content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import os import tempfile import sys import errno import getpass import configparser import pytest from unittest import mock from keyring.testing.backend import BackendBasicTests from keyring.testing.util import random_string from keyrings.cryptfile import file from keyrings.cryptfile.file_base import encodebytes from keyrings.cryptfile.escape import escape as escape_for_ini from keyring.errors import PasswordDeleteError
[ 11748, 28686, 198, 11748, 20218, 7753, 198, 11748, 25064, 198, 11748, 11454, 3919, 198, 11748, 651, 6603, 198, 11748, 4566, 48610, 198, 198, 11748, 12972, 9288, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 1994, 1806, 13, 33407, 13, 1891, 437, 1330, 5157, 437, 26416, 51, 3558, 198, 6738, 1994, 1806, 13, 33407, 13, 22602, 1330, 4738, 62, 8841, 198, 198, 6738, 1994, 33173, 13, 29609, 7753, 1330, 2393, 198, 6738, 1994, 33173, 13, 29609, 7753, 13, 7753, 62, 8692, 1330, 37773, 33661, 198, 6738, 1994, 33173, 13, 29609, 7753, 13, 41915, 1330, 6654, 355, 6654, 62, 1640, 62, 5362, 198, 198, 6738, 1994, 1806, 13, 48277, 1330, 30275, 38727, 12331, 628, 628 ]
3.756522
115
import math import pygame from pygame.locals import * class Flags(object): """docstring for Flags""" # def __get_sound(self): # self.sounds = { # 'move' : pygame.mixer.Sound(self.proj_path + 'asset/sound/Coin_1.wav'), # 'merge' : pygame.mixer.Sound(self.proj_path + 'asset/sound/Coin_2.wav'), # 'castle' : pygame.mixer.Sound(self.proj_path + 'asset/sound/Coin_3.wav') # } F = Flags()
[ 11748, 10688, 198, 11748, 12972, 6057, 198, 6738, 12972, 6057, 13, 17946, 874, 1330, 1635, 198, 198, 4871, 34771, 7, 15252, 2599, 198, 220, 220, 220, 37227, 15390, 8841, 329, 34771, 37811, 628, 198, 220, 220, 220, 1303, 825, 11593, 1136, 62, 23661, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2116, 13, 82, 3733, 796, 1391, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21084, 6, 220, 220, 1058, 12972, 6057, 13, 19816, 263, 13, 21369, 7, 944, 13, 1676, 73, 62, 6978, 1343, 705, 562, 316, 14, 23661, 14, 24387, 62, 16, 13, 45137, 33809, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 647, 469, 6, 220, 1058, 12972, 6057, 13, 19816, 263, 13, 21369, 7, 944, 13, 1676, 73, 62, 6978, 1343, 705, 562, 316, 14, 23661, 14, 24387, 62, 17, 13, 45137, 33809, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18676, 6, 1058, 12972, 6057, 13, 19816, 263, 13, 21369, 7, 944, 13, 1676, 73, 62, 6978, 1343, 705, 562, 316, 14, 23661, 14, 24387, 62, 18, 13, 45137, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1782, 198, 198, 37, 796, 34771, 3419, 628 ]
2.101852
216
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey has `on_delete` set to the desired behavior. # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from django.db import models
[ 2, 770, 318, 281, 8295, 12, 27568, 37770, 2746, 8265, 13, 198, 2, 921, 1183, 423, 284, 466, 262, 1708, 14500, 284, 3424, 428, 510, 25, 198, 2, 220, 220, 1635, 30144, 9521, 4981, 6, 1502, 198, 2, 220, 220, 1635, 6889, 1654, 1123, 2746, 468, 530, 2214, 351, 4165, 62, 2539, 28, 17821, 198, 2, 220, 220, 1635, 6889, 1654, 1123, 8708, 9218, 468, 4600, 261, 62, 33678, 63, 900, 284, 262, 10348, 4069, 13, 198, 2, 220, 220, 1635, 17220, 4600, 39935, 796, 10352, 63, 3951, 611, 345, 4601, 284, 1249, 37770, 284, 2251, 11, 13096, 11, 290, 12233, 262, 3084, 198, 2, 18571, 1479, 284, 36265, 262, 4981, 11, 475, 836, 470, 36265, 20613, 62, 11487, 3815, 393, 2214, 3891, 13, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 628, 628, 628, 198 ]
3.686131
137
import json
[ 11748, 33918, 628 ]
4.333333
3
import arcade import arcade.gui import menu_view from data_handler import DataHandler from arcade.gui import UIManager from constants import * import os dirname = os.path.dirname(__file__) button_normal = arcade.load_texture(os.path.join(dirname, 'images/red_button_normal.png')) hovered_texture = arcade.load_texture(os.path.join(dirname, 'images/red_button_hover.png')) pressed_texture = arcade.load_texture(os.path.join(dirname, 'images/red_button_press.png')) class BackButton(arcade.gui.UIImageButton): """ When clicked, go back to the menu view. """ go_back = False class LeaderboardView(arcade.View): """ This view displays player name and data obtained from the .xml file (via DataHandler). """ def __init__(self): """ LeaderboardView construct. """ super().__init__() arcade.set_background_color(arcade.color.LIGHT_TAUPE) self.ui_manager = UIManager() # GUI elements which will get constructed in setup() self.back_button = None def setup(self): """ Sets up leaderboard screen with GUI elements. :return: """ self.ui_manager.purge_ui_elements() # back button - press to play the game (creates a new view) self.back_button = BackButton(center_x=WIDTH / 2, center_y=HEIGHT * 1.5 / 10, normal_texture=button_normal, hover_texture=hovered_texture, press_texture=pressed_texture, text='Back') self.ui_manager.add_ui_element(self.back_button) def on_draw(self): """ Render the screen. """ arcade.start_render() arcade.draw_text("LEADERBOARD", WIDTH / 2, HEIGHT * 3/4, arcade.color.BLACK, font_size=75, anchor_x="center") arcade.draw_text("Name", WIDTH / 6, HEIGHT * 3 / 4 - 50, arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text("Date", WIDTH * 2/6, HEIGHT * 3 / 4 - 50, arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text("Dimensions", WIDTH * 3.1/6, HEIGHT * 3 / 4 - 50, arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text("Time", WIDTH * 4.1/6, HEIGHT * 3 / 4 - 50, arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text("Score", WIDTH * 5/6, HEIGHT * 3 / 4 - 50, arcade.color.BLACK, font_size=20, anchor_x="center") # Display player data leaderboard_data = DataHandler.get_leaderboard_data() for i in range(len(leaderboard_data)): rank = str(i+1) # If name is too big, shorten it using '...' (e.g. Franklin -> Frankl...) name = leaderboard_data[rank]['name'] name = name[:6] + '...' if len(name) > 6 else name # Display the data arcade.draw_text(name, WIDTH / 6, HEIGHT * 3 / 4 - 50*(i+2), arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text(leaderboard_data[rank]['date'], WIDTH * 2 / 6, HEIGHT * 3 / 4 - 50*(i+2), arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text(leaderboard_data[rank]['dimensions'], WIDTH * 3.1 / 6, HEIGHT * 3 / 4 - 50*(i+2), arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text(leaderboard_data[rank]['time'], WIDTH * 4.1 / 6, HEIGHT * 3 / 4 - 50*(i+2), arcade.color.BLACK, font_size=20, anchor_x="center") arcade.draw_text(leaderboard_data[rank]['score'], WIDTH * 5 / 6, HEIGHT * 3 / 4 - 50*(i+2), arcade.color.BLACK, font_size=20, anchor_x="center") def on_show_view(self): """ Show this view. """ self.setup() def on_hide_view(self): """ What to do when hiding this view. :return: """ self.ui_manager.unregister_handlers() def update(self, delta_time: float): """ Called every frame. :param delta_time: delta time for each frame. :return: """ if self.back_button.go_back: next_view = menu_view.MainMenu() self.window.show_view(next_view) if __name__ == "__main__": main()
[ 11748, 27210, 198, 11748, 27210, 13, 48317, 198, 11748, 6859, 62, 1177, 198, 6738, 1366, 62, 30281, 1330, 6060, 25060, 198, 6738, 27210, 13, 48317, 1330, 471, 3955, 272, 3536, 198, 6738, 38491, 1330, 1635, 628, 198, 11748, 28686, 198, 15908, 3672, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 16539, 62, 11265, 796, 27210, 13, 2220, 62, 41293, 7, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 705, 17566, 14, 445, 62, 16539, 62, 11265, 13, 11134, 6, 4008, 198, 71, 2557, 62, 41293, 796, 27210, 13, 2220, 62, 41293, 7, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 705, 17566, 14, 445, 62, 16539, 62, 43753, 13, 11134, 6, 4008, 198, 45477, 62, 41293, 796, 27210, 13, 2220, 62, 41293, 7, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 705, 17566, 14, 445, 62, 16539, 62, 8439, 13, 11134, 6, 4008, 628, 198, 4871, 5157, 21864, 7, 5605, 671, 13, 48317, 13, 10080, 5159, 21864, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1649, 28384, 11, 467, 736, 284, 262, 6859, 1570, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 467, 62, 1891, 796, 10352, 628, 198, 4871, 10540, 3526, 7680, 7, 5605, 671, 13, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1570, 11298, 2137, 1438, 290, 1366, 6492, 422, 262, 764, 19875, 2393, 357, 8869, 6060, 25060, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10540, 3526, 7680, 5678, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 2617, 62, 25249, 62, 8043, 7, 5605, 671, 13, 8043, 13, 43, 9947, 62, 5603, 8577, 36, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9019, 62, 37153, 796, 471, 3955, 272, 3536, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 25757, 4847, 543, 481, 651, 12006, 287, 9058, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 62, 16539, 796, 6045, 628, 220, 220, 220, 825, 9058, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 510, 3554, 3526, 3159, 351, 25757, 4847, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9019, 62, 37153, 13, 14225, 469, 62, 9019, 62, 68, 3639, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 736, 4936, 532, 1803, 284, 711, 262, 983, 357, 20123, 274, 257, 649, 1570, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 62, 16539, 796, 5157, 21864, 7, 16159, 62, 87, 28, 54, 2389, 4221, 1220, 362, 11, 3641, 62, 88, 28, 13909, 9947, 1635, 352, 13, 20, 1220, 838, 11, 3487, 62, 41293, 28, 16539, 62, 11265, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20599, 62, 41293, 28, 71, 2557, 62, 41293, 11, 1803, 62, 41293, 28, 45477, 62, 41293, 11, 2420, 11639, 7282, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9019, 62, 37153, 13, 2860, 62, 9019, 62, 30854, 7, 944, 13, 1891, 62, 16539, 8, 628, 220, 220, 220, 825, 319, 62, 19334, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46722, 262, 3159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 9688, 62, 13287, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 2538, 2885, 1137, 8202, 9795, 1600, 370, 2389, 4221, 1220, 362, 11, 11179, 9947, 1635, 513, 14, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 2425, 11, 18021, 62, 87, 2625, 16159, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 5376, 1600, 370, 2389, 4221, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 10430, 1600, 370, 2389, 4221, 1635, 362, 14, 21, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 29271, 5736, 1600, 370, 2389, 4221, 1635, 513, 13, 16, 14, 21, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 7575, 1600, 370, 2389, 4221, 1635, 604, 13, 16, 14, 21, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7203, 26595, 1600, 370, 2389, 4221, 1635, 642, 14, 21, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16531, 2137, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 3554, 3526, 62, 7890, 796, 6060, 25060, 13, 1136, 62, 27940, 3526, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 27940, 3526, 62, 7890, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 965, 7, 72, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 1438, 318, 1165, 1263, 11, 45381, 340, 1262, 705, 986, 6, 357, 68, 13, 70, 13, 14021, 4613, 5278, 75, 23029, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 3554, 3526, 62, 7890, 58, 43027, 7131, 6, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 1438, 58, 25, 21, 60, 1343, 705, 986, 6, 611, 18896, 7, 3672, 8, 1875, 718, 2073, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16531, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7, 3672, 11, 370, 2389, 4221, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 9, 7, 72, 10, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7, 27940, 3526, 62, 7890, 58, 43027, 7131, 6, 4475, 6, 4357, 370, 2389, 4221, 1635, 362, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 9, 7, 72, 10, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7, 27940, 3526, 62, 7890, 58, 43027, 7131, 6, 27740, 5736, 6, 4357, 370, 2389, 4221, 1635, 513, 13, 16, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 9, 7, 72, 10, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7, 27940, 3526, 62, 7890, 58, 43027, 7131, 6, 2435, 6, 4357, 370, 2389, 4221, 1635, 604, 13, 16, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 9, 7, 72, 10, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 19334, 62, 5239, 7, 27940, 3526, 62, 7890, 58, 43027, 7131, 6, 26675, 6, 4357, 370, 2389, 4221, 1635, 642, 1220, 718, 11, 11179, 9947, 1635, 513, 1220, 604, 532, 2026, 9, 7, 72, 10, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27210, 13, 8043, 13, 9148, 8120, 11, 10369, 62, 7857, 28, 1238, 11, 18021, 62, 87, 2625, 16159, 4943, 628, 220, 220, 220, 825, 319, 62, 12860, 62, 1177, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5438, 428, 1570, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40406, 3419, 628, 220, 220, 220, 825, 319, 62, 24717, 62, 1177, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1867, 284, 466, 618, 11816, 428, 1570, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9019, 62, 37153, 13, 403, 30238, 62, 4993, 8116, 3419, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 25979, 62, 2435, 25, 12178, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34099, 790, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25979, 62, 2435, 25, 25979, 640, 329, 1123, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1891, 62, 16539, 13, 2188, 62, 1891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 1177, 796, 6859, 62, 1177, 13, 13383, 23381, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17497, 13, 12860, 62, 1177, 7, 19545, 62, 1177, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.115714
2,100
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tests for `{{ cookiecutter.package_name }}` package. """ from {{ cookiecutter.package_name }} import {{ cookiecutter.package_name }} class Test{{ cookiecutter.project_name|replace(' ', '')}}(object): @classmethod @classmethod # vim: filetype=python
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 51, 3558, 329, 4600, 27007, 19751, 8968, 353, 13, 26495, 62, 3672, 34949, 63, 5301, 13, 198, 37811, 198, 198, 6738, 22935, 19751, 8968, 353, 13, 26495, 62, 3672, 34949, 1330, 22935, 19751, 8968, 353, 13, 26495, 62, 3672, 34949, 628, 198, 4871, 6208, 27007, 19751, 8968, 353, 13, 16302, 62, 3672, 91, 33491, 10786, 46083, 10148, 8, 11709, 7, 15252, 2599, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198, 198, 2, 43907, 25, 2393, 4906, 28, 29412, 198 ]
2.803571
112
version = "2018-08-01"
[ 9641, 796, 366, 7908, 12, 2919, 12, 486, 1 ]
2.444444
9
import fs from .setup import *
[ 11748, 43458, 198, 198, 6738, 764, 40406, 1330, 1635 ]
3.444444
9
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('competitions', views.competitions, name='competitions'), path('athletes', views.athletes, name='athletes'), path('news', views.news, name='news') ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 198, 220, 220, 220, 3108, 10786, 5589, 316, 1756, 3256, 5009, 13, 5589, 316, 1756, 11, 1438, 11639, 5589, 316, 1756, 33809, 198, 220, 220, 220, 3108, 10786, 776, 40676, 3256, 5009, 13, 776, 40676, 11, 1438, 11639, 776, 40676, 33809, 198, 220, 220, 220, 3108, 10786, 10827, 3256, 5009, 13, 10827, 11, 1438, 11639, 10827, 11537, 198, 60 ]
2.873684
95
##updated api path, engine, top p ##Runs as expected import os import sys API_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..') sys.path.append(API_PATH) from api import GPT, Example, UIConfig # Construct GPT object and show some examples gpt = GPT(engine="curie-instruct-beta", temperature=0.5, top_p=1, max_tokens=100) ##Generate feature to benefit for product gpt.add_example(Example("""AirPods Max, Introducing AirPods Max — a perfect balance of exhilarating high-fidelity audio and the effortless magic of AirPods. The ultimate personal listening experience is here.""", """A deeper richer bass, an expansive soundstage, and less distortion make listening to your favorite music with AirPods Max a treat for the ears.""")) gpt.add_example(Example("""AirPods Max, Introducing AirPods Max — a perfect balance of exhilarating high-fidelity audio and the effortless magic of AirPods. The ultimate personal listening experience is here.""", """Experience wireless audio the way it’s meant to be heard with AirPods Max""")) gpt.add_example(Example("""AirPods Max, Introducing AirPods Max — a perfect balance of exhilarating high-fidelity audio and the effortless magic of AirPods. The ultimate personal listening experience is here.""", """AirPods Max sound better than the original AirPods, feature world-class noise cancellation and come with TrueWireless™ technology.""")) gpt.add_example(Example("""AirPods Max, Introducing AirPods Max — a perfect balance of exhilarating high-fidelity audio and the effortless magic of AirPods. The ultimate personal listening experience is here.""", """Listen to more of your music than ever, in unparalleled quality, with no wires.""")) gpt.add_example(Example("""Bento Lunch Box Container, slim design but it is also more than enough space, sometimes too much. The biggest plus is that it is BPA free and FDA approved. A huge win when trying to eat clean!""", """Perfect size for my two year old. More space than I thought but with a slim design, it doesn’t take up too much room in my diaper bag.""")) gpt.add_example(Example("""Bento Lunch Box Container, slim design but it is also more than enough space, sometimes too much. The biggest plus is that it is BPA free and FDA approved. A huge win when trying to eat clean!""", """If you are a parent you understand how you want the best for your child. The Bento Box is perfect for little hands. It promotes portion control and healthy eating habits.""")) gpt.add_example(Example("""Bento Lunch Box Container, slim design but it is also more than enough space, sometimes too much. The biggest plus is that it is BPA free and FDA approved. A huge win when trying to eat clean!""", """Because the 3 compartment, 6 separate container is so much bigger, it takes less time to pack the lunchbox up.""")) # Define UI configuration config = UIConfig(description="Create feature to benefits for your product", button_text="Create", placeholder="Enter product description and name") id = "feature-benefits"
[ 2235, 43162, 40391, 3108, 11, 3113, 11, 1353, 279, 220, 198, 2235, 10987, 82, 355, 2938, 220, 198, 11748, 28686, 198, 11748, 25064, 198, 17614, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 705, 492, 3256, 705, 492, 11537, 198, 17597, 13, 6978, 13, 33295, 7, 17614, 62, 34219, 8, 198, 198, 6738, 40391, 1330, 402, 11571, 11, 17934, 11, 471, 2149, 261, 5647, 628, 198, 2, 28407, 402, 11571, 2134, 290, 905, 617, 6096, 198, 70, 457, 796, 402, 11571, 7, 18392, 2625, 22019, 494, 12, 259, 7249, 12, 31361, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5951, 28, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 79, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 83, 482, 641, 28, 3064, 8, 628, 198, 198, 2235, 8645, 378, 3895, 284, 4414, 329, 1720, 628, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 16170, 47, 12978, 5436, 11, 11036, 2259, 3701, 47, 12978, 5436, 851, 257, 2818, 5236, 286, 47029, 803, 1029, 12, 69, 23091, 6597, 220, 198, 392, 262, 3626, 1203, 5536, 286, 3701, 47, 12978, 13, 383, 8713, 2614, 8680, 1998, 318, 994, 32203, 1600, 198, 37811, 32, 9211, 26192, 12702, 11, 281, 31316, 2128, 14247, 11, 290, 1342, 25100, 787, 8680, 284, 534, 4004, 2647, 351, 3701, 47, 12978, 5436, 257, 2190, 329, 262, 11368, 526, 15931, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 16170, 47, 12978, 5436, 11, 11036, 2259, 3701, 47, 12978, 5436, 851, 257, 2818, 5236, 286, 47029, 803, 1029, 12, 69, 23091, 6597, 220, 198, 392, 262, 3626, 1203, 5536, 286, 3701, 47, 12978, 13, 383, 8713, 2614, 8680, 1998, 318, 994, 32203, 1600, 198, 37811, 44901, 12521, 6597, 262, 835, 340, 447, 247, 82, 4001, 284, 307, 2982, 351, 3701, 47, 12978, 5436, 37811, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 16170, 47, 12978, 5436, 11, 11036, 2259, 3701, 47, 12978, 5436, 851, 257, 2818, 5236, 286, 47029, 803, 1029, 12, 69, 23091, 6597, 220, 198, 392, 262, 3626, 1203, 5536, 286, 3701, 47, 12978, 13, 383, 8713, 2614, 8680, 1998, 318, 994, 32203, 1600, 198, 37811, 16170, 47, 12978, 5436, 2128, 1365, 621, 262, 2656, 3701, 47, 12978, 11, 3895, 995, 12, 4871, 7838, 25395, 290, 1282, 351, 6407, 29451, 1203, 8151, 3037, 526, 15931, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 16170, 47, 12978, 5436, 11, 11036, 2259, 3701, 47, 12978, 5436, 851, 257, 2818, 5236, 286, 47029, 803, 1029, 12, 69, 23091, 6597, 220, 198, 392, 262, 3626, 1203, 5536, 286, 3701, 47, 12978, 13, 383, 8713, 2614, 8680, 1998, 318, 994, 32203, 1600, 198, 37811, 23061, 284, 517, 286, 534, 2647, 621, 1683, 11, 287, 39235, 3081, 11, 351, 645, 19474, 526, 15931, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 33, 50217, 40514, 8315, 43101, 11, 18862, 1486, 475, 340, 318, 635, 517, 621, 1576, 2272, 11, 220, 198, 29810, 1165, 881, 13, 383, 4094, 5556, 318, 326, 340, 318, 347, 4537, 1479, 290, 14672, 6325, 13, 317, 3236, 1592, 618, 2111, 284, 4483, 3424, 2474, 1, 1600, 198, 37811, 36635, 2546, 329, 616, 734, 614, 1468, 13, 3125, 2272, 621, 314, 1807, 475, 351, 257, 18862, 1486, 11, 340, 1595, 447, 247, 83, 1011, 510, 1165, 881, 2119, 287, 616, 48196, 6131, 526, 15931, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 33, 50217, 40514, 8315, 43101, 11, 18862, 1486, 475, 340, 318, 635, 517, 621, 1576, 2272, 11, 220, 198, 29810, 1165, 881, 13, 383, 4094, 5556, 318, 326, 340, 318, 347, 4537, 1479, 290, 14672, 6325, 13, 317, 3236, 1592, 618, 2111, 284, 4483, 3424, 2474, 1, 1600, 198, 37811, 1532, 345, 389, 257, 2560, 345, 1833, 703, 345, 765, 262, 1266, 329, 534, 1200, 13, 383, 20421, 78, 8315, 318, 2818, 329, 1310, 2832, 13, 220, 198, 1026, 21068, 6903, 1630, 290, 5448, 6600, 13870, 526, 15931, 4008, 198, 198, 70, 457, 13, 2860, 62, 20688, 7, 16281, 7203, 15931, 33, 50217, 40514, 8315, 43101, 11, 18862, 1486, 475, 340, 318, 635, 517, 621, 1576, 2272, 11, 220, 198, 29810, 1165, 881, 13, 383, 4094, 5556, 318, 326, 340, 318, 347, 4537, 1479, 290, 14672, 6325, 13, 317, 3236, 1592, 618, 2111, 284, 4483, 3424, 2474, 1, 1600, 198, 37811, 8128, 262, 513, 26247, 11, 718, 4553, 9290, 318, 523, 881, 5749, 11, 340, 2753, 1342, 640, 284, 2353, 262, 9965, 3524, 510, 526, 15931, 4008, 628, 628, 198, 198, 2, 2896, 500, 12454, 8398, 198, 11250, 796, 471, 2149, 261, 5647, 7, 11213, 2625, 16447, 3895, 284, 4034, 329, 534, 1720, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4936, 62, 5239, 2625, 16447, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 2625, 17469, 1720, 6764, 290, 1438, 4943, 198, 198, 312, 796, 366, 30053, 12, 36934, 896, 1 ]
3.538111
879
import numpy as np from random import randint class Transposon(object): """ Transposon is our general class used for evolutionary algorithms applied to vectors""" def initialize(self): """ sets up our population and asserts our fitness func is of correct type """ assert self.mutation_rate >= 0.0 assert self.mutation_rate <= 1.0 assert self.fitness_func != None assert self.winner_pool >= 0.0 assert self.winner_pool <= 1.0 assert self.vector_len >= 0.0 #setup a random vector and assert that our fitness_func is of correct type random_vector = self.create_vector() #use our fitness function, assert that the value is correct fitness = self.fitness_func(random_vector) assert fitness >= 0.0 #now create our population population = [random_vector] for i in range(1,self.population_size): population.append(self.create_vector()) self.population = population def create_vector(self, replace=False): """ Create a random vector replace = whether or not we can replace values (default false, ie: each value is unique) """ return np.random.choice(self.values, self.vector_len, replace=replace).tolist() def mutate(self): """ create mutations randomly based on the mutation rate preserves winner pool so that the best individuals aren't mutated """ if self.mutation_rate == 0: return mutated_population = [] for i,individual in enumerate(self.population): mutation_vec = np.random.choice(2, len(individual), p=[1.0-self.mutation_rate, self.mutation_rate]) combined_vec = [] for i,m in enumerate(mutation_vec): if m == 1: #random mutation rand = randint(self.min_value, self.max_value) combined_vec.append(rand) else: #no mutation combined_vec.append(individual[i]) mutated_population.append(combined_vec) #now we preserve our best individuals and drop the last x mutated individuals num_best = int(self.winner_pool*self.population_size) self.population = self.population[:num_best] + mutated_population[:len(mutated_population)-num_best] def transpose(self): """ Transpose is another mutation function where we mimic actual transposons moving a random sequence from one location and inserting it into another location""" pass def breed(self, replace=True): """ given the top x percent breed new solutions """ num_breeders = int(self.winner_pool*self.population_size) breeders = self.population[:num_breeders] num_children = self.population_size - num_breeders pairings = np.random.choice(num_breeders, num_children, replace=replace) children = [] for i,pair in enumerate(pairings): i1 = int(i%len(breeders)) i2 = int(pair%len(breeders)) parent1 = breeders[i1] parent2 = breeders[i2] child_vector = [] #create our vector [0,1,0,0..] which chooses which item to take from each individual breed_vector = np.random.choice(2, len(breeders[0])) for i,v in enumerate(breed_vector): if v == 0: child_vector.append(parent1[i]) else: child_vector.append(parent2[i]) children.append(child_vector) #now create our new population self.population = self.population[:num_breeders] + children def evaluate(self): """ evaluate the fitness of each individual sort the individuals by fitness (descending order with most fit first) if any individual is of max_fitness then return true, else false """ scored = [] for individual in self.population: fitness = self.fitness_func(individual) scored.append((individual,fitness)) #sort our individuals by fitness (Descending) sorted_pop = sorted(scored, reverse=True, key=lambda x: x[1]) #sort our population in descending fitness self.population = [x[0] for x in sorted_pop] #return just our fitness scores return [x[1] for x in sorted_pop] def evolve(self): """ main for-loop for genetic algorithm""" for i in range(0,self.max_generations): pop_fitness = self.evaluate() if self.verbose == True: print("Generation: ", i, " Top fitness: ", pop_fitness[0]) if pop_fitness[0] >= self.max_fitness: return self.population self.breed() self.mutate() #reached max generations without getting a max_fitness return self.population
[ 11748, 299, 32152, 355, 45941, 198, 6738, 4738, 1330, 43720, 600, 198, 198, 4871, 3602, 1930, 261, 7, 15252, 2599, 198, 197, 37811, 3602, 1930, 261, 318, 674, 2276, 1398, 973, 329, 16673, 220, 198, 197, 282, 7727, 907, 5625, 284, 30104, 37811, 628, 197, 4299, 41216, 7, 944, 2599, 198, 197, 197, 37811, 5621, 510, 674, 3265, 290, 29348, 220, 198, 197, 197, 454, 13547, 25439, 318, 286, 3376, 2099, 198, 197, 197, 37811, 198, 197, 197, 30493, 2116, 13, 76, 7094, 62, 4873, 18189, 657, 13, 15, 198, 197, 197, 30493, 2116, 13, 76, 7094, 62, 4873, 19841, 352, 13, 15, 198, 197, 197, 30493, 2116, 13, 69, 3659, 62, 20786, 14512, 6045, 198, 197, 197, 30493, 2116, 13, 39791, 62, 7742, 18189, 657, 13, 15, 198, 197, 197, 30493, 2116, 13, 39791, 62, 7742, 19841, 352, 13, 15, 198, 197, 197, 30493, 2116, 13, 31364, 62, 11925, 18189, 657, 13, 15, 628, 197, 197, 2, 40406, 257, 4738, 15879, 290, 6818, 326, 674, 13547, 62, 20786, 318, 286, 3376, 2099, 198, 197, 197, 25120, 62, 31364, 796, 2116, 13, 17953, 62, 31364, 3419, 198, 197, 197, 2, 1904, 674, 13547, 2163, 11, 6818, 326, 262, 1988, 318, 3376, 198, 197, 197, 69, 3659, 796, 2116, 13, 69, 3659, 62, 20786, 7, 25120, 62, 31364, 8, 198, 197, 197, 30493, 13547, 18189, 657, 13, 15, 198, 197, 197, 2, 2197, 2251, 674, 3265, 198, 197, 197, 39748, 796, 685, 25120, 62, 31364, 60, 198, 197, 197, 1640, 1312, 287, 2837, 7, 16, 11, 944, 13, 39748, 62, 7857, 2599, 198, 197, 197, 197, 39748, 13, 33295, 7, 944, 13, 17953, 62, 31364, 28955, 198, 197, 197, 944, 13, 39748, 796, 3265, 628, 198, 197, 4299, 2251, 62, 31364, 7, 944, 11, 6330, 28, 25101, 2599, 198, 197, 197, 37811, 198, 197, 197, 16447, 257, 4738, 15879, 198, 197, 197, 33491, 796, 1771, 393, 407, 356, 460, 6330, 3815, 357, 12286, 3991, 11, 37941, 25, 1123, 1988, 318, 3748, 8, 198, 197, 197, 37811, 198, 197, 197, 7783, 45941, 13, 25120, 13, 25541, 7, 944, 13, 27160, 11, 2116, 13, 31364, 62, 11925, 11, 6330, 28, 33491, 737, 83, 349, 396, 3419, 628, 197, 4299, 4517, 378, 7, 944, 2599, 198, 197, 197, 37811, 2251, 23005, 15456, 1912, 319, 262, 15148, 2494, 198, 197, 197, 18302, 11184, 8464, 5933, 523, 326, 262, 1266, 3925, 3588, 470, 48865, 198, 197, 197, 37811, 198, 197, 197, 198, 197, 197, 361, 2116, 13, 76, 7094, 62, 4873, 6624, 657, 25, 198, 197, 197, 197, 7783, 628, 197, 197, 21973, 515, 62, 39748, 796, 17635, 198, 197, 197, 198, 197, 197, 1640, 1312, 11, 43129, 287, 27056, 378, 7, 944, 13, 39748, 2599, 198, 197, 197, 197, 76, 7094, 62, 35138, 796, 45941, 13, 25120, 13, 25541, 7, 17, 11, 18896, 7, 43129, 828, 279, 41888, 16, 13, 15, 12, 944, 13, 76, 7094, 62, 4873, 11, 2116, 13, 76, 7094, 62, 4873, 12962, 198, 197, 197, 197, 24011, 1389, 62, 35138, 796, 17635, 628, 197, 197, 197, 1640, 1312, 11, 76, 287, 27056, 378, 7, 76, 7094, 62, 35138, 2599, 198, 197, 197, 197, 197, 361, 285, 6624, 352, 25, 198, 197, 197, 197, 197, 197, 2, 25120, 15148, 198, 197, 197, 197, 197, 197, 25192, 796, 43720, 600, 7, 944, 13, 1084, 62, 8367, 11, 2116, 13, 9806, 62, 8367, 8, 198, 197, 197, 197, 197, 197, 24011, 1389, 62, 35138, 13, 33295, 7, 25192, 8, 198, 197, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 197, 2, 3919, 15148, 198, 197, 197, 197, 197, 197, 24011, 1389, 62, 35138, 13, 33295, 7, 43129, 58, 72, 12962, 198, 197, 197, 197, 21973, 515, 62, 39748, 13, 33295, 7, 24011, 1389, 62, 35138, 8, 628, 197, 197, 2, 2197, 356, 12201, 674, 1266, 3925, 290, 4268, 262, 938, 2124, 48865, 3925, 198, 197, 197, 22510, 62, 13466, 796, 493, 7, 944, 13, 39791, 62, 7742, 9, 944, 13, 39748, 62, 7857, 8, 198, 197, 197, 944, 13, 39748, 796, 2116, 13, 39748, 58, 25, 22510, 62, 13466, 60, 1343, 48865, 62, 39748, 58, 25, 11925, 7, 21973, 515, 62, 39748, 13219, 22510, 62, 13466, 60, 628, 198, 197, 4299, 1007, 3455, 7, 944, 2599, 198, 197, 197, 37811, 3602, 3455, 318, 1194, 15148, 2163, 810, 356, 26332, 4036, 1007, 1930, 684, 198, 197, 197, 31462, 257, 4738, 8379, 422, 530, 4067, 290, 19319, 340, 656, 1194, 4067, 37811, 198, 197, 197, 6603, 628, 197, 4299, 15939, 7, 944, 11, 6330, 28, 17821, 2599, 198, 197, 197, 37811, 1813, 262, 1353, 2124, 1411, 15939, 649, 8136, 37227, 198, 197, 197, 198, 197, 197, 22510, 62, 4679, 276, 364, 796, 493, 7, 944, 13, 39791, 62, 7742, 9, 944, 13, 39748, 62, 7857, 8, 198, 197, 197, 4679, 276, 364, 796, 2116, 13, 39748, 58, 25, 22510, 62, 4679, 276, 364, 60, 628, 197, 197, 22510, 62, 17197, 796, 2116, 13, 39748, 62, 7857, 532, 997, 62, 4679, 276, 364, 198, 197, 197, 24874, 654, 796, 45941, 13, 25120, 13, 25541, 7, 22510, 62, 4679, 276, 364, 11, 997, 62, 17197, 11, 6330, 28, 33491, 8, 198, 197, 197, 17197, 796, 17635, 628, 197, 197, 1640, 1312, 11, 24874, 287, 27056, 378, 7, 24874, 654, 2599, 198, 197, 197, 197, 72, 16, 796, 493, 7, 72, 4, 11925, 7, 4679, 276, 364, 4008, 198, 197, 197, 197, 72, 17, 796, 493, 7, 24874, 4, 11925, 7, 4679, 276, 364, 4008, 198, 197, 197, 197, 8000, 16, 796, 15939, 364, 58, 72, 16, 60, 198, 197, 197, 197, 8000, 17, 796, 15939, 364, 58, 72, 17, 60, 198, 197, 197, 197, 9410, 62, 31364, 796, 17635, 198, 197, 197, 197, 2, 17953, 674, 15879, 685, 15, 11, 16, 11, 15, 11, 15, 492, 60, 543, 19769, 543, 2378, 284, 1011, 422, 1123, 1981, 198, 197, 197, 197, 4679, 276, 62, 31364, 796, 45941, 13, 25120, 13, 25541, 7, 17, 11, 18896, 7, 4679, 276, 364, 58, 15, 60, 4008, 220, 198, 197, 197, 197, 1640, 1312, 11, 85, 287, 27056, 378, 7, 4679, 276, 62, 31364, 2599, 198, 197, 197, 197, 197, 361, 410, 6624, 657, 25, 198, 197, 197, 197, 197, 197, 9410, 62, 31364, 13, 33295, 7, 8000, 16, 58, 72, 12962, 198, 197, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 197, 9410, 62, 31364, 13, 33295, 7, 8000, 17, 58, 72, 12962, 198, 197, 197, 197, 17197, 13, 33295, 7, 9410, 62, 31364, 8, 198, 197, 197, 2, 2197, 2251, 674, 649, 3265, 198, 197, 197, 944, 13, 39748, 796, 2116, 13, 39748, 58, 25, 22510, 62, 4679, 276, 364, 60, 1343, 1751, 628, 197, 4299, 13446, 7, 944, 2599, 198, 197, 197, 37811, 220, 198, 197, 197, 49786, 262, 13547, 286, 1123, 1981, 198, 197, 197, 30619, 262, 3925, 416, 13547, 357, 20147, 1571, 1502, 351, 749, 4197, 717, 8, 198, 197, 197, 361, 597, 1981, 318, 286, 3509, 62, 69, 3659, 788, 1441, 2081, 11, 2073, 3991, 198, 197, 197, 37811, 198, 197, 197, 1416, 1850, 796, 17635, 198, 197, 197, 1640, 1981, 287, 2116, 13, 39748, 25, 198, 197, 197, 197, 69, 3659, 796, 2116, 13, 69, 3659, 62, 20786, 7, 43129, 8, 198, 197, 197, 197, 1416, 1850, 13, 33295, 19510, 43129, 11, 69, 3659, 4008, 198, 197, 197, 2, 30619, 674, 3925, 416, 13547, 357, 24564, 1571, 8, 198, 197, 197, 82, 9741, 62, 12924, 796, 23243, 7, 1416, 1850, 11, 9575, 28, 17821, 11, 1994, 28, 50033, 2124, 25, 2124, 58, 16, 12962, 628, 197, 197, 2, 30619, 674, 3265, 287, 31491, 13547, 198, 197, 197, 944, 13, 39748, 796, 685, 87, 58, 15, 60, 329, 2124, 287, 23243, 62, 12924, 60, 198, 197, 197, 2, 7783, 655, 674, 13547, 8198, 198, 197, 197, 7783, 685, 87, 58, 16, 60, 329, 2124, 287, 23243, 62, 12924, 60, 628, 197, 4299, 18101, 7, 944, 2599, 198, 197, 197, 37811, 1388, 329, 12, 26268, 329, 8513, 11862, 37811, 198, 197, 197, 1640, 1312, 287, 2837, 7, 15, 11, 944, 13, 9806, 62, 8612, 602, 2599, 198, 197, 197, 197, 12924, 62, 69, 3659, 796, 2116, 13, 49786, 3419, 198, 197, 197, 197, 361, 2116, 13, 19011, 577, 6624, 6407, 25, 198, 197, 197, 197, 197, 4798, 7203, 8645, 341, 25, 33172, 1312, 11, 366, 5849, 13547, 25, 33172, 1461, 62, 69, 3659, 58, 15, 12962, 198, 197, 197, 197, 361, 1461, 62, 69, 3659, 58, 15, 60, 18189, 2116, 13, 9806, 62, 69, 3659, 25, 198, 197, 197, 197, 197, 7783, 2116, 13, 39748, 198, 197, 197, 197, 944, 13, 4679, 276, 3419, 198, 197, 197, 197, 944, 13, 21973, 378, 3419, 198, 197, 197, 2, 260, 2317, 3509, 10439, 1231, 1972, 257, 3509, 62, 69, 3659, 198, 197, 197, 7783, 2116, 13, 39748, 628 ]
2.891929
1,462
for i in range(int(input())): solution() #Author: Dharmik Bhadra
[ 220, 220, 220, 220, 201, 198, 1640, 1312, 287, 2837, 7, 600, 7, 15414, 28955, 2599, 201, 198, 220, 220, 220, 4610, 3419, 201, 198, 201, 198, 2, 13838, 25, 20529, 1670, 1134, 16581, 49456 ]
2.228571
35
# -*- coding: utf-8 -*- from math import sqrt
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 10688, 1330, 19862, 17034, 628 ]
2.35
20
# coding: utf-8 from builtins import object import time import threading from xTool.compat import PY3 if PY3: from threading import BoundedSemaphore else: from threading import _BoundedSemaphore as BoundedSemaphore class BoundedEmptySemaphore(BoundedSemaphore): """ A bounded semaphore that is initially empty. """ class GlobalThrottle(object): """一个线程安全的全局限速器,用于访问全局资源;可以应用到所有的线程上。 也可以认为是一个令牌桶算法,BoundedEmptySemaphore就是一个令牌桶。 A thread-safe rate limiter that throttles all threads globally. This should be used to regulate access to a global resource. It can be used as a function/method decorator or as a simple object, using the throttle() method. The token generation starts with the first call to throttle() or the decorated function. Each subsequent call to throttle() will then acquire a token, possibly having to wait until one becomes available. The number of unused tokens will not exceed a limit given at construction time. This is a very basic mechanism to prevent the resource from becoming swamped after longer pauses. """ def __init__(self, min_interval, max_unused): """ :param min_interval: 资源探测的间隔时间,也即令牌的生成间隔 :param max_unused: 信号量的大小,即资源的数量,也即令牌的数量 """ # 线程的间隔时间 self.min_interval = min_interval # 创建信号量,并调用acquire使其内部计数器等于0,阻塞进程 self.semaphore = BoundedEmptySemaphore(max_unused) # 创建线程锁 self.thread_start_lock = threading.Lock() # 默认不启动线程 self.thread_started = False # 创建线程 self.thread = threading.Thread(target=self.generator) # 主线程结束时,子线程也随之结束 self.thread.daemon = True def throttle(self, wait=True): """ If the wait parameter is True, this method returns True after suspending the current thread as necessary to ensure that no less than the configured minimum interval passed since the most recent time an invocation of this method returned True in any thread. If the wait parameter is False, this method immediatly returns True if at least the configured minimum interval has passed since the most recent time this method returned True in any thread, or False otherwise. """ # I think there is a race in Thread.start(), hence the lock with self.thread_start_lock: # 启动子线程,不停地释放信号量 if not self.thread_started: self.thread.start() self.thread_started = True # 新请求来临时,会各自拿走一个Token, 如果没有Token可拿了就阻塞或者拒绝服务. return self.semaphore.acquire(blocking=wait) class LocalThrottle(object): """一个线程安全的单个线程限速器,在指定时间间隔后才会运行 A thread-safe rate limiter that throttles each thread independently. Can be used as a function or method decorator or as a simple object, via its .throttle() method. The use as a decorator is deprecated in favor of throttle(). """ def __init__(self, min_interval): """ Initialize this local throttle. :param min_interval: The minimum interval in seconds between invocations of the throttle method or, if this throttle is used as a decorator, invocations of the decorated method. """ self.min_interval = min_interval # 线程局部变量 self.per_thread = threading.local() self.per_thread.last_invocation = None def throttle(self, wait=True): """ If the wait parameter is True, this method returns True after suspending the current thread as necessary to ensure that no less than the configured minimum interval has passed since the last invocation of this method in the current thread returned True. If the wait parameter is False, this method immediatly returns True (if at least the configured minimum interval has passed since the last time this method returned True in the current thread) or False otherwise. """ now = time.time() last_invocation = self.per_thread.last_invocation if last_invocation is not None: # 计算时间过了多久 interval = now - last_invocation # 时间未过期,继续等待;到期后执行函数 if interval < self.min_interval: if wait: remainder = self.min_interval - interval time.sleep(remainder) else: return False self.per_thread.last_invocation = time.time() return True class throttle(object): # pylint: disable=invalid-name """在函数执行之后等待,直到超时;如果有异常不等待 A context manager for ensuring that the execution of its body takes at least a given amount of time, sleeping if necessary. It is a simpler version of LocalThrottle if used as a decorator. Ensures that body takes at least the given amount of time. """
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 3170, 1040, 1330, 2134, 198, 11748, 640, 198, 11748, 4704, 278, 198, 6738, 2124, 25391, 13, 5589, 265, 1330, 350, 56, 18, 198, 198, 361, 350, 56, 18, 25, 198, 220, 220, 220, 422, 4704, 278, 1330, 347, 6302, 13900, 6570, 382, 198, 17772, 25, 198, 220, 220, 220, 422, 4704, 278, 1330, 4808, 33, 6302, 13900, 6570, 382, 355, 347, 6302, 13900, 6570, 382, 628, 198, 4871, 347, 6302, 40613, 13900, 6570, 382, 7, 33, 6302, 13900, 6570, 382, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 49948, 5026, 6570, 382, 326, 318, 7317, 6565, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 8060, 817, 305, 23296, 7, 15252, 2599, 198, 220, 220, 220, 37227, 31660, 10310, 103, 163, 118, 123, 163, 101, 233, 22522, 231, 17739, 101, 21410, 17739, 101, 161, 109, 222, 165, 247, 238, 34460, 253, 161, 247, 101, 171, 120, 234, 18796, 101, 12859, 236, 164, 106, 123, 29785, 106, 17739, 101, 161, 109, 222, 164, 113, 226, 162, 118, 238, 171, 120, 249, 20998, 107, 20015, 98, 41753, 242, 18796, 101, 26344, 108, 33699, 222, 17312, 231, 21410, 163, 118, 123, 163, 101, 233, 41468, 16764, 628, 220, 220, 220, 220, 20046, 253, 20998, 107, 20015, 98, 164, 106, 97, 10310, 118, 42468, 31660, 10310, 103, 20015, 97, 31965, 234, 162, 94, 114, 163, 106, 245, 37345, 243, 171, 120, 234, 33, 6302, 40613, 13900, 6570, 382, 22887, 109, 42468, 31660, 10310, 103, 20015, 97, 31965, 234, 162, 94, 114, 16764, 628, 220, 220, 220, 317, 4704, 12, 21230, 2494, 1761, 2676, 326, 46692, 829, 477, 14390, 18309, 13, 770, 815, 307, 973, 284, 198, 220, 220, 220, 16697, 1895, 284, 257, 3298, 8271, 13, 632, 460, 307, 973, 355, 257, 2163, 14, 24396, 11705, 1352, 393, 355, 257, 198, 220, 220, 220, 2829, 2134, 11, 1262, 262, 29976, 3419, 2446, 13, 383, 11241, 5270, 4940, 351, 262, 717, 869, 198, 220, 220, 220, 284, 29976, 3419, 393, 262, 24789, 2163, 13, 5501, 8840, 869, 284, 29976, 3419, 481, 788, 12831, 198, 220, 220, 220, 257, 11241, 11, 5457, 1719, 284, 4043, 1566, 530, 4329, 1695, 13, 383, 1271, 286, 21958, 16326, 198, 220, 220, 220, 481, 407, 7074, 257, 4179, 1813, 379, 5103, 640, 13, 770, 318, 257, 845, 4096, 9030, 284, 198, 220, 220, 220, 2948, 262, 8271, 422, 5033, 1509, 13322, 706, 2392, 37622, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 949, 62, 3849, 2100, 11, 3509, 62, 403, 1484, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 949, 62, 3849, 2100, 25, 5525, 113, 226, 162, 118, 238, 162, 236, 95, 38184, 233, 21410, 29785, 112, 49694, 242, 33768, 114, 29785, 112, 171, 120, 234, 20046, 253, 39355, 111, 20015, 97, 31965, 234, 21410, 37955, 22755, 238, 29785, 112, 49694, 242, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3509, 62, 403, 1484, 25, 220, 46479, 94, 20998, 115, 34932, 237, 21410, 32014, 22887, 237, 171, 120, 234, 39355, 111, 164, 113, 226, 162, 118, 238, 21410, 46763, 108, 34932, 237, 171, 120, 234, 20046, 253, 39355, 111, 20015, 97, 31965, 234, 21410, 46763, 108, 34932, 237, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13328, 118, 123, 163, 101, 233, 21410, 29785, 112, 49694, 242, 33768, 114, 29785, 112, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 62, 3849, 2100, 796, 949, 62, 3849, 2100, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 230, 249, 161, 119, 118, 46479, 94, 20998, 115, 34932, 237, 171, 120, 234, 33176, 114, 164, 108, 225, 18796, 101, 330, 29782, 45635, 17739, 114, 37863, 227, 32849, 101, 164, 106, 94, 46763, 108, 161, 247, 101, 163, 255, 231, 12859, 236, 15, 171, 120, 234, 165, 246, 119, 161, 94, 252, 32573, 249, 163, 101, 233, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43616, 6570, 382, 796, 347, 6302, 40613, 13900, 6570, 382, 7, 9806, 62, 403, 1484, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 230, 249, 161, 119, 118, 163, 118, 123, 163, 101, 233, 165, 242, 223, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 62, 9688, 62, 5354, 796, 4704, 278, 13, 25392, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16268, 119, 246, 164, 106, 97, 38834, 28938, 107, 27950, 101, 163, 118, 123, 163, 101, 233, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 62, 46981, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 230, 249, 161, 119, 118, 163, 118, 123, 163, 101, 233, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 796, 4704, 278, 13, 16818, 7, 16793, 28, 944, 13, 8612, 1352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 10310, 119, 163, 118, 123, 163, 101, 233, 163, 119, 241, 30266, 253, 33768, 114, 171, 120, 234, 36310, 163, 118, 123, 163, 101, 233, 20046, 253, 49694, 237, 45298, 163, 119, 241, 30266, 253, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 13, 6814, 7966, 796, 6407, 628, 220, 220, 220, 825, 29976, 7, 944, 11, 4043, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4043, 11507, 318, 6407, 11, 428, 2446, 5860, 6407, 706, 47499, 262, 1459, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 355, 3306, 284, 4155, 326, 645, 1342, 621, 262, 17839, 5288, 16654, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 1201, 262, 749, 2274, 640, 281, 43219, 286, 428, 2446, 4504, 6407, 287, 597, 4704, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4043, 11507, 318, 10352, 11, 428, 2446, 2729, 265, 306, 5860, 6407, 611, 379, 1551, 262, 198, 220, 220, 220, 220, 220, 220, 220, 17839, 5288, 16654, 468, 3804, 1201, 262, 749, 2274, 640, 428, 2446, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 287, 597, 4704, 11, 393, 10352, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 314, 892, 612, 318, 257, 3234, 287, 14122, 13, 9688, 22784, 12891, 262, 5793, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 16663, 62, 9688, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 238, 107, 27950, 101, 36310, 163, 118, 123, 163, 101, 233, 171, 120, 234, 38834, 161, 223, 250, 28839, 108, 34932, 232, 162, 242, 122, 46479, 94, 20998, 115, 34932, 237, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 16663, 62, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16663, 62, 46981, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 244, 108, 46237, 115, 162, 109, 224, 30266, 98, 10310, 112, 33768, 114, 11, 27670, 248, 28938, 226, 164, 229, 103, 162, 233, 123, 164, 113, 108, 31660, 10310, 103, 30642, 11, 10263, 99, 224, 162, 252, 250, 162, 110, 94, 17312, 231, 30642, 20998, 107, 162, 233, 123, 12859, 228, 22887, 109, 165, 246, 119, 161, 94, 252, 22755, 244, 38519, 162, 233, 240, 163, 119, 251, 17312, 235, 27950, 94, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 43616, 6570, 382, 13, 330, 29782, 7, 41938, 28, 17077, 8, 628, 198, 4871, 10714, 817, 305, 23296, 7, 15252, 2599, 198, 220, 220, 220, 37227, 31660, 10310, 103, 163, 118, 123, 163, 101, 233, 22522, 231, 17739, 101, 21410, 39355, 243, 10310, 103, 163, 118, 123, 163, 101, 233, 165, 247, 238, 34460, 253, 161, 247, 101, 171, 120, 234, 28839, 101, 162, 234, 229, 22522, 248, 33768, 114, 29785, 112, 29785, 112, 49694, 242, 28938, 236, 33699, 235, 27670, 248, 32573, 238, 26193, 234, 198, 220, 220, 220, 317, 4704, 12, 21230, 2494, 1761, 2676, 326, 46692, 829, 1123, 4704, 14799, 13, 1680, 307, 973, 355, 257, 198, 220, 220, 220, 2163, 393, 2446, 11705, 1352, 393, 355, 257, 2829, 2134, 11, 2884, 663, 764, 26110, 23296, 3419, 2446, 13, 628, 220, 220, 220, 383, 779, 355, 257, 11705, 1352, 318, 39224, 287, 2661, 286, 29976, 22446, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 949, 62, 3849, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 428, 1957, 29976, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 949, 62, 3849, 2100, 25, 383, 5288, 16654, 287, 4201, 1022, 800, 20968, 286, 262, 29976, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 393, 11, 611, 428, 29976, 318, 973, 355, 257, 11705, 1352, 11, 800, 20968, 286, 262, 24789, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1084, 62, 3849, 2100, 796, 949, 62, 3849, 2100, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13328, 118, 123, 163, 101, 233, 161, 109, 222, 32849, 101, 20998, 246, 34932, 237, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 525, 62, 16663, 796, 4704, 278, 13, 12001, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 525, 62, 16663, 13, 12957, 62, 16340, 5040, 796, 6045, 628, 220, 220, 220, 825, 29976, 7, 944, 11, 4043, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4043, 11507, 318, 6407, 11, 428, 2446, 5860, 6407, 706, 47499, 262, 1459, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 355, 3306, 284, 4155, 326, 645, 1342, 621, 262, 17839, 5288, 16654, 468, 198, 220, 220, 220, 220, 220, 220, 220, 3804, 1201, 262, 938, 43219, 286, 428, 2446, 287, 262, 1459, 4704, 4504, 6407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4043, 11507, 318, 10352, 11, 428, 2446, 2729, 265, 306, 5860, 6407, 357, 361, 379, 1551, 262, 198, 220, 220, 220, 220, 220, 220, 220, 17839, 5288, 16654, 468, 3804, 1201, 262, 938, 640, 428, 2446, 4504, 6407, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1459, 4704, 8, 393, 10352, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 783, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 16340, 5040, 796, 2116, 13, 525, 62, 16663, 13, 12957, 62, 16340, 5040, 198, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 16340, 5040, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 106, 94, 163, 106, 245, 33768, 114, 29785, 112, 32573, 229, 12859, 228, 13783, 248, 20046, 227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 796, 783, 532, 938, 62, 16340, 5040, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 245, 114, 29785, 112, 17312, 103, 32573, 229, 17312, 253, 171, 120, 234, 163, 119, 100, 163, 119, 255, 163, 255, 231, 36181, 227, 171, 120, 249, 26344, 108, 17312, 253, 28938, 236, 33699, 100, 26193, 234, 49035, 121, 46763, 108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16654, 1279, 2116, 13, 1084, 62, 3849, 2100, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17675, 796, 2116, 13, 1084, 62, 3849, 2100, 532, 16654, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 2787, 391, 1082, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 525, 62, 16663, 13, 12957, 62, 16340, 5040, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 198, 4871, 29976, 7, 15252, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 37227, 28839, 101, 49035, 121, 46763, 108, 33699, 100, 26193, 234, 45298, 28938, 236, 163, 255, 231, 36181, 227, 171, 120, 234, 33566, 112, 26344, 108, 164, 41678, 33768, 114, 171, 120, 249, 36685, 224, 162, 252, 250, 17312, 231, 28156, 224, 30585, 116, 38834, 163, 255, 231, 36181, 227, 198, 220, 220, 220, 317, 4732, 4706, 329, 13359, 326, 262, 9706, 286, 663, 1767, 2753, 379, 1551, 257, 1813, 2033, 198, 220, 220, 220, 286, 640, 11, 11029, 611, 3306, 13, 632, 318, 257, 18599, 2196, 286, 10714, 817, 305, 23296, 611, 973, 355, 257, 198, 220, 220, 220, 11705, 1352, 13, 628, 220, 220, 220, 48221, 942, 326, 1767, 2753, 379, 1551, 262, 1813, 2033, 286, 640, 13, 198, 220, 220, 220, 37227, 198 ]
2.126532
2,284
import asyncio import glob as _glob import itertools as _iter import pathlib as _path import random as _rand import functools from pyperator import IP from pyperator.nodes import Component from pyperator.utils import InputPort, OutputPort, FilePort from pyperator.decorators import log_schedule, component, inport, outport class GeneratorSource(Component): """ This is a component that returns a single element from a generator passed at initalization time to 'gen' to a single output 'OUT' """ @log_schedule class FormatString(Component): """ This component formats a string "{}" given on the port "pattern" the values of the input packets and sends it to "OUT" """ class GlobSource(Component): """ This is a component that emits Packets according to a glob pattern specified when the component is initialized """ @log_schedule class Product(Component): """ This component generates the cartesian product of the packets incoming from each ports and then sends them to the output port `OUT` as bracket IPs. Alternatively, by providing a function `fun` to the constructor, another combinatorial function can be used to generate the packets. """ @log_schedule class FileListSource(Component): """ This is a component that emits InformationPackets from a list of files """ @log_schedule class ReplacePath(Component): """ This is a component that emits InformationPackets with a path obtained by replacing the input path """ @log_schedule class Split(Component): """ This component splits the input tuple into separate ouputs; the number of elements is given with `n_outs` """ @log_schedule # class IterSource(Component): # """ # This component returns a Bracket IP # from a itertool function such as product # """ # # def __init__(self, name, *generators, function=_iter.combinations): # super(IterSource, self).__init__(name) # self.generators = generators # self.outputs.add(OutputPort('OUT')) # self.function = function # # @log_schedule # async def __call__(self): # for items in self.function(*self.generators): # open = IP.OpenBracket() # await self.outputs.OUT.send_packet(open) # for item in items: # packet = IP.InformationPacket(item) # await self.outputs.OUT.send_packet(packet) # await self.outputs.OUT.send_packet(IP.CloseBracket()) # await asyncio.sleep(0) # await self.close_downstream() class ConstantSource(Component): """ This is a component that continously outputs a constant to the output 'OUT', up to to :repeat: times, infinitely if :repeat: is none The constant is given to the 'constant' port """ @log_schedule class Repeat(Component): """ This component receives from his input once only and keeps on repeating it on the output """ class Filter(Component): """ This component filters the input in 'IN' according to the given predicate in the port 'predicate' and sends it to the output 'OUT' if the predicate is true """ @log_schedule class BroadcastApplyFunction(Component): """ This component computes a function of the inputs and sends it to all outputs """ @log_schedule class OneOffProcess(BroadcastApplyFunction): """ This class awaits the upstream process once and then keeps on broadcasting the result to the outputs """ @log_schedule @outport('OUT') @inport('IN') @component async def Once(self): """ This component receives from `IN` once and sends the result to `OUT`. Afterwards, it closes :param self: :return: """ in_packet = await self.inputs.IN.receive_packet() await self.outputs.OUT.send_packet(in_packet.copy()) self.inputs.IN.close() @inport("IN")#: inputs : @outport("OUT") @component async def Repeat(self): """ This component receives from `IN` once and repeats it to `OUT` forever :param self: :return: """ in_packet= await self.inputs.IN.receive_packet() async with self.outputs.OUT as out: while True: await out.send_packet(in_packet.copy()) await asyncio.sleep(0) @inport('IN') @outport('count') @inport('reset', optional=True) @component async def Count(self): """ This component receives packets from `IN` and keeps a count that will be continously sent to `count` :param self: :return: """ count = 0 reset = False async with self.outputs.count as out: while True: pack = await self.inputs.IN.receive_packet() count += 1 reset = await self.inputs.reset.receive() if reset: count = 0 await self.outputs.count.send(count) await asyncio.sleep(0) @outport('OUT') @component async def WaitRandom(self): """ This component randomly sends an empty packets after having waited for a random amount of time :param self: :return: """ async with self.outputs.OUT as out: while True: waiting_time = _rand.uniform(0,3) self.log.debug('Will wait for {} '.format(waiting_time)) await asyncio.sleep(waiting_time) await self.outputs.OUT.send(True) await asyncio.sleep(0)
[ 11748, 30351, 952, 198, 11748, 15095, 355, 4808, 4743, 672, 198, 11748, 340, 861, 10141, 355, 4808, 2676, 198, 11748, 3108, 8019, 355, 4808, 6978, 198, 11748, 4738, 355, 4808, 25192, 198, 198, 11748, 1257, 310, 10141, 198, 198, 6738, 12972, 525, 1352, 1330, 6101, 198, 6738, 12972, 525, 1352, 13, 77, 4147, 1330, 35100, 198, 6738, 12972, 525, 1352, 13, 26791, 1330, 23412, 13924, 11, 25235, 13924, 11, 9220, 13924, 198, 6738, 12972, 525, 1352, 13, 12501, 273, 2024, 1330, 2604, 62, 15952, 5950, 11, 7515, 11, 287, 634, 11, 503, 634, 628, 198, 4871, 35986, 7416, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 7515, 326, 5860, 257, 2060, 5002, 422, 257, 17301, 198, 220, 220, 220, 3804, 379, 287, 1287, 1634, 640, 284, 705, 5235, 6, 198, 220, 220, 220, 284, 257, 2060, 5072, 705, 12425, 6, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 198, 198, 4871, 18980, 10100, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 17519, 198, 220, 220, 220, 257, 4731, 45144, 36786, 1813, 319, 198, 220, 220, 220, 262, 2493, 366, 33279, 1, 198, 220, 220, 220, 262, 3815, 286, 262, 5128, 24624, 198, 220, 220, 220, 290, 12800, 340, 284, 366, 12425, 1, 198, 220, 220, 220, 37227, 628, 198, 4871, 40713, 7416, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 7515, 326, 48300, 6400, 1039, 198, 220, 220, 220, 1864, 284, 257, 15095, 3912, 7368, 198, 220, 220, 220, 618, 262, 7515, 318, 23224, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 8721, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 18616, 262, 198, 220, 220, 220, 6383, 35610, 1720, 286, 262, 24624, 15619, 422, 1123, 14090, 290, 198, 220, 220, 220, 788, 12800, 606, 284, 262, 5072, 2493, 4600, 12425, 63, 355, 19096, 6101, 82, 13, 198, 220, 220, 220, 25929, 11, 416, 4955, 257, 2163, 4600, 12543, 63, 284, 262, 23772, 11, 1194, 198, 220, 220, 220, 1974, 20900, 498, 2163, 460, 307, 973, 284, 7716, 262, 24624, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 9220, 8053, 7416, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 7515, 326, 48300, 6188, 11869, 1039, 198, 220, 220, 220, 422, 257, 1351, 286, 3696, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 40177, 15235, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 7515, 326, 48300, 6188, 11869, 1039, 198, 220, 220, 220, 351, 257, 3108, 6492, 416, 13586, 262, 5128, 3108, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 27758, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 30778, 262, 5128, 46545, 656, 198, 220, 220, 220, 4553, 267, 929, 5500, 26, 262, 1271, 286, 4847, 318, 1813, 198, 220, 220, 220, 351, 4600, 77, 62, 5269, 63, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 2, 1398, 40806, 7416, 7, 21950, 2599, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 770, 7515, 5860, 257, 1709, 8317, 6101, 198, 2, 220, 220, 220, 220, 422, 257, 340, 861, 970, 2163, 884, 355, 1720, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11, 1635, 8612, 2024, 11, 2163, 28, 62, 2676, 13, 24011, 7352, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 29993, 7416, 11, 2116, 737, 834, 15003, 834, 7, 3672, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8612, 2024, 796, 27298, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 82, 13, 2860, 7, 26410, 13924, 10786, 12425, 6, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8818, 796, 2163, 198, 2, 198, 2, 220, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 198, 2, 220, 220, 220, 220, 30351, 825, 11593, 13345, 834, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3709, 287, 2116, 13, 8818, 46491, 944, 13, 8612, 2024, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 796, 6101, 13, 11505, 9414, 8317, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 12425, 13, 21280, 62, 8002, 316, 7, 9654, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 3709, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19638, 796, 6101, 13, 21918, 47, 8317, 7, 9186, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 12425, 13, 21280, 62, 8002, 316, 7, 8002, 316, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 12425, 13, 21280, 62, 8002, 316, 7, 4061, 13, 26125, 9414, 8317, 28955, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 15, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 19836, 62, 2902, 5532, 3419, 628, 198, 4871, 20217, 7416, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 7515, 326, 1261, 3481, 23862, 257, 6937, 284, 198, 220, 220, 220, 262, 5072, 705, 12425, 3256, 510, 284, 284, 1058, 44754, 25, 1661, 11, 32264, 611, 1058, 44754, 25, 318, 4844, 198, 220, 220, 220, 383, 6937, 318, 1813, 284, 262, 705, 9979, 415, 6, 2493, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 30021, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 11583, 198, 220, 220, 220, 422, 465, 5128, 1752, 691, 198, 220, 220, 220, 290, 7622, 319, 20394, 198, 220, 220, 220, 340, 319, 262, 5072, 198, 220, 220, 220, 37227, 628, 198, 4871, 25853, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 16628, 262, 5128, 287, 705, 1268, 6, 1864, 284, 262, 1813, 44010, 287, 262, 2493, 705, 28764, 5344, 6, 198, 220, 220, 220, 290, 12800, 340, 284, 262, 5072, 705, 12425, 6, 611, 262, 44010, 318, 2081, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 198, 4871, 44244, 44836, 22203, 7, 21950, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 552, 1769, 257, 2163, 286, 262, 17311, 198, 220, 220, 220, 290, 12800, 340, 284, 477, 23862, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 4871, 1881, 9362, 18709, 7, 30507, 2701, 44836, 22203, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 37180, 262, 28717, 1429, 1752, 290, 788, 7622, 319, 198, 220, 220, 220, 22978, 262, 1255, 284, 262, 23862, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 6404, 62, 15952, 5950, 628, 198, 31, 448, 634, 10786, 12425, 11537, 198, 31, 259, 634, 10786, 1268, 11537, 198, 31, 42895, 198, 292, 13361, 825, 4874, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 220, 198, 220, 220, 220, 11583, 422, 4600, 1268, 63, 1752, 290, 12800, 198, 220, 220, 220, 262, 1255, 284, 4600, 12425, 44646, 39063, 11, 340, 20612, 198, 220, 220, 220, 1058, 17143, 2116, 25, 220, 198, 220, 220, 220, 1058, 7783, 25, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 287, 62, 8002, 316, 796, 25507, 2116, 13, 15414, 82, 13, 1268, 13, 260, 15164, 62, 8002, 316, 3419, 198, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 12425, 13, 21280, 62, 8002, 316, 7, 259, 62, 8002, 316, 13, 30073, 28955, 198, 220, 220, 220, 2116, 13, 15414, 82, 13, 1268, 13, 19836, 3419, 628, 198, 31, 259, 634, 7203, 1268, 4943, 2, 25, 17311, 1058, 198, 31, 448, 634, 7203, 12425, 4943, 198, 31, 42895, 198, 292, 13361, 825, 30021, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 11583, 422, 4600, 1268, 63, 1752, 198, 220, 220, 220, 290, 29819, 340, 284, 4600, 12425, 63, 8097, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 2116, 25, 220, 198, 220, 220, 220, 1058, 7783, 25, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 287, 62, 8002, 316, 28, 25507, 2116, 13, 15414, 82, 13, 1268, 13, 260, 15164, 62, 8002, 316, 3419, 198, 220, 220, 220, 30351, 351, 2116, 13, 22915, 82, 13, 12425, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 503, 13, 21280, 62, 8002, 316, 7, 259, 62, 8002, 316, 13, 30073, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 15, 8, 628, 198, 31, 259, 634, 10786, 1268, 11537, 198, 31, 448, 634, 10786, 9127, 11537, 198, 31, 259, 634, 10786, 42503, 3256, 11902, 28, 17821, 8, 198, 31, 42895, 198, 292, 13361, 825, 2764, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 11583, 24624, 422, 4600, 1268, 63, 220, 198, 220, 220, 220, 290, 7622, 257, 954, 326, 481, 307, 1261, 3481, 198, 220, 220, 220, 1908, 284, 4600, 9127, 63, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 2116, 25, 220, 198, 220, 220, 220, 1058, 7783, 25, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 13259, 796, 10352, 198, 220, 220, 220, 30351, 351, 2116, 13, 22915, 82, 13, 9127, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2353, 796, 25507, 2116, 13, 15414, 82, 13, 1268, 13, 260, 15164, 62, 8002, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13259, 796, 25507, 2116, 13, 15414, 82, 13, 42503, 13, 260, 15164, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 9127, 13, 21280, 7, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 15, 8, 198, 198, 31, 448, 634, 10786, 12425, 11537, 198, 31, 42895, 198, 292, 13361, 825, 16314, 29531, 7, 944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 7515, 15456, 12800, 220, 198, 220, 220, 220, 281, 6565, 24624, 706, 1719, 13488, 329, 198, 220, 220, 220, 257, 4738, 2033, 286, 640, 198, 220, 220, 220, 1058, 17143, 2116, 25, 220, 198, 220, 220, 220, 1058, 7783, 25, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30351, 351, 2116, 13, 22915, 82, 13, 12425, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4953, 62, 2435, 796, 4808, 25192, 13, 403, 6933, 7, 15, 11, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 24442, 10786, 8743, 4043, 329, 23884, 45302, 18982, 7, 10247, 1780, 62, 2435, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 10247, 1780, 62, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13, 22915, 82, 13, 12425, 13, 21280, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 15, 8 ]
2.635199
2,108
from abc import ABC, abstractmethod from skimage.io import imread, imshow import matplotlib.pyplot as plt import random import numpy as np import matplotlib.patches as patches import os from torch.utils.data import Dataset, DataLoader import torch import glob if __name__ == "__main__": from configs import InputParser dataset = DataGeneratorTorch() data_loader = DataLoader(dataset, batch_size=4, shuffle=True) args = InputParser() data = DataGenerator(args) training_data_single = data.input_data('cracks','train',plot=False) training_data_all = data.label_maker() dataTorch = data.toTorchDataset(is_train=True) data_loader_lmd = DataLoader(dataTorch, batch_size=4, shuffle=True) print("Done")
[ 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 1341, 9060, 13, 952, 1330, 545, 961, 11, 545, 12860, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 8071, 2052, 355, 16082, 198, 11748, 28686, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 11748, 28034, 198, 11748, 15095, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 4566, 82, 1330, 23412, 46677, 198, 220, 220, 220, 27039, 796, 6060, 8645, 1352, 15884, 354, 3419, 198, 220, 220, 220, 1366, 62, 29356, 796, 6060, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 28, 19, 11, 36273, 28, 17821, 8, 198, 220, 220, 220, 26498, 796, 23412, 46677, 3419, 198, 220, 220, 220, 1366, 796, 6060, 8645, 1352, 7, 22046, 8, 628, 220, 220, 220, 3047, 62, 7890, 62, 29762, 796, 1366, 13, 15414, 62, 7890, 10786, 6098, 4595, 41707, 27432, 3256, 29487, 28, 25101, 8, 198, 220, 220, 220, 3047, 62, 7890, 62, 439, 796, 1366, 13, 18242, 62, 10297, 3419, 628, 220, 220, 220, 1366, 15884, 354, 796, 1366, 13, 1462, 15884, 354, 27354, 292, 316, 7, 271, 62, 27432, 28, 17821, 8, 198, 220, 220, 220, 1366, 62, 29356, 62, 75, 9132, 796, 6060, 17401, 7, 7890, 15884, 354, 11, 15458, 62, 7857, 28, 19, 11, 36273, 28, 17821, 8, 628, 220, 220, 220, 3601, 7203, 45677, 4943, 198, 220, 220, 220, 220 ]
2.8125
272
from uuid import UUID from botx import Bot, SendingMessage bot = Bot() CHAT_ID = UUID("1f972f5e-6d17-4f39-be5b-f7e20f1b4d13") BOT_ID = UUID("cc257e1c-c028-4181-a055-01e14ba881b0") CTS_HOST = "my-cts.example.com"
[ 6738, 334, 27112, 1330, 471, 27586, 198, 198, 6738, 10214, 87, 1330, 18579, 11, 32038, 12837, 198, 198, 13645, 796, 18579, 3419, 198, 31542, 62, 2389, 796, 471, 27586, 7203, 16, 69, 24, 4761, 69, 20, 68, 12, 21, 67, 1558, 12, 19, 69, 2670, 12, 1350, 20, 65, 12, 69, 22, 68, 1238, 69, 16, 65, 19, 67, 1485, 4943, 198, 33, 2394, 62, 2389, 796, 471, 27586, 7203, 535, 28676, 68, 16, 66, 12, 66, 46957, 12, 19, 27057, 12, 64, 47838, 12, 486, 68, 1415, 7012, 3459, 16, 65, 15, 4943, 198, 4177, 50, 62, 39, 10892, 796, 366, 1820, 12, 310, 82, 13, 20688, 13, 785, 1, 628 ]
1.919643
112
# -*- coding: utf-8 -*- """ Repair strategy - repair_ss: attempts at repairing a stacking sequence for the following constraints: - damage tolerance - contiguity - disorientation - 10% rule - balance """ __version__ = '2.0' __author__ = 'Noemie Fedon' import sys import numpy as np import numpy.matlib sys.path.append(r'C:\RELAY') from src.parameters import Parameters from src.constraints import Constraints from src.objectives import objectives from src.pretty_print import print_ss, print_list_ss from src.repair_10_bal import repair_10_bal from src.repair_10_bal import calc_mini_10 from src.repair_membrane import repair_membrane from src.repair_flexural import repair_flexural from src.repair_diso_contig import repair_diso_contig_list from src.one_stack import check_ss_manufacturability from src.lampam_functions import calc_lampam def repair_ss( ss, constraints, parameters, lampam_target, obj_no_constraints=None, count_obj=False): """ repairs stacking sequences to meet design and manufacturing guidelines and evaluates the performance of the repaired stacking sequence The repair process is deterministic and attempts at conducting minimal modification of the original stacking sequence with a preference for modifying outer plies that have the least influence on out-of-plane properties. step 1: repair for the 10% rule and balance step 2: refinement for in-plane lamination parameter convergence step 3: repair for disorientation and contiguity step 4: refinement for out-of-plane lamination parameter convergence (step 5: attribute a poor objective function value to unrepaired layups) OUTPUTS - INPUTS - ss: stacking sequence of the laminate - lampam_target: lamination parameter targets - constraints: instance of the class Constraints - parameters: instance of the class Parameters - count_obj: flag to count the number of objective function calls (- obj_no_constraints: objective function value of the initial stacking sequence with no consideration of design and manufacturing constraints) """ ss_ini = np.copy(ss) mini_10 = calc_mini_10(constraints, ss.size) # print('before repair') # print_ss(ss_ini) #-------------------------------------------------------------------------- # step 1 / repair for the 10% rule and balance #-------------------------------------------------------------------------- ss, ply_queue = repair_10_bal(ss, mini_10, constraints) # print('after repair 10 and balance') # print_ss(ss) # print(ply_queue) #-------------------------------------------------------------------------- # step 2 / improvement of the in-plane lamination parameter convergence #-------------------------------------------------------------------------- ss_list, ply_queue_list, _ = repair_membrane( ss=ss, ply_queue=ply_queue, mini_10=mini_10, in_plane_coeffs=parameters.weighting_finalA, parameters=parameters, constraints=constraints, lampam_target=lampam_target) # print('after repair for membrane properties') # for ind in range(len(ss_list)): # print('ind', ind) # print('ss_list[ind]', ss_list[ind]) # print('ply_queue_list[ind]', ply_queue_list[ind]) # if not is_ten_percent_rule(constraints, stack=ss_list[ind], # ply_queue=ply_queue_list[ind]): # print('lampam_target', lampam_target[0:4]) # raise Exception('10% rule not satisfied membrane') # print('ss_list[0]') # print_ss(ss_list[0]) # print('ply_queue_list[0]', ply_queue_list[0]) #-------------------------------------------------------------------------- # step 3 / repair for disorientation and contiguity #-------------------------------------------------------------------------- ss, completed_inward, completed_outward, ind = repair_diso_contig_list( ss_list, ply_queue_list, constraints, parameters.n_D1) # print('completed_inward, completed_outward, ind', # completed_inward, completed_outward, ind) if not completed_outward: # print('unsuccessful repair for disorientation and/or contiguity') if obj_no_constraints is None: if count_obj: return ss_ini, False, 0 else: return ss_ini, False if count_obj: return ss_ini, False, 1e10, 0 else: return ss_ini, False, 1e10 # print('successful repair for disorientation and/or contiguity') # print_ss(ss) #-------------------------------------------------------------------------- # step 4 / improvement of the out-of-plane lamination parameter convergence #-------------------------------------------------------------------------- ss = repair_flexural( ss=ss, out_of_plane_coeffs=parameters.weighting_finalD, lampam_target=lampam_target, constraints=constraints, parameters=parameters, count_obj=count_obj) if count_obj: ss, n_obj_func_D_calls = ss # print(' after repair') # print_ss(ss) # print('lampam_target', lampam_target) if obj_no_constraints is None: if count_obj: return ss, True, n_obj_func_D_calls else: return ss, True #-------------------------------------------------------------------------- # step 5 / #-------------------------------------------------------------------------- obj_no_constraints = objectives( lampam=calc_lampam(ss, constraints), lampam_target=lampam_target, lampam_weightings=parameters.lampam_weightings_final, constraints=constraints, parameters=parameters) if count_obj: return ss, True, 1e10, n_obj_func_D_calls else: return ss, True, 1e10 if __name__ == "__main__": print('\n*** Test for the function repair_ss ***') constraints = Constraints( sym=True, bal=True, ipo=True, dam_tol=False, rule_10_percent=True, diso=True, contig=True, delta_angle=45, n_contig=5, percent_0=10, percent_45=0, percent_90=10, percent_135=0, percent_45_135=10, set_of_angles=[0, 45, -45, 90]) ss = np.array([45, 90, 45, 90, -45, -45, -45, -45, 90, 45, 45, 45, 90, -45, 0, 0, 0, -45, 90, 45, 45, 45, 90, -45, -45, -45, -45, 90, 45, 90, 45], int) ss_target = 60*np.ones((1,), dtype=int) lampam_target = calc_lampam(ss_target) #========================================================================== # Optimiser Parameters #========================================================================== ### Techniques to enforce the constraints # repair to improve the convergence towards the in-plane lamination parameter # targets repair_membrane_switch = True # repair to improve the convergence towards the out-of-plane lamination # parameter targets repair_flexural_switch = True # balanced laminate scheme balanced_scheme = False # coefficient for the proportion of the laminate thickness that can be modified # during the refinement for membrane properties in the repair process p_A = 80 # number of plies in the last permutation during repair for disorientation # and/or contiguity n_D1 = 6 # number of ply shifts tested at each step of the re-designing process during # refinement for flexural properties n_D2 = 10 # number of times are redesigned during the refinement of flexural properties n_D3 = 2 # Lamination parameters to be considered in the multi-objective functions optimisation_type = 'D' set_of_angles = np.array([-45, 0, 45, 90], int) if optimisation_type == 'A': if set_of_angles is np.array([-45, 0, 45, 90], int): lampam_to_be_optimised = np.array([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]) else: lampam_to_be_optimised = np.array([1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) if optimisation_type == 'D': if set_of_angles is np.array([-45, 0, 45, 90], int): lampam_to_be_optimised = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]) else: lampam_to_be_optimised = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]) if optimisation_type == 'AD': if set_of_angles is np.array([-45, 0, 45, 90], int): lampam_to_be_optimised = np.array([1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0]) else: lampam_to_be_optimised = np.array([1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]) # Lamination parameters sensitivities from the first-lebel optimiser first_level_sensitivities = np.ones((12,), float) parameters = Parameters( constraints=constraints, p_A=p_A, n_D1=n_D1, n_D2=n_D2, n_D3=n_D3, first_level_sensitivities=first_level_sensitivities, lampam_to_be_optimised=lampam_to_be_optimised, repair_membrane_switch=repair_membrane_switch, repair_flexural_switch=repair_flexural_switch) ss, completed, n_obj_func_D_calls = repair_ss( ss, constraints, parameters, lampam_target, count_obj=True) print('Repair successful?', completed) print_ss(ss, 20) print('n_obj_func_D_calls', n_obj_func_D_calls) check_ss_manufacturability(ss, constraints)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 6207, 958, 4811, 198, 198, 12, 9185, 62, 824, 25, 198, 220, 220, 220, 6370, 379, 39005, 257, 41228, 8379, 329, 262, 1708, 17778, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2465, 15621, 198, 220, 220, 220, 220, 220, 220, 220, 532, 542, 328, 14834, 198, 220, 220, 220, 220, 220, 220, 220, 532, 595, 13989, 341, 198, 220, 220, 220, 220, 220, 220, 220, 532, 838, 4, 3896, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5236, 198, 37811, 198, 834, 9641, 834, 796, 705, 17, 13, 15, 6, 198, 834, 9800, 834, 796, 705, 2949, 368, 494, 10169, 261, 6, 198, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 6759, 8019, 198, 198, 17597, 13, 6978, 13, 33295, 7, 81, 6, 34, 7479, 16448, 4792, 11537, 198, 6738, 12351, 13, 17143, 7307, 1330, 40117, 198, 6738, 12351, 13, 1102, 2536, 6003, 1330, 1482, 2536, 6003, 198, 6738, 12351, 13, 15252, 1083, 1330, 15221, 198, 6738, 12351, 13, 37784, 62, 4798, 1330, 3601, 62, 824, 11, 3601, 62, 4868, 62, 824, 198, 6738, 12351, 13, 49932, 62, 940, 62, 6893, 1330, 9185, 62, 940, 62, 6893, 198, 6738, 12351, 13, 49932, 62, 940, 62, 6893, 1330, 42302, 62, 45313, 62, 940, 198, 6738, 12351, 13, 49932, 62, 11883, 1671, 1531, 1330, 9185, 62, 11883, 1671, 1531, 198, 6738, 12351, 13, 49932, 62, 32880, 1523, 1330, 9185, 62, 32880, 1523, 198, 6738, 12351, 13, 49932, 62, 6381, 78, 62, 3642, 328, 1330, 9185, 62, 6381, 78, 62, 3642, 328, 62, 4868, 198, 6738, 12351, 13, 505, 62, 25558, 1330, 2198, 62, 824, 62, 48119, 333, 1799, 198, 6738, 12351, 13, 75, 696, 321, 62, 12543, 2733, 1330, 42302, 62, 75, 696, 321, 198, 198, 4299, 9185, 62, 824, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 11, 17778, 11, 10007, 11, 20450, 321, 62, 16793, 11, 26181, 62, 3919, 62, 1102, 2536, 6003, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 954, 62, 26801, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20097, 41228, 16311, 284, 1826, 1486, 290, 9138, 9949, 198, 220, 220, 220, 290, 47850, 262, 2854, 286, 262, 27457, 41228, 8379, 628, 220, 220, 220, 383, 9185, 1429, 318, 2206, 49228, 290, 6370, 379, 14523, 10926, 198, 220, 220, 220, 17613, 286, 262, 2656, 41228, 8379, 351, 257, 12741, 329, 198, 220, 220, 220, 30620, 12076, 458, 444, 326, 423, 262, 1551, 4588, 319, 503, 12, 1659, 12, 14382, 198, 220, 220, 220, 6608, 13, 628, 220, 220, 220, 2239, 352, 25, 9185, 329, 262, 838, 4, 3896, 290, 5236, 198, 220, 220, 220, 2239, 362, 25, 47517, 329, 287, 12, 14382, 300, 24979, 11507, 40826, 198, 220, 220, 220, 2239, 513, 25, 9185, 329, 595, 13989, 341, 290, 542, 328, 14834, 198, 220, 220, 220, 2239, 604, 25, 47517, 329, 503, 12, 1659, 12, 14382, 300, 24979, 11507, 40826, 198, 220, 220, 220, 357, 9662, 642, 25, 11688, 257, 3595, 9432, 2163, 1988, 284, 555, 7856, 9820, 3830, 4739, 8, 628, 220, 220, 220, 16289, 30076, 50, 198, 220, 220, 220, 532, 628, 220, 220, 220, 3268, 30076, 50, 198, 220, 220, 220, 532, 37786, 25, 41228, 8379, 286, 262, 30592, 4559, 198, 220, 220, 220, 532, 20450, 321, 62, 16793, 25, 300, 24979, 11507, 6670, 198, 220, 220, 220, 532, 17778, 25, 4554, 286, 262, 1398, 1482, 2536, 6003, 198, 220, 220, 220, 532, 10007, 25, 4554, 286, 262, 1398, 40117, 198, 220, 220, 220, 532, 954, 62, 26801, 25, 6056, 284, 954, 262, 1271, 286, 9432, 2163, 3848, 198, 220, 220, 220, 13841, 26181, 62, 3919, 62, 1102, 2536, 6003, 25, 9432, 2163, 1988, 286, 262, 4238, 41228, 198, 220, 220, 220, 220, 8379, 351, 645, 9110, 286, 1486, 290, 9138, 17778, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37786, 62, 5362, 796, 45941, 13, 30073, 7, 824, 8, 198, 220, 220, 220, 9927, 62, 940, 796, 42302, 62, 45313, 62, 940, 7, 1102, 2536, 6003, 11, 37786, 13, 7857, 8, 198, 2, 220, 220, 220, 3601, 10786, 19052, 9185, 11537, 198, 2, 220, 220, 220, 3601, 62, 824, 7, 824, 62, 5362, 8, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 2239, 352, 1220, 9185, 329, 262, 838, 4, 3896, 290, 5236, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 37786, 11, 35960, 62, 36560, 796, 9185, 62, 940, 62, 6893, 7, 824, 11, 9927, 62, 940, 11, 17778, 8, 198, 2, 220, 220, 220, 3601, 10786, 8499, 9185, 838, 290, 5236, 11537, 198, 2, 220, 220, 220, 3601, 62, 824, 7, 824, 8, 198, 2, 220, 220, 220, 3601, 7, 2145, 62, 36560, 8, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 2239, 362, 1220, 9025, 286, 262, 287, 12, 14382, 300, 24979, 11507, 40826, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 37786, 62, 4868, 11, 35960, 62, 36560, 62, 4868, 11, 4808, 796, 9185, 62, 11883, 1671, 1531, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 28, 824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 35960, 62, 36560, 28, 2145, 62, 36560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9927, 62, 940, 28, 45313, 62, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 14382, 62, 1073, 14822, 82, 28, 17143, 7307, 13, 6551, 278, 62, 20311, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 28, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 28, 1102, 2536, 6003, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 16793, 28, 75, 696, 321, 62, 16793, 8, 198, 2, 220, 220, 220, 3601, 10786, 8499, 9185, 329, 25019, 6608, 11537, 198, 2, 220, 220, 220, 329, 773, 287, 2837, 7, 11925, 7, 824, 62, 4868, 8, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 521, 3256, 773, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 824, 62, 4868, 58, 521, 60, 3256, 37786, 62, 4868, 58, 521, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2145, 62, 36560, 62, 4868, 58, 521, 60, 3256, 35960, 62, 36560, 62, 4868, 58, 521, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 62, 1452, 62, 25067, 62, 25135, 7, 1102, 2536, 6003, 11, 8931, 28, 824, 62, 4868, 58, 521, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35960, 62, 36560, 28, 2145, 62, 36560, 62, 4868, 58, 521, 60, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 75, 696, 321, 62, 16793, 3256, 20450, 321, 62, 16793, 58, 15, 25, 19, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 940, 4, 3896, 407, 11378, 25019, 11537, 198, 2, 220, 220, 220, 3601, 10786, 824, 62, 4868, 58, 15, 60, 11537, 198, 2, 220, 220, 220, 3601, 62, 824, 7, 824, 62, 4868, 58, 15, 12962, 198, 2, 220, 220, 220, 3601, 10786, 2145, 62, 36560, 62, 4868, 58, 15, 60, 3256, 35960, 62, 36560, 62, 4868, 58, 15, 12962, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 2239, 513, 1220, 9185, 329, 595, 13989, 341, 290, 542, 328, 14834, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 37786, 11, 5668, 62, 259, 904, 11, 5668, 62, 448, 904, 11, 773, 796, 9185, 62, 6381, 78, 62, 3642, 328, 62, 4868, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 62, 4868, 11, 35960, 62, 36560, 62, 4868, 11, 17778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 13, 77, 62, 35, 16, 8, 198, 2, 220, 220, 220, 3601, 10786, 785, 16838, 62, 259, 904, 11, 5668, 62, 448, 904, 11, 773, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5668, 62, 259, 904, 11, 5668, 62, 448, 904, 11, 773, 8, 198, 220, 220, 220, 611, 407, 5668, 62, 448, 904, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 403, 17212, 9185, 329, 595, 13989, 341, 290, 14, 273, 542, 328, 14834, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26181, 62, 3919, 62, 1102, 2536, 6003, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 62, 5362, 11, 10352, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 62, 5362, 11, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 62, 5362, 11, 10352, 11, 352, 68, 940, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 62, 5362, 11, 10352, 11, 352, 68, 940, 198, 2, 220, 220, 220, 3601, 10786, 17212, 9185, 329, 595, 13989, 341, 290, 14, 273, 542, 328, 14834, 11537, 198, 2, 220, 220, 220, 3601, 62, 824, 7, 824, 8, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 2239, 604, 1220, 9025, 286, 262, 503, 12, 1659, 12, 14382, 300, 24979, 11507, 40826, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 37786, 796, 9185, 62, 32880, 1523, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 28, 824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 1659, 62, 14382, 62, 1073, 14822, 82, 28, 17143, 7307, 13, 6551, 278, 62, 20311, 35, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 16793, 28, 75, 696, 321, 62, 16793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 28, 1102, 2536, 6003, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 28, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 954, 62, 26801, 28, 9127, 62, 26801, 8, 198, 220, 220, 220, 611, 954, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 11, 299, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 796, 37786, 198, 2, 220, 220, 220, 3601, 10786, 220, 220, 220, 706, 9185, 11537, 198, 2, 220, 220, 220, 3601, 62, 824, 7, 824, 8, 198, 2, 220, 220, 220, 3601, 10786, 75, 696, 321, 62, 16793, 3256, 20450, 321, 62, 16793, 8, 628, 220, 220, 220, 611, 26181, 62, 3919, 62, 1102, 2536, 6003, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 11, 6407, 11, 299, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 11, 6407, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 1303, 2239, 642, 1220, 198, 220, 220, 220, 1303, 10097, 35937, 198, 220, 220, 220, 26181, 62, 3919, 62, 1102, 2536, 6003, 796, 15221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 28, 9948, 66, 62, 75, 696, 321, 7, 824, 11, 17778, 828, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 16793, 28, 75, 696, 321, 62, 16793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 6551, 654, 28, 17143, 7307, 13, 75, 696, 321, 62, 6551, 654, 62, 20311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 28, 1102, 2536, 6003, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 28, 17143, 7307, 8, 198, 220, 220, 220, 611, 954, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 11, 6407, 11, 352, 68, 940, 11, 299, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37786, 11, 6407, 11, 352, 68, 940, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 10786, 59, 77, 8162, 6208, 329, 262, 2163, 9185, 62, 824, 17202, 11537, 198, 220, 220, 220, 17778, 796, 1482, 2536, 6003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5659, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3652, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 78, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1801, 62, 83, 349, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3896, 62, 940, 62, 25067, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 595, 78, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 542, 328, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 62, 9248, 28, 2231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 3642, 328, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 15, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 2231, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 3829, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 17059, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 2231, 62, 17059, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 900, 62, 1659, 62, 27787, 41888, 15, 11, 4153, 11, 532, 2231, 11, 4101, 12962, 198, 220, 220, 220, 37786, 796, 45941, 13, 18747, 26933, 2231, 11, 220, 4101, 11, 220, 4153, 11, 220, 4101, 11, 532, 2231, 11, 532, 2231, 11, 532, 2231, 11, 532, 2231, 11, 220, 4101, 11, 220, 4153, 11, 220, 4153, 11, 220, 4153, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4101, 11, 532, 2231, 11, 220, 220, 657, 11, 220, 220, 657, 11, 220, 220, 657, 11, 532, 2231, 11, 220, 4101, 11, 220, 4153, 11, 220, 4153, 11, 220, 4153, 11, 220, 4101, 11, 532, 2231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2231, 11, 532, 2231, 11, 532, 2231, 11, 220, 4101, 11, 220, 4153, 11, 220, 4101, 11, 220, 4153, 4357, 493, 8, 198, 220, 220, 220, 37786, 62, 16793, 796, 3126, 9, 37659, 13, 1952, 19510, 16, 11, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 20450, 321, 62, 16793, 796, 42302, 62, 75, 696, 321, 7, 824, 62, 16793, 8, 198, 220, 220, 220, 1303, 23926, 2559, 855, 198, 220, 220, 220, 1303, 30011, 5847, 40117, 198, 220, 220, 220, 1303, 23926, 2559, 855, 198, 220, 220, 220, 44386, 49686, 284, 4605, 262, 17778, 198, 220, 220, 220, 1303, 9185, 284, 2987, 262, 40826, 3371, 262, 287, 12, 14382, 300, 24979, 11507, 198, 220, 220, 220, 1303, 6670, 198, 220, 220, 220, 9185, 62, 11883, 1671, 1531, 62, 31943, 796, 6407, 198, 220, 220, 220, 1303, 9185, 284, 2987, 262, 40826, 3371, 262, 503, 12, 1659, 12, 14382, 300, 24979, 198, 220, 220, 220, 1303, 11507, 6670, 198, 220, 220, 220, 9185, 62, 32880, 1523, 62, 31943, 796, 6407, 198, 220, 220, 220, 1303, 12974, 30592, 4559, 7791, 198, 220, 220, 220, 12974, 62, 15952, 1326, 796, 10352, 628, 220, 220, 220, 1303, 35381, 329, 262, 9823, 286, 262, 30592, 4559, 20735, 326, 460, 307, 9518, 198, 220, 220, 220, 1303, 1141, 262, 47517, 329, 25019, 6608, 287, 262, 9185, 1429, 198, 220, 220, 220, 279, 62, 32, 796, 4019, 198, 220, 220, 220, 1303, 1271, 286, 458, 444, 287, 262, 938, 9943, 7094, 1141, 9185, 329, 595, 13989, 341, 198, 220, 220, 220, 1303, 290, 14, 273, 542, 328, 14834, 198, 220, 220, 220, 299, 62, 35, 16, 796, 718, 198, 220, 220, 220, 1303, 1271, 286, 35960, 15381, 6789, 379, 1123, 2239, 286, 262, 302, 12, 26124, 278, 1429, 1141, 198, 220, 220, 220, 1303, 47517, 329, 7059, 1523, 6608, 198, 220, 220, 220, 299, 62, 35, 17, 796, 838, 198, 220, 220, 220, 1303, 1271, 286, 1661, 389, 36240, 1141, 262, 47517, 286, 7059, 1523, 6608, 198, 220, 220, 220, 299, 62, 35, 18, 796, 362, 628, 220, 220, 220, 1303, 10923, 1883, 10007, 284, 307, 3177, 287, 262, 5021, 12, 15252, 425, 5499, 198, 220, 220, 220, 6436, 5612, 62, 4906, 796, 705, 35, 6, 198, 220, 220, 220, 900, 62, 1659, 62, 27787, 796, 45941, 13, 18747, 26933, 12, 2231, 11, 657, 11, 4153, 11, 4101, 4357, 493, 8, 198, 220, 220, 220, 611, 6436, 5612, 62, 4906, 6624, 705, 32, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 62, 1659, 62, 27787, 318, 45941, 13, 18747, 26933, 12, 2231, 11, 657, 11, 4153, 11, 4101, 4357, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 16, 11, 352, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 16, 11, 352, 11, 352, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 12962, 198, 220, 220, 220, 611, 6436, 5612, 62, 4906, 6624, 705, 35, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 62, 1659, 62, 27787, 318, 45941, 13, 18747, 26933, 12, 2231, 11, 657, 11, 4153, 11, 4101, 4357, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 611, 6436, 5612, 62, 4906, 6624, 705, 2885, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 62, 1659, 62, 27787, 318, 45941, 13, 18747, 26933, 12, 2231, 11, 657, 11, 4153, 11, 4101, 4357, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 16, 11, 352, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 796, 45941, 13, 18747, 26933, 16, 11, 352, 11, 352, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 352, 12962, 628, 220, 220, 220, 1303, 10923, 1883, 10007, 44752, 28720, 422, 262, 717, 12, 293, 6667, 6436, 5847, 198, 220, 220, 220, 717, 62, 5715, 62, 82, 641, 270, 28720, 796, 45941, 13, 1952, 19510, 1065, 11, 828, 12178, 8, 628, 220, 220, 220, 10007, 796, 40117, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17778, 28, 1102, 2536, 6003, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 32, 28, 79, 62, 32, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 35, 16, 28, 77, 62, 35, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 35, 17, 28, 77, 62, 35, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 35, 18, 28, 77, 62, 35, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 5715, 62, 82, 641, 270, 28720, 28, 11085, 62, 5715, 62, 82, 641, 270, 28720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20450, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 28, 75, 696, 321, 62, 1462, 62, 1350, 62, 40085, 1417, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9185, 62, 11883, 1671, 1531, 62, 31943, 28, 49932, 62, 11883, 1671, 1531, 62, 31943, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9185, 62, 32880, 1523, 62, 31943, 28, 49932, 62, 32880, 1523, 62, 31943, 8, 628, 220, 220, 220, 37786, 11, 5668, 11, 299, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 796, 9185, 62, 824, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 11, 17778, 11, 10007, 11, 20450, 321, 62, 16793, 11, 954, 62, 26801, 28, 17821, 8, 198, 220, 220, 220, 3601, 10786, 6207, 958, 4388, 30, 3256, 5668, 8, 198, 220, 220, 220, 3601, 62, 824, 7, 824, 11, 1160, 8, 198, 220, 220, 220, 3601, 10786, 77, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 3256, 299, 62, 26801, 62, 20786, 62, 35, 62, 66, 5691, 8, 198, 220, 220, 220, 2198, 62, 824, 62, 48119, 333, 1799, 7, 824, 11, 17778, 8, 198 ]
2.585201
3,703
from __future__ import print_function import numpy as np import os from sensor_msgs.msg import LaserScan from navrep.tools.data_extraction import archive_to_lidar_dataset from navrep.models.vae1d import Conv1DVAE, reset_graph DEBUG_PLOTTING = True # Parameters for training batch_size = 100 N_SCANS_PER_BATCH = 1 NUM_EPOCH = 100 DATA_DIR = "record" HOME = os.path.expanduser("~") MAX_LIDAR_DIST = 25.0 vae_model_path = os.path.expanduser("~/navrep/models/V/vae1d.json") # create network reset_graph() vae = Conv1DVAE(batch_size=batch_size, is_training=False) # load vae.load_json(vae_model_path) # create training dataset dataset = archive_to_lidar_dataset("~/navrep/datasets/V/ian", limit=180) if len(dataset) == 0: raise ValueError("no scans found, exiting") print(len(dataset), "scans in dataset.") # split into batches: total_length = len(dataset) num_batches = len(dataset) dummy_msg = LaserScan() dummy_msg.range_max = 100.0 dummy_msg.ranges = range(1080) for idx in range(num_batches): batch = dataset[idx:idx+N_SCANS_PER_BATCH] scans = batch obs = np.clip(scans.astype(np.float) / MAX_LIDAR_DIST, 0.0, MAX_LIDAR_DIST) obs = obs.reshape(N_SCANS_PER_BATCH, 1080, 1) obs_pred = vae.encode_decode(obs) if True: import matplotlib.pyplot as plt plt.ion() plt.figure("rings") plt.cla() plt.plot(obs[0,:,0]) plt.plot(obs_pred[0,:,0]) plt.title(idx) # update plt.pause(0.01)
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 12694, 62, 907, 14542, 13, 19662, 1330, 23222, 33351, 198, 198, 6738, 6812, 7856, 13, 31391, 13, 7890, 62, 2302, 7861, 1330, 15424, 62, 1462, 62, 75, 312, 283, 62, 19608, 292, 316, 198, 6738, 6812, 7856, 13, 27530, 13, 33353, 16, 67, 1330, 34872, 16, 35, 11731, 36, 11, 13259, 62, 34960, 198, 198, 30531, 62, 6489, 29089, 2751, 796, 6407, 198, 198, 2, 40117, 329, 3047, 198, 43501, 62, 7857, 796, 1802, 198, 45, 62, 6173, 15037, 62, 18973, 62, 33, 11417, 796, 352, 198, 41359, 62, 8905, 46, 3398, 796, 1802, 198, 26947, 62, 34720, 796, 366, 22105, 1, 198, 39069, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 4943, 198, 22921, 62, 43, 2389, 1503, 62, 35, 8808, 796, 1679, 13, 15, 198, 198, 33353, 62, 19849, 62, 6978, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 14, 28341, 7856, 14, 27530, 14, 53, 14, 33353, 16, 67, 13, 17752, 4943, 198, 198, 2, 2251, 3127, 198, 42503, 62, 34960, 3419, 198, 33353, 796, 34872, 16, 35, 11731, 36, 7, 43501, 62, 7857, 28, 43501, 62, 7857, 11, 318, 62, 34409, 28, 25101, 8, 198, 198, 2, 3440, 198, 33353, 13, 2220, 62, 17752, 7, 33353, 62, 19849, 62, 6978, 8, 198, 198, 2, 2251, 3047, 27039, 198, 19608, 292, 316, 796, 15424, 62, 1462, 62, 75, 312, 283, 62, 19608, 292, 316, 7203, 93, 14, 28341, 7856, 14, 19608, 292, 1039, 14, 53, 14, 666, 1600, 4179, 28, 15259, 8, 198, 361, 18896, 7, 19608, 292, 316, 8, 6624, 657, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 3919, 23824, 1043, 11, 33895, 4943, 198, 4798, 7, 11925, 7, 19608, 292, 316, 828, 366, 1416, 504, 287, 27039, 19570, 198, 198, 2, 6626, 656, 37830, 25, 198, 23350, 62, 13664, 796, 18896, 7, 19608, 292, 316, 8, 198, 22510, 62, 8664, 2052, 796, 18896, 7, 19608, 292, 316, 8, 628, 198, 67, 13513, 62, 19662, 796, 23222, 33351, 3419, 198, 67, 13513, 62, 19662, 13, 9521, 62, 9806, 796, 1802, 13, 15, 198, 67, 13513, 62, 19662, 13, 81, 6231, 796, 2837, 7, 24045, 8, 198, 198, 1640, 4686, 87, 287, 2837, 7, 22510, 62, 8664, 2052, 2599, 198, 220, 220, 220, 15458, 796, 27039, 58, 312, 87, 25, 312, 87, 10, 45, 62, 6173, 15037, 62, 18973, 62, 33, 11417, 60, 198, 220, 220, 220, 23824, 796, 15458, 628, 220, 220, 220, 10201, 796, 45941, 13, 15036, 7, 1416, 504, 13, 459, 2981, 7, 37659, 13, 22468, 8, 1220, 25882, 62, 43, 2389, 1503, 62, 35, 8808, 11, 657, 13, 15, 11, 25882, 62, 43, 2389, 1503, 62, 35, 8808, 8, 198, 220, 220, 220, 10201, 796, 10201, 13, 3447, 1758, 7, 45, 62, 6173, 15037, 62, 18973, 62, 33, 11417, 11, 17729, 11, 352, 8, 628, 220, 220, 220, 10201, 62, 28764, 796, 410, 3609, 13, 268, 8189, 62, 12501, 1098, 7, 8158, 8, 198, 220, 220, 220, 611, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 295, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 26875, 7203, 33173, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 565, 64, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 8158, 58, 15, 11, 45299, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 8158, 62, 28764, 58, 15, 11, 45299, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 32125, 7, 15, 13, 486, 8, 198 ]
2.261398
658
# modules in standard library import re from urllib.parse import urlparse import requests from selenium import webdriver from selenium.webdriver.common.keys import Keys #需要引入 keys 包 import time def main(domain): """ 主函数,只需执行它就能get子域名 :param domain: :return: """ dns_record = DnsRecord(domain) set1 = dns_record.get_by_hackertarget() return set1 if __name__ == '__main__': # 自己在这个文件里尝试好,能获取子域名就提交上来 print(main("hubu.edu.cn")) # 输出hubu.edu.com的子域名
[ 2, 13103, 287, 3210, 5888, 201, 198, 11748, 302, 201, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 201, 198, 201, 198, 11748, 7007, 201, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 201, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 1303, 165, 250, 222, 17358, 223, 28156, 243, 17739, 98, 8251, 10263, 234, 227, 201, 198, 11748, 640, 201, 198, 201, 198, 4299, 1388, 7, 27830, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 10310, 119, 49035, 121, 46763, 108, 171, 120, 234, 20998, 103, 165, 250, 222, 33699, 100, 26193, 234, 22522, 225, 22887, 109, 47797, 121, 1136, 36310, 161, 253, 253, 28938, 235, 201, 198, 220, 220, 220, 1058, 17143, 7386, 25, 201, 198, 220, 220, 220, 1058, 7783, 25, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 288, 5907, 62, 22105, 796, 360, 5907, 23739, 7, 27830, 8, 201, 198, 220, 220, 220, 900, 16, 796, 288, 5907, 62, 22105, 13, 1136, 62, 1525, 62, 31153, 861, 7641, 3419, 201, 198, 220, 220, 220, 1441, 900, 16, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1303, 5525, 229, 103, 32432, 109, 28839, 101, 32573, 247, 10310, 103, 23877, 229, 20015, 114, 34932, 234, 22887, 251, 46237, 243, 25001, 121, 171, 120, 234, 47797, 121, 164, 236, 115, 20998, 244, 36310, 161, 253, 253, 28938, 235, 22887, 109, 162, 237, 238, 12859, 97, 41468, 30266, 98, 201, 198, 220, 220, 220, 3601, 7, 12417, 7203, 40140, 84, 13, 15532, 13, 31522, 48774, 220, 220, 220, 1303, 5525, 122, 241, 49035, 118, 40140, 84, 13, 15532, 13, 785, 21410, 36310, 161, 253, 253, 28938, 235 ]
1.725753
299
/usr/lib/python3.6/encodings/utf_16_be.py
[ 14, 14629, 14, 8019, 14, 29412, 18, 13, 21, 14, 12685, 375, 654, 14, 40477, 62, 1433, 62, 1350, 13, 9078 ]
1.952381
21
from datetime import datetime from django.db import models from django.conf import settings from django.core.cache import get_cache
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 651, 62, 23870, 628, 198 ]
3.648649
37
# Ensure that accidentally-raised StopIterations are transformed to RuntimeErrors # Livin' in the future! from __future__ import generator_stop from wordsearch.board import Board import string, random def start_board_run(start, direction, board): """ A generator that yields successive values of "board" starting from "start" and moving in "direction", raising a StopIteration when the edge of the board is crossed. "direction" is added as a vector to the current position on every iteration. For example, for start = (0,0) and direction = (1,1), this will yield the letters at (0,0), (1,1), (2,2), etc. Args: start: a 2-tuple of ints (x,y) for which coordinates to start at in "board" direction: a 2-tuple of ints (x,y) of which direction to iterate in. Both x and y should be one of (-1, 0, 1) and (0, 0) is invalid. board: a Board to search in Yields: next letter in run (type depends on board value type) """ if not all(d in (-1, 0, 1) for d in direction): raise ValueError('All values in direction should be one of (-1, 0, 1), got {}'.format(direction)) if direction == (0, 0): raise ValueError("Direction cannot be (0, 0)") cur_pt = start try: while True: yield board[cur_pt[0], cur_pt[1]] cur_pt = (cur_pt[0] + direction[0], cur_pt[1] + direction[1]) except IndexError: return def start_trie_search(root): """ A generator that progressively searches down a trie. When given a letter with "trie_search.send(letter)", it does the following: - If the letter is not a child of the current node, raise a StopIteration - If the letter is a child of the current node, select it, and yield whether it ends a word You must "prime" the generator by calling next() or .send(None) on it once before .send()-ing the first letter. Args: root: root TrieNode to begin the search with Yields: whether the letter ends a word (bool) """ cur_node = root letter = None while True: letter = yield cur_node.word_end try: cur_node = cur_node.children[letter] except KeyError: return # List of x,y vectors (tuples) for all directions a word can be found in, i.e. forwards # or backwards in rows or columns, and on diagonals. # E.g. (0, 1) = down, (1, 1) = diagonal down-right, (1, 0) = right, ... _directions = [(x, y) for x in range(-1, 2) for y in range (-1, 2) if not (x == 0 and y == 0)] def search_board(board, rootnode): """ A generator that searches for words in "board" using the trie rooted by "rootnode" and yields the words found. Args: board: a Board to search rootnode: a TrieNode that roots a trie used to identify words Yields: a word found in board (string) """ for x, y, letter in board: for direction in _directions: board_run = start_board_run((x, y), direction, board) trie_search = start_trie_search(rootnode) next(trie_search) #Prime trie_search letters = [] last_word_end = None # Try advancing both generators until one runs out. That means we've either hit # the edge of the board or the bottom of the trie. # # Keep track of the letters as we go and the location of the last-found # word_end flag in the trie. When we hit then end, grab all the letters until # the last-found flag. try: while True: letter = next(board_run) letters.append(letter) word_end = trie_search.send(letter) if word_end: last_word_end = len(letters) except StopIteration: pass if last_word_end is not None: yield ''.join(letters[:last_word_end]) def random_board(width, height): """ Returns a Board of random lowercase letters Args: width: width of the board height: height of the board """ return Board([[random.choice(string.ascii_lowercase) for _ in range(width)] for _ in range(height)])
[ 2, 48987, 326, 14716, 12, 49309, 13707, 29993, 602, 389, 14434, 284, 43160, 9139, 5965, 198, 2, 32020, 259, 6, 287, 262, 2003, 0, 198, 6738, 11593, 37443, 834, 1330, 17301, 62, 11338, 198, 198, 6738, 1573, 12947, 13, 3526, 1330, 5926, 198, 11748, 4731, 11, 4738, 628, 198, 4299, 923, 62, 3526, 62, 5143, 7, 9688, 11, 4571, 11, 3096, 2599, 198, 220, 37227, 198, 220, 317, 17301, 326, 19299, 25175, 3815, 286, 366, 3526, 1, 3599, 422, 366, 9688, 1, 290, 198, 220, 3867, 287, 366, 37295, 1600, 8620, 257, 13707, 29993, 341, 618, 262, 5743, 286, 262, 3096, 318, 198, 220, 12606, 13, 628, 220, 366, 37295, 1, 318, 2087, 355, 257, 15879, 284, 262, 1459, 2292, 319, 790, 24415, 13, 198, 220, 1114, 1672, 11, 329, 923, 796, 357, 15, 11, 15, 8, 290, 4571, 796, 357, 16, 11, 16, 828, 428, 481, 7800, 262, 7475, 198, 220, 379, 357, 15, 11, 15, 828, 357, 16, 11, 16, 828, 357, 17, 11, 17, 828, 3503, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 923, 25, 257, 362, 12, 83, 29291, 286, 493, 82, 357, 87, 11, 88, 8, 329, 543, 22715, 284, 923, 379, 287, 366, 3526, 1, 198, 220, 220, 220, 4571, 25, 257, 362, 12, 83, 29291, 286, 493, 82, 357, 87, 11, 88, 8, 286, 543, 4571, 284, 11629, 378, 287, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5747, 2124, 290, 331, 815, 307, 530, 286, 13841, 16, 11, 657, 11, 352, 8, 290, 357, 15, 11, 657, 8, 318, 12515, 13, 198, 220, 220, 220, 3096, 25, 257, 5926, 284, 2989, 287, 628, 220, 575, 1164, 82, 25, 1306, 3850, 287, 1057, 357, 4906, 8338, 319, 3096, 1988, 2099, 8, 198, 220, 37227, 198, 220, 611, 407, 477, 7, 67, 287, 13841, 16, 11, 657, 11, 352, 8, 329, 288, 287, 4571, 2599, 198, 220, 220, 220, 5298, 11052, 12331, 10786, 3237, 3815, 287, 4571, 815, 307, 530, 286, 13841, 16, 11, 657, 11, 352, 828, 1392, 23884, 4458, 18982, 7, 37295, 4008, 198, 220, 611, 4571, 6624, 357, 15, 11, 657, 2599, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 35, 4154, 2314, 307, 357, 15, 11, 657, 8, 4943, 628, 220, 1090, 62, 457, 796, 923, 198, 220, 1949, 25, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 7800, 3096, 58, 22019, 62, 457, 58, 15, 4357, 1090, 62, 457, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 1090, 62, 457, 796, 357, 22019, 62, 457, 58, 15, 60, 1343, 4571, 58, 15, 4357, 1090, 62, 457, 58, 16, 60, 1343, 4571, 58, 16, 12962, 198, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 1441, 628, 198, 4299, 923, 62, 83, 5034, 62, 12947, 7, 15763, 2599, 198, 220, 37227, 198, 220, 317, 17301, 326, 34322, 15455, 866, 257, 1333, 68, 13, 1649, 1813, 257, 3850, 351, 198, 220, 366, 83, 5034, 62, 12947, 13, 21280, 7, 9291, 42501, 340, 857, 262, 1708, 25, 198, 220, 532, 1002, 262, 3850, 318, 407, 257, 1200, 286, 262, 1459, 10139, 11, 5298, 257, 13707, 29993, 341, 198, 220, 532, 1002, 262, 3850, 318, 257, 1200, 286, 262, 1459, 10139, 11, 2922, 340, 11, 290, 7800, 1771, 340, 198, 220, 220, 220, 5645, 257, 1573, 628, 220, 921, 1276, 366, 35505, 1, 262, 17301, 416, 4585, 1306, 3419, 393, 764, 21280, 7, 14202, 8, 319, 340, 198, 220, 1752, 878, 764, 21280, 3419, 12, 278, 262, 717, 3850, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 6808, 25, 6808, 309, 5034, 19667, 284, 2221, 262, 2989, 351, 628, 220, 575, 1164, 82, 25, 1771, 262, 3850, 5645, 257, 1573, 357, 30388, 8, 198, 220, 37227, 198, 220, 1090, 62, 17440, 796, 6808, 198, 220, 3850, 796, 6045, 198, 220, 220, 198, 220, 981, 6407, 25, 198, 220, 220, 220, 3850, 796, 7800, 1090, 62, 17440, 13, 4775, 62, 437, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 1090, 62, 17440, 796, 1090, 62, 17440, 13, 17197, 58, 9291, 60, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 1441, 628, 198, 2, 7343, 286, 2124, 11, 88, 30104, 357, 28047, 2374, 8, 329, 477, 11678, 257, 1573, 460, 307, 1043, 287, 11, 1312, 13, 68, 13, 22052, 198, 2, 393, 16196, 287, 15274, 393, 15180, 11, 290, 319, 2566, 1840, 874, 13, 198, 2, 412, 13, 70, 13, 357, 15, 11, 352, 8, 796, 866, 11, 357, 16, 11, 352, 8, 796, 40039, 866, 12, 3506, 11, 357, 16, 11, 657, 8, 796, 826, 11, 2644, 198, 62, 12942, 507, 796, 47527, 87, 11, 331, 8, 329, 2124, 287, 2837, 32590, 16, 11, 362, 8, 329, 331, 287, 2837, 13841, 16, 11, 362, 8, 611, 407, 357, 87, 6624, 657, 290, 331, 6624, 657, 15437, 628, 198, 4299, 2989, 62, 3526, 7, 3526, 11, 6808, 17440, 2599, 198, 220, 37227, 198, 220, 317, 17301, 326, 15455, 329, 2456, 287, 366, 3526, 1, 1262, 262, 1333, 68, 19459, 416, 366, 15763, 17440, 1, 198, 220, 290, 19299, 262, 2456, 1043, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 3096, 25, 257, 5926, 284, 2989, 198, 220, 220, 220, 6808, 17440, 25, 257, 309, 5034, 19667, 326, 11135, 257, 1333, 68, 973, 284, 5911, 2456, 628, 220, 575, 1164, 82, 25, 257, 1573, 1043, 287, 3096, 357, 8841, 8, 198, 220, 37227, 198, 220, 329, 2124, 11, 331, 11, 3850, 287, 3096, 25, 198, 220, 220, 220, 329, 4571, 287, 4808, 12942, 507, 25, 198, 220, 220, 220, 220, 220, 3096, 62, 5143, 796, 923, 62, 3526, 62, 5143, 19510, 87, 11, 331, 828, 4571, 11, 3096, 8, 198, 220, 220, 220, 220, 220, 1333, 68, 62, 12947, 796, 923, 62, 83, 5034, 62, 12947, 7, 15763, 17440, 8, 198, 220, 220, 220, 220, 220, 1306, 7, 83, 5034, 62, 12947, 8, 220, 220, 1303, 26405, 1333, 68, 62, 12947, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 7475, 796, 17635, 198, 220, 220, 220, 220, 220, 938, 62, 4775, 62, 437, 796, 6045, 628, 220, 220, 220, 220, 220, 1303, 9993, 19988, 1111, 27298, 1566, 530, 4539, 503, 13, 1320, 1724, 356, 1053, 2035, 2277, 198, 220, 220, 220, 220, 220, 1303, 262, 5743, 286, 262, 3096, 393, 262, 4220, 286, 262, 1333, 68, 13, 198, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 1303, 9175, 2610, 286, 262, 7475, 355, 356, 467, 290, 262, 4067, 286, 262, 938, 12, 9275, 198, 220, 220, 220, 220, 220, 1303, 1573, 62, 437, 6056, 287, 262, 1333, 68, 13, 1649, 356, 2277, 788, 886, 11, 5552, 477, 262, 7475, 1566, 198, 220, 220, 220, 220, 220, 1303, 262, 938, 12, 9275, 6056, 13, 198, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3850, 796, 1306, 7, 3526, 62, 5143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7475, 13, 33295, 7, 9291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 437, 796, 1333, 68, 62, 12947, 13, 21280, 7, 9291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1573, 62, 437, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4775, 62, 437, 796, 18896, 7, 15653, 8, 198, 220, 220, 220, 220, 220, 2845, 13707, 29993, 341, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 611, 938, 62, 4775, 62, 437, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 705, 4458, 22179, 7, 15653, 58, 25, 12957, 62, 4775, 62, 437, 12962, 628, 198, 4299, 4738, 62, 3526, 7, 10394, 11, 6001, 2599, 198, 220, 37227, 198, 220, 16409, 257, 5926, 286, 4738, 2793, 7442, 7475, 198, 220, 220, 198, 220, 943, 14542, 25, 198, 220, 220, 220, 9647, 25, 9647, 286, 262, 3096, 198, 220, 220, 220, 6001, 25, 6001, 286, 262, 3096, 198, 220, 37227, 198, 220, 1441, 5926, 26933, 58, 25120, 13, 25541, 7, 8841, 13, 292, 979, 72, 62, 21037, 7442, 8, 329, 4808, 287, 2837, 7, 10394, 15437, 329, 4808, 287, 2837, 7, 17015, 8, 12962 ]
2.81179
1,408
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetSnapshotIdsResult: """ A collection of values returned by getSnapshotIds. """ # pylint: disable=using-constant-test def get_snapshot_ids(filters=None,owners=None,restorable_by_user_ids=None,opts=None): """ Use this data source to get a list of EBS Snapshot IDs matching the specified criteria. ## Example Usage ```python import pulumi import pulumi_aws as aws ebs_volumes = aws.ebs.get_snapshot_ids(filters=[ { "name": "volume-size", "values": ["40"], }, { "name": "tag:Name", "values": ["Example"], }, ], owners=["self"]) ``` :param list filters: One or more name/value pairs to filter off of. There are several valid keys, for a full reference, check out [describe-volumes in the AWS CLI reference][1]. :param list owners: Returns the snapshots owned by the specified owner id. Multiple owners can be specified. :param list restorable_by_user_ids: One or more AWS accounts IDs that can create volumes from the snapshot. The **filters** object supports the following: * `name` (`str`) * `values` (`list`) """ __args__ = dict() __args__['filters'] = filters __args__['owners'] = owners __args__['restorableByUserIds'] = restorable_by_user_ids if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:ebs/getSnapshotIds:getSnapshotIds', __args__, opts=opts).value return AwaitableGetSnapshotIdsResult( filters=__ret__.get('filters'), id=__ret__.get('id'), ids=__ret__.get('ids'), owners=__ret__.get('owners'), restorable_by_user_ids=__ret__.get('restorableByUserIds'))
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 24118, 687, 10290, 357, 27110, 5235, 8, 16984, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 33918, 198, 11748, 14601, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 19720, 1330, 4479, 198, 6738, 11485, 1330, 20081, 11, 8893, 198, 198, 4871, 3497, 43826, 9442, 7390, 82, 23004, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4947, 286, 3815, 4504, 416, 651, 43826, 9442, 7390, 82, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3500, 12, 9979, 415, 12, 9288, 198, 198, 4299, 651, 62, 45380, 9442, 62, 2340, 7, 10379, 1010, 28, 14202, 11, 15605, 28, 14202, 11, 2118, 10475, 62, 1525, 62, 7220, 62, 2340, 28, 14202, 11, 404, 912, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5765, 428, 1366, 2723, 284, 651, 257, 1351, 286, 412, 4462, 16026, 9442, 32373, 12336, 262, 7368, 198, 220, 220, 220, 9987, 13, 628, 220, 220, 220, 22492, 17934, 29566, 628, 628, 220, 220, 220, 7559, 63, 29412, 198, 220, 220, 220, 1330, 17472, 12994, 198, 220, 220, 220, 1330, 17472, 12994, 62, 8356, 355, 3253, 82, 628, 220, 220, 220, 304, 1443, 62, 10396, 8139, 796, 3253, 82, 13, 68, 1443, 13, 1136, 62, 45380, 9442, 62, 2340, 7, 10379, 1010, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 29048, 12, 7857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27160, 1298, 14631, 1821, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 12985, 25, 5376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27160, 1298, 14631, 16281, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 4393, 28, 14692, 944, 8973, 8, 198, 220, 220, 220, 7559, 63, 628, 198, 220, 220, 220, 1058, 17143, 1351, 16628, 25, 1881, 393, 517, 1438, 14, 8367, 14729, 284, 8106, 572, 286, 13, 1318, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1811, 4938, 8251, 11, 329, 257, 1336, 4941, 11, 2198, 503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20147, 4892, 12, 10396, 8139, 287, 262, 30865, 43749, 4941, 7131, 16, 4083, 198, 220, 220, 220, 1058, 17143, 1351, 4393, 25, 16409, 262, 47787, 6898, 416, 262, 7368, 4870, 4686, 13, 20401, 4393, 460, 307, 7368, 13, 198, 220, 220, 220, 1058, 17143, 1351, 1334, 10475, 62, 1525, 62, 7220, 62, 2340, 25, 1881, 393, 517, 30865, 5504, 32373, 326, 460, 2251, 15343, 422, 262, 27479, 13, 628, 220, 220, 220, 383, 12429, 10379, 1010, 1174, 2134, 6971, 262, 1708, 25, 628, 220, 220, 220, 220, 220, 1635, 4600, 3672, 63, 357, 63, 2536, 63, 8, 198, 220, 220, 220, 220, 220, 1635, 4600, 27160, 63, 357, 63, 4868, 63, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 22046, 834, 796, 8633, 3419, 628, 198, 220, 220, 220, 11593, 22046, 834, 17816, 10379, 1010, 20520, 796, 16628, 198, 220, 220, 220, 11593, 22046, 834, 17816, 15605, 20520, 796, 4393, 198, 220, 220, 220, 11593, 22046, 834, 17816, 2118, 10475, 3886, 12982, 7390, 82, 20520, 796, 1334, 10475, 62, 1525, 62, 7220, 62, 2340, 198, 220, 220, 220, 611, 2172, 82, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 82, 796, 17472, 12994, 13, 19904, 2088, 29046, 3419, 198, 220, 220, 220, 611, 2172, 82, 13, 9641, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 82, 13, 9641, 796, 20081, 13, 1136, 62, 9641, 3419, 198, 220, 220, 220, 11593, 1186, 834, 796, 17472, 12994, 13, 43282, 13, 37669, 10786, 8356, 25, 68, 1443, 14, 1136, 43826, 9442, 7390, 82, 25, 1136, 43826, 9442, 7390, 82, 3256, 11593, 22046, 834, 11, 2172, 82, 28, 404, 912, 737, 8367, 628, 220, 220, 220, 1441, 5851, 4548, 540, 3855, 43826, 9442, 7390, 82, 23004, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16628, 28, 834, 1186, 834, 13, 1136, 10786, 10379, 1010, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 834, 1186, 834, 13, 1136, 10786, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 28, 834, 1186, 834, 13, 1136, 10786, 2340, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 4393, 28, 834, 1186, 834, 13, 1136, 10786, 15605, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1334, 10475, 62, 1525, 62, 7220, 62, 2340, 28, 834, 1186, 834, 13, 1136, 10786, 2118, 10475, 3886, 12982, 7390, 82, 6, 4008, 198 ]
2.487064
889
#!/usr/bin/python3 import re import requests from time import sleep from argparse import ArgumentParser if __name__ == '__main__': args = get_args() data = '' pattern = 'QCTF{.*?}' while not re.search(pattern, data): update = requests.get('%s/%s/' % (args.url, args.token)).text hexcode = re.search('\>([\w\s]*?)\<\/div', update).group(1) if not hexcode: continue text = ''.join([chr(int(code, 16)) for code in hexcode.split(' ')]) if text not in data: data += text print('Downloaded text length: %d' % len(data)) sleep(args.timeout) print(data) print() print('Found flag!') print(re.search(pattern, data).group(0))
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 302, 198, 11748, 7007, 198, 198, 6738, 640, 1330, 3993, 198, 6738, 1822, 29572, 1330, 45751, 46677, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 198, 220, 220, 220, 1366, 796, 10148, 198, 220, 220, 220, 3912, 796, 705, 48, 4177, 37, 90, 15885, 30, 92, 6, 198, 220, 220, 220, 981, 407, 302, 13, 12947, 7, 33279, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 796, 7007, 13, 1136, 10786, 4, 82, 14, 4, 82, 14, 6, 4064, 357, 22046, 13, 6371, 11, 26498, 13, 30001, 29720, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 17910, 8189, 796, 302, 13, 12947, 10786, 59, 29, 26933, 59, 86, 59, 82, 60, 9, 10091, 49778, 11139, 7146, 3256, 4296, 737, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 17910, 8189, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 705, 4458, 22179, 26933, 354, 81, 7, 600, 7, 8189, 11, 1467, 4008, 329, 2438, 287, 17910, 8189, 13, 35312, 10786, 705, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2420, 407, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 15853, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 10002, 276, 2420, 4129, 25, 4064, 67, 6, 4064, 18896, 7, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 22046, 13, 48678, 8, 198, 220, 220, 220, 3601, 7, 7890, 8, 198, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 10786, 21077, 6056, 0, 11537, 198, 220, 220, 220, 3601, 7, 260, 13, 12947, 7, 33279, 11, 1366, 737, 8094, 7, 15, 4008, 198 ]
2.26935
323
import pycountry from django.db import migrations
[ 11748, 12972, 19315, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628, 198 ]
3.533333
15
# This file is code generated import ctypes simple_string = ctypes.c_char * 1024 UInt64 = ctypes.c_ulonglong ResourceHandle = ctypes.c_void_p EnumResourceHandle = ctypes.c_void_p EnumSoftwareFeedHandle = ctypes.c_void_p SessionHandle = ctypes.c_void_p TimestampUTC = ctypes.c_uint * 4 EnumSoftwareComponentHandle = ctypes.c_void_p EnumDependencyHandle = ctypes.c_void_p SoftwareSetHandle = ctypes.c_void_p FilterHandle = ctypes.c_void_p EnumExpertHandle = ctypes.c_void_p EnumSystemHandle = ctypes.c_void_p EnumSoftwareSetHandle = ctypes.c_void_p
[ 2, 770, 2393, 318, 2438, 7560, 198, 198, 11748, 269, 19199, 198, 198, 36439, 62, 8841, 796, 269, 19199, 13, 66, 62, 10641, 1635, 28119, 198, 198, 52, 5317, 2414, 796, 269, 19199, 13, 66, 62, 377, 506, 6511, 198, 26198, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 26198, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 25423, 18332, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 36044, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 14967, 27823, 17429, 796, 269, 19199, 13, 66, 62, 28611, 1635, 604, 198, 4834, 388, 25423, 21950, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 35, 2690, 1387, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 25423, 7248, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 22417, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 3109, 11766, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 11964, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 4834, 388, 25423, 7248, 37508, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198 ]
2.669903
206
import os import random import string from flask import Flask, render_template, request, redirect, url_for app = Flask(__name__) COMPLAINTS_DIR = 'complaints' os.makedirs(COMPLAINTS_DIR, exist_ok=True) @app.route('/') @app.route('/complaint', methods=['GET']) @app.route('/complaint', methods=['POST']) if __name__ == '__main__': app.run(host='0.0.0.0', port=4000)
[ 11748, 28686, 198, 11748, 4738, 198, 11748, 4731, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 18941, 11, 19016, 62, 1640, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 9858, 6489, 29833, 4694, 62, 34720, 796, 705, 23855, 6003, 6, 198, 418, 13, 76, 4335, 17062, 7, 9858, 6489, 29833, 4694, 62, 34720, 11, 2152, 62, 482, 28, 17821, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 23855, 2913, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 198, 31, 1324, 13, 38629, 10786, 14, 23855, 2913, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 27559, 8, 198 ]
2.57931
145
# -*- coding: utf-8 -*- from django.template import Template, Context, loader, TemplateDoesNotExist from django.contrib.sites.models import Site from django.core.mail import EmailMultiAlternatives from django.template.defaultfilters import striptags
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 13, 28243, 1330, 37350, 11, 30532, 11, 40213, 11, 37350, 13921, 3673, 3109, 396, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 27530, 1330, 14413, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 29800, 23081, 2929, 198, 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 336, 1968, 3775, 628, 628, 628, 628 ]
3.426667
75
import string import random as rnd for u in range(1000): p1 = random_password() print(p1)
[ 11748, 4731, 198, 11748, 4738, 355, 374, 358, 198, 198, 1640, 334, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 279, 16, 796, 4738, 62, 28712, 3419, 198, 220, 220, 220, 3601, 7, 79, 16, 8, 198 ]
2.605263
38
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This module is largely a wrapper around `jaxlib` that performs version # checking on import. import jaxlib _minimum_jaxlib_version = (0, 1, 31) try: from jaxlib import version as jaxlib_version except: # jaxlib is too old to have version number. msg = 'This version of jax requires jaxlib version >= {}.' raise ImportError(msg.format('.'.join(map(str, _minimum_jaxlib_version)))) version = tuple(int(x) for x in jaxlib_version.__version__.split('.')) # Check the jaxlib version before importing anything else from jaxlib. _check_jaxlib_version() from jaxlib import xla_client from jaxlib import xrt from jaxlib import lapack from jaxlib import pytree from jaxlib import cusolver
[ 2, 15069, 2864, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 770, 8265, 318, 5688, 257, 29908, 1088, 4600, 73, 897, 8019, 63, 326, 17706, 2196, 198, 2, 10627, 319, 1330, 13, 198, 198, 11748, 474, 897, 8019, 198, 198, 62, 39504, 62, 73, 897, 8019, 62, 9641, 796, 357, 15, 11, 352, 11, 3261, 8, 198, 28311, 25, 198, 220, 422, 474, 897, 8019, 1330, 2196, 355, 474, 897, 8019, 62, 9641, 198, 16341, 25, 198, 220, 1303, 474, 897, 8019, 318, 1165, 1468, 284, 423, 2196, 1271, 13, 198, 220, 31456, 796, 705, 1212, 2196, 286, 474, 897, 4433, 474, 897, 8019, 2196, 18189, 23884, 2637, 198, 220, 5298, 17267, 12331, 7, 19662, 13, 18982, 10786, 2637, 13, 22179, 7, 8899, 7, 2536, 11, 4808, 39504, 62, 73, 897, 8019, 62, 9641, 35514, 198, 198, 9641, 796, 46545, 7, 600, 7, 87, 8, 329, 2124, 287, 474, 897, 8019, 62, 9641, 13, 834, 9641, 834, 13, 35312, 10786, 2637, 4008, 198, 198, 2, 6822, 262, 474, 897, 8019, 2196, 878, 33332, 1997, 2073, 422, 474, 897, 8019, 13, 198, 198, 62, 9122, 62, 73, 897, 8019, 62, 9641, 3419, 628, 198, 6738, 474, 897, 8019, 1330, 2124, 5031, 62, 16366, 198, 6738, 474, 897, 8019, 1330, 2124, 17034, 198, 6738, 474, 897, 8019, 1330, 14779, 441, 198, 198, 6738, 474, 897, 8019, 1330, 12972, 21048, 198, 6738, 474, 897, 8019, 1330, 269, 385, 14375, 198 ]
3.385638
376
# Copyright (c) 2022 Dai HBG """ 获得日频指数成分股数据 日志 2022-01-05 - init,迁移原本功能 2022-01-08 - 更新:传入dates - 增量更新 2022-01-11 - 更新:新增多种指数 """ from jqdatasdk import * import os import pickle import numpy as np
[ 2, 15069, 357, 66, 8, 33160, 39604, 25997, 38, 628, 198, 37811, 198, 164, 236, 115, 36181, 245, 33768, 98, 165, 95, 239, 162, 234, 229, 46763, 108, 22755, 238, 26344, 228, 164, 224, 94, 46763, 108, 162, 235, 106, 198, 198, 33768, 98, 33232, 245, 198, 1238, 1828, 12, 486, 12, 2713, 198, 12, 2315, 171, 120, 234, 32573, 223, 163, 100, 119, 43889, 253, 17312, 105, 27950, 253, 47797, 121, 198, 1238, 1828, 12, 486, 12, 2919, 198, 12, 10545, 249, 112, 23877, 108, 171, 120, 248, 27670, 254, 17739, 98, 19581, 198, 12, 10263, 95, 252, 34932, 237, 162, 249, 112, 23877, 108, 198, 1238, 1828, 12, 486, 12, 1157, 198, 12, 10545, 249, 112, 23877, 108, 171, 120, 248, 23877, 108, 161, 95, 252, 13783, 248, 163, 100, 235, 162, 234, 229, 46763, 108, 198, 37811, 628, 198, 6738, 474, 80, 19608, 292, 34388, 1330, 1635, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 299, 32152, 355, 45941, 628 ]
1.243902
164
from get_set_login_data import get_login_data from instaling import start_instaling if __name__ == "__main__": main()
[ 6738, 651, 62, 2617, 62, 38235, 62, 7890, 1330, 651, 62, 38235, 62, 7890, 198, 6738, 916, 4272, 1330, 923, 62, 8625, 4272, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.97561
41
var = "Casper" print ("Value 1:", var) var = 23 print ("Value 2:", var) var = "You get the point" print ("Value 3:", var)
[ 7785, 796, 366, 34, 32981, 1, 201, 198, 4798, 5855, 11395, 352, 25, 1600, 1401, 8, 201, 198, 7785, 796, 2242, 201, 198, 4798, 5855, 11395, 362, 25, 1600, 1401, 8, 201, 198, 7785, 796, 366, 1639, 651, 262, 966, 1, 201, 198, 4798, 5855, 11395, 513, 25, 1600, 1401, 8 ]
2.470588
51
FRAGMENT_PRODUCT = """ fragment fragmentProduct on Product { productId typeId type_ { typeId name } attributesUnicodeText { edges { node { name field { name type_ } value } } } attributesBoolean { edges { node { name field { name type_ } value } } } attributesInteger { edges { node { name field { name type_ } value } } } attributesFloat { edges { node { name field { name type_ } value } } } attributesDate { edges { node { name field { name type_ } value } } } attributesDateTime { edges { node { name field { name type_ } value } } } attributesTime { edges { node { name field { name type_ } value } } } name contact dateProduced producedBy timePosted postedBy postingGitHubUser { login } timeUpdated updatedBy updatingGitHubUser { login } paths { edges { node { pathId path note } } } relations { edges { node { relationId typeId type_ { typeId name } otherProductId other { productId typeId type_ { typeId name } name } reverseRelationId reverse { relationId typeId type_ { typeId name } } } } } note } """
[ 37, 33202, 10979, 62, 4805, 28644, 796, 37227, 198, 8310, 363, 434, 24225, 15667, 319, 8721, 1391, 198, 220, 1720, 7390, 198, 220, 2099, 7390, 198, 220, 2099, 62, 1391, 198, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 1438, 198, 220, 1782, 198, 220, 12608, 3118, 291, 1098, 8206, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 46120, 13087, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 46541, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 43879, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 10430, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 10430, 7575, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 12608, 7575, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2214, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 1438, 198, 220, 2800, 198, 220, 3128, 11547, 771, 198, 220, 4635, 3886, 198, 220, 640, 14231, 198, 220, 4481, 3886, 198, 220, 10754, 38, 270, 16066, 12982, 1391, 198, 220, 220, 220, 17594, 198, 220, 1782, 198, 220, 640, 17354, 198, 220, 6153, 3886, 198, 220, 19698, 38, 270, 16066, 12982, 1391, 198, 220, 220, 220, 17594, 198, 220, 1782, 198, 220, 13532, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 3465, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 2316, 1391, 198, 220, 220, 220, 13015, 1391, 198, 220, 220, 220, 220, 220, 10139, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 8695, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 584, 15667, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 584, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1720, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 9575, 6892, 341, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 9575, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8695, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 1782, 198, 220, 3465, 198, 92, 198, 37811, 198 ]
1.6465
1,157
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class ConcentrationSeries(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, concentrationlist: List[float]=None): # noqa: E501 """ConcentrationSeries - a model defined in Swagger :param concentrationlist: The concentrationlist of this ConcentrationSeries. # noqa: E501 :type concentrationlist: List[float] """ self.swagger_types = { 'concentrationlist': List[float] } self.attribute_map = { 'concentrationlist': 'concentrationlist' } self._concentrationlist = concentrationlist @classmethod def from_dict(cls, dikt) -> 'ConcentrationSeries': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The ConcentrationSeries of this ConcentrationSeries. # noqa: E501 :rtype: ConcentrationSeries """ return util.deserialize_model(dikt, cls) @property def concentrationlist(self) -> List[float]: """Gets the concentrationlist of this ConcentrationSeries. :return: The concentrationlist of this ConcentrationSeries. :rtype: List[float] """ return self._concentrationlist @concentrationlist.setter def concentrationlist(self, concentrationlist: List[float]): """Sets the concentrationlist of this ConcentrationSeries. :param concentrationlist: The concentrationlist of this ConcentrationSeries. :type concentrationlist: List[float] """ if concentrationlist is None: raise ValueError("Invalid value for `concentrationlist`, must not be `None`") # noqa: E501 self._concentrationlist = concentrationlist
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 4818, 8079, 1330, 3128, 11, 4818, 8079, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 6738, 1509, 7928, 62, 15388, 13, 27530, 13, 8692, 62, 19849, 62, 1330, 9104, 198, 6738, 1509, 7928, 62, 15388, 1330, 7736, 628, 198, 4871, 37613, 1358, 27996, 7, 17633, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 262, 1509, 7928, 2438, 17301, 1430, 13, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 10368, 4868, 25, 7343, 58, 22468, 22241, 14202, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1087, 1358, 27996, 532, 257, 2746, 5447, 287, 2451, 7928, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10368, 4868, 25, 383, 10368, 4868, 286, 428, 37613, 1358, 27996, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 10368, 4868, 25, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2032, 7928, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1102, 1087, 1358, 4868, 10354, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1102, 1087, 1358, 4868, 10354, 705, 1102, 1087, 1358, 4868, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1102, 1087, 1358, 4868, 796, 10368, 4868, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 11600, 7, 565, 82, 11, 288, 1134, 83, 8, 4613, 705, 3103, 1087, 1358, 27996, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 8633, 355, 257, 2746, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 1134, 83, 25, 317, 8633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 37613, 1358, 27996, 286, 428, 37613, 1358, 27996, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 37613, 1358, 27996, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7736, 13, 8906, 48499, 1096, 62, 19849, 7, 67, 1134, 83, 11, 537, 82, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 10368, 4868, 7, 944, 8, 4613, 7343, 58, 22468, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 10368, 4868, 286, 428, 37613, 1358, 27996, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 10368, 4868, 286, 428, 37613, 1358, 27996, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1102, 1087, 1358, 4868, 628, 220, 220, 220, 2488, 1102, 1087, 1358, 4868, 13, 2617, 353, 198, 220, 220, 220, 825, 10368, 4868, 7, 944, 11, 10368, 4868, 25, 7343, 58, 22468, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 10368, 4868, 286, 428, 37613, 1358, 27996, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10368, 4868, 25, 383, 10368, 4868, 286, 428, 37613, 1358, 27996, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 10368, 4868, 25, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10368, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 4600, 1102, 1087, 1358, 4868, 47671, 1276, 407, 307, 4600, 14202, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1102, 1087, 1358, 4868, 796, 10368, 4868, 198 ]
2.717507
754
from Algorithm import SearchTree, GraphContainer from multiprocessing import Process, Queue import time
[ 6738, 978, 42289, 1330, 11140, 27660, 11, 29681, 29869, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 11, 4670, 518, 198, 11748, 640, 628, 628 ]
4.28
25
from urllib3_mock import Responses from anipy import ( AuthenticationProvider, ) import os # from anipy.exception import AniException # from anipy.exception import InternalServerError # from anipy.exception import InvalidGrantException # from anipy.exception import InvalidRequestException # from anipy.exception import UnauthorizedException
[ 6738, 2956, 297, 571, 18, 62, 76, 735, 1330, 20549, 274, 198, 198, 6738, 281, 541, 88, 1330, 357, 198, 220, 220, 220, 48191, 29495, 11, 198, 8, 198, 198, 11748, 28686, 198, 198, 2, 422, 281, 541, 88, 13, 1069, 4516, 1330, 1052, 72, 16922, 198, 2, 422, 281, 541, 88, 13, 1069, 4516, 1330, 18628, 10697, 12331, 198, 2, 422, 281, 541, 88, 13, 1069, 4516, 1330, 17665, 45431, 16922, 198, 2, 422, 281, 541, 88, 13, 1069, 4516, 1330, 17665, 18453, 16922, 198, 2, 422, 281, 541, 88, 13, 1069, 4516, 1330, 791, 19721, 16922, 628 ]
3.535354
99
from controller.invoker.invoker_cmd_base import BaseMirControllerInvoker from controller.utils import checker, utils from id_definition.error_codes import CTLResponseCode from proto import backend_pb2
[ 6738, 10444, 13, 16340, 11020, 13, 16340, 11020, 62, 28758, 62, 8692, 1330, 7308, 27453, 22130, 19904, 11020, 198, 6738, 10444, 13, 26791, 1330, 2198, 263, 11, 3384, 4487, 198, 6738, 4686, 62, 46758, 13, 18224, 62, 40148, 1330, 327, 14990, 31077, 10669, 198, 6738, 44876, 1330, 30203, 62, 40842, 17, 628 ]
3.884615
52
from .base import BaseBreadcrumbMixin # noqa from .create import CreateBreadcrumbMixin # noqa from .delete import DeleteBreadcrumbMixin # noqa from .detail import DetailBreadcrumbMixin # noqa from .list import ListBreadcrumbMixin # noqa from .update import UpdateBreadcrumbMixin # noqa
[ 6738, 764, 8692, 1330, 7308, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198, 6738, 764, 17953, 1330, 13610, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198, 6738, 764, 33678, 1330, 23520, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198, 6738, 764, 49170, 1330, 42585, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198, 6738, 764, 4868, 1330, 7343, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198, 6738, 764, 19119, 1330, 10133, 33, 961, 6098, 2178, 35608, 259, 220, 1303, 645, 20402, 198 ]
3.041667
96
from .data import Data from .error import Error from .paged_data import PagedData from .pagination import Pagination from .short_url import ShortUrl __all__ = ["Data", "PagedData", "Error", "Pagination", "ShortUrl"]
[ 6738, 764, 7890, 1330, 6060, 198, 6738, 764, 18224, 1330, 13047, 198, 6738, 764, 79, 1886, 62, 7890, 1330, 350, 1886, 6601, 198, 6738, 764, 79, 363, 1883, 1330, 31525, 1883, 198, 6738, 764, 19509, 62, 6371, 1330, 10073, 28165, 198, 198, 834, 439, 834, 796, 14631, 6601, 1600, 366, 47, 1886, 6601, 1600, 366, 12331, 1600, 366, 47, 363, 1883, 1600, 366, 16438, 28165, 8973, 198 ]
3.238806
67
# Original by EMC-prog # UNDER THE MIT LICENSE import paramiko import time import os import json import sys from getpass import getpass print("ServerChecker") print("Check and command your linux server without knowing Linux") time.sleep(2) os.system('cls' if os.name == 'nt' else 'clear') #Know if the program has been opened already: f = open("data/1ststart", "r") iststart = f.read() f.close if iststart == "0": print("Looks like you haven't started this program before. You have to fill the file located in 'data/info.txt'.") ok = input("If you have already done the setup, press enter and execute the program again. If you haven't, edit the file with the help of the manual.") f = open("data/1ststart", "w") iststart = f.write("1") f.close sys.exit() #open json file with the server data js = open("data/info.txt", "r") jsondata = f.read() file_path = "data/info.txt" with open(file_path, 'r') as j: jdfp = json.loads(j.read()) #jdfp = json.loads(jsondata) f.close os.system('cls' if os.name == 'nt' else 'clear') #Initial menu print("Options avalible for the server: ") print("1) Check server temperature (NOT WORKING)") print("2) Reboot the server") print("3) Shut down the server (in 1 minute)") print("4) Shut down the server (instantaniously)") print("5) Custom command (check README)") option = input("Type a number an then press enter: ") #Enter the server host = (jdfp["ip"]) port = (jdfp["port"]) username = (jdfp["user"]) password = getpass("Password for user " + username + ": ") # Check the number selected: if option == "1": command = "echo wip" elif option == "2": command = "sudo reboot" elif option == "3": command = "sudo shutdown +1" elif option == "4": command = "sudo shutdown now" elif option == "5": command = (jdfp["custom_command"]) else: print("ERROR: No command selected. Program will close.") sys.exit() #make contact with server and do operation ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(host, port, username, password) stdin, stdout, stderr = ssh.exec_command(command) lines = stdout.readlines() print(lines)
[ 2, 13745, 416, 412, 9655, 12, 1676, 70, 198, 2, 35219, 3336, 17168, 38559, 24290, 628, 198, 11748, 5772, 12125, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 25064, 198, 6738, 651, 6603, 1330, 651, 6603, 198, 198, 4798, 7203, 10697, 9787, 263, 4943, 198, 4798, 7203, 9787, 290, 3141, 534, 32639, 4382, 1231, 6970, 7020, 4943, 198, 2435, 13, 42832, 7, 17, 8, 198, 418, 13, 10057, 10786, 565, 82, 6, 611, 28686, 13, 3672, 6624, 705, 429, 6, 2073, 705, 20063, 11537, 198, 198, 2, 23812, 611, 262, 1430, 468, 587, 4721, 1541, 25, 198, 198, 69, 796, 1280, 7203, 7890, 14, 16, 301, 9688, 1600, 366, 81, 4943, 198, 396, 9688, 796, 277, 13, 961, 3419, 198, 69, 13, 19836, 198, 198, 361, 318, 83, 9688, 6624, 366, 15, 1298, 198, 220, 220, 220, 3601, 7203, 41102, 588, 345, 4398, 470, 2067, 428, 1430, 878, 13, 921, 423, 284, 6070, 262, 2393, 5140, 287, 705, 7890, 14, 10951, 13, 14116, 6, 19570, 198, 220, 220, 220, 12876, 796, 5128, 7203, 1532, 345, 423, 1541, 1760, 262, 9058, 11, 1803, 3802, 290, 12260, 262, 1430, 757, 13, 1002, 345, 4398, 470, 11, 4370, 262, 2393, 351, 262, 1037, 286, 262, 10107, 19570, 198, 220, 220, 220, 277, 796, 1280, 7203, 7890, 14, 16, 301, 9688, 1600, 366, 86, 4943, 198, 220, 220, 220, 318, 83, 9688, 796, 277, 13, 13564, 7203, 16, 4943, 198, 220, 220, 220, 277, 13, 19836, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 198, 2, 9654, 33918, 2393, 351, 262, 4382, 1366, 198, 8457, 796, 1280, 7203, 7890, 14, 10951, 13, 14116, 1600, 366, 81, 4943, 198, 8457, 623, 1045, 796, 277, 13, 961, 3419, 198, 7753, 62, 6978, 796, 366, 7890, 14, 10951, 13, 14116, 1, 198, 4480, 1280, 7, 7753, 62, 6978, 11, 705, 81, 11537, 355, 474, 25, 198, 220, 220, 220, 220, 474, 7568, 79, 796, 33918, 13, 46030, 7, 73, 13, 961, 28955, 198, 2, 73, 7568, 79, 796, 33918, 13, 46030, 7, 8457, 623, 1045, 8, 198, 69, 13, 19836, 198, 198, 418, 13, 10057, 10786, 565, 82, 6, 611, 28686, 13, 3672, 6624, 705, 429, 6, 2073, 705, 20063, 11537, 198, 198, 2, 24243, 6859, 198, 4798, 7203, 29046, 37441, 856, 329, 262, 4382, 25, 366, 8, 198, 4798, 7203, 16, 8, 6822, 4382, 5951, 357, 11929, 30936, 2751, 8, 4943, 198, 4798, 7203, 17, 8, 50204, 262, 4382, 4943, 198, 4798, 7203, 18, 8, 18736, 866, 262, 4382, 357, 259, 352, 5664, 8, 4943, 198, 4798, 7203, 19, 8, 18736, 866, 262, 4382, 357, 8625, 415, 272, 6819, 8, 4943, 198, 4798, 7203, 20, 8, 8562, 3141, 357, 9122, 20832, 11682, 8, 4943, 198, 198, 18076, 796, 5128, 7203, 6030, 257, 1271, 281, 788, 1803, 3802, 25, 366, 8, 198, 198, 2, 17469, 262, 4382, 198, 4774, 796, 357, 73, 7568, 79, 14692, 541, 8973, 8, 198, 634, 796, 357, 73, 7568, 79, 14692, 634, 8973, 8, 198, 29460, 796, 357, 73, 7568, 79, 14692, 7220, 8973, 8, 198, 28712, 796, 651, 6603, 7203, 35215, 329, 2836, 366, 1343, 20579, 1343, 366, 25, 366, 8, 198, 198, 2, 6822, 262, 1271, 6163, 25, 198, 198, 361, 3038, 6624, 366, 16, 1298, 198, 220, 220, 220, 3141, 796, 366, 30328, 14763, 1, 198, 417, 361, 3038, 6624, 366, 17, 1298, 198, 220, 220, 220, 3141, 796, 366, 24032, 20149, 1, 198, 417, 361, 3038, 6624, 366, 18, 1298, 198, 220, 220, 220, 3141, 796, 366, 24032, 18325, 1343, 16, 1, 198, 417, 361, 3038, 6624, 366, 19, 1298, 198, 220, 220, 220, 3141, 796, 366, 24032, 18325, 783, 1, 198, 417, 361, 3038, 6624, 366, 20, 1298, 198, 220, 220, 220, 3141, 796, 357, 73, 7568, 79, 14692, 23144, 62, 21812, 8973, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 24908, 25, 1400, 3141, 6163, 13, 6118, 481, 1969, 19570, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 2, 15883, 2800, 351, 4382, 290, 466, 4905, 198, 45824, 796, 5772, 12125, 13, 5432, 39, 11792, 3419, 198, 45824, 13, 2617, 62, 45688, 62, 4774, 62, 2539, 62, 30586, 7, 17143, 12125, 13, 27722, 4550, 36727, 28955, 198, 45824, 13, 8443, 7, 4774, 11, 2493, 11, 20579, 11, 9206, 8, 198, 198, 19282, 259, 11, 14367, 448, 11, 336, 1082, 81, 796, 26678, 13, 18558, 62, 21812, 7, 21812, 8, 198, 6615, 796, 14367, 448, 13, 961, 6615, 3419, 198, 4798, 7, 6615, 8, 198 ]
2.897333
750
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="sdi_pandas", version="0.0.38", author="Thorsten Hapke", author_email="[email protected]", description="List of operators using the pandas module for processing the input", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/thhapke/sdi_pandas/", keywords = ['SAP Data Intelligence','pandas','operator'], packages=setuptools.find_packages(), install_requires=[ 'pandas', 'numpy', 'fuzzywuzzy' ], include_package_data=True, classifiers=[ 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
[ 11748, 900, 37623, 10141, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 82, 10989, 62, 79, 392, 292, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 2548, 1600, 198, 220, 220, 220, 1772, 2625, 46765, 26400, 367, 499, 365, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 400, 273, 26400, 13, 45897, 365, 31, 82, 499, 13, 785, 1600, 198, 220, 220, 220, 6764, 2625, 8053, 286, 12879, 1262, 262, 19798, 292, 8265, 329, 7587, 262, 5128, 1600, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 400, 45897, 365, 14, 82, 10989, 62, 79, 392, 292, 14, 1600, 198, 220, 220, 220, 26286, 796, 37250, 50, 2969, 6060, 9345, 41707, 79, 392, 292, 41707, 46616, 6, 4357, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 79, 392, 292, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 77, 32152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4715, 88, 86, 4715, 88, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 197, 6, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 3256, 198, 220, 220, 220, 220, 197, 6, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 197, 6, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 16589, 198, 8 ]
2.510811
370
''' An example of learning a NFSP Agent on Limit Texas Holdem ''' import torch import rlcard from rlcard.agents.nfsp_agent_pytorch import NFSPAgent from rlcard.agents.random_agent import RandomAgent from rlcard.utils.utils import set_global_seed from rlcard.utils.logger import Logger # Make environment env = rlcard.make('limit-holdem') eval_env = rlcard.make('limit-holdem') # Set the iterations numbers and how frequently we evaluate/save plot evaluate_every = 100 save_plot_every = 1000 evaluate_num = 10000 episode_num = 10000000 # Set the the number of steps for collecting normalization statistics # and intial memory size memory_init_size = 1000 norm_step = 1000 # The paths for saving the logs and learning curves root_path = './experiments/limit_holdem_nfsp_pytorch_result/' log_path = root_path + 'log.txt' csv_path = root_path + 'performance.csv' figure_path = root_path + 'figures/' # Set a global seed set_global_seed(0) # Set agents agents = [] for i in range(env.player_num): agent = NFSPAgent(scope='nfsp' + str(i), action_num=env.action_num, state_shape=env.state_shape, hidden_layers_sizes=[512,512], anticipatory_param=0.1, min_buffer_size_to_learn=memory_init_size, q_replay_memory_init_size=memory_init_size, q_norm_step=norm_step, q_mlp_layers=[512,512]) agents.append(agent) random_agent = RandomAgent(action_num=eval_env.action_num) env.set_agents(agents) eval_env.set_agents([agents[0], random_agent]) # Count the number of steps step_counters = [0 for _ in range(env.player_num)] # Init a Logger to plot the learning curve logger = Logger(xlabel='timestep', ylabel='reward', legend='NFSP on Limit Texas Holdem', log_path=log_path, csv_path=csv_path) for episode in range(episode_num): # First sample a policy for the episode for agent in agents: agent.sample_episode_policy() # Generate data from the environment trajectories, _ = env.run(is_training=True) # Feed transitions into agent memory, and train the agent for i in range(env.player_num): for ts in trajectories[i]: agents[i].feed(ts) step_counters[i] += 1 # Train the agent train_count = step_counters[i] - (memory_init_size + norm_step) if train_count > 0 and train_count % 64 == 0: rl_loss = agents[i].train_rl() sl_loss = agents[i].train_sl() print('\rINFO - Agent {}, step {}, rl-loss: {}, sl-loss: {}'.format(i, step_counters[i], rl_loss, sl_loss), end='') # Evaluate the performance. Play with random agents. if episode % evaluate_every == 0: reward = 0 for eval_episode in range(evaluate_num): _, payoffs = eval_env.run(is_training=False) reward += payoffs[0] logger.log('\n########## Evaluation ##########') logger.log('Timestep: {} Average reward is {}'.format(env.timestep, float(reward)/evaluate_num)) # Add point to logger logger.add_point(x=env.timestep, y=float(reward)/evaluate_num) # Make plot if episode % save_plot_every == 0 and episode > 0: logger.make_plot(save_path=figure_path+str(episode)+'.png') # Make the final plot logger.make_plot(save_path=figure_path+'final_'+str(episode)+'.png')
[ 7061, 6, 1052, 1672, 286, 4673, 257, 41288, 4303, 15906, 319, 27272, 3936, 9340, 368, 198, 7061, 6, 198, 11748, 28034, 198, 198, 11748, 374, 75, 9517, 198, 6738, 374, 75, 9517, 13, 49638, 13, 77, 69, 2777, 62, 25781, 62, 9078, 13165, 354, 1330, 41288, 4303, 36772, 198, 6738, 374, 75, 9517, 13, 49638, 13, 25120, 62, 25781, 1330, 14534, 36772, 198, 6738, 374, 75, 9517, 13, 26791, 13, 26791, 1330, 900, 62, 20541, 62, 28826, 198, 6738, 374, 75, 9517, 13, 26791, 13, 6404, 1362, 1330, 5972, 1362, 198, 198, 2, 6889, 2858, 198, 24330, 796, 374, 75, 9517, 13, 15883, 10786, 32374, 12, 2946, 368, 11537, 198, 18206, 62, 24330, 796, 374, 75, 9517, 13, 15883, 10786, 32374, 12, 2946, 368, 11537, 198, 198, 2, 5345, 262, 34820, 3146, 290, 703, 6777, 356, 13446, 14, 21928, 7110, 198, 49786, 62, 16833, 796, 1802, 198, 21928, 62, 29487, 62, 16833, 796, 8576, 198, 49786, 62, 22510, 796, 33028, 198, 38668, 62, 22510, 796, 1802, 20483, 198, 198, 2, 5345, 262, 262, 1271, 286, 4831, 329, 13157, 3487, 1634, 7869, 198, 2, 290, 493, 498, 4088, 2546, 198, 31673, 62, 15003, 62, 7857, 796, 8576, 198, 27237, 62, 9662, 796, 8576, 198, 198, 2, 383, 13532, 329, 8914, 262, 17259, 290, 4673, 23759, 198, 15763, 62, 6978, 796, 705, 19571, 23100, 6800, 14, 32374, 62, 2946, 368, 62, 77, 69, 2777, 62, 9078, 13165, 354, 62, 20274, 14, 6, 198, 6404, 62, 6978, 796, 6808, 62, 6978, 1343, 705, 6404, 13, 14116, 6, 198, 40664, 62, 6978, 796, 6808, 62, 6978, 1343, 705, 26585, 13, 40664, 6, 198, 26875, 62, 6978, 796, 6808, 62, 6978, 1343, 705, 5647, 942, 14, 6, 198, 198, 2, 5345, 257, 3298, 9403, 198, 2617, 62, 20541, 62, 28826, 7, 15, 8, 198, 198, 2, 5345, 6554, 198, 49638, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 24330, 13, 7829, 62, 22510, 2599, 198, 220, 220, 220, 5797, 796, 41288, 4303, 36772, 7, 29982, 11639, 77, 69, 2777, 6, 1343, 965, 7, 72, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 22510, 28, 24330, 13, 2673, 62, 22510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 43358, 28, 24330, 13, 5219, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 75, 6962, 62, 82, 4340, 41888, 25836, 11, 25836, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8462, 2870, 62, 17143, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 22252, 62, 7857, 62, 1462, 62, 35720, 28, 31673, 62, 15003, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 260, 1759, 62, 31673, 62, 15003, 62, 7857, 28, 31673, 62, 15003, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 27237, 62, 9662, 28, 27237, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 4029, 79, 62, 75, 6962, 41888, 25836, 11, 25836, 12962, 198, 220, 220, 220, 6554, 13, 33295, 7, 25781, 8, 198, 198, 25120, 62, 25781, 796, 14534, 36772, 7, 2673, 62, 22510, 28, 18206, 62, 24330, 13, 2673, 62, 22510, 8, 198, 198, 24330, 13, 2617, 62, 49638, 7, 49638, 8, 198, 18206, 62, 24330, 13, 2617, 62, 49638, 26933, 49638, 58, 15, 4357, 4738, 62, 25781, 12962, 198, 198, 2, 2764, 262, 1271, 286, 4831, 198, 9662, 62, 66, 15044, 796, 685, 15, 329, 4808, 287, 2837, 7, 24330, 13, 7829, 62, 22510, 15437, 198, 198, 2, 44707, 257, 5972, 1362, 284, 7110, 262, 4673, 12133, 198, 6404, 1362, 796, 5972, 1362, 7, 87, 18242, 11639, 16514, 395, 538, 3256, 331, 18242, 11639, 260, 904, 3256, 8177, 11639, 21870, 4303, 319, 27272, 3936, 9340, 368, 3256, 2604, 62, 6978, 28, 6404, 62, 6978, 11, 269, 21370, 62, 6978, 28, 40664, 62, 6978, 8, 198, 198, 1640, 4471, 287, 2837, 7, 38668, 62, 22510, 2599, 628, 220, 220, 220, 1303, 3274, 6291, 257, 2450, 329, 262, 4471, 198, 220, 220, 220, 329, 5797, 287, 6554, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 39873, 62, 38668, 62, 30586, 3419, 628, 220, 220, 220, 1303, 2980, 378, 1366, 422, 262, 2858, 198, 220, 220, 220, 20134, 1749, 11, 4808, 796, 17365, 13, 5143, 7, 271, 62, 34409, 28, 17821, 8, 628, 220, 220, 220, 1303, 18272, 27188, 656, 5797, 4088, 11, 290, 4512, 262, 5797, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 24330, 13, 7829, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 40379, 287, 20134, 1749, 58, 72, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6554, 58, 72, 4083, 12363, 7, 912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 62, 66, 15044, 58, 72, 60, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 262, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9127, 796, 2239, 62, 66, 15044, 58, 72, 60, 532, 357, 31673, 62, 15003, 62, 7857, 1343, 2593, 62, 9662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4512, 62, 9127, 1875, 657, 290, 4512, 62, 9127, 4064, 5598, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 75, 62, 22462, 796, 6554, 58, 72, 4083, 27432, 62, 45895, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1017, 62, 22462, 796, 6554, 58, 72, 4083, 27432, 62, 6649, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 81, 10778, 532, 15906, 1391, 5512, 2239, 1391, 5512, 374, 75, 12, 22462, 25, 1391, 5512, 1017, 12, 22462, 25, 23884, 4458, 18982, 7, 72, 11, 2239, 62, 66, 15044, 58, 72, 4357, 374, 75, 62, 22462, 11, 1017, 62, 22462, 828, 886, 28, 7061, 8, 628, 220, 220, 220, 1303, 26439, 4985, 262, 2854, 13, 3811, 351, 4738, 6554, 13, 198, 220, 220, 220, 611, 4471, 4064, 13446, 62, 16833, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5418, 62, 38668, 287, 2837, 7, 49786, 62, 22510, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 1414, 8210, 796, 5418, 62, 24330, 13, 5143, 7, 271, 62, 34409, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6721, 15853, 1414, 8210, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 6404, 10786, 59, 77, 7804, 2235, 34959, 1303, 7804, 2, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 6404, 10786, 14967, 395, 538, 25, 23884, 13475, 6721, 318, 23884, 4458, 18982, 7, 24330, 13, 16514, 395, 538, 11, 12178, 7, 260, 904, 20679, 49786, 62, 22510, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 966, 284, 49706, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2860, 62, 4122, 7, 87, 28, 24330, 13, 16514, 395, 538, 11, 331, 28, 22468, 7, 260, 904, 20679, 49786, 62, 22510, 8, 628, 220, 220, 220, 1303, 6889, 7110, 198, 220, 220, 220, 611, 4471, 4064, 3613, 62, 29487, 62, 16833, 6624, 657, 290, 4471, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 15883, 62, 29487, 7, 21928, 62, 6978, 28, 26875, 62, 6978, 10, 2536, 7, 38668, 47762, 4458, 11134, 11537, 198, 198, 2, 6889, 262, 2457, 7110, 198, 6404, 1362, 13, 15883, 62, 29487, 7, 21928, 62, 6978, 28, 26875, 62, 6978, 10, 6, 20311, 62, 6, 10, 2536, 7, 38668, 47762, 4458, 11134, 11537, 198 ]
2.420646
1,424
import os import random import cv2 import matplotlib.image as mpimg import numpy as np import pandas as pd import torch from torch.utils.data import Dataset class FacialKeypointsDataset(Dataset): """ Face Landmarks dataset. """ def __init__(self, csv_file, root_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.key_pts_frame = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform # Tranforms class Normalize(object): """ Convert a color image to grayscale and normalize the color range to [0,1]. """ class Rescale(object): """ Rescale the image in a sample to a given size. Args: output_size (tuple or int): Desired output size. If tuple, output is matched to output_size. If int, smaller of image edges is matched to output_size keeping aspect ratio the same. """ class RandomCrop(object): """ Crop randomly the image in a sample. Args: output_size (tuple or int): Desired output size. If int, square crop is made. """ class ToTensor(object): """ Convert ndarrays in sample to Tensors. """
[ 11748, 28686, 198, 11748, 4738, 198, 198, 11748, 269, 85, 17, 198, 11748, 2603, 29487, 8019, 13, 9060, 355, 29034, 9600, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 628, 198, 4871, 13585, 498, 9218, 13033, 27354, 292, 316, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15399, 6379, 14306, 27039, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 269, 21370, 62, 7753, 11, 6808, 62, 15908, 11, 6121, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 7753, 357, 8841, 2599, 10644, 284, 262, 269, 21370, 2393, 351, 37647, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 62, 15908, 357, 8841, 2599, 27387, 351, 477, 262, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 357, 13345, 540, 11, 11902, 2599, 32233, 6121, 284, 307, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 257, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2539, 62, 457, 82, 62, 14535, 796, 279, 67, 13, 961, 62, 40664, 7, 40664, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 62, 15908, 796, 6808, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 796, 6121, 628, 198, 2, 833, 272, 23914, 198, 198, 4871, 14435, 1096, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 257, 3124, 2939, 284, 1036, 592, 38765, 290, 3487, 1096, 262, 3124, 2837, 284, 685, 15, 11, 16, 4083, 198, 220, 220, 220, 37227, 628, 198, 4871, 1874, 38765, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1874, 38765, 262, 2939, 287, 257, 6291, 284, 257, 1813, 2546, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7857, 357, 83, 29291, 393, 493, 2599, 2935, 1202, 5072, 2546, 13, 1002, 46545, 11, 5072, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 284, 5072, 62, 7857, 13, 1002, 493, 11, 4833, 286, 2939, 13015, 318, 14451, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 5072, 62, 7857, 5291, 4843, 8064, 262, 976, 13, 198, 220, 220, 220, 37227, 628, 198, 198, 4871, 14534, 34, 1773, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 1773, 15456, 262, 2939, 287, 257, 6291, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7857, 357, 83, 29291, 393, 493, 2599, 2935, 1202, 5072, 2546, 13, 1002, 493, 11, 6616, 13833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 925, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 1675, 51, 22854, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 299, 67, 3258, 592, 287, 6291, 284, 40280, 669, 13, 198, 220, 220, 220, 37227, 198 ]
2.504378
571
import requests
[ 11748, 7007, 628 ]
5.666667
3
TWOHERTZ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] FIVEHERTZ = [ 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140, 149, 153, 157, 161, 165, ] ALL = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140, 149, 153, 157, 161, 165, ]
[ 34551, 12096, 17395, 57, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 11, 838, 11, 1367, 60, 198, 198, 37, 9306, 16879, 51, 57, 796, 685, 198, 220, 220, 220, 4570, 11, 198, 220, 220, 220, 2319, 11, 198, 220, 220, 220, 5846, 11, 198, 220, 220, 220, 4764, 11, 198, 220, 220, 220, 6740, 11, 198, 220, 220, 220, 7265, 11, 198, 220, 220, 220, 3126, 11, 198, 220, 220, 220, 5598, 11, 198, 220, 220, 220, 1802, 11, 198, 220, 220, 220, 14436, 11, 198, 220, 220, 220, 15495, 11, 198, 220, 220, 220, 13539, 11, 198, 220, 220, 220, 18693, 11, 198, 220, 220, 220, 21761, 11, 198, 220, 220, 220, 21056, 11, 198, 220, 220, 220, 12713, 11, 198, 220, 220, 220, 24041, 11, 198, 220, 220, 220, 24652, 11, 198, 220, 220, 220, 23313, 11, 198, 220, 220, 220, 27829, 11, 198, 220, 220, 220, 21409, 11, 198, 60, 198, 198, 7036, 796, 685, 198, 220, 220, 220, 352, 11, 198, 220, 220, 220, 362, 11, 198, 220, 220, 220, 513, 11, 198, 220, 220, 220, 604, 11, 198, 220, 220, 220, 642, 11, 198, 220, 220, 220, 718, 11, 198, 220, 220, 220, 767, 11, 198, 220, 220, 220, 807, 11, 198, 220, 220, 220, 860, 11, 198, 220, 220, 220, 838, 11, 198, 220, 220, 220, 1367, 11, 198, 220, 220, 220, 4570, 11, 198, 220, 220, 220, 2319, 11, 198, 220, 220, 220, 5846, 11, 198, 220, 220, 220, 4764, 11, 198, 220, 220, 220, 6740, 11, 198, 220, 220, 220, 7265, 11, 198, 220, 220, 220, 3126, 11, 198, 220, 220, 220, 5598, 11, 198, 220, 220, 220, 1802, 11, 198, 220, 220, 220, 14436, 11, 198, 220, 220, 220, 15495, 11, 198, 220, 220, 220, 13539, 11, 198, 220, 220, 220, 18693, 11, 198, 220, 220, 220, 21761, 11, 198, 220, 220, 220, 21056, 11, 198, 220, 220, 220, 12713, 11, 198, 220, 220, 220, 24041, 11, 198, 220, 220, 220, 24652, 11, 198, 220, 220, 220, 23313, 11, 198, 220, 220, 220, 27829, 11, 198, 220, 220, 220, 21409, 11, 198, 60, 198 ]
1.413699
365
#!/usr/bin/env python3.8 print(uni_char1('abcdaefg'))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 13, 23, 198, 198, 4798, 7, 35657, 62, 10641, 16, 10786, 39305, 6814, 891, 70, 6, 4008 ]
2.076923
26
from django.urls import path from .views import RecipientDetails, MeetSchedule, DashboardView, MyMapView, SubmitMap, submitForReview,AdminGraphView, FinalSubmit, Approval, SentForApprovalMap, SaveApprovedVersion, GetLatestRevision, CommentSubmit, Discard, ReviewerReview, embedded_signing_ceremony, get_access_code, auth_login, sign_complete from django.conf.urls import url from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = [ path('', DashboardView, name='dashboard-home'), path('MyMapView/', MyMapView, name='my-map-view'), path('submitMap/', SubmitMap), path('submitForReview/', submitForReview, name='submit-review'), path('AdminMapView/', AdminGraphView, name='admin-graph-view'), path('FinalSubmit/', FinalSubmit), path('approve/', Approval, name='user-approve'), path('ApprovedMap/', SentForApprovalMap, name='approved-map'), path('SaveRevision/', SaveApprovedVersion, name='approved-revision'), path('GetLatestRevision/', GetLatestRevision, name='latest-revision'), path('CommentSubmit/', CommentSubmit, name='comment-submit'), path('Discard/', Discard, name='discard'), path('reviewerReview/', ReviewerReview, name='reviewer-review'), path('meetSchedule/', MeetSchedule, name='meet-schedule'), path('recipients/', RecipientDetails, name='recipients'), url(r'^get_signing_url/$', embedded_signing_ceremony, name='get_signing_url'), url(r'^get_access_code/$', get_access_code, name='get_access_code'), url(r'^auth_login/$', auth_login, name='auth_login'), url(r'^sign_completed/$', sign_complete, name='sign_completed'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 33571, 1330, 3311, 48137, 24259, 11, 21167, 27054, 5950, 11, 16189, 3526, 7680, 11, 2011, 13912, 7680, 11, 39900, 13912, 11, 9199, 1890, 14832, 11, 46787, 37065, 7680, 11, 8125, 45135, 11, 20010, 2100, 11, 11352, 1890, 4677, 305, 2100, 13912, 11, 12793, 4677, 305, 1079, 14815, 11, 3497, 39478, 18009, 1166, 11, 18957, 45135, 11, 8444, 446, 11, 6602, 263, 14832, 11, 14553, 62, 12683, 278, 62, 344, 2787, 1647, 11, 651, 62, 15526, 62, 8189, 11, 6284, 62, 38235, 11, 1051, 62, 20751, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 16189, 3526, 7680, 11, 1438, 11639, 42460, 3526, 12, 11195, 33809, 198, 220, 220, 220, 3108, 10786, 3666, 13912, 7680, 14, 3256, 2011, 13912, 7680, 11, 1438, 11639, 1820, 12, 8899, 12, 1177, 33809, 198, 220, 220, 220, 3108, 10786, 46002, 13912, 14, 3256, 39900, 13912, 828, 198, 220, 220, 220, 3108, 10786, 46002, 1890, 14832, 14, 3256, 9199, 1890, 14832, 11, 1438, 11639, 46002, 12, 19023, 33809, 198, 220, 220, 220, 3108, 10786, 46787, 13912, 7680, 14, 3256, 32053, 37065, 7680, 11, 1438, 11639, 28482, 12, 34960, 12, 1177, 33809, 198, 220, 220, 220, 3108, 10786, 19006, 45135, 14, 3256, 8125, 45135, 828, 198, 220, 220, 220, 3108, 10786, 21064, 303, 14, 3256, 20010, 2100, 11, 1438, 11639, 7220, 12, 21064, 303, 33809, 198, 220, 220, 220, 3108, 10786, 4677, 305, 1079, 13912, 14, 3256, 11352, 1890, 4677, 305, 2100, 13912, 11, 1438, 11639, 29137, 12, 8899, 33809, 198, 220, 220, 220, 3108, 10786, 16928, 18009, 1166, 14, 3256, 12793, 4677, 305, 1079, 14815, 11, 1438, 11639, 29137, 12, 260, 10178, 33809, 198, 220, 220, 220, 3108, 10786, 3855, 39478, 18009, 1166, 14, 3256, 3497, 39478, 18009, 1166, 11, 1438, 11639, 42861, 12, 260, 10178, 33809, 198, 220, 220, 220, 3108, 10786, 21357, 45135, 14, 3256, 18957, 45135, 11, 1438, 11639, 23893, 12, 46002, 33809, 198, 220, 220, 220, 3108, 10786, 15642, 446, 14, 3256, 8444, 446, 11, 1438, 11639, 15410, 446, 33809, 198, 220, 220, 220, 3108, 10786, 19023, 263, 14832, 14, 3256, 6602, 263, 14832, 11, 1438, 11639, 19023, 263, 12, 19023, 33809, 198, 220, 220, 220, 3108, 10786, 47745, 27054, 5950, 14, 3256, 21167, 27054, 5950, 11, 1438, 11639, 47745, 12, 15952, 5950, 33809, 198, 220, 220, 220, 3108, 10786, 8344, 541, 2334, 14, 3256, 3311, 48137, 24259, 11, 1438, 11639, 8344, 541, 2334, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1136, 62, 12683, 278, 62, 6371, 32624, 3256, 14553, 62, 12683, 278, 62, 344, 2787, 1647, 11, 1438, 11639, 1136, 62, 12683, 278, 62, 6371, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1136, 62, 15526, 62, 8189, 32624, 3256, 651, 62, 15526, 62, 8189, 11, 1438, 11639, 1136, 62, 15526, 62, 8189, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 18439, 62, 38235, 32624, 3256, 6284, 62, 38235, 11, 1438, 11639, 18439, 62, 38235, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 12683, 62, 785, 16838, 32624, 3256, 1051, 62, 20751, 11, 1438, 11639, 12683, 62, 785, 16838, 33809, 198, 60, 198 ]
2.937276
558
# -*- coding:utf-8 -*- import os import tempfile from flexmock import flexmock from orator.commands.command import Command from . import OratorCommandTestCase class FooCommand(Command): """ Test Command """ name = "foo"
[ 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 20218, 7753, 198, 198, 6738, 7059, 76, 735, 1330, 7059, 76, 735, 198, 198, 6738, 393, 1352, 13, 9503, 1746, 13, 21812, 1330, 9455, 198, 198, 6738, 764, 1330, 1471, 1352, 21575, 14402, 20448, 628, 198, 4871, 36080, 21575, 7, 21575, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 9455, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1438, 796, 366, 21943, 1, 628 ]
2.858824
85
# Copyright 2021 Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import concurrent.futures import datetime import mock import typing import google from google.cloud.firestore_v1.base_client import BaseClient from google.cloud.firestore_v1.document import DocumentReference, DocumentSnapshot from google.cloud._helpers import _datetime_to_pb_timestamp, UTC # type: ignore from google.cloud.firestore_v1._helpers import build_timestamp from google.cloud.firestore_v1.async_client import AsyncClient from google.cloud.firestore_v1.client import Client from google.protobuf.timestamp_pb2 import Timestamp # type: ignore
[ 2, 15069, 33448, 3012, 11419, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 24580, 13, 69, 315, 942, 198, 11748, 4818, 8079, 198, 11748, 15290, 198, 11748, 19720, 198, 198, 11748, 23645, 198, 6738, 23645, 13, 17721, 13, 6495, 8095, 62, 85, 16, 13, 8692, 62, 16366, 1330, 7308, 11792, 198, 6738, 23645, 13, 17721, 13, 6495, 8095, 62, 85, 16, 13, 22897, 1330, 16854, 26687, 11, 16854, 43826, 9442, 198, 6738, 23645, 13, 17721, 13557, 16794, 364, 1330, 4808, 19608, 8079, 62, 1462, 62, 40842, 62, 16514, 27823, 11, 18119, 220, 1303, 2099, 25, 8856, 198, 6738, 23645, 13, 17721, 13, 6495, 8095, 62, 85, 16, 13557, 16794, 364, 1330, 1382, 62, 16514, 27823, 198, 6738, 23645, 13, 17721, 13, 6495, 8095, 62, 85, 16, 13, 292, 13361, 62, 16366, 1330, 1081, 13361, 11792, 198, 6738, 23645, 13, 17721, 13, 6495, 8095, 62, 85, 16, 13, 16366, 1330, 20985, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 16514, 27823, 62, 40842, 17, 1330, 5045, 27823, 220, 1303, 2099, 25, 8856, 628, 628, 628, 198 ]
3.658228
316
# Copyright 2021 AI Singapore # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Estimates the 3D coordinates of an object given a 2D bounding box """ from typing import Dict, Any import numpy as np from peekingduck.pipeline.nodes.node import AbstractNode class Node(AbstractNode): """Node that uses 2D bounding boxes information to estimate 3D location. Inputs: |bboxes| Outputs: |obj_3D_locs| Configs: focal_length (:obj:`float`): **default = 1.14** Approximate focal length of webcam used, in metres. Example on measuring focal length: https://learnopencv.com/approximate-focal-length-for-webcams-and-cell-phone-cameras/ height_factor (:obj:`float`): **default = 2.5** A factor used to estimate real-world distance from pixels, based on average human height in metres. The value varies across different camera set-ups, and calibration may be required. """ def run(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Converts 2D bounding boxes into 3D locations. """ locations = [] for bbox in inputs["bboxes"]: # Subtraction is to make the camera the origin of the coordinate system center_2d = ((bbox[0:2] + bbox[2:4]) * 0.5) - np.array([0.5, 0.5]) bbox_height = bbox[3] - bbox[1] z_coord = (self.focal_length * self.height_factor) / bbox_height x_coord = (center_2d[0] * self.height_factor) / bbox_height y_coord = (center_2d[1] * self.height_factor) / bbox_height point = np.array([x_coord, y_coord, z_coord]) locations.append(point) outputs = {"obj_3D_locs": locations} return outputs
[ 2, 15069, 33448, 9552, 12551, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 22362, 26748, 262, 513, 35, 22715, 286, 281, 2134, 1813, 257, 362, 35, 5421, 278, 3091, 198, 37811, 198, 198, 6738, 19720, 1330, 360, 713, 11, 4377, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 613, 18754, 646, 694, 13, 79, 541, 4470, 13, 77, 4147, 13, 17440, 1330, 27741, 19667, 628, 198, 4871, 19081, 7, 23839, 19667, 2599, 198, 220, 220, 220, 37227, 19667, 326, 3544, 362, 35, 5421, 278, 10559, 1321, 284, 8636, 513, 35, 4067, 13, 628, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 930, 65, 29305, 91, 628, 220, 220, 220, 25235, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 930, 26801, 62, 18, 35, 62, 17946, 82, 91, 628, 220, 220, 220, 17056, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25397, 62, 13664, 357, 25, 26801, 25, 63, 22468, 63, 2599, 12429, 12286, 796, 352, 13, 1415, 1174, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2034, 13907, 1920, 25397, 4129, 286, 49823, 973, 11, 287, 18985, 13, 17934, 319, 15964, 25397, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 35720, 9654, 33967, 13, 785, 14, 1324, 13907, 1920, 12, 69, 4374, 12, 13664, 12, 1640, 12, 12384, 66, 4105, 12, 392, 12, 3846, 12, 4862, 12, 66, 2382, 292, 14, 628, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 62, 31412, 357, 25, 26801, 25, 63, 22468, 63, 2599, 12429, 12286, 796, 362, 13, 20, 1174, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 5766, 973, 284, 8636, 1103, 12, 6894, 5253, 422, 17848, 11, 1912, 319, 2811, 1692, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 18985, 13, 383, 1988, 17806, 1973, 1180, 4676, 900, 12, 4739, 11, 290, 36537, 743, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 17311, 25, 360, 713, 58, 2536, 11, 4377, 12962, 4613, 360, 713, 58, 2536, 11, 4377, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 24040, 362, 35, 5421, 278, 10559, 656, 513, 35, 7064, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 7064, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 275, 3524, 287, 17311, 14692, 65, 29305, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3834, 83, 7861, 318, 284, 787, 262, 4676, 262, 8159, 286, 262, 20435, 1080, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 17, 67, 796, 14808, 65, 3524, 58, 15, 25, 17, 60, 1343, 275, 3524, 58, 17, 25, 19, 12962, 1635, 657, 13, 20, 8, 532, 45941, 13, 18747, 26933, 15, 13, 20, 11, 657, 13, 20, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 17015, 796, 275, 3524, 58, 18, 60, 532, 275, 3524, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 37652, 796, 357, 944, 13, 69, 4374, 62, 13664, 1635, 2116, 13, 17015, 62, 31412, 8, 1220, 275, 3524, 62, 17015, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 37652, 796, 357, 16159, 62, 17, 67, 58, 15, 60, 1635, 2116, 13, 17015, 62, 31412, 8, 1220, 275, 3524, 62, 17015, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 37652, 796, 357, 16159, 62, 17, 67, 58, 16, 60, 1635, 2116, 13, 17015, 62, 31412, 8, 1220, 275, 3524, 62, 17015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 796, 45941, 13, 18747, 26933, 87, 62, 37652, 11, 331, 62, 37652, 11, 1976, 62, 37652, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7064, 13, 33295, 7, 4122, 8, 628, 220, 220, 220, 220, 220, 220, 220, 23862, 796, 19779, 26801, 62, 18, 35, 62, 17946, 82, 1298, 7064, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 23862, 198 ]
2.630359
863
import pytest from punch import file_configuration as fc @pytest.fixture @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 198, 198, 6738, 10862, 1330, 2393, 62, 11250, 3924, 355, 277, 66, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628, 198 ]
2.744186
43
import datetime emp1 = Employee.from_string("[email protected]") emp2 = Employee.from_string("[email protected]") emp3 = Employee.from_string("[email protected]") Employee.set_raise() emp1.apply_raise() emp2.apply_raise() emp3.apply_raise() print("Employee 1 fullname is:", emp1.get_full_name(), "created at", emp1.timestamp, "salary is $", float(emp1.pay)) print("Employee 2 fullname is:", emp2.get_full_name(), "created at", emp2.timestamp, "salary is $", float(emp2.pay)) print("Employee 3 fullname is:", emp3.get_full_name(), "created at", emp3.timestamp, "salary is $", float(emp3.pay))
[ 11748, 4818, 8079, 628, 198, 198, 45787, 16, 796, 36824, 13, 6738, 62, 8841, 7203, 26497, 12, 38, 571, 1443, 12, 73, 888, 13, 70, 571, 1443, 31, 8940, 4529, 13, 785, 12, 2623, 830, 4943, 198, 45787, 17, 796, 36824, 13, 6738, 62, 8841, 7203, 44, 888, 12, 32173, 12, 76, 888, 13, 12135, 31, 14816, 13, 785, 12, 2231, 830, 4943, 198, 45787, 18, 796, 36824, 13, 6738, 62, 8841, 7203, 42, 417, 7114, 12, 39, 672, 1443, 12, 365, 6780, 259, 13, 71, 672, 1443, 31, 46848, 4207, 603, 13, 785, 12, 4531, 830, 4943, 198, 198, 29733, 1453, 13, 2617, 62, 40225, 3419, 198, 198, 45787, 16, 13, 39014, 62, 40225, 3419, 198, 45787, 17, 13, 39014, 62, 40225, 3419, 198, 45787, 18, 13, 39014, 62, 40225, 3419, 198, 198, 4798, 7203, 29733, 1453, 352, 1336, 3672, 318, 25, 1600, 795, 79, 16, 13, 1136, 62, 12853, 62, 3672, 22784, 366, 25598, 379, 1600, 795, 79, 16, 13, 16514, 27823, 11, 366, 21680, 560, 318, 720, 1600, 12178, 7, 45787, 16, 13, 15577, 4008, 198, 4798, 7203, 29733, 1453, 362, 1336, 3672, 318, 25, 1600, 795, 79, 17, 13, 1136, 62, 12853, 62, 3672, 22784, 366, 25598, 379, 1600, 795, 79, 17, 13, 16514, 27823, 11, 366, 21680, 560, 318, 720, 1600, 12178, 7, 45787, 17, 13, 15577, 4008, 198, 4798, 7203, 29733, 1453, 513, 1336, 3672, 318, 25, 1600, 795, 79, 18, 13, 1136, 62, 12853, 62, 3672, 22784, 366, 25598, 379, 1600, 795, 79, 18, 13, 16514, 27823, 11, 366, 21680, 560, 318, 720, 1600, 12178, 7, 45787, 18, 13, 15577, 4008, 198 ]
2.498141
269
""" This tests whether from future.builtins import * works as expected: - This should NOT introduce namespace pollution on Py3. - On Python 2, this should not introduce any symbols that aren't in __builtin__. """ from __future__ import absolute_import, print_function, unicode_literals import copy from future import utils from future.tests.base import unittest original_locals = set(copy.copy(locals())) original_globals = set(copy.copy(globals())) new_names = set(['original_locals', 'original_globals', 'new_names']) from future.builtins import * new_locals = set(copy.copy(locals())) - new_names - original_locals new_globals = set(copy.copy(globals())) - new_names - original_globals - \ set(['new_locals']) if __name__ == '__main__': unittest.main()
[ 37811, 198, 1212, 5254, 1771, 628, 220, 220, 220, 422, 2003, 13, 18780, 1040, 1330, 1635, 198, 198, 5225, 355, 2938, 25, 198, 12, 770, 815, 5626, 10400, 25745, 12231, 319, 9485, 18, 13, 198, 12, 1550, 11361, 362, 11, 428, 815, 407, 10400, 597, 14354, 326, 3588, 470, 287, 198, 220, 11593, 18780, 259, 834, 13, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4866, 198, 198, 6738, 2003, 1330, 3384, 4487, 198, 6738, 2003, 13, 41989, 13, 8692, 1330, 555, 715, 395, 628, 198, 14986, 62, 17946, 874, 796, 900, 7, 30073, 13, 30073, 7, 17946, 874, 3419, 4008, 198, 14986, 62, 4743, 672, 874, 796, 900, 7, 30073, 13, 30073, 7, 4743, 672, 874, 3419, 4008, 198, 3605, 62, 14933, 796, 900, 7, 17816, 14986, 62, 17946, 874, 3256, 705, 14986, 62, 4743, 672, 874, 3256, 705, 3605, 62, 14933, 6, 12962, 198, 6738, 2003, 13, 18780, 1040, 1330, 1635, 198, 3605, 62, 17946, 874, 796, 900, 7, 30073, 13, 30073, 7, 17946, 874, 3419, 4008, 532, 649, 62, 14933, 532, 2656, 62, 17946, 874, 198, 3605, 62, 4743, 672, 874, 796, 900, 7, 30073, 13, 30073, 7, 4743, 672, 874, 3419, 4008, 532, 649, 62, 14933, 532, 2656, 62, 4743, 672, 874, 532, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 7, 17816, 3605, 62, 17946, 874, 6, 12962, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.897436
273
import collections ''' This problem was recently asked by Google: Given a list of numbers and a target number n, find 3 numbers combinatins in the list that sums closest to the target number n. There may be multiple ways of creating the sum closest to the target number, you can return any combination in any order. Time: O(nlogn) + O(n2) = O(n2) Space: O(n) ''' print(Solution().closest_3_sum([2, 1, -5, 4], -1)) # (1, [[-5, 1, 4], [-5, 1, 2]])
[ 11748, 17268, 198, 198, 7061, 6, 198, 1212, 1917, 373, 2904, 1965, 416, 3012, 25, 198, 198, 15056, 257, 1351, 286, 3146, 290, 257, 2496, 1271, 299, 11, 1064, 513, 3146, 1974, 259, 265, 1040, 287, 262, 1351, 326, 21784, 11706, 284, 262, 2496, 1271, 299, 13, 1318, 743, 307, 3294, 2842, 286, 4441, 262, 2160, 11706, 284, 262, 2496, 1271, 11, 345, 460, 1441, 597, 6087, 287, 597, 1502, 13, 198, 198, 7575, 25, 440, 7, 21283, 2360, 8, 1343, 440, 7, 77, 17, 8, 796, 440, 7, 77, 17, 8, 198, 14106, 25, 440, 7, 77, 8, 198, 198, 7061, 6, 628, 198, 198, 4798, 7, 46344, 22446, 565, 418, 395, 62, 18, 62, 16345, 26933, 17, 11, 352, 11, 532, 20, 11, 604, 4357, 532, 16, 4008, 198, 2, 357, 16, 11, 16410, 12, 20, 11, 352, 11, 604, 4357, 25915, 20, 11, 352, 11, 362, 11907, 8 ]
2.993377
151
from .trial import generate_trial_id import random import hashlib import pandas as pd
[ 6738, 764, 45994, 1330, 7716, 62, 45994, 62, 312, 198, 11748, 4738, 198, 11748, 12234, 8019, 198, 11748, 19798, 292, 355, 279, 67, 628 ]
3.625
24
#!/usr/bin/env python # -*- coding: utf-8 -*- # from flask_security import login_required from functools import wraps from .blueprints import register_blueprints from .slugify import slugify from app.settings import project_name try: from instance.settings import project_name except ImportError: pass
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 422, 42903, 62, 12961, 1330, 17594, 62, 35827, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 198, 6738, 764, 17585, 17190, 1330, 7881, 62, 17585, 17190, 198, 6738, 764, 6649, 1018, 1958, 1330, 31065, 1958, 198, 198, 6738, 598, 13, 33692, 1330, 1628, 62, 3672, 198, 28311, 25, 422, 4554, 13, 33692, 1330, 1628, 62, 3672, 198, 16341, 17267, 12331, 25, 1208, 628 ]
3.477273
88
import requests if __name__ == '__main__': main()
[ 11748, 7007, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.7
20
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import model_utils.fields import django.utils.timezone
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 2746, 62, 26791, 13, 25747, 198, 11748, 42625, 14208, 13, 26791, 13, 2435, 11340, 628 ]
3.056604
53
"""Application tests. """ import i_xero2 def test_version(): """Test the version of the app. """ assert i_xero2.__version__
[ 37811, 23416, 5254, 13, 198, 37811, 198, 11748, 1312, 62, 87, 3529, 17, 198, 198, 4299, 1332, 62, 9641, 33529, 198, 220, 220, 220, 37227, 14402, 262, 2196, 286, 262, 598, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 1312, 62, 87, 3529, 17, 13, 834, 9641, 834, 198 ]
2.634615
52
from django.test import TestCase from esmond.poll import IfDescrCorrelator, JnxFirewallCorrelator, \ JnxCOSCorrelator, SentryCorrelator, \ ALUSAPCorrelator #def test_jnx_cos_correlator(): # s = MockSession() # c = JnxCOSCorrelator(s) # c.setup() # for (var,val,check) in s.walk('jnxCosIfqQedBytes'): # assert check == c.lookup('jnxCosIfqQedBytes', var)
[ 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 1658, 6327, 13, 30393, 1330, 1002, 24564, 81, 10606, 2411, 1352, 11, 449, 77, 87, 13543, 11930, 10606, 2411, 1352, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 449, 77, 87, 34, 2640, 10606, 2411, 1352, 11, 11352, 563, 10606, 2411, 1352, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8355, 2937, 2969, 10606, 2411, 1352, 628, 198, 2, 4299, 1332, 62, 73, 77, 87, 62, 6966, 62, 10215, 2411, 1352, 33529, 198, 2, 220, 220, 220, 264, 796, 44123, 36044, 3419, 198, 2, 220, 220, 220, 269, 796, 449, 77, 87, 34, 2640, 10606, 2411, 1352, 7, 82, 8, 198, 2, 220, 220, 220, 269, 13, 40406, 3419, 198, 2, 220, 220, 220, 329, 357, 7785, 11, 2100, 11, 9122, 8, 287, 264, 13, 11152, 10786, 73, 77, 87, 36734, 1532, 80, 48, 276, 45992, 6, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 6818, 2198, 6624, 269, 13, 5460, 929, 10786, 73, 77, 87, 36734, 1532, 80, 48, 276, 45992, 3256, 1401, 8, 628 ]
1.941441
222
from . import common_pb2 as common_messages from contextlib import redirect_stdout from .Utility import Utility import json, io
[ 6738, 764, 1330, 2219, 62, 40842, 17, 355, 2219, 62, 37348, 1095, 198, 6738, 4732, 8019, 1330, 18941, 62, 19282, 448, 198, 6738, 764, 18274, 879, 1330, 34030, 198, 11748, 33918, 11, 33245, 198 ]
3.764706
34
# Copyright © 2018 Stanislav Hnatiuk. All rights reserved. """Module of functions.""" from operator import itemgetter from itertools import groupby def stime_to_decimal(s): """Lololo.""" return s.hour + s.minute / 60 def group_time(records): """Lololo.""" records.sort(key=itemgetter(6, 1)) result = [ [stime_to_decimal(time), *[item[0] for item in group]] for time, group in groupby(records, key=itemgetter(6)) ] return result def group_sensor(records): """Lololo.""" records.sort(key=itemgetter(1)) result = ['X', *[key[1] for key, _ in groupby( records, key=itemgetter(1, 2))]] return result def group_category(records): """Lololo.""" records.sort(key=itemgetter(3)) result = [{ 'id': key[0], 'name': key[1], 'measure': key[2], 'data': [*[item for item in group]], } for key, group in groupby(records, key=itemgetter(3, 4, 5))] for item in result: item['rows'] = group_time(item['data']) item['cols'] = group_sensor(item['data']) item.pop('data') return result # [ # { # "cols": [ # "X", # "Sens 1", # "Sens 2" # ], # "id": 1, # "measure": "AAA", # "name": "Cat 1", # "rows": [ # [ # 10.916666666666666, # 17.0, # 14.0 # ] # ] # }, # { # "cols": [ # "X", # "Sens 3" # ], # "id": 2, # "measure": "AAA", # "name": "Cat 2", # "rows": [ # [ # 10.916666666666666, # 13.0 # ] # ] # } # ]
[ 2, 15069, 10673, 2864, 7299, 3044, 615, 367, 77, 7246, 2724, 13, 1439, 2489, 10395, 13, 198, 198, 37811, 26796, 286, 5499, 526, 15931, 198, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 6738, 340, 861, 10141, 1330, 1448, 1525, 628, 198, 4299, 336, 524, 62, 1462, 62, 12501, 4402, 7, 82, 2599, 198, 220, 220, 220, 37227, 43, 349, 14057, 526, 15931, 198, 220, 220, 220, 1441, 264, 13, 9769, 1343, 264, 13, 11374, 1220, 3126, 628, 198, 4299, 1448, 62, 2435, 7, 8344, 3669, 2599, 198, 220, 220, 220, 37227, 43, 349, 14057, 526, 15931, 198, 220, 220, 220, 4406, 13, 30619, 7, 2539, 28, 9186, 1136, 353, 7, 21, 11, 352, 4008, 198, 220, 220, 220, 1255, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 685, 301, 524, 62, 1462, 62, 12501, 4402, 7, 2435, 828, 1635, 58, 9186, 58, 15, 60, 329, 2378, 287, 1448, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 329, 640, 11, 1448, 287, 1448, 1525, 7, 8344, 3669, 11, 1994, 28, 9186, 1136, 353, 7, 21, 4008, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1448, 62, 82, 22854, 7, 8344, 3669, 2599, 198, 220, 220, 220, 37227, 43, 349, 14057, 526, 15931, 198, 220, 220, 220, 4406, 13, 30619, 7, 2539, 28, 9186, 1136, 353, 7, 16, 4008, 198, 220, 220, 220, 1255, 796, 37250, 55, 3256, 1635, 58, 2539, 58, 16, 60, 329, 1994, 11, 4808, 287, 1448, 1525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4406, 11, 1994, 28, 9186, 1136, 353, 7, 16, 11, 362, 4008, 11907, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1448, 62, 22872, 7, 8344, 3669, 2599, 198, 220, 220, 220, 37227, 43, 349, 14057, 526, 15931, 198, 220, 220, 220, 4406, 13, 30619, 7, 2539, 28, 9186, 1136, 353, 7, 18, 4008, 198, 220, 220, 220, 1255, 796, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1994, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1994, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1326, 5015, 10354, 1994, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 30138, 58, 9186, 329, 2378, 287, 1448, 60, 4357, 198, 220, 220, 220, 1782, 329, 1994, 11, 1448, 287, 1448, 1525, 7, 8344, 3669, 11, 1994, 28, 9186, 1136, 353, 7, 18, 11, 604, 11, 642, 4008, 60, 628, 220, 220, 220, 329, 2378, 287, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 17816, 8516, 20520, 796, 1448, 62, 2435, 7, 9186, 17816, 7890, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 17816, 4033, 82, 20520, 796, 1448, 62, 82, 22854, 7, 9186, 17816, 7890, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 13, 12924, 10786, 7890, 11537, 628, 220, 220, 220, 1441, 1255, 198, 198, 2, 685, 198, 2, 220, 220, 1391, 198, 2, 220, 220, 220, 220, 366, 4033, 82, 1298, 685, 198, 2, 220, 220, 220, 220, 220, 220, 366, 55, 1600, 220, 198, 2, 220, 220, 220, 220, 220, 220, 366, 50, 641, 352, 1600, 220, 198, 2, 220, 220, 220, 220, 220, 220, 366, 50, 641, 362, 1, 198, 2, 220, 220, 220, 220, 16589, 220, 198, 2, 220, 220, 220, 220, 366, 312, 1298, 352, 11, 220, 198, 2, 220, 220, 220, 220, 366, 1326, 5015, 1298, 366, 29697, 1600, 220, 198, 2, 220, 220, 220, 220, 366, 3672, 1298, 366, 21979, 352, 1600, 220, 198, 2, 220, 220, 220, 220, 366, 8516, 1298, 685, 198, 2, 220, 220, 220, 220, 220, 220, 685, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 838, 13, 48894, 41977, 19060, 11, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1596, 13, 15, 11, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1478, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 2361, 198, 2, 220, 220, 220, 220, 2361, 198, 2, 220, 220, 8964, 220, 198, 2, 220, 220, 1391, 198, 2, 220, 220, 220, 220, 366, 4033, 82, 1298, 685, 198, 2, 220, 220, 220, 220, 220, 220, 366, 55, 1600, 220, 198, 2, 220, 220, 220, 220, 220, 220, 366, 50, 641, 513, 1, 198, 2, 220, 220, 220, 220, 16589, 220, 198, 2, 220, 220, 220, 220, 366, 312, 1298, 362, 11, 220, 198, 2, 220, 220, 220, 220, 366, 1326, 5015, 1298, 366, 29697, 1600, 220, 198, 2, 220, 220, 220, 220, 366, 3672, 1298, 366, 21979, 362, 1600, 220, 198, 2, 220, 220, 220, 220, 366, 8516, 1298, 685, 198, 2, 220, 220, 220, 220, 220, 220, 685, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 838, 13, 48894, 41977, 19060, 11, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1511, 13, 15, 198, 2, 220, 220, 220, 220, 220, 220, 2361, 198, 2, 220, 220, 220, 220, 2361, 198, 2, 220, 220, 1782, 198, 2, 2361 ]
1.91253
846
# MINLP written by GAMS Convert at 04/21/18 13:54:56 # # Equation counts # Total E G L N X C B # 140 56 33 51 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 70 61 9 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 401 182 219 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(None,None),initialize=0) m.x2 = Var(within=Reals,bounds=(None,None),initialize=0) m.x3 = Var(within=Reals,bounds=(None,None),initialize=0) m.x4 = Var(within=Reals,bounds=(None,None),initialize=0) m.x5 = Var(within=Reals,bounds=(None,None),initialize=0) m.x6 = Var(within=Reals,bounds=(None,None),initialize=0) m.x7 = Var(within=Reals,bounds=(None,None),initialize=0) m.x8 = Var(within=Reals,bounds=(None,None),initialize=0) m.x9 = Var(within=Reals,bounds=(None,None),initialize=0) m.x10 = Var(within=Reals,bounds=(None,None),initialize=0) m.x11 = Var(within=Reals,bounds=(None,None),initialize=0) m.x12 = Var(within=Reals,bounds=(None,None),initialize=0) m.x13 = Var(within=Reals,bounds=(None,None),initialize=0) m.x14 = Var(within=Reals,bounds=(None,None),initialize=0) m.x15 = Var(within=Reals,bounds=(None,None),initialize=0) m.x16 = Var(within=Reals,bounds=(None,None),initialize=0) m.x17 = Var(within=Reals,bounds=(None,None),initialize=0) m.x18 = Var(within=Reals,bounds=(None,None),initialize=0) m.x19 = Var(within=Reals,bounds=(None,None),initialize=0) m.x20 = Var(within=Reals,bounds=(None,None),initialize=0) m.x21 = Var(within=Reals,bounds=(None,None),initialize=0) m.x22 = Var(within=Reals,bounds=(None,None),initialize=0) m.x23 = Var(within=Reals,bounds=(None,None),initialize=0) m.x24 = Var(within=Reals,bounds=(None,None),initialize=0) m.x25 = Var(within=Reals,bounds=(None,None),initialize=0) m.x26 = Var(within=Reals,bounds=(None,None),initialize=0) m.x27 = Var(within=Reals,bounds=(None,None),initialize=0) m.x28 = Var(within=Reals,bounds=(None,None),initialize=0) m.x29 = Var(within=Reals,bounds=(None,None),initialize=0) m.x30 = Var(within=Reals,bounds=(None,None),initialize=0) m.x31 = Var(within=Reals,bounds=(None,None),initialize=0) m.x32 = Var(within=Reals,bounds=(None,None),initialize=0) m.x33 = Var(within=Reals,bounds=(None,None),initialize=0) m.x34 = Var(within=Reals,bounds=(None,None),initialize=0) m.x35 = Var(within=Reals,bounds=(None,None),initialize=0) m.x36 = Var(within=Reals,bounds=(None,None),initialize=0) m.x37 = Var(within=Reals,bounds=(None,None),initialize=0) m.x38 = Var(within=Reals,bounds=(None,None),initialize=0) m.x39 = Var(within=Reals,bounds=(None,None),initialize=0) m.x40 = Var(within=Reals,bounds=(None,None),initialize=0) m.x41 = Var(within=Reals,bounds=(None,None),initialize=0) m.x42 = Var(within=Reals,bounds=(None,None),initialize=0) m.x43 = Var(within=Reals,bounds=(None,None),initialize=0) m.x44 = Var(within=Reals,bounds=(None,None),initialize=0) m.x45 = Var(within=Reals,bounds=(None,None),initialize=0) m.x46 = Var(within=Reals,bounds=(None,None),initialize=0) m.x47 = Var(within=Reals,bounds=(None,None),initialize=0) m.x48 = Var(within=Reals,bounds=(None,None),initialize=0) m.x49 = Var(within=Reals,bounds=(None,None),initialize=0) m.x50 = Var(within=Reals,bounds=(None,None),initialize=0) m.x51 = Var(within=Reals,bounds=(None,None),initialize=0) m.x52 = Var(within=Reals,bounds=(None,None),initialize=0) m.x53 = Var(within=Reals,bounds=(None,None),initialize=0) m.x54 = Var(within=Reals,bounds=(None,None),initialize=0) m.b55 = Var(within=Binary,bounds=(0,1),initialize=0) m.b56 = Var(within=Binary,bounds=(0,1),initialize=0) m.b57 = Var(within=Binary,bounds=(0,1),initialize=0) m.b58 = Var(within=Binary,bounds=(0,1),initialize=0) m.b59 = Var(within=Binary,bounds=(0,1),initialize=0) m.b60 = Var(within=Binary,bounds=(0,1),initialize=0) m.b61 = Var(within=Binary,bounds=(0,1),initialize=0) m.b62 = Var(within=Binary,bounds=(0,1),initialize=0) m.b63 = Var(within=Binary,bounds=(0,1),initialize=0) m.x64 = Var(within=Reals,bounds=(None,None),initialize=0) m.x65 = Var(within=Reals,bounds=(None,None),initialize=0) m.x66 = Var(within=Reals,bounds=(None,None),initialize=0) m.x67 = Var(within=Reals,bounds=(None,None),initialize=0) m.x68 = Var(within=Reals,bounds=(None,None),initialize=0) m.x69 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr=1100*m.x64**2 + 500*m.x64 + 850*m.x65**2 + 120*m.x65 + 1225*m.x66**2 + 100*m.x66 + 1085, sense=minimize) m.c2 = Constraint(expr=-17.0648464163823*m.x3*m.x6*sin(m.x48 - m.x51)*m.b55 + m.x10 == 0) m.c3 = Constraint(expr=-17.0648464163823*m.x6*m.x3*sin(m.x51 - m.x48)*m.b55 + m.x11 == 0) m.c4 = Constraint(expr=-(1.61712247324614*m.x7**2 - 1.61712247324614*m.x7*m.x8*cos(m.x52 - m.x53) + 13.6979785969084* m.x7*m.x8*sin(m.x52 - m.x53))*m.b56 + m.x12 == 0) m.c5 = Constraint(expr=-(1.61712247324614*m.x8**2 - 1.61712247324614*m.x8*m.x7*cos(m.x53 - m.x52) + 13.6979785969084* m.x8*m.x7*sin(m.x53 - m.x52))*m.b56 + m.x13 == 0) m.c6 = Constraint(expr=-(1.28200913842411*m.x5**2 - 1.28200913842411*m.x5*m.x6*cos(m.x50 - m.x51) + 5.58824496236153* m.x5*m.x6*sin(m.x50 - m.x51))*m.b57 + m.x14 == 0) m.c7 = Constraint(expr=-(1.28200913842411*m.x6**2 - 1.28200913842411*m.x6*m.x5*cos(m.x51 - m.x50) + 5.58824496236153* m.x6*m.x5*sin(m.x51 - m.x50))*m.b57 + m.x15 == 0) m.c8 = Constraint(expr=-(1.1550874808901*m.x6**2 - 1.1550874808901*m.x6*m.x7*cos(m.x51 - m.x52) + 9.78427042636317*m.x6* m.x7*sin(m.x51 - m.x52))*m.b58 + m.x16 == 0) m.c9 = Constraint(expr=-(1.1550874808901*m.x7**2 - 1.1550874808901*m.x7*m.x6*cos(m.x52 - m.x51) + 9.78427042636317*m.x7* m.x6*sin(m.x52 - m.x51))*m.b58 + m.x17 == 0) m.c10 = Constraint(expr=-16*m.x8*m.x2*sin(m.x53 - m.x47)*m.b59 + m.x18 == 0) m.c11 = Constraint(expr=-16*m.x2*m.x8*sin(m.x47 - m.x53)*m.b59 + m.x19 == 0) m.c12 = Constraint(expr=-(1.94219124871473*m.x4**2 - 1.94219124871473*m.x4*m.x5*cos(m.x49 - m.x50) + 10.5106820518679* m.x4*m.x5*sin(m.x49 - m.x50))*m.b60 + m.x20 == 0) m.c13 = Constraint(expr=-(1.94219124871473*m.x5**2 - 1.94219124871473*m.x5*m.x4*cos(m.x50 - m.x49) + 10.5106820518679* m.x5*m.x4*sin(m.x50 - m.x49))*m.b60 + m.x21 == 0) m.c14 = Constraint(expr=-17.3611111111111*m.x1*m.x4*sin(m.x46 - m.x49)*m.b61 + m.x22 == 0) m.c15 = Constraint(expr=-17.3611111111111*m.x4*m.x1*sin(m.x49 - m.x46)*m.b61 + m.x23 == 0) m.c16 = Constraint(expr=-(1.36518771331058*m.x9**2 - 1.36518771331058*m.x9*m.x4*cos(m.x54 - m.x49) + 11.6040955631399* m.x9*m.x4*sin(m.x54 - m.x49))*m.b62 + m.x24 == 0) m.c17 = Constraint(expr=-(1.36518771331058*m.x4**2 - 1.36518771331058*m.x4*m.x9*cos(m.x49 - m.x54) + 11.6040955631399* m.x4*m.x9*sin(m.x49 - m.x54))*m.b62 + m.x25 == 0) m.c18 = Constraint(expr=-(1.18760437929115*m.x8**2 - 1.18760437929115*m.x8*m.x9*cos(m.x53 - m.x54) + 5.97513453330859* m.x8*m.x9*sin(m.x53 - m.x54))*m.b63 + m.x26 == 0) m.c19 = Constraint(expr=-(1.18760437929115*m.x9**2 - 1.18760437929115*m.x9*m.x8*cos(m.x54 - m.x53) + 5.97513453330859* m.x9*m.x8*sin(m.x54 - m.x53))*m.b63 + m.x27 == 0) m.c20 = Constraint(expr=-(17.0648464163823*m.x3**2 - 17.0648464163823*m.x3*m.x6*cos(m.x48 - m.x51))*m.b55 + m.x28 == 0) m.c21 = Constraint(expr=-(17.0648464163823*m.x6**2 - 17.0648464163823*m.x6*m.x3*cos(m.x51 - m.x48))*m.b55 + m.x29 == 0) m.c22 = Constraint(expr=-(13.6234785969084*m.x7**2 - 13.6979785969084*m.x7*m.x8*cos(m.x52 - m.x53) - 1.61712247324614* m.x7*m.x8*sin(m.x52 - m.x53))*m.b56 + m.x30 == 0) m.c23 = Constraint(expr=-(13.6234785969084*m.x8**2 - 13.6979785969084*m.x8*m.x7*cos(m.x53 - m.x52) - 1.61712247324614* m.x8*m.x7*sin(m.x53 - m.x52))*m.b56 + m.x31 == 0) m.c24 = Constraint(expr=-(5.40924496236153*m.x5**2 - 5.58824496236153*m.x5*m.x6*cos(m.x50 - m.x51) - 1.28200913842411* m.x5*m.x6*sin(m.x50 - m.x51))*m.b57 + m.x32 == 0) m.c25 = Constraint(expr=-(5.40924496236153*m.x6**2 - 5.58824496236153*m.x6*m.x5*cos(m.x51 - m.x50) - 1.28200913842411* m.x6*m.x5*sin(m.x51 - m.x50))*m.b57 + m.x33 == 0) m.c26 = Constraint(expr=-(9.67977042636317*m.x6**2 - 9.78427042636317*m.x6*m.x7*cos(m.x51 - m.x52) - 1.1550874808901* m.x6*m.x7*sin(m.x51 - m.x52))*m.b58 + m.x34 == 0) m.c27 = Constraint(expr=-(9.67977042636317*m.x7**2 - 9.78427042636317*m.x7*m.x6*cos(m.x52 - m.x51) - 1.1550874808901* m.x7*m.x6*sin(m.x52 - m.x51))*m.b58 + m.x35 == 0) m.c28 = Constraint(expr=-(16*m.x8**2 - 16*m.x8*m.x2*cos(m.x53 - m.x47))*m.b59 + m.x36 == 0) m.c29 = Constraint(expr=-(16*m.x2**2 - 16*m.x2*m.x8*cos(m.x47 - m.x53))*m.b59 + m.x37 == 0) m.c30 = Constraint(expr=-(10.4316820518679*m.x4**2 - 10.5106820518679*m.x4*m.x5*cos(m.x49 - m.x50) - 1.94219124871473* m.x4*m.x5*sin(m.x49 - m.x50))*m.b60 + m.x38 == 0) m.c31 = Constraint(expr=-(10.4316820518679*m.x5**2 - 10.5106820518679*m.x5*m.x4*cos(m.x50 - m.x49) - 1.94219124871473* m.x5*m.x4*sin(m.x50 - m.x49))*m.b60 + m.x39 == 0) m.c32 = Constraint(expr=-(17.3611111111111*m.x1**2 - 17.3611111111111*m.x1*m.x4*cos(m.x46 - m.x49))*m.b61 + m.x40 == 0) m.c33 = Constraint(expr=-(17.3611111111111*m.x4**2 - 17.3611111111111*m.x4*m.x1*cos(m.x49 - m.x46))*m.b61 + m.x41 == 0) m.c34 = Constraint(expr=-(11.5160955631399*m.x9**2 - 11.6040955631399*m.x9*m.x4*cos(m.x54 - m.x49) - 1.36518771331058* m.x9*m.x4*sin(m.x54 - m.x49))*m.b62 + m.x42 == 0) m.c35 = Constraint(expr=-(11.5160955631399*m.x4**2 - 11.6040955631399*m.x4*m.x9*cos(m.x49 - m.x54) - 1.36518771331058* m.x4*m.x9*sin(m.x49 - m.x54))*m.b62 + m.x43 == 0) m.c36 = Constraint(expr=-(5.82213453330859*m.x8**2 - 5.97513453330859*m.x8*m.x9*cos(m.x53 - m.x54) - 1.18760437929115* m.x8*m.x9*sin(m.x53 - m.x54))*m.b63 + m.x44 == 0) m.c37 = Constraint(expr=-(5.82213453330859*m.x9**2 - 5.97513453330859*m.x9*m.x8*cos(m.x54 - m.x53) - 1.18760437929115* m.x9*m.x8*sin(m.x54 - m.x53))*m.b63 + m.x45 == 0) m.c38 = Constraint(expr=m.x10**2 + m.x28**2 <= 9) m.c39 = Constraint(expr=m.x11**2 + m.x29**2 <= 9) m.c40 = Constraint(expr=m.x12**2 + m.x30**2 <= 6.25) m.c41 = Constraint(expr=m.x13**2 + m.x31**2 <= 6.25) m.c42 = Constraint(expr=m.x14**2 + m.x32**2 <= 2.25) m.c43 = Constraint(expr=m.x15**2 + m.x33**2 <= 2.25) m.c44 = Constraint(expr=m.x16**2 + m.x34**2 <= 2.25) m.c45 = Constraint(expr=m.x17**2 + m.x35**2 <= 2.25) m.c46 = Constraint(expr=m.x18**2 + m.x36**2 <= 6.25) m.c47 = Constraint(expr=m.x19**2 + m.x37**2 <= 6.25) m.c48 = Constraint(expr=m.x20**2 + m.x38**2 <= 6.25) m.c49 = Constraint(expr=m.x21**2 + m.x39**2 <= 6.25) m.c50 = Constraint(expr=m.x22**2 + m.x40**2 <= 6.25) m.c51 = Constraint(expr=m.x23**2 + m.x41**2 <= 6.25) m.c52 = Constraint(expr=m.x24**2 + m.x42**2 <= 6.25) m.c53 = Constraint(expr=m.x25**2 + m.x43**2 <= 6.25) m.c54 = Constraint(expr=m.x26**2 + m.x44**2 <= 6.25) m.c55 = Constraint(expr=m.x27**2 + m.x45**2 <= 6.25) m.c56 = Constraint(expr= m.x64 <= 2.5) m.c57 = Constraint(expr= m.x65 <= 3) m.c58 = Constraint(expr= m.x66 <= 2.7) m.c59 = Constraint(expr= m.x64 >= 0.1) m.c60 = Constraint(expr= m.x65 >= 0.1) m.c61 = Constraint(expr= m.x66 >= 0.1) m.c62 = Constraint(expr= m.x67 <= 3) m.c63 = Constraint(expr= m.x68 <= 3) m.c64 = Constraint(expr= m.x69 <= 3) m.c65 = Constraint(expr= m.x67 >= -3) m.c66 = Constraint(expr= m.x68 >= -3) m.c67 = Constraint(expr= m.x69 >= -3) m.c68 = Constraint(expr= m.x1 <= 1.1) m.c69 = Constraint(expr= m.x2 <= 1.1) m.c70 = Constraint(expr= m.x3 <= 1.1) m.c71 = Constraint(expr= m.x4 <= 1.1) m.c72 = Constraint(expr= m.x5 <= 1.1) m.c73 = Constraint(expr= m.x6 <= 1.1) m.c74 = Constraint(expr= m.x7 <= 1.1) m.c75 = Constraint(expr= m.x8 <= 1.1) m.c76 = Constraint(expr= m.x9 <= 1.1) m.c77 = Constraint(expr= m.x1 >= 0.9) m.c78 = Constraint(expr= m.x2 >= 0.9) m.c79 = Constraint(expr= m.x3 >= 0.9) m.c80 = Constraint(expr= m.x4 >= 0.9) m.c81 = Constraint(expr= m.x5 >= 0.9) m.c82 = Constraint(expr= m.x6 >= 0.9) m.c83 = Constraint(expr= m.x7 >= 0.9) m.c84 = Constraint(expr= m.x8 >= 0.9) m.c85 = Constraint(expr= m.x9 >= 0.9) m.c86 = Constraint(expr= m.x48 - m.x51 >= -0.26) m.c87 = Constraint(expr= - m.x48 + m.x51 >= -0.26) m.c88 = Constraint(expr= m.x52 - m.x53 >= -0.26) m.c89 = Constraint(expr= - m.x52 + m.x53 >= -0.26) m.c90 = Constraint(expr= m.x50 - m.x51 >= -0.26) m.c91 = Constraint(expr= - m.x50 + m.x51 >= -0.26) m.c92 = Constraint(expr= m.x51 - m.x52 >= -0.26) m.c93 = Constraint(expr= - m.x51 + m.x52 >= -0.26) m.c94 = Constraint(expr= - m.x47 + m.x53 >= -0.26) m.c95 = Constraint(expr= m.x47 - m.x53 >= -0.26) m.c96 = Constraint(expr= m.x49 - m.x50 >= -0.26) m.c97 = Constraint(expr= - m.x49 + m.x50 >= -0.26) m.c98 = Constraint(expr= m.x46 - m.x49 >= -0.26) m.c99 = Constraint(expr= - m.x46 + m.x49 >= -0.26) m.c100 = Constraint(expr= - m.x49 + m.x54 >= -0.26) m.c101 = Constraint(expr= m.x49 - m.x54 >= -0.26) m.c102 = Constraint(expr= m.x53 - m.x54 >= -0.26) m.c103 = Constraint(expr= - m.x53 + m.x54 >= -0.26) m.c104 = Constraint(expr= m.x48 - m.x51 <= 0.26) m.c105 = Constraint(expr= - m.x48 + m.x51 <= 0.26) m.c106 = Constraint(expr= m.x52 - m.x53 <= 0.26) m.c107 = Constraint(expr= - m.x52 + m.x53 <= 0.26) m.c108 = Constraint(expr= m.x50 - m.x51 <= 0.26) m.c109 = Constraint(expr= - m.x50 + m.x51 <= 0.26) m.c110 = Constraint(expr= m.x51 - m.x52 <= 0.26) m.c111 = Constraint(expr= - m.x51 + m.x52 <= 0.26) m.c112 = Constraint(expr= - m.x47 + m.x53 <= 0.26) m.c113 = Constraint(expr= m.x47 - m.x53 <= 0.26) m.c114 = Constraint(expr= m.x49 - m.x50 <= 0.26) m.c115 = Constraint(expr= - m.x49 + m.x50 <= 0.26) m.c116 = Constraint(expr= m.x46 - m.x49 <= 0.26) m.c117 = Constraint(expr= - m.x46 + m.x49 <= 0.26) m.c118 = Constraint(expr= - m.x49 + m.x54 <= 0.26) m.c119 = Constraint(expr= m.x49 - m.x54 <= 0.26) m.c120 = Constraint(expr= m.x53 - m.x54 <= 0.26) m.c121 = Constraint(expr= - m.x53 + m.x54 <= 0.26) m.c122 = Constraint(expr= m.x46 == 0) m.c123 = Constraint(expr= m.x22 - m.x64 == 0) m.c124 = Constraint(expr= m.x19 - m.x65 == 0) m.c125 = Constraint(expr= m.x10 - m.x66 == 0) m.c126 = Constraint(expr= m.x40 - m.x67 == 0) m.c127 = Constraint(expr= m.x37 - m.x68 == 0) m.c128 = Constraint(expr= m.x28 - m.x69 == 0) m.c129 = Constraint(expr= m.x20 + m.x23 + m.x25 == 0) m.c130 = Constraint(expr= m.x14 + m.x21 == -0.9) m.c131 = Constraint(expr= m.x11 + m.x15 + m.x16 == 0) m.c132 = Constraint(expr= m.x12 + m.x17 == -1) m.c133 = Constraint(expr= m.x13 + m.x18 + m.x26 == 0) m.c134 = Constraint(expr= m.x24 + m.x27 == -1.25) m.c135 = Constraint(expr= m.x38 + m.x41 + m.x43 == 0) m.c136 = Constraint(expr= m.x32 + m.x39 == -0.3) m.c137 = Constraint(expr= m.x29 + m.x33 + m.x34 == 0) m.c138 = Constraint(expr= m.x30 + m.x35 == -0.35) m.c139 = Constraint(expr= m.x31 + m.x36 + m.x44 == 0) m.c140 = Constraint(expr= m.x42 + m.x45 == -0.5)
[ 2, 220, 20625, 19930, 3194, 416, 402, 40834, 38240, 379, 8702, 14, 2481, 14, 1507, 1511, 25, 4051, 25, 3980, 198, 2, 220, 220, 198, 2, 220, 7889, 341, 9853, 198, 2, 220, 220, 220, 220, 220, 7472, 220, 220, 220, 220, 220, 220, 220, 412, 220, 220, 220, 220, 220, 220, 220, 402, 220, 220, 220, 220, 220, 220, 220, 406, 220, 220, 220, 220, 220, 220, 220, 399, 220, 220, 220, 220, 220, 220, 220, 1395, 220, 220, 220, 220, 220, 220, 220, 327, 220, 220, 220, 220, 220, 220, 220, 347, 198, 2, 220, 220, 220, 220, 220, 220, 220, 12713, 220, 220, 220, 220, 220, 220, 7265, 220, 220, 220, 220, 220, 220, 4747, 220, 220, 220, 220, 220, 220, 6885, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 198, 2, 220, 220, 198, 2, 220, 35748, 9853, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 220, 220, 220, 220, 220, 220, 220, 275, 220, 220, 220, 220, 220, 220, 220, 1312, 220, 220, 220, 220, 220, 264, 16, 82, 220, 220, 220, 220, 220, 264, 17, 82, 220, 220, 220, 220, 220, 220, 629, 220, 220, 220, 220, 220, 220, 33721, 198, 2, 220, 220, 220, 220, 220, 7472, 220, 220, 220, 220, 542, 220, 220, 13934, 220, 18253, 220, 220, 220, 220, 264, 418, 16, 220, 220, 220, 220, 264, 418, 17, 220, 220, 220, 629, 756, 220, 220, 220, 220, 264, 600, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4317, 220, 220, 220, 220, 220, 220, 8454, 220, 220, 220, 220, 220, 220, 220, 860, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 198, 2, 220, 19534, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 198, 2, 220, 220, 198, 2, 220, 8504, 22570, 9853, 198, 2, 220, 220, 220, 220, 220, 7472, 220, 220, 220, 1500, 220, 220, 220, 220, 220, 220, 22879, 220, 220, 220, 220, 220, 360, 3069, 198, 2, 220, 220, 220, 220, 220, 220, 220, 22219, 220, 220, 220, 220, 220, 28581, 220, 220, 220, 220, 220, 30453, 220, 220, 220, 220, 220, 220, 220, 657, 198, 2, 220, 198, 2, 220, 17893, 1741, 468, 4615, 352, 7885, 290, 352, 16022, 628, 198, 6738, 12972, 17902, 13, 268, 2268, 1330, 1635, 198, 198, 19849, 796, 285, 796, 1482, 38669, 17633, 3419, 628, 198, 76, 13, 87, 16, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 17, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 18, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 19, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 20, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 21, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 22, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 23, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 24, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 940, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1157, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1065, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1485, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1415, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1314, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1433, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1558, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1507, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1129, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1238, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2481, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1828, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1954, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1731, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1495, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2075, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1983, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2078, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1959, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1270, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3132, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2624, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2091, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2682, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2327, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2623, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2718, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2548, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2670, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1821, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3901, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3682, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3559, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2598, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2231, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3510, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2857, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2780, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2920, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 1120, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 4349, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 4309, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 4310, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 4051, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 2816, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 3980, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 3553, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 3365, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 3270, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 1899, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 5333, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 5237, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 65, 5066, 796, 12372, 7, 33479, 28, 33, 3219, 11, 65, 3733, 16193, 15, 11, 16, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2414, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2996, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 2791, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3134, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3104, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 76, 13, 87, 3388, 796, 12372, 7, 33479, 28, 3041, 874, 11, 65, 3733, 16193, 14202, 11, 14202, 828, 36733, 1096, 28, 15, 8, 198, 198, 76, 13, 26801, 796, 37092, 7, 31937, 28, 42060, 9, 76, 13, 87, 2414, 1174, 17, 1343, 5323, 9, 76, 13, 87, 2414, 1343, 30607, 9, 76, 13, 87, 2996, 1174, 17, 1343, 7982, 9, 76, 13, 87, 2996, 1343, 1105, 1495, 9, 76, 13, 87, 2791, 1174, 17, 1343, 1802, 9, 76, 13, 87, 2791, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 838, 5332, 11, 2565, 28, 1084, 48439, 8, 198, 198, 76, 13, 66, 17, 796, 1482, 2536, 2913, 7, 31937, 10779, 1558, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 18, 9, 76, 13, 87, 21, 9, 31369, 7, 76, 13, 87, 2780, 532, 285, 13, 87, 4349, 27493, 76, 13, 65, 2816, 1343, 285, 13, 87, 940, 6624, 657, 8, 198, 198, 76, 13, 66, 18, 796, 1482, 2536, 2913, 7, 31937, 10779, 1558, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 21, 9, 76, 13, 87, 18, 9, 31369, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 2780, 27493, 76, 13, 65, 2816, 1343, 285, 13, 87, 1157, 6624, 657, 8, 198, 198, 76, 13, 66, 19, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 76, 13, 87, 22, 1174, 17, 532, 352, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 76, 13, 87, 22, 9, 76, 13, 87, 23, 9, 6966, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4310, 8, 1343, 1511, 13, 3388, 3720, 3695, 3270, 3388, 2919, 19, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 22, 9, 76, 13, 87, 23, 9, 31369, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4310, 4008, 9, 76, 13, 65, 3980, 1343, 285, 13, 87, 1065, 6624, 657, 8, 198, 198, 76, 13, 66, 20, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 76, 13, 87, 23, 1174, 17, 532, 352, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 76, 13, 87, 23, 9, 76, 13, 87, 22, 9, 6966, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4309, 8, 1343, 1511, 13, 3388, 3720, 3695, 3270, 3388, 2919, 19, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 23, 9, 76, 13, 87, 22, 9, 31369, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4309, 4008, 9, 76, 13, 65, 3980, 1343, 285, 13, 87, 1485, 6624, 657, 8, 198, 198, 76, 13, 66, 21, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 76, 13, 87, 20, 1174, 17, 532, 352, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 76, 13, 87, 20, 9, 76, 13, 87, 21, 9, 6966, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 4349, 8, 1343, 642, 13, 39118, 1731, 37747, 24940, 21395, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 20, 9, 76, 13, 87, 21, 9, 31369, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 4349, 4008, 9, 76, 13, 65, 3553, 1343, 285, 13, 87, 1415, 6624, 657, 8, 198, 198, 76, 13, 66, 22, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 76, 13, 87, 21, 1174, 17, 532, 352, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 76, 13, 87, 21, 9, 76, 13, 87, 20, 9, 6966, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 1120, 8, 1343, 642, 13, 39118, 1731, 37747, 24940, 21395, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 21, 9, 76, 13, 87, 20, 9, 31369, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 1120, 4008, 9, 76, 13, 65, 3553, 1343, 285, 13, 87, 1314, 6624, 657, 8, 198, 198, 76, 13, 66, 23, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 76, 13, 87, 21, 1174, 17, 532, 352, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 76, 13, 87, 21, 9, 76, 13, 87, 22, 9, 6966, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 4309, 8, 1343, 860, 13, 37688, 1983, 3023, 2075, 2623, 34125, 9, 76, 13, 87, 21, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 22, 9, 31369, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 4309, 4008, 9, 76, 13, 65, 3365, 1343, 285, 13, 87, 1433, 6624, 657, 8, 198, 198, 76, 13, 66, 24, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 76, 13, 87, 22, 1174, 17, 532, 352, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 76, 13, 87, 22, 9, 76, 13, 87, 21, 9, 6966, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4349, 8, 1343, 860, 13, 37688, 1983, 3023, 2075, 2623, 34125, 9, 76, 13, 87, 22, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 21, 9, 31369, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4349, 4008, 9, 76, 13, 65, 3365, 1343, 285, 13, 87, 1558, 6624, 657, 8, 198, 198, 76, 13, 66, 940, 796, 1482, 2536, 2913, 7, 31937, 10779, 1433, 9, 76, 13, 87, 23, 9, 76, 13, 87, 17, 9, 31369, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 2857, 27493, 76, 13, 65, 3270, 1343, 285, 13, 87, 1507, 6624, 657, 8, 198, 198, 76, 13, 66, 1157, 796, 1482, 2536, 2913, 7, 31937, 10779, 1433, 9, 76, 13, 87, 17, 9, 76, 13, 87, 23, 9, 31369, 7, 76, 13, 87, 2857, 532, 285, 13, 87, 4310, 27493, 76, 13, 65, 3270, 1343, 285, 13, 87, 1129, 6624, 657, 8, 198, 198, 76, 13, 66, 1065, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 76, 13, 87, 19, 1174, 17, 532, 352, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 76, 13, 87, 19, 9, 76, 13, 87, 20, 9, 6966, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 1120, 8, 1343, 838, 13, 33690, 3104, 21261, 1507, 37601, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 19, 9, 76, 13, 87, 20, 9, 31369, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 1120, 4008, 9, 76, 13, 65, 1899, 1343, 285, 13, 87, 1238, 6624, 657, 8, 198, 198, 76, 13, 66, 1485, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 76, 13, 87, 20, 1174, 17, 532, 352, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 76, 13, 87, 20, 9, 76, 13, 87, 19, 9, 6966, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 2920, 8, 1343, 838, 13, 33690, 3104, 21261, 1507, 37601, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 20, 9, 76, 13, 87, 19, 9, 31369, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 2920, 4008, 9, 76, 13, 65, 1899, 1343, 285, 13, 87, 2481, 6624, 657, 8, 198, 198, 76, 13, 66, 1415, 796, 1482, 2536, 2913, 7, 31937, 10779, 1558, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 16, 9, 76, 13, 87, 19, 9, 31369, 7, 76, 13, 87, 3510, 532, 285, 13, 87, 2920, 27493, 76, 13, 65, 5333, 1343, 285, 13, 87, 1828, 6624, 657, 8, 198, 198, 76, 13, 66, 1314, 796, 1482, 2536, 2913, 7, 31937, 10779, 1558, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 19, 9, 76, 13, 87, 16, 9, 31369, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 3510, 27493, 76, 13, 65, 5333, 1343, 285, 13, 87, 1954, 6624, 657, 8, 198, 198, 76, 13, 66, 1433, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 76, 13, 87, 24, 1174, 17, 532, 352, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 76, 13, 87, 24, 9, 76, 13, 87, 19, 9, 6966, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 2920, 8, 1343, 1367, 13, 1899, 29416, 2816, 5066, 1485, 2079, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 24, 9, 76, 13, 87, 19, 9, 31369, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 2920, 4008, 9, 76, 13, 65, 5237, 1343, 285, 13, 87, 1731, 6624, 657, 8, 198, 198, 76, 13, 66, 1558, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 76, 13, 87, 19, 1174, 17, 532, 352, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 76, 13, 87, 19, 9, 76, 13, 87, 24, 9, 6966, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 4051, 8, 1343, 1367, 13, 1899, 29416, 2816, 5066, 1485, 2079, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 19, 9, 76, 13, 87, 24, 9, 31369, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 4051, 4008, 9, 76, 13, 65, 5237, 1343, 285, 13, 87, 1495, 6624, 657, 8, 198, 198, 76, 13, 66, 1507, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 23451, 31916, 29088, 1959, 15363, 9, 76, 13, 87, 23, 1174, 17, 532, 352, 13, 23451, 31916, 29088, 1959, 15363, 9, 76, 13, 87, 23, 9, 76, 13, 87, 24, 9, 6966, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4051, 8, 1343, 642, 13, 42716, 1485, 2231, 2091, 21495, 3270, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 23, 9, 76, 13, 87, 24, 9, 31369, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4051, 4008, 9, 76, 13, 65, 5066, 1343, 285, 13, 87, 2075, 6624, 657, 8, 198, 198, 76, 13, 66, 1129, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 16, 13, 23451, 31916, 29088, 1959, 15363, 9, 76, 13, 87, 24, 1174, 17, 532, 352, 13, 23451, 31916, 29088, 1959, 15363, 9, 76, 13, 87, 24, 9, 76, 13, 87, 23, 9, 6966, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 4310, 8, 1343, 642, 13, 42716, 1485, 2231, 2091, 21495, 3270, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 24, 9, 76, 13, 87, 23, 9, 31369, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 4310, 4008, 9, 76, 13, 65, 5066, 1343, 285, 13, 87, 1983, 6624, 657, 8, 198, 198, 76, 13, 66, 1238, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1558, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 18, 1174, 17, 532, 1596, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 18, 9, 76, 13, 87, 21, 9, 6966, 7, 76, 13, 87, 2780, 532, 285, 13, 87, 4349, 4008, 9, 76, 13, 65, 2816, 1343, 285, 13, 87, 2078, 6624, 657, 8, 198, 198, 76, 13, 66, 2481, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1558, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 21, 1174, 17, 532, 1596, 13, 15, 2414, 5705, 2414, 1433, 2548, 1954, 9, 76, 13, 87, 21, 9, 76, 13, 87, 18, 9, 6966, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 2780, 4008, 9, 76, 13, 65, 2816, 1343, 285, 13, 87, 1959, 6624, 657, 8, 198, 198, 76, 13, 66, 1828, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1485, 13, 46872, 29059, 3270, 3388, 2919, 19, 9, 76, 13, 87, 22, 1174, 17, 532, 1511, 13, 3388, 3720, 3695, 3270, 3388, 2919, 19, 9, 76, 13, 87, 22, 9, 76, 13, 87, 23, 9, 6966, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4310, 8, 532, 352, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 22, 9, 76, 13, 87, 23, 9, 31369, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4310, 4008, 9, 76, 13, 65, 3980, 1343, 285, 13, 87, 1270, 6624, 657, 8, 198, 198, 76, 13, 66, 1954, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1485, 13, 46872, 29059, 3270, 3388, 2919, 19, 9, 76, 13, 87, 23, 1174, 17, 532, 1511, 13, 3388, 3720, 3695, 3270, 3388, 2919, 19, 9, 76, 13, 87, 23, 9, 76, 13, 87, 22, 9, 6966, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4309, 8, 532, 352, 13, 47941, 1065, 1731, 4790, 26912, 1415, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 23, 9, 76, 13, 87, 22, 9, 31369, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4309, 4008, 9, 76, 13, 65, 3980, 1343, 285, 13, 87, 3132, 6624, 657, 8, 198, 198, 76, 13, 66, 1731, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 20, 13, 29416, 1731, 37747, 24940, 21395, 9, 76, 13, 87, 20, 1174, 17, 532, 642, 13, 39118, 1731, 37747, 24940, 21395, 9, 76, 13, 87, 20, 9, 76, 13, 87, 21, 9, 6966, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 4349, 8, 532, 352, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 20, 9, 76, 13, 87, 21, 9, 31369, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 4349, 4008, 9, 76, 13, 65, 3553, 1343, 285, 13, 87, 2624, 6624, 657, 8, 198, 198, 76, 13, 66, 1495, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 20, 13, 29416, 1731, 37747, 24940, 21395, 9, 76, 13, 87, 21, 1174, 17, 532, 642, 13, 39118, 1731, 37747, 24940, 21395, 9, 76, 13, 87, 21, 9, 76, 13, 87, 20, 9, 6966, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 1120, 8, 532, 352, 13, 2078, 10531, 1485, 5705, 1731, 1157, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 21, 9, 76, 13, 87, 20, 9, 31369, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 1120, 4008, 9, 76, 13, 65, 3553, 1343, 285, 13, 87, 2091, 6624, 657, 8, 198, 198, 76, 13, 66, 2075, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 24, 13, 3134, 5607, 32869, 2075, 2623, 34125, 9, 76, 13, 87, 21, 1174, 17, 532, 860, 13, 37688, 1983, 3023, 2075, 2623, 34125, 9, 76, 13, 87, 21, 9, 76, 13, 87, 22, 9, 6966, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 4309, 8, 532, 352, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 21, 9, 76, 13, 87, 22, 9, 31369, 7, 76, 13, 87, 4349, 532, 285, 13, 87, 4309, 4008, 9, 76, 13, 65, 3365, 1343, 285, 13, 87, 2682, 6624, 657, 8, 198, 198, 76, 13, 66, 1983, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 24, 13, 3134, 5607, 32869, 2075, 2623, 34125, 9, 76, 13, 87, 22, 1174, 17, 532, 860, 13, 37688, 1983, 3023, 2075, 2623, 34125, 9, 76, 13, 87, 22, 9, 76, 13, 87, 21, 9, 6966, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4349, 8, 532, 352, 13, 1314, 33042, 4524, 1795, 4531, 486, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 22, 9, 76, 13, 87, 21, 9, 31369, 7, 76, 13, 87, 4309, 532, 285, 13, 87, 4349, 4008, 9, 76, 13, 65, 3365, 1343, 285, 13, 87, 2327, 6624, 657, 8, 198, 198, 76, 13, 66, 2078, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1433, 9, 76, 13, 87, 23, 1174, 17, 532, 1467, 9, 76, 13, 87, 23, 9, 76, 13, 87, 17, 9, 6966, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 2857, 4008, 9, 76, 13, 65, 3270, 1343, 285, 13, 87, 2623, 6624, 657, 8, 198, 198, 76, 13, 66, 1959, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1433, 9, 76, 13, 87, 17, 1174, 17, 532, 1467, 9, 76, 13, 87, 17, 9, 76, 13, 87, 23, 9, 6966, 7, 76, 13, 87, 2857, 532, 285, 13, 87, 4310, 4008, 9, 76, 13, 65, 3270, 1343, 285, 13, 87, 2718, 6624, 657, 8, 198, 198, 76, 13, 66, 1270, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 940, 13, 3559, 14656, 21261, 1507, 37601, 9, 76, 13, 87, 19, 1174, 17, 532, 838, 13, 33690, 3104, 21261, 1507, 37601, 9, 76, 13, 87, 19, 9, 76, 13, 87, 20, 9, 6966, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 1120, 8, 532, 352, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 19, 9, 76, 13, 87, 20, 9, 31369, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 1120, 4008, 9, 76, 13, 65, 1899, 1343, 285, 13, 87, 2548, 6624, 657, 8, 198, 198, 76, 13, 66, 3132, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 940, 13, 3559, 14656, 21261, 1507, 37601, 9, 76, 13, 87, 20, 1174, 17, 532, 838, 13, 33690, 3104, 21261, 1507, 37601, 9, 76, 13, 87, 20, 9, 76, 13, 87, 19, 9, 6966, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 2920, 8, 532, 352, 13, 24, 3682, 1129, 1065, 35133, 1415, 4790, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 20, 9, 76, 13, 87, 19, 9, 31369, 7, 76, 13, 87, 1120, 532, 285, 13, 87, 2920, 4008, 9, 76, 13, 65, 1899, 1343, 285, 13, 87, 2670, 6624, 657, 8, 198, 198, 76, 13, 66, 2624, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1558, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 16, 1174, 17, 532, 1596, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 16, 9, 76, 13, 87, 19, 9, 6966, 7, 76, 13, 87, 3510, 532, 285, 13, 87, 2920, 4008, 9, 76, 13, 65, 5333, 1343, 285, 13, 87, 1821, 6624, 657, 8, 198, 198, 76, 13, 66, 2091, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1558, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 19, 1174, 17, 532, 1596, 13, 2623, 26259, 26259, 16243, 9, 76, 13, 87, 19, 9, 76, 13, 87, 16, 9, 6966, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 3510, 4008, 9, 76, 13, 65, 5333, 1343, 285, 13, 87, 3901, 6624, 657, 8, 198, 198, 76, 13, 66, 2682, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1157, 13, 47493, 2931, 2816, 5066, 1485, 2079, 9, 76, 13, 87, 24, 1174, 17, 532, 1367, 13, 1899, 29416, 2816, 5066, 1485, 2079, 9, 76, 13, 87, 24, 9, 76, 13, 87, 19, 9, 6966, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 2920, 8, 532, 352, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 24, 9, 76, 13, 87, 19, 9, 31369, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 2920, 4008, 9, 76, 13, 65, 5237, 1343, 285, 13, 87, 3682, 6624, 657, 8, 198, 198, 76, 13, 66, 2327, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 1157, 13, 47493, 2931, 2816, 5066, 1485, 2079, 9, 76, 13, 87, 19, 1174, 17, 532, 1367, 13, 1899, 29416, 2816, 5066, 1485, 2079, 9, 76, 13, 87, 19, 9, 76, 13, 87, 24, 9, 6966, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 4051, 8, 532, 352, 13, 24760, 1507, 3324, 16945, 940, 3365, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 19, 9, 76, 13, 87, 24, 9, 31369, 7, 76, 13, 87, 2920, 532, 285, 13, 87, 4051, 4008, 9, 76, 13, 65, 5237, 1343, 285, 13, 87, 3559, 6624, 657, 8, 198, 198, 76, 13, 66, 2623, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 20, 13, 23, 1828, 1485, 2231, 2091, 21495, 3270, 9, 76, 13, 87, 23, 1174, 17, 532, 642, 13, 42716, 1485, 2231, 2091, 21495, 3270, 9, 76, 13, 87, 23, 9, 76, 13, 87, 24, 9, 6966, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4051, 8, 532, 352, 13, 23451, 31916, 29088, 1959, 15363, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 23, 9, 76, 13, 87, 24, 9, 31369, 7, 76, 13, 87, 4310, 532, 285, 13, 87, 4051, 4008, 9, 76, 13, 65, 5066, 1343, 285, 13, 87, 2598, 6624, 657, 8, 198, 198, 76, 13, 66, 2718, 796, 1482, 2536, 2913, 7, 31937, 10779, 7, 20, 13, 23, 1828, 1485, 2231, 2091, 21495, 3270, 9, 76, 13, 87, 24, 1174, 17, 532, 642, 13, 42716, 1485, 2231, 2091, 21495, 3270, 9, 76, 13, 87, 24, 9, 76, 13, 87, 23, 9, 6966, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 4310, 8, 532, 352, 13, 23451, 31916, 29088, 1959, 15363, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 87, 24, 9, 76, 13, 87, 23, 9, 31369, 7, 76, 13, 87, 4051, 532, 285, 13, 87, 4310, 4008, 9, 76, 13, 65, 5066, 1343, 285, 13, 87, 2231, 6624, 657, 8, 198, 198, 76, 13, 66, 2548, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 940, 1174, 17, 1343, 285, 13, 87, 2078, 1174, 17, 19841, 860, 8, 198, 198, 76, 13, 66, 2670, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1157, 1174, 17, 1343, 285, 13, 87, 1959, 1174, 17, 19841, 860, 8, 198, 198, 76, 13, 66, 1821, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1065, 1174, 17, 1343, 285, 13, 87, 1270, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 3901, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1485, 1174, 17, 1343, 285, 13, 87, 3132, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 3682, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1415, 1174, 17, 1343, 285, 13, 87, 2624, 1174, 17, 19841, 362, 13, 1495, 8, 198, 198, 76, 13, 66, 3559, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1314, 1174, 17, 1343, 285, 13, 87, 2091, 1174, 17, 19841, 362, 13, 1495, 8, 198, 198, 76, 13, 66, 2598, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1433, 1174, 17, 1343, 285, 13, 87, 2682, 1174, 17, 19841, 362, 13, 1495, 8, 198, 198, 76, 13, 66, 2231, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1558, 1174, 17, 1343, 285, 13, 87, 2327, 1174, 17, 19841, 362, 13, 1495, 8, 198, 198, 76, 13, 66, 3510, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1507, 1174, 17, 1343, 285, 13, 87, 2623, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 2857, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1129, 1174, 17, 1343, 285, 13, 87, 2718, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 2780, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1238, 1174, 17, 1343, 285, 13, 87, 2548, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 2920, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 2481, 1174, 17, 1343, 285, 13, 87, 2670, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 1120, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1828, 1174, 17, 1343, 285, 13, 87, 1821, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 4349, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1954, 1174, 17, 1343, 285, 13, 87, 3901, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 4309, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1731, 1174, 17, 1343, 285, 13, 87, 3682, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 4310, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1495, 1174, 17, 1343, 285, 13, 87, 3559, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 4051, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 2075, 1174, 17, 1343, 285, 13, 87, 2598, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 2816, 796, 1482, 2536, 2913, 7, 31937, 28, 76, 13, 87, 1983, 1174, 17, 1343, 285, 13, 87, 2231, 1174, 17, 19841, 718, 13, 1495, 8, 198, 198, 76, 13, 66, 3980, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2414, 19841, 362, 13, 20, 8, 198, 198, 76, 13, 66, 3553, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2996, 19841, 513, 8, 198, 198, 76, 13, 66, 3365, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2791, 19841, 362, 13, 22, 8, 198, 198, 76, 13, 66, 3270, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2414, 18189, 657, 13, 16, 8, 198, 198, 76, 13, 66, 1899, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2996, 18189, 657, 13, 16, 8, 198, 198, 76, 13, 66, 5333, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2791, 18189, 657, 13, 16, 8, 198, 198, 76, 13, 66, 5237, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3134, 19841, 513, 8, 198, 198, 76, 13, 66, 5066, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3104, 19841, 513, 8, 198, 198, 76, 13, 66, 2414, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3388, 19841, 513, 8, 198, 198, 76, 13, 66, 2996, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3134, 18189, 532, 18, 8, 198, 198, 76, 13, 66, 2791, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3104, 18189, 532, 18, 8, 198, 198, 76, 13, 66, 3134, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3388, 18189, 532, 18, 8, 198, 198, 76, 13, 66, 3104, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 16, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 3388, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 17, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 2154, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 18, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 4869, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 19, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 4761, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 20, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 4790, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 21, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 4524, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 22, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 2425, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 23, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 4304, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 24, 19841, 352, 13, 16, 8, 198, 198, 76, 13, 66, 3324, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 16, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 3695, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 17, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 3720, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 18, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 1795, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 19, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 6659, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 20, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 6469, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 21, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 5999, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 22, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 5705, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 23, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 5332, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 24, 18189, 657, 13, 24, 8, 198, 198, 76, 13, 66, 4521, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2780, 532, 285, 13, 87, 4349, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 5774, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2780, 1343, 285, 13, 87, 4349, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 3459, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4309, 532, 285, 13, 87, 4310, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 4531, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4309, 1343, 285, 13, 87, 4310, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 3829, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1120, 532, 285, 13, 87, 4349, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 6420, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 1120, 1343, 285, 13, 87, 4349, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 5892, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4349, 532, 285, 13, 87, 4309, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 6052, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4349, 1343, 285, 13, 87, 4309, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 5824, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2857, 1343, 285, 13, 87, 4310, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 3865, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2857, 532, 285, 13, 87, 4310, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 4846, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2920, 532, 285, 13, 87, 1120, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 5607, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2920, 1343, 285, 13, 87, 1120, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 4089, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3510, 532, 285, 13, 87, 2920, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 2079, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 3510, 1343, 285, 13, 87, 2920, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 3064, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2920, 1343, 285, 13, 87, 4051, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 8784, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2920, 532, 285, 13, 87, 4051, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 15377, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4310, 532, 285, 13, 87, 4051, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 15197, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4310, 1343, 285, 13, 87, 4051, 18189, 532, 15, 13, 2075, 8, 198, 198, 76, 13, 66, 13464, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2780, 532, 285, 13, 87, 4349, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 13348, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2780, 1343, 285, 13, 87, 4349, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 15801, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4309, 532, 285, 13, 87, 4310, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 15982, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4309, 1343, 285, 13, 87, 4310, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 15711, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1120, 532, 285, 13, 87, 4349, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 14454, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 1120, 1343, 285, 13, 87, 4349, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 11442, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4349, 532, 285, 13, 87, 4309, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 16243, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4349, 1343, 285, 13, 87, 4309, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 14686, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2857, 1343, 285, 13, 87, 4310, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 16616, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2857, 532, 285, 13, 87, 4310, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 16562, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2920, 532, 285, 13, 87, 1120, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 15363, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2920, 1343, 285, 13, 87, 1120, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 18298, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3510, 532, 285, 13, 87, 2920, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 17657, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 3510, 1343, 285, 13, 87, 2920, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 16817, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 2920, 1343, 285, 13, 87, 4051, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 16315, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2920, 532, 285, 13, 87, 4051, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 10232, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 4310, 532, 285, 13, 87, 4051, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 19244, 796, 1482, 2536, 2913, 7, 31937, 28, 532, 285, 13, 87, 4310, 1343, 285, 13, 87, 4051, 19841, 657, 13, 2075, 8, 198, 198, 76, 13, 66, 18376, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3510, 6624, 657, 8, 198, 198, 76, 13, 66, 10163, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1828, 532, 285, 13, 87, 2414, 6624, 657, 8, 198, 198, 76, 13, 66, 17464, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1129, 532, 285, 13, 87, 2996, 6624, 657, 8, 198, 198, 76, 13, 66, 11623, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 940, 532, 285, 13, 87, 2791, 6624, 657, 8, 198, 198, 76, 13, 66, 19420, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1821, 532, 285, 13, 87, 3134, 6624, 657, 8, 198, 198, 76, 13, 66, 16799, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2718, 532, 285, 13, 87, 3104, 6624, 657, 8, 198, 198, 76, 13, 66, 12762, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2078, 532, 285, 13, 87, 3388, 6624, 657, 8, 198, 198, 76, 13, 66, 18741, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1238, 1343, 285, 13, 87, 1954, 1343, 285, 13, 87, 1495, 6624, 657, 8, 198, 198, 76, 13, 66, 12952, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1415, 1343, 285, 13, 87, 2481, 6624, 532, 15, 13, 24, 8, 198, 198, 76, 13, 66, 22042, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1157, 1343, 285, 13, 87, 1314, 1343, 285, 13, 87, 1433, 6624, 657, 8, 198, 198, 76, 13, 66, 19924, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1065, 1343, 285, 13, 87, 1558, 6624, 532, 16, 8, 198, 198, 76, 13, 66, 16945, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1485, 1343, 285, 13, 87, 1507, 1343, 285, 13, 87, 2075, 6624, 657, 8, 198, 198, 76, 13, 66, 19880, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1731, 1343, 285, 13, 87, 1983, 6624, 532, 16, 13, 1495, 8, 198, 198, 76, 13, 66, 17059, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2548, 1343, 285, 13, 87, 3901, 1343, 285, 13, 87, 3559, 6624, 657, 8, 198, 198, 76, 13, 66, 20809, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 2624, 1343, 285, 13, 87, 2670, 6624, 532, 15, 13, 18, 8, 198, 198, 76, 13, 66, 19708, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1959, 1343, 285, 13, 87, 2091, 1343, 285, 13, 87, 2682, 6624, 657, 8, 198, 198, 76, 13, 66, 20107, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 1270, 1343, 285, 13, 87, 2327, 6624, 532, 15, 13, 2327, 8, 198, 198, 76, 13, 66, 20219, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3132, 1343, 285, 13, 87, 2623, 1343, 285, 13, 87, 2598, 6624, 657, 8, 198, 198, 76, 13, 66, 15187, 796, 1482, 2536, 2913, 7, 31937, 28, 220, 220, 285, 13, 87, 3682, 1343, 285, 13, 87, 2231, 6624, 532, 15, 13, 20, 8, 198 ]
1.746788
9,028
# Django & Python from django.core.urlresolvers import resolve from django.http import HttpRequest from django.http import QueryDict from django.test import TestCase from django.test import Client from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required import json from account.models import Teacher from registrar.models import Course from registrar.models import CourseDiscussionPost from registrar.models import CourseDiscussionThread from teacher.views import discussion # Contants TEST_USER_EMAIL = "[email protected]" TEST_USER_USERNAME = "Ledo" TEST_USER_PASSWORD = "ContinentalUnion" TEST_USER_EMAIL2 = "[email protected]" TEST_USER_USERNAME2 = "whalesquid" TEST_USER_PASSWORD2 = "Evolvers" # Notes: # https://docs.djangoproject.com/en/1.7/topics/testing/tools/#assertions # Create your tests here.
[ 2, 37770, 1222, 11361, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 10568, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 18453, 198, 6738, 42625, 14208, 13, 4023, 1330, 43301, 35, 713, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 9288, 1330, 20985, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 11, 17594, 11, 2604, 448, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 11748, 33918, 198, 6738, 1848, 13, 27530, 1330, 32019, 198, 6738, 4214, 20040, 13, 27530, 1330, 20537, 198, 6738, 4214, 20040, 13, 27530, 1330, 20537, 34255, 6307, 198, 6738, 4214, 20040, 13, 27530, 1330, 20537, 34255, 16818, 198, 6738, 4701, 13, 33571, 1330, 5114, 198, 198, 2, 2345, 1187, 198, 51, 6465, 62, 29904, 62, 27630, 4146, 796, 366, 992, 78, 31, 70, 993, 13, 785, 1, 198, 51, 6465, 62, 29904, 62, 29904, 20608, 796, 366, 43, 24757, 1, 198, 51, 6465, 62, 29904, 62, 47924, 54, 12532, 796, 366, 17875, 2470, 38176, 1, 198, 51, 6465, 62, 29904, 62, 27630, 4146, 17, 796, 366, 1929, 2040, 421, 312, 31, 24717, 559, 2736, 13, 785, 1, 198, 51, 6465, 62, 29904, 62, 29904, 20608, 17, 796, 366, 1929, 2040, 421, 312, 1, 198, 51, 6465, 62, 29904, 62, 47924, 54, 12532, 17, 796, 366, 36, 10396, 690, 1, 198, 198, 2, 11822, 25, 198, 2, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 4852, 873, 14, 33407, 14, 31391, 31113, 30493, 507, 198, 198, 2, 13610, 534, 5254, 994, 13 ]
3.12628
293
"""This file is part of the trivago/rebase library. # Copyright (c) 2018 trivago N.V. # License: Apache 2.0 # Source: https://github.com/trivago/rebase # Version: 1.2.2 # Python Version: 3.6 # Author: Yuv Joodhisty <[email protected]> """ from rebase.core import Model, Validator
[ 37811, 1212, 2393, 318, 636, 286, 262, 19876, 3839, 14, 260, 8692, 5888, 13, 198, 198, 2, 15069, 357, 66, 8, 2864, 19876, 3839, 399, 13, 53, 13, 198, 2, 13789, 25, 24843, 362, 13, 15, 198, 2, 8090, 25, 3740, 1378, 12567, 13, 785, 14, 83, 15104, 3839, 14, 260, 8692, 198, 2, 10628, 25, 352, 13, 17, 13, 17, 198, 2, 11361, 10628, 25, 513, 13, 21, 198, 2, 6434, 25, 10605, 85, 449, 702, 10034, 88, 1279, 88, 14795, 430, 8457, 278, 71, 13, 73, 702, 10034, 88, 31, 83, 15104, 3839, 13, 785, 29, 198, 37811, 198, 198, 6738, 3405, 589, 13, 7295, 1330, 9104, 11, 48951, 1352, 628 ]
2.646018
113
import numpy as np import cv2 import camera import images objCamera = camera.Camera(camera_port = 1, resolution = 1) img = objCamera.take_photo() gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) cv2.imshow('Gray', gray) cv2.waitKey(0) gray_blur = images.gaussian(gray, 11) cv2.imshow('Gaussian', gray_blur) cv2.waitKey(0) gray_canny = images.canny(gray_blur, 100, 130) cv2.imshow('Canny', gray_canny) cv2.waitKey(0) imshape = img.shape vertix0 = (0, imshape[0]) vertix1 = (0, int(333 * imshape[0] / 480)) vertix2 = (int(200 * imshape[1] / 640), int(65 * imshape[0] / 480)) vertix3 = (int(430 * imshape[1] / 640), int(65 * imshape[0] / 480)) vertix4 = (imshape[1], int(333 * imshape[0] / 480)) vertix5 = (imshape[1], imshape[0]) vertices = np.array([[vertix0, vertix1, vertix2, vertix3, vertix4, vertix5]], dtype=np.int32) region = images.region_of_interest(gray_canny, vertices) cv2.imshow('Region', region) cv2.waitKey(0) hough = images.hough(img, region, 0, 0, 120) cv2.imshow('Hough', hough) cv2.waitKey(0) camera.save_photo('hough', hough) cv2.destroyAllWindows()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 4676, 198, 11748, 4263, 628, 198, 26801, 35632, 796, 4676, 13, 35632, 7, 25695, 62, 634, 796, 352, 11, 6323, 796, 352, 8, 198, 9600, 796, 26181, 35632, 13, 20657, 62, 23074, 3419, 198, 44605, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 11, 269, 85, 17, 13, 46786, 62, 36982, 17, 38, 30631, 8, 198, 33967, 17, 13, 320, 12860, 10786, 46130, 3256, 12768, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 198, 198, 44605, 62, 2436, 333, 796, 4263, 13, 4908, 31562, 7, 44605, 11, 1367, 8, 198, 33967, 17, 13, 320, 12860, 10786, 35389, 31562, 3256, 12768, 62, 2436, 333, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 198, 198, 44605, 62, 66, 7737, 796, 4263, 13, 66, 7737, 7, 44605, 62, 2436, 333, 11, 1802, 11, 11323, 8, 198, 33967, 17, 13, 320, 12860, 10786, 34, 7737, 3256, 12768, 62, 66, 7737, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 198, 198, 320, 43358, 796, 33705, 13, 43358, 198, 1851, 844, 15, 796, 357, 15, 11, 545, 43358, 58, 15, 12962, 198, 1851, 844, 16, 796, 357, 15, 11, 493, 7, 20370, 1635, 545, 43358, 58, 15, 60, 1220, 23487, 4008, 198, 1851, 844, 17, 796, 357, 600, 7, 2167, 1635, 545, 43358, 58, 16, 60, 1220, 33759, 828, 493, 7, 2996, 1635, 545, 43358, 58, 15, 60, 1220, 23487, 4008, 198, 1851, 844, 18, 796, 357, 600, 7, 31794, 1635, 545, 43358, 58, 16, 60, 1220, 33759, 828, 493, 7, 2996, 1635, 545, 43358, 58, 15, 60, 1220, 23487, 4008, 198, 1851, 844, 19, 796, 357, 320, 43358, 58, 16, 4357, 493, 7, 20370, 1635, 545, 43358, 58, 15, 60, 1220, 23487, 4008, 198, 1851, 844, 20, 796, 357, 320, 43358, 58, 16, 4357, 545, 43358, 58, 15, 12962, 198, 1851, 1063, 796, 45941, 13, 18747, 26933, 58, 1851, 844, 15, 11, 9421, 844, 16, 11, 9421, 844, 17, 11, 9421, 844, 18, 11, 9421, 844, 19, 11, 9421, 844, 20, 60, 4357, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 36996, 796, 4263, 13, 36996, 62, 1659, 62, 9446, 7, 44605, 62, 66, 7737, 11, 9421, 1063, 8, 198, 33967, 17, 13, 320, 12860, 10786, 47371, 3256, 3814, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 198, 198, 71, 619, 796, 4263, 13, 71, 619, 7, 9600, 11, 3814, 11, 657, 11, 657, 11, 7982, 8, 198, 33967, 17, 13, 320, 12860, 10786, 39, 619, 3256, 289, 619, 8, 198, 33967, 17, 13, 17077, 9218, 7, 15, 8, 198, 198, 25695, 13, 21928, 62, 23074, 10786, 71, 619, 3256, 289, 619, 8, 198, 198, 33967, 17, 13, 41659, 3237, 11209, 3419 ]
2.328261
460
size = int(input()) matrix = [] alice_row, alice_col = 0, 0 for r in range(size): matrix.append(input().split()) for c in range(size): if matrix[r][c] == "A": alice_row, alice_col = r, c matrix[alice_row][alice_col] = '*' alice_collected_enough_tea = False tea = 0 current_row, current_col = alice_row, alice_col while True: command = input() current_row, current_col = get_position(command, current_row, current_col) if not check_valid_index(current_row, current_col, size): break if matrix[current_row][current_col] == "R": matrix[current_row][current_col] = "*" break elif matrix[current_row][current_col] == ".": matrix[current_row][current_col] = "*" continue elif matrix[current_row][current_col] == "*": continue else: tea += int(matrix[current_row][current_col]) matrix[current_row][current_col] = "*" if tea >= 10: alice_collected_enough_tea = True break if alice_collected_enough_tea: print("She did it! She went to the party.") else: print("Alice didn't make it to the tea party.") [print(' '.join(row)) for row in matrix]
[ 628, 198, 7857, 796, 493, 7, 15414, 28955, 198, 6759, 8609, 796, 17635, 198, 198, 282, 501, 62, 808, 11, 435, 501, 62, 4033, 796, 657, 11, 657, 198, 1640, 374, 287, 2837, 7, 7857, 2599, 198, 220, 220, 220, 17593, 13, 33295, 7, 15414, 22446, 35312, 28955, 198, 220, 220, 220, 329, 269, 287, 2837, 7, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17593, 58, 81, 7131, 66, 60, 6624, 366, 32, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 501, 62, 808, 11, 220, 435, 501, 62, 4033, 796, 374, 11, 269, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 282, 501, 62, 808, 7131, 282, 501, 62, 4033, 60, 796, 705, 9, 6, 198, 198, 282, 501, 62, 4033, 12609, 62, 48229, 62, 660, 64, 796, 10352, 198, 660, 64, 796, 657, 198, 14421, 62, 808, 11, 1459, 62, 4033, 796, 435, 501, 62, 808, 11, 435, 501, 62, 4033, 198, 4514, 6407, 25, 198, 220, 220, 220, 3141, 796, 5128, 3419, 628, 220, 220, 220, 1459, 62, 808, 11, 1459, 62, 4033, 796, 651, 62, 9150, 7, 21812, 11, 1459, 62, 808, 11, 1459, 62, 4033, 8, 628, 220, 220, 220, 611, 407, 2198, 62, 12102, 62, 9630, 7, 14421, 62, 808, 11, 1459, 62, 4033, 11, 2546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 611, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 6624, 366, 49, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 796, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1288, 361, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 6624, 366, 526, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 796, 366, 9, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 1288, 361, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 6624, 366, 9, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8887, 15853, 493, 7, 6759, 8609, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 14421, 62, 808, 7131, 14421, 62, 4033, 60, 796, 366, 9, 1, 628, 220, 220, 220, 611, 8887, 18189, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 435, 501, 62, 4033, 12609, 62, 48229, 62, 660, 64, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 361, 435, 501, 62, 4033, 12609, 62, 48229, 62, 660, 64, 25, 198, 220, 220, 220, 3601, 7203, 3347, 750, 340, 0, 1375, 1816, 284, 262, 2151, 19570, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 44484, 1422, 470, 787, 340, 284, 262, 8887, 2151, 19570, 198, 198, 58, 4798, 10786, 45302, 22179, 7, 808, 4008, 329, 5752, 287, 17593, 60 ]
2.31286
521
#!/usr/bin/env python # -*- coding: utf-8 -*- # -*- coding: utf8 -*- import hashlib
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 23, 532, 9, 12, 198, 198, 11748, 12234, 8019, 628 ]
2.097561
41
import os from pathlib import Path from ska.sdc1.utils.image_utils import crop_to_training_area # Challenge frequency bands # FREQS = [560, 1400, 9200] full_image_dir = os.path.join("data", "images") sample_image_dir = os.path.join("data", "sample_images") if __name__ == "__main__": """ Helper script to generate small sample images from the full images, for testing. These are 1.5 times the size (2.25 times the area) of the training area. """ for freq in FREQS: try: Path(sample_image_dir).mkdir(parents=True, exist_ok=True) crop_to_training_area( full_image_path(freq), sample_image_path(freq), freq, 1.5 ) except FileNotFoundError: print( "Could not find image {}; run download_data.sh first".format( full_image_path(freq) ) )
[ 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 1341, 64, 13, 82, 17896, 16, 13, 26791, 13, 9060, 62, 26791, 1330, 13833, 62, 1462, 62, 34409, 62, 20337, 198, 198, 2, 13879, 8373, 11760, 198, 2, 198, 37, 2200, 48, 50, 796, 685, 34135, 11, 36641, 11, 860, 2167, 60, 198, 198, 12853, 62, 9060, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 17566, 4943, 198, 39873, 62, 9060, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 39873, 62, 17566, 4943, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 4226, 284, 7716, 1402, 6291, 4263, 422, 262, 1336, 4263, 11, 329, 4856, 13, 628, 220, 220, 220, 2312, 389, 352, 13, 20, 1661, 262, 2546, 357, 17, 13, 1495, 1661, 262, 1989, 8, 286, 262, 3047, 1989, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 329, 2030, 80, 287, 44253, 48, 50, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 7, 39873, 62, 9060, 62, 15908, 737, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 1462, 62, 34409, 62, 20337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 9060, 62, 6978, 7, 19503, 80, 828, 6291, 62, 9060, 62, 6978, 7, 19503, 80, 828, 2030, 80, 11, 352, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 1064, 2939, 1391, 19629, 1057, 4321, 62, 7890, 13, 1477, 717, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 9060, 62, 6978, 7, 19503, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.212714
409
from unittest import TestCase from graph import Graph from edge import Edge from vertex import Vertex import collections as col
[ 6738, 555, 715, 395, 1330, 6208, 20448, 201, 198, 6738, 4823, 1330, 29681, 201, 198, 6738, 5743, 1330, 13113, 201, 198, 6738, 37423, 1330, 4643, 16886, 201, 198, 11748, 17268, 355, 951, 201, 198, 201, 198 ]
3.75
36
import unittest from chemcharts.core.plots.base_plot import BasePlot
[ 11748, 555, 715, 395, 198, 198, 6738, 4607, 354, 5889, 13, 7295, 13, 489, 1747, 13, 8692, 62, 29487, 1330, 7308, 43328, 628 ]
3.086957
23
import re import xml.etree.ElementTree as ET from datetime import datetime, timedelta import requests from ...models import (POI, Address, Coordinates, Line, LineType, LineTypes, LiveTime, Location, MetaRide, Platform, Ride, RidePoint, RideSegment, Searchable, Stop, TicketData, TicketList, Trip, Way, WayEvent, WayType) from .base import API
[ 11748, 302, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 11748, 7007, 198, 198, 6738, 2644, 27530, 1330, 357, 16402, 40, 11, 17917, 11, 22819, 17540, 11, 6910, 11, 6910, 6030, 11, 6910, 31431, 11, 7547, 7575, 11, 13397, 11, 30277, 49, 485, 11, 19193, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21640, 11, 21640, 12727, 11, 21640, 41030, 434, 11, 11140, 540, 11, 13707, 11, 24014, 6601, 11, 24014, 8053, 11, 18383, 11, 6378, 11, 6378, 9237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6378, 6030, 8, 198, 6738, 764, 8692, 1330, 7824, 628 ]
2.722222
144
# -*- coding: utf-8 -*- """Location schema.""" from marshmallow import Schema, fields, validates from werkzeug.exceptions import BadRequest from ceraon.constants import Errors class LocationSchema(Schema): """A schema for a Location model.""" created_at = fields.DateTime(dump_only=True) name = fields.String(required=True, load_only=True) id = fields.UUID() address = fields.Str() latitude = fields.Float() longitude = fields.Float() private_fields = ['address', 'latitude', 'longitude'] class Meta: """The mata class for the location schema.""" type_ = 'location' strict = True @validates('name') def validate_name(self, value): """Validate the name of the location.""" if not value: raise BadRequest(Errors.LOCATION_NAME_MISSING)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 14749, 32815, 526, 15931, 198, 6738, 22397, 42725, 1330, 10011, 2611, 11, 7032, 11, 4938, 689, 198, 6738, 266, 9587, 2736, 1018, 13, 1069, 11755, 1330, 7772, 18453, 198, 198, 6738, 269, 8607, 261, 13, 9979, 1187, 1330, 44225, 628, 198, 4871, 13397, 27054, 2611, 7, 27054, 2611, 2599, 198, 220, 220, 220, 37227, 32, 32815, 329, 257, 13397, 2746, 526, 15931, 628, 220, 220, 220, 2727, 62, 265, 796, 7032, 13, 10430, 7575, 7, 39455, 62, 8807, 28, 17821, 8, 198, 220, 220, 220, 1438, 796, 7032, 13, 10100, 7, 35827, 28, 17821, 11, 3440, 62, 8807, 28, 17821, 8, 198, 220, 220, 220, 4686, 796, 7032, 13, 52, 27586, 3419, 198, 220, 220, 220, 2209, 796, 7032, 13, 13290, 3419, 198, 220, 220, 220, 32477, 796, 7032, 13, 43879, 3419, 198, 220, 220, 220, 890, 3984, 796, 7032, 13, 43879, 3419, 628, 220, 220, 220, 2839, 62, 25747, 796, 37250, 21975, 3256, 705, 15460, 3984, 3256, 705, 6511, 3984, 20520, 628, 220, 220, 220, 1398, 30277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 285, 1045, 1398, 329, 262, 4067, 32815, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 796, 705, 24886, 6, 198, 220, 220, 220, 220, 220, 220, 220, 7646, 796, 6407, 628, 220, 220, 220, 2488, 12102, 689, 10786, 3672, 11537, 198, 220, 220, 220, 825, 26571, 62, 3672, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 262, 1438, 286, 262, 4067, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7772, 18453, 7, 9139, 5965, 13, 29701, 6234, 62, 20608, 62, 44, 16744, 2751, 8, 198 ]
2.7
310
__version__ = '0.4.4'
[ 198, 198, 834, 9641, 834, 796, 705, 15, 13, 19, 13, 19, 6, 198 ]
1.714286
14
import logging from util import config from abc import ABC, abstractmethod from temporal.workflow import workflow_method logging.basicConfig(level=logging.DEBUG) import functools
[ 11748, 18931, 198, 6738, 7736, 1330, 4566, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 21964, 13, 1818, 11125, 1330, 30798, 62, 24396, 628, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 628, 198, 11748, 1257, 310, 10141, 628, 197, 197, 628, 628, 628, 197, 198, 197, 198, 197, 198 ]
3.355932
59
#!/usr/bin/env python # encoding: utf-8 from itertools import groupby from operator import itemgetter def get_real_bases(bases): """ Get real bases for types argument. >>> get_real_bases(None) #=> (object,) >>> get_real_bases(TypeA) #=> (TypeA,) >>> get_real_bases([TypeA, TypeB]) #=> (TypeA, TypeB) :param bases: type or type sequence """ if bases is None: return (object,) if isinstance(bases, type): bases = (bases,) return tuple(bases) def subtype(name, bases=None, attrs=None): """ A easier way to create a type inherited from bases(default:object) with specified attrs. :param name: name of new type :param bases: bases class of new type :param attrs: class attributes of new type """ return type(name, get_real_bases(bases), dict(attrs or {})) class TypeFactory(object): """ Create your type from this factory. >>> types_factory.NewType() equals: >>> subtype("NewType") """ types_factory = TypeFactory() def subexception(name, bases=None, attrs=None): """ A easier way to create an Exception :param name: name of new exception :param bases: bases class of new exception :param attrs: class attributes of new exception """ return subtype(name, bases or [Exception], attrs) class ExceptionFactory(object): """ Create your type by this factory. >>> exceptions_factory.NewError() equals: >>> subexception("NewError") """ exceptions_factory = ExceptionFactory() class SimpleExceptions(object): """ Create and cached a simple exception. """ def freezed_attrs(attrs): """ Decorator the declare attributes of cls is freezed. Attributes in attrs can only assigned once as initialization(usually is in __init__). :param attrs: attribute list """ return setattr_hook class Constants(object): """ The base class of constants """ def constants(**kwg): """ Declare some constants. """ return Constants(kwg, {"name": "ConstantSet"}) def enums(*values): """ Declare some enumerations. """ return Constants( {k: i for i, k in enumerate(values)}, {"name": "EnumerationSet", "getitem_hook": _enums_getitem_hook} )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 6738, 340, 861, 10141, 1330, 1448, 1525, 198, 6738, 10088, 1330, 2378, 1136, 353, 628, 198, 4299, 651, 62, 5305, 62, 65, 1386, 7, 65, 1386, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 1103, 12536, 329, 3858, 4578, 13, 198, 220, 220, 220, 13163, 651, 62, 5305, 62, 65, 1386, 7, 14202, 8, 1303, 14804, 357, 15252, 35751, 198, 220, 220, 220, 13163, 651, 62, 5305, 62, 65, 1386, 7, 6030, 32, 8, 1303, 14804, 357, 6030, 32, 35751, 198, 220, 220, 220, 13163, 651, 62, 5305, 62, 65, 1386, 26933, 6030, 32, 11, 5994, 33, 12962, 1303, 14804, 357, 6030, 32, 11, 5994, 33, 8, 628, 220, 220, 220, 1058, 17143, 12536, 25, 2099, 393, 2099, 8379, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 12536, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 15252, 35751, 198, 220, 220, 220, 611, 318, 39098, 7, 65, 1386, 11, 2099, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 12536, 796, 357, 65, 1386, 35751, 198, 220, 220, 220, 1441, 46545, 7, 65, 1386, 8, 628, 198, 4299, 850, 4906, 7, 3672, 11, 12536, 28, 14202, 11, 708, 3808, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4577, 835, 284, 2251, 257, 2099, 19552, 422, 12536, 7, 12286, 25, 15252, 8, 198, 220, 220, 220, 351, 7368, 708, 3808, 13, 628, 220, 220, 220, 1058, 17143, 1438, 25, 1438, 286, 649, 2099, 198, 220, 220, 220, 1058, 17143, 12536, 25, 12536, 1398, 286, 649, 2099, 198, 220, 220, 220, 1058, 17143, 708, 3808, 25, 1398, 12608, 286, 649, 2099, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2099, 7, 3672, 11, 651, 62, 5305, 62, 65, 1386, 7, 65, 1386, 828, 8633, 7, 1078, 3808, 393, 23884, 4008, 628, 198, 4871, 5994, 22810, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 534, 2099, 422, 428, 8860, 13, 198, 220, 220, 220, 13163, 3858, 62, 69, 9548, 13, 3791, 6030, 3419, 198, 220, 220, 220, 21767, 25, 198, 220, 220, 220, 13163, 850, 4906, 7203, 3791, 6030, 4943, 198, 220, 220, 220, 37227, 198, 198, 19199, 62, 69, 9548, 796, 5994, 22810, 3419, 628, 198, 4299, 850, 1069, 4516, 7, 3672, 11, 12536, 28, 14202, 11, 708, 3808, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4577, 835, 284, 2251, 281, 35528, 628, 220, 220, 220, 1058, 17143, 1438, 25, 1438, 286, 649, 6631, 198, 220, 220, 220, 1058, 17143, 12536, 25, 12536, 1398, 286, 649, 6631, 198, 220, 220, 220, 1058, 17143, 708, 3808, 25, 1398, 12608, 286, 649, 6631, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 850, 4906, 7, 3672, 11, 12536, 393, 685, 16922, 4357, 708, 3808, 8, 628, 198, 4871, 35528, 22810, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 534, 2099, 416, 428, 8860, 13, 198, 220, 220, 220, 13163, 13269, 62, 69, 9548, 13, 3791, 12331, 3419, 198, 220, 220, 220, 21767, 25, 198, 220, 220, 220, 13163, 850, 1069, 4516, 7203, 3791, 12331, 4943, 198, 220, 220, 220, 37227, 198, 198, 1069, 11755, 62, 69, 9548, 796, 35528, 22810, 3419, 628, 198, 4871, 17427, 3109, 11755, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 290, 39986, 257, 2829, 6631, 13, 198, 220, 220, 220, 37227, 628, 198, 4299, 1479, 8863, 62, 1078, 3808, 7, 1078, 3808, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4280, 273, 1352, 262, 13627, 12608, 286, 537, 82, 318, 1479, 8863, 13, 198, 220, 220, 220, 49213, 287, 708, 3808, 460, 691, 8686, 1752, 355, 198, 220, 220, 220, 37588, 7, 23073, 318, 287, 11593, 15003, 834, 737, 628, 220, 220, 220, 1058, 17143, 708, 3808, 25, 11688, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 900, 35226, 62, 25480, 628, 198, 4871, 4757, 1187, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 2779, 1398, 286, 38491, 198, 220, 220, 220, 37227, 628, 198, 4299, 38491, 7, 1174, 46265, 70, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16691, 533, 617, 38491, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4757, 1187, 7, 46265, 70, 11, 19779, 3672, 1298, 366, 3103, 18797, 7248, 20662, 8, 628, 198, 198, 4299, 551, 5700, 46491, 27160, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16691, 533, 617, 27056, 602, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4757, 1187, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 74, 25, 1312, 329, 1312, 11, 479, 287, 27056, 378, 7, 27160, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 19779, 3672, 1298, 366, 4834, 6975, 341, 7248, 1600, 366, 1136, 9186, 62, 25480, 1298, 4808, 268, 5700, 62, 1136, 9186, 62, 25480, 92, 198, 220, 220, 220, 1267, 198 ]
2.713105
847
# -*- coding: utf-8 -*- """ Created on Fri Mar 25 21:00:31 2022 @author: LiCheng_Xu """ import numpy as np from .TargetTransformation import ddG2ee import matplotlib.pyplot as plt from scipy.interpolate import make_interp_spline from sklearn.model_selection import KFold
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 19480, 1526, 1679, 2310, 25, 405, 25, 3132, 33160, 201, 198, 201, 198, 31, 9800, 25, 7455, 7376, 782, 62, 55, 84, 201, 198, 37811, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 764, 21745, 8291, 1161, 1330, 49427, 38, 17, 1453, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 629, 541, 88, 13, 3849, 16104, 378, 1330, 787, 62, 3849, 79, 62, 22018, 500, 201, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 509, 37, 727, 201, 198, 220, 220, 220, 220, 201, 198 ]
2.513043
115
import pandas as pd # Accepts input for 'Salary Offer' and 'Tax Rate %' to provide # Annual, Monthly, and Weekly take home pay after taxes and # Lambda ISA deductions if __name__ == '__main__': salary = int(input("Salary Offer $:")) taxrate = int(input('Tax Rate as Whole Number ___%:')) take_home = TakeHomePay(salary, taxrate).postISA(salary, taxrate) print("After ISA and Taxes, Take Home Pay is:", round(take_home, 2), "Annually/// ", round(take_home/12, 2), "Monthly///", round(take_home/52, 2), "Weekly")
[ 11748, 19798, 292, 355, 279, 67, 628, 220, 220, 220, 1303, 21699, 82, 5128, 329, 705, 19221, 560, 33085, 6, 290, 705, 27017, 14806, 4064, 6, 284, 2148, 198, 220, 220, 220, 1303, 16328, 11, 27573, 11, 290, 18168, 1011, 1363, 1414, 706, 5704, 290, 198, 220, 220, 220, 1303, 21114, 6814, 3180, 32, 31086, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9588, 796, 493, 7, 15414, 7203, 19221, 560, 33085, 720, 11097, 4008, 198, 220, 220, 220, 1687, 4873, 796, 493, 7, 15414, 10786, 27017, 14806, 355, 23431, 7913, 46444, 4, 32105, 4008, 198, 220, 220, 220, 1011, 62, 11195, 796, 7214, 16060, 19197, 7, 21680, 560, 11, 1687, 4873, 737, 7353, 22312, 7, 21680, 560, 11, 1687, 4873, 8, 198, 220, 220, 220, 3601, 7203, 3260, 3180, 32, 290, 42260, 11, 7214, 5995, 7119, 318, 25, 1600, 2835, 7, 20657, 62, 11195, 11, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18858, 935, 20379, 33172, 2835, 7, 20657, 62, 11195, 14, 1065, 11, 362, 828, 366, 31948, 306, 20379, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 20657, 62, 11195, 14, 4309, 11, 362, 828, 366, 20916, 306, 4943, 198 ]
2.658768
211
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ USAGE: %(program)s -train CORPUS -output VECTORS -size SIZE -window WINDOW -cbow CBOW -sample SAMPLE -hs HS -negative NEGATIVE -threads THREADS -iter ITER -min_count MIN-COUNT -alpha ALPHA -binary BINARY -accuracy FILE Trains a neural embedding model on text file CORPUS. Parameters essentially reproduce those used by the original C tool (see https://code.google.com/archive/p/word2vec/). Parameters for training: -train <file> Use text data from <file> to train the model -output <file> Use <file> to save the resulting word vectors / word clusters -size <int> Set size of word vectors; default is 100 -window <int> Set max skip length between words; default is 5 -sample <float> Set threshold for occurrence of words. Those that appear with higher frequency in the training data will be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5) -hs <int> Use Hierarchical Softmax; default is 0 (not used) -negative <int> Number of negative examples; default is 5, common values are 3 - 10 (0 = not used) -threads <int> Use <int> threads (default 3) -iter <int> Run more training iterations (default 5) -min_count <int> This will discard words that appear less than <int> times; default is 5 -alpha <float> Set the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW -binary <int> Save the resulting vectors in binary moded; default is 0 (off) -cbow <int> Use the continuous bag of words model; default is 1 (use 0 for skip-gram model) -accuracy <file> Compute accuracy of the resulting model analogical inference power on questions file <file> See an example of questions file at https://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt Example: python -m gensim.scripts.word2vec_standalone -train data.txt \ -output vec.txt -size 200 -sample 1e-4 -binary 0 -iter 3 """ import logging import os.path import sys import argparse from numpy import seterr from gensim.models.word2vec import Word2Vec, LineSentence # avoid referencing __main__ in pickle logger = logging.getLogger(__name__) if __name__ == "__main__": logging.basicConfig(format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s', level=logging.INFO) logger.info("running %s", " ".join(sys.argv)) seterr(all='raise') # don't ignore numpy errors parser = argparse.ArgumentParser() parser.add_argument("-train", help="Use text data from file TRAIN to train the model", required=True) parser.add_argument("-output", help="Use file OUTPUT to save the resulting word vectors") parser.add_argument("-window", help="Set max skip length WINDOW between words; default is 5", type=int, default=5) parser.add_argument("-size", help="Set size of word vectors; default is 100", type=int, default=100) parser.add_argument( "-sample", help="Set threshold for occurrence of words. " "Those that appear with higher frequency in the training data will be randomly down-sampled; " "default is 1e-3, useful range is (0, 1e-5)", type=float, default=1e-3) parser.add_argument( "-hs", help="Use Hierarchical Softmax; default is 0 (not used)", type=int, default=0, choices=[0, 1] ) parser.add_argument( "-negative", help="Number of negative examples; default is 5, common values are 3 - 10 (0 = not used)", type=int, default=5 ) parser.add_argument("-threads", help="Use THREADS threads (default 3)", type=int, default=3) parser.add_argument("-iter", help="Run more training iterations (default 5)", type=int, default=5) parser.add_argument( "-min_count", help="This will discard words that appear less than MIN_COUNT times; default is 5", type=int, default=5 ) parser.add_argument( "-alpha", help="Set the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW", type=float ) parser.add_argument( "-cbow", help="Use the continuous bag of words model; default is 1 (use 0 for skip-gram model)", type=int, default=1, choices=[0, 1] ) parser.add_argument( "-binary", help="Save the resulting vectors in binary mode; default is 0 (off)", type=int, default=0, choices=[0, 1] ) parser.add_argument("-accuracy", help="Use questions from file ACCURACY to evaluate the model") args = parser.parse_args() if args.cbow == 0: skipgram = 1 if not args.alpha: args.alpha = 0.025 else: skipgram = 0 if not args.alpha: args.alpha = 0.05 corpus = LineSentence(args.train) model = Word2Vec( corpus, vector_size=args.size, min_count=args.min_count, workers=args.threads, window=args.window, sample=args.sample, alpha=args.alpha, sg=skipgram, hs=args.hs, negative=args.negative, cbow_mean=1, epochs=args.iter, ) if args.output: outfile = args.output model.wv.save_word2vec_format(outfile, binary=args.binary) else: outfile = args.train.split('.')[0] model.save(outfile + '.model') if args.binary == 1: model.wv.save_word2vec_format(outfile + '.model.bin', binary=True) else: model.wv.save_word2vec_format(outfile + '.model.txt', binary=False) if args.accuracy: questions_file = args.accuracy model.accuracy(questions_file) logger.info("finished running %s", os.path.basename(sys.argv[0]))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 49962, 739, 262, 22961, 17370, 6489, 410, 17, 13, 16, 532, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 75, 70, 489, 13, 6494, 628, 198, 37811, 198, 2937, 11879, 25, 4064, 7, 23065, 8, 82, 532, 27432, 23929, 47, 2937, 532, 22915, 569, 9782, 20673, 532, 7857, 311, 35400, 532, 17497, 370, 12115, 3913, 198, 12, 66, 8176, 10078, 3913, 532, 39873, 28844, 16437, 532, 11994, 18070, 532, 31591, 399, 7156, 37045, 532, 16663, 82, 2320, 15675, 50, 532, 2676, 314, 5781, 198, 12, 1084, 62, 9127, 20625, 12, 34, 28270, 532, 26591, 42674, 7801, 532, 39491, 347, 1268, 13153, 532, 4134, 23843, 45811, 198, 198, 2898, 1299, 257, 17019, 11525, 12083, 2746, 319, 2420, 2393, 23929, 47, 2937, 13, 198, 48944, 6986, 22919, 883, 973, 416, 262, 2656, 327, 2891, 198, 7, 3826, 3740, 1378, 8189, 13, 13297, 13, 785, 14, 17474, 14, 79, 14, 4775, 17, 35138, 14, 737, 198, 198, 48944, 329, 3047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 27432, 1279, 7753, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 2420, 1366, 422, 1279, 7753, 29, 284, 4512, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 532, 22915, 1279, 7753, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 1279, 7753, 29, 284, 3613, 262, 7186, 1573, 30104, 1220, 1573, 23163, 198, 220, 220, 220, 220, 220, 220, 220, 532, 7857, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 2546, 286, 1573, 30104, 26, 4277, 318, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 532, 17497, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 3509, 14267, 4129, 1022, 2456, 26, 4277, 318, 642, 198, 220, 220, 220, 220, 220, 220, 220, 532, 39873, 1279, 22468, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 11387, 329, 19810, 286, 2456, 13, 5845, 326, 1656, 351, 2440, 8373, 287, 262, 3047, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 15456, 866, 12, 37687, 10137, 26, 4277, 318, 352, 68, 12, 18, 11, 4465, 2837, 318, 357, 15, 11, 352, 68, 12, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 11994, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 36496, 998, 605, 8297, 9806, 26, 4277, 318, 657, 357, 1662, 973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 31591, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 4633, 6096, 26, 4277, 318, 642, 11, 2219, 3815, 389, 513, 532, 838, 357, 15, 796, 407, 973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 16663, 82, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 1279, 600, 29, 14390, 357, 12286, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2676, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5660, 517, 3047, 34820, 357, 12286, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1084, 62, 9127, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 481, 27537, 2456, 326, 1656, 1342, 621, 1279, 600, 29, 1661, 26, 4277, 318, 642, 198, 220, 220, 220, 220, 220, 220, 220, 532, 26591, 1279, 22468, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3599, 4673, 2494, 26, 4277, 318, 657, 13, 36629, 329, 14267, 12, 4546, 290, 657, 13, 2713, 329, 10078, 3913, 198, 220, 220, 220, 220, 220, 220, 220, 532, 39491, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12793, 262, 7186, 30104, 287, 13934, 953, 276, 26, 4277, 318, 657, 357, 2364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 66, 8176, 1279, 600, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 262, 12948, 6131, 286, 2456, 2746, 26, 4277, 318, 352, 357, 1904, 657, 329, 14267, 12, 4546, 2746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 4134, 23843, 1279, 7753, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 9922, 286, 262, 7186, 2746, 15075, 605, 32278, 1176, 319, 2683, 2393, 1279, 7753, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4091, 281, 1672, 286, 2683, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 3740, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 4775, 17, 35138, 14, 10459, 14, 25367, 325, 14, 2213, 2954, 14, 6138, 507, 12, 10879, 13, 14116, 198, 198, 16281, 25, 21015, 532, 76, 308, 641, 320, 13, 46521, 13, 4775, 17, 35138, 62, 1481, 17749, 532, 27432, 1366, 13, 14116, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 532, 22915, 43030, 13, 14116, 532, 7857, 939, 532, 39873, 352, 68, 12, 19, 532, 39491, 657, 532, 2676, 513, 198, 37811, 628, 198, 11748, 18931, 198, 11748, 28686, 13, 6978, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 6738, 299, 32152, 1330, 900, 8056, 198, 198, 6738, 308, 641, 320, 13, 27530, 13, 4775, 17, 35138, 1330, 9678, 17, 53, 721, 11, 6910, 31837, 594, 220, 1303, 3368, 32578, 11593, 12417, 834, 287, 2298, 293, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 1058, 4064, 7, 16663, 5376, 8, 82, 1058, 4064, 7, 5715, 3672, 8, 82, 1058, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 49706, 13, 10951, 7203, 20270, 4064, 82, 1600, 366, 27071, 22179, 7, 17597, 13, 853, 85, 4008, 198, 220, 220, 220, 900, 8056, 7, 439, 11639, 40225, 11537, 220, 1303, 836, 470, 8856, 299, 32152, 8563, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 27432, 1600, 1037, 2625, 11041, 2420, 1366, 422, 2393, 29125, 1268, 284, 4512, 262, 2746, 1600, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 22915, 1600, 1037, 2625, 11041, 2393, 16289, 30076, 284, 3613, 262, 7186, 1573, 30104, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 17497, 1600, 1037, 2625, 7248, 3509, 14267, 4129, 370, 12115, 3913, 1022, 2456, 26, 4277, 318, 642, 1600, 2099, 28, 600, 11, 4277, 28, 20, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 7857, 1600, 1037, 2625, 7248, 2546, 286, 1573, 30104, 26, 4277, 318, 1802, 1600, 2099, 28, 600, 11, 4277, 28, 3064, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 39873, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 11387, 329, 19810, 286, 2456, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9627, 326, 1656, 351, 2440, 8373, 287, 262, 3047, 1366, 481, 307, 15456, 866, 12, 37687, 10137, 26, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 318, 352, 68, 12, 18, 11, 4465, 2837, 318, 357, 15, 11, 352, 68, 12, 20, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 4277, 28, 16, 68, 12, 18, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 11994, 1600, 1037, 2625, 11041, 36496, 998, 605, 8297, 9806, 26, 4277, 318, 657, 357, 1662, 973, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 15, 11, 7747, 41888, 15, 11, 352, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 31591, 1600, 1037, 2625, 15057, 286, 4633, 6096, 26, 4277, 318, 642, 11, 2219, 3815, 389, 513, 532, 838, 357, 15, 796, 407, 973, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 20, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 16663, 82, 1600, 1037, 2625, 11041, 2320, 15675, 50, 14390, 357, 12286, 513, 42501, 2099, 28, 600, 11, 4277, 28, 18, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 2676, 1600, 1037, 2625, 10987, 517, 3047, 34820, 357, 12286, 642, 42501, 2099, 28, 600, 11, 4277, 28, 20, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 1084, 62, 9127, 1600, 1037, 2625, 1212, 481, 27537, 2456, 326, 1656, 1342, 621, 20625, 62, 34, 28270, 1661, 26, 4277, 318, 642, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 20, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 26591, 1600, 1037, 2625, 7248, 262, 3599, 4673, 2494, 26, 4277, 318, 657, 13, 36629, 329, 14267, 12, 4546, 290, 657, 13, 2713, 329, 10078, 3913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 66, 8176, 1600, 1037, 2625, 11041, 262, 12948, 6131, 286, 2456, 2746, 26, 4277, 318, 352, 357, 1904, 657, 329, 14267, 12, 4546, 2746, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 16, 11, 7747, 41888, 15, 11, 352, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 39491, 1600, 1037, 2625, 16928, 262, 7186, 30104, 287, 13934, 4235, 26, 4277, 318, 657, 357, 2364, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 15, 11, 7747, 41888, 15, 11, 352, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 4134, 23843, 1600, 1037, 2625, 11041, 2683, 422, 2393, 15859, 4261, 43300, 284, 13446, 262, 2746, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 26498, 13, 66, 8176, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 4546, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 26591, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 26591, 796, 657, 13, 36629, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 4546, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 26591, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 26591, 796, 657, 13, 2713, 628, 220, 220, 220, 35789, 796, 6910, 31837, 594, 7, 22046, 13, 27432, 8, 628, 220, 220, 220, 2746, 796, 9678, 17, 53, 721, 7, 198, 220, 220, 220, 220, 220, 220, 220, 35789, 11, 15879, 62, 7857, 28, 22046, 13, 7857, 11, 949, 62, 9127, 28, 22046, 13, 1084, 62, 9127, 11, 3259, 28, 22046, 13, 16663, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 28, 22046, 13, 17497, 11, 6291, 28, 22046, 13, 39873, 11, 17130, 28, 22046, 13, 26591, 11, 264, 70, 28, 48267, 4546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 289, 82, 28, 22046, 13, 11994, 11, 4633, 28, 22046, 13, 31591, 11, 269, 8176, 62, 32604, 28, 16, 11, 36835, 82, 28, 22046, 13, 2676, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 26498, 13, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 26498, 13, 22915, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 86, 85, 13, 21928, 62, 4775, 17, 35138, 62, 18982, 7, 448, 7753, 11, 13934, 28, 22046, 13, 39491, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7753, 796, 26498, 13, 27432, 13, 35312, 10786, 2637, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21928, 7, 448, 7753, 1343, 45302, 19849, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 39491, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 86, 85, 13, 21928, 62, 4775, 17, 35138, 62, 18982, 7, 448, 7753, 1343, 45302, 19849, 13, 8800, 3256, 13934, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 86, 85, 13, 21928, 62, 4775, 17, 35138, 62, 18982, 7, 448, 7753, 1343, 45302, 19849, 13, 14116, 3256, 13934, 28, 25101, 8, 628, 220, 220, 220, 611, 26498, 13, 4134, 23843, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2683, 62, 7753, 796, 26498, 13, 4134, 23843, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 4134, 23843, 7, 6138, 507, 62, 7753, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 43952, 2491, 4064, 82, 1600, 28686, 13, 6978, 13, 12093, 12453, 7, 17597, 13, 853, 85, 58, 15, 60, 4008, 198 ]
2.493116
2,397
import messages """ This validator is basic validator that returns (True, None) when a user is authenticated and the number of command tokens is 1. Returns (False, <message>) otherwise. """
[ 11748, 6218, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 37811, 201, 198, 220, 220, 220, 770, 4938, 1352, 318, 4096, 4938, 1352, 326, 5860, 357, 17821, 11, 6045, 8, 220, 201, 198, 220, 220, 220, 618, 257, 2836, 318, 44529, 290, 262, 1271, 286, 3141, 16326, 318, 352, 13, 201, 198, 220, 220, 220, 16409, 357, 25101, 11, 1279, 20500, 43734, 4306, 13, 201, 198, 37811, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.640449
89
import re regex_pattern = r'M{0,3}(C[MD]|D?C{0,3})(X[CL]|L?X{0,3})(I[VX]|V?I{0,3})$' print(str(bool(re.match(regex_pattern, input()))))
[ 11748, 302, 198, 198, 260, 25636, 62, 33279, 796, 374, 6, 44, 90, 15, 11, 18, 92, 7, 34, 58, 12740, 60, 91, 35, 30, 34, 90, 15, 11, 18, 92, 5769, 55, 58, 5097, 60, 91, 43, 30, 55, 90, 15, 11, 18, 92, 5769, 40, 58, 53, 55, 60, 91, 53, 30, 40, 90, 15, 11, 18, 30072, 3, 6, 198, 198, 4798, 7, 2536, 7, 30388, 7, 260, 13, 15699, 7, 260, 25636, 62, 33279, 11, 5128, 3419, 35514 ]
1.670732
82
# --- Day 12: Passage Pathing --- import copy print("TEST") resolve_puzzle("test_data.txt") print("PUZZLE") resolve_puzzle("data.txt") ## takes a while (<1min) --> not very efficient
[ 2, 11420, 3596, 1105, 25, 46169, 3208, 722, 11420, 198, 11748, 4866, 628, 628, 628, 198, 198, 4798, 7203, 51, 6465, 4943, 198, 411, 6442, 62, 79, 9625, 7203, 9288, 62, 7890, 13, 14116, 4943, 198, 4798, 7203, 5105, 30148, 2538, 4943, 198, 411, 6442, 62, 79, 9625, 7203, 7890, 13, 14116, 4943, 220, 22492, 2753, 257, 981, 38155, 16, 1084, 8, 14610, 407, 845, 6942 ]
2.878788
66
epsilon_d_ = { "epsilon": ["float", "0.03", "0.01 ... 0.3"], } distribution_d_ = { "distribution": ["string", "normal", "normal, laplace, logistic, gumbel"], } n_neighbours_d_ = { "n_neighbours": ["int", "3", "1 ... 10"], } p_accept_d_ = { "p_accept": ["float", "0.1", "0.01 ... 0.3"], } repulsion_factor_d = { "repulsion_factor": ["float", "5", "2 ... 10"], } annealing_rate_d = { "annealing_rate": ["float", "0.97", "0.9 ... 0.99"], } start_temp_d = { "start_temp": ["float", "1", "0.5 ... 1.5"], } alpha_d = { "alpha": ["float", "1", "0.5 ... 2"], } gamma_d = { "gamma": ["float", "2", "0.5 ... 5"], } beta_d = { "beta": ["float", "0.5", "0.25 ... 3"], } sigma_d = { "sigma": ["float", "0.5", "0.25 ... 3"], } step_size_d = { "step_size": ["int", "1", "1 ... 1000"], } n_iter_restart_d = { "n_iter_restart": ["int", "10", "5 ... 20"], } iters_p_dim_d = { "iters_p_dim": ["int", "10", "5 ... 15"], } n_positions_d = { "n_positions": ["int", "4", "2 ... 8"], } pattern_size_d = { "pattern_size": ["float", "0.25", "0.1 ... 0.5"], } reduction_d = { "reduction": ["float", "0.9", "0.75 ... 0.99"], } population_parallel_temp_d = { "population": ["int", "5", "3 ... 15"], } n_iter_swap_parallel_temp_d = { "n_iter_swap": ["int", "10", "5 ... 15"], } population_pso_d = { "population": ["int", "10", "4 ... 15"], } inertia_d = { "inertia": ["float", "0.5", "0.25 ... 0.75"], } cognitive_weight_d = { "cognitive_weight": ["float", "0.5", "0.25 ... 0.75"], } social_weight_d = { "social_weight": ["float", "0.5", "0.25 ... 0.75"], } temp_weight_d = { "temp_weight": ["float", "0.2", "0.05 ... 0.3"], } population_evo_strat_d = { "population": ["int", "10", "4 ... 15"], } mutation_rate_d = { "mutation_rate": ["float", "0.7", "0.1 ... 0.9"], } crossover_rate_d = { "crossover_rate": ["float", "0.3", "0.1 ... 0.9"], } gpr_bayes_opt_d = { "gpr": ["class", "0.3", "-"], } xi_bayes_opt_d = { "xi": ["float", "0.3", "0.1 ... 0.9"], } warm_start_smbo_d = { "warm_start_smbo": ["pandas dataframe", "None", "-"], } max_sample_size_d = { "max_sample_size": ["int", "10000000", "-"], } sampling_d = { "sampling": ["dict", "{'random': 1000000}", "-"], } gamma_tpe_d = { "gamma_tpe": ["float", "0.2", "0.05 ... 0.75"], } tree_regressor_d = { "tree_regressor": [ "string", "extra_tree", "extra_tree, random_forest, gradient_boost", ], } tree_para_d = { "tree_para": ["dict", "{'n_estimators': 100}", "-"], } xi_forest_opt_d = { "xi": ["float", "0.03", "0.001 ... 0.1"], }
[ 538, 18217, 261, 62, 67, 62, 796, 1391, 198, 220, 220, 220, 366, 538, 18217, 261, 1298, 14631, 22468, 1600, 366, 15, 13, 3070, 1600, 366, 15, 13, 486, 2644, 657, 13, 18, 33116, 198, 92, 198, 17080, 3890, 62, 67, 62, 796, 1391, 198, 220, 220, 220, 366, 17080, 3890, 1298, 14631, 8841, 1600, 366, 11265, 1600, 366, 11265, 11, 8591, 5372, 11, 2604, 2569, 11, 308, 2178, 417, 33116, 198, 92, 198, 77, 62, 710, 394, 65, 4662, 62, 67, 62, 796, 1391, 198, 220, 220, 220, 366, 77, 62, 710, 394, 65, 4662, 1298, 14631, 600, 1600, 366, 18, 1600, 366, 16, 2644, 838, 33116, 198, 92, 198, 79, 62, 13635, 62, 67, 62, 796, 1391, 198, 220, 220, 220, 366, 79, 62, 13635, 1298, 14631, 22468, 1600, 366, 15, 13, 16, 1600, 366, 15, 13, 486, 2644, 657, 13, 18, 33116, 198, 92, 198, 7856, 15204, 62, 31412, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 7856, 15204, 62, 31412, 1298, 14631, 22468, 1600, 366, 20, 1600, 366, 17, 2644, 838, 33116, 198, 92, 198, 21952, 4272, 62, 4873, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 21952, 4272, 62, 4873, 1298, 14631, 22468, 1600, 366, 15, 13, 5607, 1600, 366, 15, 13, 24, 2644, 657, 13, 2079, 33116, 198, 92, 198, 9688, 62, 29510, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 9688, 62, 29510, 1298, 14631, 22468, 1600, 366, 16, 1600, 366, 15, 13, 20, 2644, 352, 13, 20, 33116, 198, 92, 198, 26591, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 26591, 1298, 14631, 22468, 1600, 366, 16, 1600, 366, 15, 13, 20, 2644, 362, 33116, 198, 92, 198, 28483, 2611, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 28483, 2611, 1298, 14631, 22468, 1600, 366, 17, 1600, 366, 15, 13, 20, 2644, 642, 33116, 198, 92, 198, 31361, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 31361, 1298, 14631, 22468, 1600, 366, 15, 13, 20, 1600, 366, 15, 13, 1495, 2644, 513, 33116, 198, 92, 198, 82, 13495, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 82, 13495, 1298, 14631, 22468, 1600, 366, 15, 13, 20, 1600, 366, 15, 13, 1495, 2644, 513, 33116, 198, 92, 198, 9662, 62, 7857, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 9662, 62, 7857, 1298, 14631, 600, 1600, 366, 16, 1600, 366, 16, 2644, 8576, 33116, 198, 92, 198, 77, 62, 2676, 62, 2118, 433, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 77, 62, 2676, 62, 2118, 433, 1298, 14631, 600, 1600, 366, 940, 1600, 366, 20, 2644, 1160, 33116, 198, 92, 198, 270, 364, 62, 79, 62, 27740, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 270, 364, 62, 79, 62, 27740, 1298, 14631, 600, 1600, 366, 940, 1600, 366, 20, 2644, 1315, 33116, 198, 92, 198, 77, 62, 1930, 1756, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 77, 62, 1930, 1756, 1298, 14631, 600, 1600, 366, 19, 1600, 366, 17, 2644, 807, 33116, 198, 92, 198, 33279, 62, 7857, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 33279, 62, 7857, 1298, 14631, 22468, 1600, 366, 15, 13, 1495, 1600, 366, 15, 13, 16, 2644, 657, 13, 20, 33116, 198, 92, 198, 445, 8110, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 445, 8110, 1298, 14631, 22468, 1600, 366, 15, 13, 24, 1600, 366, 15, 13, 2425, 2644, 657, 13, 2079, 33116, 198, 92, 198, 39748, 62, 1845, 29363, 62, 29510, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 39748, 1298, 14631, 600, 1600, 366, 20, 1600, 366, 18, 2644, 1315, 33116, 198, 92, 198, 77, 62, 2676, 62, 2032, 499, 62, 1845, 29363, 62, 29510, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 77, 62, 2676, 62, 2032, 499, 1298, 14631, 600, 1600, 366, 940, 1600, 366, 20, 2644, 1315, 33116, 198, 92, 198, 39748, 62, 79, 568, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 39748, 1298, 14631, 600, 1600, 366, 940, 1600, 366, 19, 2644, 1315, 33116, 198, 92, 198, 259, 861, 544, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 259, 861, 544, 1298, 14631, 22468, 1600, 366, 15, 13, 20, 1600, 366, 15, 13, 1495, 2644, 657, 13, 2425, 33116, 198, 92, 198, 66, 46610, 62, 6551, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 66, 46610, 62, 6551, 1298, 14631, 22468, 1600, 366, 15, 13, 20, 1600, 366, 15, 13, 1495, 2644, 657, 13, 2425, 33116, 198, 92, 198, 14557, 62, 6551, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 14557, 62, 6551, 1298, 14631, 22468, 1600, 366, 15, 13, 20, 1600, 366, 15, 13, 1495, 2644, 657, 13, 2425, 33116, 198, 92, 198, 29510, 62, 6551, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 29510, 62, 6551, 1298, 14631, 22468, 1600, 366, 15, 13, 17, 1600, 366, 15, 13, 2713, 2644, 657, 13, 18, 33116, 198, 92, 198, 39748, 62, 1990, 78, 62, 2536, 265, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 39748, 1298, 14631, 600, 1600, 366, 940, 1600, 366, 19, 2644, 1315, 33116, 198, 92, 198, 76, 7094, 62, 4873, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 76, 7094, 62, 4873, 1298, 14631, 22468, 1600, 366, 15, 13, 22, 1600, 366, 15, 13, 16, 2644, 657, 13, 24, 33116, 198, 92, 198, 66, 23954, 62, 4873, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 66, 23954, 62, 4873, 1298, 14631, 22468, 1600, 366, 15, 13, 18, 1600, 366, 15, 13, 16, 2644, 657, 13, 24, 33116, 198, 92, 198, 70, 1050, 62, 24406, 274, 62, 8738, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 70, 1050, 1298, 14631, 4871, 1600, 366, 15, 13, 18, 1600, 366, 21215, 4357, 198, 92, 198, 29992, 62, 24406, 274, 62, 8738, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 29992, 1298, 14631, 22468, 1600, 366, 15, 13, 18, 1600, 366, 15, 13, 16, 2644, 657, 13, 24, 33116, 198, 92, 198, 31975, 62, 9688, 62, 82, 2022, 78, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 31975, 62, 9688, 62, 82, 2022, 78, 1298, 14631, 79, 392, 292, 1366, 14535, 1600, 366, 14202, 1600, 366, 21215, 4357, 198, 92, 198, 9806, 62, 39873, 62, 7857, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 9806, 62, 39873, 62, 7857, 1298, 14631, 600, 1600, 366, 16, 24598, 1600, 366, 21215, 4357, 198, 92, 198, 37687, 11347, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 37687, 11347, 1298, 14631, 11600, 1600, 45144, 6, 25120, 10354, 1802, 2388, 92, 1600, 366, 21215, 4357, 198, 92, 198, 28483, 2611, 62, 83, 431, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 28483, 2611, 62, 83, 431, 1298, 14631, 22468, 1600, 366, 15, 13, 17, 1600, 366, 15, 13, 2713, 2644, 657, 13, 2425, 33116, 198, 92, 198, 21048, 62, 2301, 44292, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 21048, 62, 2301, 44292, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8841, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26086, 62, 21048, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26086, 62, 21048, 11, 4738, 62, 29623, 11, 31312, 62, 39521, 1600, 198, 220, 220, 220, 16589, 198, 92, 198, 21048, 62, 1845, 64, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 21048, 62, 1845, 64, 1298, 14631, 11600, 1600, 45144, 6, 77, 62, 395, 320, 2024, 10354, 1802, 92, 1600, 366, 21215, 4357, 198, 92, 198, 29992, 62, 29623, 62, 8738, 62, 67, 796, 1391, 198, 220, 220, 220, 366, 29992, 1298, 14631, 22468, 1600, 366, 15, 13, 3070, 1600, 366, 15, 13, 8298, 2644, 657, 13, 16, 33116, 198, 92, 198 ]
2.034857
1,291
'''Asynchronous procedure. An asynchronous procedure, a.k.a. an aproc, is a procedure that is asynchronous and has been wrapped into an :class:`asyncio.Future`. A procedure is a function that returns None. ''' import asyncio __all__ = ['AprocManager'] class AprocManager: '''Manages the completion of aprocs. With this manager, the user can just send an aproc to it and forget. To ensure all aprocs are completed, please invoke the cleanup function. Otherwise, some aprocs may never get awaited when the manager dies. Parameters ---------- max_concurrency : int maximum number of concurrent aprocs that can be held pending handle_exception : {'raise', 'silent', 'warn'} policy for handling an exception raised by an aproc. If 'raise', re-raise the caught exception. If 'silent', ignore the exception. If 'warn', use the provided logger to warn the user. logger : logging.Logger or equivalent logger for warning purposes ''' async def send(self, aproc: asyncio.Future): '''Sends an aproc to the manager so the user can forget about it. The function usually returns immediately. However, if the maximum number of concurrent aprocs has been exceeded. It will await. Parameters ---------- aproc : asyncio.Future a future (returned via :func:`asyncio.create_task` or :func:`asyncio.ensure_future`) that is a procedure ''' await self._sleep_well() self.aproc_set.add(aproc) async def cleanup(self): '''Awaits until all aprocs are done.''' await self._sleep_well(1)
[ 7061, 6, 1722, 31301, 8771, 13, 198, 198, 2025, 39354, 8771, 11, 257, 13, 74, 13, 64, 13, 281, 257, 36942, 11, 318, 257, 8771, 326, 318, 39354, 290, 468, 587, 198, 29988, 1496, 656, 281, 1058, 4871, 25, 63, 292, 13361, 952, 13, 29783, 44646, 317, 8771, 318, 257, 2163, 326, 5860, 6045, 13, 198, 7061, 6, 628, 198, 11748, 30351, 952, 628, 198, 834, 439, 834, 796, 37250, 32, 36942, 13511, 20520, 628, 198, 4871, 317, 36942, 13511, 25, 198, 220, 220, 220, 705, 7061, 5124, 1095, 262, 11939, 286, 257, 1676, 6359, 13, 628, 220, 220, 220, 2080, 428, 4706, 11, 262, 2836, 460, 655, 3758, 281, 257, 36942, 284, 340, 290, 6044, 13, 1675, 4155, 477, 257, 1676, 6359, 198, 220, 220, 220, 389, 5668, 11, 3387, 26342, 262, 27425, 2163, 13, 15323, 11, 617, 257, 1676, 6359, 743, 1239, 651, 198, 220, 220, 220, 39576, 618, 262, 4706, 10564, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3509, 62, 1102, 34415, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 1271, 286, 24580, 257, 1676, 6359, 326, 460, 307, 2714, 13310, 198, 220, 220, 220, 5412, 62, 1069, 4516, 1058, 1391, 6, 40225, 3256, 705, 18217, 298, 3256, 705, 40539, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2450, 329, 9041, 281, 6631, 4376, 416, 281, 257, 36942, 13, 1002, 705, 40225, 3256, 302, 12, 40225, 262, 4978, 198, 220, 220, 220, 220, 220, 220, 220, 6631, 13, 1002, 705, 18217, 298, 3256, 8856, 262, 6631, 13, 1002, 705, 40539, 3256, 779, 262, 2810, 49706, 284, 198, 220, 220, 220, 220, 220, 220, 220, 9828, 262, 2836, 13, 198, 220, 220, 220, 49706, 1058, 18931, 13, 11187, 1362, 393, 7548, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 329, 6509, 4959, 198, 220, 220, 220, 705, 7061, 628, 628, 220, 220, 220, 30351, 825, 3758, 7, 944, 11, 257, 36942, 25, 30351, 952, 13, 29783, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 50, 2412, 281, 257, 36942, 284, 262, 4706, 523, 262, 2836, 460, 6044, 546, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2163, 3221, 5860, 3393, 13, 2102, 11, 611, 262, 5415, 1271, 286, 24580, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1676, 6359, 468, 587, 20672, 13, 632, 481, 25507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 257, 36942, 1058, 30351, 952, 13, 29783, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 2003, 357, 7783, 276, 2884, 1058, 20786, 25, 63, 292, 13361, 952, 13, 17953, 62, 35943, 63, 393, 1058, 20786, 25, 63, 292, 13361, 952, 13, 641, 495, 62, 37443, 63, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 318, 257, 8771, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13557, 42832, 62, 4053, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 499, 12204, 62, 2617, 13, 2860, 7, 499, 12204, 8, 628, 198, 220, 220, 220, 30351, 825, 27425, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 32, 10247, 896, 1566, 477, 257, 1676, 6359, 389, 1760, 2637, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 2116, 13557, 42832, 62, 4053, 7, 16, 8, 198 ]
2.829392
592
#!/usr/bin/env python # -*- coding: UTF-8 -*- import math import gtk, gobject import gnomecanvas if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 41002, 12, 23, 532, 9, 12, 198, 11748, 10688, 198, 11748, 308, 30488, 11, 48484, 752, 198, 11748, 19967, 462, 5171, 11017, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.428571
56
from api import api_call from config import SETTINGS from helpers import create_embed, LetterboxdError
[ 6738, 40391, 1330, 40391, 62, 13345, 198, 6738, 4566, 1330, 25823, 51, 20754, 198, 6738, 49385, 1330, 2251, 62, 20521, 11, 18121, 3524, 67, 12331, 628, 628, 628, 198 ]
3.758621
29
# Generated by Django 2.0.13 on 2019-07-30 20:10 from django.conf import settings from django.db import migrations, models import django.db.models.deletion from postgres_schema.operations import RunInPublic
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 1485, 319, 13130, 12, 2998, 12, 1270, 1160, 25, 940, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 6738, 1281, 34239, 62, 15952, 2611, 13, 3575, 602, 1330, 5660, 818, 15202, 628 ]
3.166667
66
# Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # # See http://www.cellbots.com for more information __license__ = 'Apache License, Version 2.0' import ConfigParser import os import sys import time from threading import Thread import android import math from threadedAndroid import droid import utils import xmpp # Send command out of uplink # Send command out of the device over BlueTooth or XMPP class CellbotRemote(Thread): """Cellbot remote control""" # Give the user an option to try other actions while still using the remote as # an accelerometer
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 198, 2, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 257, 4866, 286, 198, 2, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 739, 198, 2, 262, 13789, 13, 198, 2, 198, 2, 4091, 2638, 1378, 2503, 13, 3846, 42478, 13, 785, 329, 517, 1321, 198, 198, 834, 43085, 834, 796, 705, 25189, 4891, 13789, 11, 10628, 362, 13, 15, 6, 198, 198, 11748, 17056, 46677, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 11748, 19286, 198, 11748, 10688, 198, 6738, 40945, 25934, 1330, 46748, 198, 11748, 3384, 4487, 198, 11748, 2124, 76, 381, 628, 220, 1303, 16290, 3141, 503, 286, 28996, 676, 628, 220, 1303, 16290, 3141, 503, 286, 262, 3335, 625, 4518, 2514, 849, 393, 1395, 7378, 47, 198, 198, 4871, 12440, 13645, 36510, 7, 16818, 2599, 198, 220, 37227, 28780, 13645, 6569, 1630, 37811, 198, 198, 2, 13786, 262, 2836, 281, 3038, 284, 1949, 584, 4028, 981, 991, 1262, 262, 6569, 355, 198, 2, 281, 8320, 15635, 198 ]
3.836957
276
from fabric.api import * from fabric.contrib.files import * from path import path as ppath app = env.app = { 'live_catalogue-repo': 'https://svn.eionet.europa.eu/repositories/Python/flis.live_catalogue', 'localrepo': ppath(__file__).abspath().parent.parent, } try: from localcfg import * except: pass app.update({ 'instance_var': app['repo']/'instance', 'manage_var': app['repo']/'live_catalogue', 'live_catalogue_var': app['repo']/'live_catalogue'/'live_catalogue', 'sandbox': app['repo']/'sandbox', 'user': 'edw', }) @task @task @task @task @task @task
[ 6738, 9664, 13, 15042, 1330, 1635, 198, 6738, 9664, 13, 3642, 822, 13, 16624, 1330, 1635, 198, 6738, 3108, 1330, 3108, 355, 279, 6978, 198, 198, 1324, 796, 17365, 13, 1324, 796, 1391, 198, 220, 220, 220, 705, 12583, 62, 9246, 30326, 12, 260, 7501, 10354, 705, 5450, 1378, 21370, 77, 13, 68, 295, 316, 13, 44252, 8957, 13, 12496, 14, 260, 1930, 270, 1749, 14, 37906, 14, 2704, 271, 13, 12583, 62, 9246, 30326, 3256, 198, 220, 220, 220, 705, 12001, 260, 7501, 10354, 279, 6978, 7, 834, 7753, 834, 737, 397, 2777, 776, 22446, 8000, 13, 8000, 11, 198, 92, 198, 198, 28311, 25, 422, 1957, 37581, 1330, 1635, 198, 16341, 25, 1208, 198, 198, 1324, 13, 19119, 15090, 198, 220, 220, 220, 705, 39098, 62, 7785, 10354, 598, 17816, 260, 7501, 20520, 14, 6, 39098, 3256, 198, 220, 220, 220, 705, 805, 496, 62, 7785, 10354, 598, 17816, 260, 7501, 20520, 14, 6, 12583, 62, 9246, 30326, 3256, 198, 220, 220, 220, 705, 12583, 62, 9246, 30326, 62, 7785, 10354, 598, 17816, 260, 7501, 20520, 14, 6, 12583, 62, 9246, 30326, 26488, 6, 12583, 62, 9246, 30326, 3256, 198, 220, 220, 220, 705, 38142, 3524, 10354, 598, 17816, 260, 7501, 20520, 14, 6, 38142, 3524, 3256, 198, 220, 220, 220, 705, 7220, 10354, 705, 276, 86, 3256, 198, 30072, 628, 198, 31, 35943, 628, 198, 198, 31, 35943, 198, 198, 31, 35943, 198, 198, 31, 35943, 628, 198, 31, 35943, 198, 198, 31, 35943, 628 ]
2.407258
248
import pytest from eppy.doc import EppResponse from lxml import etree from registrobrepp.ipnetwork.brtransferipnetworkcommand import BrEppTransferIpNetworkCommand
[ 11748, 12972, 9288, 198, 6738, 304, 14097, 13, 15390, 1330, 412, 381, 31077, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 198, 6738, 4214, 305, 4679, 381, 13, 541, 27349, 13, 1671, 39437, 541, 27349, 21812, 1330, 1709, 36, 381, 43260, 40, 79, 26245, 21575, 628 ]
3.586957
46
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Mariusz Sielicki <[email protected]> import logging import requests log = logging.getLogger("nozbe")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 6434, 25, 1526, 3754, 89, 311, 8207, 624, 72, 1279, 76, 19897, 89, 13, 82, 8207, 624, 72, 31, 14816, 13, 785, 29, 198, 11748, 18931, 198, 11748, 7007, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7203, 3919, 89, 1350, 4943, 628 ]
2.470588
68
""" Utility to measure performance of obstacle detector. Parameter Defaults ------------------ Resolution = (1280, 720) Noise SD = 0 N Objects = 0 Type = circle Radius = 100 """ import os, sys parent_dir = os.path.dirname(os.path.abspath(__file__)) gparent_dir = os.path.dirname(parent_dir) ggparent_dir = os.path.dirname(gparent_dir) gggparent_dir = os.path.dirname(ggparent_dir) sys.path += [parent_dir, gparent_dir, ggparent_dir, gggparent_dir] import json import numpy as np import cv2 import common from vision.obstacle.obstacle_finder import ObstacleFinder from vision.common.import_params import import_params class TimeObstacle: """ Timing ObstacleFinder methods. """ DEFAULT_DIMS = (1280, 720) DEFAULT_RADIUS = 100 def setup(self): """ Configure blob detector and initialize images. """ ## Generate images self.PARAMETERS = {} self.PARAMETERS.update(common.blank_dimensions()) base_color, base_depth = common.blank_dimensions(self.DEFAULT_DIMS) # for radius in [25, 50, 100, 250]: color_image, depth_image = np.copy(base_color), np.copy(base_depth) cv2.circle(color_image, (640, 360), radius, (255, 255, 255), thickness=-1) cv2.circle(depth_image, (640, 360), radius, (255), thickness=-1) self.PARAMETERS.update({f'radius={radius}': (color_image, depth_image)}) # One to each corner for n_obj in range(4): color_image, depth_image = np.copy(base_color), np.copy(base_depth) for location in [(320, 180), (320, 540), (960, 180), (960, 540)][:n_obj]: cv2.circle(color_image, location, self.DEFAULT_RADIUS, (255, 255, 255), thickness=-1) cv2.circle(depth_image, location, self.DEFAULT_RADIUS, (255), thickness=-1) self.PARAMETERS.update({f'n_obj={n_obj}': (color_image, depth_image)}) # On default noise specturm for title, (color_image, depth_image) in common.noise().items(): cv2.circle(color_image, (640, 360), self.DEFAULT_RADIUS, (255, 255, 255), thickness=-1) cv2.circle(depth_image, (640, 360), self.DEFAULT_RADIUS, (255), thickness=-1) self.PARAMETERS.update({f'{title} single': (color_image, depth_image)}) ## Read current params & setup obstacle detector prefix = '' if os.path.isdir("times") else '..' config_filename = os.path.join(prefix, '..', 'obstacle', 'config.json') with open(config_filename, 'r') as config_file: config = json.load(config_file) self.blob_finder = ObstacleFinder(params=import_params(config)) def time_find(self, color_image, depth_image): """ Time the ObstacleFinder.find function. """ self.blob_finder.find(color_image, depth_image)
[ 37811, 198, 18274, 879, 284, 3953, 2854, 286, 22007, 31029, 13, 198, 198, 36301, 2896, 13185, 198, 1783, 438, 198, 4965, 2122, 796, 357, 1065, 1795, 11, 26250, 8, 198, 2949, 786, 9834, 796, 657, 198, 45, 35832, 796, 657, 198, 6030, 796, 9197, 198, 15546, 3754, 796, 1802, 198, 37811, 198, 11748, 28686, 11, 25064, 198, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 70, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 8000, 62, 15908, 8, 198, 1130, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 70, 8000, 62, 15908, 8, 198, 1130, 70, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 1130, 8000, 62, 15908, 8, 198, 17597, 13, 6978, 15853, 685, 8000, 62, 15908, 11, 308, 8000, 62, 15908, 11, 308, 70, 8000, 62, 15908, 11, 308, 1130, 8000, 62, 15908, 60, 198, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 198, 11748, 2219, 198, 198, 6738, 5761, 13, 672, 301, 6008, 13, 672, 301, 6008, 62, 22805, 1330, 46378, 6008, 37, 5540, 198, 6738, 5761, 13, 11321, 13, 11748, 62, 37266, 1330, 1330, 62, 37266, 628, 198, 4871, 3862, 5944, 301, 6008, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5045, 278, 46378, 6008, 37, 5540, 5050, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5550, 38865, 62, 35, 3955, 50, 796, 357, 1065, 1795, 11, 26250, 8, 198, 220, 220, 220, 5550, 38865, 62, 49, 2885, 40, 2937, 796, 1802, 628, 220, 220, 220, 825, 9058, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 495, 44812, 31029, 290, 41216, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 2980, 378, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27082, 2390, 2767, 4877, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27082, 2390, 2767, 4877, 13, 19119, 7, 11321, 13, 27190, 62, 27740, 5736, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 8043, 11, 2779, 62, 18053, 796, 2219, 13, 27190, 62, 27740, 5736, 7, 944, 13, 7206, 38865, 62, 35, 3955, 50, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16874, 287, 685, 1495, 11, 2026, 11, 1802, 11, 8646, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 9060, 11, 6795, 62, 9060, 796, 45941, 13, 30073, 7, 8692, 62, 8043, 828, 45941, 13, 30073, 7, 8692, 62, 18053, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 8043, 62, 9060, 11, 357, 31102, 11, 11470, 828, 16874, 11, 357, 13381, 11, 14280, 11, 14280, 828, 20735, 10779, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 18053, 62, 9060, 11, 357, 31102, 11, 11470, 828, 16874, 11, 357, 13381, 828, 20735, 10779, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27082, 2390, 2767, 4877, 13, 19119, 15090, 69, 6, 42172, 34758, 42172, 92, 10354, 357, 8043, 62, 9060, 11, 6795, 62, 9060, 8, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1881, 284, 1123, 5228, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 62, 26801, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 9060, 11, 6795, 62, 9060, 796, 45941, 13, 30073, 7, 8692, 62, 8043, 828, 45941, 13, 30073, 7, 8692, 62, 18053, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4067, 287, 47527, 19504, 11, 11546, 828, 357, 19504, 11, 38190, 828, 357, 39277, 11, 11546, 828, 357, 39277, 11, 38190, 8, 7131, 25, 77, 62, 26801, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 8043, 62, 9060, 11, 4067, 11, 2116, 13, 7206, 38865, 62, 49, 2885, 40, 2937, 11, 357, 13381, 11, 14280, 11, 14280, 828, 20735, 10779, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 18053, 62, 9060, 11, 4067, 11, 2116, 13, 7206, 38865, 62, 49, 2885, 40, 2937, 11, 357, 13381, 828, 20735, 10779, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27082, 2390, 2767, 4877, 13, 19119, 15090, 69, 6, 77, 62, 26801, 34758, 77, 62, 26801, 92, 10354, 357, 8043, 62, 9060, 11, 6795, 62, 9060, 8, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1550, 4277, 7838, 5444, 333, 76, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3670, 11, 357, 8043, 62, 9060, 11, 6795, 62, 9060, 8, 287, 2219, 13, 3919, 786, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 8043, 62, 9060, 11, 357, 31102, 11, 11470, 828, 2116, 13, 7206, 38865, 62, 49, 2885, 40, 2937, 11, 357, 13381, 11, 14280, 11, 14280, 828, 20735, 10779, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 18053, 62, 9060, 11, 357, 31102, 11, 11470, 828, 2116, 13, 7206, 38865, 62, 49, 2885, 40, 2937, 11, 357, 13381, 828, 20735, 10779, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27082, 2390, 2767, 4877, 13, 19119, 15090, 69, 6, 90, 7839, 92, 2060, 10354, 357, 8043, 62, 9060, 11, 6795, 62, 9060, 8, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 4149, 1459, 42287, 1222, 9058, 22007, 31029, 198, 220, 220, 220, 220, 220, 220, 220, 21231, 796, 10148, 611, 28686, 13, 6978, 13, 9409, 343, 7203, 22355, 4943, 2073, 705, 492, 6, 628, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 40290, 11, 705, 492, 3256, 705, 672, 301, 6008, 3256, 705, 11250, 13, 17752, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 34345, 11, 705, 81, 11537, 355, 4566, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 33918, 13, 2220, 7, 11250, 62, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2436, 672, 62, 22805, 796, 46378, 6008, 37, 5540, 7, 37266, 28, 11748, 62, 37266, 7, 11250, 4008, 628, 220, 220, 220, 825, 640, 62, 19796, 7, 944, 11, 3124, 62, 9060, 11, 6795, 62, 9060, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 262, 46378, 6008, 37, 5540, 13, 19796, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2436, 672, 62, 22805, 13, 19796, 7, 8043, 62, 9060, 11, 6795, 62, 9060, 8, 198 ]
2.345336
1,222
from datetime import timedelta from django.core.paginator import Paginator from django.http import Http404 from django.utils.translation import ugettext as _ from molly.utils import haversine from molly.utils.views import BaseView, ZoomableView from molly.utils.breadcrumbs import * from molly.maps import Map from molly.apps.library.forms import SearchForm from molly.apps.library.models import LibrarySearchQuery, LibrarySearchError class IndexView(BaseView): """ Index page of the library app """ @BreadcrumbFactory class SearchDetailView(BaseView): """ Search results page """ @BreadcrumbFactory AVAIL_COLORS = ['red', 'amber', 'purple', 'blue', 'green'] class ItemDetailView(ZoomableView): """ More detail about the item page """ @BreadcrumbFactory class ItemHoldingsView(ZoomableView): """ Specific details of holdings of a particular item """ @BreadcrumbFactory
[ 6738, 4818, 8079, 1330, 28805, 12514, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 26429, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 198, 6738, 285, 5098, 13, 26791, 1330, 387, 690, 500, 198, 6738, 285, 5098, 13, 26791, 13, 33571, 1330, 7308, 7680, 11, 40305, 540, 7680, 198, 6738, 285, 5098, 13, 26791, 13, 29573, 6098, 18146, 1330, 1635, 198, 6738, 285, 5098, 13, 31803, 1330, 9347, 198, 198, 6738, 285, 5098, 13, 18211, 13, 32016, 13, 23914, 1330, 11140, 8479, 198, 6738, 285, 5098, 13, 18211, 13, 32016, 13, 27530, 1330, 10074, 18243, 20746, 11, 10074, 18243, 12331, 198, 198, 4871, 12901, 7680, 7, 14881, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12901, 2443, 286, 262, 5888, 598, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 33, 961, 6098, 2178, 22810, 198, 198, 4871, 11140, 11242, 603, 7680, 7, 14881, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11140, 2482, 2443, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 33, 961, 6098, 2178, 22810, 198, 198, 10116, 32, 4146, 62, 25154, 20673, 796, 37250, 445, 3256, 705, 7789, 3256, 705, 14225, 1154, 3256, 705, 17585, 3256, 705, 14809, 20520, 198, 198, 4871, 9097, 11242, 603, 7680, 7, 57, 4207, 540, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3125, 3703, 546, 262, 2378, 2443, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 33, 961, 6098, 2178, 22810, 198, 198, 4871, 9097, 26807, 654, 7680, 7, 57, 4207, 540, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17377, 3307, 286, 27572, 286, 257, 1948, 2378, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 33, 961, 6098, 2178, 22810, 198 ]
2.950464
323
# -*- coding:utf-8 -*- import os import sys from PyQt4.QtGui import * from PyQt4.QtCore import * from sqldb import * from add_customer import * from customer_order import * main()
[ 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 9485, 48, 83, 19, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 48, 83, 19, 13, 48, 83, 14055, 1330, 1635, 198, 198, 6738, 19862, 335, 65, 1330, 1635, 198, 6738, 751, 62, 23144, 263, 1330, 1635, 198, 6738, 6491, 62, 2875, 1330, 1635, 198, 198, 12417, 3419, 198 ]
2.56338
71
# # Copyright (c) 2015-2021 Thierry Florac <tflorac AT ulthar.net> # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # """PyAMS_portal.portlet module This module defines all portlet-related components. """ __docformat__ = 'restructuredtext' import logging import venusian from persistent import Persistent from persistent.mapping import PersistentMapping from pyramid.exceptions import ConfigurationError from zope.container.contained import Contained from zope.copy import clone from zope.interface import alsoProvides, implementer, noLongerProvides from zope.lifecycleevent import ObjectCreatedEvent from zope.location import locate from zope.schema.fieldproperty import FieldProperty from zope.schema.vocabulary import SimpleTerm, SimpleVocabulary from zope.traversing.interfaces import ITraversable from pyams_portal.interfaces import IPortalContext, IPortalPage, IPortalPortletsConfiguration, \ IPortalTemplate, IPortlet, IPortletConfiguration, IPortletRenderer, \ IPortletSettings, MANAGE_TEMPLATE_PERMISSION, PORTLETS_VOCABULARY_NAME from pyams_security.interfaces import IViewContextPermissionChecker from pyams_utils.adapter import ContextAdapter, adapter_config from pyams_utils.factory import factory_config, get_object_factory, is_interface from pyams_utils.registry import get_pyramid_registry from pyams_utils.request import check_request from pyams_utils.vocabulary import vocabulary_config LOGGER = logging.getLogger('PyAMS (portal)') @implementer(IPortlet) class Portlet: """Base portlet utility""" permission = FieldProperty(IPortlet['permission']) toolbar_image = None toolbar_css_class = 'fa-edit' settings_factory = None class portlet_config: # pylint: disable=invalid-name """Class decorator used to declare a portlet""" venusian = venusian # for testing injection @vocabulary_config(name=PORTLETS_VOCABULARY_NAME) class PortletVocabulary(SimpleVocabulary): """Portlet vocabulary""" # # Portlet configuration # @implementer(IPortletSettings) class PortletSettings(Persistent, Contained): """Portlet settings persistent class This class is supposed to be sub-classed by all custom portlet subclasses to store their configuration settings. Each portlet sub-class must define it's settings factory in it's "settings_factory" attribute. Given factory can be a function, a class or an interface; in this last case, implementation is looking for default object factory registered for this interface. """ _renderer = FieldProperty(IPortletSettings['renderer']) __name__ = '++settings++' @property def visible(self): """Visibility getter""" return self._renderer != 'hidden' @property def renderer(self): """Renderer name getter""" return self._renderer @renderer.setter def renderer(self, value): """Renderer setter""" value = value or '' if value == self._renderer: return request = check_request() registry = request.registry renderer = registry.queryMultiAdapter((request.root, request, request, self), IPortletRenderer, name=self._renderer) if (renderer is not None) and (renderer.target_interface is not None): noLongerProvides(self, renderer.target_interface) self._renderer = value renderer = registry.queryMultiAdapter((request.root, request, request, self), IPortletRenderer, name=self._renderer) if (renderer is not None) and (renderer.target_interface is not None): alsoProvides(self, renderer.target_interface) def get_renderer(self, request=None): """Renderer adapter getter""" if request is None: request = check_request() return request.registry.queryMultiAdapter((request.root, request, request, self), IPortletRenderer, name=self._renderer) @property def configuration(self): """Configuration getter""" return self.__parent__ @configuration.setter def configuration(self, value): """Configuration setter""" if self.__parent__ is None: self.__parent__ = value @adapter_config(required=IPortletSettings, provides=IViewContextPermissionChecker) class PortletSettingsPermissionChecker(ContextAdapter): """Portlet settings permission checker""" edit_permission = MANAGE_TEMPLATE_PERMISSION @factory_config(IPortletConfiguration) class PortletConfiguration(Persistent, Contained): """Portlet configuration persistent class This class is a generic persistent class which is used to store all portlet configuration and is *not* supposed to be sub-classed. PortletConfiguration.__parent__ points to context where configuration is applied (each context or local template). PortletConfiguration.parent points to context from where configuration is inherited. """ portlet_id = FieldProperty(IPortletConfiguration['portlet_id']) portlet_name = None _inherit_parent = FieldProperty(IPortletConfiguration['inherit_parent']) _settings = FieldProperty(IPortletConfiguration['settings']) def get_portlet(self): """Portlet utility getter""" return get_pyramid_registry().queryUtility(IPortlet, name=self.portlet_name) @property def can_inherit(self): """Check if configuration can be inherited""" return not IPortalTemplate.providedBy(self.__parent__) @property def inherit_parent(self): """Check if inheritance is enabled""" return self._inherit_parent if self.can_inherit else False @inherit_parent.setter def inherit_parent(self, value): """Inheritance setter""" if (not value) or self.can_inherit: self._inherit_parent = value @property def override_parent(self): """Parent overriding getter""" return not self.inherit_parent @override_parent.setter def override_parent(self, value): """Parent overriding setter""" self.inherit_parent = not value @property def parent(self): """Parent getter""" parent = self.__parent__ if IPortalTemplate.providedBy(parent): return parent while True: if IPortalContext.providedBy(parent): configuration = IPortalPortletsConfiguration(parent).get_portlet_configuration( self.portlet_id) if not configuration.inherit_parent: return parent page = IPortalPage(parent) if not page.inherit_parent: break parent = parent.__parent__ if parent is None: break page = IPortalPage(parent, None) if page is not None: return page.template return None @property def settings(self): """Current settings getter (using inheritance settings)""" if self.inherit_parent: return IPortalPortletsConfiguration(self.parent).get_portlet_configuration( self.portlet_id).settings return self._settings @property def editor_settings(self): """Editor settings getter (always return local settings)""" return self._settings def get_settings(self, allow_inherit=True): """Settings getter (using inheritance or not according to allow_inherit argument)""" if allow_inherit: return self.settings return self._settings @adapter_config(required=IPortlet, provides=IPortletConfiguration) def portlet_configuration_adapter(portlet): """Portlet configuration factory""" return PortletConfiguration(portlet) @adapter_config(required=IPortletConfiguration, provides=IPortletSettings) def portlet_configuration_settings_adapter(configuration): """Portlet configuration settings adapter""" return configuration.settings @adapter_config(required=IPortletSettings, provides=IPortletConfiguration) def portlet_settings_configuration_adapter(settings): """Portlet settings configuration adapter""" return settings.configuration @adapter_config(name='settings', required=IPortletConfiguration, provides=ITraversable) class PortletConfigurationSettingsTraverser(ContextAdapter): """++settings++ portlet configuration traverser""" def traverse(self, name, furtherpath=None): # pylint: disable=unused-argument """Portlet configuration traverser to settings""" return self.context.settings @adapter_config(required=IPortletConfiguration, provides=IViewContextPermissionChecker) class PortletConfigurationPermissionChecker(ContextAdapter): """Portlet configuration permission checker""" edit_permission = MANAGE_TEMPLATE_PERMISSION # # Template portlets configuration # @factory_config(IPortalPortletsConfiguration) class PortalPortletsConfiguration(PersistentMapping, Contained): """Portal portlets configuration""" @classmethod def clone(cls, source_config, new_parent): """Clone source configuration""" configuration = source_config.__class__() get_pyramid_registry().notify(ObjectCreatedEvent(configuration)) locate(configuration, new_parent) for config_id, config_portlet in source_config.items(): config = clone(config_portlet) configuration[config_id] = config return configuration def get_portlet_configuration(self, portlet_id): """Portlet configuration getter""" configuration = self.get(portlet_id) if configuration is None: if IPortalTemplate.providedBy(self.__parent__): portlets = IPortalPortletsConfiguration(self.__parent__) else: template = IPortalPage(self.__parent__).template portlets = IPortalPortletsConfiguration(template) configuration = clone(portlets.get_portlet_configuration(portlet_id)) get_pyramid_registry().notify(ObjectCreatedEvent(configuration)) self.set_portlet_configuration(portlet_id, configuration) return configuration def set_portlet_configuration(self, portlet_id, config): """Portlet configuration setter""" config.portlet_id = portlet_id self[portlet_id] = config def delete_portlet_configuration(self, portlet_id): """Delete portlet configuration""" if isinstance(portlet_id, int): portlet_id = (portlet_id,) for p_id in portlet_id: del self[p_id]
[ 2, 198, 2, 15069, 357, 66, 8, 1853, 12, 1238, 2481, 536, 959, 563, 4432, 330, 1279, 83, 2704, 273, 330, 5161, 14856, 400, 283, 13, 3262, 29, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 3788, 318, 2426, 284, 262, 8617, 286, 262, 1168, 3008, 5094, 13789, 11, 198, 2, 10628, 362, 13, 16, 357, 57, 6489, 737, 220, 317, 4866, 286, 262, 1168, 6489, 815, 13873, 428, 6082, 13, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1, 5357, 15529, 5357, 11096, 7788, 32761, 6375, 8959, 49094, 198, 2, 34764, 11015, 15986, 13954, 48778, 1961, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 37977, 2538, 11, 34482, 3398, 1565, 5603, 25382, 11, 36218, 38604, 3268, 10913, 2751, 12529, 11, 5357, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 198, 2, 198, 198, 37811, 20519, 40834, 62, 634, 282, 13, 634, 1616, 8265, 198, 198, 1212, 8265, 15738, 477, 2493, 1616, 12, 5363, 6805, 13, 198, 37811, 198, 198, 834, 15390, 18982, 834, 796, 705, 2118, 1356, 1522, 5239, 6, 198, 198, 11748, 18931, 198, 198, 11748, 8710, 385, 666, 198, 6738, 16218, 1330, 9467, 7609, 198, 6738, 16218, 13, 76, 5912, 1330, 9467, 7609, 44, 5912, 198, 6738, 27944, 13, 1069, 11755, 1330, 28373, 12331, 198, 6738, 1976, 3008, 13, 34924, 13, 45964, 1330, 2345, 1328, 198, 6738, 1976, 3008, 13, 30073, 1330, 17271, 198, 6738, 1976, 3008, 13, 39994, 1330, 635, 15946, 1460, 11, 3494, 263, 11, 645, 14617, 263, 15946, 1460, 198, 6738, 1976, 3008, 13, 36195, 47510, 15596, 1330, 9515, 41972, 9237, 198, 6738, 1976, 3008, 13, 24886, 1330, 17276, 198, 6738, 1976, 3008, 13, 15952, 2611, 13, 3245, 26745, 1330, 7663, 21746, 198, 6738, 1976, 3008, 13, 15952, 2611, 13, 18893, 22528, 1330, 17427, 40596, 11, 17427, 53, 420, 22528, 198, 6738, 1976, 3008, 13, 9535, 690, 278, 13, 3849, 32186, 1330, 7283, 430, 690, 540, 198, 198, 6738, 12972, 4105, 62, 634, 282, 13, 3849, 32186, 1330, 6101, 16906, 21947, 11, 6101, 16906, 9876, 11, 6101, 16906, 13924, 5289, 38149, 11, 3467, 198, 220, 220, 220, 6101, 16906, 30800, 11, 6101, 419, 1616, 11, 6101, 419, 1616, 38149, 11, 6101, 419, 1616, 49, 437, 11882, 11, 3467, 198, 220, 220, 220, 6101, 419, 1616, 26232, 11, 17254, 11879, 62, 51, 3620, 6489, 6158, 62, 18973, 44, 40373, 11, 350, 9863, 2538, 4694, 62, 53, 4503, 6242, 6239, 13153, 62, 20608, 198, 6738, 12972, 4105, 62, 12961, 13, 3849, 32186, 1330, 314, 7680, 21947, 5990, 3411, 9787, 263, 198, 6738, 12972, 4105, 62, 26791, 13, 324, 3429, 1330, 30532, 47307, 11, 21302, 62, 11250, 198, 6738, 12972, 4105, 62, 26791, 13, 69, 9548, 1330, 8860, 62, 11250, 11, 651, 62, 15252, 62, 69, 9548, 11, 318, 62, 39994, 198, 6738, 12972, 4105, 62, 26791, 13, 2301, 4592, 1330, 651, 62, 9078, 20255, 62, 2301, 4592, 198, 6738, 12972, 4105, 62, 26791, 13, 25927, 1330, 2198, 62, 25927, 198, 6738, 12972, 4105, 62, 26791, 13, 18893, 22528, 1330, 25818, 62, 11250, 628, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 10786, 20519, 40834, 357, 634, 282, 8, 11537, 628, 198, 31, 320, 26908, 263, 7, 4061, 419, 1616, 8, 198, 4871, 4347, 1616, 25, 198, 220, 220, 220, 37227, 14881, 2493, 1616, 10361, 37811, 628, 220, 220, 220, 7170, 796, 7663, 21746, 7, 4061, 419, 1616, 17816, 525, 3411, 6, 12962, 628, 220, 220, 220, 50149, 62, 9060, 796, 6045, 198, 220, 220, 220, 50149, 62, 25471, 62, 4871, 796, 705, 13331, 12, 19312, 6, 628, 220, 220, 220, 6460, 62, 69, 9548, 796, 6045, 628, 198, 4871, 2493, 1616, 62, 11250, 25, 220, 1303, 279, 2645, 600, 25, 15560, 28, 259, 12102, 12, 3672, 198, 220, 220, 220, 37227, 9487, 11705, 1352, 973, 284, 13627, 257, 2493, 1616, 37811, 628, 220, 220, 220, 8710, 385, 666, 796, 8710, 385, 666, 220, 1303, 329, 4856, 16954, 628, 198, 31, 18893, 22528, 62, 11250, 7, 3672, 28, 15490, 2538, 4694, 62, 53, 4503, 6242, 6239, 13153, 62, 20608, 8, 198, 4871, 4347, 1616, 53, 420, 22528, 7, 26437, 53, 420, 22528, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 25818, 37811, 628, 198, 2, 198, 2, 4347, 1616, 8398, 198, 2, 198, 198, 31, 320, 26908, 263, 7, 4061, 419, 1616, 26232, 8, 198, 4871, 4347, 1616, 26232, 7, 30946, 7609, 11, 2345, 1328, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 6460, 16218, 1398, 628, 220, 220, 220, 770, 1398, 318, 4385, 284, 307, 850, 12, 4871, 276, 416, 477, 2183, 2493, 1616, 850, 37724, 284, 198, 220, 220, 220, 3650, 511, 8398, 6460, 13, 628, 220, 220, 220, 5501, 2493, 1616, 850, 12, 4871, 1276, 8160, 340, 338, 6460, 8860, 287, 340, 338, 366, 33692, 62, 69, 9548, 1, 11688, 13, 198, 220, 220, 220, 11259, 8860, 460, 307, 257, 2163, 11, 257, 1398, 393, 281, 7071, 26, 287, 428, 938, 1339, 11, 7822, 198, 220, 220, 220, 318, 2045, 329, 4277, 2134, 8860, 6823, 329, 428, 7071, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 10920, 11882, 796, 7663, 21746, 7, 4061, 419, 1616, 26232, 17816, 10920, 11882, 6, 12962, 628, 220, 220, 220, 11593, 3672, 834, 796, 705, 4880, 33692, 4880, 6, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 7424, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15854, 2247, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 10920, 11882, 14512, 705, 30342, 6, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9851, 11882, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 437, 11882, 1438, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 10920, 11882, 628, 220, 220, 220, 2488, 10920, 11882, 13, 2617, 353, 198, 220, 220, 220, 825, 9851, 11882, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 437, 11882, 900, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 1988, 393, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 6624, 2116, 13557, 10920, 11882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 2198, 62, 25927, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 20478, 796, 2581, 13, 2301, 4592, 198, 220, 220, 220, 220, 220, 220, 220, 9851, 11882, 796, 20478, 13, 22766, 29800, 47307, 19510, 25927, 13, 15763, 11, 2581, 11, 2581, 11, 2116, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6101, 419, 1616, 49, 437, 11882, 11, 1438, 28, 944, 13557, 10920, 11882, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10920, 11882, 318, 407, 6045, 8, 290, 357, 10920, 11882, 13, 16793, 62, 39994, 318, 407, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 14617, 263, 15946, 1460, 7, 944, 11, 9851, 11882, 13, 16793, 62, 39994, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10920, 11882, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 9851, 11882, 796, 20478, 13, 22766, 29800, 47307, 19510, 25927, 13, 15763, 11, 2581, 11, 2581, 11, 2116, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6101, 419, 1616, 49, 437, 11882, 11, 1438, 28, 944, 13557, 10920, 11882, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 10920, 11882, 318, 407, 6045, 8, 290, 357, 10920, 11882, 13, 16793, 62, 39994, 318, 407, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 635, 15946, 1460, 7, 944, 11, 9851, 11882, 13, 16793, 62, 39994, 8, 628, 220, 220, 220, 825, 651, 62, 10920, 11882, 7, 944, 11, 2581, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 437, 11882, 21302, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2581, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 796, 2198, 62, 25927, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2581, 13, 2301, 4592, 13, 22766, 29800, 47307, 19510, 25927, 13, 15763, 11, 2581, 11, 2581, 11, 2116, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6101, 419, 1616, 49, 437, 11882, 11, 1438, 28, 944, 13557, 10920, 11882, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8398, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38149, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 8000, 834, 628, 220, 220, 220, 2488, 11250, 3924, 13, 2617, 353, 198, 220, 220, 220, 825, 8398, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38149, 900, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 834, 8000, 834, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 8000, 834, 796, 1988, 628, 198, 31, 324, 3429, 62, 11250, 7, 35827, 28, 4061, 419, 1616, 26232, 11, 3769, 28, 3824, 769, 21947, 5990, 3411, 9787, 263, 8, 198, 4871, 4347, 1616, 26232, 5990, 3411, 9787, 263, 7, 21947, 47307, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 6460, 7170, 2198, 263, 37811, 628, 220, 220, 220, 4370, 62, 525, 3411, 796, 17254, 11879, 62, 51, 3620, 6489, 6158, 62, 18973, 44, 40373, 628, 198, 31, 69, 9548, 62, 11250, 7, 4061, 419, 1616, 38149, 8, 198, 4871, 4347, 1616, 38149, 7, 30946, 7609, 11, 2345, 1328, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 8398, 16218, 1398, 628, 220, 220, 220, 770, 1398, 318, 257, 14276, 16218, 1398, 543, 318, 973, 284, 3650, 477, 2493, 1616, 198, 220, 220, 220, 8398, 290, 318, 1635, 1662, 9, 4385, 284, 307, 850, 12, 4871, 276, 13, 628, 220, 220, 220, 4347, 1616, 38149, 13, 834, 8000, 834, 2173, 284, 4732, 810, 8398, 318, 5625, 198, 220, 220, 220, 357, 27379, 4732, 393, 1957, 11055, 737, 198, 220, 220, 220, 4347, 1616, 38149, 13, 8000, 2173, 284, 4732, 422, 810, 8398, 318, 19552, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2493, 1616, 62, 312, 796, 7663, 21746, 7, 4061, 419, 1616, 38149, 17816, 634, 1616, 62, 312, 6, 12962, 198, 220, 220, 220, 2493, 1616, 62, 3672, 796, 6045, 198, 220, 220, 220, 4808, 259, 372, 270, 62, 8000, 796, 7663, 21746, 7, 4061, 419, 1616, 38149, 17816, 259, 372, 270, 62, 8000, 6, 12962, 198, 220, 220, 220, 4808, 33692, 796, 7663, 21746, 7, 4061, 419, 1616, 38149, 17816, 33692, 6, 12962, 628, 220, 220, 220, 825, 651, 62, 634, 1616, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13924, 1616, 10361, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 62, 9078, 20255, 62, 2301, 4592, 22446, 22766, 18274, 879, 7, 4061, 419, 1616, 11, 1438, 28, 944, 13, 634, 1616, 62, 3672, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 460, 62, 259, 372, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 611, 8398, 460, 307, 19552, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 407, 6101, 16906, 30800, 13, 41279, 3886, 7, 944, 13, 834, 8000, 834, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 16955, 62, 8000, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 611, 24155, 318, 9343, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 259, 372, 270, 62, 8000, 611, 2116, 13, 5171, 62, 259, 372, 270, 2073, 10352, 628, 220, 220, 220, 2488, 259, 372, 270, 62, 8000, 13, 2617, 353, 198, 220, 220, 220, 825, 16955, 62, 8000, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 372, 42942, 900, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1662, 1988, 8, 393, 2116, 13, 5171, 62, 259, 372, 270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 259, 372, 270, 62, 8000, 796, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 20957, 62, 8000, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24546, 44987, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 407, 2116, 13, 259, 372, 270, 62, 8000, 628, 220, 220, 220, 2488, 2502, 13154, 62, 8000, 13, 2617, 353, 198, 220, 220, 220, 825, 20957, 62, 8000, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24546, 44987, 900, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 372, 270, 62, 8000, 796, 407, 1988, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2560, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24546, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 2116, 13, 834, 8000, 834, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6101, 16906, 30800, 13, 41279, 3886, 7, 8000, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2560, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6101, 16906, 21947, 13, 41279, 3886, 7, 8000, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8398, 796, 6101, 16906, 13924, 5289, 38149, 7, 8000, 737, 1136, 62, 634, 1616, 62, 11250, 3924, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 634, 1616, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8398, 13, 259, 372, 270, 62, 8000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 796, 6101, 16906, 9876, 7, 8000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2443, 13, 259, 372, 270, 62, 8000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 796, 2560, 13, 834, 8000, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2560, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2443, 796, 6101, 16906, 9876, 7, 8000, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2443, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2443, 13, 28243, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6460, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11297, 6460, 651, 353, 357, 3500, 24155, 6460, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 259, 372, 270, 62, 8000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6101, 16906, 13924, 5289, 38149, 7, 944, 13, 8000, 737, 1136, 62, 634, 1616, 62, 11250, 3924, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 634, 1616, 62, 312, 737, 33692, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 33692, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5464, 62, 33692, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17171, 6460, 651, 353, 357, 33770, 1441, 1957, 6460, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 33692, 628, 220, 220, 220, 825, 651, 62, 33692, 7, 944, 11, 1249, 62, 259, 372, 270, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26232, 651, 353, 357, 3500, 24155, 393, 407, 1864, 284, 1249, 62, 259, 372, 270, 4578, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1249, 62, 259, 372, 270, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 33692, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 33692, 628, 198, 31, 324, 3429, 62, 11250, 7, 35827, 28, 4061, 419, 1616, 11, 3769, 28, 4061, 419, 1616, 38149, 8, 198, 4299, 2493, 1616, 62, 11250, 3924, 62, 324, 3429, 7, 634, 1616, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 8398, 8860, 37811, 198, 220, 220, 220, 1441, 4347, 1616, 38149, 7, 634, 1616, 8, 628, 198, 31, 324, 3429, 62, 11250, 7, 35827, 28, 4061, 419, 1616, 38149, 11, 3769, 28, 4061, 419, 1616, 26232, 8, 198, 4299, 2493, 1616, 62, 11250, 3924, 62, 33692, 62, 324, 3429, 7, 11250, 3924, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 8398, 6460, 21302, 37811, 198, 220, 220, 220, 1441, 8398, 13, 33692, 628, 198, 31, 324, 3429, 62, 11250, 7, 35827, 28, 4061, 419, 1616, 26232, 11, 3769, 28, 4061, 419, 1616, 38149, 8, 198, 4299, 2493, 1616, 62, 33692, 62, 11250, 3924, 62, 324, 3429, 7, 33692, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 6460, 8398, 21302, 37811, 198, 220, 220, 220, 1441, 6460, 13, 11250, 3924, 628, 198, 31, 324, 3429, 62, 11250, 7, 3672, 11639, 33692, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 4061, 419, 1616, 38149, 11, 3769, 28, 2043, 430, 690, 540, 8, 198, 4871, 4347, 1616, 38149, 26232, 15721, 690, 263, 7, 21947, 47307, 2599, 198, 220, 220, 220, 37227, 4880, 33692, 4880, 2493, 1616, 8398, 33038, 263, 37811, 628, 220, 220, 220, 825, 38138, 7, 944, 11, 1438, 11, 2252, 6978, 28, 14202, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13924, 1616, 8398, 33038, 263, 284, 6460, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22866, 13, 33692, 628, 198, 31, 324, 3429, 62, 11250, 7, 35827, 28, 4061, 419, 1616, 38149, 11, 3769, 28, 3824, 769, 21947, 5990, 3411, 9787, 263, 8, 198, 4871, 4347, 1616, 38149, 5990, 3411, 9787, 263, 7, 21947, 47307, 2599, 198, 220, 220, 220, 37227, 13924, 1616, 8398, 7170, 2198, 263, 37811, 628, 220, 220, 220, 4370, 62, 525, 3411, 796, 17254, 11879, 62, 51, 3620, 6489, 6158, 62, 18973, 44, 40373, 628, 198, 2, 198, 2, 37350, 2493, 5289, 8398, 198, 2, 198, 198, 31, 69, 9548, 62, 11250, 7, 4061, 16906, 13924, 5289, 38149, 8, 198, 4871, 25663, 13924, 5289, 38149, 7, 30946, 7609, 44, 5912, 11, 2345, 1328, 2599, 198, 220, 220, 220, 37227, 13924, 282, 2493, 5289, 8398, 37811, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 17271, 7, 565, 82, 11, 2723, 62, 11250, 11, 649, 62, 8000, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2601, 505, 2723, 8398, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 8398, 796, 2723, 62, 11250, 13, 834, 4871, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 9078, 20255, 62, 2301, 4592, 22446, 1662, 1958, 7, 10267, 41972, 9237, 7, 11250, 3924, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 17276, 7, 11250, 3924, 11, 649, 62, 8000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4566, 62, 312, 11, 4566, 62, 634, 1616, 287, 2723, 62, 11250, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 17271, 7, 11250, 62, 634, 1616, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8398, 58, 11250, 62, 312, 60, 796, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8398, 628, 220, 220, 220, 825, 651, 62, 634, 1616, 62, 11250, 3924, 7, 944, 11, 2493, 1616, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13924, 1616, 8398, 651, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 8398, 796, 2116, 13, 1136, 7, 634, 1616, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8398, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6101, 16906, 30800, 13, 41279, 3886, 7, 944, 13, 834, 8000, 834, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 5289, 796, 6101, 16906, 13924, 5289, 38149, 7, 944, 13, 834, 8000, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 796, 6101, 16906, 9876, 7, 944, 13, 834, 8000, 834, 737, 28243, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 5289, 796, 6101, 16906, 13924, 5289, 38149, 7, 28243, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8398, 796, 17271, 7, 634, 5289, 13, 1136, 62, 634, 1616, 62, 11250, 3924, 7, 634, 1616, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 9078, 20255, 62, 2301, 4592, 22446, 1662, 1958, 7, 10267, 41972, 9237, 7, 11250, 3924, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 634, 1616, 62, 11250, 3924, 7, 634, 1616, 62, 312, 11, 8398, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8398, 628, 220, 220, 220, 825, 900, 62, 634, 1616, 62, 11250, 3924, 7, 944, 11, 2493, 1616, 62, 312, 11, 4566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13924, 1616, 8398, 900, 353, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 634, 1616, 62, 312, 796, 2493, 1616, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 634, 1616, 62, 312, 60, 796, 4566, 628, 220, 220, 220, 825, 12233, 62, 634, 1616, 62, 11250, 3924, 7, 944, 11, 2493, 1616, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 2493, 1616, 8398, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 634, 1616, 62, 312, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 1616, 62, 312, 796, 357, 634, 1616, 62, 312, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 62, 312, 287, 2493, 1616, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 58, 79, 62, 312, 60, 198 ]
2.764266
4,013
#!/usr/bin/env python import random import time tests = 1000000 boxes = [[ 'G', 'G' ], [ 'G', 'S' ], [ 'S', 'S' ]] draws = [[[ 0, 0 ], [ 0, 0 ], [ 0, 0 ]], [[ 0, 0 ], [ 0, 0 ], [ 0, 0 ]]] total_gold_1 = 0 total_gold_2 = 0 print('Running %d tests.'%(tests)) random.seed(int(time.time())) for i in range(tests): box = random.randint(0,2) ball = random.randint(0,1) draws[0][box][ball] = draws[0][box][ball] + 1 if boxes[box][ball] is 'G': total_gold_1 = total_gold_1 + 1 ball = (ball + 1) % 2 draws[1][box][ball] = draws[1][box][ball] + 1 if boxes[box][ball] is 'G': total_gold_2 = total_gold_2 + 1 print('Draws:') print('- Box 1 [G, G]:') print(' Gold1 -> Gold2: %d'%(draws[0][0][0])) print(' Gold2 -> Gold1: %d'%(draws[0][0][1])) print('- Box 2 [G, S]:') print(' Gold -> Silver: %d'%(draws[0][1][0])) print(' Silver: %d'%(draws[0][1][1])) print('- Box 3 [S, S]:') print(' Silver1: %d'%(draws[0][2][0])) print(' Silver2: %d'%(draws[0][2][1])) print('') print('Gold on 1st draw: %d'%(total_gold_1)) print('Gold on 2nd draw: %d'%(total_gold_2)) print('Percent two golds: %.2f%%'%(float(total_gold_2) / float(total_gold_1)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 4738, 198, 11748, 640, 198, 198, 41989, 796, 1802, 2388, 198, 29305, 796, 16410, 705, 38, 3256, 705, 38, 6, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 705, 38, 3256, 705, 50, 6, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 685, 705, 50, 3256, 705, 50, 6, 2361, 60, 198, 19334, 82, 796, 16410, 58, 657, 11, 657, 16589, 685, 657, 11, 657, 16589, 685, 657, 11, 657, 2361, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 657, 11, 657, 16589, 685, 657, 11, 657, 16589, 685, 657, 11, 657, 2361, 11907, 198, 23350, 62, 24267, 62, 16, 796, 657, 198, 23350, 62, 24267, 62, 17, 796, 657, 198, 198, 4798, 10786, 28768, 4064, 67, 5254, 2637, 4, 7, 41989, 4008, 198, 25120, 13, 28826, 7, 600, 7, 2435, 13, 2435, 3419, 4008, 198, 1640, 1312, 287, 2837, 7, 41989, 2599, 198, 220, 220, 220, 3091, 796, 4738, 13, 25192, 600, 7, 15, 11, 17, 8, 198, 220, 220, 220, 2613, 796, 4738, 13, 25192, 600, 7, 15, 11, 16, 8, 198, 220, 220, 220, 14293, 58, 15, 7131, 3524, 7131, 1894, 60, 796, 14293, 58, 15, 7131, 3524, 7131, 1894, 60, 1343, 352, 198, 220, 220, 220, 611, 10559, 58, 3524, 7131, 1894, 60, 318, 705, 38, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 24267, 62, 16, 796, 2472, 62, 24267, 62, 16, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2613, 796, 357, 1894, 1343, 352, 8, 4064, 362, 198, 220, 220, 220, 220, 220, 220, 220, 14293, 58, 16, 7131, 3524, 7131, 1894, 60, 796, 14293, 58, 16, 7131, 3524, 7131, 1894, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10559, 58, 3524, 7131, 1894, 60, 318, 705, 38, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 24267, 62, 17, 796, 2472, 62, 24267, 62, 17, 1343, 352, 198, 198, 4798, 10786, 25302, 82, 25, 11537, 198, 4798, 10786, 12, 8315, 352, 685, 38, 11, 402, 5974, 11537, 198, 4798, 10786, 220, 220, 220, 3561, 16, 4613, 3561, 17, 25, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 15, 7131, 15, 60, 4008, 198, 4798, 10786, 220, 220, 220, 3561, 17, 4613, 3561, 16, 25, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 15, 7131, 16, 60, 4008, 198, 4798, 10786, 12, 8315, 362, 685, 38, 11, 311, 5974, 11537, 198, 4798, 10786, 220, 220, 220, 3561, 4613, 7698, 25, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 16, 7131, 15, 60, 4008, 198, 4798, 10786, 220, 220, 220, 7698, 25, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 16, 7131, 16, 60, 4008, 198, 4798, 10786, 12, 8315, 513, 685, 50, 11, 311, 5974, 11537, 198, 4798, 10786, 220, 220, 220, 7698, 16, 25, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 17, 7131, 15, 60, 4008, 198, 4798, 10786, 220, 220, 220, 7698, 17, 25, 220, 220, 220, 220, 220, 220, 220, 4064, 67, 6, 4, 7, 19334, 82, 58, 15, 7131, 17, 7131, 16, 60, 4008, 198, 4798, 7, 7061, 8, 198, 4798, 10786, 13306, 319, 352, 301, 3197, 25, 220, 4064, 67, 6, 4, 7, 23350, 62, 24267, 62, 16, 4008, 198, 4798, 10786, 13306, 319, 362, 358, 3197, 25, 220, 4064, 67, 6, 4, 7, 23350, 62, 24267, 62, 17, 4008, 198, 4798, 10786, 31905, 734, 3869, 82, 25, 4064, 13, 17, 69, 16626, 6, 4, 7, 22468, 7, 23350, 62, 24267, 62, 17, 8, 1220, 12178, 7, 23350, 62, 24267, 62, 16, 22305, 198 ]
1.974763
634
#!/usr/bin/env python3 """ A script to get the intersections of Differential expression results, Fst, and differential SNPs analysis. Draws Venn diagrams and adds columns to RNA-seq-diff.xlsx, whether the gene has high Fst/PBS/diffsnps. """ import sys sys.stderr = open(snakemake.log[0], "w") import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib_venn import * import pandas as pd import numpy as np from pathlib import Path #### Main #### # Read contrasts in and other snakemake params comparisons = pd.DataFrame(snakemake.params['DEcontrasts'], columns=['contrast']) comparisons = comparisons.contrast.str.split("_", expand=True) comparisons = [list(row) for i,row in comparisons.iterrows()] percentile = snakemake.params['percentile'] diffsnps = snakemake.params['diffsnps'] # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter('results/RNA-Seq-full.xlsx', engine='xlsxwriter') #### Differential expression v Fst venn diagram for comp1,comp2 in comparisons: name = comp1 + "_" + comp2 print(f"\n-------------- Venn Diagram for {name} --------------") de = pd.read_csv(f"results/genediff/{name}.csv") fst = pd.read_csv("results/variantAnalysis/selection/FstPerGene.tsv", sep="\t") #compare sig DE genes and top 5% fst genes? #get sig up and down diffexp genes sigde = de[de['padj'] < pval_threshold] sigde_up = sigde[sigde['FC'] > upper_fc] sigde_down = sigde[sigde['FC'] < lower_fc] #take top percentile of fst genes highfst = fst.nlargest(int(fst.shape[0]*percentile),f"{name}_zFst") #how many fst? how many sig de up and down? nfst = highfst.shape[0] nde_up = sigde_up.shape[0] nde_down = sigde_down.shape[0] print(f"There are {nde_up} significantly upregulated genes in {name}") print(f"There are {nde_down} significantly downregulated genes in {name}") nboth, _ = intersect2(sigde_up, highfst, de, write=True, path=f"results/venn/{name}.DE.Fst.intersection.tsv") ###### XLSX file ###### if diffsnps: diffsnpsDE = pd.read_csv("results/diffsnps/{name}.sig.kissDE.tsv", sep="\t") sheet = add_columns_xlsx(name, de, fst, highfst, diffsnps, diffsnpsDE) else: sheet = add_columns_xlsx(name, de, fst, highfst, diffsnps, diffsnpsDE=None) # Write each dataframe to a different worksheet. sheet.to_excel(writer, sheet_name=name) # Close the Pandas Excel writer and output the Excel file. writer.save()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 198, 32, 4226, 284, 651, 262, 42085, 286, 20615, 498, 5408, 2482, 11, 376, 301, 11, 290, 22577, 11346, 12016, 3781, 13, 198, 25302, 82, 569, 1697, 37067, 290, 6673, 15180, 284, 25897, 12, 41068, 12, 26069, 13, 87, 7278, 87, 11, 1771, 262, 9779, 468, 1029, 376, 301, 14, 47, 4462, 14, 67, 10203, 77, 862, 13, 220, 198, 37811, 198, 11748, 25064, 198, 17597, 13, 301, 1082, 81, 796, 1280, 7, 16184, 539, 15883, 13, 6404, 58, 15, 4357, 366, 86, 4943, 198, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 9460, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 62, 574, 77, 1330, 1635, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 198, 4242, 8774, 1303, 21017, 198, 2, 4149, 39469, 287, 290, 584, 17522, 15883, 42287, 198, 785, 1845, 9886, 796, 279, 67, 13, 6601, 19778, 7, 16184, 539, 15883, 13, 37266, 17816, 7206, 3642, 5685, 82, 6, 4357, 15180, 28, 17816, 3642, 5685, 6, 12962, 198, 785, 1845, 9886, 796, 17909, 13, 3642, 5685, 13, 2536, 13, 35312, 7203, 62, 1600, 4292, 28, 17821, 8, 198, 785, 1845, 9886, 796, 685, 4868, 7, 808, 8, 329, 1312, 11, 808, 287, 17909, 13, 2676, 8516, 3419, 60, 198, 198, 25067, 576, 796, 17522, 15883, 13, 37266, 17816, 25067, 576, 20520, 198, 67, 10203, 77, 862, 796, 17522, 15883, 13, 37266, 17816, 67, 10203, 77, 862, 20520, 198, 198, 2, 13610, 257, 16492, 292, 24134, 6260, 1262, 1395, 7278, 87, 34379, 355, 262, 3113, 13, 198, 16002, 796, 279, 67, 13, 3109, 5276, 34379, 10786, 43420, 14, 27204, 12, 4653, 80, 12, 12853, 13, 87, 7278, 87, 3256, 3113, 11639, 87, 7278, 87, 16002, 11537, 198, 198, 4242, 20615, 498, 5408, 410, 376, 301, 410, 1697, 16362, 198, 1640, 552, 16, 11, 5589, 17, 287, 17909, 25, 198, 220, 220, 220, 1438, 796, 552, 16, 1343, 45434, 1, 1343, 552, 17, 198, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 26171, 569, 1697, 6031, 6713, 329, 1391, 3672, 92, 220, 26171, 4943, 198, 220, 220, 220, 390, 796, 279, 67, 13, 961, 62, 40664, 7, 69, 1, 43420, 14, 70, 2945, 733, 14, 90, 3672, 27422, 40664, 4943, 198, 220, 220, 220, 277, 301, 796, 279, 67, 13, 961, 62, 40664, 7203, 43420, 14, 25641, 415, 32750, 14, 49283, 14, 37, 301, 5990, 39358, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 1303, 5589, 533, 43237, 5550, 10812, 290, 1353, 642, 4, 277, 301, 10812, 30, 198, 220, 220, 220, 1303, 1136, 43237, 510, 290, 866, 814, 11201, 10812, 198, 220, 220, 220, 43237, 2934, 796, 390, 58, 2934, 17816, 15636, 73, 20520, 1279, 279, 2100, 62, 400, 10126, 60, 198, 220, 220, 220, 43237, 2934, 62, 929, 796, 43237, 2934, 58, 82, 328, 2934, 17816, 4851, 20520, 1875, 6727, 62, 16072, 60, 198, 220, 220, 220, 43237, 2934, 62, 2902, 796, 43237, 2934, 58, 82, 328, 2934, 17816, 4851, 20520, 1279, 2793, 62, 16072, 60, 628, 220, 220, 220, 1303, 20657, 1353, 37894, 286, 277, 301, 10812, 198, 220, 220, 220, 1029, 69, 301, 796, 277, 301, 13, 77, 28209, 7, 600, 7, 69, 301, 13, 43358, 58, 15, 60, 9, 25067, 576, 828, 69, 1, 90, 3672, 92, 62, 89, 37, 301, 4943, 628, 220, 220, 220, 1303, 4919, 867, 277, 301, 30, 703, 867, 43237, 390, 510, 290, 866, 30, 198, 220, 220, 220, 299, 69, 301, 796, 1029, 69, 301, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 299, 2934, 62, 929, 796, 43237, 2934, 62, 929, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 299, 2934, 62, 2902, 796, 43237, 2934, 62, 2902, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 3601, 7, 69, 1, 1858, 389, 1391, 358, 68, 62, 929, 92, 5566, 510, 27739, 10812, 287, 1391, 3672, 92, 4943, 220, 198, 220, 220, 220, 3601, 7, 69, 1, 1858, 389, 1391, 358, 68, 62, 2902, 92, 5566, 866, 27739, 10812, 287, 1391, 3672, 92, 4943, 628, 220, 220, 220, 299, 16885, 11, 4808, 796, 36177, 17, 7, 82, 328, 2934, 62, 929, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 69, 301, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 28, 17821, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 69, 1, 43420, 14, 574, 77, 14, 90, 3672, 27422, 7206, 13, 37, 301, 13, 3849, 5458, 13, 912, 85, 4943, 198, 220, 220, 220, 220, 628, 220, 220, 220, 46424, 2, 1395, 6561, 55, 2393, 46424, 2, 198, 220, 220, 220, 611, 814, 16184, 862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 814, 16184, 862, 7206, 796, 279, 67, 13, 961, 62, 40664, 7203, 43420, 14, 67, 10203, 77, 862, 14, 90, 3672, 27422, 82, 328, 13, 41304, 7206, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 9629, 796, 751, 62, 28665, 82, 62, 87, 7278, 87, 7, 3672, 11, 390, 11, 277, 301, 11, 1029, 69, 301, 11, 814, 16184, 862, 11, 814, 16184, 862, 7206, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9629, 796, 751, 62, 28665, 82, 62, 87, 7278, 87, 7, 3672, 11, 390, 11, 277, 301, 11, 1029, 69, 301, 11, 814, 16184, 862, 11, 814, 16184, 862, 7206, 28, 14202, 8, 628, 220, 220, 220, 1303, 19430, 1123, 1366, 14535, 284, 257, 1180, 2499, 25473, 13, 198, 220, 220, 220, 9629, 13, 1462, 62, 1069, 5276, 7, 16002, 11, 9629, 62, 3672, 28, 3672, 8, 198, 198, 2, 13872, 262, 16492, 292, 24134, 6260, 290, 5072, 262, 24134, 2393, 13, 198, 16002, 13, 21928, 3419 ]
2.498054
1,028
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 6045, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 6045 ]
2.175676
74