362, 11537, 198 ]
2.858586
99
import unittest from unittest.mock import MagicMock import luigi import pandas as pd from sklearn.ensemble import RandomForestClassifier from redshells.train import TrainPairwiseSimilarityModel if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 198, 198, 11748, 300, 84, 25754, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 198, 6738, 2266, 29149, 82, 13, 27432, 1330, 16835, 47, 958, 3083, 18925, 414, 17633, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.049383
81
import asyncio import sys sys.path.insert(0, ".") from aioscheduler import QueuedScheduler asyncio.run(main())
[ 11748, 30351, 952, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 366, 19570, 198, 198, 6738, 257, 4267, 1740, 18173, 1330, 4670, 1739, 50, 1740, 18173, 628, 628, 198, 292, 13361, 952, 13, 5143, 7, 12417, 28955, 198 ]
2.72093
43
import cv2
[ 11748, 269, 85, 17, 198 ]
2.2
5
# encoding: utf-8 from enum import Enum from datetime import datetime, timedelta import math import pprint from prawcore import exceptions import langdetect DAYS_IN_WEEK = 7 DAYS_IN_MONTH = 28 class Subreddit: """A class to retrieve and store information about subreddits""" def auto_update(self, reddit, post_limit=100, comment_limit=1000): """Automatically crawl the subreddit to update all possible info parameters: reddit: a praw instance post_limit: upper limit of posts parsed for activity metrics comment_limit: upper limit of comments parsed for activity metrics""" # FIXME: parse latest posts and comments for activity metrics try: sub = reddit.subreddit(self.name) except (exceptions.NotFound, exceptions.Redirect): self.status = SubredditStatus.DOESNT_EXIST return self._set_status(sub) if self.status not in [SubredditStatus.PUBLIC, SubredditStatus.RESTRICTED]: return self.is_nsfw = sub.over18 self.subscriber_count = sub.subscribers self.created_utc = sub.created_utc self.description = sub.public_description self.official_lang = sub.lang self.moderators = [mod.name for mod in sub.moderator()] self._analyse_submissions(sub, post_limit) self._analyse_comments(sub, comment_limit) return
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 10688, 198, 11748, 279, 4798, 198, 6738, 279, 1831, 7295, 1330, 13269, 198, 11748, 42392, 15255, 478, 628, 198, 26442, 50, 62, 1268, 62, 54, 33823, 796, 767, 198, 26442, 50, 62, 1268, 62, 27857, 4221, 796, 2579, 628, 198, 198, 4871, 3834, 10748, 25, 198, 220, 220, 220, 37227, 32, 1398, 284, 19818, 290, 3650, 1321, 546, 46386, 37811, 628, 220, 220, 220, 825, 8295, 62, 19119, 7, 944, 11, 18374, 11, 1281, 62, 32374, 28, 3064, 11, 2912, 62, 32374, 28, 12825, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38062, 4142, 27318, 262, 25163, 284, 4296, 477, 1744, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18374, 25, 257, 279, 1831, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 32374, 25, 6727, 4179, 286, 6851, 44267, 329, 3842, 20731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2912, 62, 32374, 25, 6727, 4179, 286, 3651, 44267, 329, 3842, 20731, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 21136, 3452, 6851, 290, 3651, 329, 3842, 20731, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 796, 18374, 13, 7266, 10748, 7, 944, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 1069, 11755, 13, 3673, 21077, 11, 13269, 13, 7738, 1060, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 796, 3834, 10748, 19580, 13, 18227, 1546, 11251, 62, 6369, 8808, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 13376, 7, 7266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13376, 407, 287, 685, 7004, 10748, 19580, 13, 5105, 32936, 11, 3834, 10748, 19580, 13, 19535, 5446, 18379, 1961, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 5907, 44482, 796, 850, 13, 2502, 1507, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 1416, 24735, 62, 9127, 796, 850, 13, 7266, 40075, 364, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25598, 62, 315, 66, 796, 850, 13, 25598, 62, 315, 66, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11213, 796, 850, 13, 11377, 62, 11213, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16841, 62, 17204, 796, 850, 13, 17204, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4666, 263, 2024, 796, 685, 4666, 13, 3672, 329, 953, 287, 850, 13, 4666, 263, 1352, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 38200, 325, 62, 7266, 8481, 7, 7266, 11, 1281, 62, 32374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 38200, 325, 62, 15944, 7, 7266, 11, 2912, 62, 32374, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 628 ]
2.502564
585
#!/usr/bin/env python # Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import os import numpy as np from sklearn.decomposition import PCA, SparsePCA, KernelPCA from sklearn.manifold import TSNE from WORC.IOparser.file_io import load_features import WORC.IOparser.config_io_classifier as config_io from WORC.featureprocessing.Imputer import Imputer def Decomposition(features, patientinfo, config, output, label_type=None, verbose=True): """ Perform decompositions to two components of the feature space. Useage is similar to StatisticalTestFeatures. Parameters ---------- features: string, mandatory contains the paths to all .hdf5 feature files used. modalityname1=file1,file2,file3,... modalityname2=file1,... Thus, modalities names are always between a space and a equal sign, files are split by commas. We assume that the lists of files for each modality has the same length. Files on the same position on each list should belong to the same patient. patientinfo: string, mandatory Contains the path referring to a .txt file containing the patient label(s) and value(s) to be used for learning. See the Github Wiki for the format. config: string, mandatory path referring to a .ini file containing the parameters used for feature extraction. See the Github Wiki for the possible fields and their description. # TODO: outputs verbose: boolean, default True print final feature values and labels to command line or not. """ # Load variables from the config file config = config_io.load_config(config) # Create output folder if required if not os.path.exists(os.path.dirname(output)): os.makedirs(os.path.dirname(output)) if label_type is None: label_type = config['Labels']['label_names'] # Read the features and classification data print("Reading features and label data.") label_data, image_features =\ load_features(features, patientinfo, label_type) # Extract feature labels and put values in an array feature_labels = image_features[0][1] feature_values = np.zeros([len(image_features), len(feature_labels)]) for num, x in enumerate(image_features): feature_values[num, :] = x[0] # Detect NaNs, otherwise first feature imputation is required if any(np.isnan(a) for a in np.asarray(feature_values).flatten()): print('\t [WARNING] NaNs detected, applying median imputation') imputer = Imputer(missing_values=np.nan, strategy='median') imputer.fit(feature_values) feature_values = imputer.transform(feature_values) # ----------------------------------------------------------------------- # Perform decomposition print("Performing decompositions.") label_value = label_data['label'] label_name = label_data['label_name'] # Reduce to two components for plotting n_components = 2 for i_class, i_name in zip(label_value, label_name): classlabels = i_class.ravel() class1 = [i for j, i in enumerate(feature_values) if classlabels[j] == 1] class2 = [i for j, i in enumerate(feature_values) if classlabels[j] == 0] f = plt.figure(figsize=(20, 15)) # ------------------------------------------------------- # Fit PCA pca = PCA(n_components=n_components) pca.fit(feature_values) explained_variance_ratio = np.sum(pca.explained_variance_ratio_) class1_pca = pca.transform(class1) class2_pca = pca.transform(class2) # Plot PCA ax = plt.subplot(2, 3, 1) plt.subplots_adjust(hspace=0.3, wspace=0.2) ax.scatter(class1_pca[:, 0], class1_pca[:, 1], color='blue') ax.scatter(class2_pca[:, 0], class2_pca[:, 1], color='green') ax.set_title(f'PCA: {round(explained_variance_ratio, 3)} variance.') # ------------------------------------------------------- # Fit Sparse PCA pca = SparsePCA(n_components=n_components) pca.fit(feature_values) class1_pca = pca.transform(class1) class2_pca = pca.transform(class2) # Plot Sparse PCA ax = plt.subplot(2, 3, 2) plt.subplots_adjust(hspace=0.3, wspace=0.2) ax.scatter(class1_pca[:, 0], class1_pca[:, 1], color='blue') ax.scatter(class2_pca[:, 0], class2_pca[:, 1], color='green') ax.set_title('Sparse PCA.') # ------------------------------------------------------- # Fit Kernel PCA fnum = 3 for kernel in ['linear', 'poly', 'rbf']: try: pca = KernelPCA(n_components=n_components, kernel=kernel) pca.fit(feature_values) class1_pca = pca.transform(class1) class2_pca = pca.transform(class2) # Plot Sparse PCA ax = plt.subplot(2, 3, fnum) plt.subplots_adjust(hspace=0.3, wspace=0.2) ax.scatter(class1_pca[:, 0], class1_pca[:, 1], color='blue') ax.scatter(class2_pca[:, 0], class2_pca[:, 1], color='green') ax.set_title(('Kernel PCA: {} .').format(kernel)) fnum += 1 except ValueError as e: # Sometimes, a specific kernel does not work, just continue print(f'[Error] {e}: skipping kernel {kernel}.') continue # ------------------------------------------------------- # Fit t-SNE tSNE = TSNE(n_components=n_components) class_all = class1 + class2 class_all_tsne = tSNE.fit_transform(class_all) class1_tSNE = class_all_tsne[0:len(class1)] class2_tSNE = class_all_tsne[len(class1):] # Plot Sparse tSNE ax = plt.subplot(2, 3, 6) plt.subplots_adjust(hspace=0.3, wspace=0.2) ax.scatter(class1_tSNE[:, 0], class1_tSNE[:, 1], color='blue') ax.scatter(class2_tSNE[:, 0], class2_tSNE[:, 1], color='green') ax.set_title('t-SNE.') # ------------------------------------------------------- # Maximize figure to get correct spacings # mng = plt.get_current_fig_manager() # mng.resize(*mng.window.maxsize()) # High DTI to make sure we save the maximized image f.savefig(output, dpi=600) print(("Decomposition saved as {} !").format(output))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 1584, 12, 1238, 2481, 8436, 35914, 48656, 4912, 18481, 353, 11043, 11, 2129, 32514, 286, 198, 2, 8366, 554, 18982, 873, 290, 5325, 12371, 11, 5256, 8597, 385, 13122, 11, 18481, 353, 11043, 11, 383, 12671, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 9460, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 12501, 296, 9150, 1330, 4217, 32, 11, 1338, 17208, 5662, 32, 11, 32169, 5662, 32, 198, 6738, 1341, 35720, 13, 805, 361, 727, 1330, 26136, 12161, 198, 6738, 21881, 34, 13, 9399, 48610, 13, 7753, 62, 952, 1330, 3440, 62, 40890, 198, 11748, 21881, 34, 13, 9399, 48610, 13, 11250, 62, 952, 62, 4871, 7483, 355, 4566, 62, 952, 198, 6738, 21881, 34, 13, 30053, 36948, 13, 3546, 10549, 1330, 1846, 10549, 628, 198, 4299, 4280, 296, 9150, 7, 40890, 11, 5827, 10951, 11, 4566, 11, 5072, 11, 6167, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35006, 26969, 1930, 1756, 284, 734, 6805, 286, 262, 3895, 2272, 13, 628, 220, 220, 220, 5765, 496, 318, 2092, 284, 34931, 14402, 23595, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3033, 25, 4731, 11, 13677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 13532, 284, 477, 764, 71, 7568, 20, 3895, 3696, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 953, 1483, 3672, 16, 28, 7753, 16, 11, 7753, 17, 11, 7753, 18, 42303, 953, 1483, 3672, 17, 28, 7753, 16, 42303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6660, 11, 953, 27969, 3891, 389, 1464, 1022, 257, 2272, 290, 257, 4961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1051, 11, 3696, 389, 6626, 416, 725, 292, 13, 775, 7048, 326, 262, 8341, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 329, 1123, 953, 1483, 468, 262, 976, 4129, 13, 13283, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 976, 2292, 319, 1123, 1351, 815, 5594, 284, 262, 976, 5827, 13, 628, 220, 220, 220, 5827, 10951, 25, 4731, 11, 13677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49850, 262, 3108, 9759, 284, 257, 764, 14116, 2393, 7268, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5827, 6167, 7, 82, 8, 290, 1988, 7, 82, 8, 284, 307, 973, 329, 4673, 13, 4091, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 38994, 13078, 329, 262, 5794, 13, 628, 220, 220, 220, 4566, 25, 4731, 11, 13677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 9759, 284, 257, 764, 5362, 2393, 7268, 262, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 329, 3895, 22236, 13, 4091, 262, 38994, 13078, 329, 262, 1744, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 290, 511, 6764, 13, 628, 220, 220, 220, 1303, 16926, 46, 25, 23862, 628, 220, 220, 220, 15942, 577, 25, 25131, 11, 4277, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 2457, 3895, 3815, 290, 14722, 284, 3141, 1627, 393, 407, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 8778, 9633, 422, 262, 4566, 2393, 198, 220, 220, 220, 4566, 796, 4566, 62, 952, 13, 2220, 62, 11250, 7, 11250, 8, 628, 220, 220, 220, 1303, 13610, 5072, 9483, 611, 2672, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 15908, 3672, 7, 22915, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 22915, 4008, 628, 220, 220, 220, 611, 6167, 62, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 4906, 796, 4566, 17816, 17822, 1424, 6, 7131, 6, 18242, 62, 14933, 20520, 628, 220, 220, 220, 1303, 4149, 262, 3033, 290, 17923, 1366, 198, 220, 220, 220, 3601, 7203, 36120, 3033, 290, 6167, 1366, 19570, 198, 220, 220, 220, 6167, 62, 7890, 11, 2939, 62, 40890, 796, 59, 198, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 40890, 7, 40890, 11, 5827, 10951, 11, 6167, 62, 4906, 8, 628, 220, 220, 220, 1303, 29677, 3895, 14722, 290, 1234, 3815, 287, 281, 7177, 198, 220, 220, 220, 3895, 62, 23912, 1424, 796, 2939, 62, 40890, 58, 15, 7131, 16, 60, 198, 220, 220, 220, 3895, 62, 27160, 796, 45941, 13, 9107, 418, 26933, 11925, 7, 9060, 62, 40890, 828, 18896, 7, 30053, 62, 23912, 1424, 8, 12962, 198, 220, 220, 220, 329, 997, 11, 2124, 287, 27056, 378, 7, 9060, 62, 40890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 27160, 58, 22510, 11, 1058, 60, 796, 2124, 58, 15, 60, 628, 220, 220, 220, 1303, 35874, 11013, 47503, 11, 4306, 717, 3895, 848, 7094, 318, 2672, 198, 220, 220, 220, 611, 597, 7, 37659, 13, 271, 12647, 7, 64, 8, 329, 257, 287, 45941, 13, 292, 18747, 7, 30053, 62, 27160, 737, 2704, 41769, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 83, 685, 31502, 60, 11013, 47503, 12326, 11, 11524, 14288, 848, 7094, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 848, 11894, 796, 1846, 10549, 7, 45688, 62, 27160, 28, 37659, 13, 12647, 11, 4811, 11639, 1150, 666, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 848, 11894, 13, 11147, 7, 30053, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 27160, 796, 848, 11894, 13, 35636, 7, 30053, 62, 27160, 8, 628, 220, 220, 220, 1303, 16529, 26866, 198, 220, 220, 220, 1303, 35006, 26969, 9150, 198, 220, 220, 220, 3601, 7203, 5990, 15464, 26969, 1930, 1756, 19570, 198, 220, 220, 220, 6167, 62, 8367, 796, 6167, 62, 7890, 17816, 18242, 20520, 198, 220, 220, 220, 6167, 62, 3672, 796, 6167, 62, 7890, 17816, 18242, 62, 3672, 20520, 628, 220, 220, 220, 1303, 44048, 284, 734, 6805, 329, 29353, 198, 220, 220, 220, 299, 62, 5589, 3906, 796, 362, 628, 220, 220, 220, 329, 1312, 62, 4871, 11, 1312, 62, 3672, 287, 19974, 7, 18242, 62, 8367, 11, 6167, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 23912, 1424, 796, 1312, 62, 4871, 13, 25843, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 16, 796, 685, 72, 329, 474, 11, 1312, 287, 27056, 378, 7, 30053, 62, 27160, 8, 611, 1398, 23912, 1424, 58, 73, 60, 6624, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 17, 796, 685, 72, 329, 474, 11, 1312, 287, 27056, 378, 7, 30053, 62, 27160, 8, 611, 1398, 23912, 1424, 58, 73, 60, 6624, 657, 60, 628, 220, 220, 220, 220, 220, 220, 220, 277, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1238, 11, 1315, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 19351, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25048, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 796, 4217, 32, 7, 77, 62, 5589, 3906, 28, 77, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 13, 11147, 7, 30053, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4893, 62, 25641, 590, 62, 10366, 952, 796, 45941, 13, 16345, 7, 79, 6888, 13, 20676, 1328, 62, 25641, 590, 62, 10366, 952, 62, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 16, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 17, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 7266, 29487, 7, 17, 11, 513, 11, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 15, 13, 18, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 16, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 16, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 17585, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 17, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 17, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 14809, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 69, 6, 5662, 32, 25, 1391, 744, 7, 20676, 1328, 62, 25641, 590, 62, 10366, 952, 11, 513, 38165, 24198, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 19351, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25048, 1338, 17208, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 796, 1338, 17208, 5662, 32, 7, 77, 62, 5589, 3906, 28, 77, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 13, 11147, 7, 30053, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 16, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 17, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 1338, 17208, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 7266, 29487, 7, 17, 11, 513, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 15, 13, 18, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 16, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 16, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 17585, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 17, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 17, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 14809, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 10786, 50, 29572, 4217, 32, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 19351, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25048, 32169, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 277, 22510, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 329, 9720, 287, 37250, 29127, 3256, 705, 35428, 3256, 705, 81, 19881, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 796, 32169, 5662, 32, 7, 77, 62, 5589, 3906, 28, 77, 62, 5589, 3906, 11, 9720, 28, 33885, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 6888, 13, 11147, 7, 30053, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 16, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 17, 62, 79, 6888, 796, 279, 6888, 13, 35636, 7, 4871, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 1338, 17208, 4217, 32, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 7266, 29487, 7, 17, 11, 513, 11, 277, 22510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 15, 13, 18, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 16, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 16, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 17585, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 17, 62, 79, 6888, 58, 45299, 657, 4357, 1398, 17, 62, 79, 6888, 58, 45299, 352, 4357, 3124, 11639, 14809, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 10786, 42, 7948, 4217, 32, 25, 23884, 764, 27691, 18982, 7, 33885, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 22510, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8975, 11, 257, 2176, 9720, 857, 407, 670, 11, 655, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 58, 12331, 60, 1391, 68, 38362, 31017, 9720, 1391, 33885, 92, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 19351, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25048, 256, 12, 50, 12161, 198, 220, 220, 220, 220, 220, 220, 220, 256, 50, 12161, 796, 26136, 12161, 7, 77, 62, 5589, 3906, 28, 77, 62, 5589, 3906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 439, 796, 1398, 16, 1343, 1398, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 439, 62, 912, 710, 796, 256, 50, 12161, 13, 11147, 62, 35636, 7, 4871, 62, 439, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 16, 62, 83, 50, 12161, 796, 1398, 62, 439, 62, 912, 710, 58, 15, 25, 11925, 7, 4871, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 17, 62, 83, 50, 12161, 796, 1398, 62, 439, 62, 912, 710, 58, 11925, 7, 4871, 16, 2599, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 1338, 17208, 256, 50, 12161, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 458, 83, 13, 7266, 29487, 7, 17, 11, 513, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 489, 1747, 62, 23032, 7, 71, 13200, 28, 15, 13, 18, 11, 266, 13200, 28, 15, 13, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 16, 62, 83, 50, 12161, 58, 45299, 657, 4357, 1398, 16, 62, 83, 50, 12161, 58, 45299, 352, 4357, 3124, 11639, 17585, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 1416, 1436, 7, 4871, 17, 62, 83, 50, 12161, 58, 45299, 657, 4357, 1398, 17, 62, 83, 50, 12161, 58, 45299, 352, 4357, 3124, 11639, 14809, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 10786, 83, 12, 50, 12161, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20368, 19351, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38962, 1096, 3785, 284, 651, 3376, 34752, 654, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 285, 782, 796, 458, 83, 13, 1136, 62, 14421, 62, 5647, 62, 37153, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 285, 782, 13, 411, 1096, 46491, 76, 782, 13, 17497, 13, 9806, 7857, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3334, 24311, 40, 284, 220, 787, 1654, 356, 3613, 262, 12991, 1143, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 21928, 5647, 7, 22915, 11, 288, 14415, 28, 8054, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7203, 10707, 296, 9150, 7448, 355, 23884, 220, 2474, 737, 18982, 7, 22915, 4008, 198 ]
2.46329
2,942
import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical from common.utils import init class FixedCategorical(Categorical): """ Categorical distribution object """ class Categorical(nn.Module): """ Categorical distribution (NN module) """
[ 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 17080, 2455, 507, 1330, 327, 2397, 12409, 198, 6738, 2219, 13, 26791, 1330, 2315, 628, 198, 198, 4871, 10832, 34, 2397, 12409, 7, 34, 2397, 12409, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 2397, 12409, 6082, 2134, 198, 220, 220, 220, 37227, 628, 198, 4871, 327, 2397, 12409, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 2397, 12409, 6082, 357, 6144, 8265, 8, 198, 220, 220, 220, 37227, 198 ]
3.09
100
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # SOURCE: https://github.com/martinblech/xmltodict#roundtripping # pip install xmltodict import xmltodict my_dict = { 'response': { 'status': 'good', 'last_updated': '2014-02-16T23:10:12Z', } } print(xmltodict.unparse(my_dict)) # <?xml version="1.0" encoding="utf-8"?> # <response><status>good</status><last_updated>2014-02-16T23:10:12Z</last_updated></response> print() print(xmltodict.unparse(my_dict, pretty=True)) # <?xml version="1.0" encoding="utf-8"?> # <response> # <status>good</status> # <last_updated>2014-02-16T23:10:12Z</last_updated> # </response> print('\n') # Text values for nodes can be specified with the cdata_key key in the python dict, while node properties can # be specified with the attr_prefix prefixed to the key name in the python dict. The default value for attr_ # prefix is @ and the default value for cdata_key is #text. my_dict = { 'text': { '@color': 'red', '@stroke': '2', '#text': 'This is a test', } } print(xmltodict.unparse(my_dict, pretty=True)) # <?xml version="1.0" encoding="utf-8"?> # <text stroke="2" color="red">This is a test</text>
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 705, 541, 21879, 1077, 6, 628, 198, 2, 311, 31033, 25, 3740, 1378, 12567, 13, 785, 14, 13822, 259, 903, 354, 14, 87, 76, 2528, 375, 713, 2, 744, 28461, 2105, 628, 198, 2, 7347, 2721, 2124, 76, 2528, 375, 713, 198, 11748, 2124, 76, 2528, 375, 713, 628, 198, 1820, 62, 11600, 796, 1391, 198, 220, 220, 220, 705, 26209, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13376, 10354, 705, 11274, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12957, 62, 43162, 10354, 705, 4967, 12, 2999, 12, 1433, 51, 1954, 25, 940, 25, 1065, 57, 3256, 198, 220, 220, 220, 1782, 198, 92, 198, 4798, 7, 87, 76, 2528, 375, 713, 13, 403, 29572, 7, 1820, 62, 11600, 4008, 198, 2, 1279, 30, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 2, 1279, 26209, 6927, 13376, 29, 11274, 3556, 13376, 6927, 12957, 62, 43162, 29, 4967, 12, 2999, 12, 1433, 51, 1954, 25, 940, 25, 1065, 57, 3556, 12957, 62, 43162, 12240, 26209, 29, 198, 198, 4798, 3419, 198, 198, 4798, 7, 87, 76, 2528, 375, 713, 13, 403, 29572, 7, 1820, 62, 11600, 11, 2495, 28, 17821, 4008, 198, 2, 1279, 30, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 2, 1279, 26209, 29, 198, 2, 220, 197, 27, 13376, 29, 11274, 3556, 13376, 29, 198, 2, 220, 197, 27, 12957, 62, 43162, 29, 4967, 12, 2999, 12, 1433, 51, 1954, 25, 940, 25, 1065, 57, 3556, 12957, 62, 43162, 29, 198, 2, 7359, 26209, 29, 198, 198, 4798, 10786, 59, 77, 11537, 198, 198, 2, 8255, 3815, 329, 13760, 460, 307, 7368, 351, 262, 269, 7890, 62, 2539, 1994, 287, 262, 21015, 8633, 11, 981, 10139, 6608, 460, 198, 2, 307, 7368, 351, 262, 708, 81, 62, 40290, 7694, 2966, 284, 262, 1994, 1438, 287, 262, 21015, 8633, 13, 383, 4277, 1988, 329, 708, 81, 62, 198, 2, 21231, 318, 2488, 290, 262, 4277, 1988, 329, 269, 7890, 62, 2539, 318, 1303, 5239, 13, 198, 1820, 62, 11600, 796, 1391, 198, 220, 220, 220, 705, 5239, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31, 8043, 10354, 705, 445, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31, 30757, 10354, 705, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2, 5239, 10354, 705, 1212, 318, 257, 1332, 3256, 198, 220, 220, 220, 1782, 198, 92, 198, 4798, 7, 87, 76, 2528, 375, 713, 13, 403, 29572, 7, 1820, 62, 11600, 11, 2495, 28, 17821, 4008, 198, 2, 1279, 30, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 13984, 29, 198, 2, 1279, 5239, 14000, 2625, 17, 1, 3124, 2625, 445, 5320, 1212, 318, 257, 1332, 3556, 5239, 29, 198 ]
2.420635
504
# Copyright (c) 2020 Cisco and/or its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """QEMU Manager library.""" from collections import OrderedDict from resources.libraries.python.Constants import Constants from resources.libraries.python.CpuUtils import CpuUtils from resources.libraries.python.QemuUtils import QemuUtils from resources.libraries.python.topology import NodeType, Topology __all__ = [u"QemuManager"] class QemuManager: """QEMU lifecycle management class""" # Use one instance of class per tests. ROBOT_LIBRARY_SCOPE = u"TEST CASE" def __init__(self, nodes): """Init QemuManager object.""" self.machines = None self.machines_affinity = None self.nodes = nodes def initialize(self): """Initialize QemuManager object.""" self.machines = OrderedDict() self.machines_affinity = OrderedDict() def construct_vms_on_node(self, **kwargs): """Construct 1..Mx1..N VMs(s) on node with specified name. :param kwargs: Named parameters. :type kwargs: dict """ node = kwargs[u"node"] nf_chains = int(kwargs[u"nf_chains"]) nf_nodes = int(kwargs[u"nf_nodes"]) queues = kwargs[u"rxq_count_int"] if kwargs[u"auto_scale"] else 1 vs_dtc = kwargs[u"vs_dtc"] nf_dtc = kwargs[u"vs_dtc"] if kwargs[u"auto_scale"] \ else kwargs[u"nf_dtc"] nf_dtcr = kwargs[u"nf_dtcr"] \ if isinstance(kwargs[u"nf_dtcr"], int) else 2 for nf_chain in range(1, nf_chains + 1): for nf_node in range(1, nf_nodes + 1): qemu_id = (nf_chain - 1) * nf_nodes + nf_node name = f"{node}_{qemu_id}" idx1 = (nf_chain - 1) * nf_nodes * 2 + nf_node * 2 - 1 vif1_mac = Topology.get_interface_mac( self.nodes[node], f"vhost{idx1}" ) if kwargs[u"vnf"] == u"testpmd_mac" \ else kwargs[u"tg_pf1_mac"] if nf_node == 1 \ else f"52:54:00:00:{(qemu_id - 1):02x}:02" idx2 = (nf_chain - 1) * nf_nodes * 2 + nf_node * 2 vif2_mac = Topology.get_interface_mac( self.nodes[node], f"vhost{idx2}" ) if kwargs[u"vnf"] == u"testpmd_mac" \ else kwargs[u"tg_pf2_mac"] if nf_node == nf_nodes \ else f"52:54:00:00:{(qemu_id + 1):02x}:01" self.machines_affinity[name] = CpuUtils.get_affinity_nf( nodes=self.nodes, node=node, nf_chains=nf_chains, nf_nodes=nf_nodes, nf_chain=nf_chain, nf_node=nf_node, vs_dtc=vs_dtc, nf_dtc=nf_dtc, nf_dtcr=nf_dtcr ) try: getattr(self, f'_c_{kwargs["vnf"]}')( qemu_id=qemu_id, name=name, queues=queues, **kwargs ) except AttributeError: self._c_default( qemu_id=qemu_id, name=name, queues=queues, vif1_mac=vif1_mac, vif2_mac=vif2_mac, **kwargs ) def construct_vms_on_all_nodes(self, **kwargs): """Construct 1..Mx1..N VMs(s) with specified name on all nodes. :param kwargs: Named parameters. :type kwargs: dict """ self.initialize() for node in self.nodes: if self.nodes[node][u"type"] == NodeType.DUT: self.construct_vms_on_node(node=node, **kwargs) def start_all_vms(self, pinning=False): """Start all added VMs in manager. :param pinning: If True, then do also QEMU process pinning. :type pinning: bool """ cpus = [] for machine, machine_affinity in \ zip(self.machines.values(), self.machines_affinity.values()): index = list(self.machines.values()).index(machine) name = list(self.machines.keys())[index] self.nodes[name] = machine.qemu_start() if pinning: machine.qemu_set_affinity(*machine_affinity) cpus.extend(machine_affinity) return ",".join(str(cpu) for cpu in cpus) def kill_all_vms(self, force=False): """Kill all added VMs in manager. :param force: Force kill all Qemu instances by pkill qemu if True. :type force: bool """ for node in list(self.nodes.values()): if node["type"] == NodeType.VM: try: self.nodes.popitem(node) except TypeError: pass for machine in self.machines.values(): if force: machine.qemu_kill_all() else: machine.qemu_kill() def _c_default(self, **kwargs): """Instantiate one VM with default configuration. :param kwargs: Named parameters. :type kwargs: dict """ qemu_id = kwargs[u"qemu_id"] name = kwargs[u"name"] self.machines[name] = QemuUtils( node=self.nodes[kwargs[u"node"]], qemu_id=qemu_id, smp=len(self.machines_affinity[name]), mem=4096, vnf=kwargs[u"vnf"], img=Constants.QEMU_VM_KERNEL ) self.machines[name].add_default_params() self.machines[name].add_kernelvm_params() self.machines[name].configure_kernelvm_vnf( mac1=f"52:54:00:00:{qemu_id:02x}:01", mac2=f"52:54:00:00:{qemu_id:02x}:02", vif1_mac=kwargs[u"vif1_mac"], vif2_mac=kwargs[u"vif2_mac"], queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) self.machines[name].add_vhost_user_if( f"/run/vpp/sock-{qemu_id}-1", jumbo_frames=kwargs[u"jumbo"], queues=kwargs[u"queues"], queue_size=kwargs[u"perf_qemu_qsz"], csum=kwargs[u"enable_csum"], gso=kwargs[u"enable_gso"] ) self.machines[name].add_vhost_user_if( f"/run/vpp/sock-{qemu_id}-2", jumbo_frames=kwargs[u"jumbo"], queues=kwargs[u"queues"], queue_size=kwargs[u"perf_qemu_qsz"], csum=kwargs[u"enable_csum"], gso=kwargs[u"enable_gso"] ) def _c_vpp_2vfpt_ip4base_plen24(self, **kwargs): """Instantiate one VM with vpp_2vfpt_ip4base_plen24 configuration. :param kwargs: Named parameters. :type kwargs: dict """ qemu_id = kwargs[u"qemu_id"] name = kwargs[u"name"] self.machines[name] = QemuUtils( node=self.nodes[kwargs[u"node"]], qemu_id=qemu_id, smp=len(self.machines_affinity[name]), mem=4096, vnf=kwargs[u"vnf"], img=Constants.QEMU_VM_KERNEL ) self.machines[name].add_default_params() self.machines[name].add_kernelvm_params() if u"DUT1" in name: self.machines[name].configure_kernelvm_vnf( ip1=u"2.2.2.1/30", ip2=u"1.1.1.2/30", route1=u"20.0.0.0/24", routeif1=u"avf-0/0/6/0", nexthop1=u"2.2.2.2", route2=u"10.0.0.0/24", routeif2=u"avf-0/0/7/0", nexthop2=u"1.1.1.1", arpmac1=u"3c:fd:fe:d1:5c:d8", arpip1=u"1.1.1.1", arpif1=u"avf-0/0/7/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) else: self.machines[name].configure_kernelvm_vnf( ip1=u"3.3.3.2/30", ip2=u"2.2.2.2/30", route1=u"10.0.0.0/24", routeif1=u"avf-0/0/7/0", nexthop1=u"2.2.2.1", route2=u"20.0.0.0/24", routeif2=u"avf-0/0/6/0", nexthop2=u"3.3.3.1", arpmac1=u"3c:fd:fe:d1:5c:d9", arpip1=u"3.3.3.1", arpif1=u"avf-0/0/6/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if2"]) ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if1"]) ) def _c_vpp_2vfpt_ip4scale2k_plen30(self, **kwargs): """Instantiate one VM with vpp_2vfpt_ip4scale2k_plen30 configuration. :param kwargs: Named parameters. :type kwargs: dict """ qemu_id = kwargs[u"qemu_id"] name = kwargs[u"name"] self.machines[name] = QemuUtils( node=self.nodes[kwargs[u"node"]], qemu_id=qemu_id, smp=len(self.machines_affinity[name]), mem=4096, vnf=kwargs[u"vnf"], img=Constants.QEMU_VM_KERNEL ) self.machines[name].add_default_params() self.machines[name].add_kernelvm_params() if u"DUT1" in name: self.machines[name].configure_kernelvm_vnf( ip1=u"2.2.2.1/30", ip2=u"1.1.1.2/30", route1=u"20.0.0.0/30", routeif1=u"avf-0/0/6/0", nexthop1=u"2.2.2.2", route2=u"10.0.0.0/30", routeif2=u"avf-0/0/7/0", nexthop2=u"1.1.1.1", arpmac1=u"3c:fd:fe:d1:5c:d8", arpip1=u"1.1.1.1", arpif1=u"avf-0/0/7/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) else: self.machines[name].configure_kernelvm_vnf( ip1=u"3.3.3.2/30", ip2=u"2.2.2.2/30", route1=u"10.0.0.0/30", routeif1=u"avf-0/0/7/0", nexthop1=u"2.2.2.1", route2=u"20.0.0.0/30", routeif2=u"avf-0/0/6/0", nexthop2=u"3.3.3.1", arpmac1=u"3c:fd:fe:d1:5c:d9", arpip1=u"3.3.3.1", arpif1=u"avf-0/0/6/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if2"]) ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if1"]) ) def _c_vpp_2vfpt_ip4scale20k_plen30(self, **kwargs): """Instantiate one VM with vpp_2vfpt_ip4scale20k_plen30 configuration. :param kwargs: Named parameters. :type kwargs: dict """ qemu_id = kwargs[u"qemu_id"] name = kwargs[u"name"] self.machines[name] = QemuUtils( node=self.nodes[kwargs[u"node"]], qemu_id=qemu_id, smp=len(self.machines_affinity[name]), mem=4096, vnf=kwargs[u"vnf"], img=Constants.QEMU_VM_KERNEL ) self.machines[name].add_default_params() self.machines[name].add_kernelvm_params() if u"DUT1" in name: self.machines[name].configure_kernelvm_vnf( ip1=u"2.2.2.1/30", ip2=u"1.1.1.2/30", route1=u"20.0.0.0/30", routeif1=u"avf-0/0/6/0", nexthop1=u"2.2.2.2", route2=u"10.0.0.0/30", routeif2=u"avf-0/0/7/0", nexthop2=u"1.1.1.1", arpmac1=u"3c:fd:fe:d1:5c:d8", arpip1=u"1.1.1.1", arpif1=u"avf-0/0/7/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) else: self.machines[name].configure_kernelvm_vnf( ip1=u"3.3.3.2/30", ip2=u"2.2.2.2/30", route1=u"10.0.0.0/30", routeif1=u"avf-0/0/7/0", nexthop1=u"2.2.2.1", route2=u"20.0.0.0/30", routeif2=u"avf-0/0/6/0", nexthop2=u"3.3.3.1", arpmac1=u"3c:fd:fe:d1:5c:d9", arpip1=u"3.3.3.1", arpif1=u"avf-0/0/6/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if2"]) ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if1"]) ) def _c_vpp_2vfpt_ip4scale200k_plen30(self, **kwargs): """Instantiate one VM with vpp_2vfpt_ip4scale200k_plen30 configuration. :param kwargs: Named parameters. :type kwargs: dict """ qemu_id = kwargs[u"qemu_id"] name = kwargs[u"name"] self.machines[name] = QemuUtils( node=self.nodes[kwargs[u"node"]], qemu_id=qemu_id, smp=len(self.machines_affinity[name]), mem=4096, vnf=kwargs[u"vnf"], img=Constants.QEMU_VM_KERNEL ) self.machines[name].add_default_params() self.machines[name].add_kernelvm_params() if u"DUT1" in name: self.machines[name].configure_kernelvm_vnf( ip1=u"2.2.2.1/30", ip2=u"1.1.1.2/30", route1=u"20.0.0.0/30", routeif1=u"avf-0/0/6/0", nexthop1=u"2.2.2.2", route2=u"10.0.0.0/30", routeif2=u"avf-0/0/7/0", nexthop2=u"1.1.1.1", arpmac1=u"3c:fd:fe:d1:5c:d8", arpip1=u"1.1.1.1", arpif1=u"avf-0/0/7/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) else: self.machines[name].configure_kernelvm_vnf( ip1=u"3.3.3.2/30", ip2=u"2.2.2.2/30", route1=u"10.0.0.0/30", routeif1=u"avf-0/0/7/0", nexthop1=u"2.2.2.1", route2=u"20.0.0.0/30", routeif2=u"avf-0/0/6/0", nexthop2=u"3.3.3.1", arpmac1=u"3c:fd:fe:d1:5c:d9", arpip1=u"3.3.3.1", arpif1=u"avf-0/0/6/0", queues=kwargs[u"queues"], jumbo_frames=kwargs[u"jumbo"] ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if2"]) ) self.machines[name].add_vfio_pci_if( pci=Topology.get_interface_pci_addr( self.nodes[kwargs[u"node"]], kwargs[u"if1"]) )
[ 2, 15069, 357, 66, 8, 12131, 28289, 290, 14, 273, 663, 29116, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 25, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 48, 3620, 52, 9142, 5888, 526, 15931, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 6738, 4133, 13, 75, 11127, 13, 29412, 13, 34184, 1187, 1330, 4757, 1187, 198, 6738, 4133, 13, 75, 11127, 13, 29412, 13, 34, 19944, 18274, 4487, 1330, 327, 19944, 18274, 4487, 198, 6738, 4133, 13, 75, 11127, 13, 29412, 13, 48, 368, 84, 18274, 4487, 1330, 1195, 368, 84, 18274, 4487, 198, 6738, 4133, 13, 75, 11127, 13, 29412, 13, 4852, 1435, 1330, 19081, 6030, 11, 5849, 1435, 198, 198, 834, 439, 834, 796, 685, 84, 1, 48, 368, 84, 13511, 8973, 628, 198, 4871, 1195, 368, 84, 13511, 25, 198, 220, 220, 220, 37227, 48, 3620, 52, 3868, 47510, 4542, 1398, 37811, 628, 220, 220, 220, 1303, 5765, 530, 4554, 286, 1398, 583, 5254, 13, 198, 220, 220, 220, 36449, 2394, 62, 40347, 49, 13153, 62, 6173, 32135, 796, 334, 1, 51, 6465, 42001, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 13760, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31768, 1195, 368, 84, 13511, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 62, 2001, 6269, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 796, 13760, 628, 220, 220, 220, 825, 41216, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 1195, 368, 84, 13511, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 62, 2001, 6269, 796, 14230, 1068, 35, 713, 3419, 628, 220, 220, 220, 825, 5678, 62, 85, 907, 62, 261, 62, 17440, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 352, 492, 44, 87, 16, 492, 45, 569, 10128, 7, 82, 8, 319, 10139, 351, 7368, 1438, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 479, 86, 22046, 58, 84, 1, 17440, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 299, 69, 62, 38861, 796, 493, 7, 46265, 22046, 58, 84, 1, 77, 69, 62, 38861, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 69, 62, 77, 4147, 796, 493, 7, 46265, 22046, 58, 84, 1, 77, 69, 62, 77, 4147, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 43359, 796, 479, 86, 22046, 58, 84, 1, 40914, 80, 62, 9127, 62, 600, 8973, 611, 479, 86, 22046, 58, 84, 1, 23736, 62, 9888, 8973, 2073, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3691, 62, 67, 23047, 796, 479, 86, 22046, 58, 84, 1, 14259, 62, 67, 23047, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 299, 69, 62, 67, 23047, 796, 479, 86, 22046, 58, 84, 1, 14259, 62, 67, 23047, 8973, 611, 479, 86, 22046, 58, 84, 1, 23736, 62, 9888, 8973, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 479, 86, 22046, 58, 84, 1, 77, 69, 62, 67, 23047, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 299, 69, 62, 28664, 6098, 796, 479, 86, 22046, 58, 84, 1, 77, 69, 62, 28664, 6098, 8973, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 46265, 22046, 58, 84, 1, 77, 69, 62, 28664, 6098, 33116, 493, 8, 2073, 362, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 69, 62, 7983, 287, 2837, 7, 16, 11, 299, 69, 62, 38861, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 69, 62, 17440, 287, 2837, 7, 16, 11, 299, 69, 62, 77, 4147, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 357, 77, 69, 62, 7983, 532, 352, 8, 1635, 299, 69, 62, 77, 4147, 1343, 299, 69, 62, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 1, 90, 17440, 92, 23330, 80, 368, 84, 62, 312, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 16, 796, 357, 77, 69, 62, 7983, 532, 352, 8, 1635, 299, 69, 62, 77, 4147, 1635, 362, 1343, 299, 69, 62, 17440, 1635, 362, 532, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 361, 16, 62, 20285, 796, 5849, 1435, 13, 1136, 62, 39994, 62, 20285, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 17440, 4357, 277, 1, 85, 4774, 90, 312, 87, 16, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 611, 479, 86, 22046, 58, 84, 1, 85, 77, 69, 8973, 6624, 334, 1, 9288, 4426, 67, 62, 20285, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 479, 86, 22046, 58, 84, 1, 25297, 62, 79, 69, 16, 62, 20285, 8973, 611, 299, 69, 62, 17440, 6624, 352, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 277, 1, 4309, 25, 4051, 25, 405, 25, 405, 29164, 7, 80, 368, 84, 62, 312, 532, 352, 2599, 2999, 87, 38362, 2999, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 17, 796, 357, 77, 69, 62, 7983, 532, 352, 8, 1635, 299, 69, 62, 77, 4147, 1635, 362, 1343, 299, 69, 62, 17440, 1635, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 361, 17, 62, 20285, 796, 5849, 1435, 13, 1136, 62, 39994, 62, 20285, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 17440, 4357, 277, 1, 85, 4774, 90, 312, 87, 17, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 611, 479, 86, 22046, 58, 84, 1, 85, 77, 69, 8973, 6624, 334, 1, 9288, 4426, 67, 62, 20285, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 479, 86, 22046, 58, 84, 1, 25297, 62, 79, 69, 17, 62, 20285, 8973, 611, 299, 69, 62, 17440, 6624, 299, 69, 62, 77, 4147, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 277, 1, 4309, 25, 4051, 25, 405, 25, 405, 29164, 7, 80, 368, 84, 62, 312, 1343, 352, 2599, 2999, 87, 38362, 486, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 60, 796, 327, 19944, 18274, 4487, 13, 1136, 62, 2001, 6269, 62, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13760, 28, 944, 13, 77, 4147, 11, 10139, 28, 17440, 11, 299, 69, 62, 38861, 28, 77, 69, 62, 38861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 69, 62, 77, 4147, 28, 77, 69, 62, 77, 4147, 11, 299, 69, 62, 7983, 28, 77, 69, 62, 7983, 11, 299, 69, 62, 17440, 28, 77, 69, 62, 17440, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3691, 62, 67, 23047, 28, 14259, 62, 67, 23047, 11, 299, 69, 62, 67, 23047, 28, 77, 69, 62, 67, 23047, 11, 299, 69, 62, 28664, 6098, 28, 77, 69, 62, 28664, 6098, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 944, 11, 277, 6, 62, 66, 23330, 46265, 22046, 14692, 85, 77, 69, 8973, 92, 6, 5769, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 1438, 28, 3672, 11, 43359, 28, 4188, 947, 11, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 66, 62, 12286, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 1438, 28, 3672, 11, 43359, 28, 4188, 947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 361, 16, 62, 20285, 28, 85, 361, 16, 62, 20285, 11, 410, 361, 17, 62, 20285, 28, 85, 361, 17, 62, 20285, 11, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 5678, 62, 85, 907, 62, 261, 62, 439, 62, 77, 4147, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42316, 352, 492, 44, 87, 16, 492, 45, 569, 10128, 7, 82, 8, 351, 7368, 1438, 319, 477, 13760, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 1096, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 2116, 13, 77, 4147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 77, 4147, 58, 17440, 7131, 84, 1, 4906, 8973, 6624, 19081, 6030, 13, 35, 3843, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41571, 62, 85, 907, 62, 261, 62, 17440, 7, 17440, 28, 17440, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 923, 62, 439, 62, 85, 907, 7, 944, 11, 6757, 768, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10434, 477, 2087, 569, 10128, 287, 4706, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6757, 768, 25, 1002, 6407, 11, 788, 466, 635, 1195, 3620, 52, 1429, 6757, 768, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6757, 768, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 31396, 385, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4572, 11, 4572, 62, 2001, 6269, 287, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 7, 944, 13, 76, 620, 1127, 13, 27160, 22784, 2116, 13, 76, 620, 1127, 62, 2001, 6269, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 1351, 7, 944, 13, 76, 620, 1127, 13, 27160, 3419, 737, 9630, 7, 30243, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1351, 7, 944, 13, 76, 620, 1127, 13, 13083, 28955, 58, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 3672, 60, 796, 4572, 13, 80, 368, 84, 62, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6757, 768, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4572, 13, 80, 368, 84, 62, 2617, 62, 2001, 6269, 46491, 30243, 62, 2001, 6269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31396, 385, 13, 2302, 437, 7, 30243, 62, 2001, 6269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 553, 13, 22179, 7, 2536, 7, 36166, 8, 329, 42804, 287, 31396, 385, 8, 628, 220, 220, 220, 825, 1494, 62, 439, 62, 85, 907, 7, 944, 11, 2700, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27100, 477, 2087, 569, 10128, 287, 4706, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2700, 25, 5221, 1494, 477, 1195, 368, 84, 10245, 416, 279, 12728, 10662, 368, 84, 611, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2700, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 1351, 7, 944, 13, 77, 4147, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 14692, 4906, 8973, 6624, 19081, 6030, 13, 15996, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 13, 12924, 9186, 7, 17440, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4572, 287, 2116, 13, 76, 620, 1127, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4572, 13, 80, 368, 84, 62, 12728, 62, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4572, 13, 80, 368, 84, 62, 12728, 3419, 628, 220, 220, 220, 825, 4808, 66, 62, 12286, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 530, 16990, 351, 4277, 8398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 479, 86, 22046, 58, 84, 1, 80, 368, 84, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 479, 86, 22046, 58, 84, 1, 3672, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 60, 796, 1195, 368, 84, 18274, 4487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 944, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 79, 28, 11925, 7, 944, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 28, 1821, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 77, 69, 28, 46265, 22046, 58, 84, 1, 85, 77, 69, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 28, 34184, 1187, 13, 48, 3620, 52, 62, 15996, 62, 42, 28778, 3698, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 12286, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 33885, 14761, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 16, 28, 69, 1, 4309, 25, 4051, 25, 405, 25, 405, 29164, 80, 368, 84, 62, 312, 25, 2999, 87, 38362, 486, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 17, 28, 69, 1, 4309, 25, 4051, 25, 405, 25, 405, 29164, 80, 368, 84, 62, 312, 25, 2999, 87, 38362, 2999, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 361, 16, 62, 20285, 28, 46265, 22046, 58, 84, 1, 85, 361, 16, 62, 20285, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 361, 17, 62, 20285, 28, 46265, 22046, 58, 84, 1, 85, 361, 17, 62, 20285, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 4774, 62, 7220, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 5143, 14, 85, 381, 14, 82, 735, 12, 90, 80, 368, 84, 62, 312, 92, 12, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 7857, 28, 46265, 22046, 58, 84, 1, 525, 69, 62, 80, 368, 84, 62, 48382, 89, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16345, 28, 46265, 22046, 58, 84, 1, 21633, 62, 6359, 388, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 568, 28, 46265, 22046, 58, 84, 1, 21633, 62, 70, 568, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 4774, 62, 7220, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 5143, 14, 85, 381, 14, 82, 735, 12, 90, 80, 368, 84, 62, 312, 92, 12, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 7857, 28, 46265, 22046, 58, 84, 1, 525, 69, 62, 80, 368, 84, 62, 48382, 89, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16345, 28, 46265, 22046, 58, 84, 1, 21633, 62, 6359, 388, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 568, 28, 46265, 22046, 58, 84, 1, 21633, 62, 70, 568, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 66, 62, 85, 381, 62, 17, 85, 69, 457, 62, 541, 19, 8692, 62, 489, 268, 1731, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 530, 16990, 351, 410, 381, 62, 17, 85, 69, 457, 62, 541, 19, 8692, 62, 489, 268, 1731, 8398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 479, 86, 22046, 58, 84, 1, 80, 368, 84, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 479, 86, 22046, 58, 84, 1, 3672, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 60, 796, 1195, 368, 84, 18274, 4487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 944, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 79, 28, 11925, 7, 944, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 28, 1821, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 77, 69, 28, 46265, 22046, 58, 84, 1, 85, 77, 69, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 28, 34184, 1187, 13, 48, 3620, 52, 62, 15996, 62, 42, 28778, 3698, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 12286, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 33885, 14761, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 334, 1, 35, 3843, 16, 1, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1731, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1731, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1731, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1731, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 17, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 16, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 66, 62, 85, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 17, 74, 62, 489, 268, 1270, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 530, 16990, 351, 410, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 17, 74, 62, 489, 268, 1270, 8398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 479, 86, 22046, 58, 84, 1, 80, 368, 84, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 479, 86, 22046, 58, 84, 1, 3672, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 60, 796, 1195, 368, 84, 18274, 4487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 944, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 79, 28, 11925, 7, 944, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 28, 1821, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 77, 69, 28, 46265, 22046, 58, 84, 1, 85, 77, 69, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 28, 34184, 1187, 13, 48, 3620, 52, 62, 15996, 62, 42, 28778, 3698, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 12286, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 33885, 14761, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 334, 1, 35, 3843, 16, 1, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 17, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 16, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 66, 62, 85, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 1238, 74, 62, 489, 268, 1270, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 530, 16990, 351, 410, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 1238, 74, 62, 489, 268, 1270, 8398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 479, 86, 22046, 58, 84, 1, 80, 368, 84, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 479, 86, 22046, 58, 84, 1, 3672, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 60, 796, 1195, 368, 84, 18274, 4487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 944, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 79, 28, 11925, 7, 944, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 28, 1821, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 77, 69, 28, 46265, 22046, 58, 84, 1, 85, 77, 69, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 28, 34184, 1187, 13, 48, 3620, 52, 62, 15996, 62, 42, 28778, 3698, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 12286, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 33885, 14761, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 334, 1, 35, 3843, 16, 1, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 17, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 16, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 66, 62, 85, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 2167, 74, 62, 489, 268, 1270, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49933, 9386, 530, 16990, 351, 410, 381, 62, 17, 85, 69, 457, 62, 541, 19, 9888, 2167, 74, 62, 489, 268, 1270, 8398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 34441, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 796, 479, 86, 22046, 58, 84, 1, 80, 368, 84, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 479, 86, 22046, 58, 84, 1, 3672, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 60, 796, 1195, 368, 84, 18274, 4487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 28, 944, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 368, 84, 62, 312, 28, 80, 368, 84, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 79, 28, 11925, 7, 944, 13, 76, 620, 1127, 62, 2001, 6269, 58, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 28, 1821, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 77, 69, 28, 46265, 22046, 58, 84, 1, 85, 77, 69, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 28, 34184, 1187, 13, 48, 3620, 52, 62, 15996, 62, 42, 28778, 3698, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 12286, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 33885, 14761, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 334, 1, 35, 3843, 16, 1, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 16, 13, 16, 13, 16, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 11250, 495, 62, 33885, 14761, 62, 85, 77, 69, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 17, 28, 84, 1, 17, 13, 17, 13, 17, 13, 17, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 16, 28, 84, 1, 940, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 22, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 16, 28, 84, 1, 17, 13, 17, 13, 17, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 17, 28, 84, 1, 1238, 13, 15, 13, 15, 13, 15, 14, 1270, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6339, 361, 17, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 497, 87, 400, 404, 17, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 4426, 330, 16, 28, 84, 1, 18, 66, 25, 16344, 25, 5036, 25, 67, 16, 25, 20, 66, 25, 67, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 541, 16, 28, 84, 1, 18, 13, 18, 13, 18, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 610, 79, 361, 16, 28, 84, 1, 615, 69, 12, 15, 14, 15, 14, 21, 14, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43359, 28, 46265, 22046, 58, 84, 1, 4188, 947, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 29309, 62, 37805, 28, 46265, 22046, 58, 84, 1, 73, 29309, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 17, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 620, 1127, 58, 3672, 4083, 2860, 62, 85, 69, 952, 62, 79, 979, 62, 361, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39886, 28, 9126, 1435, 13, 1136, 62, 39994, 62, 79, 979, 62, 29851, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 4147, 58, 46265, 22046, 58, 84, 1, 17440, 8973, 4357, 479, 86, 22046, 58, 84, 1, 361, 16, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
1.606571
9,740
from eve import Eve from eve_sqlalchemy import SQL from eve_sqlalchemy.validation import ValidatorSQL from sqlalchemy.engine.url import URL try: from eve_docs import eve_docs from flask.ext.bootstrap import Bootstrap except ImportError: Bootstrap = None from utvsapi.tables import domain, Base, on_fetched_item, on_fetched_resource from utvsapi.auth import BearerAuth url = URL('mysql', query={'read_default_file': './mysql.cnf'}) SETTINGS = { 'SQLALCHEMY_DATABASE_URI': url, 'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'DOMAIN': domain, 'API_NAME': 'UTVS API', } app = Eve(auth=BearerAuth, settings=SETTINGS, validator=ValidatorSQL, data=SQL) app.on_fetched_item += on_fetched_item app.on_fetched_resource += on_fetched_resource if Bootstrap: Bootstrap(app) app.register_blueprint(eve_docs, url_prefix='/docs') db = app.data.driver Base.metadata.bind = db.engine db.Model = Base if __name__ == '__main__': app.run(debug=True)
[ 6738, 28001, 1330, 12882, 198, 6738, 28001, 62, 25410, 282, 26599, 1330, 16363, 198, 6738, 28001, 62, 25410, 282, 26599, 13, 12102, 341, 1330, 48951, 1352, 17861, 198, 6738, 44161, 282, 26599, 13, 18392, 13, 6371, 1330, 10289, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 28001, 62, 31628, 1330, 28001, 62, 31628, 198, 220, 220, 220, 422, 42903, 13, 2302, 13, 18769, 26418, 1330, 18892, 26418, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 18892, 26418, 796, 6045, 198, 198, 6738, 3384, 14259, 15042, 13, 83, 2977, 1330, 7386, 11, 7308, 11, 319, 62, 50012, 62, 9186, 11, 319, 62, 50012, 62, 31092, 198, 6738, 3384, 14259, 15042, 13, 18439, 1330, 1355, 11258, 30515, 628, 198, 6371, 796, 10289, 10786, 28744, 13976, 3256, 12405, 34758, 6, 961, 62, 12286, 62, 7753, 10354, 705, 19571, 28744, 13976, 13, 31522, 69, 6, 30072, 198, 198, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 17861, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 10354, 19016, 11, 198, 220, 220, 220, 705, 17861, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 10354, 10352, 11, 198, 220, 220, 220, 705, 39170, 29833, 10354, 7386, 11, 198, 220, 220, 220, 705, 17614, 62, 20608, 10354, 705, 3843, 20304, 7824, 3256, 198, 92, 198, 198, 1324, 796, 12882, 7, 18439, 28, 3856, 11258, 30515, 11, 6460, 28, 28480, 51, 20754, 11, 4938, 1352, 28, 47139, 1352, 17861, 11, 1366, 28, 17861, 8, 198, 1324, 13, 261, 62, 50012, 62, 9186, 15853, 319, 62, 50012, 62, 9186, 198, 1324, 13, 261, 62, 50012, 62, 31092, 15853, 319, 62, 50012, 62, 31092, 198, 198, 361, 18892, 26418, 25, 198, 220, 220, 220, 18892, 26418, 7, 1324, 8, 198, 220, 220, 220, 598, 13, 30238, 62, 17585, 4798, 7, 44655, 62, 31628, 11, 19016, 62, 40290, 11639, 14, 31628, 11537, 198, 198, 9945, 796, 598, 13, 7890, 13, 26230, 198, 14881, 13, 38993, 13, 21653, 796, 20613, 13, 18392, 198, 9945, 13, 17633, 796, 7308, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.695291
361
#!/usr/bin/env python ''' Write to a yaml and json file for a list and dictionary variable ''' import yaml import json if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 16594, 284, 257, 331, 43695, 290, 33918, 2393, 329, 257, 1351, 290, 22155, 7885, 198, 7061, 6, 198, 198, 11748, 331, 43695, 198, 11748, 33918, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.839286
56
import argparse import os import json import glob from os.path import join as pjoin from others.vocab_wrapper import VocabWrapper if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-mode", default='word2vec', type=str, choices=['glove', 'word2vec']) parser.add_argument("-data_path", default="", type=str) parser.add_argument("-emb_size", default=100, type=int) parser.add_argument("-emb_path", default="", type=str) args = parser.parse_args() train_emb(args)
[ 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 15095, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 279, 22179, 198, 6738, 1854, 13, 18893, 397, 62, 48553, 1330, 47208, 397, 36918, 2848, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 14171, 1600, 4277, 11639, 4775, 17, 35138, 3256, 2099, 28, 2536, 11, 7747, 28, 17816, 4743, 659, 3256, 705, 4775, 17, 35138, 6, 12962, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 7890, 62, 6978, 1600, 4277, 2625, 1600, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 24419, 62, 7857, 1600, 4277, 28, 3064, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 24419, 62, 6978, 1600, 4277, 2625, 1600, 2099, 28, 2536, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 4512, 62, 24419, 7, 22046, 8, 198 ]
2.822581
186
"""Modules for working with returns. Offers common financial risk and performance metrics as found in [empyrical](https://github.com/quantopian/empyrical), but Numba-compiled and optimized for 2-dim arrays. ## Accessors You can access methods listed in `vectorbt.returns.accessors` as follows: * `vectorbt.returns.accessors.ReturnsSRAccessor` -> `pd.Series.vbt.returns.*` * `vectorbt.returns.accessors.ReturnsDFAccessor` -> `pd.DataFrame.vbt.returns.*` ```python-repl >>> import numpy as np >>> import pandas as pd >>> import vectorbt as vbt >>> # vectorbt.returns.accessors.ReturnsAccessor.total >>> price = pd.Series([1.1, 1.2, 1.3, 1.2, 1.1]) >>> returns = price.pct_change() >>> returns.vbt.returns.total() 0.0 ``` The accessors extend `vectorbt.generic.accessors`. ```python-repl >>> # inherited from GenericAccessor >>> returns.vbt.returns.max() 0.09090909090909083 ``` !!! note The underlying Series/DataFrame must already be a return series. ## Numba-compiled functions Module `vectorbt.returns.nb` provides an arsenal of Numba-compiled functions that are used by accessors and for measuring portfolio performance. These only accept NumPy arrays and other Numba-compatible types. ```python-repl >>> # vectorbt.returns.nb.cum_returns_1d_nb >>> vbt.returns.nb.cum_returns_1d_nb(returns.values) array([0., 0.09090909, 0.18181818, 0.09090909, 0.]) ```"""
[ 37811, 5841, 5028, 329, 1762, 351, 5860, 13, 198, 198, 9362, 364, 2219, 3176, 2526, 290, 2854, 20731, 355, 1043, 287, 685, 45787, 2417, 605, 16151, 5450, 1378, 12567, 13, 785, 14, 40972, 37548, 14, 45787, 2417, 605, 828, 198, 4360, 399, 2178, 64, 12, 5589, 3902, 290, 23392, 329, 362, 12, 27740, 26515, 13, 198, 198, 2235, 8798, 669, 198, 198, 1639, 460, 1895, 5050, 5610, 287, 4600, 31364, 18347, 13, 7783, 82, 13, 15526, 669, 63, 355, 5679, 25, 198, 198, 9, 4600, 31364, 18347, 13, 7783, 82, 13, 15526, 669, 13, 35561, 50, 3861, 1591, 273, 63, 4613, 4600, 30094, 13, 27996, 13, 85, 18347, 13, 7783, 82, 15885, 63, 198, 9, 4600, 31364, 18347, 13, 7783, 82, 13, 15526, 669, 13, 35561, 35, 7708, 1591, 273, 63, 4613, 4600, 30094, 13, 6601, 19778, 13, 85, 18347, 13, 7783, 82, 15885, 63, 198, 198, 15506, 63, 29412, 12, 35666, 198, 33409, 1330, 299, 32152, 355, 45941, 198, 33409, 1330, 19798, 292, 355, 279, 67, 198, 33409, 1330, 15879, 18347, 355, 410, 18347, 198, 198, 33409, 1303, 15879, 18347, 13, 7783, 82, 13, 15526, 669, 13, 35561, 15457, 273, 13, 23350, 198, 33409, 2756, 796, 279, 67, 13, 27996, 26933, 16, 13, 16, 11, 352, 13, 17, 11, 352, 13, 18, 11, 352, 13, 17, 11, 352, 13, 16, 12962, 198, 33409, 5860, 796, 2756, 13, 79, 310, 62, 3803, 3419, 198, 33409, 5860, 13, 85, 18347, 13, 7783, 82, 13, 23350, 3419, 198, 15, 13, 15, 198, 15506, 63, 198, 198, 464, 1895, 669, 9117, 4600, 31364, 18347, 13, 41357, 13, 15526, 669, 44646, 198, 198, 15506, 63, 29412, 12, 35666, 198, 33409, 1303, 19552, 422, 42044, 15457, 273, 198, 33409, 5860, 13, 85, 18347, 13, 7783, 82, 13, 9806, 3419, 198, 15, 13, 2931, 2931, 2931, 2931, 2931, 2931, 2931, 48290, 198, 15506, 63, 198, 198, 10185, 3465, 198, 220, 220, 220, 383, 10238, 7171, 14, 6601, 19778, 1276, 1541, 307, 257, 1441, 2168, 13, 198, 198, 2235, 399, 2178, 64, 12, 5589, 3902, 5499, 198, 198, 26796, 4600, 31364, 18347, 13, 7783, 82, 13, 46803, 63, 3769, 281, 24375, 286, 399, 2178, 64, 12, 5589, 3902, 5499, 326, 389, 973, 416, 1895, 669, 198, 392, 329, 15964, 15320, 2854, 13, 2312, 691, 2453, 31835, 20519, 26515, 290, 584, 399, 2178, 64, 12, 38532, 3858, 13, 198, 198, 15506, 63, 29412, 12, 35666, 198, 33409, 1303, 15879, 18347, 13, 7783, 82, 13, 46803, 13, 36340, 62, 7783, 82, 62, 16, 67, 62, 46803, 198, 33409, 410, 18347, 13, 7783, 82, 13, 46803, 13, 36340, 62, 7783, 82, 62, 16, 67, 62, 46803, 7, 7783, 82, 13, 27160, 8, 198, 18747, 26933, 15, 1539, 657, 13, 2931, 2931, 2931, 2931, 11, 657, 13, 1507, 1507, 1507, 1507, 11, 657, 13, 2931, 2931, 2931, 2931, 11, 657, 8183, 8, 198, 15506, 63, 37811, 628 ]
2.890756
476
#%% [markdown] ## Strings (parte 1) dir(str) nome = 'Victor Mello' nome #Acessando um caracter de uma string nome[0] # nome[0] = 'P' #Erro! Strings são imutáveis """OBS: quando se tem uma string cujo conteúdo já possui aspas simples, para evitar erro de sintaxe, tem-se 2 opções: 1) Delimitar a string com aspas duplas e dentro dela colocar entre aspas simples; 2) Delimitar a string com aspas simples, mas utilizando o caracter de escape \ antes de colocar mais aspas simples no conteúdo """ #Exemplo "Marca d'água" == 'Marca d\'água' texto = "Teste \"funciona!" """Texto com múltiplas linhas com \, mas é executado um texto de uma única linha""" #Exemplo texto2 = 'Texto entre \ apóstrofos pode ter "aspas"' texto3 = """Texto com múltiplas linhas com aspas triplas, assim como comentário""" #Neste caso, será impresso um texto de uma única linha com \n indicando quebra de linha texto3 #No entanto, com print(), o resultado é de fato um texto com quebra de linhas print(texto3) #Da mesma forma se imprimir um texto da mesma linha com \n print('Texto com múltiplas linhas com aspas triplas,\nassim como comentário') # %% [markdown] ## Strings (Parte 2) #Acessando o caracter da string da direita para esquerda nome[-4] #Acessando uma substring a partir de um conjunto de caracteres nome[4:] #Começando com índice 4 nome[-5:] #Começando com índice -5, da direita para esqueda #Acessando do início da string até o índice 6 (exclusive) nome[:6] #Acessando do índice 1 até o índice 4 (exclusive) nome[1:4] numeros = '123456789' numeros # numeros[::] #Equivalente ao resultado anterior numeros[::2] #Acessando os caracteres de 2 em 2 caracteres numeros[1::2] #Acessando os caracteres a partir de íncide 1, de 2 em 2 caracteres #Invertendo uma string numeros[::-1] #Invertendo uma string de 2 em 2 caracteres numeros[::-2] # %% [markdown] ## Strings (parte 3) frase = 'Olá, meu nome é Victor e sou legal' #Usando operador membro no contexto de string #Exemplo 1 'Vic' in frase 'vic' not in frase #Exibindo o tamanho da string len(frase) #Gerando uma nova string em caixa baixa frase.lower() 'vic' in frase.lower() #Gerando uma nova string em caixa alta frase.upper() 'VIC' in frase.upper() #Modificando o conteúdo da string frase = frase.upper() frase #Dividindo a string em um array de strings (substrings, melhor dizendo) frase.split() #Dividindo a string quebrando o caracter 'E' frase.split('E') # %% [markdown] ## Strings (parte 4) #Métodos mágicos de strings # dir(str) a = '123 ' b = 'Santos de Mello' a + b #Equivalentes ao operador de concatenação '+' a.__add__(b) str.__add__(a, b) len(a) #Equivalentes ao método len() normal a.__len__() str.__len__(a) '1' in a #Equivalentes ao operador membro 'in' a.__contains__('1') str.__contains__(a, '1')
[ 2, 16626, 685, 4102, 2902, 60, 198, 198, 2235, 4285, 654, 357, 3911, 68, 352, 8, 198, 198, 15908, 7, 2536, 8, 198, 77, 462, 796, 705, 21944, 273, 337, 11109, 6, 198, 77, 462, 198, 198, 2, 32, 919, 25440, 23781, 1097, 7321, 390, 334, 2611, 4731, 198, 77, 462, 58, 15, 60, 198, 198, 2, 299, 462, 58, 15, 60, 796, 705, 47, 6, 1303, 9139, 305, 0, 4285, 654, 264, 28749, 545, 315, 6557, 303, 271, 198, 198, 37811, 46, 4462, 25, 627, 25440, 384, 2169, 334, 2611, 4731, 18912, 7639, 542, 68, 21356, 4598, 474, 6557, 1184, 9019, 198, 5126, 292, 985, 2374, 11, 31215, 819, 7940, 1931, 305, 390, 264, 600, 38231, 11, 2169, 12, 325, 362, 1034, 16175, 127, 113, 274, 25, 198, 198, 16, 8, 4216, 320, 7940, 257, 4731, 401, 355, 44429, 14184, 292, 304, 18794, 305, 1619, 64, 951, 420, 283, 198, 298, 260, 355, 44429, 985, 2374, 26, 198, 198, 17, 8, 4216, 320, 7940, 257, 4731, 401, 355, 44429, 985, 2374, 11, 12422, 7736, 528, 25440, 198, 78, 1097, 7321, 390, 6654, 3467, 1885, 274, 390, 951, 420, 283, 285, 15152, 355, 44429, 985, 2374, 198, 3919, 542, 68, 21356, 4598, 198, 37811, 198, 2, 3109, 18856, 78, 198, 1, 22697, 64, 288, 6, 6557, 5162, 64, 1, 6624, 705, 22697, 64, 288, 43054, 6557, 5162, 64, 6, 198, 198, 5239, 78, 796, 366, 14402, 68, 19990, 20786, 32792, 2474, 198, 198, 37811, 8206, 78, 401, 285, 21356, 2528, 24705, 292, 9493, 10134, 401, 3467, 11, 220, 198, 5356, 38251, 3121, 4533, 23781, 2420, 78, 390, 334, 2611, 6184, 118, 77, 3970, 9493, 3099, 37811, 198, 2, 3109, 18856, 78, 198, 5239, 78, 17, 796, 705, 8206, 78, 920, 260, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2471, 10205, 20661, 69, 418, 279, 1098, 1059, 366, 5126, 292, 30543, 628, 198, 5239, 78, 18, 796, 37227, 8206, 78, 401, 285, 21356, 2528, 24705, 292, 9493, 10134, 401, 355, 44429, 1333, 489, 292, 11, 198, 562, 320, 401, 78, 401, 298, 6557, 27250, 37811, 198, 2, 45, 29872, 6124, 78, 11, 1055, 6557, 848, 33852, 23781, 2420, 78, 390, 334, 2611, 6184, 118, 77, 3970, 9493, 3099, 401, 3467, 77, 2699, 25440, 627, 37052, 390, 9493, 3099, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 5239, 78, 18, 220, 220, 220, 220, 220, 198, 198, 2, 2949, 920, 14723, 11, 401, 3601, 22784, 267, 1255, 4533, 38251, 390, 3735, 78, 23781, 2420, 78, 401, 627, 37052, 390, 9493, 10134, 198, 4798, 7, 5239, 78, 18, 8, 198, 198, 2, 26531, 18842, 2611, 1296, 64, 384, 848, 3036, 343, 23781, 2420, 78, 12379, 18842, 2611, 9493, 3099, 401, 3467, 77, 198, 4798, 10786, 8206, 78, 401, 285, 21356, 2528, 24705, 292, 9493, 10134, 401, 355, 44429, 1333, 489, 292, 11, 59, 77, 562, 320, 401, 78, 401, 298, 6557, 27250, 11537, 198, 2, 43313, 685, 4102, 2902, 60, 198, 198, 2235, 4285, 654, 357, 7841, 68, 362, 8, 198, 198, 2, 32, 919, 25440, 267, 1097, 7321, 12379, 4731, 12379, 19958, 5350, 31215, 1658, 10819, 6814, 198, 77, 462, 58, 12, 19, 60, 198, 198, 2, 32, 919, 25440, 334, 2611, 3293, 1806, 257, 636, 343, 390, 23781, 11644, 403, 1462, 390, 1097, 529, 68, 411, 198, 77, 462, 58, 19, 47715, 1303, 16773, 16175, 25440, 401, 6184, 255, 358, 501, 604, 198, 198, 77, 462, 58, 12, 20, 47715, 1303, 16773, 16175, 25440, 401, 6184, 255, 358, 501, 532, 20, 11, 12379, 19958, 5350, 31215, 1658, 421, 18082, 198, 198, 2, 32, 919, 25440, 466, 287, 8836, 66, 952, 12379, 4731, 379, 2634, 267, 6184, 255, 358, 501, 718, 357, 41195, 8, 198, 77, 462, 58, 25, 21, 60, 198, 198, 2, 32, 919, 25440, 466, 6184, 255, 358, 501, 352, 379, 2634, 267, 6184, 255, 358, 501, 604, 357, 41195, 8, 198, 77, 462, 58, 16, 25, 19, 60, 198, 198, 77, 6975, 418, 796, 705, 10163, 2231, 3134, 4531, 6, 198, 77, 6975, 418, 198, 2, 5470, 418, 58, 3712, 60, 1303, 23588, 2473, 21872, 257, 78, 1255, 4533, 32700, 198, 198, 77, 6975, 418, 58, 3712, 17, 60, 1303, 32, 919, 25440, 28686, 1097, 529, 68, 411, 390, 362, 795, 362, 1097, 529, 68, 411, 198, 77, 6975, 418, 58, 16, 3712, 17, 60, 1303, 32, 919, 25440, 28686, 1097, 529, 68, 411, 257, 636, 343, 390, 6184, 255, 10782, 485, 352, 11, 390, 362, 795, 362, 1097, 529, 68, 411, 198, 198, 2, 818, 1851, 31110, 334, 2611, 4731, 198, 77, 6975, 418, 58, 3712, 12, 16, 60, 198, 198, 2, 818, 1851, 31110, 334, 2611, 4731, 390, 362, 795, 362, 1097, 529, 68, 411, 198, 77, 6975, 418, 58, 3712, 12, 17, 60, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2235, 4285, 654, 357, 3911, 68, 513, 8, 198, 198, 8310, 589, 796, 705, 30098, 6557, 11, 502, 84, 299, 462, 38251, 12622, 304, 24049, 2742, 6, 198, 198, 2, 5842, 25440, 1515, 7079, 1066, 7957, 645, 4732, 78, 390, 4731, 198, 198, 2, 3109, 18856, 78, 352, 198, 6, 53, 291, 6, 287, 1216, 589, 198, 6, 25531, 6, 407, 287, 1216, 589, 198, 198, 2, 3109, 571, 521, 78, 267, 256, 10546, 8873, 12379, 4731, 198, 11925, 7, 8310, 589, 8, 198, 198, 2, 38069, 25440, 334, 2611, 645, 6862, 4731, 795, 1275, 844, 64, 26605, 844, 64, 198, 8310, 589, 13, 21037, 3419, 198, 6, 25531, 6, 287, 1216, 589, 13, 21037, 3419, 198, 198, 2, 38069, 25440, 334, 2611, 645, 6862, 4731, 795, 1275, 844, 64, 5988, 64, 198, 8310, 589, 13, 45828, 3419, 198, 6, 53, 2149, 6, 287, 1216, 589, 13, 45828, 3419, 198, 198, 2, 5841, 811, 25440, 267, 542, 68, 21356, 4598, 12379, 4731, 198, 198, 8310, 589, 796, 1216, 589, 13, 45828, 3419, 198, 8310, 589, 198, 198, 2, 35, 1699, 521, 78, 257, 4731, 795, 23781, 7177, 390, 13042, 357, 7266, 37336, 11, 7758, 17899, 288, 528, 31110, 8, 198, 8310, 589, 13, 35312, 3419, 198, 198, 2, 35, 1699, 521, 78, 257, 4731, 8358, 17938, 78, 267, 1097, 7321, 705, 36, 6, 198, 8310, 589, 13, 35312, 10786, 36, 11537, 198, 198, 2, 43313, 685, 4102, 2902, 60, 198, 2235, 4285, 654, 357, 3911, 68, 604, 8, 198, 198, 2, 44, 25125, 375, 418, 285, 6557, 70, 291, 418, 390, 13042, 198, 2, 26672, 7, 2536, 8, 198, 198, 64, 796, 705, 10163, 705, 198, 65, 796, 705, 50, 415, 418, 390, 337, 11109, 6, 198, 198, 64, 1343, 275, 198, 2, 23588, 29540, 274, 257, 78, 1515, 7079, 390, 1673, 265, 8107, 16175, 28749, 705, 10, 6, 198, 64, 13, 834, 2860, 834, 7, 65, 8, 220, 198, 2536, 13, 834, 2860, 834, 7, 64, 11, 275, 8, 198, 198, 11925, 7, 64, 8, 198, 2, 23588, 29540, 274, 257, 78, 285, 25125, 24313, 18896, 3419, 3487, 198, 64, 13, 834, 11925, 834, 3419, 198, 2536, 13, 834, 11925, 834, 7, 64, 8, 198, 198, 6, 16, 6, 287, 257, 198, 2, 23588, 29540, 274, 257, 78, 1515, 7079, 1066, 7957, 705, 259, 6, 198, 64, 13, 834, 3642, 1299, 834, 10786, 16, 11537, 198, 2536, 13, 834, 3642, 1299, 834, 7, 64, 11, 705, 16, 11537 ]
2.318257
1,216
import numpy as np from numpy.testing import assert_allclose from scipy.integrate import trapz import pytest from kinematic_snake.kinematic_snake import zero_mean_integral, project, KinematicSnake # TODO Add more tests
[ 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 439, 19836, 198, 6738, 629, 541, 88, 13, 18908, 4873, 1330, 12840, 89, 198, 11748, 12972, 9288, 198, 198, 6738, 479, 7749, 1512, 62, 16184, 539, 13, 5116, 368, 1512, 62, 16184, 539, 1330, 6632, 62, 32604, 62, 18908, 1373, 11, 1628, 11, 509, 7749, 1512, 49795, 628, 198, 198, 2, 16926, 46, 3060, 517, 5254, 628, 198 ]
3.125
72
import gym import numpy as np print(gym.__file__) print(dir(gym)) env = gym.make('FrozenLake-v0') q_table = np.zeros([env.observation_space.n, env.action_space.n]) print(env.render()) if __name__ == "__main__": lr = 0.8 discount_factor = 0.95 num_episodes = 2000 reward_list = [] for i in range(num_episodes): reward_total_sum = 0 done = False j = 0 current_state = env.reset() while j < 99: j += 1 action = np.argmax(q_table[current_state, :] + np.random.randn(1, env.action_space.n) * (1./(i + 1))) next_state, reward, done, _ = env.step(action) q_table[current_state, action] = q_table[current_state, action] + \ lr * (reward + discount_factor * np.max(q_table[next_state, :]) - q_table[current_state, action]) reward_total_sum += reward current_state = next_state if done: break reward_list.append(reward_total_sum) print('score over time:' + str(sum(reward_list)/num_episodes)) print(q_table)
[ 11748, 11550, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4798, 7, 1360, 76, 13, 834, 7753, 834, 8, 198, 4798, 7, 15908, 7, 1360, 76, 4008, 198, 198, 24330, 796, 11550, 13, 15883, 10786, 37, 42005, 43035, 12, 85, 15, 11537, 198, 80, 62, 11487, 796, 45941, 13, 9107, 418, 26933, 24330, 13, 672, 3168, 341, 62, 13200, 13, 77, 11, 17365, 13, 2673, 62, 13200, 13, 77, 12962, 198, 4798, 7, 24330, 13, 13287, 28955, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 300, 81, 796, 657, 13, 23, 198, 220, 220, 220, 9780, 62, 31412, 796, 657, 13, 3865, 198, 220, 220, 220, 997, 62, 538, 8052, 796, 4751, 628, 220, 220, 220, 6721, 62, 4868, 796, 17635, 628, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 538, 8052, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 62, 23350, 62, 16345, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1760, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5219, 796, 17365, 13, 42503, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 981, 474, 1279, 7388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 796, 45941, 13, 853, 9806, 7, 80, 62, 11487, 58, 14421, 62, 5219, 11, 1058, 60, 1343, 45941, 13, 25120, 13, 25192, 77, 7, 16, 11, 17365, 13, 2673, 62, 13200, 13, 77, 8, 1635, 357, 16, 19571, 7, 72, 1343, 352, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 5219, 11, 6721, 11, 1760, 11, 4808, 796, 17365, 13, 9662, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 11487, 58, 14421, 62, 5219, 11, 2223, 60, 796, 10662, 62, 11487, 58, 14421, 62, 5219, 11, 2223, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 1635, 357, 260, 904, 1343, 9780, 62, 31412, 1635, 45941, 13, 9806, 7, 80, 62, 11487, 58, 19545, 62, 5219, 11, 1058, 12962, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 11487, 58, 14421, 62, 5219, 11, 2223, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6721, 62, 23350, 62, 16345, 15853, 6721, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 5219, 796, 1306, 62, 5219, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 6721, 62, 4868, 13, 33295, 7, 260, 904, 62, 23350, 62, 16345, 8, 628, 220, 220, 220, 3601, 10786, 26675, 625, 640, 32105, 1343, 965, 7, 16345, 7, 260, 904, 62, 4868, 20679, 22510, 62, 538, 8052, 4008, 198, 220, 220, 220, 3601, 7, 80, 62, 11487, 8 ]
1.966443
596
# coding: utf-8 """***************************************************************************** * Copyright (C) 2018 Microchip Technology Inc. and its subsidiaries. * * Subject to your compliance with these terms, you may use Microchip software * and any derivatives exclusively with Microchip products. It is your * responsibility to comply with third party license terms applicable to your * use of third party software (including open source software) that may * accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A * PARTICULAR PURPOSE. * * IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, * INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND * WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS * BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE * FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN * ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE. *****************************************************************************""" global InterruptVector InterruptVector = [] global InterruptHandler InterruptHandler = [] global InterruptHandlerLock InterruptHandlerLock = [] global InterruptVectorUpdate InterruptVectorUpdate = [] global tccInstanceName global intPrev intPrev = 0 global numOfChannels tccSym_Channel_Menu = [] tccSym_Channel_CC = [] tccSym_Channel_Polarity = [] tccSym_Channel_Polarity_NPWM = [] tccSym_Channel_WAVE_SWAP = [] tccSym_Channel_WEXCTRL_DTIEN = [] tccSym_Channel_INTENSET_MC = [] tccSym_Channel_EVCTRL_MCEO = [] tccSym_Channel_EVCTRL_MCEI = [] tccSym_DRVCTRL_NRE_NRV = [] tccSym_PATT_PGE = [] tccSym_PATT_PGV = [] ################################################################################################### ########################################## Callbacks ############################################# ################################################################################################### ################################################################################ #### Dependency #### ################################################################################ global lastPwmChU lastPwmChU = 0 global lastPwmChV lastPwmChV = 1 global lastPwmChW lastPwmChW = 2 ################################################################################################### ########################################## Component ############################################# ###################################################################################################
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 37811, 17174, 17174, 4557, 35625, 198, 9, 15069, 357, 34, 8, 2864, 4527, 35902, 8987, 3457, 13, 290, 663, 34943, 13, 198, 9, 198, 9, 15540, 284, 534, 11846, 351, 777, 2846, 11, 345, 743, 779, 4527, 35902, 3788, 198, 9, 290, 597, 28486, 11541, 351, 4527, 35902, 3186, 13, 632, 318, 534, 198, 9, 5798, 284, 11997, 351, 2368, 2151, 5964, 2846, 9723, 284, 534, 198, 9, 779, 286, 2368, 2151, 3788, 357, 8201, 1280, 2723, 3788, 8, 326, 743, 198, 9, 13873, 4527, 35902, 3788, 13, 198, 9, 198, 9, 12680, 47466, 3180, 19549, 49094, 11050, 35878, 13252, 3398, 4061, 366, 1921, 3180, 1911, 8005, 34764, 11015, 11, 7655, 2767, 16879, 198, 9, 7788, 32761, 11, 8959, 49094, 6375, 15486, 3843, 15513, 11, 3486, 6489, 56, 5390, 12680, 47466, 11, 47783, 2751, 15529, 8959, 49094, 198, 9, 34764, 11015, 3963, 44521, 12, 1268, 10913, 2751, 12529, 11, 34482, 3398, 1565, 5603, 25382, 11, 5357, 376, 46144, 7473, 317, 198, 9, 16652, 2149, 37232, 33079, 48933, 13, 198, 9, 198, 9, 3268, 8005, 49261, 17682, 35878, 13252, 3398, 4061, 9348, 43031, 19146, 7473, 15529, 3268, 17931, 23988, 11, 38846, 11, 350, 4944, 2043, 9306, 11, 198, 9, 19387, 25256, 1847, 6375, 7102, 5188, 10917, 3525, 12576, 406, 18420, 11, 29506, 11879, 11, 7375, 2257, 6375, 25703, 24290, 3963, 15529, 509, 12115, 198, 9, 25003, 15821, 36, 5959, 29749, 11617, 5390, 3336, 47466, 11, 29630, 36, 5959, 7257, 2937, 1961, 11, 45886, 16876, 35878, 13252, 3398, 4061, 33930, 198, 9, 9348, 1677, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 6375, 3336, 29506, 25552, 15986, 7473, 1546, 6500, 17534, 13, 5390, 3336, 198, 9, 34958, 6465, 27489, 3525, 11096, 3913, 1961, 11050, 38675, 11, 35878, 13252, 3398, 4061, 6, 50, 36247, 43031, 25382, 6177, 11096, 47666, 3955, 50, 3268, 198, 9, 15529, 34882, 29749, 11617, 5390, 12680, 47466, 17682, 5626, 7788, 5222, 1961, 3336, 3001, 28270, 3963, 18630, 1546, 11, 16876, 15529, 11, 198, 9, 14603, 7013, 21515, 8147, 2389, 42242, 11319, 5390, 35878, 13252, 3398, 4061, 7473, 12680, 47466, 13, 198, 17174, 17174, 4557, 35625, 37811, 198, 198, 20541, 4225, 3622, 38469, 198, 9492, 3622, 38469, 796, 17635, 198, 20541, 4225, 3622, 25060, 198, 9492, 3622, 25060, 796, 17635, 198, 20541, 4225, 3622, 25060, 25392, 198, 9492, 3622, 25060, 25392, 796, 17635, 198, 20541, 4225, 3622, 38469, 10260, 198, 9492, 3622, 38469, 10260, 796, 17635, 198, 20541, 256, 535, 33384, 5376, 198, 20541, 493, 36854, 198, 600, 36854, 796, 220, 657, 198, 20541, 997, 5189, 1925, 8961, 198, 198, 83, 535, 43094, 62, 29239, 62, 23381, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 4093, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 47, 6192, 414, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 47, 6192, 414, 62, 22182, 22117, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 15543, 6089, 62, 17887, 2969, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 54, 6369, 4177, 7836, 62, 24544, 40, 1677, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 12394, 16938, 2767, 62, 9655, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 20114, 4177, 7836, 62, 9655, 4720, 796, 17635, 198, 83, 535, 43094, 62, 29239, 62, 20114, 4177, 7836, 62, 44, 5222, 40, 796, 17635, 198, 83, 535, 43094, 62, 7707, 53, 4177, 7836, 62, 45, 2200, 62, 24723, 53, 796, 17635, 198, 83, 535, 43094, 62, 47, 17139, 62, 6968, 36, 796, 17635, 198, 83, 535, 43094, 62, 47, 17139, 62, 6968, 53, 796, 17635, 198, 198, 29113, 29113, 29113, 21017, 198, 29113, 7804, 2235, 4889, 10146, 220, 1303, 29113, 7804, 4242, 198, 29113, 29113, 29113, 21017, 198, 198, 29113, 29113, 14468, 198, 4242, 37947, 1387, 1303, 21017, 198, 29113, 29113, 14468, 198, 198, 20541, 938, 47, 26377, 1925, 52, 198, 12957, 47, 26377, 1925, 52, 796, 657, 198, 20541, 938, 47, 26377, 1925, 53, 198, 12957, 47, 26377, 1925, 53, 796, 352, 198, 20541, 938, 47, 26377, 1925, 54, 198, 12957, 47, 26377, 1925, 54, 796, 362, 198, 29113, 29113, 29113, 21017, 198, 29113, 7804, 2235, 35100, 220, 1303, 29113, 7804, 4242, 198, 29113, 29113, 29113, 21017, 198 ]
4.08777
695
import datetime from floodsystem.analysis import polyfit from floodsystem.datafetcher import fetch_measure_levels from floodsystem.stationdata import build_station_list, update_water_levels from floodsystem.plot import plot_water_level_with_fit from floodsystem.utils import sorted_by_key if __name__ == "__main__": print("*** Task 2F: CUED Part IA Flood Warning System ***") run()
[ 11748, 4818, 8079, 198, 6738, 6947, 10057, 13, 20930, 1330, 7514, 11147, 198, 6738, 6947, 10057, 13, 7890, 34045, 2044, 1330, 21207, 62, 1326, 5015, 62, 46170, 198, 6738, 6947, 10057, 13, 17529, 7890, 1330, 1382, 62, 17529, 62, 4868, 11, 4296, 62, 7050, 62, 46170, 198, 6738, 6947, 10057, 13, 29487, 1330, 7110, 62, 7050, 62, 5715, 62, 4480, 62, 11147, 198, 6738, 6947, 10057, 13, 26791, 1330, 23243, 62, 1525, 62, 2539, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 8162, 15941, 362, 37, 25, 29369, 1961, 2142, 35229, 25588, 15932, 4482, 17202, 4943, 198, 220, 220, 220, 1057, 3419 ]
3.482143
112
# series.py # Copyright (c) 2013-2016 Pablo Acosta-Serafini # See LICENSE for details # pylint: disable=C0111,C0302,E0102,E0611,W0105 # PyPI imports import numpy import matplotlib.path import matplotlib.pyplot as plt from scipy.stats import linregress from scipy.interpolate import InterpolatedUnivariateSpline # Putil imports import putil.misc import putil.pcontracts from .functions import _C from .constants import LEGEND_SCALE, LINE_WIDTH, MARKER_SIZE ### # Exception tracing initialization code ### """ [[[cog import os, sys if sys.hexversion < 0x03000000: import __builtin__ else: import builtins as __builtin__ sys.path.append(os.environ['TRACER_DIR']) import trace_ex_plot_series exobj_plot = trace_ex_plot_series.trace_module(no_print=True) ]]] [[[end]]] """ ### # Class ### class Series(object): r""" Specifies a series within a panel :param data_source: Data source object :type data_source: :py:class:`putil.plot.BasicSource`, :py:class:`putil.plot.CsvSource` *or others conforming to the data source specification* :param label: Series label, to be used in the panel legend :type label: string :param color: Series color. All `Matplotlib colors <http://matplotlib.org/api/colors_api.html>`_ are supported :type color: polymorphic :param marker: Marker type. All `Matplotlib marker types <http://matplotlib.org/api/markers_api.html>`_ are supported. None indicates no marker :type marker: string or None :param interp: Interpolation option (case insensitive), one of None (no interpolation) 'STRAIGHT' (straight line connects data points), 'STEP' (horizontal segments between data points), 'CUBIC' (cubic interpolation between data points) or 'LINREG' (linear regression based on data points). The interpolation option is case insensitive :type interp: :ref:`InterpolationOption` *or None* :param line_style: Line style. All `Matplotlib line styles <http://matplotlib.org/api/artist_api.html# matplotlib.lines.Line2D.set_linestyle>`_ are supported. None indicates no line :type line_style: :ref:`LineStyleOption` *or None* :param secondary_axis: Flag that indicates whether the series belongs to the panel primary axis (False) or secondary axis (True) :type secondary_axis: boolean .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.__init__ :raises: * RuntimeError (Argument \`color\` is not valid) * RuntimeError (Argument \`data_source\` does not have an \`dep_var\` attribute) * RuntimeError (Argument \`data_source\` does not have an \`indep_var\` attribute) * RuntimeError (Argument \`data_source\` is not fully specified) * RuntimeError (Argument \`interp\` is not valid) * RuntimeError (Argument \`label\` is not valid) * RuntimeError (Argument \`line_style\` is not valid) * RuntimeError (Argument \`marker\` is not valid) * RuntimeError (Argument \`secondary_axis\` is not valid) * TypeError (Invalid color specification) * ValueError (Argument \`interp\` is not one of ['STRAIGHT', 'STEP', 'CUBIC', 'LINREG'] (case insensitive)) * ValueError (Argument \`line_style\` is not one of ['-', '--', '-.', ':']) * ValueError (Arguments \`indep_var\` and \`dep_var\` must have the same number of elements) * ValueError (At least 4 data points are needed for CUBIC interpolation) .. [[[end]]] """ # pylint: disable=R0902,R0903,R0913 @putil.pcontracts.contract(label='None|str') @putil.pcontracts.contract(color='real_num|str|list|tuple') @putil.pcontracts.contract(interp='interpolation_option') @putil.pcontracts.contract(line_style='line_style_option') @putil.pcontracts.contract(secondary_axis='None|bool') def __str__(self): """ Print series object information """ ret = '' ret += 'Independent variable: {0}\n'.format( putil.eng.pprint_vector(self.indep_var, width=50) ) ret += 'Dependent variable: {0}\n'.format( putil.eng.pprint_vector(self.dep_var, width=50) ) ret += 'Label: {0}\n'.format(self.label) ret += 'Color: {0}\n'.format(self.color) ret += 'Marker: {0}\n'.format(self._print_marker()) ret += 'Interpolation: {0}\n'.format(self.interp) ret += 'Line style: {0}\n'.format(self.line_style) ret += 'Secondary axis: {0}'.format(self.secondary_axis) return ret def _check_series_is_plottable(self): """ Check that the combination of marker, line style and line width width will produce a printable series """ return ( not (((self._marker_spec == '') and ((not self.interp) or (not self.line_style))) or (self.color in [None, ''])) ) def _validate_source_length_cubic_interp(self): """ Test if data source has minimum length to calculate cubic interpolation """ # pylint: disable=C0103 putil.exh.addex( ValueError, 'At least 4 data points are needed for CUBIC interpolation', (self.interp == 'CUBIC') and (self.indep_var is not None) and (self.dep_var is not None) and (self.indep_var.shape[0] < 4) ) def _validate_marker(self, marker): """ Validate if marker specification is valid """ # pylint: disable=R0201 try: plt.plot(range(10), marker=marker) except ValueError: return False except: # pragma: no cover raise return True def _print_marker(self): """ Returns marker description """ marker_consts = [ { 'value':matplotlib.markers.TICKLEFT, 'repr':'matplotlib.markers.TICKLEFT' }, { 'value':matplotlib.markers.TICKRIGHT, 'repr':'matplotlib.markers.TICKRIGHT' }, { 'value':matplotlib.markers.TICKUP, 'repr':'matplotlib.markers.TICKUP' }, { 'value':matplotlib.markers.TICKDOWN, 'repr':'matplotlib.markers.TICKDOWN' }, { 'value':matplotlib.markers.CARETLEFT, 'repr':'matplotlib.markers.CARETLEFT' }, { 'value':matplotlib.markers.CARETRIGHT, 'repr':'matplotlib.markers.CARETRIGHT' }, { 'value':matplotlib.markers.CARETUP, 'repr':'matplotlib.markers.CARETUP' }, { 'value':matplotlib.markers.CARETDOWN, 'repr':'matplotlib.markers.CARETDOWN' } ] marker_none = ["None", None, ' ', ''] if self.marker in marker_none: return 'None' for const_dict in marker_consts: if self.marker == const_dict['value']: return const_dict['repr'] if isinstance(self.marker, str): return self.marker if isinstance(self.marker, matplotlib.path.Path): return 'matplotlib.path.Path object' return str(self.marker) def _get_complete(self): """ Returns True if series is fully specified, otherwise returns False """ return self.data_source is not None def _calculate_curve(self): """ Compute curve to interpolate between data points """ # pylint: disable=E1101,W0612 if _C(self.interp, self.indep_var, self.dep_var): if self.interp == 'CUBIC': # Add 20 points between existing points self.interp_indep_var = numpy.array([]) iobj = zip(self.indep_var[:-1], self.indep_var[1:]) for start, stop in iobj: self.interp_indep_var = numpy.concatenate( ( self.interp_indep_var, numpy.linspace(start, stop, 20, endpoint=False) ) ) self.interp_indep_var = numpy.concatenate( (self.interp_indep_var, [self.indep_var[-1]]) ) spl = InterpolatedUnivariateSpline( self.indep_var, self.dep_var ) self.interp_dep_var = spl(self.interp_indep_var) elif self.interp == 'LINREG': slope, intercept, _, _, _ = linregress( self.indep_var, self.dep_var ) self.interp_indep_var = self.indep_var self.interp_dep_var = intercept+(slope*self.indep_var) self._scale_indep_var(self._scaling_factor_indep_var) self._scale_dep_var(self._scaling_factor_dep_var) def _scale_indep_var(self, scaling_factor): """ Scale independent variable """ self._scaling_factor_indep_var = float(scaling_factor) self.scaled_indep_var = ( self.indep_var/self._scaling_factor_indep_var if self.indep_var is not None else self.scaled_indep_var ) self.scaled_interp_indep_var = ( self.interp_indep_var/self._scaling_factor_indep_var if self.interp_indep_var is not None else self.scaled_interp_indep_var ) def _scale_dep_var(self, scaling_factor): """ Scale dependent variable """ self._scaling_factor_dep_var = float(scaling_factor) self.scaled_dep_var = ( self.dep_var/self._scaling_factor_dep_var if self.dep_var is not None else self.scaled_dep_var ) self.scaled_interp_dep_var = ( self.interp_dep_var/self._scaling_factor_dep_var if self.interp_dep_var is not None else self.scaled_interp_dep_var ) def _update_linestyle_spec(self): """ Update line style specification to be used in series drawing """ self._linestyle_spec = ( self.line_style if _C(self.line_style, self.interp) else '' ) def _update_linewidth_spec(self): """ Update line width specification to be used in series drawing """ self._linewidth_spec = ( self._ref_linewidth if _C(self.line_style, self.interp) else 0.0 ) def _legend_artist(self, legend_scale=None): """ Creates artist (marker -if used- and line style -if used-) """ legend_scale = LEGEND_SCALE if legend_scale is None else legend_scale return plt.Line2D( (0, 1), (0, 0), color=self.color, marker=self._marker_spec, linestyle=self._linestyle_spec, linewidth=self._linewidth_spec/legend_scale, markeredgecolor=self.color, markersize=self._ref_markersize/legend_scale, markeredgewidth=self._ref_markeredgewidth/legend_scale, markerfacecolor=self._ref_markerfacecolor ) def _draw_series(self, axarr, log_indep, log_dep): """ Draw series """ if self._check_series_is_plottable(): flist = [axarr.plot, axarr.semilogx, axarr.semilogy, axarr.loglog] fplot = flist[2*log_dep+log_indep] # Plot line if self._linestyle_spec != '': fplot( self.scaled_indep_var if self.interp in ['STRAIGHT', 'STEP'] else self.scaled_interp_indep_var, self.scaled_dep_var if self.interp in ['STRAIGHT', 'STEP'] else self.scaled_interp_dep_var, color=self.color, linestyle=self.line_style, linewidth=self._ref_linewidth, drawstyle=( 'steps-post' if self.interp == 'STEP' else 'default' ), label=self.label ) # Plot markers if self._marker_spec != '': fplot( self.scaled_indep_var, self.scaled_dep_var, color=self.color, linestyle='', linewidth=0, drawstyle=( 'steps-post' if self.interp == 'STEP' else 'default' ), marker=self._marker_spec, markeredgecolor=self.color, markersize=self._ref_markersize, markeredgewidth=self._ref_markeredgewidth, markerfacecolor=self._ref_markerfacecolor, label=self.label if self.line_style is None else None ) # Managed attributes _complete = property(_get_complete) color = property( _get_color, _set_color, doc='Series line and marker color' ) r""" Gets or sets the series line and marker color. All `Matplotlib colors <http://matplotlib.org/api/colors_api.html>`_ are supported :type: polymorphic .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.color :raises: (when assigned) * RuntimeError (Argument \`color\` is not valid) * TypeError (Invalid color specification) .. [[[end]]] """ data_source = property( _get_data_source, _set_data_source, doc='Data source' ) r""" Gets or sets the data source object. The independent and dependent data sets are obtained once this attribute is set. To be valid, a data source object must have an ``indep_var`` attribute that contains a Numpy vector of increasing real numbers and a ``dep_var`` attribute that contains a Numpy vector of real numbers :type: :py:class:`putil.plot.BasicSource`, :py:class:`putil.plot.CsvSource` or others conforming to the data source specification .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.data_source :raises: (when assigned) * RuntimeError (Argument \`data_source\` does not have an \`dep_var\` attribute) * RuntimeError (Argument \`data_source\` does not have an \`indep_var\` attribute) * RuntimeError (Argument \`data_source\` is not fully specified) * ValueError (Arguments \`indep_var\` and \`dep_var\` must have the same number of elements) * ValueError (At least 4 data points are needed for CUBIC interpolation) .. [[[end]]] """ interp = property( _get_interp, _set_interp, doc='Series interpolation option, one of `STRAIGHT`, ' '`CUBIC` or `LINREG` (case insensitive)' ) r""" Gets or sets the interpolation option, one of :code:`None` (no interpolation) :code:`'STRAIGHT'` (straight line connects data points), :code:`'STEP'` (horizontal segments between data points), :code:`'CUBIC'` (cubic interpolation between data points) or :code:`'LINREG'` (linear regression based on data points). The interpolation option is case insensitive :type: :ref:`InterpolationOption` or None .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.interp :raises: (when assigned) * RuntimeError (Argument \`interp\` is not valid) * ValueError (Argument \`interp\` is not one of ['STRAIGHT', 'STEP', 'CUBIC', 'LINREG'] (case insensitive)) * ValueError (At least 4 data points are needed for CUBIC interpolation) .. [[[end]]] """ label = property(_get_label, _set_label, doc='Series label') r""" Gets or sets the series label, to be used in the panel legend if the panel has more than one series :type: string .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.label :raises: (when assigned) RuntimeError (Argument \`label\` is not valid) .. [[[end]]] """ line_style = property( _get_line_style, _set_line_style, doc='Series line style, one of `-`, `--`, `-.` or `:`' ) r""" Sets or gets the line style. All `Matplotlib line styles <http://matplotlib.org/api/artist_api.html#matplotlib.lines. Line2D.set_linestyle>`_ are supported. :code:`None` indicates no line :type: :ref:`LineStyleOption` .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.line_style :raises: (when assigned) * RuntimeError (Argument \`line_style\` is not valid) * ValueError (Argument \`line_style\` is not one of ['-', '--', '-.', ':']) .. [[[end]]] """ marker = property( _get_marker, _set_marker, doc='Plot data point markers flag' ) r""" Gets or sets the series marker type. All `Matplotlib marker types <http://matplotlib.org/api/markers_api.html>`_ are supported. :code:`None` indicates no marker :type: string or None .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.marker :raises: (when assigned) RuntimeError (Argument \`marker\` is not valid) .. [[[end]]] """ secondary_axis = property( _get_secondary_axis, _set_secondary_axis, doc='Series secondary axis flag' ) r""" Sets or gets the secondary axis flag; indicates whether the series belongs to the panel primary axis (False) or secondary axis (True) :type: boolean .. [[[cog cog.out(exobj_plot.get_sphinx_autodoc()) ]]] .. Auto-generated exceptions documentation for .. putil.plot.series.Series.secondary_axis :raises: (when assigned) RuntimeError (Argument \`secondary_axis\` is not valid) .. [[[end]]] """
[ 2, 2168, 13, 9078, 198, 2, 15069, 357, 66, 8, 2211, 12, 5304, 33185, 4013, 39818, 12, 7089, 1878, 5362, 198, 2, 4091, 38559, 24290, 329, 3307, 198, 2, 279, 2645, 600, 25, 15560, 28, 34, 486, 1157, 11, 34, 15, 22709, 11, 36, 486, 2999, 11, 36, 3312, 1157, 11, 54, 486, 2713, 198, 198, 2, 9485, 11901, 17944, 198, 11748, 299, 32152, 198, 11748, 2603, 29487, 8019, 13, 6978, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 629, 541, 88, 13, 34242, 1330, 9493, 2301, 601, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 4225, 16104, 515, 3118, 42524, 26568, 500, 198, 2, 5930, 346, 17944, 198, 11748, 1234, 346, 13, 44374, 198, 11748, 1234, 346, 13, 79, 28484, 82, 198, 6738, 764, 12543, 2733, 1330, 4808, 34, 198, 6738, 764, 9979, 1187, 1330, 20978, 10619, 62, 6173, 21358, 11, 48920, 62, 54, 2389, 4221, 11, 39641, 1137, 62, 33489, 628, 198, 21017, 198, 2, 35528, 35328, 37588, 2438, 198, 21017, 198, 37811, 198, 30109, 58, 66, 519, 198, 11748, 28686, 11, 25064, 198, 361, 25064, 13, 33095, 9641, 1279, 657, 87, 3070, 10535, 25, 198, 220, 220, 220, 1330, 11593, 18780, 259, 834, 198, 17772, 25, 198, 220, 220, 220, 1330, 3170, 1040, 355, 11593, 18780, 259, 834, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 268, 2268, 17816, 5446, 2246, 1137, 62, 34720, 6, 12962, 198, 11748, 12854, 62, 1069, 62, 29487, 62, 25076, 198, 1069, 26801, 62, 29487, 796, 12854, 62, 1069, 62, 29487, 62, 25076, 13, 40546, 62, 21412, 7, 3919, 62, 4798, 28, 17821, 8, 198, 11907, 60, 198, 30109, 58, 437, 11907, 60, 198, 37811, 628, 198, 21017, 198, 2, 5016, 198, 21017, 198, 4871, 7171, 7, 15252, 2599, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 18291, 6945, 257, 2168, 1626, 257, 6103, 628, 220, 220, 220, 1058, 17143, 1366, 62, 10459, 25, 6060, 2723, 2134, 198, 220, 220, 220, 1058, 4906, 220, 1366, 62, 10459, 25, 1058, 9078, 25, 4871, 25, 63, 1996, 346, 13, 29487, 13, 26416, 7416, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 9078, 25, 4871, 25, 63, 1996, 346, 13, 29487, 13, 34, 21370, 7416, 63, 1635, 273, 1854, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 369, 15464, 284, 262, 1366, 2723, 20855, 9, 628, 220, 220, 220, 1058, 17143, 6167, 25, 7171, 6167, 11, 284, 307, 973, 287, 262, 6103, 8177, 198, 220, 220, 220, 1058, 4906, 220, 6167, 25, 4731, 628, 220, 220, 220, 1058, 17143, 3124, 25, 7171, 3124, 13, 1439, 4600, 19044, 29487, 8019, 7577, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 4033, 669, 62, 15042, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 4855, 198, 220, 220, 220, 1058, 4906, 220, 3124, 25, 34196, 291, 628, 220, 220, 220, 1058, 17143, 18364, 25, 2940, 263, 2099, 13, 1439, 4600, 19044, 29487, 8019, 18364, 3858, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 4102, 364, 62, 15042, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 4855, 13, 6045, 9217, 645, 18364, 198, 220, 220, 220, 1058, 4906, 220, 18364, 25, 4731, 393, 6045, 628, 220, 220, 220, 1058, 17143, 987, 79, 25, 4225, 16104, 341, 3038, 357, 7442, 41246, 828, 530, 286, 6045, 357, 3919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 8, 705, 2257, 3861, 9947, 6, 357, 42729, 1627, 20417, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 828, 705, 42135, 6, 357, 17899, 38342, 17894, 1022, 1366, 2173, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34, 10526, 2149, 6, 357, 66, 549, 291, 39555, 341, 1022, 1366, 2173, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34509, 31553, 6, 357, 29127, 20683, 1912, 319, 1366, 2173, 737, 383, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39555, 341, 3038, 318, 1339, 41246, 198, 220, 220, 220, 1058, 4906, 220, 987, 79, 25, 1058, 5420, 25, 63, 9492, 16104, 341, 19722, 63, 1635, 273, 6045, 9, 628, 220, 220, 220, 1058, 17143, 1627, 62, 7635, 25, 6910, 3918, 13, 1439, 4600, 19044, 29487, 8019, 1627, 12186, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 49016, 62, 15042, 13, 6494, 2, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2603, 29487, 8019, 13, 6615, 13, 13949, 17, 35, 13, 2617, 62, 2815, 10992, 29, 63, 62, 389, 4855, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 9217, 645, 1627, 198, 220, 220, 220, 1058, 4906, 220, 1627, 62, 7635, 25, 1058, 5420, 25, 63, 13949, 21466, 19722, 63, 1635, 273, 6045, 9, 628, 220, 220, 220, 1058, 17143, 9233, 62, 22704, 25, 19762, 326, 9217, 1771, 262, 2168, 14448, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 6103, 4165, 16488, 357, 25101, 8, 393, 9233, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17821, 8, 198, 220, 220, 220, 1058, 4906, 220, 9233, 62, 22704, 25, 25131, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 834, 15003, 834, 628, 220, 220, 220, 1058, 430, 2696, 25, 198, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 8043, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 857, 407, 423, 281, 3467, 63, 10378, 62, 7785, 59, 63, 198, 220, 220, 220, 220, 220, 220, 11688, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 857, 407, 423, 281, 198, 220, 220, 220, 220, 220, 220, 3467, 63, 521, 538, 62, 7785, 59, 63, 11688, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 318, 407, 3938, 7368, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 3849, 79, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 18242, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 1370, 62, 7635, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 4102, 263, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 38238, 62, 22704, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 5994, 12331, 357, 44651, 3124, 20855, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 1713, 3467, 63, 3849, 79, 59, 63, 318, 407, 530, 286, 37250, 2257, 3861, 9947, 3256, 705, 42135, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 34, 10526, 2149, 3256, 705, 34509, 31553, 20520, 357, 7442, 41246, 4008, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 1713, 3467, 63, 1370, 62, 7635, 59, 63, 318, 407, 530, 286, 685, 29001, 3256, 705, 438, 3256, 705, 12, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 705, 32105, 12962, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 2886, 3467, 63, 521, 538, 62, 7785, 59, 63, 290, 3467, 63, 10378, 62, 7785, 59, 63, 1276, 423, 262, 198, 220, 220, 220, 220, 220, 220, 976, 1271, 286, 4847, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 2953, 1551, 604, 1366, 2173, 389, 2622, 329, 327, 10526, 2149, 198, 220, 220, 220, 220, 220, 220, 39555, 341, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 2931, 2999, 11, 49, 2931, 3070, 11, 49, 2931, 1485, 628, 220, 220, 220, 2488, 1996, 346, 13, 79, 28484, 82, 13, 28484, 7, 18242, 11639, 14202, 91, 2536, 11537, 628, 220, 220, 220, 2488, 1996, 346, 13, 79, 28484, 82, 13, 28484, 7, 8043, 11639, 5305, 62, 22510, 91, 2536, 91, 4868, 91, 83, 29291, 11537, 628, 220, 220, 220, 2488, 1996, 346, 13, 79, 28484, 82, 13, 28484, 7, 3849, 79, 11639, 3849, 16104, 341, 62, 18076, 11537, 628, 220, 220, 220, 2488, 1996, 346, 13, 79, 28484, 82, 13, 28484, 7, 1370, 62, 7635, 11639, 1370, 62, 7635, 62, 18076, 11537, 628, 220, 220, 220, 2488, 1996, 346, 13, 79, 28484, 82, 13, 28484, 7, 38238, 62, 22704, 11639, 14202, 91, 30388, 11537, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12578, 2168, 2134, 1321, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 40566, 7885, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1234, 346, 13, 1516, 13, 381, 22272, 62, 31364, 7, 944, 13, 521, 538, 62, 7785, 11, 9647, 28, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 35, 8682, 7885, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1234, 346, 13, 1516, 13, 381, 22272, 62, 31364, 7, 944, 13, 10378, 62, 7785, 11, 9647, 28, 1120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 33986, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 944, 13, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 10258, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 944, 13, 8043, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 9704, 263, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 944, 13557, 4798, 62, 4102, 263, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 9492, 16104, 341, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 944, 13, 3849, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 13949, 3918, 25, 1391, 15, 32239, 77, 4458, 18982, 7, 944, 13, 1370, 62, 7635, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 15853, 705, 12211, 560, 16488, 25, 1391, 15, 92, 4458, 18982, 7, 944, 13, 38238, 62, 22704, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 825, 4808, 9122, 62, 25076, 62, 271, 62, 489, 1252, 540, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 326, 262, 6087, 286, 18364, 11, 1627, 3918, 290, 1627, 9647, 9647, 198, 220, 220, 220, 220, 220, 220, 220, 481, 4439, 257, 3601, 540, 2168, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 14808, 7, 944, 13557, 4102, 263, 62, 16684, 6624, 10148, 8, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14808, 1662, 2116, 13, 3849, 79, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1662, 2116, 13, 1370, 62, 7635, 22305, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 8043, 287, 685, 14202, 11, 10148, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 10459, 62, 13664, 62, 66, 549, 291, 62, 3849, 79, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 611, 1366, 2723, 468, 5288, 4129, 284, 15284, 27216, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 220, 220, 220, 220, 220, 220, 220, 1234, 346, 13, 1069, 71, 13, 2860, 1069, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2953, 1551, 604, 1366, 2173, 389, 2622, 329, 327, 10526, 2149, 39555, 341, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 3849, 79, 6624, 705, 34, 10526, 2149, 11537, 290, 357, 944, 13, 521, 538, 62, 7785, 318, 407, 6045, 8, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 10378, 62, 7785, 318, 407, 6045, 8, 290, 357, 944, 13, 521, 538, 62, 7785, 13, 43358, 58, 15, 60, 1279, 604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 4102, 263, 7, 944, 11, 18364, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3254, 20540, 611, 18364, 20855, 318, 4938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 9521, 7, 940, 828, 18364, 28, 4102, 263, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 4808, 4798, 62, 4102, 263, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 18364, 6764, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18364, 62, 1102, 6448, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 2538, 9792, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 2538, 9792, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 49, 9947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 49, 9947, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 8577, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 8577, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 41925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 51, 11860, 41925, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 2538, 9792, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 2538, 9792, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 49, 9947, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 49, 9947, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 8577, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 8577, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 41925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1050, 10354, 6, 6759, 29487, 8019, 13, 4102, 364, 13, 20034, 2767, 41925, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 18364, 62, 23108, 796, 14631, 14202, 1600, 6045, 11, 705, 46083, 10148, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4102, 263, 287, 18364, 62, 23108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 14202, 6, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1500, 62, 11600, 287, 18364, 62, 1102, 6448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4102, 263, 6624, 1500, 62, 11600, 17816, 8367, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1500, 62, 11600, 17816, 260, 1050, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 4102, 263, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4102, 263, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 4102, 263, 11, 2603, 29487, 8019, 13, 6978, 13, 15235, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 6759, 29487, 8019, 13, 6978, 13, 15235, 2134, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 944, 13, 4102, 263, 8, 628, 220, 220, 220, 825, 4808, 1136, 62, 20751, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6407, 611, 2168, 318, 3938, 7368, 11, 4306, 5860, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7890, 62, 10459, 318, 407, 6045, 628, 220, 220, 220, 825, 4808, 9948, 3129, 378, 62, 22019, 303, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3082, 1133, 12133, 284, 39555, 378, 1022, 1366, 2173, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36, 1157, 486, 11, 54, 3312, 1065, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 34, 7, 944, 13, 3849, 79, 11, 2116, 13, 521, 538, 62, 7785, 11, 2116, 13, 10378, 62, 7785, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 79, 6624, 705, 34, 10526, 2149, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1160, 2173, 1022, 4683, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 796, 299, 32152, 13, 18747, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 26801, 796, 19974, 7, 944, 13, 521, 538, 62, 7785, 58, 21912, 16, 4357, 2116, 13, 521, 538, 62, 7785, 58, 16, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 923, 11, 2245, 287, 1312, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 796, 299, 32152, 13, 1102, 9246, 268, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 21602, 10223, 7, 9688, 11, 2245, 11, 1160, 11, 36123, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 796, 299, 32152, 13, 1102, 9246, 268, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 3849, 79, 62, 521, 538, 62, 7785, 11, 685, 944, 13, 521, 538, 62, 7785, 58, 12, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 796, 4225, 16104, 515, 3118, 42524, 26568, 500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 538, 62, 7785, 11, 2116, 13, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 10378, 62, 7785, 796, 4328, 7, 944, 13, 3849, 79, 62, 521, 538, 62, 7785, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 3849, 79, 6624, 705, 34509, 31553, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22638, 11, 15788, 11, 4808, 11, 4808, 11, 4808, 796, 9493, 2301, 601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 538, 62, 7785, 11, 2116, 13, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 796, 2116, 13, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 10378, 62, 7785, 796, 15788, 33747, 6649, 3008, 9, 944, 13, 521, 538, 62, 7785, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9888, 62, 521, 538, 62, 7785, 7, 944, 13557, 1416, 4272, 62, 31412, 62, 521, 538, 62, 7785, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9888, 62, 10378, 62, 7785, 7, 944, 13557, 1416, 4272, 62, 31412, 62, 10378, 62, 7785, 8, 628, 220, 220, 220, 825, 4808, 9888, 62, 521, 538, 62, 7785, 7, 944, 11, 20796, 62, 31412, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21589, 4795, 7885, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1416, 4272, 62, 31412, 62, 521, 538, 62, 7785, 796, 12178, 7, 1416, 4272, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 521, 538, 62, 7785, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 521, 538, 62, 7785, 14, 944, 13557, 1416, 4272, 62, 31412, 62, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 521, 538, 62, 7785, 318, 407, 6045, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 521, 538, 62, 7785, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 14, 944, 13557, 1416, 4272, 62, 31412, 62, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 79, 62, 521, 538, 62, 7785, 318, 407, 6045, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 9888, 62, 10378, 62, 7785, 7, 944, 11, 20796, 62, 31412, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21589, 10795, 7885, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1416, 4272, 62, 31412, 62, 10378, 62, 7785, 796, 12178, 7, 1416, 4272, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 10378, 62, 7785, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10378, 62, 7785, 14, 944, 13557, 1416, 4272, 62, 31412, 62, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10378, 62, 7785, 318, 407, 6045, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 10378, 62, 7785, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 79, 62, 10378, 62, 7785, 14, 944, 13557, 1416, 4272, 62, 31412, 62, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 79, 62, 10378, 62, 7785, 318, 407, 6045, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 19119, 62, 2815, 10992, 62, 16684, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10133, 1627, 3918, 20855, 284, 307, 973, 287, 2168, 8263, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2815, 10992, 62, 16684, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1370, 62, 7635, 611, 4808, 34, 7, 944, 13, 1370, 62, 7635, 11, 2116, 13, 3849, 79, 8, 2073, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 19119, 62, 2815, 413, 5649, 62, 16684, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10133, 1627, 9647, 20855, 284, 307, 973, 287, 2168, 8263, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2815, 413, 5649, 62, 16684, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5420, 62, 2815, 413, 5649, 611, 4808, 34, 7, 944, 13, 1370, 62, 7635, 11, 2116, 13, 3849, 79, 8, 2073, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 1455, 437, 62, 49016, 7, 944, 11, 8177, 62, 9888, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7921, 274, 6802, 357, 4102, 263, 532, 361, 973, 12, 290, 1627, 3918, 532, 361, 973, 25106, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 9888, 796, 20978, 10619, 62, 6173, 21358, 611, 8177, 62, 9888, 318, 6045, 2073, 8177, 62, 9888, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 458, 83, 13, 13949, 17, 35, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 944, 13557, 4102, 263, 62, 16684, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 28, 944, 13557, 2815, 10992, 62, 16684, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 944, 13557, 2815, 413, 5649, 62, 16684, 14, 1455, 437, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 28970, 469, 8043, 28, 944, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19736, 1096, 28, 944, 13557, 5420, 62, 4102, 364, 1096, 14, 1455, 437, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 28970, 39909, 5649, 28, 944, 13557, 5420, 62, 3876, 28970, 39909, 5649, 14, 1455, 437, 62, 9888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 2550, 8043, 28, 944, 13557, 5420, 62, 4102, 263, 2550, 8043, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 19334, 62, 25076, 7, 944, 11, 7877, 3258, 11, 2604, 62, 521, 538, 11, 2604, 62, 10378, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15315, 2168, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 9122, 62, 25076, 62, 271, 62, 489, 1252, 540, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 781, 396, 796, 685, 897, 3258, 13, 29487, 11, 7877, 3258, 13, 325, 25433, 519, 87, 11, 7877, 3258, 13, 43616, 19202, 11, 7877, 3258, 13, 6404, 6404, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 29487, 796, 781, 396, 58, 17, 9, 6404, 62, 10378, 10, 6404, 62, 521, 538, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 2815, 10992, 62, 16684, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 521, 538, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 79, 287, 37250, 2257, 3861, 9947, 3256, 705, 42135, 20520, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 521, 538, 62, 7785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 10378, 62, 7785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 79, 287, 37250, 2257, 3861, 9947, 3256, 705, 42135, 20520, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 3849, 79, 62, 10378, 62, 7785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 28, 944, 13, 1370, 62, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 944, 13557, 5420, 62, 2815, 413, 5649, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 7635, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20214, 12, 7353, 6, 611, 2116, 13, 3849, 79, 6624, 705, 42135, 6, 2073, 705, 12286, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 944, 13, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 19736, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 4102, 263, 62, 16684, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 29487, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 521, 538, 62, 7785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 3021, 62, 10378, 62, 7785, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9493, 413, 5649, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 7635, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20214, 12, 7353, 6, 611, 2116, 13, 3849, 79, 6624, 705, 42135, 6, 2073, 705, 12286, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 944, 13557, 4102, 263, 62, 16684, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 28970, 469, 8043, 28, 944, 13, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19736, 1096, 28, 944, 13557, 5420, 62, 4102, 364, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1667, 28970, 39909, 5649, 28, 944, 13557, 5420, 62, 3876, 28970, 39909, 5649, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 2550, 8043, 28, 944, 13557, 5420, 62, 4102, 263, 2550, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 28, 944, 13, 18242, 611, 2116, 13, 1370, 62, 7635, 318, 6045, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1869, 1886, 12608, 198, 220, 220, 220, 4808, 20751, 796, 3119, 28264, 1136, 62, 20751, 8, 628, 220, 220, 220, 3124, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 8043, 11, 4808, 2617, 62, 8043, 11, 2205, 11639, 27996, 1627, 290, 18364, 3124, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 29620, 393, 5621, 262, 2168, 1627, 290, 18364, 3124, 13, 1439, 4600, 19044, 29487, 8019, 7577, 198, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 4033, 669, 62, 15042, 13, 6494, 29, 63, 62, 389, 4855, 628, 220, 220, 220, 1058, 4906, 25, 34196, 291, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 8043, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 8043, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 5994, 12331, 357, 44651, 3124, 20855, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1366, 62, 10459, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 7890, 62, 10459, 11, 4808, 2617, 62, 7890, 62, 10459, 11, 2205, 11639, 6601, 2723, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 29620, 393, 5621, 262, 1366, 2723, 2134, 13, 383, 4795, 290, 10795, 1366, 198, 220, 220, 220, 5621, 389, 6492, 1752, 428, 11688, 318, 900, 13, 1675, 307, 4938, 11, 257, 1366, 2723, 198, 220, 220, 220, 2134, 1276, 423, 281, 7559, 521, 538, 62, 7785, 15506, 11688, 326, 4909, 257, 399, 32152, 15879, 286, 198, 220, 220, 220, 3649, 1103, 3146, 290, 257, 7559, 10378, 62, 7785, 15506, 11688, 326, 4909, 257, 399, 32152, 198, 220, 220, 220, 15879, 286, 1103, 3146, 628, 220, 220, 220, 1058, 4906, 25, 220, 1058, 9078, 25, 4871, 25, 63, 1996, 346, 13, 29487, 13, 26416, 7416, 47671, 198, 220, 220, 220, 220, 1058, 9078, 25, 4871, 25, 63, 1996, 346, 13, 29487, 13, 34, 21370, 7416, 63, 393, 1854, 369, 15464, 284, 262, 198, 220, 220, 220, 220, 1366, 2723, 20855, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 7890, 62, 10459, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 857, 407, 423, 281, 3467, 63, 10378, 62, 7785, 59, 63, 198, 220, 220, 220, 220, 220, 220, 11688, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 857, 407, 423, 281, 198, 220, 220, 220, 220, 220, 220, 3467, 63, 521, 538, 62, 7785, 59, 63, 11688, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 7890, 62, 10459, 59, 63, 318, 407, 3938, 7368, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 2886, 3467, 63, 521, 538, 62, 7785, 59, 63, 290, 3467, 63, 10378, 62, 7785, 59, 63, 1276, 423, 262, 198, 220, 220, 220, 220, 220, 220, 976, 1271, 286, 4847, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 2953, 1551, 604, 1366, 2173, 389, 2622, 329, 327, 10526, 2149, 198, 220, 220, 220, 220, 220, 220, 39555, 341, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 987, 79, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 3849, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 3849, 79, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 11639, 27996, 39555, 341, 3038, 11, 530, 286, 4600, 2257, 3861, 9947, 47671, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 63, 34, 10526, 2149, 63, 393, 4600, 34509, 31553, 63, 357, 7442, 41246, 33047, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 29620, 393, 5621, 262, 39555, 341, 3038, 11, 530, 286, 1058, 8189, 25, 63, 14202, 63, 198, 220, 220, 220, 357, 3919, 39555, 341, 8, 1058, 8189, 25, 63, 6, 2257, 3861, 9947, 6, 63, 357, 42729, 1627, 20417, 1366, 2173, 828, 198, 220, 220, 220, 1058, 8189, 25, 63, 6, 42135, 6, 63, 357, 17899, 38342, 17894, 1022, 1366, 2173, 828, 1058, 8189, 25, 63, 6, 34, 10526, 2149, 6, 63, 198, 220, 220, 220, 357, 66, 549, 291, 39555, 341, 1022, 1366, 2173, 8, 393, 1058, 8189, 25, 63, 6, 34509, 31553, 6, 63, 357, 29127, 198, 220, 220, 220, 20683, 1912, 319, 1366, 2173, 737, 383, 39555, 341, 3038, 318, 1339, 198, 220, 220, 220, 41246, 628, 220, 220, 220, 1058, 4906, 25, 220, 1058, 5420, 25, 63, 9492, 16104, 341, 19722, 63, 393, 6045, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 3849, 79, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 3849, 79, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 1713, 3467, 63, 3849, 79, 59, 63, 318, 407, 530, 286, 37250, 2257, 3861, 9947, 3256, 705, 42135, 3256, 198, 220, 220, 220, 220, 220, 220, 705, 34, 10526, 2149, 3256, 705, 34509, 31553, 20520, 357, 7442, 41246, 4008, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 2953, 1551, 604, 1366, 2173, 389, 2622, 329, 327, 10526, 2149, 198, 220, 220, 220, 220, 220, 220, 39555, 341, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6167, 796, 3119, 28264, 1136, 62, 18242, 11, 4808, 2617, 62, 18242, 11, 2205, 11639, 27996, 6167, 11537, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 29620, 393, 5621, 262, 2168, 6167, 11, 284, 307, 973, 287, 262, 6103, 8177, 611, 262, 6103, 198, 220, 220, 220, 468, 517, 621, 530, 2168, 628, 220, 220, 220, 1058, 4906, 25, 220, 4731, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 18242, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 43160, 12331, 357, 28100, 1713, 3467, 63, 18242, 59, 63, 318, 407, 198, 220, 220, 220, 220, 4938, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1627, 62, 7635, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 1370, 62, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 1370, 62, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 11639, 27996, 1627, 3918, 11, 530, 286, 4600, 12, 47671, 4600, 438, 47671, 4600, 34507, 63, 393, 4600, 25, 63, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 21394, 393, 3011, 262, 1627, 3918, 13, 1439, 4600, 19044, 29487, 8019, 1627, 12186, 198, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 49016, 62, 15042, 13, 6494, 2, 6759, 29487, 8019, 13, 6615, 13, 198, 220, 220, 220, 6910, 17, 35, 13, 2617, 62, 2815, 10992, 29, 63, 62, 389, 4855, 13, 1058, 8189, 25, 63, 14202, 63, 9217, 645, 1627, 628, 220, 220, 220, 1058, 4906, 25, 220, 1058, 5420, 25, 63, 13949, 21466, 19722, 63, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 1370, 62, 7635, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 628, 220, 220, 220, 220, 1635, 43160, 12331, 357, 28100, 1713, 3467, 63, 1370, 62, 7635, 59, 63, 318, 407, 4938, 8, 628, 220, 220, 220, 220, 1635, 11052, 12331, 357, 28100, 1713, 3467, 63, 1370, 62, 7635, 59, 63, 318, 407, 530, 286, 685, 29001, 3256, 705, 438, 3256, 705, 12, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 705, 32105, 12962, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 18364, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 4102, 263, 11, 4808, 2617, 62, 4102, 263, 11, 2205, 11639, 43328, 1366, 966, 19736, 6056, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 29620, 393, 5621, 262, 2168, 18364, 2099, 13, 1439, 4600, 19044, 29487, 8019, 18364, 3858, 198, 220, 220, 220, 1279, 4023, 1378, 6759, 29487, 8019, 13, 2398, 14, 15042, 14, 4102, 364, 62, 15042, 13, 6494, 29, 63, 62, 389, 4855, 13, 198, 220, 220, 220, 1058, 8189, 25, 63, 14202, 63, 9217, 645, 18364, 628, 220, 220, 220, 1058, 4906, 25, 4731, 393, 6045, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 4102, 263, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 43160, 12331, 357, 28100, 1713, 3467, 63, 4102, 263, 59, 63, 318, 407, 198, 220, 220, 220, 220, 4938, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 9233, 62, 22704, 796, 3119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1136, 62, 38238, 62, 22704, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2617, 62, 38238, 62, 22704, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2205, 11639, 27996, 9233, 16488, 6056, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 21394, 393, 3011, 262, 9233, 16488, 6056, 26, 9217, 1771, 262, 2168, 14448, 198, 220, 220, 220, 284, 262, 6103, 4165, 16488, 357, 25101, 8, 393, 9233, 16488, 357, 17821, 8, 628, 220, 220, 220, 1058, 4906, 25, 220, 25131, 628, 220, 220, 220, 11485, 16410, 58, 66, 519, 43072, 13, 448, 7, 1069, 26801, 62, 29487, 13, 1136, 62, 82, 746, 28413, 62, 2306, 375, 420, 28955, 2361, 11907, 198, 220, 220, 220, 11485, 11160, 12, 27568, 13269, 10314, 329, 198, 220, 220, 220, 11485, 1234, 346, 13, 29487, 13, 25076, 13, 27996, 13, 38238, 62, 22704, 628, 220, 220, 220, 1058, 430, 2696, 25, 357, 12518, 8686, 8, 43160, 12331, 357, 28100, 1713, 3467, 63, 38238, 62, 22704, 59, 63, 318, 198, 220, 220, 220, 220, 407, 4938, 8, 628, 220, 220, 220, 11485, 16410, 58, 437, 11907, 60, 198, 220, 220, 220, 37227, 198 ]
2.155766
8,654
# coding: utf-8 from handlers.BaseHandler import RequestBaseHandler import os class GetFavicon(RequestBaseHandler): """发布数据接口"""
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 32847, 13, 14881, 25060, 1330, 19390, 14881, 25060, 198, 11748, 28686, 628, 198, 4871, 3497, 37, 615, 4749, 7, 18453, 14881, 25060, 2599, 198, 220, 220, 220, 37227, 20998, 239, 30585, 225, 46763, 108, 162, 235, 106, 162, 236, 98, 20998, 96, 37811 ]
2.54717
53
import os import random import tqdm import shutil train_p = 0.9 #val_p = 0.05 test_p = 0.05 root_dir = "contoured-cut-outlines" all_dir = "all" train_dir = "train" val_dir = "val" test_dir = "test" if __name__ == "__main__": data = os.listdir(os.path.join(root_dir, all_dir)) random.shuffle(data) total_count = len(data) train_split = int(train_p * total_count) test_split = int((1 - test_p) * total_count) train_data = data[:train_split] val_data = data[train_split:test_split] test_data = data[test_split:] #newPath = shutil.copy("all/20063861.png", "test/20063861.png") for data in tqdm.tqdm(train_data, ascii=True, desc='train_data', unit='|image|'): newPath = shutil.copy(os.path.join(root_dir, all_dir, data), os.path.join(root_dir, train_dir, data)) for data in tqdm.tqdm(val_data, ascii=True, desc='val_data', unit='|image|'): newPath = shutil.copy(os.path.join(root_dir, all_dir, data), os.path.join(root_dir, val_dir, data)) for data in tqdm.tqdm(test_data, ascii=True, desc='test_data', unit='|image|'): newPath = shutil.copy(os.path.join(root_dir, all_dir, data), os.path.join(root_dir, test_dir, data))
[ 11748, 28686, 198, 11748, 4738, 198, 11748, 256, 80, 36020, 198, 11748, 4423, 346, 198, 198, 27432, 62, 79, 796, 657, 13, 24, 198, 2, 2100, 62, 79, 796, 657, 13, 2713, 198, 9288, 62, 79, 796, 657, 13, 2713, 198, 198, 15763, 62, 15908, 796, 366, 3642, 8167, 12, 8968, 12, 448, 6615, 1, 198, 439, 62, 15908, 796, 366, 439, 1, 198, 27432, 62, 15908, 796, 366, 27432, 1, 198, 2100, 62, 15908, 796, 366, 2100, 1, 198, 9288, 62, 15908, 796, 366, 9288, 1, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1366, 796, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 477, 62, 15908, 4008, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 7890, 8, 198, 220, 220, 220, 2472, 62, 9127, 796, 18896, 7, 7890, 8, 198, 220, 220, 220, 4512, 62, 35312, 796, 493, 7, 27432, 62, 79, 1635, 2472, 62, 9127, 8, 198, 220, 220, 220, 1332, 62, 35312, 796, 493, 19510, 16, 532, 1332, 62, 79, 8, 1635, 2472, 62, 9127, 8, 198, 220, 220, 220, 4512, 62, 7890, 796, 1366, 58, 25, 27432, 62, 35312, 60, 198, 220, 220, 220, 1188, 62, 7890, 796, 1366, 58, 27432, 62, 35312, 25, 9288, 62, 35312, 60, 198, 220, 220, 220, 1332, 62, 7890, 796, 1366, 58, 9288, 62, 35312, 47715, 628, 220, 220, 220, 1303, 3605, 15235, 796, 4423, 346, 13, 30073, 7203, 439, 14, 13330, 2548, 5333, 13, 11134, 1600, 366, 9288, 14, 13330, 2548, 5333, 13, 11134, 4943, 198, 220, 220, 220, 329, 1366, 287, 256, 80, 36020, 13, 83, 80, 36020, 7, 27432, 62, 7890, 11, 355, 979, 72, 28, 17821, 11, 1715, 11639, 27432, 62, 7890, 3256, 4326, 11639, 91, 9060, 91, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 15235, 796, 4423, 346, 13, 30073, 7, 418, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 477, 62, 15908, 11, 1366, 828, 28686, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 4512, 62, 15908, 11, 1366, 4008, 628, 220, 220, 220, 329, 1366, 287, 256, 80, 36020, 13, 83, 80, 36020, 7, 2100, 62, 7890, 11, 355, 979, 72, 28, 17821, 11, 1715, 11639, 2100, 62, 7890, 3256, 4326, 11639, 91, 9060, 91, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 15235, 796, 4423, 346, 13, 30073, 7, 418, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 477, 62, 15908, 11, 1366, 828, 28686, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 1188, 62, 15908, 11, 1366, 4008, 628, 220, 220, 220, 329, 1366, 287, 256, 80, 36020, 13, 83, 80, 36020, 7, 9288, 62, 7890, 11, 355, 979, 72, 28, 17821, 11, 1715, 11639, 9288, 62, 7890, 3256, 4326, 11639, 91, 9060, 91, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 649, 15235, 796, 4423, 346, 13, 30073, 7, 418, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 477, 62, 15908, 11, 1366, 828, 28686, 13, 6978, 13, 22179, 7, 15763, 62, 15908, 11, 1332, 62, 15908, 11, 1366, 4008, 198 ]
2.287356
522
import datetime import logging
[ 11748, 4818, 8079, 198, 11748, 18931, 628 ]
4.571429
7
from django.urls import path from .views import ( FriendRequestsView, MyFriendsView, create_follow_request, accept_follow_request, unfollow_request, reject_follow_request, accept_remote_follow_request, reject_remote_follow_request, UsersView ) app_name = 'follow' urlpatterns = [ path('users/<slug:to_username>/request/', view=create_follow_request, name='create_follow_request'), path('users/<slug:from_username>/accept/', view=accept_follow_request, name='accept_follow_request'), path('users/<slug:from_username>/reject/', view=reject_follow_request, name='reject_follow_request'), path('users/<slug:from_username>/unfollow/', view=unfollow_request, name='unfollow_request'), path('remote/accept/<path:from_user_url>', view=accept_remote_follow_request, name='accept_remote_request'), path('remote/reject/<path:from_user_url>', view=reject_remote_follow_request, name='reject_remote_request'), path('friend-requests', view=FriendRequestsView.as_view(), name='friend_requests'), path('friends', view=MyFriendsView.as_view(), name='friends'), path('', view=UsersView.as_view(), name='users'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 33571, 1330, 357, 198, 220, 220, 220, 9182, 16844, 3558, 7680, 11, 198, 220, 220, 220, 2011, 36705, 7680, 11, 198, 220, 220, 220, 2251, 62, 27780, 62, 25927, 11, 198, 220, 220, 220, 2453, 62, 27780, 62, 25927, 11, 198, 220, 220, 220, 3684, 950, 62, 25927, 11, 198, 220, 220, 220, 4968, 62, 27780, 62, 25927, 11, 198, 220, 220, 220, 2453, 62, 47960, 62, 27780, 62, 25927, 11, 198, 220, 220, 220, 4968, 62, 47960, 62, 27780, 62, 25927, 11, 198, 220, 220, 220, 18987, 7680, 198, 8, 198, 198, 1324, 62, 3672, 796, 705, 27780, 6, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 18417, 14, 27, 6649, 1018, 25, 1462, 62, 29460, 29, 14, 25927, 14, 3256, 1570, 28, 17953, 62, 27780, 62, 25927, 11, 1438, 11639, 17953, 62, 27780, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 18417, 14, 27, 6649, 1018, 25, 6738, 62, 29460, 29, 14, 13635, 14, 3256, 1570, 28, 13635, 62, 27780, 62, 25927, 11, 1438, 11639, 13635, 62, 27780, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 18417, 14, 27, 6649, 1018, 25, 6738, 62, 29460, 29, 14, 260, 752, 14, 3256, 1570, 28, 260, 752, 62, 27780, 62, 25927, 11, 1438, 11639, 260, 752, 62, 27780, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 18417, 14, 27, 6649, 1018, 25, 6738, 62, 29460, 29, 14, 403, 27780, 14, 3256, 1570, 28, 403, 27780, 62, 25927, 11, 1438, 11639, 403, 27780, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 47960, 14, 13635, 14, 27, 6978, 25, 6738, 62, 7220, 62, 6371, 29, 3256, 1570, 28, 13635, 62, 47960, 62, 27780, 62, 25927, 11, 1438, 11639, 13635, 62, 47960, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 47960, 14, 260, 752, 14, 27, 6978, 25, 6738, 62, 7220, 62, 6371, 29, 3256, 1570, 28, 260, 752, 62, 47960, 62, 27780, 62, 25927, 11, 1438, 11639, 260, 752, 62, 47960, 62, 25927, 33809, 198, 220, 220, 220, 3108, 10786, 6726, 12, 8897, 3558, 3256, 1570, 28, 23331, 16844, 3558, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 6726, 62, 8897, 3558, 33809, 198, 220, 220, 220, 3108, 10786, 36154, 3256, 1570, 28, 3666, 36705, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 36154, 33809, 198, 220, 220, 220, 3108, 10786, 3256, 1570, 28, 14490, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 18417, 33809, 198, 60, 198 ]
2.810096
416
def insertShiftArray(array, value): ''' inserts a value in middle of array. ''' if len(array)%2 !=0: oddOrEven = 1 else: oddOrEven = 0 half = len(array)//2 + oddOrEven # print(array[:half] + [value] + array[half:]) return array[:half] + [value] + array[half:] #insertShiftArray([1,2,4,5], 3) #insertShiftArray([1,2,4,5,6], 3)
[ 4299, 7550, 33377, 19182, 7, 18747, 11, 1988, 2599, 198, 220, 705, 7061, 198, 220, 42220, 257, 1988, 287, 3504, 286, 7177, 13, 198, 220, 705, 7061, 198, 220, 611, 18896, 7, 18747, 8, 4, 17, 14512, 15, 25, 198, 220, 220, 220, 5629, 5574, 6104, 796, 352, 198, 220, 2073, 25, 198, 220, 220, 220, 5629, 5574, 6104, 796, 657, 198, 220, 2063, 796, 18896, 7, 18747, 8, 1003, 17, 1343, 5629, 5574, 6104, 198, 220, 1303, 3601, 7, 18747, 58, 25, 13959, 60, 1343, 685, 8367, 60, 1343, 7177, 58, 13959, 25, 12962, 198, 220, 1441, 7177, 58, 25, 13959, 60, 1343, 685, 8367, 60, 1343, 7177, 58, 13959, 47715, 628, 198, 2, 28463, 33377, 19182, 26933, 16, 11, 17, 11, 19, 11, 20, 4357, 513, 8, 198, 198, 2, 28463, 33377, 19182, 26933, 16, 11, 17, 11, 19, 11, 20, 11, 21, 4357, 513, 8 ]
2.378378
148
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # file_name : download_pdb.py # time : 3/22/2019 13:54 # author : ruiyang # email : [email protected] # ------------------------------ import sys import pandas as pd import os def download_pdb(name_list,outpath): """ :function: download pdb archive by pdbid from server: https://files.rcsb.org/download/ :param name_list: 存储了pdbid的python list, set, numpy_array等可迭代对象 :param outpath: 文件存储路径 :return: none """ if not os.path.exists(outpath): os.mkdir(outpath) os.chdir(outpath) print('len of namelist:', len(name_list)) errorlist = [] for pdbid in name_list: print(pdbid) print('download begin') try: os.system('wget https://files.rcsb.org/download/' + pdbid[:4] + '.pdb') except: errorlist.append(pdbid) print('len of errorlist:',len(errorlist)) return(errorlist) if __name__ == '__main__': dataset_name = sys.argv[1] csv_path = r'../datasets/%s/%s_new.csv'%(dataset_name,dataset_name) outpath = r'../datasets/%s/pdb%s'%(dataset_name,dataset_name) f = open(csv_path,'r') mutation_df = pd.read_csv(f) f.close() pdbid_array = mutation_df.loc[:,'PDB'].values pdbid_array = set(pdbid_array) download_pdb(pdbid_array, outpath)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 2393, 62, 3672, 1058, 4321, 62, 79, 9945, 13, 9078, 198, 2, 640, 220, 220, 220, 220, 220, 1058, 513, 14, 1828, 14, 23344, 1511, 25, 4051, 198, 2, 1772, 220, 220, 220, 1058, 7422, 7745, 648, 198, 2, 3053, 220, 220, 220, 220, 1058, 266, 86, 62, 82, 563, 31, 24136, 13, 785, 198, 2, 34400, 26171, 198, 198, 11748, 25064, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 4299, 4321, 62, 79, 9945, 7, 3672, 62, 4868, 11, 448, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 8818, 25, 4321, 279, 9945, 15424, 416, 279, 9945, 312, 422, 4382, 25, 3740, 1378, 16624, 13, 6015, 36299, 13, 2398, 14, 15002, 14, 198, 220, 220, 220, 1058, 17143, 1438, 62, 4868, 25, 10263, 255, 246, 43636, 101, 12859, 228, 79, 9945, 312, 21410, 29412, 1351, 11, 900, 11, 299, 32152, 62, 18747, 163, 255, 231, 20998, 107, 32573, 255, 47987, 43380, 117, 164, 109, 94, 198, 220, 220, 220, 1058, 17143, 503, 6978, 25, 10545, 244, 229, 20015, 114, 27764, 246, 43636, 101, 164, 115, 107, 36181, 226, 198, 220, 220, 220, 1058, 7783, 25, 4844, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 448, 6978, 8, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 448, 6978, 8, 198, 220, 220, 220, 3601, 10786, 11925, 286, 299, 17983, 396, 25, 3256, 18896, 7, 3672, 62, 4868, 4008, 198, 220, 220, 220, 4049, 4868, 796, 17635, 198, 220, 220, 220, 329, 279, 9945, 312, 287, 1438, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 79, 9945, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15002, 2221, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 10786, 86, 1136, 3740, 1378, 16624, 13, 6015, 36299, 13, 2398, 14, 15002, 14, 6, 1343, 279, 9945, 312, 58, 25, 19, 60, 1343, 45302, 79, 9945, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 4868, 13, 33295, 7, 79, 9945, 312, 8, 198, 220, 220, 220, 3601, 10786, 11925, 286, 4049, 4868, 25, 3256, 11925, 7, 18224, 4868, 4008, 628, 220, 220, 220, 1441, 7, 18224, 4868, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 27039, 62, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 269, 21370, 62, 6978, 796, 374, 6, 40720, 19608, 292, 1039, 14, 4, 82, 14, 4, 82, 62, 3605, 13, 40664, 6, 4, 7, 19608, 292, 316, 62, 3672, 11, 19608, 292, 316, 62, 3672, 8, 198, 220, 220, 220, 503, 6978, 796, 374, 6, 40720, 19608, 292, 1039, 14, 4, 82, 14, 79, 9945, 4, 82, 6, 4, 7, 19608, 292, 316, 62, 3672, 11, 19608, 292, 316, 62, 3672, 8, 198, 220, 220, 220, 277, 796, 1280, 7, 40664, 62, 6978, 4032, 81, 11537, 198, 220, 220, 220, 15148, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 69, 8, 198, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 279, 9945, 312, 62, 18747, 796, 15148, 62, 7568, 13, 17946, 58, 25, 4032, 5760, 33, 6, 4083, 27160, 198, 220, 220, 220, 279, 9945, 312, 62, 18747, 796, 900, 7, 79, 9945, 312, 62, 18747, 8, 198, 220, 220, 220, 4321, 62, 79, 9945, 7, 79, 9945, 312, 62, 18747, 11, 503, 6978, 8 ]
2.060278
647
''' Generic st7735 128x128 LCD module on esp32 ''' from ili9XXX import ili9341, MADCTL_MY, MADCTL_MV disp = ili9341( mhz=3, mosi=18, clk=19, cs=13, dc=12, rst=4, power=-1, backlight=15, backlight_on=1, width=128, height=128, start_x=2, start_y=1, invert=False, rot=MADCTL_MY | MADCTL_MV)
[ 7061, 6, 198, 46189, 336, 3324, 2327, 13108, 87, 12762, 23598, 8265, 319, 15024, 2624, 198, 7061, 6, 198, 198, 6738, 220, 2403, 24, 43145, 1330, 220, 2403, 24, 33660, 11, 45878, 4177, 43, 62, 26708, 11, 45878, 4177, 43, 62, 44, 53, 198, 198, 6381, 79, 796, 220, 2403, 24, 33660, 7, 198, 220, 220, 220, 285, 32179, 28, 18, 11, 198, 220, 220, 220, 10867, 72, 28, 1507, 11, 198, 220, 220, 220, 537, 74, 28, 1129, 11, 198, 220, 220, 220, 50115, 28, 1485, 11, 198, 220, 220, 220, 30736, 28, 1065, 11, 198, 220, 220, 220, 374, 301, 28, 19, 11, 198, 220, 220, 220, 1176, 10779, 16, 11, 198, 220, 220, 220, 736, 2971, 28, 1314, 11, 198, 220, 220, 220, 736, 2971, 62, 261, 28, 16, 11, 198, 220, 220, 220, 9647, 28, 12762, 11, 198, 220, 220, 220, 6001, 28, 12762, 11, 198, 220, 220, 220, 923, 62, 87, 28, 17, 11, 198, 220, 220, 220, 923, 62, 88, 28, 16, 11, 198, 220, 220, 220, 287, 1851, 28, 25101, 11, 198, 220, 220, 220, 5724, 28, 44, 2885, 4177, 43, 62, 26708, 930, 45878, 4177, 43, 62, 44, 53, 8, 198 ]
1.758794
199
# Authors: Alexandre Gramfort <[email protected]> # Eric Larson <[email protected]> # Joan Massich <[email protected]> # Guillaume Favelier <[email protected]> # # License: Simplified BSD import pytest import warnings def has_vtki(): """Check that vtki is installed.""" try: import vtki # noqa: F401 return True except ImportError: return False def has_mayavi(): """Check that mayavi is installed.""" try: with warnings.catch_warnings(record=True): # traits from mayavi import mlab # noqa F401 return True except ImportError: return False skips_if_not_mayavi = pytest.mark.skipif(not(has_mayavi()), reason='requires mayavi') skips_if_not_vtki = pytest.mark.skipif(not(has_vtki()), reason='requires vtki')
[ 2, 46665, 25, 21000, 260, 20159, 3319, 1279, 1000, 87, 49078, 13, 4546, 3319, 31, 46813, 785, 12, 1845, 396, 3055, 13, 8310, 29, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7651, 42630, 1279, 75, 12613, 13, 35626, 13, 67, 31, 14816, 13, 785, 29, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26640, 5674, 488, 1279, 26165, 1134, 31, 14816, 13, 785, 29, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1962, 5049, 2454, 18350, 626, 959, 1279, 5162, 5049, 2454, 13, 13331, 626, 959, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 13789, 25, 45157, 1431, 347, 10305, 198, 198, 11748, 12972, 9288, 198, 11748, 14601, 628, 198, 4299, 468, 62, 36540, 4106, 33529, 198, 220, 220, 220, 37227, 9787, 326, 410, 83, 4106, 318, 6589, 526, 15931, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 410, 83, 4106, 220, 1303, 645, 20402, 25, 376, 21844, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 4299, 468, 62, 11261, 15820, 33529, 198, 220, 220, 220, 37227, 9787, 326, 743, 15820, 318, 6589, 526, 15931, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 14601, 13, 40198, 62, 40539, 654, 7, 22105, 28, 17821, 2599, 220, 1303, 12796, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 743, 15820, 1330, 285, 23912, 220, 1303, 645, 20402, 376, 21844, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 8135, 2419, 62, 361, 62, 1662, 62, 11261, 15820, 796, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 7, 10134, 62, 11261, 15820, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 11639, 47911, 743, 15820, 11537, 198, 8135, 2419, 62, 361, 62, 1662, 62, 36540, 4106, 796, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 7, 10134, 62, 36540, 4106, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 11639, 47911, 410, 83, 4106, 11537, 198 ]
2.123596
445
try: from setuptools import setup from setuptools import Extension except ImportError: from distutils.core import setup from distutils.extension import Extension #import distutils.sysconfig with open("src/geocat/comp/version.py") as f: exec(f.read()) setup(name="geocat.comp", package_dir={ '': 'src', 'geocat': 'src/geocat', 'geocat.comp': 'src/geocat/comp' }, namespace_packages=['geocat'], packages=["geocat", "geocat.comp"], version=__version__, install_requires=['numpy', 'xarray', 'dask[complete]'])
[ 28311, 25, 198, 220, 220, 220, 422, 900, 37623, 10141, 1330, 9058, 198, 220, 220, 220, 422, 900, 37623, 10141, 1330, 27995, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 1233, 26791, 13, 7295, 1330, 9058, 198, 220, 220, 220, 422, 1233, 26791, 13, 2302, 3004, 1330, 27995, 198, 198, 2, 11748, 1233, 26791, 13, 17597, 11250, 198, 198, 4480, 1280, 7203, 10677, 14, 469, 420, 265, 14, 5589, 14, 9641, 13, 9078, 4943, 355, 277, 25, 198, 220, 220, 220, 2452, 7, 69, 13, 961, 28955, 198, 198, 40406, 7, 3672, 2625, 469, 420, 265, 13, 5589, 1600, 198, 220, 220, 220, 220, 220, 5301, 62, 15908, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10148, 25, 705, 10677, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 469, 420, 265, 10354, 705, 10677, 14, 469, 420, 265, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 469, 420, 265, 13, 5589, 10354, 705, 10677, 14, 469, 420, 265, 14, 5589, 6, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 25745, 62, 43789, 28, 17816, 469, 420, 265, 6, 4357, 198, 220, 220, 220, 220, 220, 10392, 28, 14692, 469, 420, 265, 1600, 366, 469, 420, 265, 13, 5589, 33116, 198, 220, 220, 220, 220, 220, 2196, 28, 834, 9641, 834, 11, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 17816, 77, 32152, 3256, 705, 87, 18747, 3256, 705, 67, 2093, 58, 20751, 49946, 12962, 198 ]
2.333333
255
import numpy as np from NN3_tf import NN3_tf from sklearn.model_selection import train_test_split from nn_utils import crossover, Type, sort_by_fittest, read_dataset X, Y = read_dataset(180, 500) train_x, test_x, train_y, test_y = train_test_split( X, Y, test_size=0.3, random_state=1) X, Y = read_dataset(180, 500) train_x, test_x, train_y, test_y = train_test_split(X, Y, test_size=0.3, random_state=1) epochs = 600 best_n_children = 4 population_size = 20 gen = {} generations = 10 dataset = train_x, train_y, test_x, test_y ## Generate a poblation of neural networks each trained from a random starting weigth ## ordered by the best performers (low error) init_pob = [NN3_tf(dataset, epochs) for i in range(population_size)] init_pob = sort_by_fittest([(nn.get_acc(), nn) for nn in init_pob], Type.accuracy) print("600,{},{}".format(init_pob[0][1].get_error(),init_pob[0][1].get_acc())) gen[0] = init_pob for x in range(1, generations): population = [] for i in range(population_size): parent1 = gen[x - 1][np.random.randint(best_n_children)][1] parent2 = gen[x - 1][np.random.randint(best_n_children)][1] w_child = crossover(parent1, parent2) aux = NN3_tf(dataset, epochs, w_child) population += [tuple((aux.get_acc(), aux))] gen[x] = sort_by_fittest(population, Type.accuracy) net = gen[x][0][1] print("{},{},{}".format((x + 1) * epochs, net.get_error(), net.get_acc())) del population
[ 11748, 299, 32152, 355, 45941, 198, 6738, 399, 45, 18, 62, 27110, 1330, 399, 45, 18, 62, 27110, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 299, 77, 62, 26791, 1330, 27668, 11, 5994, 11, 3297, 62, 1525, 62, 69, 715, 395, 11, 1100, 62, 19608, 292, 316, 198, 198, 55, 11, 575, 796, 1100, 62, 19608, 292, 316, 7, 15259, 11, 5323, 8, 198, 27432, 62, 87, 11, 1332, 62, 87, 11, 4512, 62, 88, 11, 1332, 62, 88, 796, 4512, 62, 9288, 62, 35312, 7, 198, 220, 220, 220, 1395, 11, 575, 11, 1332, 62, 7857, 28, 15, 13, 18, 11, 4738, 62, 5219, 28, 16, 8, 628, 198, 198, 55, 11, 575, 796, 1100, 62, 19608, 292, 316, 7, 15259, 11, 5323, 8, 198, 27432, 62, 87, 11, 1332, 62, 87, 11, 4512, 62, 88, 11, 1332, 62, 88, 796, 4512, 62, 9288, 62, 35312, 7, 55, 11, 575, 11, 1332, 62, 7857, 28, 15, 13, 18, 11, 4738, 62, 5219, 28, 16, 8, 198, 198, 538, 5374, 82, 796, 10053, 198, 13466, 62, 77, 62, 17197, 796, 604, 198, 39748, 62, 7857, 796, 1160, 198, 5235, 796, 23884, 198, 8612, 602, 796, 838, 198, 198, 19608, 292, 316, 796, 4512, 62, 87, 11, 4512, 62, 88, 11, 1332, 62, 87, 11, 1332, 62, 88, 198, 2235, 2980, 378, 257, 279, 672, 7592, 286, 17019, 7686, 1123, 8776, 422, 257, 4738, 3599, 356, 328, 400, 198, 2235, 6149, 416, 262, 1266, 23827, 357, 9319, 4049, 8, 198, 15003, 62, 79, 672, 796, 685, 6144, 18, 62, 27110, 7, 19608, 292, 316, 11, 36835, 82, 8, 329, 1312, 287, 2837, 7, 39748, 62, 7857, 15437, 198, 15003, 62, 79, 672, 796, 3297, 62, 1525, 62, 69, 715, 395, 26933, 7, 20471, 13, 1136, 62, 4134, 22784, 299, 77, 8, 329, 299, 77, 287, 2315, 62, 79, 672, 4357, 5994, 13, 4134, 23843, 8, 198, 4798, 7203, 8054, 11, 90, 5512, 90, 92, 1911, 18982, 7, 15003, 62, 79, 672, 58, 15, 7131, 16, 4083, 1136, 62, 18224, 22784, 15003, 62, 79, 672, 58, 15, 7131, 16, 4083, 1136, 62, 4134, 3419, 4008, 198, 198, 5235, 58, 15, 60, 796, 2315, 62, 79, 672, 198, 198, 1640, 2124, 287, 2837, 7, 16, 11, 10439, 2599, 198, 220, 220, 220, 3265, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 39748, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 16, 796, 2429, 58, 87, 532, 352, 7131, 37659, 13, 25120, 13, 25192, 600, 7, 13466, 62, 77, 62, 17197, 8, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 17, 796, 2429, 58, 87, 532, 352, 7131, 37659, 13, 25120, 13, 25192, 600, 7, 13466, 62, 77, 62, 17197, 8, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 9410, 796, 27668, 7, 8000, 16, 11, 2560, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27506, 796, 399, 45, 18, 62, 27110, 7, 19608, 292, 316, 11, 36835, 82, 11, 266, 62, 9410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3265, 15853, 685, 83, 29291, 19510, 14644, 13, 1136, 62, 4134, 22784, 27506, 4008, 60, 198, 220, 220, 220, 2429, 58, 87, 60, 796, 3297, 62, 1525, 62, 69, 715, 395, 7, 39748, 11, 5994, 13, 4134, 23843, 8, 198, 220, 220, 220, 2010, 796, 2429, 58, 87, 7131, 15, 7131, 16, 60, 198, 220, 220, 220, 3601, 7203, 90, 5512, 90, 5512, 90, 92, 1911, 18982, 19510, 87, 1343, 352, 8, 1635, 36835, 82, 11, 2010, 13, 1136, 62, 18224, 22784, 2010, 13, 1136, 62, 4134, 3419, 4008, 198, 220, 220, 220, 1619, 3265, 628 ]
2.365539
621
"""Features Scientific Machine Learning Benchmark: A benchmark of regression models in chem- and materials informatics. 2020, Matthias Rupp, Citrine Informatics. Features transform datasets. """ from smlb import DataValuedTransformation, IdentityTransformation, DataPipelineTransformation class Features(DataValuedTransformation): """Abstract base class for features.""" # currently adds no functionality, but serves as common base class pass class IdentityFeatures(Features, IdentityTransformation): """Leaves dataset unchanged.""" pass class DataPipelineFeatures(Features, DataPipelineTransformation): """Applies transformation steps sequentially.""" pass
[ 37811, 23595, 198, 198, 23010, 811, 10850, 18252, 25187, 4102, 25, 220, 198, 32, 18335, 286, 20683, 4981, 287, 4607, 12, 290, 5696, 4175, 23372, 13, 198, 42334, 11, 45524, 4448, 371, 7211, 11, 15792, 7640, 554, 18982, 873, 13, 198, 198, 23595, 6121, 40522, 13, 198, 37811, 628, 198, 6738, 895, 23160, 1330, 6060, 7762, 1739, 8291, 1161, 11, 27207, 8291, 1161, 11, 6060, 47, 541, 4470, 8291, 1161, 628, 198, 4871, 17571, 7, 6601, 7762, 1739, 8291, 1161, 2599, 198, 220, 220, 220, 37227, 23839, 2779, 1398, 329, 3033, 526, 15931, 628, 220, 220, 220, 1303, 3058, 6673, 645, 11244, 11, 475, 9179, 355, 2219, 2779, 1398, 628, 220, 220, 220, 1208, 628, 198, 4871, 27207, 23595, 7, 23595, 11, 27207, 8291, 1161, 2599, 198, 220, 220, 220, 37227, 3123, 3080, 27039, 21588, 526, 15931, 628, 220, 220, 220, 1208, 628, 198, 4871, 6060, 47, 541, 4470, 23595, 7, 23595, 11, 6060, 47, 541, 4470, 8291, 1161, 2599, 198, 220, 220, 220, 37227, 4677, 13508, 13389, 4831, 4726, 3746, 526, 15931, 628, 220, 220, 220, 1208, 198 ]
3.916201
179
from SimPEG import Problem, Survey, Utils, Maps import Convolution import numpy as np
[ 6738, 3184, 47, 7156, 1330, 20647, 11, 13084, 11, 7273, 4487, 11, 20347, 198, 11748, 34872, 2122, 198, 11748, 299, 32152, 355, 45941, 628 ]
3.625
24
from django.conf.urls import patterns, url from django.contrib import admin admin.autodiscover() urlpatterns = patterns('_1327.information_pages.views', url(r"create$", 'create', name='create'), url(r"(?P<title>[\w-]+)/edit$", 'edit', name='edit'), url(r"(?P<title>[\w-]+)/autosave$", 'autosave', name='autosave'), url(r"(?P<title>[\w-]+)/versions$", 'versions', name="versions"), url(r"(?P<title>[\w-]+)/permissions$", 'permissions', name="permissions"), url(r"(?P<title>[\w-]+)/attachments$", 'attachments', name="attachments"), url(r"(?P<title>[\w-]+)$", 'view_information', name='view_information'), )
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 28482, 13, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 7572, 10786, 62, 1485, 1983, 13, 17018, 62, 31126, 13, 33571, 3256, 198, 197, 6371, 7, 81, 1, 17953, 3, 1600, 705, 17953, 3256, 1438, 11639, 17953, 33809, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 48688, 20679, 19312, 3, 1600, 705, 19312, 3256, 1438, 11639, 19312, 33809, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 48688, 20679, 2306, 418, 1015, 3, 1600, 705, 2306, 418, 1015, 3256, 1438, 11639, 2306, 418, 1015, 33809, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 48688, 20679, 47178, 3, 1600, 705, 47178, 3256, 1438, 2625, 47178, 12340, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 48688, 20679, 525, 8481, 3, 1600, 705, 525, 8481, 3256, 1438, 2625, 525, 8481, 12340, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 48688, 20679, 47348, 902, 3, 1600, 705, 47348, 902, 3256, 1438, 2625, 47348, 902, 12340, 198, 197, 6371, 7, 81, 18109, 30, 47, 27, 7839, 36937, 59, 86, 12, 60, 28988, 3, 1600, 705, 1177, 62, 17018, 3256, 1438, 11639, 1177, 62, 17018, 33809, 198, 8, 198 ]
2.594937
237
import random forests=[] forestload=[] forestmaxload=[] stones1=[] stoneload=[] stonemaxload=[] frpl=[] frpl1=[]
[ 11748, 4738, 198, 754, 6448, 28, 21737, 198, 29623, 2220, 28, 21737, 198, 29623, 9806, 2220, 28, 21737, 198, 28750, 16, 28, 21737, 198, 3743, 417, 1170, 28, 21737, 198, 3743, 368, 897, 2220, 28, 21737, 198, 8310, 489, 28, 21737, 198, 8310, 489, 16, 28, 21737, 198 ]
2.354167
48
from yz.nav_tools import FrameInfo from yz.params import * from yz.rl_policy import PolicyNetwork, ValueNetwork from yz.utils import soft_update_from_to from ai2thor.controller import Controller from collections import deque import random import numpy as np import torch import torch.nn as nn import torch.optim as optim
[ 6738, 331, 89, 13, 28341, 62, 31391, 1330, 25184, 12360, 198, 6738, 331, 89, 13, 37266, 1330, 1635, 198, 6738, 331, 89, 13, 45895, 62, 30586, 1330, 7820, 26245, 11, 11052, 26245, 198, 6738, 331, 89, 13, 26791, 1330, 2705, 62, 19119, 62, 6738, 62, 1462, 198, 198, 6738, 257, 72, 17, 400, 273, 13, 36500, 1330, 22741, 198, 6738, 17268, 1330, 390, 4188, 198, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 40085, 355, 6436, 198 ]
3.473118
93
test = { 'name': 'accumulate', 'points': 0, 'suites': [ { 'cases': [ { 'code': r""" scm> (accumulate + 0 4 square) 30 """, 'hidden': False, 'locked': False } ], 'scored': False, 'setup': r""" scm> (load 'lab09_extra) scm> (define (square x) (* x x)) """, 'teardown': '', 'type': 'scheme' }, { 'cases': [ { 'code': r""" scm> (accumulate * 3 3 identity) 18 """, 'hidden': False, 'locked': False } ], 'scored': False, 'setup': r""" scm> (load 'lab09_extra) scm> (define (identity x) x) """, 'teardown': '', 'type': 'scheme' }, { 'cases': [ { 'code': r""" scm> (accumulate + 1 5 add-one) 21 """, 'hidden': False, 'locked': False } ], 'scored': False, 'setup': r""" scm> (load 'lab09_extra) scm> (define (add-one x) (+ x 1)) """, 'teardown': '', 'type': 'scheme' } ] }
[ 9288, 796, 1391, 198, 220, 705, 3672, 10354, 705, 4134, 388, 5039, 3256, 198, 220, 705, 13033, 10354, 657, 11, 198, 220, 705, 2385, 2737, 10354, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 705, 33964, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 357, 4134, 388, 5039, 1343, 657, 604, 6616, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1542, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 705, 1416, 1850, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 705, 40406, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 2220, 705, 23912, 2931, 62, 26086, 8, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 13086, 357, 23415, 2124, 8, 20789, 2124, 2124, 4008, 198, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 705, 660, 446, 593, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15952, 1326, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 705, 33964, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 357, 4134, 388, 5039, 1635, 513, 513, 5369, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 705, 1416, 1850, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 705, 40406, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 2220, 705, 23912, 2931, 62, 26086, 8, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 13086, 357, 738, 414, 2124, 8, 2124, 8, 198, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 705, 660, 446, 593, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15952, 1326, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 705, 33964, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 357, 4134, 388, 5039, 1343, 352, 642, 751, 12, 505, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2310, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 705, 1416, 1850, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 705, 40406, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 2220, 705, 23912, 2931, 62, 26086, 8, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 13086, 357, 2860, 12, 505, 2124, 8, 11502, 2124, 352, 4008, 198, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 705, 660, 446, 593, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15952, 1326, 6, 198, 220, 220, 220, 1782, 198, 220, 2361, 198, 92 ]
1.655028
716
r""" communicate with interactive subprocess, such as GHCi, and get its output >>> s = interact('ghci', ':t 1\n' + EOT) >>> get_ghci_body(s) 'Prelude> :t 1\n1 :: (Num t) => t' >>> s = interact('swipl', 'X = 1 - 1.\n' + EOT) >>> get_swipl_body(s) '?- X = 1 - 1.\nX = 1-1.' >>> s = interact('python', 'import this\n' + EOT) >>> get_python_body(s).split('\n')[:2] ['>>> import this', 'The Zen of Python, by Tim Peters'] Scala takes more than 1 second (default timeout) to respond. I set timeout=10.0 to wait it. >>> s = interact('scala-2.10', '1\n' + EOT, timeout=10.0) >>> get_scala_body(s) 'scala> 1\nres0: Int = 1' """ from select import select import os import pty import re TYPESCRIPT = 'tmp.log' EOT = '\x04' # ^D: End of Transmission ESCAPE_SEQUENCE = ( '\x1B\[\d+(;\d+)*m|' # color '\x1B\[\d+;\d+[Hf]|' # move cursor absolute '\x1B\[\d*[ABCD]|' # move cursor relative '\x1B\[[DMELsu]|' # other cursor? '\x1B\[\?1[lh]|' # ? from GHCi '\x1B[=>]|' # ? from GHCi '\x1B\[0?J|' # delete back '\x1B\[1J|' # delete forward? '\x1B\[2J|\x1B\*|' # clear screen '\x1B\[0?K|' # kill right line '\x1B\[1K|' # kill left line '\x1B\[2K|' # kill whole line '\x1B\[6n') # console input? # ported from 'pty' library STDIN_FILENO = 0 CHILD = 0 def spawn(argv, master_read, stdin_read, commands_to_run, timeout): """Create a spawned process.""" if type(argv) == type(''): argv = (argv,) pid, master_fd = pty.fork() if pid == CHILD: os.execlp(argv[0], *argv) pty._writen(master_fd, commands_to_run) fds = [master_fd] while True: rfds, wfds, xfds = select(fds, [], [], timeout) if not rfds: # timeout break data = master_read(master_fd) if not data: # Reached EOF. break os.close(master_fd) # end: ported from 'pty' library if __name__ == '__main__': _test()
[ 81, 37811, 198, 10709, 5344, 351, 14333, 850, 14681, 11, 884, 355, 46615, 72, 11, 290, 651, 663, 5072, 198, 198, 33409, 264, 796, 9427, 10786, 456, 979, 3256, 705, 25, 83, 352, 59, 77, 6, 1343, 412, 2394, 8, 198, 33409, 651, 62, 456, 979, 62, 2618, 7, 82, 8, 198, 6, 47, 2411, 2507, 29, 1058, 83, 352, 59, 77, 16, 7904, 357, 33111, 256, 8, 5218, 256, 6, 198, 198, 33409, 264, 796, 9427, 10786, 2032, 24705, 3256, 705, 55, 796, 352, 532, 352, 13, 59, 77, 6, 1343, 412, 2394, 8, 198, 33409, 651, 62, 2032, 24705, 62, 2618, 7, 82, 8, 198, 30960, 12, 1395, 796, 352, 532, 352, 13, 59, 77, 55, 796, 352, 12, 16, 2637, 198, 198, 33409, 264, 796, 9427, 10786, 29412, 3256, 705, 11748, 428, 59, 77, 6, 1343, 412, 2394, 8, 198, 33409, 651, 62, 29412, 62, 2618, 7, 82, 737, 35312, 10786, 59, 77, 11537, 58, 25, 17, 60, 198, 17816, 33409, 1330, 428, 3256, 705, 464, 14760, 286, 11361, 11, 416, 5045, 15722, 20520, 198, 198, 3351, 6081, 2753, 517, 621, 352, 1218, 357, 12286, 26827, 8, 284, 3031, 13, 198, 40, 900, 26827, 28, 940, 13, 15, 284, 4043, 340, 13, 198, 198, 33409, 264, 796, 9427, 10786, 1416, 6081, 12, 17, 13, 940, 3256, 705, 16, 59, 77, 6, 1343, 412, 2394, 11, 26827, 28, 940, 13, 15, 8, 198, 33409, 651, 62, 1416, 6081, 62, 2618, 7, 82, 8, 198, 338, 66, 6081, 29, 352, 59, 77, 411, 15, 25, 2558, 796, 352, 6, 198, 37811, 198, 198, 6738, 2922, 1330, 2922, 198, 11748, 28686, 198, 11748, 279, 774, 198, 11748, 302, 198, 198, 9936, 47, 1546, 36584, 51, 796, 705, 22065, 13, 6404, 6, 198, 36, 2394, 796, 705, 59, 87, 3023, 6, 220, 1303, 10563, 35, 25, 5268, 286, 41653, 198, 1546, 33177, 36, 62, 5188, 10917, 18310, 796, 357, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 59, 67, 33747, 26, 59, 67, 10, 27493, 76, 91, 6, 220, 1303, 3124, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 59, 67, 10, 26, 59, 67, 10, 58, 39, 69, 60, 91, 6, 220, 1303, 1445, 23493, 4112, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 59, 67, 9, 58, 24694, 35, 60, 91, 6, 220, 220, 220, 1303, 1445, 23493, 3585, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 30109, 23127, 3698, 2385, 60, 91, 6, 220, 220, 220, 220, 1303, 584, 23493, 30, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 59, 30, 16, 58, 75, 71, 60, 91, 6, 220, 220, 220, 220, 220, 1303, 5633, 422, 46615, 72, 198, 220, 220, 220, 705, 59, 87, 16, 33, 58, 14804, 60, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5633, 422, 46615, 72, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 15, 30, 41, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 736, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 16, 41, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 2651, 30, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 17, 41, 91, 59, 87, 16, 33, 59, 9, 91, 6, 220, 220, 220, 1303, 1598, 3159, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 15, 30, 42, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1494, 826, 1627, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 16, 42, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1494, 1364, 1627, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 17, 42, 91, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1494, 2187, 1627, 198, 220, 220, 220, 705, 59, 87, 16, 33, 59, 58, 21, 77, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8624, 5128, 30, 198, 198, 2, 49702, 422, 705, 5835, 6, 5888, 198, 32147, 1268, 62, 46700, 1677, 46, 796, 657, 198, 198, 3398, 26761, 796, 657, 198, 198, 4299, 10922, 7, 853, 85, 11, 4958, 62, 961, 11, 14367, 259, 62, 961, 11, 9729, 62, 1462, 62, 5143, 11, 26827, 2599, 198, 220, 220, 220, 37227, 16447, 257, 29013, 1429, 526, 15931, 198, 220, 220, 220, 611, 2099, 7, 853, 85, 8, 6624, 2099, 7, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 85, 796, 357, 853, 85, 35751, 198, 220, 220, 220, 46514, 11, 4958, 62, 16344, 796, 279, 774, 13, 32523, 3419, 198, 220, 220, 220, 611, 46514, 6624, 5870, 26761, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 13499, 565, 79, 7, 853, 85, 58, 15, 4357, 1635, 853, 85, 8, 628, 220, 220, 220, 279, 774, 13557, 8933, 268, 7, 9866, 62, 16344, 11, 9729, 62, 1462, 62, 5143, 8, 628, 220, 220, 220, 277, 9310, 796, 685, 9866, 62, 16344, 60, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 9310, 11, 266, 69, 9310, 11, 2124, 69, 9310, 796, 2922, 7, 69, 9310, 11, 685, 4357, 685, 4357, 26827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 374, 69, 9310, 25, 220, 1303, 26827, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 4958, 62, 961, 7, 9866, 62, 16344, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1366, 25, 220, 1303, 13618, 412, 19238, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 28686, 13, 19836, 7, 9866, 62, 16344, 8, 198, 2, 886, 25, 49702, 422, 705, 5835, 6, 5888, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4808, 9288, 3419, 198 ]
1.97931
1,015
#!/usr/bin/env python3 # _*_ coding: utf-8 _*_ """Iterate over extracted docx content. :author: Shay Hill :created: 6/28/2019 This package extracts docx text as:: [ # tables [ # table [ # row [ # cell "" # paragraph ] ] ] ] These functions help manipulate that deep nest without deep indentation. """ from typing import Any, Iterable, Iterator, List, NamedTuple, Sequence, Tuple TablesList = Sequence[Sequence[Sequence[Sequence[Any]]]] IndexedItem = NamedTuple("IndexedItem", [("index", Tuple[int, ...]), ("value", Any)]) def enum_at_depth(nested: Sequence[Any], depth: int) -> Iterator[IndexedItem]: """ Enumerate over a nested sequence at depth. :param nested: a (nested) sequence :param depth: depth of iteration * ``1`` => ``((i,), nested[i])`` * ``2`` => ``((i, j), nested[:][j])`` * ``3`` => ``((i, j, k), nested[:][:][k])`` * ... :returns: tuples (tuple "address", item) >>> sequence = [ ... [[["a", "b"], ["c"]], [["d", "e"]]], ... [[["f"], ["g", "h"]]] ... ] >>> for x in enum_at_depth(sequence, 1): print(x) IndexedItem(index=(0,), value=[[['a', 'b'], ['c']], [['d', 'e']]]) IndexedItem(index=(1,), value=[[['f'], ['g', 'h']]]) >>> for x in enum_at_depth(sequence, 2): print(x) IndexedItem(index=(0, 0), value=[['a', 'b'], ['c']]) IndexedItem(index=(0, 1), value=[['d', 'e']]) IndexedItem(index=(1, 0), value=[['f'], ['g', 'h']]) >>> for x in enum_at_depth(sequence, 3): print(x) IndexedItem(index=(0, 0, 0), value=['a', 'b']) IndexedItem(index=(0, 0, 1), value=['c']) IndexedItem(index=(0, 1, 0), value=['d', 'e']) IndexedItem(index=(1, 0, 0), value=['f']) IndexedItem(index=(1, 0, 1), value=['g', 'h']) >>> for x in enum_at_depth(sequence, 4): print(x) IndexedItem(index=(0, 0, 0, 0), value='a') IndexedItem(index=(0, 0, 0, 1), value='b') IndexedItem(index=(0, 0, 1, 0), value='c') IndexedItem(index=(0, 1, 0, 0), value='d') IndexedItem(index=(0, 1, 0, 1), value='e') IndexedItem(index=(1, 0, 0, 0), value='f') IndexedItem(index=(1, 0, 1, 0), value='g') IndexedItem(index=(1, 0, 1, 1), value='h') >>> list(enum_at_depth(sequence, 5)) Traceback (most recent call last): ... TypeError: will not iterate over sequence item This error is analogous to the ``TypeError: 'int' object is not iterable`` you would see if attempting to enumerate over a non-iterable. In this case, you've attempted to enumerate over an item that *may* be iterable, but is not of the same type as the ``nested`` sequence argument. This type checking is how we can safely descend into a nested list of strings. """ if depth < 1: raise ValueError("depth argument must be >= 1") argument_type = type(nested) def enumerate_next_depth(enumd: Iterable[IndexedItem]) -> Iterator[IndexedItem]: """ Descend into a nested sequence, enumerating along descent :param enumd: tuples (tuple of indices, sequences) :return: updated index tuples with items from each sequence. """ for index_tuple, sequence in enumd: if type(sequence) != argument_type: raise TypeError("will not iterate over sequence item") for i, item in enumerate(sequence): yield IndexedItem(index_tuple + (i,), item) depth_n = (IndexedItem((i,), x) for i, x in enumerate(nested)) for depth in range(1, depth): depth_n = enumerate_next_depth(depth_n) return depth_n def iter_at_depth(nested: Sequence[Any], depth: int) -> Iterator[Any]: """ Iterate over a nested sequence at depth. :param nested: a (nested) sequence :param depth: depth of iteration * ``1`` => ``nested[i]`` * ``2`` => ``nested[:][j]`` * ``3`` => ``nested[:][:][k]`` * ... :returns: sub-sequences or items in nested >>> sequence = [ ... [[["a", "b"], ["c"]], [["d", "e"]]], ... [[["f"], ["g", "h"]]] ... ] >>> for x in iter_at_depth(sequence, 1): print(x) [[['a', 'b'], ['c']], [['d', 'e']]] [[['f'], ['g', 'h']]] >>> for x in iter_at_depth(sequence, 2): print(x) [['a', 'b'], ['c']] [['d', 'e']] [['f'], ['g', 'h']] >>> for x in iter_at_depth(sequence, 3): print(x) ['a', 'b'] ['c'] ['d', 'e'] ['f'] ['g', 'h'] >>> list(iter_at_depth(sequence, 4)) ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] """ return (value for index, value in enum_at_depth(nested, depth)) def iter_tables(tables: TablesList) -> Iterator[List[List[List[Any]]]]: """ Iterate over ``tables[i]`` Analog of iter_at_depth(tables, 1) :param tables: ``[[[["string"]]]]`` :return: ``tables[0], tables[1], ... tables[i]`` """ return iter_at_depth(tables, 1) def iter_rows(tables: TablesList) -> Iterator[List[List[Any]]]: """ Iterate over ``tables[:][j]`` Analog of iter_at_depth(tables, 2) :param tables: ``[[[["string"]]]]`` :return: ``tables[0][0], tables[0][1], ... tables[i][j]`` """ return iter_at_depth(tables, 2) def iter_cells(tables: TablesList) -> Iterator[List[Any]]: """ Iterate over ``tables[:][:][k]`` Analog of iter_at_depth(tables, 3) :param tables: ``[[[["string"]]]]`` :return: ``tables[0][0][0], tables[0][0][1], ... tables[i][j][k]`` """ return iter_at_depth(tables, 3) def iter_paragraphs(tables: TablesList) -> Iterator[str]: """ Iterate over ``tables[:][:][:][l]`` Analog of iter_at_depth(tables, 4) :param tables: ``[[[["string"]]]]`` :return: ``tables[0][0][0][0], tables[0][0][0][1], ... tables[i][j][k][l]`` """ return iter_at_depth(tables, 4) def enum_tables(tables: TablesList) -> Iterator[IndexedItem]: """ Enumerate over ``tables[i]`` Analog of enum_at_depth(tables, 1) :param tables: ``[[[["string"]]]]`` :return: ``((0, ), tables[0]) ... , ((i, ), tables[i])`` """ return enum_at_depth(tables, 1) def enum_rows(tables: TablesList) -> Iterator[IndexedItem]: """ Enumerate over ``tables[:][j]`` Analog of enum_at_depth(tables, 2) :param tables: ``[[[["string"]]]]`` :return: ``((0, 0), tables[0][0]) ... , ((i, j), tables[i][j])`` """ return enum_at_depth(tables, 2) def enum_cells(tables: TablesList) -> Iterator[IndexedItem]: """ Enumerate over ``tables[:][:][k]`` Analog of enum_at_depth(tables, 3) :param tables: ``[[[["string"]]]]`` :return: ``((0, 0, 0), tables[0][0][0]) ... , ((i, j, k), tables[i][j][k])`` """ return enum_at_depth(tables, 3) def enum_paragraphs(tables: TablesList) -> Iterator[IndexedItem]: """ Enumerate over ``tables[:][:][:][l]`` Analog of enum_at_depth(tables, 4) :param tables: ``[[[["string"]]]]`` :return: ``((0, 0, 0, 0), tables[0][0][0][0]) ... , ((i, j, k, l), tables[i][j][k][l])`` """ return enum_at_depth(tables, 4)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 4808, 9, 62, 19617, 25, 3384, 69, 12, 23, 4808, 9, 62, 198, 37811, 29993, 378, 625, 21242, 2205, 87, 2695, 13, 198, 198, 25, 9800, 25, 34760, 3327, 198, 25, 25598, 25, 718, 14, 2078, 14, 23344, 198, 198, 1212, 5301, 32139, 2205, 87, 2420, 355, 3712, 628, 220, 220, 220, 685, 220, 1303, 8893, 198, 220, 220, 220, 220, 220, 220, 220, 685, 220, 1303, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 220, 1303, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 220, 1303, 2685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 220, 1303, 7322, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2361, 198, 198, 4711, 5499, 1037, 18510, 326, 2769, 16343, 1231, 2769, 33793, 341, 13, 198, 198, 37811, 198, 198, 6738, 19720, 1330, 4377, 11, 40806, 540, 11, 40806, 1352, 11, 7343, 11, 34441, 51, 29291, 11, 45835, 11, 309, 29291, 198, 198, 51, 2977, 8053, 796, 45835, 58, 44015, 594, 58, 44015, 594, 58, 44015, 594, 58, 7149, 11907, 11907, 198, 198, 15732, 276, 7449, 796, 34441, 51, 29291, 7203, 15732, 276, 7449, 1600, 685, 7203, 9630, 1600, 309, 29291, 58, 600, 11, 2644, 46570, 5855, 8367, 1600, 4377, 8, 12962, 628, 198, 4299, 33829, 62, 265, 62, 18053, 7, 77, 7287, 25, 45835, 58, 7149, 4357, 6795, 25, 493, 8, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 6975, 378, 625, 257, 28376, 8379, 379, 6795, 13, 628, 220, 220, 220, 1058, 17143, 28376, 25, 257, 357, 77, 7287, 8, 8379, 198, 220, 220, 220, 1058, 17143, 6795, 25, 6795, 286, 24415, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 16, 15506, 5218, 11592, 7, 72, 11, 828, 28376, 58, 72, 12962, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 17, 15506, 5218, 11592, 7, 72, 11, 474, 828, 28376, 58, 25, 7131, 73, 12962, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 18, 15506, 5218, 11592, 7, 72, 11, 474, 11, 479, 828, 28376, 58, 25, 7131, 25, 7131, 74, 12962, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 2644, 628, 220, 220, 220, 1058, 7783, 82, 25, 12777, 2374, 357, 83, 29291, 366, 21975, 1600, 2378, 8, 628, 220, 220, 220, 13163, 8379, 796, 685, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 16410, 14692, 64, 1600, 366, 65, 33116, 14631, 66, 8973, 4357, 685, 14692, 67, 1600, 366, 68, 8973, 60, 4357, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 16410, 14692, 69, 33116, 14631, 70, 1600, 366, 71, 8973, 11907, 198, 220, 220, 220, 2644, 2361, 628, 220, 220, 220, 13163, 329, 2124, 287, 33829, 62, 265, 62, 18053, 7, 43167, 11, 352, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 828, 1988, 28, 30109, 17816, 64, 3256, 705, 65, 6, 4357, 37250, 66, 20520, 4357, 16410, 6, 67, 3256, 705, 68, 6, 11907, 12962, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 828, 1988, 28, 30109, 17816, 69, 6, 4357, 37250, 70, 3256, 705, 71, 6, 11907, 12962, 628, 220, 220, 220, 13163, 329, 2124, 287, 33829, 62, 265, 62, 18053, 7, 43167, 11, 362, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 828, 1988, 41888, 17816, 64, 3256, 705, 65, 6, 4357, 37250, 66, 6, 11907, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 352, 828, 1988, 41888, 17816, 67, 3256, 705, 68, 6, 11907, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 828, 1988, 41888, 17816, 69, 6, 4357, 37250, 70, 3256, 705, 71, 6, 11907, 8, 628, 220, 220, 220, 13163, 329, 2124, 287, 33829, 62, 265, 62, 18053, 7, 43167, 11, 513, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 11, 657, 828, 1988, 28, 17816, 64, 3256, 705, 65, 6, 12962, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 11, 352, 828, 1988, 28, 17816, 66, 6, 12962, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 352, 11, 657, 828, 1988, 28, 17816, 67, 3256, 705, 68, 6, 12962, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 11, 657, 828, 1988, 28, 17816, 69, 6, 12962, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 11, 352, 828, 1988, 28, 17816, 70, 3256, 705, 71, 6, 12962, 628, 220, 220, 220, 13163, 329, 2124, 287, 33829, 62, 265, 62, 18053, 7, 43167, 11, 604, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 11, 657, 11, 657, 828, 1988, 11639, 64, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 11, 657, 11, 352, 828, 1988, 11639, 65, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 657, 11, 352, 11, 657, 828, 1988, 11639, 66, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 352, 11, 657, 11, 657, 828, 1988, 11639, 67, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 15, 11, 352, 11, 657, 11, 352, 828, 1988, 11639, 68, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 11, 657, 11, 657, 828, 1988, 11639, 69, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 11, 352, 11, 657, 828, 1988, 11639, 70, 11537, 198, 220, 220, 220, 12901, 276, 7449, 7, 9630, 16193, 16, 11, 657, 11, 352, 11, 352, 828, 1988, 11639, 71, 11537, 628, 220, 220, 220, 13163, 1351, 7, 44709, 62, 265, 62, 18053, 7, 43167, 11, 642, 4008, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 481, 407, 11629, 378, 625, 8379, 2378, 628, 220, 220, 220, 770, 4049, 318, 34657, 284, 262, 7559, 6030, 12331, 25, 705, 600, 6, 2134, 318, 407, 11629, 540, 15506, 345, 198, 220, 220, 220, 561, 766, 611, 9361, 284, 27056, 378, 625, 257, 1729, 12, 2676, 540, 13, 554, 428, 1339, 11, 198, 220, 220, 220, 345, 1053, 7482, 284, 27056, 378, 625, 281, 2378, 326, 1635, 11261, 9, 307, 11629, 540, 11, 475, 318, 407, 286, 198, 220, 220, 220, 262, 976, 2099, 355, 262, 7559, 77, 7287, 15506, 8379, 4578, 13, 770, 2099, 10627, 318, 703, 356, 198, 220, 220, 220, 460, 11512, 15350, 656, 257, 28376, 1351, 286, 13042, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 6795, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 18053, 4578, 1276, 307, 18189, 352, 4943, 198, 220, 220, 220, 4578, 62, 4906, 796, 2099, 7, 77, 7287, 8, 628, 220, 220, 220, 825, 27056, 378, 62, 19545, 62, 18053, 7, 44709, 67, 25, 40806, 540, 58, 15732, 276, 7449, 12962, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2935, 15695, 656, 257, 28376, 8379, 11, 27056, 803, 1863, 18598, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 33829, 67, 25, 12777, 2374, 357, 83, 29291, 286, 36525, 11, 16311, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6153, 6376, 12777, 2374, 351, 3709, 422, 1123, 8379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 62, 83, 29291, 11, 8379, 287, 33829, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 43167, 8, 14512, 4578, 62, 4906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 10594, 407, 11629, 378, 625, 8379, 2378, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2378, 287, 27056, 378, 7, 43167, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 12901, 276, 7449, 7, 9630, 62, 83, 29291, 1343, 357, 72, 11, 828, 2378, 8, 628, 220, 220, 220, 6795, 62, 77, 796, 357, 15732, 276, 7449, 19510, 72, 11, 828, 2124, 8, 329, 1312, 11, 2124, 287, 27056, 378, 7, 77, 7287, 4008, 198, 220, 220, 220, 329, 6795, 287, 2837, 7, 16, 11, 6795, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 77, 796, 27056, 378, 62, 19545, 62, 18053, 7, 18053, 62, 77, 8, 198, 220, 220, 220, 1441, 6795, 62, 77, 628, 198, 4299, 11629, 62, 265, 62, 18053, 7, 77, 7287, 25, 45835, 58, 7149, 4357, 6795, 25, 493, 8, 4613, 40806, 1352, 58, 7149, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 257, 28376, 8379, 379, 6795, 13, 628, 220, 220, 220, 1058, 17143, 28376, 25, 257, 357, 77, 7287, 8, 8379, 198, 220, 220, 220, 1058, 17143, 6795, 25, 6795, 286, 24415, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 16, 15506, 5218, 7559, 77, 7287, 58, 72, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 17, 15506, 5218, 7559, 77, 7287, 58, 25, 7131, 73, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 18, 15506, 5218, 7559, 77, 7287, 58, 25, 7131, 25, 7131, 74, 60, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 2644, 628, 220, 220, 220, 1058, 7783, 82, 25, 850, 12, 3107, 3007, 393, 3709, 287, 28376, 628, 220, 220, 220, 13163, 8379, 796, 685, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 16410, 14692, 64, 1600, 366, 65, 33116, 14631, 66, 8973, 4357, 685, 14692, 67, 1600, 366, 68, 8973, 60, 4357, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 16410, 14692, 69, 33116, 14631, 70, 1600, 366, 71, 8973, 11907, 198, 220, 220, 220, 2644, 2361, 628, 220, 220, 220, 13163, 329, 2124, 287, 11629, 62, 265, 62, 18053, 7, 43167, 11, 352, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 16410, 17816, 64, 3256, 705, 65, 6, 4357, 37250, 66, 20520, 4357, 16410, 6, 67, 3256, 705, 68, 6, 11907, 60, 198, 220, 220, 220, 16410, 17816, 69, 6, 4357, 37250, 70, 3256, 705, 71, 6, 11907, 60, 628, 220, 220, 220, 13163, 329, 2124, 287, 11629, 62, 265, 62, 18053, 7, 43167, 11, 362, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 16410, 6, 64, 3256, 705, 65, 6, 4357, 37250, 66, 6, 11907, 198, 220, 220, 220, 16410, 6, 67, 3256, 705, 68, 6, 11907, 198, 220, 220, 220, 16410, 6, 69, 6, 4357, 37250, 70, 3256, 705, 71, 6, 11907, 628, 220, 220, 220, 13163, 329, 2124, 287, 11629, 62, 265, 62, 18053, 7, 43167, 11, 513, 2599, 3601, 7, 87, 8, 198, 220, 220, 220, 37250, 64, 3256, 705, 65, 20520, 198, 220, 220, 220, 37250, 66, 20520, 198, 220, 220, 220, 37250, 67, 3256, 705, 68, 20520, 198, 220, 220, 220, 37250, 69, 20520, 198, 220, 220, 220, 37250, 70, 3256, 705, 71, 20520, 628, 220, 220, 220, 13163, 1351, 7, 2676, 62, 265, 62, 18053, 7, 43167, 11, 604, 4008, 198, 220, 220, 220, 37250, 64, 3256, 705, 65, 3256, 705, 66, 3256, 705, 67, 3256, 705, 68, 3256, 705, 69, 3256, 705, 70, 3256, 705, 71, 20520, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 8367, 329, 6376, 11, 1988, 287, 33829, 62, 265, 62, 18053, 7, 77, 7287, 11, 6795, 4008, 628, 198, 4299, 11629, 62, 83, 2977, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 8053, 58, 8053, 58, 8053, 58, 7149, 11907, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 7559, 83, 2977, 58, 72, 60, 15506, 628, 220, 220, 220, 50088, 286, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 352, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 7559, 83, 2977, 58, 15, 4357, 8893, 58, 16, 4357, 2644, 8893, 58, 72, 60, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 352, 8, 628, 198, 4299, 11629, 62, 8516, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 8053, 58, 8053, 58, 7149, 11907, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 7559, 83, 2977, 58, 25, 7131, 73, 60, 15506, 628, 220, 220, 220, 50088, 286, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 362, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 7559, 83, 2977, 58, 15, 7131, 15, 4357, 8893, 58, 15, 7131, 16, 4357, 2644, 8893, 58, 72, 7131, 73, 60, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 362, 8, 628, 198, 4299, 11629, 62, 46342, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 8053, 58, 7149, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 7559, 83, 2977, 58, 25, 7131, 25, 7131, 74, 60, 15506, 628, 220, 220, 220, 50088, 286, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 513, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 7559, 83, 2977, 58, 15, 7131, 15, 7131, 15, 4357, 8893, 58, 15, 7131, 15, 7131, 16, 4357, 2644, 8893, 58, 72, 7131, 73, 7131, 74, 60, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 513, 8, 628, 198, 4299, 11629, 62, 20360, 82, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40806, 378, 625, 7559, 83, 2977, 58, 25, 7131, 25, 7131, 25, 7131, 75, 60, 15506, 628, 220, 220, 220, 50088, 286, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 604, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 7559, 83, 2977, 58, 15, 7131, 15, 7131, 15, 7131, 15, 4357, 8893, 58, 15, 7131, 15, 7131, 15, 7131, 16, 4357, 2644, 8893, 58, 72, 7131, 73, 7131, 74, 7131, 75, 60, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 11629, 62, 265, 62, 18053, 7, 83, 2977, 11, 604, 8, 628, 198, 4299, 33829, 62, 83, 2977, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 6975, 378, 625, 7559, 83, 2977, 58, 72, 60, 15506, 628, 220, 220, 220, 50088, 286, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 352, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11592, 7, 15, 11, 10612, 8893, 58, 15, 12962, 2644, 837, 14808, 72, 11, 10612, 8893, 58, 72, 12962, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 352, 8, 628, 198, 4299, 33829, 62, 8516, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 6975, 378, 625, 7559, 83, 2977, 58, 25, 7131, 73, 60, 15506, 628, 220, 220, 220, 50088, 286, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 362, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11592, 7, 15, 11, 657, 828, 8893, 58, 15, 7131, 15, 12962, 2644, 837, 14808, 72, 11, 474, 828, 8893, 58, 72, 7131, 73, 12962, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 362, 8, 628, 198, 4299, 33829, 62, 46342, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 6975, 378, 625, 7559, 83, 2977, 58, 25, 7131, 25, 7131, 74, 60, 15506, 628, 220, 220, 220, 50088, 286, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 513, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11592, 7, 15, 11, 657, 11, 657, 828, 8893, 58, 15, 7131, 15, 7131, 15, 12962, 2644, 837, 14808, 72, 11, 474, 11, 479, 828, 8893, 58, 72, 7131, 73, 7131, 74, 12962, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 513, 8, 628, 198, 4299, 33829, 62, 20360, 82, 7, 83, 2977, 25, 33220, 8053, 8, 4613, 40806, 1352, 58, 15732, 276, 7449, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2039, 6975, 378, 625, 7559, 83, 2977, 58, 25, 7131, 25, 7131, 25, 7131, 75, 60, 15506, 628, 220, 220, 220, 50088, 286, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 604, 8, 628, 220, 220, 220, 1058, 17143, 8893, 25, 7559, 30109, 58, 14692, 8841, 8973, 11907, 60, 15506, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11592, 7, 15, 11, 657, 11, 657, 11, 657, 828, 8893, 58, 15, 7131, 15, 7131, 15, 7131, 15, 12962, 2644, 837, 14808, 72, 11, 474, 11, 479, 11, 300, 828, 8893, 58, 72, 7131, 73, 7131, 74, 7131, 75, 12962, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 33829, 62, 265, 62, 18053, 7, 83, 2977, 11, 604, 8, 198 ]
2.271949
3,155
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2020 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for the `aea gui` sub-commands.""" import json from unittest.mock import patch from tests.test_cli.tools_for_testing import raise_click_exception from tests.test_cli_gui.test_base import create_app @patch("aea.cli_gui.cli_fetch_agent") def test_fetch_agent(*mocks): """Test fetch an agent.""" app = create_app() agent_name = "test_agent_name" agent_id = "author/{}:0.1.0".format(agent_name) # Ensure there is now one agent resp = app.post( "api/fetch-agent", content_type="application/json", data=json.dumps(agent_id), ) assert resp.status_code == 201 data = json.loads(resp.get_data(as_text=True)) assert data == agent_name @patch("aea.cli_gui.cli_fetch_agent", raise_click_exception) def test_fetch_agent_fail(*mocks): """Test fetch agent fail.""" app = create_app() agent_name = "test_agent_name" agent_id = "author/{}:0.1.0".format(agent_name) resp = app.post( "api/fetch-agent", content_type="application/json", data=json.dumps(agent_id), ) assert resp.status_code == 400 data = json.loads(resp.get_data(as_text=True)) assert data["detail"] == "Failed to fetch an agent {}. {}".format( agent_id, "Message" )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 26171, 198, 2, 198, 2, 220, 220, 15069, 2864, 12, 42334, 376, 7569, 13, 20185, 15302, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 16529, 26171, 198, 198, 37811, 1212, 1332, 8265, 4909, 262, 5254, 329, 262, 4600, 44705, 11774, 63, 850, 12, 9503, 1746, 526, 15931, 198, 198, 11748, 33918, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 8529, 198, 198, 6738, 5254, 13, 9288, 62, 44506, 13, 31391, 62, 1640, 62, 33407, 1330, 5298, 62, 12976, 62, 1069, 4516, 198, 6738, 5254, 13, 9288, 62, 44506, 62, 48317, 13, 9288, 62, 8692, 1330, 2251, 62, 1324, 628, 198, 31, 17147, 7203, 44705, 13, 44506, 62, 48317, 13, 44506, 62, 69, 7569, 62, 25781, 4943, 198, 4299, 1332, 62, 69, 7569, 62, 25781, 46491, 76, 3320, 2599, 198, 220, 220, 220, 37227, 14402, 21207, 281, 5797, 526, 15931, 198, 220, 220, 220, 598, 796, 2251, 62, 1324, 3419, 628, 220, 220, 220, 5797, 62, 3672, 796, 366, 9288, 62, 25781, 62, 3672, 1, 198, 220, 220, 220, 5797, 62, 312, 796, 366, 9800, 14, 90, 38362, 15, 13, 16, 13, 15, 1911, 18982, 7, 25781, 62, 3672, 8, 628, 220, 220, 220, 1303, 48987, 612, 318, 783, 530, 5797, 198, 220, 220, 220, 1217, 796, 598, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15042, 14, 69, 7569, 12, 25781, 1600, 2695, 62, 4906, 2625, 31438, 14, 17752, 1600, 1366, 28, 17752, 13, 67, 8142, 7, 25781, 62, 312, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 1217, 13, 13376, 62, 8189, 6624, 580, 198, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 4363, 13, 1136, 62, 7890, 7, 292, 62, 5239, 28, 17821, 4008, 198, 220, 220, 220, 6818, 1366, 6624, 5797, 62, 3672, 628, 198, 31, 17147, 7203, 44705, 13, 44506, 62, 48317, 13, 44506, 62, 69, 7569, 62, 25781, 1600, 5298, 62, 12976, 62, 1069, 4516, 8, 198, 4299, 1332, 62, 69, 7569, 62, 25781, 62, 32165, 46491, 76, 3320, 2599, 198, 220, 220, 220, 37227, 14402, 21207, 5797, 2038, 526, 15931, 198, 220, 220, 220, 598, 796, 2251, 62, 1324, 3419, 628, 220, 220, 220, 5797, 62, 3672, 796, 366, 9288, 62, 25781, 62, 3672, 1, 198, 220, 220, 220, 5797, 62, 312, 796, 366, 9800, 14, 90, 38362, 15, 13, 16, 13, 15, 1911, 18982, 7, 25781, 62, 3672, 8, 628, 220, 220, 220, 1217, 796, 598, 13, 7353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15042, 14, 69, 7569, 12, 25781, 1600, 2695, 62, 4906, 2625, 31438, 14, 17752, 1600, 1366, 28, 17752, 13, 67, 8142, 7, 25781, 62, 312, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 1217, 13, 13376, 62, 8189, 6624, 7337, 198, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 4363, 13, 1136, 62, 7890, 7, 292, 62, 5239, 28, 17821, 4008, 198, 220, 220, 220, 6818, 1366, 14692, 49170, 8973, 6624, 366, 37, 6255, 284, 21207, 281, 5797, 23884, 13, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 62, 312, 11, 366, 12837, 1, 198, 220, 220, 220, 1267, 198 ]
2.966906
695
import base64 if __name__ == "__main__": print convert("in.jpeg")
[ 11748, 2779, 2414, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 10385, 7203, 259, 13, 73, 22071, 4943, 198 ]
2.535714
28
""" @author: [email protected] test helper functions """ from havsim.calibration.helper import makeleadfolinfo, boundaryspeeds, interpolate path_reconngsim = 'C:/Users/rlk268/OneDrive - Cornell University/important misc/pickle files/meng/reconngsim.pkl' # reconstructed ngsim data with open(path_reconngsim, 'rb') as f: data = pickle.load(f)[0] meas, platooninfo, = makeplatoonlist(data,1,False) platoon = [875.0, 903.0, 908.0] # dataset only with these vehicles toymeas = {} for i in platoon: toymeas[i] = meas[i].copy() toymeas[875][:, 4] = 0 toymeas[908][:, 5] = 0 test_interpolate() test_boundaryspeeds() test_leadfolinfo()
[ 198, 37811, 198, 31, 9800, 25, 374, 75, 74, 25022, 31, 20772, 695, 13, 15532, 198, 198, 9288, 31904, 5499, 220, 198, 37811, 198, 198, 6738, 387, 14259, 320, 13, 9948, 571, 1358, 13, 2978, 525, 1330, 787, 28230, 9062, 10951, 11, 18645, 4125, 5379, 11, 39555, 378, 198, 198, 6978, 62, 260, 1102, 782, 14323, 796, 705, 34, 14079, 14490, 14, 45895, 74, 25022, 14, 3198, 24825, 532, 27119, 2059, 14, 18049, 12747, 14, 27729, 293, 3696, 14, 76, 1516, 14, 260, 1102, 782, 14323, 13, 79, 41582, 6, 220, 198, 198, 2, 49594, 23370, 14323, 1366, 198, 4480, 1280, 7, 6978, 62, 260, 1102, 782, 14323, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 1366, 796, 2298, 293, 13, 2220, 7, 69, 38381, 15, 60, 198, 1326, 292, 11, 39368, 10951, 11, 796, 787, 489, 23122, 4868, 7, 7890, 11, 16, 11, 25101, 8, 198, 198, 489, 23122, 796, 685, 31360, 13, 15, 11, 860, 3070, 13, 15, 11, 860, 2919, 13, 15, 60, 220, 1303, 27039, 691, 351, 777, 5672, 198, 83, 726, 1326, 292, 796, 23884, 198, 1640, 1312, 287, 39368, 25, 198, 220, 220, 220, 13373, 1326, 292, 58, 72, 60, 796, 2212, 58, 72, 4083, 30073, 3419, 198, 83, 726, 1326, 292, 58, 31360, 7131, 45299, 604, 60, 796, 657, 198, 83, 726, 1326, 292, 58, 24, 2919, 7131, 45299, 642, 60, 796, 657, 628, 198, 220, 220, 220, 220, 198, 9288, 62, 3849, 16104, 378, 3419, 198, 9288, 62, 7784, 560, 4125, 5379, 3419, 198, 220, 220, 220, 220, 198, 9288, 62, 28230, 9062, 10951, 3419, 628, 198 ]
2.462687
268
""" Thunk (a.k.a. lazy objects) in PyPy. To run on top of the thunk object space with the following command-line: py.py -o thunk fibonacci.py This is a typical Functional Programming Languages demo, computing the Fibonacci sequence by using an infinite lazy linked list. """ try: from __pypy__ import thunk # only available in 'py.py -o thunk' except ImportError: print __doc__ raise SystemExit(2) # ____________________________________________________________ def add_lists(list1, list2): """Compute the linked-list equivalent of the Python expression [a+b for (a,b) in zip(list1,list2)] """ return ListNode(list1.head + list2.head, thunk(add_lists, list1.tail, list2.tail)) # 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Fibonacci = ListNode(1, ListNode(1, None)) Fibonacci.tail.tail = thunk(add_lists, Fibonacci, Fibonacci.tail) if __name__ == '__main__': node = Fibonacci while True: print node.head node = node.tail
[ 37811, 198, 817, 2954, 357, 64, 13, 74, 13, 64, 13, 16931, 5563, 8, 287, 9485, 20519, 13, 198, 2514, 1057, 319, 1353, 286, 262, 294, 2954, 2134, 2272, 351, 262, 1708, 3141, 12, 1370, 25, 628, 220, 220, 220, 12972, 13, 9078, 532, 78, 294, 2954, 12900, 261, 44456, 13, 9078, 198, 198, 1212, 318, 257, 7226, 44224, 30297, 42860, 13605, 11, 14492, 262, 198, 37, 571, 261, 44456, 8379, 416, 1262, 281, 15541, 16931, 6692, 1351, 13, 198, 37811, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 11593, 79, 4464, 88, 834, 1330, 294, 2954, 220, 220, 220, 1303, 691, 1695, 287, 705, 9078, 13, 9078, 532, 78, 294, 2954, 6, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 11593, 15390, 834, 198, 220, 220, 220, 5298, 4482, 30337, 7, 17, 8, 198, 198, 2, 220, 10221, 32941, 1427, 628, 198, 198, 4299, 751, 62, 20713, 7, 4868, 16, 11, 1351, 17, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 262, 6692, 12, 4868, 7548, 286, 262, 11361, 5408, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 64, 10, 65, 329, 357, 64, 11, 65, 8, 287, 19974, 7, 4868, 16, 11, 4868, 17, 15437, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 7343, 19667, 7, 4868, 16, 13, 2256, 1343, 1351, 17, 13, 2256, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 2954, 7, 2860, 62, 20713, 11, 1351, 16, 13, 13199, 11, 1351, 17, 13, 13199, 4008, 628, 198, 2, 352, 11, 352, 11, 362, 11, 513, 11, 642, 11, 807, 11, 1511, 11, 2310, 11, 4974, 11, 2644, 198, 37, 571, 261, 44456, 796, 7343, 19667, 7, 16, 11, 7343, 19667, 7, 16, 11, 6045, 4008, 198, 37, 571, 261, 44456, 13, 13199, 13, 13199, 796, 294, 2954, 7, 2860, 62, 20713, 11, 41566, 261, 44456, 11, 41566, 261, 44456, 13, 13199, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 10139, 796, 41566, 261, 44456, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10139, 13, 2256, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 10139, 13, 13199, 198 ]
2.619792
384
# websocket_server -- WebSocket/HTTP server/client library # https://github.com/CylonicRaider/websocket-server """ WebSocket protocol implementation. client_handshake() and server_handshake() perform the appropriate operations on mappings of HTTP headers; the WebSocketFile class implements the framing protocol. """ import os import socket import struct import base64 import codecs import threading import hashlib from collections import namedtuple from . import constants from .compat import bytearray, bytes, tobytes, unicode, callable from .exceptions import ProtocolError, InvalidDataError from .exceptions import ConnectionClosedError from .tools import mask, new_mask __all__ = ['client_handshake', 'WebSocketFile', 'wrap'] # Allocation unit. BUFFER_SIZE = 16384 # Frame class Frame = namedtuple('Frame', 'opcode payload final msgtype') # Message class Message = namedtuple('Message', 'msgtype content final') # Adapted from RFC 6455: # 0 1 2 3 # 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 # +-+-+-+-+-------+-+-------------+-------------------------------+ # |F|R|R|R| opcode|M| Payload len | Extended payload length | # |I|S|S|S| (4) |A| (7) | (16/64) | # |N|V|V|V| |S| | (if payload len==126/127) | # | |1|2|3| |K| | | # +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - + # | Extended payload length continued, if payload len == 127 | # + - - - - - - - - - - - - - - - +-------------------------------+ # | |Masking-key, if MASK set to 1 | # +-------------------------------+-------------------------------+ # | Masking-key (continued) | Payload Data | # +-------------------------------+ - - - - - - - - - - - - - - - + # : Payload Data continued ... : # + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # | Payload Data continued ... | # +---------------------------------------------------------------+ # The "magic" GUID used for Sec-WebSocket-Accept. MAGIC_GUID = unicode('258EAFA5-E914-47DA-95CA-C5AB0DC85B11') def process_key(key): """ process_key(key) -> unicode Transform the given key as required to form a Sec-WebSocket-Accept field, and return the new key. """ enc_key = (unicode(key) + MAGIC_GUID).encode('ascii') resp_key = base64.b64encode(hashlib.sha1(enc_key).digest()) return resp_key.decode('ascii') def client_handshake(headers, protos=None, makekey=None): """ client_handshake(headers, protos=None, makekey=None) -> function Perform the client-side parts of a WebSocket handshake. headers is a mapping from header names to header values (both Unicode strings) which is modified in-place with WebSocket headers. protos is one of: - None to not advertise subprotocols, - A single string used directly as the Sec-WebSocket-Protocol header, - A list of strings, which are joined by commata into the value of the Sec-WebSocket-Protocol header. NOTE that the value of protos is not validated. makekey, if not None, is a function that returns a byte string of length 16 that is used as the base of the Sec-WebSocket-Key header. If makekey is None, os.urandom() is used. The return value is a function that takes the response headers (in the same format as headers) as the only parameter and raises a ProtocolError if the handshake is not successful. If the handshake *is* successful, the function returns the subprotocol selected by the server (a string that must have been present in protos), or None (for no subprotocol). NOTE that this library does not support extensions. For future compatibility, it would be prudent to specify makekey, if at all, as a keyword argument. """ def check_response(respheaders): "Ensure the given HTTP response headers are a valid WS handshake." # Verify key and other fields. if respheaders.get('Sec-WebSocket-Accept') != process_key(key): raise ProtocolError('Invalid response key') if respheaders.get('Sec-WebSocket-Extensions'): raise ProtocolError('Extensions not supported') p = respheaders.get('Sec-WebSocket-Protocol') # If protos is None, using the "in" operator may fail. if p and (not protos or p not in protos): raise ProtocolError('Invalid subprotocol received') return p if makekey is None: makekey = lambda: os.urandom(16) headers.update({'Connection': 'Upgrade', 'Upgrade': 'websocket', 'Sec-WebSocket-Version': '13'}) if isinstance(protos, str): headers['Sec-WebSocket-Protocol'] = protos elif protos is not None: headers['Sec-WebSocket-Protocol'] = ', '.join(protos) key = base64.b64encode(makekey()).decode('ascii') headers['Sec-WebSocket-Key'] = key return check_response def server_handshake(headers, protos=None): """ server_handshake(headers, protos=None) -> dict Perform the server-side part of a WebSocket handshake. headers is a maping from header names to header values (both Unicode strings), which is validated. protos is one of: - None to indicate no subprotocols, - A sequence or whitespace-delimited string of names of accepted subprotocols (the first subprotocol proposed by the client that is in the list is selected), - A function taking the list of subprotocols proposed by the client as the only argument and returning a subprotocol name or None. The return value is a mapping of headers to be included in the response. """ # The standard requires a Host header... why not... if 'Host' not in headers: error('Missing Host header') # Validate Upgrade header. if 'websocket' not in headers.get('Upgrade', '').lower(): error('Invalid/Missing Upgrade header') # Validate protocol version. if headers.get('Sec-WebSocket-Version') != '13': error('Invalid WebSocket version (!= 13)') # Validate Connection header. connection = [i.lower().strip() for i in headers.get('Connection', '').split(',')] if 'upgrade' not in connection: error('Invalid/Missing Connection header') # Validate the key. key = headers.get('Sec-WebSocket-Key') try: if len(base64.b64decode(tobytes(key))) != 16: error('Invalid WebSocket key length') except (TypeError, ValueError): error('Invalid WebSocket key') # Extensions are not supported. # Be permissive with subprotocol tokens. protstr = headers.get('Sec-WebSocket-Protocol', '') protlist = ([i.strip() for i in protstr.split(',')] if protstr else []) if protos is None: respproto = None elif callable(protos): respproto = protos(protlist) else: if isinstance(protos, str): protos = protos.split() # Intentionally leaking loop variable. for respproto in protlist: if respproto in protos: break else: respproto = None # Prepare response headers. ret = {'Connection': 'upgrade', 'Upgrade': 'websocket', 'Sec-WebSocket-Accept': process_key(key)} if respproto is not None: ret['Sec-WebSocket-Protocol'] = respproto return ret class WebSocketFile(object): """ WebSocket protocol implementation. May base on a pair of file-like objects (for usage in HTTPRequestHandler's); a "raw" socket (if you prefer parsing HTTP headers yourself); or a single file object (if you have got such a read-write one). This class is not concerned with the handshake; see client_handshake() and server_handshake() for that. WebSocketFile(rdfile, wrfile, server_side=False, subprotocol=None) rdfile : File to perform reading operations on. wrfile : File to perform writing operations on. server_side: Whether to engage server-side behavior (if true) or not (otherwise). subprotocol: The subprotocol to be used. Attributes: server_side : Whether this is a server-side WebSocketFile. subprotocol : The subprotocol as passed to the constructor. close_wrapped: Whether calling close() should close the underlying files as well. Defaults to True. _rdlock : threading.RLock instance used for serializing and protecting reading-related operations. _wrlock : threading.RLock instance user for serializing and protecting write-related operations. _rdlock should always be asserted before _wrlock, if at all; generally, do not call reading-related methods (which also include close*()) with _wrlock asserted, and do not use those locks unless necessary. _socket : Underlying socket (set by from_socket()). May not be present at all (i.e. be None). Only use this if you are really sure you need to. Class attributes: MAXFRAME : Maximum frame payload length. May be overridden by subclasses (or instances). Value is either an integer or None (indicating no limit). This is not enforced for outgoing messages. MAXCONTFRAME: Maximum length of a frame reconstructed from fragments. May be overridden as well. The value has the same semantics as the one of MAXFRAME. This is not enforced for outgoing messages as well. NOTE: This class reads exactly the amount of bytes needed, yet buffering of the underlying stream may cause frames to "congest". The underlying stream must be blocking, or unpredictable behavior occurs. """ # Maximum allowed frame length. MAXFRAME = None # Maximum continued frame length. MAXCONTFRAME = None @classmethod def from_files(cls, rdfile, wrfile, **kwds): """ from_files(rdfile, wrfile, **kwds) -> WebSocketFile Equivalent to the constructor; provided for symmetry. """ return cls(rdfile, wrfile, **kwds) @classmethod def from_socket(cls, sock, **kwds): """ from_socket(sock, **kwds) -> WebSocketFile Wrap a socket in a WebSocketFile. Uses the makefile() method to obtain the file objects internally used. Keyword arguments are passed on to the constructor. """ ret = cls.from_file(sock.makefile('rwb'), **kwds) ret._socket = sock return ret @classmethod def from_file(cls, file, **kwds): """ from_file(file, **kwds) -> WebSocketFile Wrap a read-write file object. Keyword arguments are passed on to the constructor. """ return cls(file, file, **kwds) def __init__(self, rdfile, wrfile, server_side=False, subprotocol=None): """ __init__(rdfile, wrfile, server_side=False, subprotocol=None) -> None See the class docstring for details. """ self._rdfile = rdfile self._wrfile = wrfile self._socket = None self.server_side = server_side self.subprotocol = subprotocol self.close_wrapped = True self._rdlock = threading.RLock() self._wrlock = threading.RLock() factory = codecs.getincrementaldecoder('utf-8') self._decoder = factory(errors='strict') self._cur_opcode = None self._read_close = False self._written_close = False self._closed = False def _read_raw(self, length): """ _read_raw(length) -> bytes Read exactly length bytes from the underlying stream, and return them as a bytes object. Should be used for small amounts. Raises EOFError if less than length bytes are read. """ if not length: return b'' rf = self._rdfile buf, buflen = [], 0 while buflen < length: rd = rf.read(length - buflen) if not rd: raise EOFError() buf.append(rd) buflen += len(rd) return b''.join(buf) def _readinto_raw(self, buf, offset=0): """ _readinto_raw(buf, offset=0) -> buf Try to fill buf with exactly as many bytes as buf can hold. If buf is an integer, a bytearray object of that length is allocated and returned. If offset is nonzero, reading starts at that offset. Raises EOFError on failure. """ # Convert integers into byte arrays. if isinstance(buf, int): buf = bytearray(buf) # Don't fail on empty reads. if not buf: return buf # Main... try-except clause. rf, fl = self._rdfile, len(buf) try: # Try "native" readinto method. if not offset: l = rf.readinto(buf) if l == 0: # EOF raise EOFError() else: l = offset if l < len(buf): # Fill the rest. try: # Try still to use buf itself (indirectly). v, o = memoryview(buf), l while o < fl: rd = rf.readinto(v[o:]) if not rd: raise EOFError() o += rd except NameError: # Will have to read individual parts. o = l temp = bytearray(min(fl - o, BUFFER_SIZE)) while o < fl: if len(temp) > fl - o: temp = bytearray(fl - o) rd = rf.readinto(temp) if not rd: raise EOFError() no = o + rd buf[o:no] = temp o = no except AttributeError: # No readinto available, have to read chunks. o, fl = offset, len(buf) while o < fl: chunk = rf.read(min(fl - o, BUFFER_SIZE)) if not chunk: raise EOFError() no = o + len(chunk) buf[o:no] = chunk o = no return buf def _write_raw(self, data): """ _write_raw(data) -> None Write data to the underlying stream. May or may be not buffered. """ self._wrfile.write(data) def _flush_raw(self): """ _flush_raw() -> None Force any buffered output data to be written out. """ self._wrfile.flush() def _shutdown_raw(self, mode): """ _shutdown_raw(mode) -> None Perform a shutdown of the underlying socket, if any. mode is a socket.SHUT_* constant denoting the precise mode of shutdown. """ s = self._socket if s: try: s.shutdown(mode) except socket.error: pass def read_single_frame(self): """ read_single_frame() -> (opcode, payload, final, type) or None Read (and parse) a single WebSocket frame. opcode is the opcode of the frame, as an integer; payload is the payload of the frame, text data is *not* decoded; final is a boolean indicating whether this frame was final, type is the same as opcode for non-continuation frames, and the opcode of the frame continued for continuation frames. The return value is a named tuple, with the fields named as indicated. If EOF is reached (not in the middle of the frame), None is returned. MAXFRAME is applied. May raise ProtocolError (via error()) if the data received is invalid, is truncated, an invalid (non-)continuation frame is read, EOF inside an unfinished fragmented frame is encountered, etc. WARNING: If a control frame is received (i.e. whose opcode bitwise-AND OPMASK_CONTROL is nonzero), it must be passed into the handle_control() method; otherwise. the implementation may misbehave. """ with self._rdlock: # Store for later. was_read_close = self._read_close # No more reading after close. if was_read_close: return None # Read opcode byte. A EOF here is non-fatal. header = bytearray(2) try: header[0] = ord(self._read_raw(1)) except EOFError: if self._cur_opcode is not None: self._error('Unfinished fragmented frame') return None # ...And EOF from here on, on the other hand, is. try: # Read the length byte. header[1] = ord(self._read_raw(1)) # Extract header fields. final = header[0] & constants.FLAG_FIN reserved = header[0] & constants.MASK_RSV opcode = header[0] & constants.MASK_OPCODE masked = header[1] & constants.FLAG_MASK length = header[1] & constants.MASK_LENGTH # Verify them. if reserved: self._error('Frame with reserved flags received') if bool(self.server_side) ^ bool(masked): self._error('Frame with invalid masking received') if opcode & constants.OPMASK_CONTROL and not final: self._error('Fragmented control frame received') # (Fragmented) Message type. msgtype = opcode # Validate fragmentation state. if not opcode & constants.OPMASK_CONTROL: # Control frames may pass freely, non-control ones # interact with the state. if opcode == constants.OP_CONT: # Continuation frame. msgtype = self._cur_opcode if self._cur_opcode is None: # See the error message. self._error('Orphaned continuation frame') elif final: # Finishing fragmented frame. self._cur_opcode = None # "Normal" continuation frame passed. else: # "Header" frame. if self._cur_opcode is not None: # Already inside fragmented frame. self._error('Fragmented frame interrupted') elif not final: # Fragmented frame started. self._cur_opcode = opcode # Self-contained frame passed -- no action. # Extract length and mask value; start reading payload # buffer. masklen = (4 if masked else 0) if length < 126: # Just read the mask if necessary. msk = self._readinto_raw(masklen) elif length == 126: buf = self._readinto_raw(2 + masklen) length = struct.unpack('!H', buf[:2])[0] # Validate length if length < 126: self._error('Invalid frame length encoding') if masked: msk = buf[2:6] elif length == 127: buf = self._readinto_raw(8 + masklen) length = struct.unpack('!Q', buf[:8])[0] # Validate length. if length < 65536: self._error('Invalid frame length encoding') elif length >= 9223372036854775808: # 2 ** 63 # MUST in RFC 6455, section 5.2 # We could handle those frames easily (given we have # enough memory), though. self._error('Frame too long') if masked: msk = buf[8:12] # Validate length. if self.MAXFRAME is not None and length > self.MAXFRAME: self.error('Frame too long', code=constants.CLOSE_MESSAGE_TOO_BIG) # Allocate result buffer. rbuf = bytearray(length) # Read rest of message. self._readinto_raw(rbuf) # Verify this is not a post-close frame. if was_read_close: self._error('Received frame after closing one') # Reverse masking if necessary. if masked: rbuf = mask(msk, rbuf) # Done! return Frame(opcode, bytes(rbuf), bool(final), msgtype) except EOFError: self._error('Truncated frame') def read_frame(self, stream=False): """ read_frame(stream=False) -> (msgtype, content, final) or None Read a WebSocket data frame. The return value is composed from fields of the same meaning as from read_single_frame(). Note that the opcode field is discarded in favor of msgtype. The return value is (as in read_single_frame()), a named tuple, with the field names as indicated. If the stream encounters an EOF, returns None. If stream is false, fragmented frames are re-combined into a single frame (MAXCONTFRAME is applied), otherwise, they are returned individually. If the beginning of a fragmented frame was already consumed, the remainder of it (or one frame of the remainder, depending on stream) is read. May raise ProtocolError (if read_single_frame() does), or InvalidDataError, if decoding a text frame fails. NOTE: The data returned may not correspond entirely to the payload of the underlying frame, if the latter contains incomplete UTF-8 sequences. """ buf, buflen = [], 0 with self._rdlock: while 1: # Read frame. fr = self.read_single_frame() # EOF reached. Assuming state is clean. if not fr: return None # Process control frames as quickly as possible. if fr.opcode & constants.OPMASK_CONTROL: self.handle_control(fr.opcode, fr.payload) continue # Decode text frames. if fr.msgtype == constants.OP_TEXT: try: payload = self._decoder.decode(fr.payload, fr.final) except ValueError: raise InvalidDataError('Invalid message payload') else: payload = fr.payload # Enforce MAXCONTFRAME if (self.MAXCONTFRAME is not None and buflen + len(payload) > self.MAXCONTFRAME): self.error('Fragmented frame too long', code=constants.CLOSE_MESSAGE_TOO_BIG) # Prepare value for returning. datum = Message(fr.msgtype, payload, fr.final) # Regard streaming mode. if stream: return datum # Accumulate non-final frames. buf.append(datum.content) buflen += len(datum.content) # Stop if final message encountered. if datum.final: if datum.msgtype == constants.OP_TEXT: base = unicode() else: base = bytes() return Message(datum.msgtype, base.join(buf), True) def handle_control(self, opcode, cnt): """ handle_control(opcode, cnt) -> bool Handle a control frame. Called by read_frame() if a control frame is read, to evoke a required response "as soon as practical". The return value tells whether it is safe to continue reading (true), or if EOF (i.e. a close frame) was reached (false). """ if opcode == constants.OP_PING: self.write_single_frame(constants.OP_PONG, cnt) elif opcode == constants.OP_CLOSE: self._read_close = True self._shutdown_raw(socket.SHUT_RD) self.close_ex(*self.parse_close(cnt)) return False return True def _error(self, message): "Used internally." self.error(message) # Assure execution does not continue. raise RuntimeError('error() returned') def error(self, message, code=constants.CLOSE_PROTOCOL_FAILURE): """ error(message, code=CLOSE_PROTOCOL_FAILURE) -> [ProtocolError] Initiate an abnormal connection close and raise a ProtocolError. code is the error code to use. This method is called from read_single_frame() if an invalid frame is detected. """ # We will hardly be able to interpret anything the other side emits # at this point. self._read_close = True self.close_ex(code, message) raise ProtocolError(message, code=code) def write_single_frame(self, opcode, data, final=True, maskkey=None): """ write_single_frame(opcode, data, final=True, maskkey=None) -> None Write a frame with the given parameters. final determines whether the frame is final; opcode is one of the OP_* constants; data is the payload of the message. maskkey, if not None, is a length-four byte sequence that determines which mask key to use, otherwise, tools.new_mask() will be invoked to create one if necessary. If opcode is OP_TEXT, data may be a Unicode or a byte string, otherwise, data must be a byte string. If the type of data is inappropriate, TypeError is raised. Raises ConnectionClosedError is the connection is already closed or closing. """ # Validate arguments. if not constants.OP_MIN <= opcode <= constants.OP_MAX: raise ValueError('Opcode out of range') if isinstance(data, unicode): if opcode != constants.OP_TEXT: raise TypeError('Unicode payload specfied for ' 'non-Unicode opcode') data = data.encode('utf-8') elif not isinstance(data, (bytes, bytearray)): raise TypeError('Invalid data type') # Allocate new mask if necessary; validate type. masked = (not self.server_side) if masked: if maskkey is None: maskkey = new_mask() elif isinstance(maskkey, bytes): maskkey = bytearray(maskkey) else: maskkey = None # Construct message header. header = bytearray(2) if final: header[0] |= constants.FLAG_FIN if masked: header[1] |= constants.FLAG_MASK header[0] |= opcode # Insert message length. if len(data) < 126: header[1] |= len(data) elif len(data) < 65536: header[1] |= 126 header.extend(struct.pack('!H', len(data))) elif len(data) < 9223372036854775808: # 2 ** 63 header[1] |= 127 header.extend(struct.pack('!Q', len(data))) else: # WTF? raise ValueError('Frame too long') # Masking. if masked: # Add key to header. header.extend(maskkey) # Actually mask data. data = mask(maskkey, bytearray(data)) # Drain all that onto the wire. with self._wrlock: if self._written_close: raise ConnectionClosedError( 'Trying to write data after close()') self._write_raw(header) self._write_raw(data) self._flush_raw() def write_frame(self, opcode, data): """ write_frame(opcode, data) -> None Write a complete data frame with given opcode and data. Arguments are validated. May raise exceptions as write_single_frame() does. """ if opcode & constants.OPMASK_CONTROL or opcode == constants.OP_CONT: raise ValueError('Trying to write non-data frame') self.write_single_frame(opcode, data) def write_text_frame(self, data): """ write_text_frame(data) -> None Write an OP_TEXT frame with given data, which must be a Unicode string. """ if not isinstance(data, unicode): raise TypeError('Invalid data') return self.write_frame(constants.OP_TEXT, data) def write_binary_frame(self, data): """ write_binary_frame(data) -> None Write an OP_BINARY frame with given data. """ return self.write_frame(constants.OP_BINARY, data) def close_now(self, force=False): """ close_now(force=False) -> None Close the underlying files immediately. If force is true, they are closed unconditionally, otherwise only if the close_wrapped attribute is true. This does not perform a proper closing handshake and should be avoided in favor of close(). """ # Waiting for locks contradicts the "now!" intention, so none of that # here. self._read_close = True self._written_close = True self._closed = True if force or self.close_wrapped: self._shutdown_raw(socket.SHUT_RDWR) try: self._rdfile.close() except IOError: pass try: self._wrfile.close() except IOError: pass if self._socket: try: self._socket.close() except socket.error: pass def close_ex(self, code=None, message=None, wait=True): """ close_ex(code=None, message=None, wait=True) -> None Close the underlying connection, delivering the code and message (if given) to the other point. If code is None, message is ignored. If message is a Unicode string, it is encoded using UTF-8. If wait is true, this will read frames from self and discard them until the other side acknowledges the close; as this may cause data loss, be careful. The default is to ensure the WebSocket is fully closed when the call finishes; when closing a WebSocket that is read from in a different thread, specify wait=False and let the other thread consume any remaining input. If the connection is already closed, the method has no effect (but might raise an exception if encoding code or message fails). """ # Construct payload. payload = bytearray() if code is not None: # Add code. payload.extend(struct.pack('!H', code)) # Add message. if message is None: pass elif isinstance(message, unicode): payload.extend(message.encode('utf-8')) else: payload.extend(message) with self._wrlock: # Already closed? if self._written_close: # Close underlying streams if necessary. if self._read_close: if not self._closed: self.close_now() wait = False else: # Write close frame. self.write_single_frame(constants.OP_CLOSE, payload) # Close frame written. self._written_close = True self._shutdown_raw(socket.SHUT_WR) # Wait for close if desired. if wait: with self._rdlock: while self.read_frame(True): pass self.close_ex(wait=False) def close(self, message=None, wait=True): """ close(message=None, wait=True) -> None Close the underlying connection with a code of CLOSE_NORMAL and the (optional) given message. If wait is true, this will read frames from self until the other side acknowledges the close; as this may cause data loss, be careful. """ self.close_ex(constants.CLOSE_NORMAL, message, wait) def parse_close(self, content): """ parse_close(content) -> (code, message) Parse the given content as the payload of a OP_CLOSE frame, and return the error code (as an unsigned integer) and the error payload (as a bytes object). If content is empty, the tuple (None, None) is returned, to aid round-tripping into close(). Raises InvalidDataError if the content has a length of 1. """ if not content: return (None, None) elif len(content) == 1: raise InvalidDataError('Invalid close frame payload') else: return (struct.unpack('!H', content[:2])[0], content[2:]) def wrap(*args, **kwds): """ wrap(file1[, file2], **kwds) -> WebSocket Try to wrap file1 and (if given) file2 into a WebSocket. Convenience method for static factory methods: If both file1 and file2 are given, they are passed to from_files(); if otherwise file1 has recv and send attributes, it is passed to from_socket(), otherwise, it is passed to from_file(). """ if len(args) == 0: raise TypeError('Cannot wrap nothing') elif len(args) == 1: f = args[0] if hasattr(f, 'recv') and hasattr(f, 'send'): return WebSocketFile.from_socket(f, **kwds) else: return WebSocketFile.from_file(f, **kwds) elif len(args) == 2: return WebSocketFile.from_files(args[0], args[1], **kwds) else: raise TypeError('Too many arguments')
[ 2, 2639, 5459, 62, 15388, 1377, 5313, 39105, 14, 40717, 4382, 14, 16366, 5888, 198, 2, 3740, 1378, 12567, 13, 785, 14, 34, 2645, 9229, 21762, 1304, 14, 732, 1443, 5459, 12, 15388, 198, 198, 37811, 198, 13908, 39105, 8435, 7822, 13, 198, 198, 16366, 62, 4993, 32431, 3419, 290, 4382, 62, 4993, 32431, 3419, 1620, 262, 5035, 4560, 198, 261, 285, 39242, 286, 14626, 24697, 26, 262, 5313, 39105, 8979, 1398, 23986, 262, 30811, 198, 11235, 4668, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 17802, 198, 11748, 2878, 198, 11748, 2779, 2414, 198, 11748, 40481, 82, 198, 11748, 4704, 278, 198, 11748, 12234, 8019, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 6738, 764, 1330, 38491, 198, 6738, 764, 5589, 265, 1330, 416, 83, 451, 2433, 11, 9881, 11, 284, 33661, 11, 28000, 1098, 11, 869, 540, 198, 6738, 764, 1069, 11755, 1330, 20497, 12331, 11, 17665, 6601, 12331, 198, 6738, 764, 1069, 11755, 1330, 26923, 2601, 1335, 12331, 198, 6738, 764, 31391, 1330, 9335, 11, 649, 62, 27932, 198, 198, 834, 439, 834, 796, 37250, 16366, 62, 4993, 32431, 3256, 705, 13908, 39105, 8979, 3256, 705, 37150, 20520, 198, 198, 2, 1439, 5040, 4326, 13, 198, 19499, 45746, 62, 33489, 796, 1467, 22842, 198, 198, 2, 25184, 1398, 198, 19778, 796, 3706, 83, 29291, 10786, 19778, 3256, 705, 404, 8189, 21437, 2457, 31456, 4906, 11537, 198, 198, 2, 16000, 1398, 198, 12837, 796, 3706, 83, 29291, 10786, 12837, 3256, 705, 19662, 4906, 2695, 2457, 11537, 198, 198, 2, 30019, 276, 422, 30978, 718, 30505, 25, 198, 2, 220, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 198, 2, 220, 657, 352, 362, 513, 604, 642, 718, 767, 657, 352, 362, 513, 604, 642, 718, 767, 657, 352, 362, 513, 604, 642, 718, 767, 657, 352, 362, 513, 604, 642, 718, 767, 198, 2, 1343, 42744, 26866, 10, 19529, 10541, 19529, 1783, 24305, 10, 198, 2, 930, 37, 91, 49, 91, 49, 91, 49, 91, 1034, 8189, 91, 44, 91, 7119, 2220, 18896, 930, 220, 220, 220, 24204, 21437, 4129, 220, 220, 220, 930, 198, 2, 930, 40, 91, 50, 91, 50, 91, 50, 91, 220, 357, 19, 8, 220, 930, 32, 91, 220, 220, 220, 220, 357, 22, 8, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1433, 14, 2414, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 2, 930, 45, 91, 53, 91, 53, 91, 53, 91, 220, 220, 220, 220, 220, 220, 930, 50, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 357, 361, 21437, 18896, 855, 19420, 14, 16799, 8, 220, 220, 930, 198, 2, 930, 930, 16, 91, 17, 91, 18, 91, 220, 220, 220, 220, 220, 220, 930, 42, 91, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 2, 1343, 42744, 26866, 10, 19529, 10541, 19529, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 1343, 198, 2, 930, 220, 220, 220, 220, 24204, 21437, 4129, 3767, 11, 611, 21437, 18896, 6624, 18112, 220, 930, 198, 2, 1343, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 1343, 1783, 24305, 10, 198, 2, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 44, 30463, 12, 2539, 11, 611, 32337, 42, 900, 284, 352, 220, 930, 198, 2, 1343, 1783, 24305, 10, 1783, 24305, 10, 198, 2, 930, 18007, 278, 12, 2539, 357, 18487, 1739, 8, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7119, 2220, 6060, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 2, 1343, 1783, 24305, 10, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 1343, 198, 2, 1058, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7119, 2220, 6060, 3767, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 2, 1343, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 1343, 198, 2, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7119, 2220, 6060, 3767, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 2, 1343, 47232, 24305, 10, 198, 198, 2, 383, 366, 32707, 1, 19348, 2389, 973, 329, 1882, 12, 13908, 39105, 12, 38855, 13, 198, 45820, 2149, 62, 38, 27586, 796, 28000, 1098, 10786, 25600, 16412, 7708, 20, 12, 36, 24, 1415, 12, 2857, 5631, 12, 3865, 8141, 12, 34, 20, 6242, 15, 9697, 5332, 33, 1157, 11537, 198, 198, 4299, 1429, 62, 2539, 7, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1429, 62, 2539, 7, 2539, 8, 4613, 28000, 1098, 628, 220, 220, 220, 26981, 262, 1813, 1994, 355, 2672, 284, 1296, 257, 1882, 12, 13908, 39105, 12, 38855, 198, 220, 220, 220, 2214, 11, 290, 1441, 262, 649, 1994, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2207, 62, 2539, 796, 357, 46903, 1098, 7, 2539, 8, 1343, 28263, 2149, 62, 38, 27586, 737, 268, 8189, 10786, 292, 979, 72, 11537, 198, 220, 220, 220, 1217, 62, 2539, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 17831, 8019, 13, 26270, 16, 7, 12685, 62, 2539, 737, 12894, 395, 28955, 198, 220, 220, 220, 1441, 1217, 62, 2539, 13, 12501, 1098, 10786, 292, 979, 72, 11537, 198, 198, 4299, 5456, 62, 4993, 32431, 7, 50145, 11, 1237, 418, 28, 14202, 11, 787, 2539, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5456, 62, 4993, 32431, 7, 50145, 11, 1237, 418, 28, 14202, 11, 787, 2539, 28, 14202, 8, 4613, 2163, 628, 220, 220, 220, 35006, 262, 5456, 12, 1589, 3354, 286, 257, 5313, 39105, 42231, 13, 198, 220, 220, 220, 24697, 318, 257, 16855, 422, 13639, 3891, 284, 13639, 3815, 357, 16885, 34371, 198, 220, 220, 220, 13042, 8, 543, 318, 9518, 287, 12, 5372, 351, 5313, 39105, 24697, 13, 198, 220, 220, 220, 1237, 418, 318, 530, 286, 25, 198, 220, 220, 220, 532, 6045, 284, 407, 32740, 850, 11235, 4668, 82, 11, 198, 220, 220, 220, 532, 317, 2060, 4731, 973, 3264, 355, 262, 1882, 12, 13908, 39105, 12, 19703, 4668, 13639, 11, 198, 220, 220, 220, 532, 317, 1351, 286, 13042, 11, 543, 389, 5399, 416, 725, 1045, 656, 262, 1988, 286, 262, 198, 220, 220, 220, 220, 220, 1882, 12, 13908, 39105, 12, 19703, 4668, 13639, 13, 198, 220, 220, 220, 24550, 326, 262, 1988, 286, 1237, 418, 318, 407, 31031, 13, 198, 220, 220, 220, 787, 2539, 11, 611, 407, 6045, 11, 318, 257, 2163, 326, 5860, 257, 18022, 4731, 286, 4129, 198, 220, 220, 220, 1467, 326, 318, 973, 355, 262, 2779, 286, 262, 1882, 12, 13908, 39105, 12, 9218, 13639, 13, 1002, 787, 2539, 198, 220, 220, 220, 318, 6045, 11, 28686, 13, 333, 3749, 3419, 318, 973, 13, 198, 220, 220, 220, 383, 1441, 1988, 318, 257, 2163, 326, 2753, 262, 2882, 24697, 357, 259, 262, 198, 220, 220, 220, 976, 5794, 355, 24697, 8, 355, 262, 691, 11507, 290, 12073, 257, 20497, 12331, 198, 220, 220, 220, 611, 262, 42231, 318, 407, 4388, 13, 1002, 262, 42231, 1635, 271, 9, 4388, 11, 262, 198, 220, 220, 220, 2163, 5860, 262, 850, 11235, 4668, 6163, 416, 262, 4382, 357, 64, 4731, 326, 198, 220, 220, 220, 1276, 423, 587, 1944, 287, 1237, 418, 828, 393, 6045, 357, 1640, 645, 850, 11235, 4668, 737, 198, 220, 220, 220, 24550, 326, 428, 5888, 857, 407, 1104, 18366, 13, 1114, 2003, 198, 220, 220, 220, 220, 220, 220, 220, 220, 17764, 11, 340, 561, 307, 34998, 284, 11986, 787, 2539, 11, 611, 379, 477, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 355, 257, 21179, 4578, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 2198, 62, 26209, 7, 4363, 50145, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4834, 19532, 262, 1813, 14626, 2882, 24697, 389, 257, 4938, 25290, 42231, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 1994, 290, 584, 7032, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 50145, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 38855, 11537, 14512, 1429, 62, 2539, 7, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20497, 12331, 10786, 44651, 2882, 1994, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 50145, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 11627, 5736, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20497, 12331, 10786, 11627, 5736, 407, 4855, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 1217, 50145, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 19703, 4668, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 1237, 418, 318, 6045, 11, 1262, 262, 366, 259, 1, 10088, 743, 2038, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 290, 357, 1662, 1237, 418, 393, 279, 407, 287, 1237, 418, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 20497, 12331, 10786, 44651, 850, 11235, 4668, 2722, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 198, 220, 220, 220, 611, 787, 2539, 318, 6045, 25, 787, 2539, 796, 37456, 25, 28686, 13, 333, 3749, 7, 1433, 8, 198, 220, 220, 220, 24697, 13, 19119, 15090, 6, 32048, 10354, 705, 44948, 3256, 705, 44948, 10354, 705, 732, 1443, 5459, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6558, 12, 13908, 39105, 12, 14815, 10354, 705, 1485, 6, 30072, 198, 220, 220, 220, 611, 318, 39098, 7, 11235, 418, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 6558, 12, 13908, 39105, 12, 19703, 4668, 20520, 796, 1237, 418, 198, 220, 220, 220, 1288, 361, 1237, 418, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 17816, 6558, 12, 13908, 39105, 12, 19703, 4668, 20520, 796, 46083, 45302, 22179, 7, 11235, 418, 8, 198, 220, 220, 220, 1994, 796, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 15883, 2539, 3419, 737, 12501, 1098, 10786, 292, 979, 72, 11537, 198, 220, 220, 220, 24697, 17816, 6558, 12, 13908, 39105, 12, 9218, 20520, 796, 1994, 198, 220, 220, 220, 1441, 2198, 62, 26209, 198, 198, 4299, 4382, 62, 4993, 32431, 7, 50145, 11, 1237, 418, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4382, 62, 4993, 32431, 7, 50145, 11, 1237, 418, 28, 14202, 8, 4613, 8633, 628, 220, 220, 220, 35006, 262, 4382, 12, 1589, 636, 286, 257, 5313, 39105, 42231, 13, 198, 220, 220, 220, 24697, 318, 257, 3975, 278, 422, 13639, 3891, 284, 13639, 3815, 357, 16885, 34371, 198, 220, 220, 220, 13042, 828, 543, 318, 31031, 13, 198, 220, 220, 220, 1237, 418, 318, 530, 286, 25, 198, 220, 220, 220, 532, 6045, 284, 7603, 645, 850, 11235, 4668, 82, 11, 198, 220, 220, 220, 532, 317, 8379, 393, 13216, 10223, 12, 12381, 320, 863, 4731, 286, 3891, 286, 6292, 198, 220, 220, 220, 220, 220, 850, 11235, 4668, 82, 357, 1169, 717, 850, 11235, 4668, 5150, 416, 262, 5456, 326, 318, 198, 220, 220, 220, 220, 220, 287, 262, 1351, 318, 6163, 828, 198, 220, 220, 220, 532, 317, 2163, 2263, 262, 1351, 286, 850, 11235, 4668, 82, 5150, 416, 262, 5456, 355, 198, 220, 220, 220, 220, 220, 262, 691, 4578, 290, 8024, 257, 850, 11235, 4668, 1438, 393, 6045, 13, 198, 220, 220, 220, 383, 1441, 1988, 318, 257, 16855, 286, 24697, 284, 307, 3017, 287, 262, 2882, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 383, 3210, 4433, 257, 14504, 13639, 986, 1521, 407, 986, 198, 220, 220, 220, 611, 705, 17932, 6, 407, 287, 24697, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 43730, 14504, 13639, 11537, 198, 220, 220, 220, 1303, 3254, 20540, 24236, 13639, 13, 198, 220, 220, 220, 611, 705, 732, 1443, 5459, 6, 407, 287, 24697, 13, 1136, 10786, 44948, 3256, 10148, 737, 21037, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 44651, 14, 43730, 24236, 13639, 11537, 198, 220, 220, 220, 1303, 3254, 20540, 8435, 2196, 13, 198, 220, 220, 220, 611, 24697, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 14815, 11537, 14512, 705, 1485, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 44651, 5313, 39105, 2196, 22759, 28, 1511, 8, 11537, 198, 220, 220, 220, 1303, 3254, 20540, 26923, 13639, 13, 198, 220, 220, 220, 4637, 796, 685, 72, 13, 21037, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 24697, 13, 1136, 10786, 32048, 3256, 10148, 737, 35312, 7, 3256, 11537, 60, 198, 220, 220, 220, 611, 705, 929, 9526, 6, 407, 287, 4637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 44651, 14, 43730, 26923, 13639, 11537, 198, 220, 220, 220, 1303, 3254, 20540, 262, 1994, 13, 198, 220, 220, 220, 1994, 796, 24697, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 9218, 11537, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8692, 2414, 13, 65, 2414, 12501, 1098, 7, 83, 26730, 4879, 7, 2539, 22305, 14512, 1467, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 44651, 5313, 39105, 1994, 4129, 11537, 198, 220, 220, 220, 2845, 357, 6030, 12331, 11, 11052, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 10786, 44651, 5313, 39105, 1994, 11537, 198, 220, 220, 220, 1303, 49751, 389, 407, 4855, 13, 198, 220, 220, 220, 1303, 1355, 583, 33532, 351, 850, 11235, 4668, 16326, 13, 198, 220, 220, 220, 1237, 2536, 796, 24697, 13, 1136, 10786, 6558, 12, 13908, 39105, 12, 19703, 4668, 3256, 10148, 8, 198, 220, 220, 220, 1237, 4868, 796, 29565, 72, 13, 36311, 3419, 329, 1312, 287, 1237, 2536, 13, 35312, 7, 3256, 11537, 60, 611, 1237, 2536, 2073, 685, 12962, 198, 220, 220, 220, 611, 1237, 418, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 381, 305, 1462, 796, 6045, 198, 220, 220, 220, 1288, 361, 869, 540, 7, 11235, 418, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 581, 381, 305, 1462, 796, 1237, 418, 7, 11235, 4868, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 11235, 418, 11, 965, 2599, 1237, 418, 796, 1237, 418, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2558, 1463, 453, 25243, 9052, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 581, 381, 305, 1462, 287, 1237, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 581, 381, 305, 1462, 287, 1237, 418, 25, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 381, 305, 1462, 796, 6045, 198, 220, 220, 220, 1303, 43426, 2882, 24697, 13, 198, 220, 220, 220, 1005, 796, 1391, 6, 32048, 10354, 705, 929, 9526, 3256, 705, 44948, 10354, 705, 732, 1443, 5459, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6558, 12, 13908, 39105, 12, 38855, 10354, 1429, 62, 2539, 7, 2539, 38165, 198, 220, 220, 220, 611, 581, 381, 305, 1462, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 17816, 6558, 12, 13908, 39105, 12, 19703, 4668, 20520, 796, 581, 381, 305, 1462, 198, 220, 220, 220, 1441, 1005, 198, 198, 4871, 5313, 39105, 8979, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5313, 39105, 8435, 7822, 13, 1737, 2779, 319, 257, 5166, 286, 2393, 12, 2339, 198, 220, 220, 220, 5563, 357, 1640, 8748, 287, 14626, 18453, 25060, 338, 1776, 257, 366, 1831, 1, 17802, 357, 361, 345, 198, 220, 220, 220, 4702, 32096, 14626, 24697, 3511, 1776, 393, 257, 2060, 2393, 2134, 357, 361, 198, 220, 220, 220, 345, 423, 1392, 884, 257, 1100, 12, 13564, 530, 737, 770, 1398, 318, 407, 5213, 198, 220, 220, 220, 351, 262, 42231, 26, 766, 5456, 62, 4993, 32431, 3419, 290, 4382, 62, 4993, 32431, 3419, 329, 198, 220, 220, 220, 326, 13, 628, 220, 220, 220, 5313, 39105, 8979, 7, 4372, 7753, 11, 1319, 7753, 11, 4382, 62, 1589, 28, 25101, 11, 850, 11235, 4668, 28, 14202, 8, 198, 220, 220, 220, 374, 7568, 576, 220, 220, 220, 220, 1058, 9220, 284, 1620, 3555, 4560, 319, 13, 198, 220, 220, 220, 1319, 7753, 220, 220, 220, 220, 1058, 9220, 284, 1620, 3597, 4560, 319, 13, 198, 220, 220, 220, 4382, 62, 1589, 25, 10127, 284, 8209, 4382, 12, 1589, 4069, 357, 361, 2081, 8, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 847, 3083, 737, 198, 220, 220, 220, 850, 11235, 4668, 25, 383, 850, 11235, 4668, 284, 307, 973, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 4382, 62, 1589, 220, 1058, 10127, 428, 318, 257, 4382, 12, 1589, 5313, 39105, 8979, 13, 198, 220, 220, 220, 850, 11235, 4668, 220, 1058, 383, 850, 11235, 4668, 355, 3804, 284, 262, 23772, 13, 198, 220, 220, 220, 1969, 62, 29988, 1496, 25, 10127, 4585, 1969, 3419, 815, 1969, 262, 10238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 355, 880, 13, 2896, 13185, 284, 6407, 13, 198, 220, 220, 220, 4808, 4372, 5354, 220, 220, 220, 220, 220, 1058, 4704, 278, 13, 7836, 735, 4554, 973, 329, 11389, 2890, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10192, 3555, 12, 5363, 4560, 13, 198, 220, 220, 220, 4808, 18351, 5354, 220, 220, 220, 220, 220, 1058, 4704, 278, 13, 7836, 735, 4554, 2836, 329, 11389, 2890, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10192, 3551, 12, 5363, 4560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 4372, 5354, 815, 1464, 307, 21635, 878, 4808, 18351, 5354, 11, 611, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 26, 4143, 11, 466, 407, 869, 3555, 12, 5363, 5050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4758, 635, 2291, 1969, 9, 28955, 351, 4808, 18351, 5354, 21635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 466, 407, 779, 883, 19253, 4556, 3306, 13, 198, 220, 220, 220, 4808, 44971, 220, 220, 220, 220, 220, 1058, 4698, 3157, 17802, 357, 2617, 416, 422, 62, 44971, 3419, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1737, 407, 307, 1944, 379, 477, 357, 72, 13, 68, 13, 307, 6045, 737, 5514, 779, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 345, 389, 1107, 1654, 345, 761, 284, 13, 628, 220, 220, 220, 5016, 12608, 25, 198, 220, 220, 220, 25882, 10913, 10067, 220, 220, 220, 1058, 22246, 5739, 21437, 4129, 13, 1737, 307, 23170, 4651, 416, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 37724, 357, 273, 10245, 737, 11052, 318, 2035, 281, 18253, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 357, 521, 12364, 645, 4179, 737, 770, 318, 407, 20326, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28181, 6218, 13, 198, 220, 220, 220, 25882, 10943, 10234, 49, 10067, 25, 22246, 4129, 286, 257, 5739, 49594, 422, 21441, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1737, 307, 23170, 4651, 355, 880, 13, 383, 1988, 468, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33815, 355, 262, 530, 286, 25882, 10913, 10067, 13, 770, 318, 407, 20326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 28181, 6218, 355, 880, 13, 628, 220, 220, 220, 24550, 25, 770, 1398, 9743, 3446, 262, 2033, 286, 9881, 2622, 11, 1865, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6940, 1586, 286, 262, 10238, 4269, 743, 2728, 13431, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36801, 395, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10238, 4269, 1276, 307, 12013, 11, 393, 22900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4069, 8833, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 22246, 3142, 5739, 4129, 13, 198, 220, 220, 220, 25882, 10913, 10067, 796, 6045, 628, 220, 220, 220, 1303, 22246, 3767, 5739, 4129, 13, 198, 220, 220, 220, 25882, 10943, 10234, 49, 10067, 796, 6045, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 16624, 7, 565, 82, 11, 374, 7568, 576, 11, 1319, 7753, 11, 12429, 46265, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 16624, 7, 4372, 7753, 11, 1319, 7753, 11, 12429, 46265, 9310, 8, 4613, 5313, 39105, 8979, 628, 220, 220, 220, 220, 220, 220, 220, 7889, 29540, 284, 262, 23772, 26, 2810, 329, 40686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 4372, 7753, 11, 1319, 7753, 11, 12429, 46265, 9310, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 44971, 7, 565, 82, 11, 32263, 11, 12429, 46265, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 44971, 7, 82, 735, 11, 12429, 46265, 9310, 8, 4613, 5313, 39105, 8979, 628, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 17802, 287, 257, 5313, 39105, 8979, 13, 36965, 262, 787, 7753, 3419, 2446, 284, 198, 220, 220, 220, 220, 220, 220, 220, 7330, 262, 2393, 5563, 20947, 973, 13, 7383, 4775, 7159, 389, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 319, 284, 262, 23772, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 537, 82, 13, 6738, 62, 7753, 7, 82, 735, 13, 15883, 7753, 10786, 31653, 65, 33809, 12429, 46265, 9310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 13557, 44971, 796, 32263, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 7753, 7, 565, 82, 11, 2393, 11, 12429, 46265, 9310, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 7753, 7, 7753, 11, 12429, 46265, 9310, 8, 4613, 5313, 39105, 8979, 628, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 1100, 12, 13564, 2393, 2134, 13, 7383, 4775, 7159, 389, 3804, 319, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 23772, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 7753, 11, 2393, 11, 12429, 46265, 9310, 8, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 374, 7568, 576, 11, 1319, 7753, 11, 4382, 62, 1589, 28, 25101, 11, 850, 11235, 4668, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11593, 15003, 834, 7, 4372, 7753, 11, 1319, 7753, 11, 4382, 62, 1589, 28, 25101, 11, 850, 11235, 4668, 28, 14202, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 262, 1398, 2205, 8841, 329, 3307, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4372, 7753, 796, 374, 7568, 576, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18351, 7753, 796, 1319, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 44971, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15388, 62, 1589, 796, 4382, 62, 1589, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 11235, 4668, 796, 850, 11235, 4668, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 29988, 1496, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4372, 5354, 796, 4704, 278, 13, 7836, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18351, 5354, 796, 4704, 278, 13, 7836, 735, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8860, 796, 40481, 82, 13, 1136, 24988, 434, 1940, 721, 12342, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12501, 12342, 796, 8860, 7, 48277, 11639, 301, 2012, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22019, 62, 404, 8189, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 19836, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15266, 62, 19836, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20225, 796, 10352, 628, 220, 220, 220, 825, 4808, 961, 62, 1831, 7, 944, 11, 4129, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 961, 62, 1831, 7, 13664, 8, 4613, 9881, 628, 220, 220, 220, 220, 220, 220, 220, 4149, 3446, 4129, 9881, 422, 262, 10238, 4269, 11, 290, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 606, 355, 257, 9881, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10358, 307, 973, 329, 1402, 6867, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 412, 19238, 12331, 611, 1342, 621, 4129, 9881, 389, 1100, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4129, 25, 1441, 275, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 796, 2116, 13557, 4372, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 42684, 11, 809, 2704, 268, 796, 685, 4357, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 809, 2704, 268, 1279, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 67, 796, 374, 69, 13, 961, 7, 13664, 532, 809, 2704, 268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 374, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 13, 33295, 7, 4372, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 809, 2704, 268, 15853, 18896, 7, 4372, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 275, 35384, 22179, 7, 29325, 8, 628, 220, 220, 220, 825, 4808, 961, 20424, 62, 1831, 7, 944, 11, 42684, 11, 11677, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 961, 20424, 62, 1831, 7, 29325, 11, 11677, 28, 15, 8, 4613, 42684, 628, 220, 220, 220, 220, 220, 220, 220, 9993, 284, 6070, 42684, 351, 3446, 355, 867, 9881, 355, 42684, 460, 1745, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 42684, 318, 281, 18253, 11, 257, 416, 83, 451, 2433, 2134, 286, 326, 4129, 318, 198, 220, 220, 220, 220, 220, 220, 220, 19171, 290, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 11677, 318, 1729, 22570, 11, 3555, 4940, 379, 326, 11677, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 412, 19238, 12331, 319, 5287, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 37014, 656, 18022, 26515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 29325, 11, 493, 2599, 42684, 796, 416, 83, 451, 2433, 7, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2094, 470, 2038, 319, 6565, 9743, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 42684, 25, 1441, 42684, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8774, 986, 1949, 12, 16341, 13444, 13, 198, 220, 220, 220, 220, 220, 220, 220, 374, 69, 11, 781, 796, 2116, 13557, 4372, 7753, 11, 18896, 7, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 366, 30191, 1, 1100, 20424, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11677, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 374, 69, 13, 961, 20424, 7, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 412, 19238, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 11677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 300, 1279, 18896, 7, 29325, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27845, 262, 1334, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 991, 284, 779, 42684, 2346, 357, 521, 1060, 306, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 11, 267, 796, 4088, 1177, 7, 29325, 828, 300, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 267, 1279, 781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 67, 796, 374, 69, 13, 961, 20424, 7, 85, 58, 78, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 374, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 15853, 374, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 6530, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2561, 423, 284, 1100, 1981, 3354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 300, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 416, 83, 451, 2433, 7, 1084, 7, 2704, 532, 267, 11, 20571, 45746, 62, 33489, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 267, 1279, 781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 29510, 8, 1875, 781, 532, 267, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 416, 83, 451, 2433, 7, 2704, 532, 267, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 67, 796, 374, 69, 13, 961, 20424, 7, 29510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 374, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 796, 267, 1343, 374, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 58, 78, 25, 3919, 60, 796, 20218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 645, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 1100, 20424, 1695, 11, 423, 284, 1100, 22716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 11, 781, 796, 11677, 11, 18896, 7, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 267, 1279, 781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 796, 374, 69, 13, 961, 7, 1084, 7, 2704, 532, 267, 11, 20571, 45746, 62, 33489, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 796, 267, 1343, 18896, 7, 354, 2954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 58, 78, 25, 3919, 60, 796, 16058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 796, 645, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 42684, 628, 220, 220, 220, 825, 4808, 13564, 62, 1831, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 13564, 62, 1831, 7, 7890, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 19430, 1366, 284, 262, 10238, 4269, 13, 1737, 393, 743, 307, 407, 6940, 1068, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18351, 7753, 13, 13564, 7, 7890, 8, 628, 220, 220, 220, 825, 4808, 25925, 62, 1831, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 25925, 62, 1831, 3419, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 5221, 597, 6940, 1068, 5072, 1366, 284, 307, 3194, 503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18351, 7753, 13, 25925, 3419, 628, 220, 220, 220, 825, 4808, 49625, 2902, 62, 1831, 7, 944, 11, 4235, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 49625, 2902, 62, 1831, 7, 14171, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 35006, 257, 18325, 286, 262, 10238, 17802, 11, 611, 597, 13, 4235, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 17802, 13, 9693, 3843, 62, 9, 6937, 2853, 10720, 262, 7141, 4235, 286, 18325, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 2116, 13557, 44971, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 49625, 2902, 7, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 17802, 13, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 1100, 62, 29762, 62, 14535, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 29762, 62, 14535, 3419, 4613, 357, 404, 8189, 11, 21437, 11, 2457, 11, 2099, 8, 393, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 4149, 357, 392, 21136, 8, 257, 2060, 5313, 39105, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1034, 8189, 318, 262, 1034, 8189, 286, 262, 5739, 11, 355, 281, 18253, 26, 21437, 318, 262, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 286, 262, 5739, 11, 2420, 1366, 318, 1635, 1662, 9, 875, 9043, 26, 2457, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 25131, 12739, 1771, 428, 5739, 373, 2457, 11, 2099, 318, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 355, 1034, 8189, 329, 1729, 12, 18487, 2288, 13431, 11, 290, 262, 1034, 8189, 286, 262, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 3767, 329, 24659, 13431, 13, 383, 1441, 1988, 318, 257, 3706, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 11, 351, 262, 7032, 3706, 355, 8203, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 412, 19238, 318, 4251, 357, 1662, 287, 262, 3504, 286, 262, 5739, 828, 6045, 318, 198, 220, 220, 220, 220, 220, 220, 220, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25882, 10913, 10067, 318, 5625, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1737, 5298, 20497, 12331, 357, 8869, 4049, 28955, 611, 262, 1366, 2722, 318, 198, 220, 220, 220, 220, 220, 220, 220, 12515, 11, 318, 40122, 515, 11, 281, 12515, 357, 13159, 25106, 18487, 2288, 5739, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 11, 412, 19238, 2641, 281, 34419, 41630, 5739, 318, 12956, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 39410, 25, 1002, 257, 1630, 5739, 318, 2722, 357, 72, 13, 68, 13, 3025, 1034, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1643, 3083, 12, 6981, 440, 5868, 1921, 42, 62, 10943, 5446, 3535, 318, 1729, 22570, 828, 340, 1276, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3804, 656, 262, 5412, 62, 13716, 3419, 2446, 26, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 7822, 743, 2984, 1350, 14150, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 4372, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9363, 329, 1568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 373, 62, 961, 62, 19836, 796, 2116, 13557, 961, 62, 19836, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 517, 3555, 706, 1969, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 373, 62, 961, 62, 19836, 25, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 1034, 8189, 18022, 13, 317, 412, 19238, 994, 318, 1729, 12, 69, 10254, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 416, 83, 451, 2433, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 15, 60, 796, 2760, 7, 944, 13557, 961, 62, 1831, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22019, 62, 404, 8189, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 3118, 43952, 41630, 5739, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 1870, 412, 19238, 422, 994, 319, 11, 319, 262, 584, 1021, 11, 318, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 262, 4129, 18022, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 16, 60, 796, 2760, 7, 944, 13557, 961, 62, 1831, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29677, 13639, 7032, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 796, 13639, 58, 15, 60, 1222, 38491, 13, 38948, 62, 20032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10395, 796, 13639, 58, 15, 60, 1222, 38491, 13, 31180, 42, 62, 6998, 53, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 8189, 796, 13639, 58, 15, 60, 1222, 38491, 13, 31180, 42, 62, 3185, 34, 16820, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29229, 796, 13639, 58, 16, 60, 1222, 38491, 13, 38948, 62, 31180, 42, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 13639, 58, 16, 60, 1222, 38491, 13, 31180, 42, 62, 43, 49494, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10395, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 19778, 351, 10395, 9701, 2722, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20512, 7, 944, 13, 15388, 62, 1589, 8, 10563, 20512, 7, 27932, 276, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 19778, 351, 12515, 9335, 278, 2722, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 8189, 1222, 38491, 13, 3185, 31180, 42, 62, 10943, 5446, 3535, 290, 407, 2457, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 42974, 12061, 1630, 5739, 2722, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 42974, 12061, 8, 16000, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 4906, 796, 1034, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 42965, 1181, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1034, 8189, 1222, 38491, 13, 3185, 31180, 42, 62, 10943, 5446, 3535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6779, 13431, 743, 1208, 12748, 11, 1729, 12, 13716, 3392, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9427, 351, 262, 1181, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 8189, 6624, 38491, 13, 3185, 62, 37815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6389, 2288, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 4906, 796, 2116, 13557, 22019, 62, 404, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22019, 62, 404, 8189, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 262, 4049, 3275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 5574, 19080, 276, 24659, 5739, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2457, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4463, 3929, 41630, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22019, 62, 404, 8189, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 26447, 1, 24659, 5739, 3804, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 39681, 1, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 22019, 62, 404, 8189, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27511, 2641, 41630, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 42974, 12061, 5739, 19072, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 2457, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24229, 12061, 5739, 2067, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 22019, 62, 404, 8189, 796, 1034, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12189, 12, 45964, 5739, 3804, 1377, 645, 2223, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29677, 4129, 290, 9335, 1988, 26, 923, 3555, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 11925, 796, 357, 19, 611, 29229, 2073, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 1279, 19710, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2329, 1100, 262, 9335, 611, 3306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 8135, 796, 2116, 13557, 961, 20424, 62, 1831, 7, 27932, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4129, 6624, 19710, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 796, 2116, 13557, 961, 20424, 62, 1831, 7, 17, 1343, 9335, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 2878, 13, 403, 8002, 10786, 0, 39, 3256, 42684, 58, 25, 17, 12962, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 1279, 19710, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 44651, 5739, 4129, 21004, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 285, 8135, 796, 42684, 58, 17, 25, 21, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4129, 6624, 18112, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 796, 2116, 13557, 961, 20424, 62, 1831, 7, 23, 1343, 9335, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4129, 796, 2878, 13, 403, 8002, 10786, 0, 48, 3256, 42684, 58, 25, 23, 12962, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 4129, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4129, 1279, 45021, 2623, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 44651, 5739, 4129, 21004, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4129, 18189, 860, 1828, 2091, 23906, 2623, 5332, 2857, 2425, 28362, 25, 1303, 362, 12429, 8093, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17191, 287, 30978, 718, 30505, 11, 2665, 642, 13, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 714, 5412, 883, 13431, 3538, 357, 35569, 356, 423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1576, 4088, 828, 996, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 19778, 1165, 890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 285, 8135, 796, 42684, 58, 23, 25, 1065, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 4129, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22921, 10913, 10067, 318, 407, 6045, 290, 4129, 1875, 2116, 13, 22921, 10913, 10067, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 19778, 1165, 890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2438, 28, 9979, 1187, 13, 32737, 62, 44, 1546, 4090, 8264, 62, 51, 6684, 62, 3483, 38, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1439, 13369, 1255, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 29325, 796, 416, 83, 451, 2433, 7, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 1334, 286, 3275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 20424, 62, 1831, 7, 26145, 3046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49899, 428, 318, 407, 257, 1281, 12, 19836, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 373, 62, 961, 62, 19836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 3041, 6471, 5739, 706, 9605, 530, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 31849, 9335, 278, 611, 3306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 374, 29325, 796, 9335, 7, 907, 74, 11, 374, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 24429, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 25184, 7, 404, 8189, 11, 9881, 7, 26145, 3046, 828, 20512, 7, 20311, 828, 31456, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 10786, 2898, 19524, 515, 5739, 11537, 628, 220, 220, 220, 825, 1100, 62, 14535, 7, 944, 11, 4269, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 14535, 7, 5532, 28, 25101, 8, 4613, 357, 19662, 4906, 11, 2695, 11, 2457, 8, 393, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 4149, 257, 5313, 39105, 1366, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1441, 1988, 318, 13160, 422, 7032, 286, 262, 976, 3616, 355, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1100, 62, 29762, 62, 14535, 22446, 5740, 326, 262, 1034, 8189, 2214, 318, 25148, 198, 220, 220, 220, 220, 220, 220, 220, 287, 2661, 286, 31456, 4906, 13, 383, 1441, 1988, 318, 357, 292, 287, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 29762, 62, 14535, 3419, 828, 257, 3706, 46545, 11, 351, 262, 2214, 3891, 355, 198, 220, 220, 220, 220, 220, 220, 220, 8203, 13, 1002, 262, 4269, 16925, 281, 412, 19238, 11, 5860, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 4269, 318, 3991, 11, 41630, 13431, 389, 302, 12, 24011, 1389, 656, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2060, 5739, 357, 22921, 10943, 10234, 49, 10067, 318, 5625, 828, 4306, 11, 484, 389, 198, 220, 220, 220, 220, 220, 220, 220, 4504, 17033, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 3726, 286, 257, 41630, 5739, 373, 1541, 13529, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 17675, 286, 340, 357, 273, 530, 5739, 286, 262, 17675, 11, 6906, 319, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 8, 318, 1100, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1737, 5298, 20497, 12331, 357, 361, 1100, 62, 29762, 62, 14535, 3419, 857, 828, 393, 198, 220, 220, 220, 220, 220, 220, 220, 17665, 6601, 12331, 11, 611, 39938, 257, 2420, 5739, 10143, 13, 198, 220, 220, 220, 220, 220, 220, 220, 24550, 25, 383, 1366, 4504, 743, 407, 6053, 5000, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 286, 262, 10238, 5739, 11, 611, 262, 6846, 4909, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17503, 41002, 12, 23, 16311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42684, 11, 809, 2704, 268, 796, 685, 4357, 657, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 4372, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1216, 796, 2116, 13, 961, 62, 29762, 62, 14535, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 412, 19238, 4251, 13, 33238, 1181, 318, 3424, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1216, 25, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10854, 1630, 13431, 355, 2952, 355, 1744, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1216, 13, 404, 8189, 1222, 38491, 13, 3185, 31180, 42, 62, 10943, 5446, 3535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28144, 62, 13716, 7, 8310, 13, 404, 8189, 11, 1216, 13, 15577, 2220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4280, 1098, 2420, 13431, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1216, 13, 19662, 4906, 6624, 38491, 13, 3185, 62, 32541, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 2116, 13557, 12501, 12342, 13, 12501, 1098, 7, 8310, 13, 15577, 2220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1216, 13, 20311, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 6601, 12331, 10786, 44651, 3275, 21437, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 1216, 13, 15577, 2220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2039, 3174, 25882, 10943, 10234, 49, 10067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 22921, 10943, 10234, 49, 10067, 318, 407, 6045, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 809, 2704, 268, 1343, 18896, 7, 15577, 2220, 8, 1875, 2116, 13, 22921, 10943, 10234, 49, 10067, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 42974, 12061, 5739, 1165, 890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2438, 28, 9979, 1187, 13, 32737, 62, 44, 1546, 4090, 8264, 62, 51, 6684, 62, 3483, 38, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 43426, 1988, 329, 8024, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 388, 796, 16000, 7, 8310, 13, 19662, 4906, 11, 21437, 11, 1216, 13, 20311, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3310, 446, 11305, 4235, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 388, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6366, 388, 5039, 1729, 12, 20311, 13431, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42684, 13, 33295, 7, 19608, 388, 13, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 809, 2704, 268, 15853, 18896, 7, 19608, 388, 13, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13707, 611, 2457, 3275, 12956, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4818, 388, 13, 20311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4818, 388, 13, 19662, 4906, 6624, 38491, 13, 3185, 62, 32541, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 28000, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 9881, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 16000, 7, 19608, 388, 13, 19662, 4906, 11, 2779, 13, 22179, 7, 29325, 828, 6407, 8, 628, 220, 220, 220, 825, 5412, 62, 13716, 7, 944, 11, 1034, 8189, 11, 269, 429, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 62, 13716, 7, 404, 8189, 11, 269, 429, 8, 4613, 20512, 628, 220, 220, 220, 220, 220, 220, 220, 33141, 257, 1630, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 34099, 416, 1100, 62, 14535, 3419, 611, 257, 1630, 5739, 318, 1100, 11, 284, 44672, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 2882, 366, 292, 2582, 355, 8472, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1441, 1988, 4952, 1771, 340, 318, 3338, 284, 2555, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 357, 7942, 828, 393, 611, 412, 19238, 357, 72, 13, 68, 13, 257, 1969, 5739, 8, 373, 4251, 357, 9562, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 8189, 6624, 38491, 13, 3185, 62, 47, 2751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 62, 29762, 62, 14535, 7, 9979, 1187, 13, 3185, 62, 47, 18494, 11, 269, 429, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1034, 8189, 6624, 38491, 13, 3185, 62, 32737, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 49625, 2902, 62, 1831, 7, 44971, 13, 9693, 3843, 62, 35257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 1069, 46491, 944, 13, 29572, 62, 19836, 7, 66, 429, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 4808, 18224, 7, 944, 11, 3275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 38052, 20947, 526, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 495, 9706, 857, 407, 2555, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 10786, 18224, 3419, 4504, 11537, 628, 220, 220, 220, 825, 4049, 7, 944, 11, 3275, 11, 2438, 28, 9979, 1187, 13, 32737, 62, 4805, 2394, 4503, 3535, 62, 7708, 4146, 11335, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 20500, 11, 2438, 28, 32737, 62, 4805, 2394, 4503, 3535, 62, 7708, 4146, 11335, 8, 4613, 685, 19703, 4668, 12331, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16204, 378, 281, 18801, 4637, 1969, 290, 5298, 257, 20497, 12331, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2438, 318, 262, 4049, 2438, 284, 779, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 1444, 422, 1100, 62, 29762, 62, 14535, 3419, 611, 281, 12515, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 318, 12326, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 481, 8941, 307, 1498, 284, 6179, 1997, 262, 584, 1735, 48300, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 379, 428, 966, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 1069, 7, 8189, 11, 3275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 20497, 12331, 7, 20500, 11, 2438, 28, 8189, 8, 628, 220, 220, 220, 825, 3551, 62, 29762, 62, 14535, 7, 944, 11, 1034, 8189, 11, 1366, 11, 2457, 28, 17821, 11, 9335, 2539, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 29762, 62, 14535, 7, 404, 8189, 11, 1366, 11, 2457, 28, 17821, 11, 9335, 2539, 28, 14202, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 19430, 257, 5739, 351, 262, 1813, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 15947, 1771, 262, 5739, 318, 2457, 26, 1034, 8189, 318, 530, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 13349, 62, 9, 38491, 26, 1366, 318, 262, 21437, 286, 262, 3275, 13, 9335, 2539, 11, 611, 198, 220, 220, 220, 220, 220, 220, 220, 407, 6045, 11, 318, 257, 4129, 12, 14337, 18022, 8379, 326, 15947, 543, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 1994, 284, 779, 11, 4306, 11, 4899, 13, 3605, 62, 27932, 3419, 481, 307, 24399, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 530, 611, 3306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 1034, 8189, 318, 13349, 62, 32541, 11, 1366, 743, 307, 257, 34371, 393, 257, 18022, 4731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4306, 11, 1366, 1276, 307, 257, 18022, 4731, 13, 1002, 262, 2099, 286, 1366, 318, 198, 220, 220, 220, 220, 220, 220, 220, 15679, 11, 5994, 12331, 318, 4376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 26923, 2601, 1335, 12331, 318, 262, 4637, 318, 1541, 4838, 198, 220, 220, 220, 220, 220, 220, 220, 393, 9605, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 20540, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 38491, 13, 3185, 62, 23678, 19841, 1034, 8189, 19841, 38491, 13, 3185, 62, 22921, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 18257, 8189, 503, 286, 2837, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 7890, 11, 28000, 1098, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 8189, 14512, 38491, 13, 3185, 62, 32541, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 3118, 291, 1098, 21437, 1020, 69, 798, 329, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13159, 12, 3118, 291, 1098, 1034, 8189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1366, 13, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 318, 39098, 7, 7890, 11, 357, 33661, 11, 416, 83, 451, 2433, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 44651, 1366, 2099, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1439, 13369, 649, 9335, 611, 3306, 26, 26571, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 29229, 796, 357, 1662, 2116, 13, 15388, 62, 1589, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9335, 2539, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 2539, 796, 649, 62, 27932, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 27932, 2539, 11, 9881, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 2539, 796, 416, 83, 451, 2433, 7, 27932, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 2539, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 3275, 13639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 416, 83, 451, 2433, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2457, 25, 13639, 58, 15, 60, 930, 28, 38491, 13, 38948, 62, 20032, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 13639, 58, 16, 60, 930, 28, 38491, 13, 38948, 62, 31180, 42, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 15, 60, 930, 28, 1034, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 3275, 4129, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7890, 8, 1279, 19710, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 16, 60, 930, 28, 18896, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 7890, 8, 1279, 45021, 2623, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 16, 60, 930, 28, 19710, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 13, 2302, 437, 7, 7249, 13, 8002, 10786, 0, 39, 3256, 18896, 7, 7890, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 7890, 8, 1279, 860, 1828, 2091, 23906, 2623, 5332, 2857, 2425, 28362, 25, 1303, 362, 12429, 8093, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 58, 16, 60, 930, 28, 18112, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 13, 2302, 437, 7, 7249, 13, 8002, 10786, 0, 48, 3256, 18896, 7, 7890, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 370, 10234, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 19778, 1165, 890, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18007, 278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1994, 284, 13639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 13, 2302, 437, 7, 27932, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18689, 9335, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 9335, 7, 27932, 2539, 11, 416, 83, 451, 2433, 7, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 36024, 477, 326, 4291, 262, 6503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 18351, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 15266, 62, 19836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 26923, 2601, 1335, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 51, 14992, 284, 3551, 1366, 706, 1969, 3419, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13564, 62, 1831, 7, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13564, 62, 1831, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25925, 62, 1831, 3419, 628, 220, 220, 220, 825, 3551, 62, 14535, 7, 944, 11, 1034, 8189, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 14535, 7, 404, 8189, 11, 1366, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 19430, 257, 1844, 1366, 5739, 351, 1813, 1034, 8189, 290, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 389, 31031, 13, 1737, 5298, 13269, 355, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 29762, 62, 14535, 3419, 857, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 8189, 1222, 38491, 13, 3185, 31180, 42, 62, 10943, 5446, 3535, 393, 1034, 8189, 6624, 38491, 13, 3185, 62, 37815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 51, 14992, 284, 3551, 1729, 12, 7890, 5739, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 62, 29762, 62, 14535, 7, 404, 8189, 11, 1366, 8, 628, 220, 220, 220, 825, 3551, 62, 5239, 62, 14535, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 5239, 62, 14535, 7, 7890, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 19430, 281, 13349, 62, 32541, 5739, 351, 1813, 1366, 11, 543, 1276, 307, 257, 34371, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 7890, 11, 28000, 1098, 2599, 5298, 5994, 12331, 10786, 44651, 1366, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13564, 62, 14535, 7, 9979, 1187, 13, 3185, 62, 32541, 11, 1366, 8, 628, 220, 220, 220, 825, 3551, 62, 39491, 62, 14535, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 39491, 62, 14535, 7, 7890, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 19430, 281, 13349, 62, 33, 1268, 13153, 5739, 351, 1813, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13564, 62, 14535, 7, 9979, 1187, 13, 3185, 62, 33, 1268, 13153, 11, 1366, 8, 628, 220, 220, 220, 825, 1969, 62, 2197, 7, 944, 11, 2700, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 2197, 7, 3174, 28, 25101, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 13872, 262, 10238, 3696, 3393, 13, 1002, 2700, 318, 2081, 11, 484, 389, 198, 220, 220, 220, 220, 220, 220, 220, 4838, 31776, 8736, 11, 4306, 691, 611, 262, 1969, 62, 29988, 1496, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 318, 2081, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 857, 407, 1620, 257, 1774, 9605, 42231, 290, 815, 307, 198, 220, 220, 220, 220, 220, 220, 220, 13941, 287, 2661, 286, 1969, 22446, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39669, 329, 19253, 40081, 262, 366, 2197, 2474, 6778, 11, 523, 4844, 286, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 961, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15266, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20225, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2700, 393, 2116, 13, 19836, 62, 29988, 1496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 49625, 2902, 62, 1831, 7, 44971, 13, 9693, 3843, 62, 35257, 18564, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4372, 7753, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18351, 7753, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 44971, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 44971, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 17802, 13, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 1969, 62, 1069, 7, 944, 11, 2438, 28, 14202, 11, 3275, 28, 14202, 11, 4043, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 1069, 7, 8189, 28, 14202, 11, 3275, 28, 14202, 11, 4043, 28, 17821, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 13872, 262, 10238, 4637, 11, 13630, 262, 2438, 290, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 357, 361, 1813, 8, 284, 262, 584, 966, 13, 1002, 2438, 318, 6045, 11, 3275, 318, 198, 220, 220, 220, 220, 220, 220, 220, 9514, 13, 1002, 3275, 318, 257, 34371, 4731, 11, 340, 318, 30240, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 41002, 12, 23, 13, 1002, 4043, 318, 2081, 11, 428, 481, 1100, 13431, 422, 2116, 290, 27537, 198, 220, 220, 220, 220, 220, 220, 220, 606, 1566, 262, 584, 1735, 23477, 262, 1969, 26, 355, 428, 743, 2728, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 2994, 11, 307, 8161, 13, 383, 4277, 318, 284, 4155, 262, 5313, 39105, 318, 198, 220, 220, 220, 220, 220, 220, 220, 3938, 4838, 618, 262, 869, 20271, 26, 618, 9605, 257, 5313, 39105, 326, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1100, 422, 287, 257, 1180, 4704, 11, 11986, 4043, 28, 25101, 290, 1309, 262, 198, 220, 220, 220, 220, 220, 220, 220, 584, 4704, 15000, 597, 5637, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4637, 318, 1541, 4838, 11, 262, 2446, 468, 645, 1245, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4360, 1244, 5298, 281, 6631, 611, 21004, 2438, 393, 3275, 10143, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 21437, 13, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 416, 83, 451, 2433, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2438, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 2438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 13, 2302, 437, 7, 7249, 13, 8002, 10786, 0, 39, 3256, 2438, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 20500, 11, 28000, 1098, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 13, 2302, 437, 7, 20500, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 13, 2302, 437, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 18351, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27511, 4838, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 15266, 62, 19836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13872, 10238, 15190, 611, 3306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 961, 62, 19836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 20225, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4043, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19430, 1969, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 62, 29762, 62, 14535, 7, 9979, 1187, 13, 3185, 62, 32737, 11, 21437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13872, 5739, 3194, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15266, 62, 19836, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 49625, 2902, 62, 1831, 7, 44971, 13, 9693, 3843, 62, 18564, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 329, 1969, 611, 10348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 4372, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 961, 62, 14535, 7, 17821, 2599, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 1069, 7, 17077, 28, 25101, 8, 628, 220, 220, 220, 825, 1969, 7, 944, 11, 3275, 28, 14202, 11, 4043, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 7, 20500, 28, 14202, 11, 4043, 28, 17821, 8, 4613, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 13872, 262, 10238, 4637, 351, 257, 2438, 286, 7852, 14058, 62, 35510, 42126, 290, 198, 220, 220, 220, 220, 220, 220, 220, 262, 357, 25968, 8, 1813, 3275, 13, 1002, 4043, 318, 2081, 11, 428, 481, 1100, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 422, 2116, 1566, 262, 584, 1735, 23477, 262, 1969, 26, 355, 198, 220, 220, 220, 220, 220, 220, 220, 428, 743, 2728, 1366, 2994, 11, 307, 8161, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19836, 62, 1069, 7, 9979, 1187, 13, 32737, 62, 35510, 42126, 11, 3275, 11, 4043, 8, 628, 220, 220, 220, 825, 21136, 62, 19836, 7, 944, 11, 2695, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 19836, 7, 11299, 8, 4613, 357, 8189, 11, 3275, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 262, 1813, 2695, 355, 262, 21437, 286, 257, 13349, 62, 32737, 5739, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 262, 4049, 2438, 357, 292, 281, 22165, 18253, 8, 290, 262, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 357, 292, 257, 9881, 2134, 737, 1002, 2695, 318, 6565, 11, 262, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 357, 14202, 11, 6045, 8, 318, 4504, 11, 284, 6133, 2835, 12, 28461, 2105, 656, 1969, 22446, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 17665, 6601, 12331, 611, 262, 2695, 468, 257, 4129, 286, 352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 14202, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 11299, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 6601, 12331, 10786, 44651, 1969, 5739, 21437, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 7249, 13, 403, 8002, 10786, 0, 39, 3256, 2695, 58, 25, 17, 12962, 58, 15, 4357, 2695, 58, 17, 25, 12962, 198, 198, 4299, 14441, 46491, 22046, 11, 12429, 46265, 9310, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14441, 7, 7753, 16, 58, 11, 2393, 17, 4357, 12429, 46265, 9310, 8, 4613, 5313, 39105, 628, 220, 220, 220, 9993, 284, 14441, 2393, 16, 290, 357, 361, 1813, 8, 2393, 17, 656, 257, 5313, 39105, 13, 198, 220, 220, 220, 1482, 574, 1240, 2446, 329, 9037, 8860, 5050, 25, 1002, 1111, 2393, 16, 290, 2393, 17, 389, 198, 220, 220, 220, 1813, 11, 484, 389, 3804, 284, 422, 62, 16624, 9783, 611, 4306, 2393, 16, 468, 664, 85, 290, 198, 220, 220, 220, 3758, 12608, 11, 340, 318, 3804, 284, 422, 62, 44971, 22784, 4306, 11, 340, 318, 3804, 284, 198, 220, 220, 220, 422, 62, 7753, 22446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 22046, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 34, 34574, 14441, 2147, 11537, 198, 220, 220, 220, 1288, 361, 18896, 7, 22046, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 26498, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 69, 11, 705, 8344, 85, 11537, 290, 468, 35226, 7, 69, 11, 705, 21280, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5313, 39105, 8979, 13, 6738, 62, 44971, 7, 69, 11, 12429, 46265, 9310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5313, 39105, 8979, 13, 6738, 62, 7753, 7, 69, 11, 12429, 46265, 9310, 8, 198, 220, 220, 220, 1288, 361, 18896, 7, 22046, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5313, 39105, 8979, 13, 6738, 62, 16624, 7, 22046, 58, 15, 4357, 26498, 58, 16, 4357, 12429, 46265, 9310, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 23307, 867, 7159, 11537, 198 ]
2.214892
15,659
import cocpit import cocpit.config as config # isort: split import os import time import pandas as pd import torch def build_model(): """ train ML models """ # loop through batch sizes, models, epochs, and/or folds for batch_size in config.BATCH_SIZE: print("BATCH SIZE: ", batch_size) for model_name in config.MODEL_NAMES: print("MODEL: ", model_name) for epochs in config.MAX_EPOCHS: print("MAX EPOCH: ", epochs) cocpit.setup_training.main( batch_size, model_name, epochs, ) def classification(): """ classify images using the ML model """ print("running ML model to classify ice...") start_time = time.time() # load ML model for predictions model = torch.load(config.MODEL_PATH) # load df of quality ice particles to make predictions on df = pd.read_csv(df_path) df = cocpit.run_model.main(df, model) # remove open_dir from run_model # df.to_csv(df_path, index=False) print("done classifying all images!") print("time to classify ice = %.2f seconds" % (time.time() - start_time)) if __name__ == "__main__": print( "num workers in loader = {}".format(config.NUM_WORKERS) ) if config.CLASSIFICATION or config.BUILD_MODEL else print( "num cpus for parallelization = {}".format(config.NUM_WORKERS) ) # only run one arbitrary year in loop if building model years = [2018] if config.BUILD_MODEL else [2018, 2019, 2020, 2021] for year in years: print("years: ", year) # create dir for final databases outname = f"{year}.parquet" df_path = os.path.join(config.FINAL_DIR, outname) if config.BUILD_MODEL: build_model() if config.CLASSIFICATION: classification()
[ 11748, 8954, 15544, 198, 198, 11748, 8954, 15544, 13, 11250, 355, 4566, 220, 1303, 318, 419, 25, 6626, 198, 11748, 28686, 198, 11748, 640, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 628, 198, 4299, 1382, 62, 19849, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4512, 10373, 4981, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 9052, 832, 15458, 10620, 11, 4981, 11, 36835, 82, 11, 290, 14, 273, 38744, 198, 220, 220, 220, 329, 15458, 62, 7857, 287, 4566, 13, 33, 11417, 62, 33489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33, 11417, 311, 35400, 25, 33172, 15458, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2746, 62, 3672, 287, 4566, 13, 33365, 3698, 62, 45, 29559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33365, 3698, 25, 33172, 2746, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 82, 287, 4566, 13, 22921, 62, 8905, 46, 3398, 50, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22921, 14724, 46, 3398, 25, 33172, 36835, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8954, 15544, 13, 40406, 62, 34409, 13, 12417, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 17923, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36509, 4263, 1262, 262, 10373, 2746, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 20270, 10373, 2746, 284, 36509, 4771, 9313, 8, 628, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 1303, 3440, 10373, 2746, 329, 16277, 198, 220, 220, 220, 2746, 796, 28034, 13, 2220, 7, 11250, 13, 33365, 3698, 62, 34219, 8, 628, 220, 220, 220, 1303, 3440, 47764, 286, 3081, 4771, 13166, 284, 787, 16277, 319, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 7568, 62, 6978, 8, 198, 220, 220, 220, 47764, 796, 8954, 15544, 13, 5143, 62, 19849, 13, 12417, 7, 7568, 11, 2746, 8, 220, 1303, 4781, 1280, 62, 15908, 422, 1057, 62, 19849, 198, 220, 220, 220, 1303, 47764, 13, 1462, 62, 40664, 7, 7568, 62, 6978, 11, 6376, 28, 25101, 8, 628, 220, 220, 220, 3601, 7203, 28060, 1398, 4035, 477, 4263, 2474, 8, 198, 220, 220, 220, 3601, 7203, 2435, 284, 36509, 4771, 796, 4064, 13, 17, 69, 4201, 1, 4064, 357, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 3259, 287, 40213, 796, 23884, 1911, 18982, 7, 11250, 13, 41359, 62, 33249, 4877, 8, 198, 220, 220, 220, 1267, 611, 4566, 13, 31631, 30643, 6234, 393, 4566, 13, 19499, 26761, 62, 33365, 3698, 2073, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 31396, 385, 329, 10730, 1634, 796, 23884, 1911, 18982, 7, 11250, 13, 41359, 62, 33249, 4877, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 691, 1057, 530, 14977, 614, 287, 9052, 611, 2615, 2746, 198, 220, 220, 220, 812, 796, 685, 7908, 60, 611, 4566, 13, 19499, 26761, 62, 33365, 3698, 2073, 685, 7908, 11, 13130, 11, 12131, 11, 33448, 60, 198, 220, 220, 220, 329, 614, 287, 812, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 19002, 25, 33172, 614, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 26672, 329, 2457, 20083, 198, 220, 220, 220, 220, 220, 220, 220, 503, 3672, 796, 277, 1, 90, 1941, 27422, 1845, 21108, 1, 628, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 37, 17961, 62, 34720, 11, 503, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 13, 19499, 26761, 62, 33365, 3698, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 19849, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4566, 13, 31631, 30643, 6234, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 3419, 198 ]
2.361386
808
""" receiveEther.py Faris Ahmetasevic, Marco Banholzer, Nderim Shatri This code receives raw ethernet packets, which were sent to a network using the scapy library. """ from scapy.all import conf import struct """ This function returns the converted information of the packets. :param data: the bytes data which gets split up to get the mac-addresses and the protocol :type: bytes """ """ This function returns the converted MAC-addresses. :param bytes_addr: bytes which represent the mac-address :type: bytes """ """ This function returns the converted protocol. :param bytes_proto: bytes which represent the protocol :type: bytes """ """ The function filters the new sent packet with the protocol "0x7000" and prints the information. :param interface: name of the network interface, for instance 'en0', 'en1', ... :type: str :return: the payload of the ethernet packet :rtype: bytes """
[ 37811, 198, 260, 15164, 36, 490, 13, 9078, 198, 37, 20066, 7900, 4164, 589, 25531, 11, 16556, 10274, 3937, 9107, 11, 399, 1082, 320, 911, 26646, 198, 1212, 2438, 11583, 8246, 28475, 3262, 24624, 11, 543, 547, 1908, 284, 257, 3127, 1262, 262, 629, 12826, 5888, 13, 198, 37811, 198, 198, 6738, 629, 12826, 13, 439, 1330, 1013, 198, 11748, 2878, 628, 198, 37811, 198, 1212, 2163, 5860, 262, 11513, 1321, 286, 262, 24624, 13, 220, 198, 198, 25, 17143, 1366, 25, 262, 9881, 1366, 543, 3011, 6626, 510, 284, 651, 262, 8352, 12, 2860, 16746, 290, 262, 8435, 198, 25, 4906, 25, 9881, 198, 37811, 628, 198, 198, 37811, 198, 1212, 2163, 5860, 262, 11513, 20582, 12, 2860, 16746, 13, 220, 220, 198, 198, 25, 17143, 9881, 62, 29851, 25, 9881, 543, 2380, 262, 8352, 12, 21975, 198, 25, 4906, 25, 9881, 198, 37811, 628, 198, 198, 37811, 198, 1212, 2163, 5860, 262, 11513, 8435, 13, 198, 198, 25, 17143, 9881, 62, 1676, 1462, 25, 9881, 543, 2380, 262, 8435, 198, 25, 4906, 25, 9881, 198, 37811, 628, 198, 198, 37811, 198, 464, 2163, 16628, 262, 649, 1908, 19638, 351, 262, 8435, 366, 15, 87, 22, 830, 1, 290, 20842, 262, 1321, 13, 198, 198, 25, 17143, 7071, 25, 1438, 286, 262, 3127, 7071, 11, 329, 4554, 705, 268, 15, 3256, 705, 268, 16, 3256, 2644, 198, 25, 4906, 25, 965, 198, 25, 7783, 25, 262, 21437, 286, 262, 28475, 3262, 19638, 198, 25, 81, 4906, 25, 9881, 220, 198, 37811, 628, 198 ]
3.586614
254
import json from .core import Command, EntityRef, Resolvable from .scoreboard import ScoreRef from .nbt import Path, NBTStorable
[ 11748, 33918, 198, 198, 6738, 764, 7295, 1330, 9455, 11, 20885, 8134, 11, 1874, 349, 23765, 198, 6738, 764, 26675, 3526, 1330, 15178, 8134, 198, 6738, 764, 77, 18347, 1330, 10644, 11, 399, 19313, 1273, 10475, 198 ]
3.513514
37
# Copyright 2017 the pycolab Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple message logging for pycolab game entities. The interactive nature of pycolab games makes it difficult to do useful things like "printf debugging"---if you're using an interface like the Curses UI, you won't be able to see printed strings. This protocol allows game entities to log messages to the Plot object. User interfaces can query this object and display accumulated messages to the user in whatever way is best. Most game implementations will not need to import this protocol directly--- logging is so fundamental that the Plot object expresses a `log` method that's syntactic sugar for the log function in this file. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function def log(the_plot, message): """Log a message for eventual disposal by the game engine user. Here, "game engine user" means a user interface or an environment interface, for example. (Clients are not required to deal with messages, but if they do, this is how to get a message to them.) Most game implementations will not need to call this function directly--- logging is so fundamental that the Plot object expresses a `log` method that's syntactic sugar for this function. Args: the_plot: the pycolab game's `Plot` object. message: A string message to convey to the game engine user. """ the_plot.setdefault('log_messages', []).append(message) def consume(the_plot): """Obtain messages logged by game entities since the last call to `consume`. This function is meant to be called by "game engine users" (user interfaces, environment interfaces, etc.) to obtain the latest set of log messages emitted by the game entities. These systems can then dispose of these messages in whatever manner is the most appropriate. Args: the_plot: the pycolab game's `Plot` object. Returns: The list of all log messages supplied by the `log` method since the last time `consume` was called (or ever, if `consume` has never been called). """ messages = the_plot.setdefault('log_messages', []) # Hand off the current messages to a new list that we return. our_messages = messages[:] del messages[:] return our_messages
[ 2, 15069, 2177, 262, 12972, 4033, 397, 46665, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 26437, 3275, 18931, 329, 12972, 4033, 397, 983, 12066, 13, 198, 198, 464, 14333, 3450, 286, 12972, 4033, 397, 1830, 1838, 340, 2408, 284, 466, 4465, 1243, 198, 2339, 366, 37435, 28769, 1, 6329, 361, 345, 821, 1262, 281, 7071, 588, 262, 327, 46998, 12454, 11, 345, 198, 26502, 470, 307, 1498, 284, 766, 10398, 13042, 13, 770, 8435, 3578, 983, 12066, 284, 2604, 198, 37348, 1095, 284, 262, 28114, 2134, 13, 11787, 20314, 460, 12405, 428, 2134, 290, 3359, 198, 4134, 388, 4817, 6218, 284, 262, 2836, 287, 4232, 835, 318, 1266, 13, 198, 198, 6943, 983, 25504, 481, 407, 761, 284, 1330, 428, 8435, 3264, 6329, 198, 6404, 2667, 318, 523, 7531, 326, 262, 28114, 2134, 27505, 257, 4600, 6404, 63, 2446, 326, 338, 198, 1837, 429, 12009, 7543, 329, 262, 2604, 2163, 287, 428, 2393, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 628, 198, 4299, 2604, 7, 1169, 62, 29487, 11, 3275, 2599, 198, 220, 220, 220, 37227, 11187, 257, 3275, 329, 19657, 18264, 416, 262, 983, 3113, 2836, 13, 628, 220, 220, 220, 3423, 11, 366, 6057, 3113, 2836, 1, 1724, 257, 2836, 7071, 393, 281, 2858, 7071, 11, 198, 220, 220, 220, 329, 1672, 13, 357, 2601, 2334, 389, 407, 2672, 284, 1730, 351, 6218, 11, 475, 611, 484, 466, 11, 198, 220, 220, 220, 428, 318, 703, 284, 651, 257, 3275, 284, 606, 2014, 628, 220, 220, 220, 4042, 983, 25504, 481, 407, 761, 284, 869, 428, 2163, 3264, 6329, 198, 220, 220, 220, 18931, 318, 523, 7531, 326, 262, 28114, 2134, 27505, 257, 4600, 6404, 63, 2446, 326, 338, 198, 220, 220, 220, 7419, 12009, 7543, 329, 428, 2163, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 262, 62, 29487, 25, 262, 12972, 4033, 397, 983, 338, 4600, 43328, 63, 2134, 13, 198, 220, 220, 220, 220, 220, 3275, 25, 317, 4731, 3275, 284, 13878, 284, 262, 983, 3113, 2836, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 262, 62, 29487, 13, 2617, 12286, 10786, 6404, 62, 37348, 1095, 3256, 17635, 737, 33295, 7, 20500, 8, 628, 198, 4299, 15000, 7, 1169, 62, 29487, 2599, 198, 220, 220, 220, 37227, 5944, 3153, 6218, 18832, 416, 983, 12066, 1201, 262, 938, 869, 284, 4600, 5936, 2454, 44646, 628, 220, 220, 220, 770, 2163, 318, 4001, 284, 307, 1444, 416, 366, 6057, 3113, 2985, 1, 357, 7220, 20314, 11, 198, 220, 220, 220, 2858, 20314, 11, 3503, 2014, 284, 7330, 262, 3452, 900, 286, 2604, 6218, 198, 220, 220, 220, 31234, 416, 262, 983, 12066, 13, 2312, 3341, 460, 788, 34291, 286, 777, 6218, 198, 220, 220, 220, 287, 4232, 5642, 318, 262, 749, 5035, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 262, 62, 29487, 25, 262, 12972, 4033, 397, 983, 338, 4600, 43328, 63, 2134, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 1351, 286, 477, 2604, 6218, 14275, 416, 262, 4600, 6404, 63, 2446, 1201, 262, 938, 198, 220, 220, 220, 220, 220, 640, 4600, 5936, 2454, 63, 373, 1444, 357, 273, 1683, 11, 611, 4600, 5936, 2454, 63, 468, 1239, 587, 1444, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6218, 796, 262, 62, 29487, 13, 2617, 12286, 10786, 6404, 62, 37348, 1095, 3256, 685, 12962, 198, 220, 220, 220, 1303, 7157, 572, 262, 1459, 6218, 284, 257, 649, 1351, 326, 356, 1441, 13, 198, 220, 220, 220, 674, 62, 37348, 1095, 796, 6218, 58, 47715, 198, 220, 220, 220, 1619, 6218, 58, 47715, 198, 220, 220, 220, 1441, 674, 62, 37348, 1095, 198 ]
3.676923
780
#!/usr/bin/env python # # ---------------------------------------------------------------------- # # Brad T. Aagaard, U.S. Geological Survey # Charles A. Williams, GNS Science # Matthew G. Knepley, University of Chicago # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2017 University of California, Davis # # See COPYING for license information. # # ---------------------------------------------------------------------- # ## @file pylith/materials/__init__.py ## @brief Python PyLith materials module initialization __all__ = ['ElasticMaterial', 'ElasticIsotropic3D', 'ElasticPlaneStrain', 'ElasticPlaneStress', 'ElasticStrain1D', 'ElasticStress1D', 'GenMaxwellIsotropic3D', 'GenMaxwellQpQsIsotropic3D', 'Homogeneous', 'Material', 'MaxwellIsotropic3D', 'PowerLaw3D', 'PowerLawPlaneStrain', 'DruckerPrager3D', ] # End of file
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 16529, 23031, 198, 2, 198, 2, 8114, 309, 13, 317, 8126, 446, 11, 471, 13, 50, 13, 34246, 13084, 198, 2, 7516, 317, 13, 6484, 11, 402, 8035, 5800, 198, 2, 9308, 402, 13, 6102, 538, 1636, 11, 2059, 286, 4842, 198, 2, 198, 2, 770, 2438, 373, 4166, 355, 636, 286, 262, 22476, 864, 33709, 198, 2, 329, 2269, 44124, 357, 4023, 1378, 469, 44124, 13, 2398, 737, 198, 2, 198, 2, 15069, 357, 66, 8, 3050, 12, 5539, 2059, 286, 3442, 11, 7802, 198, 2, 198, 2, 4091, 27975, 45761, 329, 5964, 1321, 13, 198, 2, 198, 2, 16529, 23031, 198, 2, 198, 198, 2235, 2488, 7753, 279, 2645, 342, 14, 33665, 82, 14, 834, 15003, 834, 13, 9078, 198, 198, 2235, 2488, 65, 3796, 11361, 9485, 43, 342, 5696, 8265, 37588, 198, 198, 834, 439, 834, 796, 37250, 9527, 3477, 17518, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 3477, 3792, 46084, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 3477, 3646, 1531, 1273, 3201, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 3477, 3646, 1531, 1273, 601, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 3477, 1273, 3201, 16, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 3477, 1273, 601, 16, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13746, 11518, 4053, 3792, 46084, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13746, 11518, 4053, 48, 79, 48, 82, 3792, 46084, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28718, 32269, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17518, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11518, 4053, 3792, 46084, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13434, 16966, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13434, 16966, 3646, 1531, 1273, 3201, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 622, 15280, 6836, 3536, 18, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 198, 2, 5268, 286, 2393, 198 ]
2.568019
419
import datetime as dt import json import os import sys import tensorflow as tf import numpy as np from subprocess import check_output from itertools import zip_longest def grouper(iterable, batch_size, fill_value=None): """ Helper method for returning batches of size batch_size of a dataset. grouper('ABCDEF', 3) -> 'ABC', 'DEF' """ args = [iter(iterable)] * batch_size return zip_longest(*args, fillvalue=fill_value)
[ 11748, 4818, 8079, 355, 288, 83, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 850, 14681, 1330, 2198, 62, 22915, 198, 6738, 340, 861, 10141, 1330, 19974, 62, 6511, 395, 628, 198, 4299, 1132, 525, 7, 2676, 540, 11, 15458, 62, 7857, 11, 6070, 62, 8367, 28, 14202, 2599, 198, 220, 220, 220, 37227, 5053, 525, 2446, 329, 8024, 37830, 286, 2546, 15458, 62, 7857, 286, 257, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1132, 525, 10786, 24694, 32988, 3256, 513, 8, 4613, 705, 24694, 3256, 705, 32988, 6, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26498, 796, 685, 2676, 7, 2676, 540, 15437, 1635, 15458, 62, 7857, 198, 220, 220, 220, 1441, 19974, 62, 6511, 395, 46491, 22046, 11, 6070, 8367, 28, 20797, 62, 8367, 8, 628 ]
2.98
150
# Copyright (c) 2021 Xilinx, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of Xilinx nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import onnx import os from onnx import helper from pyverilator import PyVerilator from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.custom_op.base import CustomOp from finn.util.basic import make_build_dir from finn.util.data_packing import ( npy_to_rtlsim_input, unpack_innermost_dim_from_hex_string, ) def _truthtable(input, care_set, results, in_bits): """Returns the output to a combination of x-bit input value. The care_set array reflects the specific input combinations considered. The result vector represents every output to every combination in the care_set. Thus, the length of care_set and results must be the same. All the arrays are numpy arrays The MSB in the input numpy array represents the LSB in the LUT. An example is presented: in_bits = 3 out_bits = 3 input[0:2] = [1, 0, 1] care_set = [1, 5] results = [3, 1] The function checks if the decimal representation of the binary input is in the care_set. If it is in the care_set, we check the result of the binary input combination in the result. If the input is not part of the care_set, the output will be zero. The input in this example is [1,0,1], which is '5' in decimal representation. The input is part of the care_set. Then, we check what is the position of 5 in the care_set, and we extract the value to input combination '5' from the results vector, which in this case is '1' Possible combinations[2:0]: input[0:2] | results[0:2] 0 0 0 | 0 0 0 0 0 1 | 0 1 1 0 1 0 | 0 0 0 0 1 1 | 0 0 0 > 1 0 0 | 0 0 1 1 0 1 | 0 0 0 1 1 0 | 0 0 0 1 1 1 | 0 0 0 """ # calculate integer value of binary input input_int = npy_to_rtlsim_input(input, DataType.BINARY, in_bits, False)[0] if input_int in care_set: index = np.where(care_set == input_int)[0][0] output = results[index] else: output = 0 return output class TruthTable(CustomOp): """The class corresponing to the TruthTable function."""
[ 2, 15069, 357, 66, 8, 33448, 1395, 346, 28413, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 2, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 1635, 16126, 262, 1438, 286, 1395, 346, 28413, 4249, 262, 3891, 286, 663, 198, 2, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 198, 2, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 198, 2, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 198, 2, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 2, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 198, 2, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 319, 77, 87, 198, 11748, 28686, 198, 6738, 319, 77, 87, 1330, 31904, 198, 6738, 12972, 332, 346, 1352, 1330, 9485, 13414, 346, 1352, 198, 198, 6738, 957, 77, 13, 7295, 13, 19608, 265, 2981, 1330, 6060, 6030, 198, 6738, 957, 77, 13, 7295, 13, 19849, 48553, 1330, 9104, 36918, 2848, 198, 6738, 957, 77, 13, 23144, 62, 404, 13, 8692, 1330, 8562, 18257, 198, 6738, 957, 77, 13, 22602, 13, 35487, 1330, 787, 62, 11249, 62, 15908, 198, 6738, 957, 77, 13, 22602, 13, 7890, 62, 41291, 1330, 357, 198, 220, 220, 220, 299, 9078, 62, 1462, 62, 17034, 7278, 320, 62, 15414, 11, 198, 220, 220, 220, 555, 8002, 62, 5083, 1712, 62, 27740, 62, 6738, 62, 33095, 62, 8841, 11, 198, 8, 628, 198, 4299, 4808, 35310, 11487, 7, 15414, 11, 1337, 62, 2617, 11, 2482, 11, 287, 62, 9895, 2599, 198, 220, 220, 220, 37227, 35561, 262, 5072, 284, 257, 6087, 286, 2124, 12, 2545, 5128, 1988, 13, 383, 1337, 62, 2617, 7177, 198, 220, 220, 220, 12497, 262, 2176, 5128, 17790, 3177, 13, 383, 1255, 15879, 6870, 198, 220, 220, 220, 790, 5072, 284, 790, 6087, 287, 262, 1337, 62, 2617, 13, 6660, 11, 262, 4129, 286, 1337, 62, 2617, 198, 220, 220, 220, 290, 2482, 1276, 307, 262, 976, 13, 1439, 262, 26515, 389, 299, 32152, 26515, 628, 198, 220, 220, 220, 383, 6579, 33, 287, 262, 5128, 299, 32152, 7177, 6870, 262, 406, 16811, 287, 262, 406, 3843, 13, 628, 198, 220, 220, 220, 1052, 1672, 318, 5545, 25, 198, 220, 220, 220, 287, 62, 9895, 796, 513, 198, 220, 220, 220, 503, 62, 9895, 796, 513, 198, 220, 220, 220, 5128, 58, 15, 25, 17, 60, 796, 685, 16, 11, 657, 11, 352, 60, 198, 220, 220, 220, 1337, 62, 2617, 796, 685, 16, 11, 642, 60, 198, 220, 220, 220, 2482, 796, 685, 18, 11, 352, 60, 628, 220, 220, 220, 383, 2163, 8794, 611, 262, 32465, 10552, 286, 262, 13934, 5128, 318, 287, 198, 220, 220, 220, 262, 1337, 62, 2617, 13, 1002, 340, 318, 287, 262, 1337, 62, 2617, 11, 356, 2198, 262, 1255, 286, 262, 13934, 198, 220, 220, 220, 5128, 6087, 287, 262, 1255, 13, 1002, 262, 5128, 318, 407, 636, 286, 262, 1337, 62, 2617, 11, 198, 220, 220, 220, 262, 5072, 481, 307, 6632, 13, 628, 220, 220, 220, 383, 5128, 287, 428, 1672, 318, 685, 16, 11, 15, 11, 16, 4357, 543, 318, 705, 20, 6, 287, 32465, 10552, 13, 198, 220, 220, 220, 383, 5128, 318, 636, 286, 262, 1337, 62, 2617, 13, 3244, 11, 356, 2198, 644, 318, 262, 2292, 286, 642, 198, 220, 220, 220, 287, 262, 1337, 62, 2617, 11, 290, 356, 7925, 262, 1988, 284, 5128, 6087, 705, 20, 6, 422, 262, 198, 220, 220, 220, 2482, 15879, 11, 543, 287, 428, 1339, 318, 705, 16, 6, 628, 220, 220, 220, 33671, 17790, 58, 17, 25, 15, 5974, 220, 220, 220, 220, 5128, 58, 15, 25, 17, 60, 220, 930, 220, 2482, 58, 15, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 657, 220, 220, 657, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 657, 220, 220, 352, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 352, 220, 220, 220, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 352, 220, 220, 657, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 352, 220, 220, 352, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 352, 220, 220, 657, 220, 220, 657, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 220, 657, 220, 220, 352, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 220, 352, 220, 220, 657, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 220, 220, 352, 220, 220, 352, 220, 220, 930, 220, 220, 220, 657, 220, 220, 220, 657, 220, 220, 220, 657, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 15284, 18253, 1988, 286, 13934, 5128, 198, 220, 220, 220, 5128, 62, 600, 796, 299, 9078, 62, 1462, 62, 17034, 7278, 320, 62, 15414, 7, 15414, 11, 6060, 6030, 13, 33, 1268, 13153, 11, 287, 62, 9895, 11, 10352, 38381, 15, 60, 198, 220, 220, 220, 611, 5128, 62, 600, 287, 1337, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 45941, 13, 3003, 7, 6651, 62, 2617, 6624, 5128, 62, 600, 38381, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2482, 58, 9630, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 657, 628, 220, 220, 220, 1441, 5072, 628, 198, 4871, 14056, 10962, 7, 15022, 18257, 2599, 198, 220, 220, 220, 37227, 464, 1398, 1162, 4363, 12484, 284, 262, 14056, 10962, 2163, 526, 15931, 198 ]
2.573077
1,560
import pandas from dnm_cohorts.person import Person url = 'https://static-content.springer.com/esm/art%3A10.1038%2Fnature10989/MediaObjects/41586_2012_BFnature10989_MOESM11_ESM.xls' def open_oroak_cohort(): """ get proband data from the O'Roak et al autism exome study O'Roak et al. (2012) Nature 485:246-250 doi: 10.1038/nature10989 Supplementary table 1 """ data = pandas.read_excel(url, sheet_name='Supplementary Table 1', skipfooter=1, engine='xlrd') study = ['10.1038/nature10989'] persons = set() for i, row in data.iterrows(): status = ['HP:0000717'] person_type = row.child.split('.')[1] # ignore the siblings, since they don't have any de novos recorded, so # don't contribute to the exome-sequence populations if person_type.startswith('s'): continue if row['non-verbal_IQ'] < 70: status.append('HP:0001249') person = Person(row.child + '|asd_cohorts', row.sex, status, study) persons.add(person) return persons
[ 198, 11748, 19798, 292, 198, 198, 6738, 288, 21533, 62, 1073, 71, 2096, 13, 6259, 1330, 7755, 198, 198, 6371, 796, 705, 5450, 1378, 12708, 12, 11299, 13, 34975, 3889, 13, 785, 14, 45798, 14, 433, 4, 18, 32, 940, 13, 940, 2548, 4, 17, 37, 21353, 940, 42520, 14, 13152, 10267, 82, 14, 35038, 4521, 62, 6999, 62, 29499, 21353, 940, 42520, 62, 11770, 1546, 44, 1157, 62, 1546, 44, 13, 87, 7278, 6, 198, 198, 4299, 1280, 62, 273, 15877, 62, 1073, 71, 419, 33529, 198, 220, 220, 220, 37227, 651, 1861, 392, 1366, 422, 262, 440, 6, 15450, 461, 2123, 435, 15998, 409, 462, 2050, 198, 220, 220, 220, 220, 198, 220, 220, 220, 440, 6, 15450, 461, 2123, 435, 13, 357, 6999, 8, 10362, 4764, 20, 25, 26912, 12, 9031, 198, 220, 220, 220, 23899, 25, 838, 13, 940, 2548, 14, 21353, 940, 42520, 198, 220, 220, 220, 43008, 3084, 352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 19798, 292, 13, 961, 62, 1069, 5276, 7, 6371, 11, 9629, 62, 3672, 11639, 42615, 560, 8655, 352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 5898, 263, 28, 16, 11, 3113, 11639, 87, 75, 4372, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2050, 796, 37250, 940, 13, 940, 2548, 14, 21353, 940, 42520, 20520, 198, 220, 220, 220, 6506, 796, 900, 3419, 198, 220, 220, 220, 329, 1312, 11, 5752, 287, 1366, 13, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 37250, 14082, 25, 44808, 1558, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1048, 62, 4906, 796, 5752, 13, 9410, 13, 35312, 10786, 2637, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8856, 262, 20569, 11, 1201, 484, 836, 470, 423, 597, 390, 645, 85, 418, 6264, 11, 523, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 836, 470, 8676, 284, 262, 409, 462, 12, 43167, 9684, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1048, 62, 4906, 13, 9688, 2032, 342, 10786, 82, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5752, 17816, 13159, 12, 46953, 62, 33866, 20520, 1279, 4317, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 13, 33295, 10786, 14082, 25, 18005, 21626, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1048, 796, 7755, 7, 808, 13, 9410, 1343, 705, 91, 292, 67, 62, 1073, 71, 2096, 3256, 5752, 13, 8044, 11, 3722, 11, 2050, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6506, 13, 2860, 7, 6259, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 6506, 198 ]
2.295983
473
from .resource import ResourceParser
[ 6738, 764, 31092, 1330, 20857, 46677, 628 ]
5.428571
7
import os path = os.getcwd() content = os.listdir(path) last = 0 for f in content: name, ext = os.path.splitext(f) ep_num = name.split('x', 1)[1] ep_num = int(ep_num.split(' -', 1)[0]) if ep_num != last + 1: ep_num = last + 1 last += 1 season = name.split('x', 1)[0] name = name.split(' - ', 1)[1] new = f'{season}x{ep_num:02} - {name}{ext}' os.rename(os.path.join(path, f), os.path.join(path, new))
[ 11748, 28686, 198, 198, 6978, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 11299, 796, 28686, 13, 4868, 15908, 7, 6978, 8, 198, 12957, 796, 657, 628, 198, 1640, 277, 287, 2695, 25, 198, 197, 3672, 11, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 69, 8, 198, 197, 538, 62, 22510, 796, 1438, 13, 35312, 10786, 87, 3256, 352, 38381, 16, 60, 198, 197, 538, 62, 22510, 796, 493, 7, 538, 62, 22510, 13, 35312, 10786, 532, 3256, 352, 38381, 15, 12962, 198, 197, 361, 2462, 62, 22510, 14512, 938, 1343, 352, 25, 198, 197, 197, 538, 62, 22510, 796, 938, 1343, 352, 198, 197, 12957, 15853, 352, 198, 197, 6230, 796, 1438, 13, 35312, 10786, 87, 3256, 352, 38381, 15, 60, 198, 197, 3672, 796, 1438, 13, 35312, 10786, 532, 46083, 352, 38381, 16, 60, 198, 197, 3605, 796, 277, 6, 90, 6230, 92, 87, 90, 538, 62, 22510, 25, 2999, 92, 532, 1391, 3672, 18477, 2302, 92, 6, 198, 197, 418, 13, 918, 480, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 277, 828, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 649, 4008, 198 ]
2.167539
191
from OpenSSL import crypto from socket import gethostname import os import array as arr import subprocess Major = 0 Minor = 0 Build = 0 with open('../../../../../demos/include/aws_application_version.h') as f: for line in f: if line.find('APP_VERSION_MAJOR') != -1: x = line.split() Major = int(x[2]) if line.find('APP_VERSION_MINOR') != -1: x = line.split() Minor = int(x[2]) if line.find('APP_VERSION_BUILD') != -1: x = line.split() Build = int(x[2]) print('Major:' + str(Major)) print('Minor:' + str(Minor)) print('Build:' + str(Build)) #version = 0xffffffff version = Major*1000000 + Minor*1000 + Build version_byte = version.to_bytes(4,'little') headernum = 0x00000001 headernum_byte = headernum.to_bytes(4,'little') signature = 0x3141544f signature_byte = signature.to_bytes(4,'little') headerlen = 0x00000018 headerlen_byte = headerlen.to_bytes(4,'little') checksum = 0; with open("./Debug/Exe/km4_image/km0_km4_image2.bin", "rb") as f: byte = f.read(1) num = int.from_bytes(byte, 'big') checksum += num while byte != b"": byte = f.read(1) num = int.from_bytes(byte, 'big') checksum += num checksum_byte = checksum.to_bytes(4,'little') imagelen = os.path.getsize("./Debug/Exe/km4_image/km0_km4_image2.bin") imagelen_bytes = imagelen.to_bytes(4, 'little') offset = 0x00000020 offset_bytes = offset.to_bytes(4, 'little') rvsd = 0x0800b000 rvsd_bytes = rvsd.to_bytes(4, 'little') img2_bin = open('./Debug/Exe/km4_image/km0_km4_image2.bin', 'br').read() f = open("./Debug/Exe/km4_image/OTA_ALL.bin", 'wb') f.write(version_byte) f.write(headernum_byte) f.write(signature_byte) f.write(headerlen_byte) f.write(checksum_byte) f.write(imagelen_bytes) f.write(offset_bytes) f.write(rvsd_bytes) f.write(img2_bin) f.close() #Reading the Private key generated using openssl(should be generated using ECDSA P256 curve) f = open("ecdsa-sha256-signer.key.pem") pv_buf = f.read() f.close() priv_key = crypto.load_privatekey(crypto.FILETYPE_PEM, pv_buf) #Reading the certificate generated using openssl(should be generated using ECDSA P256 curve) f = open("ecdsa-sha256-signer.crt.pem") ss_buf = f.read() f.close() ss_cert = crypto.load_certificate(crypto.FILETYPE_PEM, ss_buf) #Reading OTA1 binary and individually signing it using the ECDSA P256 curve ota1_bin = open('./Debug/Exe/km4_image/km0_km4_image2.bin', 'br').read() # sign and verify PASS ota1_sig = crypto.sign(priv_key, ota1_bin, 'sha256') crypto.verify(ss_cert, ota1_sig, ota1_bin, 'sha256') ota1_sig_size = len(ota1_sig) #print(ota1_sig_size) #opening the ota_all.bin and getting the number of padding bytes f = open("./Debug/Exe/km4_image/OTA_All.bin", 'rb') ota_all_buff = f.read() f.close() ota_all_size = os.path.getsize("./Debug/Exe/km4_image/OTA_All.bin") #print(ota_all_size) ota_padding = 1024-(ota_all_size%1024) #print(int(ota_padding)) #padding 0's to make the last block of OTA equal to an integral multiple of block size x = bytes([0] * ota_padding) #append the 0 padding bytes followed by the 2 individual signatures of ota1 and ota2 along with their signature sizes f = open("./Debug/Exe/km4_image/OTA_ALL_sig.bin", 'wb') f.write(ota_all_buff) f.write(x) f.write(ota1_sig) f.write(bytes([ota1_sig_size])) f.close() print('done') #Debug info in case you want to check the actual signature binaries generated separately ''' sf = open("ota1.sig", 'wb') sf.write(ota1_sig) sf.close() sf = open("ota2.sig", 'wb') sf.write(ota2_sig) sf.close() '''
[ 6738, 4946, 31127, 1330, 21473, 201, 198, 6738, 17802, 1330, 651, 4774, 3672, 201, 198, 11748, 28686, 201, 198, 11748, 7177, 355, 5240, 201, 198, 11748, 850, 14681, 201, 198, 201, 198, 24206, 796, 657, 201, 198, 39825, 796, 657, 201, 198, 15580, 796, 657, 201, 198, 4480, 1280, 10786, 40720, 40720, 40720, 40720, 40720, 9536, 418, 14, 17256, 14, 8356, 62, 31438, 62, 9641, 13, 71, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 19796, 10786, 24805, 62, 43717, 62, 5673, 41, 1581, 11537, 14512, 532, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 1627, 13, 35312, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8386, 796, 493, 7, 87, 58, 17, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 19796, 10786, 24805, 62, 43717, 62, 23678, 1581, 11537, 14512, 532, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 1627, 13, 35312, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15367, 796, 493, 7, 87, 58, 17, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 19796, 10786, 24805, 62, 43717, 62, 19499, 26761, 11537, 14512, 532, 16, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 1627, 13, 35312, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10934, 796, 493, 7, 87, 58, 17, 12962, 201, 198, 201, 198, 4798, 10786, 24206, 32105, 1343, 965, 7, 24206, 4008, 201, 198, 4798, 10786, 39825, 32105, 1343, 965, 7, 39825, 4008, 201, 198, 4798, 10786, 15580, 32105, 1343, 965, 7, 15580, 4008, 201, 198, 201, 198, 2, 9641, 796, 657, 87, 12927, 12927, 201, 198, 9641, 796, 8386, 9, 16, 10535, 1343, 15367, 9, 12825, 1343, 10934, 201, 198, 9641, 62, 26327, 796, 2196, 13, 1462, 62, 33661, 7, 19, 4032, 31629, 11537, 201, 198, 201, 198, 2256, 1142, 388, 796, 657, 87, 10535, 486, 201, 198, 2256, 1142, 388, 62, 26327, 796, 1182, 1142, 388, 13, 1462, 62, 33661, 7, 19, 4032, 31629, 11537, 201, 198, 201, 198, 12683, 1300, 796, 657, 87, 33638, 1314, 2598, 69, 201, 198, 12683, 1300, 62, 26327, 796, 9877, 13, 1462, 62, 33661, 7, 19, 4032, 31629, 11537, 201, 198, 201, 198, 25677, 11925, 796, 657, 87, 10535, 1507, 201, 198, 25677, 11925, 62, 26327, 796, 13639, 11925, 13, 1462, 62, 33661, 7, 19, 4032, 31629, 11537, 201, 198, 201, 198, 42116, 388, 796, 657, 26, 201, 198, 4480, 1280, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 13276, 15, 62, 13276, 19, 62, 9060, 17, 13, 8800, 1600, 366, 26145, 4943, 355, 277, 25, 201, 198, 220, 220, 220, 18022, 796, 277, 13, 961, 7, 16, 8, 201, 198, 220, 220, 220, 997, 796, 493, 13, 6738, 62, 33661, 7, 26327, 11, 705, 14261, 11537, 201, 198, 220, 220, 220, 8794, 388, 15853, 997, 201, 198, 220, 220, 220, 981, 18022, 14512, 275, 1, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 18022, 796, 277, 13, 961, 7, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 997, 796, 493, 13, 6738, 62, 33661, 7, 26327, 11, 705, 14261, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8794, 388, 15853, 997, 201, 198, 42116, 388, 62, 26327, 796, 8794, 388, 13, 1462, 62, 33661, 7, 19, 4032, 31629, 11537, 201, 198, 201, 198, 48466, 417, 268, 796, 28686, 13, 6978, 13, 11407, 1096, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 13276, 15, 62, 13276, 19, 62, 9060, 17, 13, 8800, 4943, 201, 198, 48466, 417, 268, 62, 33661, 796, 3590, 417, 268, 13, 1462, 62, 33661, 7, 19, 11, 705, 31629, 11537, 201, 198, 201, 198, 28968, 796, 657, 87, 10535, 1238, 201, 198, 28968, 62, 33661, 796, 11677, 13, 1462, 62, 33661, 7, 19, 11, 705, 31629, 11537, 201, 198, 201, 198, 81, 14259, 67, 796, 657, 87, 2919, 405, 65, 830, 201, 198, 81, 14259, 67, 62, 33661, 796, 374, 14259, 67, 13, 1462, 62, 33661, 7, 19, 11, 705, 31629, 11537, 201, 198, 201, 198, 9600, 17, 62, 8800, 796, 1280, 7, 4458, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 13276, 15, 62, 13276, 19, 62, 9060, 17, 13, 8800, 3256, 705, 1671, 27691, 961, 3419, 201, 198, 201, 198, 69, 796, 1280, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 29009, 62, 7036, 13, 8800, 1600, 705, 39346, 11537, 201, 198, 69, 13, 13564, 7, 9641, 62, 26327, 8, 201, 198, 69, 13, 13564, 7, 2256, 1142, 388, 62, 26327, 8, 201, 198, 69, 13, 13564, 7, 12683, 1300, 62, 26327, 8, 201, 198, 69, 13, 13564, 7, 25677, 11925, 62, 26327, 8, 201, 198, 69, 13, 13564, 7, 42116, 388, 62, 26327, 8, 201, 198, 69, 13, 13564, 7, 48466, 417, 268, 62, 33661, 8, 201, 198, 69, 13, 13564, 7, 28968, 62, 33661, 8, 201, 198, 69, 13, 13564, 7, 81, 14259, 67, 62, 33661, 8, 201, 198, 69, 13, 13564, 7, 9600, 17, 62, 8800, 8, 201, 198, 69, 13, 19836, 3419, 201, 198, 201, 198, 2, 36120, 262, 15348, 1994, 7560, 1262, 9808, 6649, 7, 21754, 307, 7560, 1262, 412, 8610, 4090, 350, 11645, 12133, 8, 201, 198, 69, 796, 1280, 7203, 721, 9310, 64, 12, 26270, 11645, 12, 12683, 263, 13, 2539, 13, 79, 368, 4943, 201, 198, 79, 85, 62, 29325, 796, 277, 13, 961, 3419, 201, 198, 69, 13, 19836, 3419, 201, 198, 13776, 62, 2539, 796, 21473, 13, 2220, 62, 19734, 2539, 7, 29609, 78, 13, 25664, 25216, 62, 47, 3620, 11, 279, 85, 62, 29325, 8, 201, 198, 201, 198, 2, 36120, 262, 10703, 7560, 1262, 9808, 6649, 7, 21754, 307, 7560, 1262, 412, 8610, 4090, 350, 11645, 12133, 8, 201, 198, 69, 796, 1280, 7203, 721, 9310, 64, 12, 26270, 11645, 12, 12683, 263, 13, 6098, 83, 13, 79, 368, 4943, 201, 198, 824, 62, 29325, 796, 277, 13, 961, 3419, 201, 198, 69, 13, 19836, 3419, 201, 198, 824, 62, 22583, 796, 21473, 13, 2220, 62, 22583, 22460, 7, 29609, 78, 13, 25664, 25216, 62, 47, 3620, 11, 37786, 62, 29325, 8, 201, 198, 201, 198, 2, 36120, 440, 5603, 16, 13934, 290, 17033, 8415, 340, 1262, 262, 412, 8610, 4090, 350, 11645, 12133, 201, 198, 4265, 16, 62, 8800, 796, 1280, 7, 4458, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 13276, 15, 62, 13276, 19, 62, 9060, 17, 13, 8800, 3256, 705, 1671, 27691, 961, 3419, 201, 198, 2, 1051, 290, 11767, 41752, 201, 198, 4265, 16, 62, 82, 328, 796, 21473, 13, 12683, 7, 13776, 62, 2539, 11, 267, 8326, 16, 62, 8800, 11, 705, 26270, 11645, 11537, 201, 198, 29609, 78, 13, 332, 1958, 7, 824, 62, 22583, 11, 267, 8326, 16, 62, 82, 328, 11, 267, 8326, 16, 62, 8800, 11, 705, 26270, 11645, 11537, 201, 198, 4265, 16, 62, 82, 328, 62, 7857, 796, 18896, 7, 4265, 16, 62, 82, 328, 8, 201, 198, 2, 4798, 7, 4265, 16, 62, 82, 328, 62, 7857, 8, 201, 198, 201, 198, 2, 29443, 262, 267, 8326, 62, 439, 13, 8800, 290, 1972, 262, 1271, 286, 24511, 9881, 201, 198, 69, 796, 1280, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 29009, 62, 3237, 13, 8800, 1600, 705, 26145, 11537, 201, 198, 4265, 62, 439, 62, 36873, 796, 277, 13, 961, 3419, 201, 198, 69, 13, 19836, 3419, 201, 198, 4265, 62, 439, 62, 7857, 796, 28686, 13, 6978, 13, 11407, 1096, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 29009, 62, 3237, 13, 8800, 4943, 201, 198, 2, 4798, 7, 4265, 62, 439, 62, 7857, 8, 201, 198, 4265, 62, 39231, 796, 28119, 30420, 4265, 62, 439, 62, 7857, 4, 35500, 8, 201, 198, 2, 4798, 7, 600, 7, 4265, 62, 39231, 4008, 201, 198, 201, 198, 2, 39231, 657, 338, 284, 787, 262, 938, 2512, 286, 440, 5603, 4961, 284, 281, 19287, 3294, 286, 2512, 2546, 201, 198, 87, 796, 9881, 26933, 15, 60, 1635, 267, 8326, 62, 39231, 8, 201, 198, 201, 198, 2, 33295, 262, 657, 24511, 9881, 3940, 416, 262, 362, 1981, 17239, 286, 267, 8326, 16, 290, 267, 8326, 17, 1863, 351, 511, 9877, 10620, 201, 198, 69, 796, 1280, 7, 1911, 14, 27509, 14, 3109, 68, 14, 13276, 19, 62, 9060, 14, 29009, 62, 7036, 62, 82, 328, 13, 8800, 1600, 705, 39346, 11537, 201, 198, 69, 13, 13564, 7, 4265, 62, 439, 62, 36873, 8, 201, 198, 69, 13, 13564, 7, 87, 8, 201, 198, 69, 13, 13564, 7, 4265, 16, 62, 82, 328, 8, 201, 198, 69, 13, 13564, 7, 33661, 26933, 4265, 16, 62, 82, 328, 62, 7857, 60, 4008, 201, 198, 69, 13, 19836, 3419, 201, 198, 201, 198, 4798, 10786, 28060, 11537, 201, 198, 201, 198, 2, 27509, 7508, 287, 1339, 345, 765, 284, 2198, 262, 4036, 9877, 38640, 7560, 13869, 201, 198, 7061, 6, 201, 198, 28202, 796, 1280, 7203, 4265, 16, 13, 82, 328, 1600, 705, 39346, 11537, 201, 198, 28202, 13, 13564, 7, 4265, 16, 62, 82, 328, 8, 201, 198, 28202, 13, 19836, 3419, 201, 198, 201, 198, 28202, 796, 1280, 7203, 4265, 17, 13, 82, 328, 1600, 705, 39346, 11537, 201, 198, 28202, 13, 13564, 7, 4265, 17, 62, 82, 328, 8, 201, 198, 28202, 13, 19836, 3419, 201, 198, 7061, 6 ]
2.275246
1,624
import base64 import binascii import json import re import struct import sys import uuid from typing import ( Any, Callable, Dict, Type, Union ) # Util Functions def toStr(s: Any) -> str: """ Convert a given type to a default string :param s: item to convert to a string :return: converted string """ return s.decode(sys.getdefaultencoding(), 'backslashreplace') if hasattr(s, 'decode') else str(s) def prefixUUID(pre: str = 'PREFIX', max_len: int = 30) -> str: """ Prefix a uuid with the given prefix with a max length :param pre: prefix str :param max_len: max length of prefix + UUID :return: prefixed UUID """ uid_max = max_len - (len(pre) + 10) uid = str(uuid.uuid4()).replace('-', '')[:uid_max] return f'{pre}-{uid}'[:max] def safe_cast(val: Any, to_type: Type, default: Any = None) -> Any: """ Cast the given value to the goven type safely without an exception being thrown :param val: value to cast :param to_type: type to cast as :param default: default value if casting fails :return: casted value or given default/None """ try: return to_type(val) except (ValueError, TypeError): return default def safe_json(msg: Union[dict, str], encoders: Dict[Type, Callable[[Any], Any]] = None, *args, **kwargs) -> Union[dict, str]: # pylint: disable=keyword-arg-before-vararg """ Load JSON data if given a str and able Dump JSON data otherwise, encoding using encoders & JSON Defaults :param msg: str JSON to attempt to load :param encoders: custom type encoding - Ex) -> {bytes: lambda b: b.decode('utf-8', 'backslashreplace')} :return: loaded JSON data or original str """ if isinstance(msg, str): try: return json.loads(msg, *args, **kwargs) except ValueError: return msg msg = default_encode(msg, encoders or {}) return json.dumps(msg, *args, **kwargs) def check_values(val: Any) -> Any: """ Check the value of given and attempt to convert it to a bool, int, float :param val: value to check :return: converted/original value """ if isinstance(val, str): if val.lower() in ("true", "false"): return safe_cast(val, bool, val) if re.match(r"^\d+\.\d+$", val): return safe_cast(val, float, val) if val.isdigit(): return safe_cast(val, int, val) return val def default_encode(itm: Any, encoders: Dict[Type, Callable[[Any], Any]] = None) -> Any: """ Default encode the given object to the predefined types :param itm: object to encode/decode, :param encoders: custom type encoding - Ex) -> {bytes: lambda b: b.decode('utf-8', 'backslashreplace')} :return: default system encoded object """ if encoders and isinstance(itm, tuple(encoders.keys())): return encoders[type(itm)](itm) if isinstance(itm, dict): return {default_encode(k): default_encode(v, encoders) for k, v in itm.items()} if isinstance(itm, (list, set, tuple)): return type(itm)(default_encode(i, encoders) for i in itm) if isinstance(itm, (int, float)): return itm return toStr(itm) def default_decode(itm: Any, decoders: Dict[Type, Callable[[Any], Any]] = None) -> Any: """ Default decode the given object to the predefined types :param itm: object to encode/decode, :param decoders: custom type decoding - Ex) -> {bytes: lambda b: b.decode('utf-8', 'backslashreplace')} :return: default system encoded object """ print(itm) if decoders and isinstance(itm, tuple(decoders.keys())): return decoders[type(itm)](itm) if isinstance(itm, dict): return {default_decode(k, decoders): default_decode(v, decoders) for k, v in itm.items()} if isinstance(itm, (list, set, tuple)): return type(itm)(default_decode(i, decoders) for i in itm) if isinstance(itm, (int, float)): return itm if isinstance(itm, str): return check_values(itm) return itm # Utility Classes
[ 11748, 2779, 2414, 198, 11748, 9874, 292, 979, 72, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 2878, 198, 11748, 25064, 198, 11748, 334, 27112, 198, 198, 6738, 19720, 1330, 357, 198, 220, 220, 220, 4377, 11, 198, 220, 220, 220, 4889, 540, 11, 198, 220, 220, 220, 360, 713, 11, 198, 220, 220, 220, 5994, 11, 198, 220, 220, 220, 4479, 198, 8, 628, 198, 2, 7273, 346, 40480, 198, 4299, 284, 13290, 7, 82, 25, 4377, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 257, 1813, 2099, 284, 257, 4277, 4731, 198, 220, 220, 220, 1058, 17143, 264, 25, 2378, 284, 10385, 284, 257, 4731, 198, 220, 220, 220, 1058, 7783, 25, 11513, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 264, 13, 12501, 1098, 7, 17597, 13, 1136, 12286, 12685, 7656, 22784, 705, 1891, 6649, 1077, 33491, 11537, 611, 468, 35226, 7, 82, 11, 705, 12501, 1098, 11537, 2073, 965, 7, 82, 8, 628, 198, 4299, 21231, 52, 27586, 7, 3866, 25, 965, 796, 705, 47, 31688, 10426, 3256, 3509, 62, 11925, 25, 493, 796, 1542, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3771, 13049, 257, 334, 27112, 351, 262, 1813, 21231, 351, 257, 3509, 4129, 198, 220, 220, 220, 1058, 17143, 662, 25, 21231, 965, 198, 220, 220, 220, 1058, 17143, 3509, 62, 11925, 25, 3509, 4129, 286, 21231, 1343, 471, 27586, 198, 220, 220, 220, 1058, 7783, 25, 7694, 2966, 471, 27586, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 334, 312, 62, 9806, 796, 3509, 62, 11925, 532, 357, 11925, 7, 3866, 8, 1343, 838, 8, 198, 220, 220, 220, 334, 312, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 3419, 737, 33491, 10786, 12, 3256, 10148, 38381, 25, 27112, 62, 9806, 60, 198, 220, 220, 220, 1441, 277, 6, 90, 3866, 92, 12, 90, 27112, 92, 6, 58, 25, 9806, 60, 628, 198, 4299, 3338, 62, 2701, 7, 2100, 25, 4377, 11, 284, 62, 4906, 25, 5994, 11, 4277, 25, 4377, 796, 6045, 8, 4613, 4377, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5833, 262, 1813, 1988, 284, 262, 467, 574, 2099, 11512, 1231, 281, 6631, 852, 8754, 198, 220, 220, 220, 1058, 17143, 1188, 25, 1988, 284, 3350, 198, 220, 220, 220, 1058, 17143, 284, 62, 4906, 25, 2099, 284, 3350, 355, 198, 220, 220, 220, 1058, 17143, 4277, 25, 4277, 1988, 611, 13092, 10143, 198, 220, 220, 220, 1058, 7783, 25, 3350, 276, 1988, 393, 1813, 4277, 14, 14202, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 284, 62, 4906, 7, 2100, 8, 198, 220, 220, 220, 2845, 357, 11395, 12331, 11, 5994, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 628, 198, 4299, 3338, 62, 17752, 7, 19662, 25, 4479, 58, 11600, 11, 965, 4357, 2207, 375, 364, 25, 360, 713, 58, 6030, 11, 4889, 540, 30109, 7149, 4357, 4377, 11907, 796, 6045, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 4613, 4479, 58, 11600, 11, 965, 5974, 220, 1303, 279, 2645, 600, 25, 15560, 28, 2539, 4775, 12, 853, 12, 19052, 12, 7785, 853, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 19449, 1366, 611, 1813, 257, 965, 290, 1498, 198, 220, 220, 220, 360, 931, 19449, 1366, 4306, 11, 21004, 1262, 2207, 375, 364, 1222, 19449, 2896, 13185, 198, 220, 220, 220, 1058, 17143, 31456, 25, 965, 19449, 284, 2230, 284, 3440, 198, 220, 220, 220, 1058, 17143, 2207, 375, 364, 25, 2183, 2099, 21004, 532, 1475, 8, 4613, 1391, 33661, 25, 37456, 275, 25, 275, 13, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 1891, 6649, 1077, 33491, 11537, 92, 198, 220, 220, 220, 1058, 7783, 25, 9639, 19449, 1366, 393, 2656, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 19662, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 46030, 7, 19662, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 31456, 628, 220, 220, 220, 31456, 796, 4277, 62, 268, 8189, 7, 19662, 11, 2207, 375, 364, 393, 23884, 8, 198, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 19662, 11, 1635, 22046, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 2198, 62, 27160, 7, 2100, 25, 4377, 8, 4613, 4377, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 262, 1988, 286, 1813, 290, 2230, 284, 10385, 340, 284, 257, 20512, 11, 493, 11, 12178, 198, 220, 220, 220, 1058, 17143, 1188, 25, 1988, 284, 2198, 198, 220, 220, 220, 1058, 7783, 25, 11513, 14, 14986, 1988, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 2100, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 13, 21037, 3419, 287, 5855, 7942, 1600, 366, 9562, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3338, 62, 2701, 7, 2100, 11, 20512, 11, 1188, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 15699, 7, 81, 1, 61, 59, 67, 10, 17405, 59, 67, 10, 3, 1600, 1188, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3338, 62, 2701, 7, 2100, 11, 12178, 11, 1188, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1188, 13, 9409, 328, 270, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3338, 62, 2701, 7, 2100, 11, 493, 11, 1188, 8, 628, 220, 220, 220, 1441, 1188, 628, 198, 4299, 4277, 62, 268, 8189, 7, 270, 76, 25, 4377, 11, 2207, 375, 364, 25, 360, 713, 58, 6030, 11, 4889, 540, 30109, 7149, 4357, 4377, 11907, 796, 6045, 8, 4613, 4377, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15161, 37773, 262, 1813, 2134, 284, 262, 2747, 18156, 3858, 198, 220, 220, 220, 1058, 17143, 340, 76, 25, 2134, 284, 37773, 14, 12501, 1098, 11, 198, 220, 220, 220, 1058, 17143, 2207, 375, 364, 25, 2183, 2099, 21004, 532, 1475, 8, 4613, 1391, 33661, 25, 37456, 275, 25, 275, 13, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 1891, 6649, 1077, 33491, 11537, 92, 198, 220, 220, 220, 1058, 7783, 25, 4277, 1080, 30240, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2207, 375, 364, 290, 318, 39098, 7, 270, 76, 11, 46545, 7, 12685, 375, 364, 13, 13083, 28955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2207, 375, 364, 58, 4906, 7, 270, 76, 15437, 7, 270, 76, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 12286, 62, 268, 8189, 7, 74, 2599, 4277, 62, 268, 8189, 7, 85, 11, 2207, 375, 364, 8, 329, 479, 11, 410, 287, 340, 76, 13, 23814, 3419, 92, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 357, 4868, 11, 900, 11, 46545, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2099, 7, 270, 76, 5769, 12286, 62, 268, 8189, 7, 72, 11, 2207, 375, 364, 8, 329, 1312, 287, 340, 76, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 357, 600, 11, 12178, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 340, 76, 628, 220, 220, 220, 1441, 284, 13290, 7, 270, 76, 8, 628, 198, 4299, 4277, 62, 12501, 1098, 7, 270, 76, 25, 4377, 11, 875, 375, 364, 25, 360, 713, 58, 6030, 11, 4889, 540, 30109, 7149, 4357, 4377, 11907, 796, 6045, 8, 4613, 4377, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15161, 36899, 262, 1813, 2134, 284, 262, 2747, 18156, 3858, 198, 220, 220, 220, 1058, 17143, 340, 76, 25, 2134, 284, 37773, 14, 12501, 1098, 11, 198, 220, 220, 220, 1058, 17143, 875, 375, 364, 25, 2183, 2099, 39938, 532, 1475, 8, 4613, 1391, 33661, 25, 37456, 275, 25, 275, 13, 12501, 1098, 10786, 40477, 12, 23, 3256, 705, 1891, 6649, 1077, 33491, 11537, 92, 198, 220, 220, 220, 1058, 7783, 25, 4277, 1080, 30240, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 270, 76, 8, 198, 220, 220, 220, 611, 875, 375, 364, 290, 318, 39098, 7, 270, 76, 11, 46545, 7, 12501, 375, 364, 13, 13083, 28955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 875, 375, 364, 58, 4906, 7, 270, 76, 15437, 7, 270, 76, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 12286, 62, 12501, 1098, 7, 74, 11, 875, 375, 364, 2599, 4277, 62, 12501, 1098, 7, 85, 11, 875, 375, 364, 8, 329, 479, 11, 410, 287, 340, 76, 13, 23814, 3419, 92, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 357, 4868, 11, 900, 11, 46545, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2099, 7, 270, 76, 5769, 12286, 62, 12501, 1098, 7, 72, 11, 875, 375, 364, 8, 329, 1312, 287, 340, 76, 8, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 357, 600, 11, 12178, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 340, 76, 628, 220, 220, 220, 611, 318, 39098, 7, 270, 76, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2198, 62, 27160, 7, 270, 76, 8, 628, 220, 220, 220, 1441, 340, 76, 628, 628, 198, 198, 2, 34030, 38884, 198 ]
2.499393
1,648
#!/usr/bin/env python from threading import Timer import rospy from geometry_msgs.msg import Twist, Pose2D, PoseStamped from std_msgs.msg import * from move_base_msgs.msg import * from actionlib_msgs.msg import * from apriltags_ros.msg import * avalability = False tagOne = False tagTwo = False checkCBPub = rospy.Publisher('/checkEVcb',Bool,queue_size=1) if __name__=="__main__": rospy.init_node('elevator_checker') rospy.Subscriber('/camera_rear/tag_detections',AprilTagDetectionArray,detectionCB) rospy.Subscriber('/checkEV',Bool,chekc_elevator) rospy.spin()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 4704, 278, 1330, 5045, 263, 198, 198, 11748, 686, 2777, 88, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 44088, 11, 37557, 17, 35, 11, 37557, 1273, 13322, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 1635, 198, 6738, 1445, 62, 8692, 62, 907, 14542, 13, 19662, 1330, 1635, 198, 6738, 2223, 8019, 62, 907, 14542, 13, 19662, 1330, 1635, 198, 6738, 46593, 2326, 3775, 62, 4951, 13, 19662, 1330, 1635, 198, 198, 9226, 1799, 796, 10352, 198, 12985, 3198, 796, 10352, 198, 12985, 7571, 796, 10352, 198, 9122, 23199, 14876, 796, 686, 2777, 88, 13, 46471, 10786, 14, 9122, 20114, 21101, 3256, 33, 970, 11, 36560, 62, 7857, 28, 16, 8, 628, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 10786, 68, 2768, 1352, 62, 9122, 263, 11537, 198, 220, 220, 220, 686, 2777, 88, 13, 7004, 1416, 24735, 10786, 14, 25695, 62, 260, 283, 14, 12985, 62, 15255, 478, 507, 3256, 16784, 24835, 11242, 3213, 19182, 11, 15255, 3213, 23199, 8, 198, 220, 220, 220, 686, 2777, 88, 13, 7004, 1416, 24735, 10786, 14, 9122, 20114, 3256, 33, 970, 11, 2395, 74, 66, 62, 68, 2768, 1352, 8, 628, 220, 220, 220, 686, 2777, 88, 13, 39706, 3419 ]
2.565789
228
#!/usr/bin/env python # -*- coding: utf-8 -*- #--------------------------------------------------------------------------------- # # ,--. # | |-. ,---. ,---. ,--.--.,--,--, # | .-. '| .-. :| .-. || .--'| \ # | `-' |\ --.' '-' '| | | || | # `---' `----' `---' `--' `--''--' # # file: field_element # desc: Base class for the field element. # # author: Peter Antoine # date: 11/09/2015 #--------------------------------------------------------------------------------- # Copyright (c) 2015 Peter Antoine # All rights Reserved. # Released Under the MIT Licence #--------------------------------------------------------------------------------- import beorn_lib.dialog from beorn_lib.dialog.base.element import ElementItem REQUIRED_PARAMETERS = [ 'height', 'items' ] # vim: ts=4 sw=4 noexpandtab nocin ai
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 10097, 1783, 12, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 438, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 220, 930, 34507, 220, 837, 6329, 13, 220, 837, 6329, 13, 837, 438, 9816, 1539, 438, 11, 438, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 764, 34507, 705, 91, 764, 34507, 1058, 91, 764, 34507, 8614, 220, 764, 438, 6, 91, 220, 220, 220, 220, 220, 3467, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4600, 19355, 930, 59, 220, 220, 1377, 2637, 705, 19355, 705, 91, 220, 930, 220, 220, 930, 220, 8614, 220, 930, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 6329, 6, 220, 4600, 650, 6, 4600, 6329, 6, 4600, 438, 6, 220, 220, 4600, 438, 7061, 438, 6, 198, 2, 198, 2, 220, 220, 220, 2393, 25, 2214, 62, 30854, 198, 2, 220, 220, 220, 1715, 25, 7308, 1398, 329, 262, 2214, 5002, 13, 198, 2, 198, 2, 220, 1772, 25, 5613, 3738, 42722, 198, 2, 220, 220, 220, 3128, 25, 1367, 14, 2931, 14, 4626, 198, 2, 10097, 1783, 12, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15069, 357, 66, 8, 1853, 5613, 3738, 42722, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 2489, 33876, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28728, 4698, 262, 17168, 10483, 594, 198, 2, 10097, 1783, 12, 198, 198, 11748, 307, 1211, 62, 8019, 13, 38969, 519, 198, 6738, 307, 1211, 62, 8019, 13, 38969, 519, 13, 8692, 13, 30854, 1330, 11703, 7449, 198, 198, 2200, 10917, 37819, 62, 27082, 2390, 2767, 4877, 796, 685, 705, 17015, 3256, 705, 23814, 6, 2361, 628, 198, 2, 43907, 25, 40379, 28, 19, 1509, 28, 19, 645, 11201, 392, 8658, 299, 420, 259, 257, 72, 198 ]
2.276256
438
import sqlite3 from sqlite3.dbapi2 import DataError import threading import random import string from .datatypes import * from .errors import * # TODO: in-code documentation # TODO: pragma values QueryObjects = (RawReadObject, RawWriteObject, CreateTableObject, AddColumnObject, AddRowObject, RemoveRowObject, GetObject, SetObject) LogicObjects = (RemoveRowObject, GetObject, SetObject) WriteObjects = (RawWriteObject, CreateTableObject, AddColumnObject, AddRowObject, RemoveRowObject, SetObject)
[ 11748, 44161, 578, 18, 198, 6738, 44161, 578, 18, 13, 9945, 15042, 17, 1330, 6060, 12331, 198, 11748, 4704, 278, 198, 198, 11748, 4738, 198, 11748, 4731, 198, 198, 6738, 764, 19608, 265, 9497, 1330, 1635, 198, 6738, 764, 48277, 1330, 1635, 198, 198, 2, 16926, 46, 25, 287, 12, 8189, 10314, 198, 198, 2, 16926, 46, 25, 23864, 2611, 3815, 198, 198, 20746, 10267, 82, 796, 357, 27369, 5569, 10267, 11, 16089, 16594, 10267, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13610, 10962, 10267, 11, 3060, 39470, 10267, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3060, 25166, 10267, 11, 17220, 25166, 10267, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3497, 10267, 11, 5345, 10267, 8, 198, 11187, 291, 10267, 82, 796, 357, 27914, 25166, 10267, 11, 3497, 10267, 11, 5345, 10267, 8, 198, 16594, 10267, 82, 796, 357, 27369, 16594, 10267, 11, 13610, 10962, 10267, 11, 3060, 39470, 10267, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3060, 25166, 10267, 11, 17220, 25166, 10267, 11, 5345, 10267, 8 ]
2.716346
208
# Test file in Python style # sync-start:correct 770446101 __examples__/correct_checksums/a.js code = 1 # sync-end:correct # sync-start:correct2 322927876 __examples__/correct_checksums/a.js genwebpack/khan-apollo/fragment-types.js genfiles/graphql_schema.json: $(shell find */graphql */*/graphql -name '*.py' -a ! -name '*_test.py') $(MAKE) update_secrets build/compile_graphql_schemas.py # sync-end:correct2
[ 2, 6208, 2393, 287, 11361, 3918, 198, 198, 2, 17510, 12, 9688, 25, 30283, 44586, 2598, 5333, 486, 11593, 1069, 12629, 834, 14, 30283, 62, 42116, 5700, 14, 64, 13, 8457, 198, 8189, 796, 352, 198, 2, 17510, 12, 437, 25, 30283, 198, 198, 2, 17510, 12, 9688, 25, 30283, 17, 513, 23539, 25870, 4304, 11593, 1069, 12629, 834, 14, 30283, 62, 42116, 5700, 14, 64, 13, 8457, 198, 5235, 12384, 8002, 14, 74, 7637, 12, 499, 15578, 14, 8310, 363, 434, 12, 19199, 13, 8457, 2429, 16624, 14, 34960, 13976, 62, 15952, 2611, 13, 17752, 25, 29568, 29149, 1064, 9466, 34960, 13976, 9466, 16208, 34960, 13976, 532, 3672, 705, 24620, 9078, 6, 532, 64, 5145, 532, 3672, 705, 9, 62, 9288, 13, 9078, 11537, 198, 197, 3, 7, 5673, 7336, 8, 4296, 62, 2363, 8004, 198, 197, 11249, 14, 5589, 576, 62, 34960, 13976, 62, 1416, 4411, 292, 13, 9078, 198, 2, 17510, 12, 437, 25, 30283, 17 ]
2.597484
159
## ## Entry file when package is used as the main program. ## if __name__ == '__main__': from .main import main main()
[ 2235, 198, 2235, 21617, 2393, 618, 5301, 318, 973, 355, 262, 1388, 1430, 13, 198, 2235, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 764, 12417, 1330, 1388, 628, 220, 220, 220, 1388, 3419, 198 ]
2.954545
44
import numpy as np from abraia import Multiple multiple = Multiple()
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 450, 430, 544, 1330, 20401, 198, 198, 48101, 796, 20401, 3419, 628, 628, 628 ]
3.454545
22
# -*- coding: utf-8 -*- from __future__ import unicode_literals from shogitk.shogi import Coords, Move, BLACK, WHITE, DROP, PROMOTE RANKNUM = { 'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9 }
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 427, 519, 270, 74, 13, 1477, 44381, 1330, 1766, 3669, 11, 10028, 11, 31963, 11, 44925, 11, 10560, 3185, 11, 4810, 2662, 23051, 198, 198, 49, 15154, 41359, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 64, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 67, 10354, 604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 68, 10354, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 10354, 718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 70, 10354, 767, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 71, 10354, 807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 72, 10354, 860, 198, 92, 198 ]
1.653409
176
# Bessel function of 2nd kind Y_n(x) on the real line for n=0,1,2,3 y0 = lambda x: bessely(0,x) y1 = lambda x: bessely(1,x) y2 = lambda x: bessely(2,x) y3 = lambda x: bessely(3,x) plot([y0,y1,y2,y3],[0,10],[-4,1])
[ 2, 347, 7878, 2163, 286, 362, 358, 1611, 575, 62, 77, 7, 87, 8, 319, 262, 1103, 1627, 329, 299, 28, 15, 11, 16, 11, 17, 11, 18, 198, 88, 15, 796, 37456, 2124, 25, 7284, 325, 306, 7, 15, 11, 87, 8, 198, 88, 16, 796, 37456, 2124, 25, 7284, 325, 306, 7, 16, 11, 87, 8, 198, 88, 17, 796, 37456, 2124, 25, 7284, 325, 306, 7, 17, 11, 87, 8, 198, 88, 18, 796, 37456, 2124, 25, 7284, 325, 306, 7, 18, 11, 87, 8, 198, 29487, 26933, 88, 15, 11, 88, 16, 11, 88, 17, 11, 88, 18, 38430, 15, 11, 940, 38430, 12, 19, 11, 16, 12962 ]
1.901786
112
from inspect import isclass import os import importlib.util import sys import logging from pkgutil import iter_modules def find_class(classname, directory): ''' Search the specified directory for a file containing a python implementation with the specified class name :param classname: class name to look for :param directory: directory to search for ``*.py`` files describing the class :returns: ``class`` object of matching desired class (if found), or ``None`` (if not found) ''' path = directory for (finder, name, _) in iter_modules([path]): if name == 'setup' or name == 'h5flow': continue try: spec = finder.find_spec(name) module = importlib.util.module_from_spec(spec) sys.modules[name] = module spec.loader.exec_module(module) for attribute_name in dir(module): attribute = getattr(module, attribute_name) if isclass(attribute): if attribute_name == classname: logging.info(f'Using {classname} from {directory}/{name}.py') return attribute except Exception as e: logging.debug(f'Encountered import error: {e}') return None def get_class(classname): ''' Look in current directory, ``./h5flow_modules/``, and ``h5flow/modules/`` for the specified class. Raises a ``RuntimeError`` if class can't be found in any of those directories. :param classname: class name to search for :returns: ``class`` object of desired class ''' # first search in local directory found_class = find_class(classname, './') if found_class is None: # then recurse into subdirectories if found_class is None: for parent, dirs, files in os.walk('./'): for directory in dirs: found_class = find_class(classname, os.path.join(parent, directory)) if found_class is not None: break if found_class is not None: break if found_class is None: # then search in source found_class = find_class(classname, os.path.dirname(__file__)) if found_class is None: raise RuntimeError(f'no matching class {classname} found!') return found_class
[ 6738, 10104, 1330, 318, 4871, 198, 11748, 28686, 198, 11748, 1330, 8019, 13, 22602, 198, 11748, 25064, 198, 11748, 18931, 198, 6738, 279, 10025, 22602, 1330, 11629, 62, 18170, 628, 198, 4299, 1064, 62, 4871, 7, 4871, 3672, 11, 8619, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 11140, 262, 7368, 8619, 329, 257, 2393, 7268, 257, 21015, 198, 220, 220, 220, 220, 220, 220, 220, 7822, 351, 262, 7368, 1398, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1398, 3672, 25, 1398, 1438, 284, 804, 329, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8619, 25, 8619, 284, 2989, 329, 7559, 24620, 9078, 15506, 3696, 12059, 262, 1398, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 7559, 4871, 15506, 2134, 286, 12336, 10348, 1398, 357, 361, 1043, 828, 393, 7559, 14202, 15506, 357, 361, 407, 1043, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3108, 796, 8619, 198, 220, 220, 220, 329, 357, 22805, 11, 1438, 11, 4808, 8, 287, 11629, 62, 18170, 26933, 6978, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6624, 705, 40406, 6, 393, 1438, 6624, 705, 71, 20, 11125, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1020, 796, 1064, 263, 13, 19796, 62, 16684, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 1330, 8019, 13, 22602, 13, 21412, 62, 6738, 62, 16684, 7, 16684, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 18170, 58, 3672, 60, 796, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1020, 13, 29356, 13, 18558, 62, 21412, 7, 21412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11688, 62, 3672, 287, 26672, 7, 21412, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 796, 651, 35226, 7, 21412, 11, 11688, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 4871, 7, 42348, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11688, 62, 3672, 6624, 1398, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 69, 6, 12814, 1391, 4871, 3672, 92, 422, 1391, 34945, 92, 14, 90, 3672, 27422, 9078, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 69, 6, 4834, 9127, 1068, 1330, 4049, 25, 1391, 68, 92, 11537, 198, 220, 220, 220, 1441, 6045, 628, 198, 4299, 651, 62, 4871, 7, 4871, 3672, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6803, 287, 1459, 8619, 11, 7559, 19571, 71, 20, 11125, 62, 18170, 14, 15506, 11, 290, 7559, 71, 20, 11125, 14, 18170, 14, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 329, 262, 7368, 1398, 13, 7567, 2696, 257, 7559, 41006, 12331, 15506, 611, 1398, 460, 470, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 287, 597, 286, 883, 29196, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1398, 3672, 25, 1398, 1438, 284, 2989, 329, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 7559, 4871, 15506, 2134, 286, 10348, 1398, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1303, 717, 2989, 287, 1957, 8619, 198, 220, 220, 220, 1043, 62, 4871, 796, 1064, 62, 4871, 7, 4871, 3672, 11, 705, 19571, 11537, 628, 220, 220, 220, 611, 1043, 62, 4871, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 664, 12321, 656, 850, 12942, 1749, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 62, 4871, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2560, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 4458, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 8619, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 4871, 796, 1064, 62, 4871, 7, 4871, 3672, 11, 28686, 13, 6978, 13, 22179, 7, 8000, 11, 8619, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 62, 4871, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 62, 4871, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 62, 4871, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 2989, 287, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 62, 4871, 796, 1064, 62, 4871, 7, 4871, 3672, 11, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 220, 220, 220, 611, 1043, 62, 4871, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 69, 6, 3919, 12336, 1398, 1391, 4871, 3672, 92, 1043, 0, 11537, 628, 220, 220, 220, 1441, 1043, 62, 4871, 198 ]
2.348077
1,040
#!/usr/bin/python # -*- coding: UTF-8 -*- """ main.py @author ejnp """ from lexer import Lexer from parser import Parser, ParserError from visitors import BetaReduction def interpret(input_string, print_reductions=False): """Performs normal order reduction on the given string lambda calculus expression. Returns the expression's normal form if it exists. """ lexer = Lexer(input_string) try: ast = Parser(lexer).parse() except ParserError as discrepancy: print 'ParseError: ' + discrepancy.message return None normal_form = False while not normal_form: reducer = BetaReduction() reduced_ast = reducer.visit(ast) normal_form = not reducer.reduced if print_reductions: print unicode(ast) ast = reduced_ast return unicode(ast) def main(): """Begins an interactive lambda calculus interpreter""" print "nameless!\nType 'quit' to exit." while True: read = raw_input('> ').decode('utf-8') if read == 'quit': break if read != '': interpret(read, print_reductions=True) if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 12417, 13, 9078, 198, 198, 31, 9800, 304, 73, 37659, 198, 37811, 198, 198, 6738, 31191, 263, 1330, 17210, 263, 198, 6738, 30751, 1330, 23042, 263, 11, 23042, 263, 12331, 198, 6738, 9692, 1330, 17993, 7738, 8110, 628, 198, 4299, 6179, 7, 15414, 62, 8841, 11, 3601, 62, 445, 20847, 28, 25101, 2599, 198, 220, 220, 220, 37227, 5990, 23914, 3487, 1502, 7741, 319, 262, 1813, 4731, 37456, 41443, 198, 220, 220, 220, 5408, 13, 16409, 262, 5408, 338, 3487, 1296, 611, 340, 7160, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31191, 263, 796, 17210, 263, 7, 15414, 62, 8841, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6468, 796, 23042, 263, 7, 2588, 263, 737, 29572, 3419, 198, 220, 220, 220, 2845, 23042, 263, 12331, 355, 34466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 10044, 325, 12331, 25, 705, 1343, 34466, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 3487, 62, 687, 796, 10352, 198, 220, 220, 220, 981, 407, 3487, 62, 687, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2027, 2189, 796, 17993, 7738, 8110, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5322, 62, 459, 796, 2027, 2189, 13, 4703, 270, 7, 459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3487, 62, 687, 796, 407, 2027, 2189, 13, 445, 19513, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3601, 62, 445, 20847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 28000, 1098, 7, 459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6468, 796, 5322, 62, 459, 198, 220, 220, 220, 1441, 28000, 1098, 7, 459, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 24586, 1040, 281, 14333, 37456, 41443, 28846, 37811, 198, 220, 220, 220, 3601, 366, 7402, 5321, 0, 59, 77, 6030, 705, 47391, 6, 284, 8420, 526, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 796, 8246, 62, 15414, 10786, 29, 705, 737, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1100, 6624, 705, 47391, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1100, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6179, 7, 961, 11, 3601, 62, 445, 20847, 28, 17821, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.525641
468
from django.template import TemplateSyntaxError from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.http import Http404 from django.utils.encoding import smart_unicode from django.template.loader import render_to_string from django.utils.safestring import mark_safe def render_inline(inline): """ Replace inline markup with template markup that matches the appropriate app and model. """ # Look for inline type, 'app.model' try: app_label, model_name = inline['type'].split('.') except: if settings.DEBUG: raise TemplateSyntaxError, "Couldn't find the attribute 'type' in the <inline> tag." else: return '' # Look for content type try: content_type = ContentType.objects.get(app_label=app_label, model=model_name) model = content_type.model_class() except ContentType.DoesNotExist: if settings.DEBUG: raise TemplateSyntaxError, "Inline ContentType not found." else: return '' # Check for an inline class attribute try: inline_class = smart_unicode(inline['class']) except: inline_class = '' try: try: id_list = [int(i) for i in inline['ids'].split(',')] obj_list = model.objects.in_bulk(id_list) obj_list = list(obj_list[int(i)] for i in id_list) context = { 'object_list': obj_list, 'class': inline_class } except ValueError: if settings.DEBUG: raise ValueError, "The <inline> ids attribute is missing or invalid." else: return '' except KeyError: try: obj = model.objects.get(pk=inline['id']) context = { 'content_type':"%s.%s" % (app_label, model_name), 'object': obj, 'class': inline_class, 'settings': settings } except model.DoesNotExist: if settings.DEBUG: raise model.DoesNotExist, "%s with pk of '%s' does not exist" % (model_name, inline['id']) else: return '' except: if settings.DEBUG: raise TemplateSyntaxError, "The <inline> id attribute is missing or invalid." else: return '' template = ["inlines/%s_%s.html" % (app_label, model_name), "inlines/default.html"] rendered_inline = {'template':template, 'context':context} return rendered_inline
[ 6738, 42625, 14208, 13, 28243, 1330, 37350, 13940, 41641, 12331, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 11299, 19199, 13, 27530, 1330, 14041, 6030, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 26429, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 4451, 62, 46903, 1098, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 628, 198, 198, 4299, 8543, 62, 45145, 7, 45145, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40177, 26098, 41485, 351, 11055, 41485, 326, 7466, 262, 198, 220, 220, 220, 5035, 598, 290, 2746, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 6803, 329, 26098, 2099, 11, 705, 1324, 13, 19849, 6, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 598, 62, 18242, 11, 2746, 62, 3672, 796, 26098, 17816, 4906, 6, 4083, 35312, 10786, 2637, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6460, 13, 30531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 37350, 13940, 41641, 12331, 11, 366, 23722, 77, 470, 1064, 262, 11688, 705, 4906, 6, 287, 262, 1279, 45145, 29, 7621, 526, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 628, 220, 220, 220, 1303, 6803, 329, 2695, 2099, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 62, 4906, 796, 14041, 6030, 13, 48205, 13, 1136, 7, 1324, 62, 18242, 28, 1324, 62, 18242, 11, 2746, 28, 19849, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 2695, 62, 4906, 13, 19849, 62, 4871, 3419, 198, 220, 220, 220, 2845, 14041, 6030, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6460, 13, 30531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 37350, 13940, 41641, 12331, 11, 366, 818, 1370, 14041, 6030, 407, 1043, 526, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 628, 220, 220, 220, 1303, 6822, 329, 281, 26098, 1398, 11688, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26098, 62, 4871, 796, 4451, 62, 46903, 1098, 7, 45145, 17816, 4871, 6, 12962, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26098, 62, 4871, 796, 10148, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 4868, 796, 685, 600, 7, 72, 8, 329, 1312, 287, 26098, 17816, 2340, 6, 4083, 35312, 7, 3256, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 4868, 796, 2746, 13, 48205, 13, 259, 62, 65, 12171, 7, 312, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 4868, 796, 1351, 7, 26801, 62, 4868, 58, 600, 7, 72, 15437, 329, 1312, 287, 4686, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 705, 15252, 62, 4868, 10354, 26181, 62, 4868, 11, 705, 4871, 10354, 26098, 62, 4871, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6460, 13, 30531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 11, 366, 464, 1279, 45145, 29, 220, 2340, 11688, 318, 4814, 393, 12515, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 2746, 13, 48205, 13, 1136, 7, 79, 74, 28, 45145, 17816, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 1391, 705, 11299, 62, 4906, 10354, 1, 4, 82, 13, 4, 82, 1, 4064, 357, 1324, 62, 18242, 11, 2746, 62, 3672, 828, 705, 15252, 10354, 26181, 11, 705, 4871, 10354, 26098, 62, 4871, 11, 705, 33692, 10354, 6460, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 2746, 13, 13921, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6460, 13, 30531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 2746, 13, 13921, 3673, 3109, 396, 11, 36521, 82, 351, 279, 74, 286, 705, 4, 82, 6, 857, 407, 2152, 1, 4064, 357, 19849, 62, 3672, 11, 26098, 17816, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6460, 13, 30531, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 37350, 13940, 41641, 12331, 11, 366, 464, 1279, 45145, 29, 4686, 11688, 318, 4814, 393, 12515, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 628, 220, 220, 220, 11055, 796, 14631, 259, 6615, 14, 4, 82, 62, 4, 82, 13, 6494, 1, 4064, 357, 1324, 62, 18242, 11, 2746, 62, 3672, 828, 366, 259, 6615, 14, 12286, 13, 6494, 8973, 198, 220, 220, 220, 15111, 62, 45145, 796, 1391, 6, 28243, 10354, 28243, 11, 705, 22866, 10354, 22866, 92, 628, 220, 220, 220, 1441, 15111, 62, 45145 ]
2.354442
1,058
from math import gcd fractions = list() for numerator in range(10, 100): for denominator in range(numerator+1, 100): actual = numerator / denominator a = numerator // 10 b = numerator % 10 c = denominator // 10 d = denominator % 10 if (b == 0 and d == 0) or (a == b and c == d) or (a != d and b != c): continue if (a == d and c != 0 and actual == b/c): fractions.append((numerator, denominator)) print('{0}/{1} == {2}/{3}'.format(numerator, denominator, a, c)) if (b == c and d != 0 and actual == a/d): fractions.append((numerator, denominator)) print('{0}/{1} == {2}/{3}'.format(numerator, denominator, a, c)) n_product = 1 d_product = 1 for f in fractions: print(f) n_product *= f[0] d_product *= f[1] greatest_divisor = gcd(n_product, d_product) final_denominator = d_product // greatest_divisor print(final_denominator)
[ 6738, 10688, 1330, 308, 10210, 198, 198, 69, 37810, 796, 1351, 3419, 198, 198, 1640, 5470, 1352, 287, 2837, 7, 940, 11, 1802, 2599, 198, 220, 329, 31457, 1352, 287, 2837, 7, 77, 6975, 1352, 10, 16, 11, 1802, 2599, 198, 220, 220, 220, 4036, 796, 5470, 1352, 1220, 31457, 1352, 198, 220, 220, 220, 257, 796, 5470, 1352, 3373, 838, 198, 220, 220, 220, 275, 796, 5470, 1352, 4064, 838, 198, 220, 220, 220, 269, 796, 31457, 1352, 3373, 838, 198, 220, 220, 220, 288, 796, 31457, 1352, 4064, 838, 198, 220, 220, 220, 611, 357, 65, 6624, 657, 290, 288, 6624, 657, 8, 393, 357, 64, 6624, 275, 290, 269, 6624, 288, 8, 393, 357, 64, 14512, 288, 290, 275, 14512, 269, 2599, 198, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 357, 64, 6624, 288, 290, 269, 14512, 657, 290, 220, 4036, 6624, 275, 14, 66, 2599, 198, 220, 220, 220, 220, 220, 49876, 13, 33295, 19510, 77, 6975, 1352, 11, 31457, 1352, 4008, 198, 220, 220, 220, 220, 220, 3601, 10786, 90, 15, 92, 14, 90, 16, 92, 6624, 1391, 17, 92, 14, 90, 18, 92, 4458, 18982, 7, 77, 6975, 1352, 11, 31457, 1352, 11, 257, 11, 269, 4008, 198, 220, 220, 220, 611, 357, 65, 6624, 269, 290, 288, 14512, 657, 290, 4036, 6624, 257, 14, 67, 2599, 198, 220, 220, 220, 220, 220, 49876, 13, 33295, 19510, 77, 6975, 1352, 11, 31457, 1352, 4008, 198, 220, 220, 220, 220, 220, 3601, 10786, 90, 15, 92, 14, 90, 16, 92, 6624, 1391, 17, 92, 14, 90, 18, 92, 4458, 18982, 7, 77, 6975, 1352, 11, 31457, 1352, 11, 257, 11, 269, 4008, 198, 198, 77, 62, 11167, 796, 352, 198, 67, 62, 11167, 796, 352, 198, 1640, 277, 287, 49876, 25, 198, 220, 3601, 7, 69, 8, 198, 220, 299, 62, 11167, 1635, 28, 277, 58, 15, 60, 198, 220, 288, 62, 11167, 1635, 28, 277, 58, 16, 60, 198, 198, 18223, 395, 62, 7146, 271, 273, 796, 308, 10210, 7, 77, 62, 11167, 11, 288, 62, 11167, 8, 198, 20311, 62, 6559, 6351, 1352, 796, 288, 62, 11167, 3373, 6000, 62, 7146, 271, 273, 198, 198, 4798, 7, 20311, 62, 6559, 6351, 1352, 8, 628 ]
2.402667
375
import datetime import json from django.conf import settings from django.utils import timezone
[ 11748, 4818, 8079, 198, 11748, 33918, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198 ]
3.84
25
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from datetime import datetime import time
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 201, 198, 6738, 4818, 8079, 1330, 4818, 8079, 201, 198, 11748, 640, 201, 198, 201, 198, 201, 198, 201, 198 ]
3.246753
77
import sqlite3 as sqlite from SQLObjectStore import SQLObjectStore class SQLiteObjectStore(SQLObjectStore): """SQLiteObjectStore implements an object store backed by a SQLite database. See the SQLite docs or the DB API 2.0 docs for more information: https://docs.python.org/2/library/sqlite3.html https://www.python.org/dev/peps/pep-0249/ """
[ 11748, 44161, 578, 18, 355, 44161, 578, 198, 198, 6738, 16363, 10267, 22658, 1330, 16363, 10267, 22658, 628, 198, 4871, 16363, 578, 10267, 22658, 7, 17861, 10267, 22658, 2599, 198, 220, 220, 220, 37227, 17861, 578, 10267, 22658, 23986, 281, 2134, 3650, 9763, 416, 257, 16363, 578, 6831, 13, 628, 220, 220, 220, 4091, 262, 16363, 578, 34165, 393, 262, 20137, 7824, 362, 13, 15, 34165, 329, 517, 1321, 25, 198, 220, 220, 220, 220, 220, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 17, 14, 32016, 14, 25410, 578, 18, 13, 6494, 198, 220, 220, 220, 220, 220, 3740, 1378, 2503, 13, 29412, 13, 2398, 14, 7959, 14, 431, 862, 14, 431, 79, 12, 15, 21626, 14, 198, 220, 220, 220, 37227, 628 ]
3
124
from django.conf import settings from graphql import GraphQLError from itdagene.graphql.loaders import Loaders
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 4823, 13976, 1330, 29681, 48, 2538, 81, 1472, 198, 6738, 340, 67, 363, 1734, 13, 34960, 13976, 13, 2220, 364, 1330, 8778, 364, 628, 198 ]
3.323529
34
import click import subprocess import random import string import os @click.group() @cli.command() @click.argument("runner") @click.option("--editor", default="nano")
[ 11748, 3904, 198, 11748, 850, 14681, 198, 11748, 4738, 198, 11748, 4731, 198, 11748, 28686, 198, 198, 31, 12976, 13, 8094, 3419, 198, 198, 31, 44506, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 7203, 16737, 4943, 198, 31, 12976, 13, 18076, 7203, 438, 35352, 1600, 4277, 2625, 77, 5733, 4943, 198 ]
3.25
52
# Copyright 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ In order to save gate resources, test paths that have similar environmental requirements to the functional path are marked for discovery. """ import os.path
[ 2, 15069, 1853, 2297, 10983, 11, 3457, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 37811, 198, 818, 1502, 284, 3613, 8946, 4133, 11, 1332, 13532, 326, 423, 2092, 198, 38986, 282, 5359, 284, 262, 10345, 3108, 389, 7498, 329, 198, 67, 40821, 13, 198, 37811, 198, 198, 11748, 28686, 13, 6978, 628 ]
3.527523
218
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ #################train vgg16 example on cifar10######################## python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID """ import argparse import datetime import os import random import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor from mindspore.train.model import Model from mindspore.train.serialization import load_param_into_net, load_checkpoint from mindarmour.utils import LogUtil from examples.common.dataset.data_processing import vgg_create_dataset100 from examples.common.networks.vgg.warmup_step_lr import warmup_step_lr from examples.common.networks.vgg.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr from examples.common.networks.vgg.warmup_step_lr import lr_steps from examples.common.networks.vgg.utils.util import get_param_groups from examples.common.networks.vgg.vgg import vgg16 from examples.common.networks.vgg.config import cifar_cfg as cfg TAG = "train" random.seed(1) np.random.seed(1) def parse_args(cloud_args=None): """parameters""" parser = argparse.ArgumentParser('mindspore classification training') parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], help='device where the code will be implemented. (Default: Ascend)') parser.add_argument('--device_id', type=int, default=1, help='device id of GPU or Ascend. (Default: None)') # dataset related parser.add_argument('--data_path', type=str, default='', help='train data dir') # network related parser.add_argument('--pre_trained', default='', type=str, help='model_path, local pretrained model to load') parser.add_argument('--lr_gamma', type=float, default=0.1, help='decrease lr by a factor of exponential lr_scheduler') parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler') parser.add_argument('--T_max', type=int, default=150, help='T-max in cosine_annealing scheduler') # logging and checkpoint related parser.add_argument('--log_interval', type=int, default=100, help='logging interval') parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location') parser.add_argument('--ckpt_interval', type=int, default=2, help='ckpt_interval') parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank') args_opt = parser.parse_args() args_opt = merge_args(args_opt, cloud_args) args_opt.rank = 0 args_opt.group_size = 1 args_opt.label_smooth = cfg.label_smooth args_opt.label_smooth_factor = cfg.label_smooth_factor args_opt.lr_scheduler = cfg.lr_scheduler args_opt.loss_scale = cfg.loss_scale args_opt.max_epoch = cfg.max_epoch args_opt.warmup_epochs = cfg.warmup_epochs args_opt.lr = cfg.lr args_opt.lr_init = cfg.lr_init args_opt.lr_max = cfg.lr_max args_opt.momentum = cfg.momentum args_opt.weight_decay = cfg.weight_decay args_opt.per_batch_size = cfg.batch_size args_opt.num_classes = cfg.num_classes args_opt.buffer_size = cfg.buffer_size args_opt.ckpt_save_max = cfg.keep_checkpoint_max args_opt.pad_mode = cfg.pad_mode args_opt.padding = cfg.padding args_opt.has_bias = cfg.has_bias args_opt.batch_norm = cfg.batch_norm args_opt.initialize_mode = cfg.initialize_mode args_opt.has_dropout = cfg.has_dropout args_opt.lr_epochs = list(map(int, cfg.lr_epochs.split(','))) args_opt.image_size = list(map(int, cfg.image_size.split(','))) return args_opt def merge_args(args_opt, cloud_args): """dictionary""" args_dict = vars(args_opt) if isinstance(cloud_args, dict): for key_arg in cloud_args.keys(): val = cloud_args[key_arg] if key_arg in args_dict and val: arg_type = type(args_dict[key_arg]) if arg_type is not None: val = arg_type(val) args_dict[key_arg] = val return args_opt if __name__ == '__main__': args = parse_args() device_num = int(os.environ.get("DEVICE_NUM", 1)) context.set_context(device_id=args.device_id) context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) # select for master rank save ckpt or all rank save, compatiable for model parallel args.rank_save_ckpt_flag = 0 if args.is_save_on_master: if args.rank == 0: args.rank_save_ckpt_flag = 1 else: args.rank_save_ckpt_flag = 1 # logger args.outputs_dir = os.path.join(args.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = LogUtil.get_instance() args.logger.set_level(20) # load train data set dataset = vgg_create_dataset100(args.data_path, args.image_size, args.per_batch_size, args.rank, args.group_size) batch_num = dataset.get_dataset_size() args.steps_per_epoch = dataset.get_dataset_size() # network args.logger.info(TAG, 'start create network') # get network and init network = vgg16(args.num_classes, args) # pre_trained if args.pre_trained: load_param_into_net(network, load_checkpoint(args.pre_trained)) # lr scheduler if args.lr_scheduler == 'exponential': lr = warmup_step_lr(args.lr, args.lr_epochs, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, gamma=args.lr_gamma, ) elif args.lr_scheduler == 'cosine_annealing': lr = warmup_cosine_annealing_lr(args.lr, args.steps_per_epoch, args.warmup_epochs, args.max_epoch, args.T_max, args.eta_min) elif args.lr_scheduler == 'step': lr = lr_steps(0, lr_init=args.lr_init, lr_max=args.lr_max, warmup_epochs=args.warmup_epochs, total_epochs=args.max_epoch, steps_per_epoch=batch_num) else: raise NotImplementedError(args.lr_scheduler) # optimizer opt = Momentum(params=get_param_groups(network), learning_rate=Tensor(lr), momentum=args.momentum, weight_decay=args.weight_decay, loss_scale=args.loss_scale) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') model = Model(network, loss_fn=loss, optimizer=opt, metrics={'acc'}, amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None) # checkpoint save callbacks = [LossMonitor()] if args.rank_save_ckpt_flag: ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval*args.steps_per_epoch, keep_checkpoint_max=args.ckpt_save_max) ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=args.outputs_dir, prefix='{}'.format(args.rank)) callbacks.append(ckpt_cb) model.train(args.max_epoch, dataset, callbacks=callbacks)
[ 2, 15069, 12131, 43208, 21852, 1766, 1539, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 198, 14468, 2, 27432, 410, 1130, 1433, 1672, 319, 269, 361, 283, 940, 14468, 7804, 198, 29412, 4512, 13, 9078, 1377, 7890, 62, 6978, 43641, 26947, 62, 39069, 1377, 25202, 62, 312, 43641, 7206, 27389, 62, 2389, 198, 37811, 198, 11748, 1822, 29572, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 4738, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2000, 2777, 382, 13, 20471, 355, 299, 77, 198, 6738, 2000, 2777, 382, 1330, 309, 22854, 198, 6738, 2000, 2777, 382, 1330, 4732, 198, 6738, 2000, 2777, 382, 13, 20471, 13, 40085, 13, 32542, 298, 388, 1330, 29278, 388, 198, 6738, 2000, 2777, 382, 13, 27432, 13, 47423, 1330, 9104, 9787, 4122, 11, 6822, 4122, 16934, 11, 22014, 35479, 198, 6738, 2000, 2777, 382, 13, 27432, 13, 19849, 1330, 9104, 198, 6738, 2000, 2777, 382, 13, 27432, 13, 46911, 1634, 1330, 3440, 62, 17143, 62, 20424, 62, 3262, 11, 3440, 62, 9122, 4122, 198, 6738, 2000, 1670, 454, 13, 26791, 1330, 5972, 18274, 346, 198, 198, 6738, 6096, 13, 11321, 13, 19608, 292, 316, 13, 7890, 62, 36948, 1330, 410, 1130, 62, 17953, 62, 19608, 292, 316, 3064, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 31975, 929, 62, 9662, 62, 14050, 1330, 5814, 929, 62, 9662, 62, 14050, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 31975, 929, 62, 6966, 500, 62, 21952, 4272, 62, 14050, 1330, 5814, 929, 62, 6966, 500, 62, 21952, 4272, 62, 14050, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 31975, 929, 62, 9662, 62, 14050, 1330, 300, 81, 62, 20214, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 26791, 13, 22602, 1330, 651, 62, 17143, 62, 24432, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 85, 1130, 1330, 410, 1130, 1433, 198, 6738, 6096, 13, 11321, 13, 3262, 5225, 13, 85, 1130, 13, 11250, 1330, 269, 361, 283, 62, 37581, 355, 30218, 70, 198, 198, 42197, 796, 366, 27432, 1, 198, 198, 25120, 13, 28826, 7, 16, 8, 198, 37659, 13, 25120, 13, 28826, 7, 16, 8, 628, 198, 4299, 21136, 62, 22046, 7, 17721, 62, 22046, 28, 14202, 2599, 198, 220, 220, 220, 37227, 17143, 7307, 37811, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 10786, 10155, 2777, 382, 17923, 3047, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 25202, 62, 16793, 3256, 2099, 28, 2536, 11, 4277, 11639, 32, 1416, 437, 3256, 7747, 28, 17816, 32, 1416, 437, 3256, 705, 33346, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 25202, 810, 262, 2438, 481, 307, 9177, 13, 357, 19463, 25, 45387, 8, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 25202, 62, 312, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 11639, 25202, 4686, 286, 11362, 393, 45387, 13, 357, 19463, 25, 6045, 8, 11537, 628, 220, 220, 220, 1303, 27039, 3519, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7890, 62, 6978, 3256, 2099, 28, 2536, 11, 4277, 11639, 3256, 1037, 11639, 27432, 1366, 26672, 11537, 628, 220, 220, 220, 1303, 3127, 3519, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 3866, 62, 35311, 3256, 4277, 11639, 3256, 2099, 28, 2536, 11, 1037, 11639, 19849, 62, 6978, 11, 1957, 2181, 13363, 2746, 284, 3440, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 14050, 62, 28483, 2611, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 12501, 260, 589, 300, 81, 416, 257, 5766, 286, 39682, 300, 81, 62, 1416, 704, 18173, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 17167, 62, 1084, 3256, 2099, 28, 22468, 11, 4277, 28, 15, 1539, 1037, 11639, 17167, 62, 1084, 287, 8615, 500, 62, 21952, 4272, 6038, 18173, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 51, 62, 9806, 3256, 2099, 28, 600, 11, 4277, 28, 8628, 11, 1037, 11639, 51, 12, 9806, 287, 8615, 500, 62, 21952, 4272, 6038, 18173, 11537, 628, 220, 220, 220, 1303, 18931, 290, 26954, 3519, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 6404, 62, 3849, 2100, 3256, 2099, 28, 600, 11, 4277, 28, 3064, 11, 1037, 11639, 6404, 2667, 16654, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 694, 457, 62, 6978, 3256, 2099, 28, 2536, 11, 4277, 11639, 22915, 82, 14, 3256, 1037, 11639, 9122, 4122, 3613, 4067, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 694, 457, 62, 3849, 2100, 3256, 2099, 28, 600, 11, 4277, 28, 17, 11, 1037, 11639, 694, 457, 62, 3849, 2100, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 271, 62, 21928, 62, 261, 62, 9866, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 1037, 11639, 21928, 269, 74, 457, 319, 4958, 393, 477, 4279, 11537, 628, 220, 220, 220, 26498, 62, 8738, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 26498, 62, 8738, 796, 20121, 62, 22046, 7, 22046, 62, 8738, 11, 6279, 62, 22046, 8, 628, 220, 220, 220, 26498, 62, 8738, 13, 43027, 796, 657, 198, 220, 220, 220, 26498, 62, 8738, 13, 8094, 62, 7857, 796, 352, 198, 220, 220, 220, 26498, 62, 8738, 13, 18242, 62, 5796, 5226, 796, 30218, 70, 13, 18242, 62, 5796, 5226, 198, 220, 220, 220, 26498, 62, 8738, 13, 18242, 62, 5796, 5226, 62, 31412, 796, 30218, 70, 13, 18242, 62, 5796, 5226, 62, 31412, 198, 220, 220, 220, 26498, 62, 8738, 13, 14050, 62, 1416, 704, 18173, 796, 30218, 70, 13, 14050, 62, 1416, 704, 18173, 198, 220, 220, 220, 26498, 62, 8738, 13, 22462, 62, 9888, 796, 30218, 70, 13, 22462, 62, 9888, 198, 220, 220, 220, 26498, 62, 8738, 13, 9806, 62, 538, 5374, 796, 30218, 70, 13, 9806, 62, 538, 5374, 198, 220, 220, 220, 26498, 62, 8738, 13, 31975, 929, 62, 538, 5374, 82, 796, 30218, 70, 13, 31975, 929, 62, 538, 5374, 82, 198, 220, 220, 220, 26498, 62, 8738, 13, 14050, 796, 30218, 70, 13, 14050, 198, 220, 220, 220, 26498, 62, 8738, 13, 14050, 62, 15003, 796, 30218, 70, 13, 14050, 62, 15003, 198, 220, 220, 220, 26498, 62, 8738, 13, 14050, 62, 9806, 796, 30218, 70, 13, 14050, 62, 9806, 198, 220, 220, 220, 26498, 62, 8738, 13, 32542, 298, 388, 796, 30218, 70, 13, 32542, 298, 388, 198, 220, 220, 220, 26498, 62, 8738, 13, 6551, 62, 12501, 323, 796, 30218, 70, 13, 6551, 62, 12501, 323, 198, 220, 220, 220, 26498, 62, 8738, 13, 525, 62, 43501, 62, 7857, 796, 30218, 70, 13, 43501, 62, 7857, 198, 220, 220, 220, 26498, 62, 8738, 13, 22510, 62, 37724, 796, 30218, 70, 13, 22510, 62, 37724, 198, 220, 220, 220, 26498, 62, 8738, 13, 22252, 62, 7857, 796, 30218, 70, 13, 22252, 62, 7857, 198, 220, 220, 220, 26498, 62, 8738, 13, 694, 457, 62, 21928, 62, 9806, 796, 30218, 70, 13, 14894, 62, 9122, 4122, 62, 9806, 198, 220, 220, 220, 26498, 62, 8738, 13, 15636, 62, 14171, 796, 30218, 70, 13, 15636, 62, 14171, 198, 220, 220, 220, 26498, 62, 8738, 13, 39231, 796, 30218, 70, 13, 39231, 198, 220, 220, 220, 26498, 62, 8738, 13, 10134, 62, 65, 4448, 796, 30218, 70, 13, 10134, 62, 65, 4448, 198, 220, 220, 220, 26498, 62, 8738, 13, 43501, 62, 27237, 796, 30218, 70, 13, 43501, 62, 27237, 198, 220, 220, 220, 26498, 62, 8738, 13, 36733, 1096, 62, 14171, 796, 30218, 70, 13, 36733, 1096, 62, 14171, 198, 220, 220, 220, 26498, 62, 8738, 13, 10134, 62, 14781, 448, 796, 30218, 70, 13, 10134, 62, 14781, 448, 628, 220, 220, 220, 26498, 62, 8738, 13, 14050, 62, 538, 5374, 82, 796, 1351, 7, 8899, 7, 600, 11, 30218, 70, 13, 14050, 62, 538, 5374, 82, 13, 35312, 7, 41707, 22305, 198, 220, 220, 220, 26498, 62, 8738, 13, 9060, 62, 7857, 796, 1351, 7, 8899, 7, 600, 11, 30218, 70, 13, 9060, 62, 7857, 13, 35312, 7, 41707, 22305, 628, 220, 220, 220, 1441, 26498, 62, 8738, 628, 198, 4299, 20121, 62, 22046, 7, 22046, 62, 8738, 11, 6279, 62, 22046, 2599, 198, 220, 220, 220, 37227, 67, 14188, 37811, 198, 220, 220, 220, 26498, 62, 11600, 796, 410, 945, 7, 22046, 62, 8738, 8, 198, 220, 220, 220, 611, 318, 39098, 7, 17721, 62, 22046, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 62, 853, 287, 6279, 62, 22046, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 6279, 62, 22046, 58, 2539, 62, 853, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 62, 853, 287, 26498, 62, 11600, 290, 1188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 4906, 796, 2099, 7, 22046, 62, 11600, 58, 2539, 62, 853, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1822, 62, 4906, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 1822, 62, 4906, 7, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 62, 11600, 58, 2539, 62, 853, 60, 796, 1188, 198, 220, 220, 220, 1441, 26498, 62, 8738, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 21136, 62, 22046, 3419, 628, 220, 220, 220, 3335, 62, 22510, 796, 493, 7, 418, 13, 268, 2268, 13, 1136, 7203, 7206, 27389, 62, 41359, 1600, 352, 4008, 628, 220, 220, 220, 4732, 13, 2617, 62, 22866, 7, 25202, 62, 312, 28, 22046, 13, 25202, 62, 312, 8, 198, 220, 220, 220, 4732, 13, 2617, 62, 22866, 7, 14171, 28, 22866, 13, 10761, 31300, 62, 49058, 11, 3335, 62, 16793, 28, 22046, 13, 25202, 62, 16793, 8, 628, 220, 220, 220, 1303, 2922, 329, 4958, 4279, 3613, 269, 74, 457, 393, 477, 4279, 3613, 11, 8330, 3379, 329, 2746, 10730, 198, 220, 220, 220, 26498, 13, 43027, 62, 21928, 62, 694, 457, 62, 32109, 796, 657, 198, 220, 220, 220, 611, 26498, 13, 271, 62, 21928, 62, 261, 62, 9866, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 43027, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 43027, 62, 21928, 62, 694, 457, 62, 32109, 796, 352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 43027, 62, 21928, 62, 694, 457, 62, 32109, 796, 352, 628, 220, 220, 220, 1303, 49706, 198, 220, 220, 220, 26498, 13, 22915, 82, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 694, 457, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 62, 2435, 62, 4, 39, 62, 4, 44, 62, 4, 50, 6, 4008, 198, 220, 220, 220, 26498, 13, 6404, 1362, 796, 5972, 18274, 346, 13, 1136, 62, 39098, 3419, 198, 220, 220, 220, 26498, 13, 6404, 1362, 13, 2617, 62, 5715, 7, 1238, 8, 628, 220, 220, 220, 1303, 3440, 4512, 1366, 900, 198, 220, 220, 220, 27039, 796, 410, 1130, 62, 17953, 62, 19608, 292, 316, 3064, 7, 22046, 13, 7890, 62, 6978, 11, 26498, 13, 9060, 62, 7857, 11, 26498, 13, 525, 62, 43501, 62, 7857, 11, 26498, 13, 43027, 11, 26498, 13, 8094, 62, 7857, 8, 198, 220, 220, 220, 15458, 62, 22510, 796, 27039, 13, 1136, 62, 19608, 292, 316, 62, 7857, 3419, 198, 220, 220, 220, 26498, 13, 20214, 62, 525, 62, 538, 5374, 796, 27039, 13, 1136, 62, 19608, 292, 316, 62, 7857, 3419, 628, 220, 220, 220, 1303, 3127, 198, 220, 220, 220, 26498, 13, 6404, 1362, 13, 10951, 7, 42197, 11, 705, 9688, 2251, 3127, 11537, 628, 220, 220, 220, 1303, 651, 3127, 290, 2315, 198, 220, 220, 220, 3127, 796, 410, 1130, 1433, 7, 22046, 13, 22510, 62, 37724, 11, 26498, 8, 628, 220, 220, 220, 1303, 662, 62, 35311, 198, 220, 220, 220, 611, 26498, 13, 3866, 62, 35311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 17143, 62, 20424, 62, 3262, 7, 27349, 11, 3440, 62, 9122, 4122, 7, 22046, 13, 3866, 62, 35311, 4008, 628, 220, 220, 220, 1303, 300, 81, 6038, 18173, 198, 220, 220, 220, 611, 26498, 13, 14050, 62, 1416, 704, 18173, 6624, 705, 11201, 35470, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 5814, 929, 62, 9662, 62, 14050, 7, 22046, 13, 14050, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 14050, 62, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20214, 62, 525, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 31975, 929, 62, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 9806, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34236, 28, 22046, 13, 14050, 62, 28483, 2611, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1288, 361, 26498, 13, 14050, 62, 1416, 704, 18173, 6624, 705, 6966, 500, 62, 21952, 4272, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 5814, 929, 62, 6966, 500, 62, 21952, 4272, 62, 14050, 7, 22046, 13, 14050, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 20214, 62, 525, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 31975, 929, 62, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 9806, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 51, 62, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 17167, 62, 1084, 8, 198, 220, 220, 220, 1288, 361, 26498, 13, 14050, 62, 1416, 704, 18173, 6624, 705, 9662, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 300, 81, 62, 20214, 7, 15, 11, 300, 81, 62, 15003, 28, 22046, 13, 14050, 62, 15003, 11, 300, 81, 62, 9806, 28, 22046, 13, 14050, 62, 9806, 11, 5814, 929, 62, 538, 5374, 82, 28, 22046, 13, 31975, 929, 62, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 538, 5374, 82, 28, 22046, 13, 9806, 62, 538, 5374, 11, 4831, 62, 525, 62, 538, 5374, 28, 43501, 62, 22510, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 22046, 13, 14050, 62, 1416, 704, 18173, 8, 628, 220, 220, 220, 1303, 6436, 7509, 198, 220, 220, 220, 2172, 796, 29278, 388, 7, 37266, 28, 1136, 62, 17143, 62, 24432, 7, 27349, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 28, 51, 22854, 7, 14050, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12858, 28, 22046, 13, 32542, 298, 388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 62, 12501, 323, 28, 22046, 13, 6551, 62, 12501, 323, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 9888, 28, 22046, 13, 22462, 62, 9888, 8, 628, 220, 220, 220, 2994, 796, 299, 77, 13, 18380, 9806, 21544, 14539, 28338, 3152, 11187, 896, 7, 82, 29572, 28, 17821, 11, 7741, 11639, 32604, 11537, 198, 220, 220, 220, 2746, 796, 9104, 7, 27349, 11, 2994, 62, 22184, 28, 22462, 11, 6436, 7509, 28, 8738, 11, 20731, 34758, 6, 4134, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20766, 62, 5715, 2625, 46, 17, 1600, 1394, 62, 43501, 27237, 62, 46428, 2624, 28, 25101, 11, 2994, 62, 9888, 62, 37153, 28, 14202, 8, 628, 220, 220, 220, 1303, 26954, 3613, 198, 220, 220, 220, 869, 10146, 796, 685, 43, 793, 35479, 3419, 60, 198, 220, 220, 220, 611, 26498, 13, 43027, 62, 21928, 62, 694, 457, 62, 32109, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 62, 11250, 796, 6822, 4122, 16934, 7, 21928, 62, 9122, 4122, 62, 20214, 28, 22046, 13, 694, 457, 62, 3849, 2100, 9, 22046, 13, 20214, 62, 525, 62, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 9122, 4122, 62, 9806, 28, 22046, 13, 694, 457, 62, 21928, 62, 9806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 62, 21101, 796, 9104, 9787, 4122, 7, 11250, 28, 694, 457, 62, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 28, 22046, 13, 22915, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 11639, 90, 92, 4458, 18982, 7, 22046, 13, 43027, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 869, 10146, 13, 33295, 7, 694, 457, 62, 21101, 8, 628, 220, 220, 220, 2746, 13, 27432, 7, 22046, 13, 9806, 62, 538, 5374, 11, 27039, 11, 869, 10146, 28, 13345, 10146, 8, 198 ]
2.303944
3,550
from armada_command import armada_api
[ 6738, 3211, 4763, 62, 21812, 1330, 3211, 4763, 62, 15042, 628, 198 ]
3.333333
12
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Main Controller Created on Tue Aug 17 14:16:44 2021 Version: 1.0 Universidad Santo Tomás Tunja Simulation @author: Juana Valentina Mendoza Santamaría @author: Alix Ivonne Chaparro Vasquez presented to: Martha Susana Contreras Ortiz """ from random import randint import time from controllers.settings import config from models.atms import ATMs from models.clients import Clients from models.accounts import Accounts from models.cards import Cards from models.transactions import Transactions from models.record import Record from views.mainView import mainView, insertCardView, insertCardDeepelyView, insertCardCompletelyView from views.mainView import mainMenuView from controllers.bankController import createBank from controllers.balanceController import balanceController from controllers.withdrawController import withdrawController from controllers.depositController import depositController from controllers.statsController import stats from controllers.reportController import stage, showTransactionData from controllers.plotController import resultPlots __author__ = ["Juana Valentina Mendoza Santamaría", "Alix Ivonne Chaparro Vasquez"] __copyright__ = "Copyright 2021, Universidad Santo Tomás Tunja" __credits__ = ["Martha Susana Contreras Ortiz"] __license__ = "GPL" __version__ = "1.0.1" __maintainer__= ["Juana Valentina Mendoza Santamaría", "Alix Ivonne Chaparro Vasquez"] __email__ = ["[email protected]", "[email protected]"] __status__ = "Develpment" #%% def previousScreens(): """ Project the screens """ mainView() time.sleep(2) insertCardView() time.sleep(2) insertCardDeepelyView() time.sleep(2) insertCardCompletelyView() time.sleep(2) #%% def initialize(simulation): """Initializing variables Args: simulation (boolean): True (simulation) - False (Demo) """ global maxSimulationTime global minWithdrawAccount, maxWithdrawAccount global minDepositAccount, maxDepositAccount global minBill global record maxATMs = config.PARAMETERS['maxATMs'] minATMCash = config.PARAMETERS['minATMCash'] maxATMCash = config.PARAMETERS['maxATMCash'] minBill = config.PARAMETERS['minBill'] maxClients = config.PARAMETERS['maxClients'] maxAccounts = config.PARAMETERS['maxAccounts'] maxAccountBalance = config.PARAMETERS['maxAccountBalance'] maxCards = config.PARAMETERS['maxCards'] minWithdrawAccount = config.PARAMETERS['minWithdrawAccount'] maxWithdrawAccount = config.PARAMETERS['maxWithdrawAccount'] minDepositAccount = config.PARAMETERS['minDepositAccount'] maxDepositAccount = config.PARAMETERS['maxDepositAccount'] maxTransactions = config.PARAMETERS['maxTransactions'] maxSimulationTime = config.PARAMETERS['maxSimulationTime'] global bank, atms global clients, accounts, cards global transactions bank = createBank() atms = ATMs( bank, maxATMs, minATMCash, maxATMCash, minBill ) if simulation: # Simulation atms.createRandomATMs() else: # Controlled demo atms.createATMs() clients = Clients(maxClients) if simulation: clients.createRandomClients() else: clients.createClients() accounts = Accounts( clients.clients[0], maxAccounts, maxAccountBalance, minBill ) if simulation: for client in clients.clients: oldList = accounts.accounts accounts.client = client accounts.createRandomAccounts() newList = accounts.accounts accounts.accounts = oldList + newList else: accounts.createAccounts() cards = Cards(accounts.accounts[0], maxCards) if simulation: for account in accounts.accounts: oldList = cards.cards cards.account = account cards.createRandomCards() newList = cards.cards cards.cards = oldList + newList else: cards.createCards() transactions = Transactions( atms, cards, minWithdrawAccount, maxWithdrawAccount, minDepositAccount, maxDepositAccount, minBill, maxTransactions ) record = Record() #%% def getOption(simulation): """Select the type of transaction to be made. Args: simulation (boolean): demo or simulation. """ global record loop = 0 option = 0 while option != -1: # Finish atm = atms.randomSelectedATM() client = clients.randomSelectedClient() account = accounts.randomSelectedAccount(client) card = cards.randomSelectedCard(account) loop += 1 if not simulation: mainMenuView() # Balance, Withdraw, Deposit, Consult Trasactions while option not in [-1, 1, 2, 3, 99]: option = int(input('-> ')) else: if loop >= maxSimulationTime: option = -1 # End of simulation else: option = randint(1, 3) if option == 1: # Balance option, transaction = balanceController(atm, card, simulation) transactions.add(transaction) elif option == 2: # Withdraw option, transaction = withdrawController( atm, card, simulation, minWithdrawAccount, maxWithdrawAccount, minBill ) transactions.add(transaction) if transaction.transactionStatus == 'Successful': atm.atmCash -= transaction.transactionAmount card.cardAccount.accountBalance -= transaction.transactionAmount elif option == 3: # Deposit option, transaction = depositController( atm, card, simulation, minDepositAccount, maxDepositAccount, minBill ) transactions.add(transaction) if transaction.transactionStatus == 'Successful': atm.atmCash += transaction.transactionAmount card.cardAccount.accountBalance += transaction.transactionAmount elif option == 99: print(transactions) option = input("Press Enter to continue...") if option != -1: option = -1 if option == 2 else 0 # option = 2 (finish) if simulation: showTransactionData(loop, transaction, bank, atms, accounts) record.recordTransaction(loop, transaction) #%% def mainController(simulation): """Start of application Args: simulation (boolean): demo or simulation. """ global bank, atms, accounts global record initialize(simulation) if not simulation: previousScreens() stage(bank, atms, accounts) getOption(simulation) stats(record) resultPlots(record)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 13383, 22741, 220, 198, 198, 41972, 319, 30030, 2447, 1596, 1478, 25, 1433, 25, 2598, 33448, 198, 14815, 25, 352, 13, 15, 198, 3118, 1191, 32482, 10844, 78, 4186, 40138, 13932, 6592, 198, 8890, 1741, 198, 31, 9800, 25, 449, 5020, 17284, 1437, 20442, 78, 4496, 10844, 39236, 29690, 198, 31, 9800, 25, 978, 844, 16975, 47476, 15954, 34852, 23663, 22281, 198, 25579, 276, 284, 25, 27243, 8932, 2271, 2345, 260, 8847, 39039, 198, 37811, 198, 6738, 4738, 1330, 43720, 600, 198, 11748, 640, 198, 198, 6738, 20624, 13, 33692, 1330, 4566, 198, 198, 6738, 4981, 13, 265, 907, 1330, 5161, 10128, 198, 6738, 4981, 13, 565, 2334, 1330, 1012, 2334, 198, 6738, 4981, 13, 23317, 82, 1330, 35584, 198, 6738, 4981, 13, 27761, 1330, 15824, 198, 6738, 4981, 13, 7645, 4658, 1330, 46192, 198, 6738, 4981, 13, 22105, 1330, 13266, 198, 198, 6738, 5009, 13, 12417, 7680, 1330, 1388, 7680, 11, 7550, 16962, 7680, 11, 7550, 16962, 35, 1453, 431, 306, 7680, 11, 7550, 16962, 20988, 306, 7680, 198, 6738, 5009, 13, 12417, 7680, 1330, 1388, 23381, 7680, 198, 198, 6738, 20624, 13, 17796, 22130, 1330, 2251, 28650, 198, 6738, 20624, 13, 20427, 22130, 1330, 5236, 22130, 198, 6738, 20624, 13, 4480, 19334, 22130, 1330, 8399, 22130, 198, 6738, 20624, 13, 10378, 7434, 22130, 1330, 14667, 22130, 198, 6738, 20624, 13, 34242, 22130, 1330, 9756, 198, 6738, 20624, 13, 13116, 22130, 1330, 3800, 11, 905, 48720, 6601, 198, 6738, 20624, 13, 29487, 22130, 1330, 1255, 3646, 1747, 198, 198, 834, 9800, 834, 220, 220, 220, 796, 14631, 41, 5020, 17284, 1437, 20442, 78, 4496, 10844, 39236, 29690, 1600, 366, 2348, 844, 16975, 47476, 15954, 34852, 23663, 22281, 8973, 198, 834, 22163, 4766, 834, 796, 366, 15269, 33448, 11, 26986, 32482, 10844, 78, 4186, 40138, 13932, 6592, 1, 198, 834, 66, 20696, 834, 220, 220, 796, 14631, 7676, 12898, 8932, 2271, 2345, 260, 8847, 39039, 8973, 198, 834, 43085, 834, 220, 220, 796, 366, 38, 6489, 1, 198, 834, 9641, 834, 220, 220, 796, 366, 16, 13, 15, 13, 16, 1, 198, 834, 76, 2913, 10613, 834, 28, 14631, 41, 5020, 17284, 1437, 20442, 78, 4496, 10844, 39236, 29690, 1600, 366, 2348, 844, 16975, 47476, 15954, 34852, 23663, 22281, 8973, 198, 834, 12888, 834, 220, 220, 220, 220, 796, 14631, 73, 5020, 13, 76, 31110, 4496, 31, 385, 415, 2069, 13, 15532, 13, 1073, 1600, 366, 282, 844, 13, 452, 47476, 31, 385, 415, 2069, 13, 15532, 13, 1073, 8973, 198, 834, 13376, 834, 220, 220, 220, 796, 366, 5005, 626, 79, 434, 1, 628, 198, 2, 16626, 198, 4299, 2180, 3351, 5681, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4935, 262, 8947, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1388, 7680, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 628, 220, 220, 220, 7550, 16962, 7680, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 628, 220, 220, 220, 7550, 16962, 35, 1453, 431, 306, 7680, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 628, 220, 220, 220, 7550, 16962, 20988, 306, 7680, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 198, 198, 2, 16626, 220, 198, 4299, 41216, 7, 14323, 1741, 2599, 198, 220, 220, 220, 37227, 24243, 2890, 9633, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18640, 357, 2127, 21052, 2599, 6407, 357, 14323, 1741, 8, 532, 10352, 357, 11522, 78, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3298, 3509, 8890, 1741, 7575, 198, 220, 220, 220, 3298, 949, 3152, 19334, 30116, 11, 3509, 3152, 19334, 30116, 198, 220, 220, 220, 3298, 949, 12156, 7434, 30116, 11, 3509, 12156, 7434, 30116, 198, 220, 220, 220, 3298, 949, 17798, 198, 220, 220, 220, 3298, 1700, 628, 220, 220, 220, 3509, 1404, 10128, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 1404, 10128, 20520, 198, 220, 220, 220, 949, 1404, 9655, 1077, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 1084, 1404, 9655, 1077, 20520, 198, 220, 220, 220, 3509, 1404, 9655, 1077, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 1404, 9655, 1077, 20520, 198, 220, 220, 220, 949, 17798, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 1084, 17798, 20520, 198, 220, 220, 220, 3509, 2601, 2334, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 2601, 2334, 20520, 198, 220, 220, 220, 3509, 30116, 82, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 30116, 82, 20520, 198, 220, 220, 220, 3509, 30116, 45866, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 30116, 45866, 20520, 198, 220, 220, 220, 3509, 34, 1371, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 34, 1371, 20520, 198, 220, 220, 220, 949, 3152, 19334, 30116, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 1084, 3152, 19334, 30116, 20520, 198, 220, 220, 220, 3509, 3152, 19334, 30116, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 3152, 19334, 30116, 20520, 198, 220, 220, 220, 949, 12156, 7434, 30116, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 1084, 12156, 7434, 30116, 20520, 198, 220, 220, 220, 3509, 12156, 7434, 30116, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 12156, 7434, 30116, 20520, 198, 220, 220, 220, 3509, 8291, 4658, 220, 220, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 8291, 4658, 20520, 198, 220, 220, 220, 3509, 8890, 1741, 7575, 220, 796, 4566, 13, 27082, 2390, 2767, 4877, 17816, 9806, 8890, 1741, 7575, 20520, 628, 220, 220, 220, 3298, 3331, 11, 379, 907, 198, 220, 220, 220, 3298, 7534, 11, 5504, 11, 4116, 198, 220, 220, 220, 3298, 8945, 628, 220, 220, 220, 3331, 220, 220, 220, 796, 2251, 28650, 3419, 198, 220, 220, 220, 379, 907, 220, 220, 220, 796, 5161, 10128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3331, 11, 3509, 1404, 10128, 11, 949, 1404, 9655, 1077, 11, 3509, 1404, 9655, 1077, 11, 949, 17798, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 18640, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41798, 198, 220, 220, 220, 220, 220, 220, 220, 379, 907, 13, 17953, 29531, 1404, 10128, 3419, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 43253, 13605, 198, 220, 220, 220, 220, 220, 220, 220, 379, 907, 13, 17953, 1404, 10128, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 7534, 796, 1012, 2334, 7, 9806, 2601, 2334, 8, 198, 220, 220, 220, 611, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7534, 13, 17953, 29531, 2601, 2334, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7534, 13, 17953, 2601, 2334, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5504, 796, 35584, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7534, 13, 565, 2334, 58, 15, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 30116, 82, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 30116, 45866, 11, 198, 220, 220, 220, 220, 220, 220, 220, 949, 17798, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5456, 287, 7534, 13, 565, 2334, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 8053, 796, 5504, 13, 23317, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5504, 13, 16366, 796, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5504, 13, 17953, 29531, 30116, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 8053, 796, 5504, 13, 23317, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5504, 13, 23317, 82, 796, 1468, 8053, 1343, 649, 8053, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5504, 13, 17953, 30116, 82, 3419, 628, 220, 220, 220, 4116, 796, 15824, 7, 23317, 82, 13, 23317, 82, 58, 15, 4357, 3509, 34, 1371, 8, 198, 220, 220, 220, 611, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1848, 287, 5504, 13, 23317, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1468, 8053, 796, 4116, 13, 27761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4116, 13, 23317, 796, 1848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4116, 13, 17953, 29531, 34, 1371, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 8053, 796, 4116, 13, 27761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4116, 13, 27761, 796, 1468, 8053, 1343, 649, 8053, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4116, 13, 17953, 34, 1371, 3419, 628, 220, 220, 220, 8945, 796, 46192, 7, 198, 220, 220, 220, 220, 220, 220, 220, 379, 907, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 949, 3152, 19334, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 3152, 19334, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 949, 12156, 7434, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 12156, 7434, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 949, 17798, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 8291, 4658, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1700, 796, 13266, 3419, 198, 220, 198, 2, 16626, 198, 4299, 651, 19722, 7, 14323, 1741, 2599, 198, 220, 220, 220, 37227, 17563, 262, 2099, 286, 8611, 284, 307, 925, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18640, 357, 2127, 21052, 2599, 13605, 393, 18640, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 1700, 628, 220, 220, 220, 9052, 796, 657, 198, 220, 220, 220, 3038, 796, 657, 198, 220, 220, 220, 981, 3038, 14512, 532, 16, 25, 220, 220, 220, 220, 1303, 32585, 198, 220, 220, 220, 220, 220, 220, 220, 379, 76, 220, 220, 220, 220, 796, 379, 907, 13, 25120, 4653, 12609, 1404, 44, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 220, 796, 7534, 13, 25120, 4653, 12609, 11792, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1848, 796, 5504, 13, 25120, 4653, 12609, 30116, 7, 16366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2657, 220, 220, 220, 796, 4116, 13, 25120, 4653, 12609, 16962, 7, 23317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 23381, 7680, 3419, 220, 1303, 22924, 11, 2080, 19334, 11, 44158, 11, 21651, 833, 292, 4658, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 3038, 407, 287, 25915, 16, 11, 352, 11, 362, 11, 513, 11, 7388, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 493, 7, 15414, 10786, 3784, 705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9052, 18189, 3509, 8890, 1741, 7575, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 532, 16, 1303, 5268, 286, 18640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 43720, 600, 7, 16, 11, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3038, 6624, 352, 25, 220, 220, 220, 220, 1303, 22924, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 11, 8611, 796, 5236, 22130, 7, 265, 76, 11, 2657, 11, 18640, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8945, 13, 2860, 7, 7645, 2673, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3038, 6624, 362, 25, 220, 220, 1303, 2080, 19334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 11, 8611, 796, 8399, 22130, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 76, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18640, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 3152, 19334, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 3152, 19334, 30116, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 17798, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8945, 13, 2860, 7, 7645, 2673, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8611, 13, 7645, 2673, 19580, 6624, 705, 33244, 913, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 76, 13, 265, 76, 35361, 48185, 8611, 13, 7645, 2673, 31264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 13, 9517, 30116, 13, 23317, 45866, 48185, 8611, 13, 7645, 2673, 31264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3038, 6624, 513, 25, 220, 220, 1303, 44158, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 11, 8611, 796, 14667, 22130, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 76, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18640, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 12156, 7434, 30116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 12156, 7434, 30116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 17798, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8945, 13, 2860, 7, 7645, 2673, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8611, 13, 7645, 2673, 19580, 6624, 705, 33244, 913, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 76, 13, 265, 76, 35361, 15853, 8611, 13, 7645, 2673, 31264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 13, 9517, 30116, 13, 23317, 45866, 15853, 8611, 13, 7645, 2673, 31264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3038, 6624, 7388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7645, 4658, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 5128, 7203, 13800, 6062, 284, 2555, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3038, 14512, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 532, 16, 611, 3038, 6624, 362, 2073, 657, 220, 220, 1303, 3038, 796, 362, 357, 15643, 680, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 48720, 6601, 7, 26268, 11, 8611, 11, 3331, 11, 379, 907, 11, 5504, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1700, 13, 22105, 48720, 7, 26268, 11, 8611, 8, 628, 198, 2, 16626, 198, 4299, 1388, 22130, 7, 14323, 1741, 2599, 198, 220, 220, 220, 37227, 10434, 286, 3586, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18640, 357, 2127, 21052, 2599, 13605, 393, 18640, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 3331, 11, 379, 907, 11, 5504, 198, 220, 220, 220, 3298, 1700, 628, 220, 220, 220, 41216, 7, 14323, 1741, 8, 628, 220, 220, 220, 611, 407, 18640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 3351, 5681, 3419, 628, 220, 220, 220, 3800, 7, 17796, 11, 379, 907, 11, 5504, 8, 198, 220, 220, 220, 651, 19722, 7, 14323, 1741, 8, 628, 220, 220, 220, 9756, 7, 22105, 8, 198, 220, 220, 220, 1255, 3646, 1747, 7, 22105, 8, 198 ]
2.383633
3,055
from enum import IntEnum from .responses import * from .signatures import * from .transactions import *
[ 6738, 33829, 1330, 2558, 4834, 388, 198, 198, 6738, 764, 16733, 274, 1330, 1635, 198, 6738, 764, 12683, 6691, 1330, 1635, 198, 6738, 764, 7645, 4658, 1330, 1635, 628 ]
3.655172
29
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Author: penghuailiang # @Date : 1/1/20 """ 此脚本使用scipy.special绘制球谐函数 """ import numpy as np import matplotlib.pyplot as plt from scipy.special import sph_harm from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm theta_1d = np.linspace(0, np.pi, 181) # colatitude phi_1d = np.linspace(0, 2 * np.pi, 361) # longitude theta_2d, phi_2d = np.meshgrid(theta_1d, phi_1d) xyz_2d = np.array([np.sin(theta_2d) * np.sin(phi_2d), np.sin(theta_2d) * np.cos(phi_2d), np.cos(theta_2d)]) colormap = cm.ScalarMappable(cmap=plt.get_cmap("cool")) colormap.set_clim(-0.45, 0.45) limit = 0.5 show_Y_lm(2, 0) show_Y_lm(3, 3) show_Y_lm(4, 2)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 13838, 25, 3112, 456, 84, 603, 15483, 198, 2, 2488, 10430, 220, 1058, 352, 14, 16, 14, 1238, 198, 198, 37811, 198, 29826, 97, 164, 226, 248, 17312, 105, 45635, 18796, 101, 1416, 541, 88, 13, 20887, 163, 119, 246, 26344, 114, 49426, 225, 164, 108, 238, 49035, 121, 46763, 108, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 629, 541, 88, 13, 20887, 1330, 599, 71, 62, 29155, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 198, 6738, 2603, 29487, 8019, 1330, 12067, 198, 198, 1169, 8326, 62, 16, 67, 796, 45941, 13, 21602, 10223, 7, 15, 11, 45941, 13, 14415, 11, 30110, 8, 220, 1303, 951, 265, 3984, 198, 34846, 62, 16, 67, 796, 45941, 13, 21602, 10223, 7, 15, 11, 362, 1635, 45941, 13, 14415, 11, 47744, 8, 220, 1303, 890, 3984, 198, 198, 1169, 8326, 62, 17, 67, 11, 872, 72, 62, 17, 67, 796, 45941, 13, 76, 5069, 25928, 7, 1169, 8326, 62, 16, 67, 11, 872, 72, 62, 16, 67, 8, 198, 5431, 89, 62, 17, 67, 796, 45941, 13, 18747, 26933, 37659, 13, 31369, 7, 1169, 8326, 62, 17, 67, 8, 1635, 45941, 13, 31369, 7, 34846, 62, 17, 67, 828, 45941, 13, 31369, 7, 1169, 8326, 62, 17, 67, 8, 1635, 45941, 13, 6966, 7, 34846, 62, 17, 67, 828, 45941, 13, 6966, 7, 1169, 8326, 62, 17, 67, 8, 12962, 198, 198, 4033, 579, 499, 796, 12067, 13, 3351, 282, 283, 44, 1324, 540, 7, 66, 8899, 28, 489, 83, 13, 1136, 62, 66, 8899, 7203, 24494, 48774, 198, 4033, 579, 499, 13, 2617, 62, 565, 320, 32590, 15, 13, 2231, 11, 657, 13, 2231, 8, 198, 32374, 796, 657, 13, 20, 628, 198, 198, 12860, 62, 56, 62, 75, 76, 7, 17, 11, 657, 8, 198, 12860, 62, 56, 62, 75, 76, 7, 18, 11, 513, 8, 198, 12860, 62, 56, 62, 75, 76, 7, 19, 11, 362, 8, 198 ]
1.87027
370
# Generated by Django 3.2.7 on 2021-11-23 11:44 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 22, 319, 33448, 12, 1157, 12, 1954, 1367, 25, 2598, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
test = { 'name': 'composed', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" scm> ((composed add-one add-one) 2) a1e11865670a42d05e20b9a3455dc457 # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed multiply-by-two multiply-by-two) 2) 2bfcd627609c82ebd017c2edfad00c89 # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed add-one multiply-by-two) 2) 8d3d95b1350833ea7b81c9454d1af611 # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed multiply-by-two add-one) 2) aae76aca9259a704209b44193fad5f6a # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed (composed add-one add-one) add-one) 2) 8d3d95b1350833ea7b81c9454d1af611 # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed (composed add-one add-one) multiply-by-two) 2) aae76aca9259a704209b44193fad5f6a # locked """, 'hidden': False, 'locked': True }, { 'code': r""" scm> ((composed multiply-by-two (composed add-one add-one)) 2) 2bfcd627609c82ebd017c2edfad00c89 # locked """, 'hidden': False, 'locked': True } ], 'scored': False, 'setup': r""" scm> (load-all ".") scm> (define (add-one a) (+ a 1)) scm> (define (multiply-by-two a) (* a 2)) """, 'teardown': '', 'type': 'scheme' } ] }
[ 9288, 796, 1391, 198, 220, 705, 3672, 10354, 705, 5589, 1335, 3256, 198, 220, 705, 13033, 10354, 352, 11, 198, 220, 705, 2385, 2737, 10354, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 705, 33964, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 751, 12, 505, 751, 12, 505, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 16, 68, 16817, 37466, 2154, 64, 3682, 67, 2713, 68, 1238, 65, 24, 64, 27712, 20, 17896, 33032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 29162, 12, 1525, 12, 11545, 29162, 12, 1525, 12, 11545, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 19881, 10210, 49856, 31751, 66, 6469, 1765, 67, 29326, 66, 17, 276, 69, 324, 405, 66, 4531, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 751, 12, 505, 29162, 12, 1525, 12, 11545, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 67, 18, 67, 3865, 65, 1485, 33042, 2091, 18213, 22, 65, 6659, 66, 24, 34229, 67, 16, 1878, 21, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 29162, 12, 1525, 12, 11545, 751, 12, 505, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3609, 4304, 22260, 24, 25191, 64, 32869, 22567, 65, 2598, 24943, 69, 324, 20, 69, 21, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 357, 5589, 1335, 751, 12, 505, 751, 12, 505, 8, 751, 12, 505, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 67, 18, 67, 3865, 65, 1485, 33042, 2091, 18213, 22, 65, 6659, 66, 24, 34229, 67, 16, 1878, 21, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 357, 5589, 1335, 751, 12, 505, 751, 12, 505, 8, 29162, 12, 1525, 12, 11545, 8, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3609, 4304, 22260, 24, 25191, 64, 32869, 22567, 65, 2598, 24943, 69, 324, 20, 69, 21, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 629, 76, 29, 14808, 5589, 1335, 29162, 12, 1525, 12, 11545, 357, 5589, 1335, 751, 12, 505, 751, 12, 505, 4008, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 19881, 10210, 49856, 31751, 66, 6469, 1765, 67, 29326, 66, 17, 276, 69, 324, 405, 66, 4531, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8970, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24162, 10354, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 705, 1416, 1850, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 705, 40406, 10354, 374, 37811, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 2220, 12, 439, 366, 19570, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 13086, 357, 2860, 12, 505, 257, 8, 11502, 257, 352, 4008, 198, 220, 220, 220, 220, 220, 629, 76, 29, 357, 13086, 357, 16680, 541, 306, 12, 1525, 12, 11545, 257, 8, 20789, 257, 362, 4008, 198, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 220, 705, 660, 446, 593, 10354, 705, 3256, 198, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15952, 1326, 6, 198, 220, 220, 220, 1782, 198, 220, 2361, 198, 92, 198 ]
1.643398
1,189
import sys import genotypes from graphviz import Digraph from genotypes import PRIMITIVES if __name__ == '__main__': if len(sys.argv) != 2: print("usage:\n python {} ARCH_NAME".format(sys.argv[0])) sys.exit(1) genotype_name = sys.argv[1] try: genotype = eval('genotypes.{}'.format(genotype_name)) except AttributeError: print("{} is not specified in genotypes.py".format(genotype_name)) sys.exit(1) plot(genotype.normal, "normal_"+str(sys.argv[1])) plot(genotype.reduce, "reduction_"+str(sys.argv[1])) #plot_space(P['primitives_normal'], "space_normal") #plot_space(P['primitives_reduct'], "space_reduction")
[ 11748, 25064, 198, 11748, 2429, 13567, 198, 6738, 4823, 85, 528, 1330, 7367, 1470, 198, 6738, 2429, 13567, 1330, 4810, 3955, 2043, 42472, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 3601, 7203, 26060, 7479, 77, 21015, 23884, 5923, 3398, 62, 20608, 1911, 18982, 7, 17597, 13, 853, 85, 58, 15, 60, 4008, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 2429, 8690, 62, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 1949, 25, 198, 220, 220, 220, 2429, 8690, 796, 5418, 10786, 5235, 13567, 13, 90, 92, 4458, 18982, 7, 5235, 8690, 62, 3672, 4008, 198, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 3601, 7203, 90, 92, 318, 407, 7368, 287, 2429, 13567, 13, 9078, 1911, 18982, 7, 5235, 8690, 62, 3672, 4008, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 7110, 7, 5235, 8690, 13, 11265, 11, 366, 11265, 62, 1, 10, 2536, 7, 17597, 13, 853, 85, 58, 16, 60, 4008, 198, 220, 7110, 7, 5235, 8690, 13, 445, 7234, 11, 366, 445, 8110, 62, 1, 10, 2536, 7, 17597, 13, 853, 85, 58, 16, 60, 4008, 198, 220, 1303, 29487, 62, 13200, 7, 47, 17816, 19795, 20288, 62, 11265, 6, 4357, 366, 13200, 62, 11265, 4943, 198, 220, 1303, 29487, 62, 13200, 7, 47, 17816, 19795, 20288, 62, 445, 4782, 6, 4357, 366, 13200, 62, 445, 8110, 4943, 628 ]
2.517375
259
from meridien.settings.base import * # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8ka@=25ffr7377i_s*$$6n_=sepb1jpwhrbbgviphal7q=(3zz' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'PASSWORD': 'sooperuser', 'HOST': '127.0.0.1', 'PORT': '5432', } } # CORS settings CORS_ORIGIN_ALLOW_ALL = False CORS_ORIGIN_WHITELIST = ( 'http://localhost:4200', 'http://127.0.0.1:4200', ) # Email settings EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Communication settings FRONT_END_DOMAIN = 'http://localhost:4200'
[ 6738, 4017, 312, 2013, 13, 33692, 13, 8692, 1330, 1635, 198, 198, 2, 10729, 4261, 9050, 39410, 25, 836, 470, 1057, 351, 14257, 2900, 319, 287, 3227, 0, 198, 30531, 796, 6407, 198, 198, 2, 10729, 4261, 9050, 39410, 25, 1394, 262, 3200, 1994, 973, 287, 3227, 3200, 0, 198, 23683, 26087, 62, 20373, 796, 705, 23, 4914, 31, 28, 1495, 487, 81, 22, 26514, 72, 62, 82, 9, 13702, 21, 77, 62, 28, 325, 40842, 16, 34523, 1929, 81, 11848, 70, 85, 13323, 282, 22, 80, 16193, 18, 3019, 6, 198, 198, 2, 24047, 198, 2, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 18, 13, 15, 14, 5420, 14, 33692, 31113, 19608, 18826, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 7353, 34239, 13976, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 705, 7353, 34239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 705, 7353, 34239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47924, 54, 12532, 10354, 705, 568, 3575, 7220, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39, 10892, 10354, 705, 16799, 13, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15490, 10354, 705, 4051, 2624, 3256, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 2, 327, 20673, 6460, 198, 34, 20673, 62, 1581, 3528, 1268, 62, 7036, 3913, 62, 7036, 796, 10352, 198, 34, 20673, 62, 1581, 3528, 1268, 62, 12418, 2043, 3698, 8808, 796, 357, 198, 220, 220, 220, 705, 4023, 1378, 36750, 25, 19, 2167, 3256, 198, 220, 220, 220, 705, 4023, 1378, 16799, 13, 15, 13, 15, 13, 16, 25, 19, 2167, 3256, 198, 8, 198, 198, 2, 9570, 6460, 198, 27630, 4146, 62, 31098, 10619, 796, 705, 28241, 14208, 13, 7295, 13, 4529, 13, 1891, 2412, 13, 41947, 13, 15333, 7282, 437, 6, 198, 198, 2, 26117, 6460, 198, 198, 10913, 35830, 62, 10619, 62, 39170, 29833, 796, 705, 4023, 1378, 36750, 25, 19, 2167, 6 ]
2.277628
371
""" Problem Description: Cody has a sequence of characters N. He likes a sequence if it contains his favourite sequence as a substring. Given the sequence and his favourite sequence F, check whether the favourite sequence is present in the sequence. Input: The first line of input contains a single line T, which represents the number of test cases. Each test case consists of 2 strings separated by space N and F respectively. Output: Print "Yes" if the sequence contains the favorite sequence in it, otherwise print "No". Constraints: 1<=T<=10. 1<=|N|,|F|<=100. All the characters are lowercase alphabets. Sample Input: 2 abcde abc pqrst pr Sample Output: Yes No """ n = int(input()) for i in range(n): a = input().split() if a[1] in a[0]: print("Yes") else: print("No")
[ 37811, 198, 40781, 12489, 25, 198, 34, 1118, 468, 257, 8379, 286, 3435, 399, 13, 679, 7832, 257, 8379, 611, 340, 4909, 465, 12507, 8379, 355, 257, 3293, 1806, 13, 198, 15056, 262, 8379, 290, 465, 12507, 8379, 376, 11, 2198, 1771, 262, 12507, 8379, 318, 1944, 287, 262, 8379, 13, 198, 198, 20560, 25, 198, 464, 717, 1627, 286, 5128, 4909, 257, 2060, 1627, 309, 11, 543, 6870, 262, 1271, 286, 1332, 2663, 13, 198, 10871, 1332, 1339, 10874, 286, 362, 13042, 11266, 416, 2272, 399, 290, 376, 8148, 13, 198, 198, 26410, 25, 198, 18557, 366, 5297, 1, 611, 262, 8379, 4909, 262, 4004, 8379, 287, 340, 11, 4306, 3601, 366, 2949, 1911, 198, 198, 3103, 2536, 6003, 25, 198, 16, 27, 28, 51, 27, 28, 940, 13, 198, 16, 27, 28, 91, 45, 91, 11, 91, 37, 91, 27, 28, 3064, 13, 198, 3237, 262, 3435, 389, 2793, 7442, 435, 746, 397, 1039, 13, 198, 198, 36674, 23412, 25, 198, 17, 198, 39305, 2934, 450, 66, 198, 79, 80, 81, 301, 778, 198, 198, 36674, 25235, 25, 198, 5297, 198, 2949, 198, 37811, 198, 77, 796, 493, 7, 15414, 28955, 198, 198, 1640, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 257, 796, 5128, 22446, 35312, 3419, 198, 220, 220, 220, 611, 257, 58, 16, 60, 287, 257, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 5297, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2949, 4943, 198 ]
3.140078
257
# -*- coding: utf-8 -*- import sys from typing import List import requests from alibabacloud_slb20140515.client import Client as Slb20140515Client from alibabacloud_tea_openapi import models as open_api_models from alibabacloud_slb20140515 import models as slb_20140515_models if __name__ == '__main__': Sample.main(['<accessKeyId>', '<accessSecret>', '<region>', 'acl-id'])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 25064, 198, 198, 6738, 19720, 1330, 7343, 198, 11748, 7007, 198, 198, 6738, 435, 571, 397, 37779, 2778, 62, 6649, 65, 1264, 26598, 1314, 13, 16366, 1330, 20985, 355, 3454, 65, 1264, 26598, 1314, 11792, 198, 6738, 435, 571, 397, 37779, 2778, 62, 660, 64, 62, 9654, 15042, 1330, 4981, 355, 1280, 62, 15042, 62, 27530, 198, 6738, 435, 571, 397, 37779, 2778, 62, 6649, 65, 1264, 26598, 1314, 1330, 4981, 355, 1017, 65, 62, 1264, 26598, 1314, 62, 27530, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 27565, 13, 12417, 7, 17816, 27, 15526, 9218, 7390, 29, 3256, 705, 27, 15526, 23725, 29, 3256, 705, 27, 36996, 29, 3256, 705, 37779, 12, 312, 6, 12962 ]
2.735714
140
# all the imports import psycopg2 import nltk from robovest.portfolio import* #nltk.download() import tweepy import os import sqlite3 import datetime import numpy as np from nltk.sentiment.vader import SentimentIntensityAnalyzer from flask import Flask, request, session, g, redirect, url_for, abort, \ render_template, flash app = Flask(__name__) # create the application instance :) app.config.from_object(__name__) # load config from this file , flaskr.py tickers = ["MINT","EMB","IAU","VCIT","MUB","SCHA","VEA","VYM","SCHH","VWO","FENY","VTIP","VGLT","ITE"] Twitter_Average=.0091 Twitter_STD=.154 consumer_key = os.environ["TWITTER_API_KEY"] consumer_secret = os.environ["TWITTER_API_SECRET"] access_token = os.environ["TWITTER_ACCESS_TOKEN"] access_token_secret = os.environ["TWITTER_ACCESS_TOKEN_SECRET"] # AUTHENTICATE auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) # INITIALIZE API CLIENT api = tweepy.API(auth) startDate = datetime.datetime(2017, 7, 1, 0, 0, 0) endDate = datetime.datetime(2017, 8, 4, 0, 0, 0) # Load default config and override config from an environment variable app.config.update(dict( DATABASE=os.path.join(app.root_path, 'robovest.db'), SECRET_KEY='development key', USERNAME='robo', PASSWORD='vest' )) app.config.from_envvar('ROBOVEST_SETTINGS', silent=True) def connect_db(): """Connects to the specific database.""" rv = sqlite3.connect(app.config['DATABASE']) rv.row_factory = sqlite3.Row return rv def get_db(): """Opens a new database connection if there is none yet for the current application context. """ if not hasattr(g, 'sqlite_db'): g.sqlite_db = connect_db() return g.sqlite_db # def portfolio_recommendation(score): # weights_bl, return_bl, risk_bl = portfolio(score) # return weights_bl, return_bl, risk_bl @app.route('/add', methods=['POST']) @app.route('/index', methods=['GET','POST']) @app.route('/') @app.cli.command('initdb') def initdb_command(): """Initializes the database.""" init_db() print('Initialized the database.') @app.teardown_appcontext def close_db(error): """Closes the database again at the end of the request.""" if hasattr(g, 'sqlite_db'): g.sqlite_db.close() @app.route('/login', methods=['GET', 'POST']) @app.route('/logout')
[ 2, 477, 262, 17944, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 299, 2528, 74, 198, 6738, 3857, 709, 395, 13, 634, 13652, 1330, 9, 198, 2, 77, 2528, 74, 13, 15002, 3419, 198, 11748, 4184, 538, 88, 198, 11748, 28686, 198, 11748, 44161, 578, 18, 198, 11748, 4818, 8079, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 2528, 74, 13, 34086, 3681, 13, 85, 5067, 1330, 11352, 3681, 5317, 6377, 37702, 9107, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 6246, 11, 308, 11, 18941, 11, 19016, 62, 1640, 11, 15614, 11, 3467, 198, 220, 220, 220, 220, 8543, 62, 28243, 11, 7644, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 1303, 2251, 262, 3586, 4554, 14373, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 834, 3672, 834, 8, 1303, 3440, 4566, 422, 428, 2393, 837, 42903, 81, 13, 9078, 628, 628, 198, 83, 21630, 796, 14631, 44, 12394, 2430, 3620, 33, 2430, 3539, 52, 2430, 15922, 2043, 2430, 44, 10526, 2430, 50, 49285, 2430, 6089, 32, 2430, 53, 56, 44, 2430, 50, 3398, 39, 2430, 30133, 46, 2430, 37, 1677, 56, 2430, 36392, 4061, 2430, 53, 8763, 51, 2430, 12709, 8973, 198, 14254, 62, 26287, 28, 13, 405, 6420, 198, 14254, 62, 32147, 28, 13, 21526, 198, 49827, 62, 2539, 796, 28686, 13, 268, 2268, 14692, 34551, 2043, 5781, 62, 17614, 62, 20373, 8973, 198, 49827, 62, 21078, 796, 28686, 13, 268, 2268, 14692, 34551, 2043, 5781, 62, 17614, 62, 23683, 26087, 8973, 198, 15526, 62, 30001, 796, 28686, 13, 268, 2268, 14692, 34551, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 8973, 198, 15526, 62, 30001, 62, 21078, 796, 28686, 13, 268, 2268, 14692, 34551, 2043, 5781, 62, 26861, 7597, 62, 10468, 43959, 62, 23683, 26087, 8973, 198, 2, 37195, 3525, 2149, 6158, 198, 18439, 796, 4184, 538, 88, 13, 23621, 1071, 25060, 7, 49827, 62, 2539, 11, 7172, 62, 21078, 8, 198, 18439, 13, 2617, 62, 15526, 62, 30001, 7, 15526, 62, 30001, 11, 1895, 62, 30001, 62, 21078, 8, 198, 2, 3268, 2043, 12576, 35400, 7824, 45148, 198, 15042, 796, 4184, 538, 88, 13, 17614, 7, 18439, 8, 198, 9688, 10430, 796, 4818, 8079, 13, 19608, 8079, 7, 5539, 11, 767, 11, 352, 11, 657, 11, 657, 11, 657, 8, 198, 437, 10430, 796, 220, 220, 4818, 8079, 13, 19608, 8079, 7, 5539, 11, 807, 11, 604, 11, 657, 11, 657, 11, 657, 8, 628, 198, 198, 2, 8778, 4277, 4566, 290, 20957, 4566, 422, 281, 2858, 7885, 198, 1324, 13, 11250, 13, 19119, 7, 11600, 7, 198, 220, 220, 220, 360, 1404, 6242, 11159, 28, 418, 13, 6978, 13, 22179, 7, 1324, 13, 15763, 62, 6978, 11, 705, 22609, 709, 395, 13, 9945, 33809, 198, 220, 220, 220, 10729, 26087, 62, 20373, 11639, 31267, 1994, 3256, 198, 220, 220, 220, 1294, 1137, 20608, 11639, 305, 2127, 3256, 198, 220, 220, 220, 41752, 54, 12532, 11639, 4223, 6, 198, 4008, 198, 1324, 13, 11250, 13, 6738, 62, 24330, 7785, 10786, 13252, 8202, 53, 6465, 62, 28480, 51, 20754, 3256, 10574, 28, 17821, 8, 198, 198, 4299, 2018, 62, 9945, 33529, 198, 220, 220, 220, 37227, 13313, 82, 284, 262, 2176, 6831, 526, 15931, 198, 220, 220, 220, 374, 85, 796, 44161, 578, 18, 13, 8443, 7, 1324, 13, 11250, 17816, 35, 1404, 6242, 11159, 6, 12962, 198, 220, 220, 220, 374, 85, 13, 808, 62, 69, 9548, 796, 44161, 578, 18, 13, 25166, 198, 220, 220, 220, 1441, 374, 85, 198, 198, 4299, 651, 62, 9945, 33529, 198, 220, 220, 220, 37227, 18257, 641, 257, 649, 6831, 4637, 611, 612, 318, 4844, 1865, 329, 262, 198, 220, 220, 220, 1459, 3586, 4732, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 70, 11, 705, 25410, 578, 62, 9945, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 308, 13, 25410, 578, 62, 9945, 796, 2018, 62, 9945, 3419, 198, 220, 220, 220, 1441, 308, 13, 25410, 578, 62, 9945, 198, 198, 2, 825, 15320, 62, 47335, 437, 341, 7, 26675, 2599, 198, 2, 220, 220, 220, 220, 19590, 62, 2436, 11, 1441, 62, 2436, 11, 2526, 62, 2436, 796, 15320, 7, 26675, 8, 198, 2, 220, 220, 220, 220, 1441, 19590, 62, 2436, 11, 1441, 62, 2436, 11, 2526, 62, 2436, 628, 628, 198, 31, 1324, 13, 38629, 10786, 14, 2860, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 9630, 3256, 5050, 28, 17816, 18851, 41707, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 44506, 13, 21812, 10786, 15003, 9945, 11537, 198, 4299, 2315, 9945, 62, 21812, 33529, 198, 220, 220, 220, 37227, 24243, 4340, 262, 6831, 526, 15931, 198, 220, 220, 220, 2315, 62, 9945, 3419, 198, 220, 220, 220, 3601, 10786, 28500, 262, 6831, 2637, 8, 198, 198, 31, 1324, 13, 660, 446, 593, 62, 1324, 22866, 198, 4299, 1969, 62, 9945, 7, 18224, 2599, 198, 220, 220, 220, 37227, 2601, 4629, 262, 6831, 757, 379, 262, 886, 286, 262, 2581, 526, 15931, 198, 220, 220, 220, 611, 468, 35226, 7, 70, 11, 705, 25410, 578, 62, 9945, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 308, 13, 25410, 578, 62, 9945, 13, 19836, 3419, 198, 198, 31, 1324, 13, 38629, 10786, 14, 38235, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 6404, 448, 11537, 198 ]
2.623904
912
import concurrent.futures import functools import logging from dataclasses import dataclass from typing import Union, cast from datahub.cli.cli_utils import set_env_variables_override_config from datahub.configuration.common import OperationalError from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.emitter.rest_emitter import DatahubRestEmitter from datahub.ingestion.api.common import PipelineContext, RecordEnvelope, WorkUnit from datahub.ingestion.api.sink import Sink, SinkReport, WriteCallback from datahub.ingestion.api.workunit import MetadataWorkUnit from datahub.ingestion.graph.client import DatahubClientConfig from datahub.metadata.com.linkedin.pegasus2avro.mxe import ( MetadataChangeEvent, MetadataChangeProposal, ) from datahub.metadata.com.linkedin.pegasus2avro.usage import UsageAggregation from datahub.utilities.server_config_util import set_gms_config logger = logging.getLogger(__name__) @dataclass @dataclass
[ 11748, 24580, 13, 69, 315, 942, 198, 11748, 1257, 310, 10141, 198, 11748, 18931, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 4479, 11, 3350, 198, 198, 6738, 4818, 993, 549, 13, 44506, 13, 44506, 62, 26791, 1330, 900, 62, 24330, 62, 25641, 2977, 62, 2502, 13154, 62, 11250, 198, 6738, 4818, 993, 549, 13, 11250, 3924, 13, 11321, 1330, 6564, 864, 12331, 198, 6738, 4818, 993, 549, 13, 368, 1967, 13, 76, 13155, 1330, 3395, 14706, 19400, 24331, 40725, 36918, 2848, 198, 6738, 4818, 993, 549, 13, 368, 1967, 13, 2118, 62, 368, 1967, 1330, 16092, 993, 549, 19452, 10161, 1967, 198, 6738, 4818, 993, 549, 13, 278, 395, 295, 13, 15042, 13, 11321, 1330, 37709, 21947, 11, 13266, 4834, 1091, 68, 11, 5521, 26453, 198, 6738, 4818, 993, 549, 13, 278, 395, 295, 13, 15042, 13, 82, 676, 1330, 311, 676, 11, 311, 676, 19100, 11, 19430, 47258, 198, 6738, 4818, 993, 549, 13, 278, 395, 295, 13, 15042, 13, 1818, 20850, 1330, 3395, 14706, 12468, 26453, 198, 6738, 4818, 993, 549, 13, 278, 395, 295, 13, 34960, 13, 16366, 1330, 16092, 993, 549, 11792, 16934, 198, 6738, 4818, 993, 549, 13, 38993, 13, 785, 13, 25614, 259, 13, 22071, 40895, 17, 615, 305, 13, 76, 27705, 1330, 357, 198, 220, 220, 220, 3395, 14706, 19400, 9237, 11, 198, 220, 220, 220, 3395, 14706, 19400, 24331, 40725, 11, 198, 8, 198, 6738, 4818, 993, 549, 13, 38993, 13, 785, 13, 25614, 259, 13, 22071, 40895, 17, 615, 305, 13, 26060, 1330, 29566, 46384, 43068, 198, 6738, 4818, 993, 549, 13, 315, 2410, 13, 15388, 62, 11250, 62, 22602, 1330, 900, 62, 70, 907, 62, 11250, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 198 ]
3.125402
311
default_app_config = 'kv_settings.apps.KeyValueSettingsConfig'
[ 12286, 62, 1324, 62, 11250, 796, 705, 74, 85, 62, 33692, 13, 18211, 13, 9218, 11395, 26232, 16934, 6, 198 ]
3.15
20
# -*- coding: UTF-8 -*- # Note: this is mainly required because using the Django test runner # requires that apps under test have a 'models' module, even if it's # just empty. from flows import config if config.FLOWS_STATE_STORE == 'flows.statestore.django_store': from flows.statestore.django_store import StateModel #@UnusedImport only used to registed with django ORM
[ 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 198, 2, 5740, 25, 428, 318, 8384, 2672, 780, 1262, 262, 37770, 1332, 17490, 198, 2, 4433, 326, 6725, 739, 1332, 423, 257, 705, 27530, 6, 8265, 11, 772, 611, 340, 338, 198, 2, 655, 6565, 13, 628, 198, 6738, 15623, 1330, 4566, 198, 361, 4566, 13, 3697, 22845, 62, 44724, 62, 2257, 6965, 6624, 705, 44041, 13, 14269, 395, 382, 13, 28241, 14208, 62, 8095, 10354, 198, 220, 220, 220, 422, 15623, 13, 14269, 395, 382, 13, 28241, 14208, 62, 8095, 1330, 1812, 17633, 1303, 31, 3118, 1484, 20939, 691, 973, 284, 4214, 276, 351, 42625, 14208, 6375, 44 ]
3.336283
113
# coding=utf-8 """ 使用multiprocessing模块创建多进程 """ import os from multiprocessing import Process # 子进程要执行的代码 if __name__ == '__main__': print('Parent process %s.'% os.getpid()) for i in range(5): p = Process(target=run_proc,args=(str(i),)) print('Process will start.') p.start() p.join() print('Process will end.')
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 45635, 18796, 101, 16680, 541, 305, 919, 278, 162, 101, 94, 161, 251, 245, 26344, 249, 161, 119, 118, 13783, 248, 32573, 249, 163, 101, 233, 198, 37811, 198, 11748, 28686, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 198, 2, 10263, 255, 238, 32573, 249, 163, 101, 233, 17358, 223, 33699, 100, 26193, 234, 21410, 47987, 163, 254, 223, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 10786, 24546, 1429, 4064, 82, 2637, 4, 28686, 13, 1136, 35317, 28955, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 10854, 7, 16793, 28, 5143, 62, 36942, 11, 22046, 16193, 2536, 7, 72, 828, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 481, 923, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 9688, 3419, 198, 220, 220, 220, 279, 13, 22179, 3419, 198, 220, 220, 220, 3601, 10786, 18709, 481, 886, 2637, 8 ]
1.950276
181
from django.shortcuts import render import time import datetime from server import models # Create your views here.
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 198, 6738, 4382, 1330, 4981, 628, 198, 2, 13610, 534, 5009, 994, 13, 628, 628, 628, 198 ]
3.787879
33
import typing import torch import torchtraining as tt import torchvision
[ 11748, 19720, 198, 198, 11748, 28034, 198, 11748, 28034, 34409, 355, 256, 83, 198, 11748, 28034, 10178, 628 ]
4.166667
18
from setuptools import setup setup( name="Pygments Snowball Plugin", version = "1.0", scripts = ['pygments_snowball.py'], entry_points = """ [pygments.lexers] snowball_lexer = pygments_snowball:SnowballLexer """, description = 'Pygments Lexer Plugin for Snowball', license = 'BSD 2-Clause License', author = 'Hajime Senuma', author_email = '[email protected]', )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 20519, 11726, 7967, 1894, 42636, 1600, 198, 220, 220, 220, 2196, 796, 366, 16, 13, 15, 1600, 198, 220, 220, 220, 14750, 796, 37250, 9078, 11726, 62, 82, 2197, 1894, 13, 9078, 6, 4357, 198, 220, 220, 220, 5726, 62, 13033, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 685, 9078, 11726, 13, 2588, 364, 60, 198, 220, 220, 220, 220, 220, 220, 220, 46275, 62, 2588, 263, 796, 12972, 11726, 62, 82, 2197, 1894, 25, 28974, 1894, 45117, 263, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 6764, 796, 705, 20519, 11726, 17210, 263, 42636, 329, 7967, 1894, 3256, 198, 220, 220, 220, 5964, 796, 705, 21800, 362, 12, 2601, 682, 13789, 3256, 198, 220, 220, 220, 1772, 796, 705, 39, 1228, 524, 2311, 7487, 3256, 198, 220, 220, 220, 1772, 62, 12888, 796, 705, 71, 1228, 524, 13, 6248, 7487, 31, 14816, 13, 785, 3256, 198, 8, 220, 220, 220, 220, 198 ]
2.456647
173
# -*- coding: utf-8 -*- ########### SVN repository information ################### # $Date: 2017-10-23 11:39:16 -0500 (Mon, 23 Oct 2017) $ # $Author: vondreele $ # $Revision: 3136 $ # $URL: https://subversion.xray.aps.anl.gov/pyGSAS/trunk/imports/G2img_Rigaku.py $ # $Id: G2img_Rigaku.py 3136 2017-10-23 16:39:16Z vondreele $ ########### SVN repository information ################### ''' *Module G2img_Rigaku: .stl image file* -------------------------------------- ''' from __future__ import division, print_function import os import GSASIIobj as G2obj import GSASIIpath import numpy as np GSASIIpath.SetVersionNumber("$Revision: 3136 $") class Rigaku_ReaderClass(G2obj.ImportImage): '''Routine to read a Rigaku R-Axis IV image file. ''' def ContentsValidator(self, filename): '''Test by checking if the file size makes sense. ''' fileSize = os.stat(filename).st_size Npix = (fileSize-6000)/2 if Npix == 9000000 or Npix == 2250000 or Npix == 36000000: return True return False # not valid size def GetRigaku(filename,imageOnly=False): 'Read Rigaku R-Axis IV image file' import array as ar if not imageOnly: print ('Read Rigaku R-Axis IV file: '+filename) File = open(filename,'rb') fileSize = os.stat(filename).st_size Npix = (fileSize-6000)/2 File.read(6000) head = ['Rigaku R-Axis IV detector data',] image = np.array(ar.array('H',File.read(fileSize-6000)),dtype=np.int32) print ('%s %s'%(fileSize,str(image.shape))) print (head) if Npix == 9000000: sizexy = [3000,3000] pixSize = [100.,100.] elif Npix == 2250000: sizexy = [1500,1500] pixSize = [200.,200.] else: sizexy = [6000,6000] pixSize = [50.,50.] image = np.reshape(image,(sizexy[1],sizexy[0])) data = {'pixelSize':pixSize,'wavelength':1.5428,'distance':250.0,'center':[150.,150.],'size':sizexy} File.close() if imageOnly: return image else: return head,data,Npix,image
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 7804, 21017, 20546, 45, 16099, 1321, 1303, 14468, 2235, 198, 2, 720, 10430, 25, 2177, 12, 940, 12, 1954, 1367, 25, 2670, 25, 1433, 532, 2713, 405, 357, 9069, 11, 2242, 2556, 2177, 8, 720, 198, 2, 720, 13838, 25, 410, 623, 631, 293, 720, 198, 2, 720, 18009, 1166, 25, 513, 20809, 720, 198, 2, 720, 21886, 25, 3740, 1378, 7266, 9641, 13, 87, 2433, 13, 1686, 13, 272, 75, 13, 9567, 14, 9078, 14313, 1921, 14, 2213, 2954, 14, 320, 3742, 14, 38, 17, 9600, 62, 49, 328, 8719, 13, 9078, 720, 198, 2, 720, 7390, 25, 402, 17, 9600, 62, 49, 328, 8719, 13, 9078, 513, 20809, 2177, 12, 940, 12, 1954, 1467, 25, 2670, 25, 1433, 57, 410, 623, 631, 293, 720, 198, 7804, 21017, 20546, 45, 16099, 1321, 1303, 14468, 2235, 198, 7061, 6, 198, 9, 26796, 402, 17, 9600, 62, 49, 328, 8719, 25, 764, 301, 75, 2939, 2393, 9, 198, 3880, 23031, 198, 198, 7061, 6, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 198, 11748, 28686, 198, 11748, 26681, 1921, 3978, 26801, 355, 402, 17, 26801, 198, 11748, 26681, 1921, 3978, 6978, 198, 11748, 299, 32152, 355, 45941, 198, 14313, 1921, 3978, 6978, 13, 7248, 14815, 15057, 7203, 3, 18009, 1166, 25, 513, 20809, 720, 4943, 198, 4871, 24666, 8719, 62, 33634, 9487, 7, 38, 17, 26801, 13, 20939, 5159, 2599, 198, 220, 220, 220, 705, 7061, 49, 28399, 284, 1100, 257, 24666, 8719, 371, 12, 31554, 271, 8363, 2939, 2393, 13, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 26714, 47139, 1352, 7, 944, 11, 29472, 2599, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14402, 416, 10627, 611, 262, 2393, 2546, 1838, 2565, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 10699, 796, 28686, 13, 14269, 7, 34345, 737, 301, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 399, 79, 844, 796, 357, 7753, 10699, 12, 43434, 20679, 17, 198, 220, 220, 220, 220, 220, 220, 220, 611, 399, 79, 844, 6624, 860, 10535, 393, 399, 79, 844, 6624, 18500, 2388, 393, 399, 79, 844, 6624, 4570, 10535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 1303, 407, 4938, 2546, 198, 198, 4299, 3497, 49, 328, 8719, 7, 34345, 11, 9060, 10049, 28, 25101, 2599, 198, 220, 220, 220, 705, 5569, 24666, 8719, 371, 12, 31554, 271, 8363, 2939, 2393, 6, 198, 220, 220, 220, 1330, 7177, 355, 610, 198, 220, 220, 220, 611, 407, 2939, 10049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 5569, 24666, 8719, 371, 12, 31554, 271, 8363, 2393, 25, 705, 10, 34345, 8, 220, 220, 220, 198, 220, 220, 220, 9220, 796, 1280, 7, 34345, 4032, 26145, 11537, 198, 220, 220, 220, 2393, 10699, 796, 28686, 13, 14269, 7, 34345, 737, 301, 62, 7857, 198, 220, 220, 220, 399, 79, 844, 796, 357, 7753, 10699, 12, 43434, 20679, 17, 198, 220, 220, 220, 9220, 13, 961, 7, 43434, 8, 198, 220, 220, 220, 1182, 796, 37250, 49, 328, 8719, 371, 12, 31554, 271, 8363, 31029, 1366, 3256, 60, 198, 220, 220, 220, 2939, 796, 45941, 13, 18747, 7, 283, 13, 18747, 10786, 39, 3256, 8979, 13, 961, 7, 7753, 10699, 12, 43434, 36911, 67, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 3601, 19203, 4, 82, 4064, 82, 6, 4, 7, 7753, 10699, 11, 2536, 7, 9060, 13, 43358, 22305, 198, 220, 220, 220, 3601, 357, 2256, 8, 198, 220, 220, 220, 611, 399, 79, 844, 6624, 860, 10535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 528, 1069, 88, 796, 685, 23924, 11, 23924, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 844, 10699, 796, 685, 3064, 1539, 3064, 8183, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1288, 361, 399, 79, 844, 6624, 18500, 2388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 528, 1069, 88, 796, 685, 33698, 11, 33698, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 844, 10699, 796, 685, 2167, 1539, 2167, 8183, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 264, 528, 1069, 88, 796, 685, 43434, 11, 43434, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 844, 10699, 796, 685, 1120, 1539, 1120, 8183, 220, 198, 220, 220, 220, 2939, 796, 45941, 13, 3447, 1758, 7, 9060, 11, 7, 82, 528, 1069, 88, 58, 16, 4357, 82, 528, 1069, 88, 58, 15, 60, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1366, 796, 1391, 6, 32515, 10699, 10354, 79, 844, 10699, 4032, 10247, 26623, 10354, 16, 13, 4051, 2078, 4032, 30246, 10354, 9031, 13, 15, 4032, 16159, 10354, 58, 8628, 1539, 8628, 8183, 4032, 7857, 10354, 82, 528, 1069, 88, 92, 220, 220, 198, 220, 220, 220, 9220, 13, 19836, 3419, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2939, 10049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1182, 11, 7890, 11, 45, 79, 844, 11, 9060, 198, 220, 220, 220, 220 ]
2.278564
919
""" Your chance to explore Loops and Turtles! Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Aaron Wilkin, their colleagues, and Shixin Yan. """ ######################################################################## # DONE: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ######################################################################## ######################################################################## # TODO: 2. # You should have RUN the m5e_loopy_turtles module and READ its code. # (Do so now if you have not already done so.) # # Below this comment, add ANY CODE THAT YOU WANT, as long as: # 1. You construct at least 2 rg.SimpleTurtle objects. # 2. Each rg.SimpleTurtle object draws something # (by moving, using its rg.Pen). ANYTHING is fine! # 3. Each rg.SimpleTurtle moves inside a LOOP. # # Be creative! Strive for way-cool pictures! Abstract pictures rule! # # If you make syntax (notational) errors, no worries -- get help # fixing them at either this session OR at the NEXT session. # # Don't forget to COMMIT-and-PUSH when you are done with this module. # ######################################################################## import rosegraphics as rg window = rg.TurtleWindow() flash = rg.SimpleTurtle('turtle') flash.pen = rg.Pen('yellow', 3) zoom = rg.SimpleTurtle('turtle') zoom.pen = rg.Pen('black', 3) flash.speed = 50 zoom.speed = 50 size = 70 for k in range(18): flash.draw_square(size) zoom.draw_circle(size) flash.pen_down() flash.right(20) flash.forward(30) zoom.pen_down() zoom.left(20) zoom.backward(30) window.tracer(20) damage = rg.SimpleTurtle('triangle') damage.pen = rg.Pen('dark blue',1) damage.backward(30) for k in range(1000): damage.right(50) damage.forward(2*k) window.close_on_mouse_click()
[ 37811, 198, 7120, 2863, 284, 7301, 6706, 2840, 290, 44356, 0, 198, 198, 30515, 669, 25, 3271, 337, 7140, 1754, 11, 569, 571, 3099, 978, 648, 283, 11, 4705, 40808, 695, 11, 9935, 14388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 12139, 5187, 5116, 11, 511, 7810, 11, 290, 911, 844, 259, 10642, 13, 198, 37811, 198, 29113, 29113, 7804, 198, 2, 360, 11651, 25, 352, 13, 198, 2, 220, 220, 1550, 6910, 642, 2029, 11, 6330, 220, 350, 3843, 62, 56, 11698, 62, 20608, 62, 39, 9338, 220, 351, 534, 898, 1438, 13, 198, 29113, 29113, 7804, 198, 198, 29113, 29113, 7804, 198, 2, 16926, 46, 25, 362, 13, 198, 2, 220, 220, 921, 815, 423, 32494, 262, 220, 285, 20, 68, 62, 5439, 11081, 62, 83, 25195, 220, 8265, 290, 20832, 663, 2438, 13, 198, 2, 220, 220, 357, 5211, 523, 783, 611, 345, 423, 407, 1541, 1760, 523, 2014, 198, 2, 198, 2, 220, 220, 10383, 428, 2912, 11, 751, 15529, 42714, 14603, 7013, 41300, 11, 355, 890, 355, 25, 198, 2, 220, 220, 220, 220, 352, 13, 921, 5678, 379, 1551, 362, 48670, 13, 26437, 51, 17964, 5563, 13, 198, 2, 220, 220, 220, 220, 362, 13, 5501, 48670, 13, 26437, 51, 17964, 2134, 14293, 1223, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1525, 3867, 11, 1262, 663, 48670, 13, 25553, 737, 220, 15529, 39356, 318, 3734, 0, 198, 2, 220, 220, 220, 220, 513, 13, 5501, 48670, 13, 26437, 51, 17964, 6100, 2641, 257, 17579, 3185, 13, 198, 2, 198, 2, 220, 220, 1355, 7325, 0, 220, 520, 11590, 329, 835, 12, 24494, 5986, 0, 220, 27741, 5986, 3896, 0, 198, 2, 198, 2, 220, 220, 1002, 345, 787, 15582, 357, 1662, 864, 8, 8563, 11, 645, 18572, 1377, 651, 1037, 198, 2, 220, 220, 18682, 606, 379, 2035, 428, 6246, 6375, 379, 262, 39726, 6246, 13, 198, 2, 198, 2, 220, 220, 2094, 470, 6044, 284, 22240, 2043, 12, 392, 12, 47, 27143, 618, 345, 389, 1760, 351, 428, 8265, 13, 198, 2, 198, 29113, 29113, 7804, 198, 11748, 8278, 70, 11549, 355, 48670, 198, 17497, 796, 48670, 13, 51, 17964, 27703, 3419, 198, 34167, 796, 48670, 13, 26437, 51, 17964, 10786, 83, 17964, 11537, 198, 34167, 13, 3617, 796, 48670, 13, 25553, 10786, 36022, 3256, 513, 8, 198, 89, 4207, 796, 48670, 13, 26437, 51, 17964, 10786, 83, 17964, 11537, 198, 89, 4207, 13, 3617, 796, 48670, 13, 25553, 10786, 13424, 3256, 513, 8, 198, 34167, 13, 12287, 796, 2026, 198, 89, 4207, 13, 12287, 796, 2026, 198, 7857, 796, 4317, 198, 1640, 479, 287, 2837, 7, 1507, 2599, 198, 220, 220, 220, 7644, 13, 19334, 62, 23415, 7, 7857, 8, 198, 220, 220, 220, 19792, 13, 19334, 62, 45597, 7, 7857, 8, 198, 220, 220, 220, 7644, 13, 3617, 62, 2902, 3419, 198, 220, 220, 220, 7644, 13, 3506, 7, 1238, 8, 198, 220, 220, 220, 7644, 13, 11813, 7, 1270, 8, 198, 220, 220, 220, 19792, 13, 3617, 62, 2902, 3419, 198, 220, 220, 220, 19792, 13, 9464, 7, 1238, 8, 198, 220, 220, 220, 19792, 13, 1891, 904, 7, 1270, 8, 198, 198, 17497, 13, 2213, 11736, 7, 1238, 8, 198, 28735, 796, 48670, 13, 26437, 51, 17964, 10786, 28461, 9248, 11537, 198, 28735, 13, 3617, 796, 48670, 13, 25553, 10786, 21953, 4171, 3256, 16, 8, 198, 28735, 13, 1891, 904, 7, 1270, 8, 198, 198, 1640, 479, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 2465, 13, 3506, 7, 1120, 8, 198, 220, 220, 220, 2465, 13, 11813, 7, 17, 9, 74, 8, 198, 198, 17497, 13, 19836, 62, 261, 62, 35888, 62, 12976, 3419, 198 ]
3.066558
616
# Part of the Fluid Corpus Manipulation Project (http://www.flucoma.org/) # Copyright 2017-2019 University of Huddersfield. # Licensed under the BSD-3 License. # See license.md file in the project root for full license information. # This project has received funding from the European Research Council (ERC) # under the European Union’s Horizon 2020 research and innovation programme # (grant agreement No 725899). import argparse from pathlib import Path from FluidRefData import * import json import locale """ Set default locale, in case it hasn't been, otherwise we can't read text """ locale.setlocale(locale.LC_ALL,'') parser = argparse.ArgumentParser( description='Generate FluCoMa documentation for a given host, using input JSON and YAML data and a jinja template') parser.add_argument('host', choices=['max','pd','cli']) parser.add_argument('json_path', type=Path, help='Path to generated JSON client data') parser.add_argument('yaml_path', type=Path, help='Path to human made YAML client documentation') parser.add_argument('output_path', type=Path, help='Path to write output files to') parser.add_argument('template_path', type=Path, help='Path containing Jinja template(s)') args = parser.parse_args() clients = list(args.json_path.glob(host_vars[args.host]['glob'])) args.output_path.mkdir(exist_ok=True) print('OUTPUT PATH {}'.format(args.output_path)) index = {} for c in clients: d = process_client_data(c, args.yaml_path) index[c] = process_template(args.template_path, args.output_path, d, host_vars[args.host]) index_path = args.output_path / '../interfaces' index_path.mkdir(exist_ok=True) write_max_indices(index,index_path) topics = list(Path('/Users/owen/flucoma_paramdump/topics').glob('*.yaml')) for t in topics: process_topic(t,args.template_path,args.output_path,host_vars[args.host]) # print(topics)
[ 2, 2142, 286, 262, 1610, 27112, 44874, 35045, 1741, 4935, 357, 4023, 1378, 2503, 13, 35522, 785, 64, 13, 2398, 34729, 198, 2, 15069, 2177, 12, 23344, 2059, 286, 367, 4185, 364, 3245, 13, 198, 2, 49962, 739, 262, 347, 10305, 12, 18, 13789, 13, 198, 2, 4091, 5964, 13, 9132, 2393, 287, 262, 1628, 6808, 329, 1336, 5964, 1321, 13, 198, 2, 770, 1628, 468, 2722, 4918, 422, 262, 3427, 4992, 4281, 357, 47691, 8, 198, 2, 739, 262, 3427, 4479, 447, 247, 82, 22776, 12131, 2267, 290, 11044, 11383, 198, 2, 357, 2164, 415, 4381, 1400, 767, 25600, 2079, 737, 198, 198, 11748, 1822, 29572, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 1610, 27112, 8134, 6601, 1330, 1635, 198, 11748, 33918, 198, 11748, 36693, 220, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 37811, 198, 7248, 4277, 36693, 11, 287, 1339, 340, 5818, 470, 587, 11, 4306, 356, 460, 470, 1100, 2420, 198, 37811, 198, 17946, 1000, 13, 2617, 17946, 1000, 7, 17946, 1000, 13, 5639, 62, 7036, 4032, 11537, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 6764, 11639, 8645, 378, 34070, 7222, 21467, 10314, 329, 257, 1813, 2583, 11, 1262, 5128, 19449, 290, 575, 2390, 43, 1366, 290, 257, 474, 259, 6592, 11055, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 4774, 3256, 7747, 28, 17816, 9806, 41707, 30094, 41707, 44506, 6, 12962, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 17752, 62, 6978, 3256, 2099, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 284, 7560, 19449, 5456, 1366, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 88, 43695, 62, 6978, 3256, 2099, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 284, 1692, 925, 575, 2390, 43, 5456, 10314, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 22915, 62, 6978, 3256, 2099, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 284, 3551, 5072, 3696, 284, 11537, 198, 198, 48610, 13, 2860, 62, 49140, 10786, 28243, 62, 6978, 3256, 2099, 28, 15235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15235, 7268, 17297, 6592, 11055, 7, 82, 8, 11537, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 565, 2334, 796, 1351, 7, 22046, 13, 17752, 62, 6978, 13, 4743, 672, 7, 4774, 62, 85, 945, 58, 22046, 13, 4774, 7131, 6, 4743, 672, 20520, 4008, 198, 22046, 13, 22915, 62, 6978, 13, 28015, 15908, 7, 38476, 62, 482, 28, 17821, 8, 198, 198, 4798, 10786, 2606, 7250, 3843, 46490, 23884, 4458, 18982, 7, 22046, 13, 22915, 62, 6978, 4008, 198, 198, 9630, 796, 23884, 198, 198, 1640, 269, 287, 7534, 25, 198, 220, 220, 220, 288, 796, 1429, 62, 16366, 62, 7890, 7, 66, 11, 26498, 13, 88, 43695, 62, 6978, 8, 198, 220, 220, 220, 6376, 58, 66, 60, 796, 1429, 62, 28243, 7, 22046, 13, 28243, 62, 6978, 11, 26498, 13, 22915, 62, 6978, 11, 288, 11, 2583, 62, 85, 945, 58, 22046, 13, 4774, 12962, 198, 198, 9630, 62, 6978, 796, 26498, 13, 22915, 62, 6978, 1220, 705, 40720, 3849, 32186, 6, 198, 9630, 62, 6978, 13, 28015, 15908, 7, 38476, 62, 482, 28, 17821, 8, 198, 198, 13564, 62, 9806, 62, 521, 1063, 7, 9630, 11, 9630, 62, 6978, 8, 198, 198, 4852, 873, 796, 1351, 7, 15235, 10786, 14, 14490, 14, 322, 268, 14, 35522, 785, 64, 62, 17143, 39455, 14, 4852, 873, 27691, 4743, 672, 10786, 24620, 88, 43695, 6, 4008, 198, 1640, 256, 287, 10233, 25, 220, 198, 220, 220, 220, 1429, 62, 26652, 7, 83, 11, 22046, 13, 28243, 62, 6978, 11, 22046, 13, 22915, 62, 6978, 11, 4774, 62, 85, 945, 58, 22046, 13, 4774, 12962, 198, 2, 3601, 7, 4852, 873, 8, 198 ]
2.821068
693
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-11-11 23:24 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 18, 319, 1584, 12, 1157, 12, 1157, 2242, 25, 1731, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.73913
69
""" Linker utility. """ import logging from collections import defaultdict from .objectfile import ObjectFile, Image, get_object, RelocationEntry from ..common import CompilerError from .layout import Layout, Section, SectionData, SymbolDefinition, Align from .layout import get_layout from .debuginfo import SymbolIdAdjustingReplicator, DebugInfo from .archive import get_archive def link( objects, layout=None, use_runtime=False, partial_link=False, reporter=None, debug=False, extra_symbols=None, libraries=None, entry=None, ): """ Links the iterable of objects into one using the given layout. Args: objects: a collection of objects to be linked together. layout: optional memory layout. use_runtime (bool): also link compiler runtime functions partial_link: Set this to true if you want to perform a partial link. This means, undefined symbols are no error. debug (bool): when true, keep debug information. Otherwise remove this debug information from the result. extra_symbols: a dict of extra symbols which can be used during linking. libraries: a list of libraries to use when searching for symbols. entry: the entry symbol where execution should begin. Returns: The linked object file .. doctest:: >>> import io >>> from ppci.api import asm, c3c, link >>> asm_source = io.StringIO("db 0x77") >>> obj1 = asm(asm_source, 'arm') >>> c3_source = io.StringIO("module main; var int a;") >>> obj2 = c3c([c3_source], [], 'arm') >>> obj = link([obj1, obj2]) >>> print(obj) CodeObject of 8 bytes """ objects = list(map(get_object, objects)) if not objects: raise ValueError("Please provide at least one object as input") if layout: layout = get_layout(layout) march = objects[0].arch if use_runtime: objects.append(march.runtime) libraries = list(map(get_archive, libraries)) if libraries else [] linker = Linker(march, reporter) output_obj = linker.link( objects, layout=layout, partial_link=partial_link, debug=debug, extra_symbols=extra_symbols, libraries=libraries, entry_symbol_name=entry, ) return output_obj class Linker: """ Merges the sections of several object files and performs relocation """ logger = logging.getLogger("linker") def link( self, input_objects, layout=None, partial_link=False, debug=False, extra_symbols=None, libraries=None, entry_symbol_name=None, ): """ Link together the given object files using the layout """ assert isinstance(input_objects, (list, tuple)) if self.reporter: self.reporter.heading(2, "Linking") # Check all incoming objects for same architecture: for input_object in input_objects: assert input_object.arch == self.arch # Create new object file to store output: self.dst = ObjectFile(self.arch) if debug: self.dst.debug_info = DebugInfo() # Take entry symbol from layout if not specified alreay: if not entry_symbol_name and layout and layout.entry: # TODO: what to do if two symbols are defined? # for now the symbol given via command line overrides # the entry in the linker script. entry_symbol_name = layout.entry.symbol_name # Define entry symbol: if entry_symbol_name: self.dst.entry_symbol_id = self.inject_symbol( entry_symbol_name, "global", None, None ).id # Define extra symbols: extra_symbols = extra_symbols or {} for symbol_name, value in extra_symbols.items(): self.logger.debug("Defining extra symbol %s", symbol_name) self.inject_symbol(symbol_name, "global", None, value) # First merge all sections into output sections: self.merge_objects(input_objects, debug) if partial_link: if layout: # Layout makes only sense in the final binary. raise ValueError("Can only apply layout in non-partial links") else: if libraries: # Find missing symbols in libraries: self.add_missing_symbols_from_libraries(libraries) # Apply layout rules: if layout: assert isinstance(layout, Layout) self.layout_sections(layout) self.check_undefined_symbols() self.do_relaxations() self.do_relocations() if self.reporter: self.report_link_result() return self.dst def report_link_result(self): """ After linking is complete, this function can be used to dump information to a reporter. """ for section in self.dst.sections: self.reporter.message("{} at {}".format(section, section.address)) for image in self.dst.images: self.reporter.message("{} at {}".format(image, image.address)) symbols = [ (s, self.dst.get_symbol_id_value(s.id) if s.defined else -1) for s in self.dst.symbols ] symbols.sort(key=lambda x: x[1]) for symbol, address in symbols: self.reporter.message( "Symbol {} {} at 0x{:X}".format( symbol.binding, symbol.name, address ) ) self.reporter.message("Linking complete") def merge_objects(self, input_objects, debug): """ Merge object files into a single object file """ for input_object in input_objects: self.inject_object(input_object, debug) def inject_object(self, obj, debug): """ Paste object into destination object. """ self.logger.debug("Merging %s", obj) section_offsets = {} for input_section in obj.sections: # Get or create the output section: output_section = self.dst.get_section( input_section.name, create=True ) # Alter the minimum section alignment if required: if input_section.alignment > output_section.alignment: output_section.alignment = input_section.alignment # Align section: while output_section.size % input_section.alignment != 0: self.logger.debug("Padding output to ensure alignment") output_section.add_data(bytes([0])) # Add new section: offset = output_section.size section_offsets[input_section.name] = offset output_section.add_data(input_section.data) self.logger.debug( "at offset 0x%x section %s", section_offsets[input_section.name], input_section, ) symbol_id_mapping = {} for symbol in obj.symbols: # Shift symbol value if required: if symbol.defined: value = section_offsets[symbol.section] + symbol.value section = symbol.section else: value = section = None if symbol.binding == "global": new_symbol = self.merge_global_symbol( symbol.name, section, value ) else: new_symbol = self.inject_symbol( symbol.name, symbol.binding, section, value ) symbol_id_mapping[symbol.id] = new_symbol.id for reloc in obj.relocations: offset = section_offsets[reloc.section] + reloc.offset symbol_id = symbol_id_mapping[reloc.symbol_id] new_reloc = RelocationEntry( reloc.reloc_type, symbol_id, reloc.section, offset, reloc.addend, ) self.dst.add_relocation(new_reloc) # Merge entry symbol: if obj.entry_symbol_id is not None: if self.dst.entry_symbol_id is None: self.dst.entry_symbol_id = symbol_id_mapping[ obj.entry_symbol_id ] else: # TODO: improve error message? raise CompilerError("Multiple entry points defined") # Merge debug info: if debug and obj.debug_info: replicator = SymbolIdAdjustingReplicator(symbol_id_mapping) replicator.replicate(obj.debug_info, self.dst.debug_info) def merge_global_symbol(self, name, section, value): """ Insert or merge a global name. """ if self.dst.has_symbol(name): new_symbol = self.dst.get_symbol(name) assert new_symbol.binding == "global" if value is not None: # we define this symbol. # We require merging. if new_symbol.undefined: new_symbol.value = value new_symbol.section = section else: # TODO: accumulate errors.. raise CompilerError( "Multiple defined symbol: {}".format(name) ) else: new_symbol = self.inject_symbol(name, "global", section, value) return new_symbol def inject_symbol(self, name, binding, section, value): """ Generate new symbol into object file. """ symbol_id = len(self.dst.symbols) new_symbol = self.dst.add_symbol( symbol_id, name, binding, value, section ) return new_symbol def layout_sections(self, layout): """ Use the given layout to place sections into memories """ # Create sections with address: for mem in layout.memories: image = Image(mem.name, mem.location) current_address = mem.location for memory_input in mem.inputs: if isinstance(memory_input, Section): section = self.dst.get_section( memory_input.section_name, create=True ) while current_address % section.alignment != 0: current_address += 1 section.address = current_address self.logger.debug( "Memory: %s Section: %s Address: 0x%x Size: 0x%x", mem.name, section.name, section.address, section.size, ) current_address += section.size image.add_section(section) elif isinstance(memory_input, SectionData): section_name = "_${}_".format(memory_input.section_name) # Each section must be unique: assert not self.dst.has_section(section_name) section = self.dst.get_section(section_name, create=True) section.address = current_address section.alignment = 1 # TODO: is this correct alignment? src_section = self.dst.get_section( memory_input.section_name ) section.add_data(src_section.data) current_address += section.size image.add_section(section) elif isinstance(memory_input, SymbolDefinition): # Create a new section, and place it at current spot: symbol_name = memory_input.symbol_name section_name = "_${}_".format(symbol_name) # Each section must be unique: assert not self.dst.has_section(section_name) section = self.dst.get_section(section_name, create=True) section.address = current_address section.alignment = 1 self.merge_global_symbol(symbol_name, section_name, 0) image.add_section(section) elif isinstance(memory_input, Align): while (current_address % memory_input.alignment) != 0: current_address += 1 else: # pragma: no cover raise NotImplementedError(str(memory_input)) # Check that the memory fits! if image.size > mem.size: raise CompilerError( "Memory exceeds size ({} > {})".format( image.size, mem.size ) ) self.dst.add_image(image) def get_symbol_value(self, symbol_id): """ Get value of a symbol from object or fallback """ # Lookup symbol: return self.dst.get_symbol_id_value(symbol_id) # raise CompilerError('Undefined reference "{}"'.format(name)) def add_missing_symbols_from_libraries(self, libraries): """ Try to fetch extra code from libraries to resolve symbols. Note that this can be a rabbit hole, since libraries can have undefined symbols as well. """ undefined_symbols = self.get_undefined_symbols() if not undefined_symbols: self.logger.debug( "No undefined symbols, no need to check libraries" ) return # Keep adding objects while we have undefined symbols. reloop = True while reloop: reloop = False for library in libraries: self.logger.debug("scanning library for symbols %s", library) for obj in library: has_sym = any(map(obj.has_symbol, undefined_symbols)) if has_sym: self.logger.debug( "Using object file %s from library", obj ) self.inject_object(obj, False) undefined_symbols = self.get_undefined_symbols() reloop = True def get_undefined_symbols(self): """ Get a list of currently undefined symbols. """ return self.dst.get_undefined_symbols() def check_undefined_symbols(self): """ Find undefined symbols. """ undefined_symbols = self.get_undefined_symbols() for symbol in undefined_symbols: self.logger.error("Undefined reference: %s", symbol) if undefined_symbols: undefined = ", ".join(undefined_symbols) raise CompilerError("Undefined references: {}".format(undefined)) def do_relaxations(self): """ Linker relaxation. Just relax ;). Linker relaxation is the process of finding shorted opcodes for jumps to addresses nearby. For example, an instruction set might define two jump operations. One with a 32 bits offset, and one with an 8 bits offset. Most likely the compiler will generate conservative code, so always 32 bits branches. During the relaxation phase, the code is scanned for possible replacements of the 32 bits jump by an 8 bit jump. Possible issues that might occur during this phase: - alignment of code. Code that was previously aligned might be shifted. - Linker relaxations might cause the opposite effect on jumps whose distance increases due to relaxation. This occurs when jumping over a memory whole between sections. """ self.logger.debug("Doing linker relaxations") # TODO: general note. Alignment must still be taken into account. # A wrong situation occurs, when reducing the image by small amount # of bytes. Locations that were aligned before, might become unaligned. # First, determine the list of possible optimizations! lst = [] for relocation in self.dst.relocations: sym_value = self.get_symbol_value(relocation.symbol_id) reloc_section = self.dst.get_section(relocation.section) reloc_value = reloc_section.address + relocation.offset rcls = self.dst.arch.isa.relocation_map[relocation.reloc_type] reloc = rcls( None, offset=relocation.offset, addend=relocation.addend ) if reloc.can_shrink(sym_value, reloc_value): # Apply code patching: begin = relocation.offset size = reloc.size() end = begin + size data = reloc_section.data[begin:end] assert len(data) == size, "len({}) ({}-{}) != {}".format( data, begin, end, size ) # Apply code patch: self.logger.debug("Applying patch for %s", reloc) data, new_relocs = reloc.do_shrink( sym_value, data, reloc_value ) new_size = len(data) diff = size - new_size assert 0 <= diff <= size # assert len(data) == size new_end = begin + new_size assert new_end + new_size == end # Do not shrink the data here, we will do this later on. reloc_section.data[begin:new_end] = data # Define new memory hole, starting after instruction hole = (new_end, diff) # Record this reduction occurence: lst.append((hole, relocation, reloc, new_relocs)) if not lst: self.logger.debug("No linker relaxations found") return s = ", ".join(str(x) for x in lst) self.logger.debug("Relaxable relocations: %s", s) # Define a map with the byte holes: holes_map = defaultdict(list) # section name to list of holes. # Remove old relocations by new ones. for hole, relocation, reloc, new_relocs in lst: # Remove old relocation which is superceeded: self.dst.relocations.remove(relocation) # Inject new relocations: for new_reloc in new_relocs: # TODO: maybe deal with somewhat shifted new relocations? # Create fresh relocation entry for patched code. new_relocation = RelocationEntry( new_reloc.name, relocation.symbol_id, relocation.section, relocation.offset, relocation.addend, ) self.dst.add_relocation(new_relocation) # Register hole: assert relocation.section holes_map[relocation.section].append(hole) for holes in holes_map.values(): holes.sort(key=lambda x: x[0]) # TODO: at this point, there can be the situation that we have two # sections which become further apart (due to them being in different # memory images. In this case, some relative jumps can become # unreachable. What should be do in this case? # Code has been patched here. Now update all relocations, symbols and # section addresses. self._apply_relaxation_holes(holes_map) def _apply_relaxation_holes(self, hole_map): """ Punch holes in the destination object file. Do adjustments to section addresses, symbol offsets and relocation offsets. """ def count_holes(offset, holes): """ Count how much holes we have until the given offset. """ diff = 0 for hole_offset, hole_size in holes: if hole_offset < offset: diff += hole_size else: break return diff # Update symbols which are located in sections. for symbol in self.dst.symbols: # Ignore global section-less symbols. if symbol.section is None: continue holes = hole_map[symbol.section] delta = count_holes(symbol.value, holes) self.logger.debug( "symbol changing %s (id=%s) at %08x with -%08x", symbol.name, symbol.id, symbol.value, delta, ) symbol.value -= delta # Update relocations (which are always located in a section) for relocation in self.dst.relocations: assert relocation.section holes = hole_map[relocation.section] delta = count_holes(relocation.offset, holes) self.logger.debug( "relocation changing %s at offset %08x with -%08x", relocation.symbol_id, relocation.offset, delta, ) relocation.offset -= delta # Update section data: for section in self.dst.sections: # Loop over holes in reverse, since earlier holes influence later # holes. holes = hole_map[section.name] for hole_offset, hole_size in reversed(holes): for _ in range(hole_size): section.data.pop(hole_offset) # Calculate total change per section section_changes = { name: sum(h[1] for h in holes) for name, holes in hole_map.items() } # Update layout of section in images for image in self.dst.images: delta = 0 for section in image.sections: self.logger.debug( "sectororchanging %s at %08x with -%08x to %08x", section.name, section.address, delta, ) # TODO: tricky stuff might go wrong here with alignment # requirements of sections. # Idea: re-do the layout phase? section.address -= delta delta += section_changes[section.name] def do_relocations(self): """ Perform the correct relocation as listed """ self.logger.debug( "Performing {} linker relocations".format( len(self.dst.relocations) ) ) for reloc in self.dst.relocations: self._do_relocation(reloc) def _do_relocation(self, relocation): """ Perform a single relocation. This involves hammering some specific bits in the section data according to symbol location and relocation location in the file. """ sym_value = self.get_symbol_value(relocation.symbol_id) section = self.dst.get_section(relocation.section) # Determine address in memory of reloc patchup position: reloc_value = section.address + relocation.offset # reloc_function = self.arch.get_reloc(reloc.typ) # Construct architecture specific relocation: rcls = self.dst.arch.isa.relocation_map[relocation.reloc_type] reloc = rcls(None, offset=relocation.offset, addend=relocation.addend) begin = relocation.offset size = reloc.size() end = begin + size data = section.data[begin:end] assert len(data) == size, "len({}) ({}-{}) != {}".format( data, begin, end, size ) data = reloc.apply(sym_value, data, reloc_value) assert len(data) == size section.data[begin:end] = data
[ 37811, 7502, 263, 10361, 13, 37227, 198, 198, 11748, 18931, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 764, 15252, 7753, 1330, 9515, 8979, 11, 7412, 11, 651, 62, 15252, 11, 4718, 5040, 30150, 198, 6738, 11485, 11321, 1330, 3082, 5329, 12331, 198, 6738, 764, 39786, 1330, 47639, 11, 7275, 11, 7275, 6601, 11, 38357, 36621, 11, 978, 570, 198, 6738, 764, 39786, 1330, 651, 62, 39786, 198, 6738, 764, 24442, 10951, 1330, 38357, 7390, 39668, 278, 39232, 26407, 11, 31687, 12360, 198, 6738, 764, 17474, 1330, 651, 62, 17474, 628, 198, 4299, 2792, 7, 198, 220, 220, 220, 5563, 11, 198, 220, 220, 220, 12461, 28, 14202, 11, 198, 220, 220, 220, 779, 62, 43282, 28, 25101, 11, 198, 220, 220, 220, 13027, 62, 8726, 28, 25101, 11, 198, 220, 220, 220, 9095, 28, 14202, 11, 198, 220, 220, 220, 14257, 28, 25101, 11, 198, 220, 220, 220, 3131, 62, 1837, 2022, 10220, 28, 14202, 11, 198, 220, 220, 220, 12782, 28, 14202, 11, 198, 220, 220, 220, 5726, 28, 14202, 11, 198, 2599, 198, 220, 220, 220, 37227, 21691, 262, 11629, 540, 286, 5563, 656, 530, 1262, 262, 1813, 12461, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5563, 25, 257, 4947, 286, 5563, 284, 307, 6692, 1978, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 25, 11902, 4088, 12461, 13, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 43282, 357, 30388, 2599, 635, 2792, 17050, 19124, 5499, 198, 220, 220, 220, 220, 220, 220, 220, 13027, 62, 8726, 25, 5345, 428, 284, 2081, 611, 345, 765, 284, 1620, 257, 13027, 2792, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 1724, 11, 28721, 14354, 389, 645, 4049, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 357, 30388, 2599, 618, 2081, 11, 1394, 14257, 1321, 13, 15323, 4781, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 14257, 1321, 422, 262, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 1837, 2022, 10220, 25, 257, 8633, 286, 3131, 14354, 543, 460, 307, 973, 1141, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17795, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12782, 25, 257, 1351, 286, 12782, 284, 779, 618, 10342, 329, 14354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 25, 262, 5726, 6194, 810, 9706, 815, 2221, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6692, 2134, 2393, 628, 220, 220, 220, 11485, 10412, 395, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 33245, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 9788, 979, 13, 15042, 1330, 355, 76, 11, 269, 18, 66, 11, 2792, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 355, 76, 62, 10459, 796, 33245, 13, 10100, 9399, 7203, 9945, 657, 87, 3324, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 16, 796, 355, 76, 7, 8597, 62, 10459, 11, 705, 1670, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 269, 18, 62, 10459, 796, 33245, 13, 10100, 9399, 7203, 21412, 1388, 26, 1401, 493, 257, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 17, 796, 269, 18, 66, 26933, 66, 18, 62, 10459, 4357, 685, 4357, 705, 1670, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 796, 2792, 26933, 26801, 16, 11, 26181, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 7, 26801, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6127, 10267, 286, 807, 9881, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 5563, 796, 1351, 7, 8899, 7, 1136, 62, 15252, 11, 5563, 4008, 198, 220, 220, 220, 611, 407, 5563, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 5492, 2148, 379, 1551, 530, 2134, 355, 5128, 4943, 628, 220, 220, 220, 611, 12461, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 796, 651, 62, 39786, 7, 39786, 8, 628, 220, 220, 220, 9960, 796, 5563, 58, 15, 4083, 998, 628, 220, 220, 220, 611, 779, 62, 43282, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5563, 13, 33295, 7, 76, 998, 13, 43282, 8, 628, 220, 220, 220, 12782, 796, 1351, 7, 8899, 7, 1136, 62, 17474, 11, 12782, 4008, 611, 12782, 2073, 17635, 628, 220, 220, 220, 2792, 263, 796, 7502, 263, 7, 76, 998, 11, 9095, 8, 198, 220, 220, 220, 5072, 62, 26801, 796, 2792, 263, 13, 8726, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5563, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 28, 39786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13027, 62, 8726, 28, 47172, 62, 8726, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 24442, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 1837, 2022, 10220, 28, 26086, 62, 1837, 2022, 10220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12782, 28, 75, 11127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 1837, 23650, 62, 3672, 28, 13000, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 5072, 62, 26801, 628, 198, 4871, 7502, 263, 25, 198, 220, 220, 220, 37227, 4638, 3212, 262, 9004, 286, 1811, 2134, 3696, 290, 198, 220, 220, 220, 220, 220, 220, 220, 17706, 35703, 37227, 628, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7203, 8726, 263, 4943, 628, 220, 220, 220, 825, 2792, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 48205, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12461, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13027, 62, 8726, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 1837, 2022, 10220, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12782, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 1837, 23650, 62, 3672, 28, 14202, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7502, 1978, 262, 1813, 2134, 3696, 1262, 262, 12461, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 15414, 62, 48205, 11, 357, 4868, 11, 46545, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 260, 26634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 33878, 7, 17, 11, 366, 43, 8040, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 477, 15619, 5563, 329, 976, 10959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 62, 15252, 287, 5128, 62, 48205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5128, 62, 15252, 13, 998, 6624, 2116, 13, 998, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 649, 2134, 2393, 284, 3650, 5072, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 796, 9515, 8979, 7, 944, 13, 998, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 24442, 62, 10951, 796, 31687, 12360, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7214, 5726, 6194, 422, 12461, 611, 407, 7368, 435, 260, 323, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5726, 62, 1837, 23650, 62, 3672, 290, 12461, 290, 12461, 13, 13000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 644, 284, 466, 611, 734, 14354, 389, 5447, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 783, 262, 6194, 1813, 2884, 3141, 1627, 23170, 1460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 5726, 287, 262, 2792, 263, 4226, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 1837, 23650, 62, 3672, 796, 12461, 13, 13000, 13, 1837, 23650, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 5726, 6194, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 62, 1837, 23650, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 13000, 62, 1837, 23650, 62, 312, 796, 2116, 13, 259, 752, 62, 1837, 23650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 62, 1837, 23650, 62, 3672, 11, 366, 20541, 1600, 6045, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 312, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 3131, 14354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 62, 1837, 2022, 10220, 796, 3131, 62, 1837, 2022, 10220, 393, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 62, 3672, 11, 1988, 287, 3131, 62, 1837, 2022, 10220, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 7469, 3191, 3131, 6194, 4064, 82, 1600, 6194, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 752, 62, 1837, 23650, 7, 1837, 23650, 62, 3672, 11, 366, 20541, 1600, 6045, 11, 1988, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 20121, 477, 9004, 656, 5072, 9004, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 647, 469, 62, 48205, 7, 15414, 62, 48205, 11, 14257, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 13027, 62, 8726, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12461, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 47639, 1838, 691, 2565, 287, 262, 2457, 13934, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 6090, 691, 4174, 12461, 287, 1729, 12, 47172, 6117, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12782, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 4814, 14354, 287, 12782, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 45688, 62, 1837, 2022, 10220, 62, 6738, 62, 75, 11127, 7, 75, 11127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 12461, 3173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 12461, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 39786, 11, 47639, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39786, 62, 23946, 7, 39786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 917, 18156, 62, 1837, 2022, 10220, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4598, 62, 2411, 897, 602, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4598, 62, 2411, 20968, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 260, 26634, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13116, 62, 8726, 62, 20274, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 67, 301, 628, 220, 220, 220, 825, 989, 62, 8726, 62, 20274, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2293, 17795, 318, 1844, 11, 428, 2163, 460, 307, 973, 284, 10285, 198, 220, 220, 220, 220, 220, 220, 220, 1321, 284, 257, 9095, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 287, 2116, 13, 67, 301, 13, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 20500, 7203, 90, 92, 379, 23884, 1911, 18982, 7, 5458, 11, 2665, 13, 21975, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2939, 287, 2116, 13, 67, 301, 13, 17566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 20500, 7203, 90, 92, 379, 23884, 1911, 18982, 7, 9060, 11, 2939, 13, 21975, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 14354, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 82, 11, 2116, 13, 67, 301, 13, 1136, 62, 1837, 23650, 62, 312, 62, 8367, 7, 82, 13, 312, 8, 611, 264, 13, 23211, 2073, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2116, 13, 67, 301, 13, 1837, 2022, 10220, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 14354, 13, 30619, 7, 2539, 28, 50033, 2124, 25, 2124, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 11, 2209, 287, 14354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13940, 23650, 23884, 23884, 379, 657, 87, 90, 25, 55, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 30786, 11, 6194, 13, 3672, 11, 2209, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 26634, 13, 20500, 7203, 43, 8040, 1844, 4943, 628, 220, 220, 220, 825, 20121, 62, 48205, 7, 944, 11, 5128, 62, 48205, 11, 14257, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39407, 2134, 3696, 656, 257, 2060, 2134, 2393, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 62, 15252, 287, 5128, 62, 48205, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 752, 62, 15252, 7, 15414, 62, 15252, 11, 14257, 8, 628, 220, 220, 220, 825, 8677, 62, 15252, 7, 944, 11, 26181, 11, 14257, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23517, 2134, 656, 10965, 2134, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 13102, 2667, 4064, 82, 1600, 26181, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 8210, 1039, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 62, 5458, 287, 26181, 13, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 393, 2251, 262, 5072, 2665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5458, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 5458, 13, 3672, 11, 2251, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 32770, 262, 5288, 2665, 19114, 611, 2672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 62, 5458, 13, 282, 16747, 1875, 5072, 62, 5458, 13, 282, 16747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5458, 13, 282, 16747, 796, 5128, 62, 5458, 13, 282, 16747, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 978, 570, 2665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 5072, 62, 5458, 13, 7857, 4064, 5128, 62, 5458, 13, 282, 16747, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 47, 26872, 5072, 284, 4155, 19114, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5458, 13, 2860, 62, 7890, 7, 33661, 26933, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 649, 2665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 5072, 62, 5458, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 8210, 1039, 58, 15414, 62, 5458, 13, 3672, 60, 796, 11677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5458, 13, 2860, 62, 7890, 7, 15414, 62, 5458, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 265, 11677, 657, 87, 4, 87, 2665, 4064, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 8210, 1039, 58, 15414, 62, 5458, 13, 3672, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 5458, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 62, 76, 5912, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 287, 26181, 13, 1837, 2022, 10220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15576, 6194, 1988, 611, 2672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 13, 23211, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2665, 62, 8210, 1039, 58, 1837, 23650, 13, 5458, 60, 1343, 6194, 13, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 6194, 13, 5458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2665, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 13, 30786, 6624, 366, 20541, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 796, 2116, 13, 647, 469, 62, 20541, 62, 1837, 23650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 3672, 11, 2665, 11, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 796, 2116, 13, 259, 752, 62, 1837, 23650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 3672, 11, 6194, 13, 30786, 11, 2665, 11, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 62, 76, 5912, 58, 1837, 23650, 13, 312, 60, 796, 649, 62, 1837, 23650, 13, 312, 628, 220, 220, 220, 220, 220, 220, 220, 329, 823, 420, 287, 26181, 13, 2411, 20968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 2665, 62, 8210, 1039, 58, 2411, 420, 13, 5458, 60, 1343, 823, 420, 13, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 796, 6194, 62, 312, 62, 76, 5912, 58, 2411, 420, 13, 1837, 23650, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2411, 420, 796, 4718, 5040, 30150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 13, 2411, 420, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 13, 5458, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 13, 2860, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 2860, 62, 2411, 5040, 7, 3605, 62, 2411, 420, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39407, 5726, 6194, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26181, 13, 13000, 62, 1837, 23650, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 301, 13, 13000, 62, 1837, 23650, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 13000, 62, 1837, 23650, 62, 312, 796, 6194, 62, 312, 62, 76, 5912, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 13, 13000, 62, 1837, 23650, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 2987, 4049, 3275, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3082, 5329, 12331, 7203, 31217, 5726, 2173, 5447, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39407, 14257, 7508, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 290, 26181, 13, 24442, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2186, 26407, 796, 38357, 7390, 39668, 278, 39232, 26407, 7, 1837, 23650, 62, 312, 62, 76, 5912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2186, 26407, 13, 35666, 5344, 7, 26801, 13, 24442, 62, 10951, 11, 2116, 13, 67, 301, 13, 24442, 62, 10951, 8, 628, 220, 220, 220, 825, 20121, 62, 20541, 62, 1837, 23650, 7, 944, 11, 1438, 11, 2665, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35835, 393, 20121, 257, 3298, 1438, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 301, 13, 10134, 62, 1837, 23650, 7, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 796, 2116, 13, 67, 301, 13, 1136, 62, 1837, 23650, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 649, 62, 1837, 23650, 13, 30786, 6624, 366, 20541, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 407, 6045, 25, 220, 1303, 356, 8160, 428, 6194, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 2421, 35981, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 1837, 23650, 13, 917, 18156, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 13, 8367, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 13, 5458, 796, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 29915, 8563, 492, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3082, 5329, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31217, 5447, 6194, 25, 23884, 1911, 18982, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 796, 2116, 13, 259, 752, 62, 1837, 23650, 7, 3672, 11, 366, 20541, 1600, 2665, 11, 1988, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 1837, 23650, 628, 220, 220, 220, 825, 8677, 62, 1837, 23650, 7, 944, 11, 1438, 11, 12765, 11, 2665, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2980, 378, 649, 6194, 656, 2134, 2393, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 796, 18896, 7, 944, 13, 67, 301, 13, 1837, 2022, 10220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1837, 23650, 796, 2116, 13, 67, 301, 13, 2860, 62, 1837, 23650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 312, 11, 1438, 11, 12765, 11, 1988, 11, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 1837, 23650, 628, 220, 220, 220, 825, 12461, 62, 23946, 7, 944, 11, 12461, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5765, 262, 1813, 12461, 284, 1295, 9004, 656, 9846, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 9004, 351, 2209, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1066, 287, 12461, 13, 11883, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 7412, 7, 11883, 13, 3672, 11, 1066, 13, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 21975, 796, 1066, 13, 24886, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4088, 62, 15414, 287, 1066, 13, 15414, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 31673, 62, 15414, 11, 7275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4088, 62, 15414, 13, 5458, 62, 3672, 11, 2251, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1459, 62, 21975, 4064, 2665, 13, 282, 16747, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 21975, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 796, 1459, 62, 21975, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30871, 25, 4064, 82, 7275, 25, 4064, 82, 17917, 25, 657, 87, 4, 87, 12849, 25, 657, 87, 4, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1066, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 21975, 15853, 2665, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 2860, 62, 5458, 7, 5458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 31673, 62, 15414, 11, 7275, 6601, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 3672, 796, 45434, 38892, 92, 62, 1911, 18982, 7, 31673, 62, 15414, 13, 5458, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5501, 2665, 1276, 307, 3748, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 2116, 13, 67, 301, 13, 10134, 62, 5458, 7, 5458, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 5458, 62, 3672, 11, 2251, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 796, 1459, 62, 21975, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 282, 16747, 796, 352, 220, 1303, 16926, 46, 25, 318, 428, 3376, 19114, 30, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 5458, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4088, 62, 15414, 13, 5458, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 2860, 62, 7890, 7, 10677, 62, 5458, 13, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 21975, 15853, 2665, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 2860, 62, 5458, 7, 5458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 31673, 62, 15414, 11, 38357, 36621, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 649, 2665, 11, 290, 1295, 340, 379, 1459, 4136, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 3672, 796, 4088, 62, 15414, 13, 1837, 23650, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 3672, 796, 45434, 38892, 92, 62, 1911, 18982, 7, 1837, 23650, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5501, 2665, 1276, 307, 3748, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 2116, 13, 67, 301, 13, 10134, 62, 5458, 7, 5458, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 5458, 62, 3672, 11, 2251, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 796, 1459, 62, 21975, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 282, 16747, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 647, 469, 62, 20541, 62, 1837, 23650, 7, 1837, 23650, 62, 3672, 11, 2665, 62, 3672, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 2860, 62, 5458, 7, 5458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 31673, 62, 15414, 11, 978, 570, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 357, 14421, 62, 21975, 4064, 4088, 62, 15414, 13, 282, 16747, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 21975, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 2536, 7, 31673, 62, 15414, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 262, 4088, 11414, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 7857, 1875, 1066, 13, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3082, 5329, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30871, 21695, 2546, 37913, 92, 1875, 23884, 8, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 7857, 11, 1066, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 2860, 62, 9060, 7, 9060, 8, 628, 220, 220, 220, 825, 651, 62, 1837, 23650, 62, 8367, 7, 944, 11, 6194, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 1988, 286, 257, 6194, 422, 2134, 393, 2121, 1891, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6803, 929, 6194, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 67, 301, 13, 1136, 62, 1837, 23650, 62, 312, 62, 8367, 7, 1837, 23650, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 5298, 3082, 5329, 12331, 10786, 31319, 18156, 4941, 45144, 36786, 4458, 18982, 7, 3672, 4008, 628, 220, 220, 220, 825, 751, 62, 45688, 62, 1837, 2022, 10220, 62, 6738, 62, 75, 11127, 7, 944, 11, 12782, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9993, 284, 21207, 3131, 2438, 422, 12782, 284, 10568, 14354, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 428, 460, 307, 257, 22746, 7604, 11, 1201, 12782, 460, 423, 28721, 198, 220, 220, 220, 220, 220, 220, 220, 14354, 355, 880, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28721, 62, 1837, 2022, 10220, 796, 2116, 13, 1136, 62, 917, 18156, 62, 1837, 2022, 10220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28721, 62, 1837, 2022, 10220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 28721, 14354, 11, 645, 761, 284, 2198, 12782, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 4375, 5563, 981, 356, 423, 28721, 14354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 823, 11224, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 981, 823, 11224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 11224, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5888, 287, 12782, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 35836, 768, 5888, 329, 14354, 4064, 82, 1600, 5888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 287, 5888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 62, 37047, 796, 597, 7, 8899, 7, 26801, 13, 10134, 62, 1837, 23650, 11, 28721, 62, 1837, 2022, 10220, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 62, 37047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12814, 2134, 2393, 4064, 82, 422, 5888, 1600, 26181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 752, 62, 15252, 7, 26801, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28721, 62, 1837, 2022, 10220, 796, 2116, 13, 1136, 62, 917, 18156, 62, 1837, 2022, 10220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 11224, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 917, 18156, 62, 1837, 2022, 10220, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 257, 1351, 286, 3058, 28721, 14354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 67, 301, 13, 1136, 62, 917, 18156, 62, 1837, 2022, 10220, 3419, 628, 220, 220, 220, 825, 2198, 62, 917, 18156, 62, 1837, 2022, 10220, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9938, 28721, 14354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28721, 62, 1837, 2022, 10220, 796, 2116, 13, 1136, 62, 917, 18156, 62, 1837, 2022, 10220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 287, 28721, 62, 1837, 2022, 10220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 18224, 7203, 31319, 18156, 4941, 25, 4064, 82, 1600, 6194, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28721, 62, 1837, 2022, 10220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28721, 796, 33172, 27071, 22179, 7, 917, 18156, 62, 1837, 2022, 10220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3082, 5329, 12331, 7203, 31319, 18156, 10288, 25, 23884, 1911, 18982, 7, 917, 18156, 4008, 628, 220, 220, 220, 825, 466, 62, 2411, 897, 602, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7502, 263, 34205, 13, 2329, 8960, 2162, 737, 628, 220, 220, 220, 220, 220, 220, 220, 7502, 263, 34205, 318, 262, 1429, 286, 4917, 1790, 276, 1034, 40148, 329, 198, 220, 220, 220, 220, 220, 220, 220, 18045, 284, 9405, 6716, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 281, 12064, 900, 1244, 198, 220, 220, 220, 220, 220, 220, 220, 8160, 734, 4391, 4560, 13, 1881, 351, 257, 3933, 10340, 11677, 11, 290, 530, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 807, 10340, 11677, 13, 4042, 1884, 262, 17050, 481, 7716, 5940, 198, 220, 220, 220, 220, 220, 220, 220, 2438, 11, 523, 1464, 3933, 10340, 13737, 13, 5856, 262, 34205, 7108, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2438, 318, 28660, 329, 1744, 36205, 286, 262, 3933, 10340, 4391, 416, 281, 198, 220, 220, 220, 220, 220, 220, 220, 807, 1643, 4391, 13, 628, 220, 220, 220, 220, 220, 220, 220, 33671, 2428, 326, 1244, 3051, 1141, 428, 7108, 25, 628, 220, 220, 220, 220, 220, 220, 220, 532, 19114, 286, 2438, 13, 6127, 326, 373, 4271, 19874, 1244, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14869, 13, 628, 220, 220, 220, 220, 220, 220, 220, 532, 7502, 263, 8960, 602, 1244, 2728, 262, 6697, 1245, 319, 18045, 3025, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5253, 5732, 2233, 284, 34205, 13, 770, 8833, 618, 14284, 625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 4088, 2187, 1022, 9004, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 5211, 278, 2792, 263, 8960, 602, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 2276, 3465, 13, 978, 16747, 1276, 991, 307, 2077, 656, 1848, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 317, 2642, 3074, 8833, 11, 618, 8868, 262, 2939, 416, 1402, 2033, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 9881, 13, 41277, 326, 547, 19874, 878, 11, 1244, 1716, 555, 41634, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 11, 5004, 262, 1351, 286, 1744, 41446, 0, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 35703, 287, 2116, 13, 67, 301, 13, 2411, 20968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5659, 62, 8367, 796, 2116, 13, 1136, 62, 1837, 23650, 62, 8367, 7, 2411, 5040, 13, 1837, 23650, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 62, 5458, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 2411, 5040, 13, 5458, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 62, 8367, 796, 823, 420, 62, 5458, 13, 21975, 1343, 35703, 13, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 565, 82, 796, 2116, 13, 67, 301, 13, 998, 13, 9160, 13, 2411, 5040, 62, 8899, 58, 2411, 5040, 13, 2411, 420, 62, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 796, 374, 565, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 11677, 28, 2411, 5040, 13, 28968, 11, 751, 437, 28, 2411, 5040, 13, 2860, 437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 823, 420, 13, 5171, 62, 36007, 676, 7, 37047, 62, 8367, 11, 823, 420, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 2438, 8529, 278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2221, 796, 35703, 13, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 823, 420, 13, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 2221, 1343, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 823, 420, 62, 5458, 13, 7890, 58, 27471, 25, 437, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 7890, 8, 6624, 2546, 11, 366, 11925, 15090, 30072, 37913, 92, 12, 90, 30072, 14512, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 2221, 11, 886, 11, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 2438, 8529, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 4677, 3157, 8529, 329, 4064, 82, 1600, 823, 420, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 649, 62, 2411, 420, 82, 796, 823, 420, 13, 4598, 62, 36007, 676, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5659, 62, 8367, 11, 1366, 11, 823, 420, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7857, 796, 18896, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 796, 2546, 532, 649, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 657, 19841, 814, 19841, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6818, 18896, 7, 7890, 8, 6624, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 437, 796, 2221, 1343, 649, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 649, 62, 437, 1343, 649, 62, 7857, 6624, 886, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2141, 407, 22085, 262, 1366, 994, 11, 356, 481, 466, 428, 1568, 319, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 823, 420, 62, 5458, 13, 7890, 58, 27471, 25, 3605, 62, 437, 60, 796, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 649, 4088, 7604, 11, 3599, 706, 12064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7604, 796, 357, 3605, 62, 437, 11, 814, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13266, 428, 7741, 1609, 495, 1198, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 13, 33295, 19510, 13207, 11, 35703, 11, 823, 420, 11, 649, 62, 2411, 420, 82, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 300, 301, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 2949, 2792, 263, 8960, 602, 1043, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 264, 796, 33172, 27071, 22179, 7, 2536, 7, 87, 8, 329, 2124, 287, 300, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7203, 6892, 897, 540, 823, 20968, 25, 4064, 82, 1600, 264, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 257, 3975, 351, 262, 18022, 10421, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10421, 62, 8899, 796, 4277, 11600, 7, 4868, 8, 220, 1303, 2665, 1438, 284, 1351, 286, 10421, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 1468, 823, 20968, 416, 649, 3392, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7604, 11, 35703, 11, 823, 420, 11, 649, 62, 2411, 420, 82, 287, 300, 301, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 1468, 35703, 543, 318, 2208, 2707, 276, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 2411, 20968, 13, 28956, 7, 2411, 5040, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 752, 649, 823, 20968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 649, 62, 2411, 420, 287, 649, 62, 2411, 420, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 3863, 1730, 351, 6454, 14869, 649, 823, 20968, 30, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 4713, 35703, 5726, 329, 39378, 2438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2411, 5040, 796, 4718, 5040, 30150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2411, 420, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 1837, 23650, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 5458, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 28968, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 2860, 437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 301, 13, 2860, 62, 2411, 5040, 7, 3605, 62, 2411, 5040, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17296, 7604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 35703, 13, 5458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10421, 62, 8899, 58, 2411, 5040, 13, 5458, 4083, 33295, 7, 13207, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 10421, 287, 10421, 62, 8899, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10421, 13, 30619, 7, 2539, 28, 50033, 2124, 25, 2124, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 379, 428, 966, 11, 612, 460, 307, 262, 3074, 326, 356, 423, 734, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9004, 543, 1716, 2252, 5475, 357, 23301, 284, 606, 852, 287, 1180, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4088, 4263, 13, 554, 428, 1339, 11, 617, 3585, 18045, 460, 1716, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14880, 34446, 13, 1867, 815, 307, 466, 287, 428, 1339, 30, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6127, 468, 587, 39378, 994, 13, 2735, 4296, 477, 823, 20968, 11, 14354, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2665, 9405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 39014, 62, 2411, 897, 341, 62, 28439, 7, 28439, 62, 8899, 8, 628, 220, 220, 220, 825, 4808, 39014, 62, 2411, 897, 341, 62, 28439, 7, 944, 11, 7604, 62, 8899, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24265, 10421, 287, 262, 10965, 2134, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2141, 16895, 284, 2665, 9405, 11, 6194, 49005, 198, 220, 220, 220, 220, 220, 220, 220, 290, 35703, 49005, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 825, 954, 62, 28439, 7, 28968, 11, 10421, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 2764, 703, 881, 10421, 356, 423, 1566, 262, 1813, 11677, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7604, 62, 28968, 11, 7604, 62, 7857, 287, 10421, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7604, 62, 28968, 1279, 11677, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 15853, 7604, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 814, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 14354, 543, 389, 5140, 287, 9004, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 287, 2116, 13, 67, 301, 13, 1837, 2022, 10220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 3298, 2665, 12, 1203, 14354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 13, 5458, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10421, 796, 7604, 62, 8899, 58, 1837, 23650, 13, 5458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 954, 62, 28439, 7, 1837, 23650, 13, 8367, 11, 10421, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1837, 23650, 5609, 4064, 82, 357, 312, 28, 4, 82, 8, 379, 4064, 2919, 87, 351, 532, 4, 2919, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 13, 8367, 48185, 25979, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 823, 20968, 357, 4758, 389, 1464, 5140, 287, 257, 2665, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 35703, 287, 2116, 13, 67, 301, 13, 2411, 20968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 35703, 13, 5458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10421, 796, 7604, 62, 8899, 58, 2411, 5040, 13, 5458, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 954, 62, 28439, 7, 2411, 5040, 13, 28968, 11, 10421, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2411, 5040, 5609, 4064, 82, 379, 11677, 4064, 2919, 87, 351, 532, 4, 2919, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 1837, 23650, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 28968, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35703, 13, 28968, 48185, 25979, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 2665, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 287, 2116, 13, 67, 301, 13, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 10421, 287, 9575, 11, 1201, 2961, 10421, 4588, 1568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10421, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10421, 796, 7604, 62, 8899, 58, 5458, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 7604, 62, 28968, 11, 7604, 62, 7857, 287, 17687, 7, 28439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 13207, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 7890, 13, 12924, 7, 13207, 62, 28968, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 2472, 1487, 583, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 2665, 62, 36653, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 2160, 7, 71, 58, 16, 60, 329, 289, 287, 10421, 8, 329, 1438, 11, 10421, 287, 7604, 62, 8899, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10133, 12461, 286, 2665, 287, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2939, 287, 2116, 13, 67, 301, 13, 17566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 287, 2939, 13, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34914, 273, 22954, 4064, 82, 379, 4064, 2919, 87, 351, 532, 4, 2919, 87, 284, 4064, 2919, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 17198, 3404, 1244, 467, 2642, 994, 351, 19114, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5359, 286, 9004, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37560, 25, 302, 12, 4598, 262, 12461, 7108, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 21975, 48185, 25979, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 15853, 2665, 62, 36653, 58, 5458, 13, 3672, 60, 628, 220, 220, 220, 825, 466, 62, 2411, 20968, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35006, 262, 3376, 35703, 355, 5610, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5990, 15464, 23884, 2792, 263, 823, 20968, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 944, 13, 67, 301, 13, 2411, 20968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 823, 420, 287, 2116, 13, 67, 301, 13, 2411, 20968, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4598, 62, 2411, 5040, 7, 2411, 420, 8, 628, 220, 220, 220, 825, 4808, 4598, 62, 2411, 5040, 7, 944, 11, 35703, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35006, 257, 2060, 35703, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 9018, 15554, 278, 617, 2176, 10340, 287, 262, 2665, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1864, 284, 6194, 4067, 290, 35703, 4067, 287, 262, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5659, 62, 8367, 796, 2116, 13, 1136, 62, 1837, 23650, 62, 8367, 7, 2411, 5040, 13, 1837, 23650, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2665, 796, 2116, 13, 67, 301, 13, 1136, 62, 5458, 7, 2411, 5040, 13, 5458, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 2209, 287, 4088, 286, 823, 420, 8529, 929, 2292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 823, 420, 62, 8367, 796, 2665, 13, 21975, 1343, 35703, 13, 28968, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 823, 420, 62, 8818, 796, 2116, 13, 998, 13, 1136, 62, 2411, 420, 7, 2411, 420, 13, 28004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28407, 10959, 2176, 35703, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 565, 82, 796, 2116, 13, 67, 301, 13, 998, 13, 9160, 13, 2411, 5040, 62, 8899, 58, 2411, 5040, 13, 2411, 420, 62, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 823, 420, 796, 374, 565, 82, 7, 14202, 11, 11677, 28, 2411, 5040, 13, 28968, 11, 751, 437, 28, 2411, 5040, 13, 2860, 437, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2221, 796, 35703, 13, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 823, 420, 13, 7857, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 2221, 1343, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2665, 13, 7890, 58, 27471, 25, 437, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 7890, 8, 6624, 2546, 11, 366, 11925, 15090, 30072, 37913, 92, 12, 90, 30072, 14512, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 2221, 11, 886, 11, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 823, 420, 13, 39014, 7, 37047, 62, 8367, 11, 1366, 11, 823, 420, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 7890, 8, 6624, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 2665, 13, 7890, 58, 27471, 25, 437, 60, 796, 1366, 198 ]
2.126216
11,203
from django.db import models import uuid # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 11748, 334, 27112, 198, 198, 2, 13610, 534, 4981, 994, 13, 198 ]
3.45
20
from setuptools import setup setup( name='interactive_segmentation', version='1.0', packages=['annotate'], license='MIT' )
[ 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 3849, 5275, 62, 325, 5154, 341, 3256, 198, 220, 220, 220, 2196, 11639, 16, 13, 15, 3256, 198, 220, 220, 220, 10392, 28, 17816, 34574, 378, 6, 4357, 198, 220, 220, 220, 5964, 11639, 36393, 6, 198, 8, 198 ]
2.545455
55