image
imagewidth (px)
64
6.58k
text
stringlengths
2
2.09k
\begin{enumerate} \item If \(\phi(x) = x\), \(\int_a^b f \, d\phi\) is clearly just the Riemann integral \(\int_a^b f \, dx\). In this case, Theorem 5.54 in Chapter 5 gives a necessary and sufficient condition for the existence of the integral. \item If \(f\) is continuous on \([a, b]\) and \(\phi\) is continuously differentiable on \([a, b]\), then \(\int_a^b f \, d\phi = \int_a^b f \phi' \, dx\). [See also (7.32).] In fact, by the mean-value theorem, \[ R_\Gamma = \sum f(\xi_i) [ \phi(x_i) - \phi(x_{i-1}) ] = \sum f(\xi_i) \phi'(\eta_i) (x_i - x_{i-1}), \] \end{enumerate}
\[ u(x, y, t) &= \frac{1}{2\pi a} [ \frac{\partial}{\partial t} \int_0^{\omega} \int_0^{2\pi} \frac{\varphi(x + r \cos \theta, y + r \sin \theta)}{\sqrt{(at)^2 - r^2}} r dr d\theta \\ &\quad + \int_0^{\omega} \int_0^{2\pi} \frac{\psi(x + r \cos \theta, y + r \sin \theta)}{\sqrt{(at)^2 - r^2}} r dr d\theta ] \]
\[ S &= Nk \left( \ln Z - \beta \frac{\partial}{\partial \beta} \ln Z \right) \\ &= Nk \left\{ \ln \left( \frac{1}{h} \sqrt{\frac{2\pi}{m\beta}} \right) - \frac{3}{2} \ln \beta + \frac{3}{2} \right\} \\ &= Nk \left[ \ln Z + \frac{3}{2} \right] \]
\[ Ax^2 + By^2 + Cxy + Dx + Ey + F &= 0 \quad \text{若该方程表示圆} \\ \text{则 } \begin{cases} A = B \neq 0 \\ C = 0 \\ (D/2)^2 + (E/2)^2 - F &> 0 \end{cases} \]
的光子处于圆偏振态,等1. 试问: 从光的量子性观点来看, 应怎样理解经典检偏实验的观测结果? 对于平常宏观观测来讲, 这是容易回答的. 因为实际上是入射的大量的光子(光子数\(N \gg 1\)) 处于同一个偏振态, 总能量为 \(N \hbar \omega\). \(\alpha = 45^{\circ}\) 线偏振光经过晶片时, 半数光子被吸收, 而半数光子通过晶片, 并且通过的光子都处于 \(x\) 方向线偏振态. 但如果只有一个光子入射, 情况将如何? 对于图 2.8(a) 的情况, 光子将通过晶片, 能量及偏振态均不改变. 对于图 2.8(b) 的情况, 光子将被吸收, 因而在晶片后就观不到光子. 对于图 2.8(c) 的情况, 则在晶片后面, 有时会观测到一个整光子 (能量与入射光子同, 但偏振方向改变, 成为 \(x\) 方向线偏振光), 而有时则什么也没有(从来没有观测到“半个光子”通过晶片).
The following theorem shows that, although \(\hat{h}\) cannot hope to do better than \(\hat{h}\) in general, the difference should not be too large as long as the sample size is not too small compared to \(M\). \textbf{Theorem:} The estimator \(\hat{h}\) satisfies \[ R(\hat{h}) \leq R(\hat{h}) + \sqrt{\frac{2 \log (2M/\delta)}{n}} \] with probability at least \(1 - \delta\). In expectation, it holds that \[ \mathbb{E}[R(\hat{h})] \leq R(\hat{h}) + \sqrt{\frac{2 \log (2M)}{n}}. \] \textit{Proof}. From the definition of \(\hat{h}\), we have \(\hat{R}_n(\hat{h}) \leq \hat{R}_n(\hat{h})\), which gives \[ R(\hat{h}) \leq R(\hat{h}) + [\hat{R}_n(\hat{h}) - R(\hat{h})] + [\hat{R}(\hat{h}) - \hat{R}_n(\hat{h})]. \]
由 \(v = at\) 得: \[ 0 \sim 45: \quad a = \frac{v_1}{t_1} = \frac{3}{6} \text{ m/s}^2 = 0.5 \text{ m/s}^2, \] \[ 0 \sim 105: \quad v_2 = at_2 = 0.5 \times 10 \text{ m/s} = 5 \text{ m/s}. \]
\[ L'(y_o) &= \rho_\infty V_\infty \Gamma(y_o) \\ L &= \int_{-b/2}^{b/2} L'(y) \, dy \]
由 Poisson 公式,全球面面积元素 \(dS\) 的投影元素为 \(dw = d\xi dy\)。 \[ V(x, y, t) = \frac{1}{2 \pi a} \int_0^c \left[ \int_{x_0}^{x_1} \frac{\varphi(s) e^{-\frac{a}{b}t}}{[a^2 t^2 - (s-x)^2 - (y-y)^2]} ds dy \right] &+ \frac{1}{2 \pi a} \int_0^c \frac{\psi(s) e^{-\frac{a}{b}t}}{[a^2 t^2 - (s-x)^2 - (y-y)^2]} ds dy \\ &+ \frac{1}{2 \pi a} \int_0^c \left[ \int_{x_1}^a \frac{f(x, t) e^{-\frac{a}{b}t}}{[a^2 t^2 - (s-x)^2 - (y-y)^2]} ds dy dx \right] \] 将 \(V\) 代入 \(u = V e^{bt}\) 即可得解。
So \(\alpha\) is an eigenvalue of \(A\) since \(V \neq 0\). If \(\alpha = 0\) then \(AV = 0\) but \(V \neq 0\) so \(A\) could not be invertible. Thus \(\alpha \neq 0\).
留数:设 \(z_0\) 是 \(f(z)\) 的孤立奇点,\(f(z)\) 在 \(z_0\) 去心邻域内的洛朗级数中 \((z-z_0)^{-1}\) 的系数 \(C_1\) 称为 \(f(z)\) 在 \(z_0\) 的留数,记 \[ \operatorname{Res} [f(z), z_0] = C_1 = \frac{1}{2\pi i} \oint_C f(z) dz \] 留数定理:\(\oint f(z)_c dz = 2\pi i \sum \operatorname{Res}[f(z), z_k]\) (1) 可去奇点,\(C_1 = 0\) (2) 本性奇点,展开洛朗级数求解 (3) \textit{i.} 一阶极点 \(C_1 = \lim_{z \to z_0} (z-z_0) f(z)\) \textit{ii.} \(m\) 阶极点 \[ C_1 = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} \{ (z-z_0)^m f(z) \} \] \textit{iii.} 令 \(f(z) = \frac{P(z)}{Q(z)}\) \textit{i.} \(P(z_0) \neq 0\) \textit{ii.} \(Q(z_0) = 0, Q'(z_0) \neq 0\) 则 \(C_1 = \frac{P(z_0)}{Q'(z_0)}\)
\[ \langle A | \mathbf{1}_{\mathbf{k}}^{(\lambda)} \hat{H}_{\text{int}}(t) | B \rangle | 0 \rangle &= \frac{i e \hbar^{1/2}}{m_e (2\pi)^{3/2} \sqrt{2\omega}} \langle A | (\mathbf{k} \cdot \mathbf{r}) (\mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p}) | B \rangle e^{i\omega t}. \tag{23.29} \] The spin part does not contribute since by assumption the spatial part of \(\langle A | r | B \rangle\) vanishes. Note that the order of operators does not matter, since \(\mathbf{k} \cdot \mathbf{e} = 0\), namely, \[ (\mathbf{k} \cdot \mathbf{r}) (\mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p}) = (\mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p}) (\mathbf{k} \cdot \mathbf{r}) + i\hbar (\mathbf{k} \cdot \mathbf{e}_{\mathbf{k}}^{(\lambda)}) = (\mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p}) (\mathbf{k} \cdot \mathbf{r}). \]
For an \(m \times n\) matrix, denoted by \(A_{m \times n}\), we consider \(A_{m \times n} x = b\) for \(m \gg n\), i.e., a system with more equations than unknowns (often overdetermined). With \(A_{m \times n} = Q_{m \times m} R_{m \times n}\), where \(R_{m \times n} = \begin{bmatrix} R_{n \times n} \\ 0 \end{bmatrix}\), \(R_{n \times n}\) upper triangular. \[ \Rightarrow Q_{m \times m}^T A_{m \times n} x &= R_{m \times n} x = \begin{bmatrix} R_{n \times n} x \\ 0 \end{bmatrix}, \quad Q_{m \times m}^T b = c_m = \begin{bmatrix} c_n \\ c_{m-n} \end{bmatrix}, \quad c_n \in \mathbb{R}^n, \; c_{m-n} \in \mathbb{R}^{m-n}. \] \(\Rightarrow A_{m \times n} x = b \text{ has a solution } \Leftrightarrow R_{n \times n} x = c_n \text{ and } c_{m-n} = 0. \quad (\text{least-square solution})\)
Note: Let \(y= \frac{x-\mu}{\sigma} = \frac{x-\mu}{\sigma}, \quad \dot{y}= \frac{-1}{\sigma} \Rightarrow x = \sigma y + \mu, \quad dx = \sigma dy\) \[ E[X^n] &= e^{\mu n + \frac{1}{2} \sigma^2 n^2} \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-\frac{1}{2} (y - \sigma n)^2} dy \\ &= e^{\mu n + \frac{1}{2} \sigma^2 n^2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} (y^2 - \sigma^2 n^2)} dy \\ &= e^{\mu n + \frac{1}{2} \sigma^2 n^2} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^2} dy \quad e^{- \frac{1}{2} x^2} \\ &= e^{\mu n + \frac{1}{2} \sigma^2 n^2} \] Then \(E[X] = e^{\mu + \frac{1}{2} \sigma^2} \quad \text{and} \quad \sigma_X^2 = E[X^2] - E[X]^2 \\ = e^{2\mu + 2\sigma^2 - e^{2\mu + \sigma^2}} = e^{2\mu + 2\sigma^2} (e^{\sigma^2} - 1)\).
对该常微分方程初值问题进行求解: \(\quad P(x) = -1, \quad q(x) = 0.\) \[ u &= e^{-fdt} \left( d + \int 0 e^{fdt} \right) = d \cdot e^{t} \] 由\(u(0) = arctan c_2, \quad 有:d e^0 = arctan c \quad \Longrightarrow \quad d = \arctan c\) 故 \(u = \arctan c \cdot e^{t}\)
Let \(r_t(\theta)\) denote the probability ratio \(r_t(\theta) = \frac{\pi_\theta \left( a_t \mid s_t \right)}{\pi_{\theta \text{old}} \left( a_t \mid s_t \right)},\) so \(r(\theta_{\text{old}}) = 1\). TRPO maximizes a "surrogate" objective \[ L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[ \frac{\pi_\theta(a_1 \mid s_1)}{\pi_{\theta \text{old}}(a_1 \mid s_1)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[ r_t(\theta) \hat{A}_t \right]. \tag{6} \] The superscript \(CPI\) refers to conservative policy iteration \([KL02]\), where this objective was proposed. Without a constraint, maximization of \(L^{CPI}\) would lead to an excessively large policy update, hence, we now consider how to modify the objective, to penalize changes to the policy that move \(r_t(\theta)\) away from \(1\). The main objective we propose is the following: \[ L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[ \min(r_t(\theta) \hat{A}_t, \mathrm{clip}(\tau_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right] \] where epsilon is a hyperparameter, say, \(\epsilon = 0.2\). The motivation for this objective is as follows. The first term inside the min is \(L^{CPI}\). The second term, \(\mathrm{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon)\), modifies the surrogate
\[ \mathbb{E}[|Y(\infty)|] = \sum_{u \in V} P[Y_u(\infty) = 1] \leq \sum_{u \in V} \sum_{v \in V} X_v(0) \cdot \sum_{t \geq 0} \beta^t A^t_{v,u} \] Rewrite as \[ \mathbb{E}[|Y(\infty)|] \leq \left\langle e_1, \sum_{t \geq 0} (\beta A)^t X(0) \right\rangle \] \begin{itemize} \item Same using vector/matrix notation \item Where \(\langle x, y \rangle = \sum_{i=1}^{N} x_i \cdot y_i\) and \(e_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}\) \end{itemize}
\[ \vec{F} = (P(x,y,z), Q(x,y,z), R(x,y,z)) \] 散度 \[ \text{div} \ \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \] \(\nabla \cdot \vec{F}\)
\textbf{法二:拟合法} \[ A_n = (A_n -\frac{ A_1 + \cdots + A_{n}}{n} )+ \frac{A_1 + \cdots + A_n}{n} \] 即证 \[ \lim_{n \to \infty} (A_n -\frac{ A_1 + \cdots + A_n}{n}) = 0 \] 令 \(a _1 = A_1, \ a_2 = A_2 - A_1 \ldots, \ a_n = A_n - A_{n-1}\)。由 \(\lim_{n \to \infty} n(A_n - A_{n-1}) = 0\) 则 \(\lim_{n \to \infty} na_n = 0\), \[ A_n = (A_n - A_{n-1}) + (A_{n-1} - A_{n-2}) + \cdots + (A_2 - A_1) + A_1 =a _n + a_{n-1} + \cdots + a_1 \] 从而 \[&\lim_{n \to \infty} (A_n -\frac{ A_1 + \cdots + A_n}{n})\\ &= \lim_{n \to \infty} (a_n + \cdots + a_1- \frac{a_1 +(a_2 + a_1) + \cdots + (a_n +a_{n-1} + \cdots + a_1)}{n}) \\ &= \lim_{n \to \infty} (\frac{na_1 + na_2 + \cdots + na_n}{n} - \frac{(na_1 + (n-1)a_2 + \cdots+a_n}{n}) \\ &= \lim_{n \to \infty} \frac{(a_2 + 2a_3 + \cdots + (n-1)a_n)}{n} \]
\begin{align*} x_1' &= x_1 \cos \varphi + x_4 \sin \varphi \\ x_2' &= x_2 \\ x_3' &= x_3 \\ x_4' &= - x_1 \sin \varphi + x_4 \cos \varphi \end{align*}
一列简谐横波沿 \(x\) 轴正方向传播,到达坐标原点的波形如图 7-3 所示,当波传到 \(N\) 点时,处于 \(O\) 点处的质点通过的路程和该时刻的位移是 A. \(40.5 \text{cm},1 \text{cm}.\) B. \(40.5 \text{cm},-1 \text{cm}.\) C. \(81 \text{cm},1 \text{cm}.\) D. \(81 \text{cm},-1 \text{cm}.\)
\[ \mathcal{F}_L(x_t) &= \int \mathcal{N}(\epsilon | 0, I) \min \left\{ 0, \log \pi \left( x_t + \frac{1}{2} LL^{\top} \nabla \log \pi(x_t) + L \epsilon \right) - \log \pi(x_t) \right. \\ &\quad \left. - \frac{1}{2} \left( \| \frac{1}{2} L^{\top} [\nabla \log \pi(x_t) + \nabla \log \pi(y)] + \epsilon \|^2 - \|\epsilon \|^2 \right) \right\} d\epsilon + \beta \sum_{i=1}^n \log L_{ii} + \text{const}, \]
\textbf{Lecture \#1: Infinite Series, Series of Functions, Binomial Theorem} I. \textit{Infinite Series} A. \textit{Fundamentals:} 1. Infinite series are an extremely powerful way to represent functions, enabling solution by relatively straightforward means. a. Determine whether a series is convergent is often critical.
当 \(m \to \infty\) 时,根据条件 (1),在 \(|z| < R\) 中 (R 为任意正数) 有 \[ \left| \frac{z^{p+1}}{2\pi i} \oint_{C_m} \frac{f(\zeta) d\zeta}{\zeta^{p+1} (\zeta - z)} \right| \leq \frac{R^{p+1} M_m}{R_m (R_m - R)} \to 0, \] 因此有 (2) 式,其中的级数在 \(|z| < R\) (R 任意) 中是一致收敛的 (设 \(z \neq a_n, n = 1, 2, \cdots\)) 。
\[ h(t) = \text{sec}\left(\frac{t-T/2}{T_s}\right) \] \(h(t)\) is a rectangular function delayed by \(T/2\) where \(T_s = \text{sampling period}\).
\textbf{Examples.} \begin{enumerate} \item \(H = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 2 \end{pmatrix}\) is positive definite. \[ 2 &> 0, \quad \det \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} = 5 > 0, \quad \det H = 3 > 0. \] \item \(H = \begin{pmatrix} 3 & 1 + i & 2i \\ 1 - i & 3 & -2 \\ -2i & -2i & 3 \end{pmatrix}\) is not positive definite. \[ \det \begin{pmatrix} 3 & 1 + i \\ 1 - i & 3 \end{pmatrix} &= 7 > 0, \\ \det H &= 3 \times 5 - (1+i) \det \begin{pmatrix} 1 - i & -2 \\ -2i & 3 \end{pmatrix} + 2i \det \begin{pmatrix} 1 - i & 3 \\ -2i & -2 \end{pmatrix} = -11 < 0. \] \end{enumerate}
Let us now illustrate the symbolic methods of operator algebra by deriving (23) from (20) without further reference to operands. Multiplication of (20) by \(x\) from the left yields \[ x \frac{d}{dx} x - x^2 \frac{d}{dx} = x, \] while multiplication of (20) by \(x\) from the right gives \[ \frac{d}{dx} x^2 - x \frac{d}{dx} x = x. \]
(11), (12) 这两个方程现在代替了 (3) (\(a_{11} = \lambda_1, a_{12} = 0\)), 与 (8) 式相应的方程是 \[ \begin{vmatrix} \lambda_1 - \lambda & a_{21} \\ 0 & a_{22} - \lambda \end{vmatrix} = 0. \tag{13} \] 已设这方程有重根, 故 \(a_{22} = \lambda_1\), 而 \[ w_2' = a_{21}w_1 + \lambda_1 w_2. \tag{14} \] 于是, 由 (11) 和 (14) 得 \[ \left( \frac{w_2}{w_1} \right)^* = \frac{w_2}{w_1} + \frac{a_{21}}{\lambda_1}. \]
考虑在无穷远处不发生形变的无限介质,我们把第一个积分的积分曲面推向无穷远处,在那里 \(\sigma_a = 0\),所以积分值为零。利用张量 \(\sigma_a\) 的对称性,第二个积分可以重新写为: \[ \int \mathcal{B} R dV &= -\frac{1}{2} \int \sigma_a \left( \frac{\partial \delta u_i}{\partial x_k} + \frac{\partial \delta u_k}{\partial x_i} \right) dV = \\ &= -\frac{1}{2} \int \sigma_a \delta \left( \frac{\partial u_i}{\partial x_k} + \frac{\partial u_k}{\partial x_i} \right) dV = -\int \sigma_a \delta u_a dV. \] 于是我们有 \[ \delta R &= -\sigma_a \delta u_a. \tag{3.1} \] 这就是按照应变张量变化确定功 \(\delta R\) 的公式。
15. 在粗糙的水平地面上放一个倾角为 \(\alpha = 30^\circ\) 的斜面体,一个质量 \(m = 5 \, \text{kg}\) 的木块静止于斜面上。现用平行于斜面、大小为 \(F = 30 \, \text{N}\) 的力推木块,使木块沿斜面匀速上滑 (图 1-14)。在这个过程中,斜面体与地面保持相静止,则地面对斜面体的摩擦力 \(f = \) \_,方向 \_ 。( \(g = 10 \, \text{m/s}^2\) )
\[P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x^2(t) \, dt\]
假设 \(\psi(x)\) 是方程 (3.1.3) 的一个解。如它是实解,则把它归入实解的集合中去,如它是复解, 则按定理 1,\(\psi^*(x)\) 也是方程 (3.1.3) 的一个解,并且与 \(\psi(x)\) 一样,同属于能量本征值 \(E\)。再根据线性方程解的叠加性定理, \[ \varphi(x) = \psi(x) + \psi^*(x) \\ \chi(x) = \frac{1}{i} [\psi(x) - \psi^*(x)] \] 也是方程 (3.1.3) 的解,同属于能量 \(E\),并彼此独立。不难看出, \(\varphi(x)\) 与 \(\chi(x)\) 均为实解, 而 \(\psi(x)\) 与 \(\psi^*(x)\) (同属于 \(E\)) 均可表示成\(\varphi(x)\) 与 \(\chi(x)\) 的线性组合,即 \[ \psi = \frac{1}{2} (\varphi + i \chi) \\ \psi^* = \frac{1}{2} (\varphi - i \chi) \]
只有沿\textbf{z}轴的分量。于是 \[ dE_z = \frac{\lambda_e \, dl (\mathbf{r} - \mathbf{r'}) \cdot \hat{\mathbf{z}}}{4 \pi \varepsilon_0 |\mathbf{r} - \mathbf{r'}|^3} = \frac{\lambda_e \, z \, R \, d\varphi}{4 \pi \varepsilon_0 (R^2 + z^2)^{3/2}} \]积分求得\textbf{A}点的电场强度: \[ E = E_z = \frac{\lambda_e \, R \, z}{4 \pi \varepsilon_0 (R^2 + z^2)^{3/2}} \int_0^{2\pi} d\varphi = \frac{\lambda_e \, R \, z}{2 \varepsilon_0 (R^2 + z^2)^{3/2}} \]
解:将初值问题化为三个初值问题求未定: \[ \begin{cases} -y_1'' + y_1 = 0 \\ y_1(0) = a \\ y_1'(0) = 0 \end{cases} \begin{cases} -y_2'' + y_2 = 0 \\ y_2(0) = 0 \\ y_2'(0) = b \end{cases} \begin{cases} -y_3'' + y_3 = f(x) \\ y_3(0) = 0 \\ y_3'(0) = 0 \end{cases} \] 根据已知条件, \begin{cases} -y' + y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases} 的解为\(y(x)\)。易得初值问题②的解为\(y_2 = bY(x) \triangleq M_b(x)\)。 列极值定理2.1: 初值问题①的解为\(y_1 = M_a'(x) = aY'(x)\),易证 \[ \begin{cases} -y_1'' + y_1 = -aY''' + aY '= 0 \\ y_1(0) = aY''(0) = a \\ y_1'(0) = aY''(0) = 0 \end{cases} \]
\[ \psi(x) = \begin{cases} 0 & (x \leq 0) \\ A \sinh(\kappa x) & (0 \leq x \leq a) \\ B e^{-\kappa x} & (x \geq a) \end{cases} \]
\[ \min_{P_G} \max_{P_D} \mathbb{E}_{(x, y) \sim p_{\text{data}}} [\log D(P_D, x, y) + \\ \log (1 - D(x, F(P_G, x)))], \]
若 \(B \in B_0 \mathcal{W}_S\),便能写成 \(B = B_0 A(\sigma)\),此时有 \[ B^{-1} \frac{\partial B}{\partial \sigma^b} = A^{-1} \frac{\partial A(\sigma)}{\partial \sigma^b} = \sum_{a=1}^r v^a_b(\sigma) T_a, \quad b = 1, \ldots, r, \] 这证明对 \(G\) 中任一方阵 \(B\),\(B^{-1} \frac{\partial B}{\partial \sigma^b}\) 能够用常数方阵 \(T_a\) 的线性组合来表示,其系数 \(v^a_b(\sigma)\) 是 \(\sigma\) 的实解析函数。 当 \(\sigma, \tau \in \mathcal{W}_S\),由
\[ \text{res} \, f(a) &= \frac{1}{(3-1)!} \left. \frac{d^{(3-1)}}{dz^{(3-1)}} \left[ (z-a)^3\frac{ z e^{z}}{(z-a)^3} \right] \right|_{z=a} \\ &= \frac{1}{2} \frac{d^2}{dz^2} (z e^{z}) = \frac{1}{2} e^a (a+2) \]
\[ f'(z) &= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} + i \frac{\partial u}{\partial y} \\ &= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial x} \]
\begin{align*} P_{mj} = 1 \otimes \begin{pmatrix} p_j & 0 \\ 0 & p_{j+1} \end{pmatrix} \end{align*}
一列简谐横波的波形如图7-5所示,此时刻质点\(P\)的速度大小为\(v\),经过0.2s它的速度大小、方向第一次与\(v\)相同,再经过1.0s它的速度大小、方向第二次与\(v\)相同,则下列判断中正确的有 ( ) A. 波沿\(-x\)方向传播,波速为 \(7.5 \text{m/s}\)。 B. 波沿\(+x\)方向传播,波速为 \(5 \text{m/s}\)。 C. 图中与质点\(P\)的位移大小总是相等、方向总是相反的质点是\(M\)。 D. 从开始计时起,质点经过 \(1.0\text{s}\),它的位移和回复力均增为原来的\(2\)倍。
\textbf{THEOREM:} Let \((X, a)\) be a metric space. Then: i) \(\emptyset\) and \(X\) are open sets. ii) Union of any number of open sets is open. iii) Intersection of finite number of open sets is open.
\begin{tabular}{|c|*{5}{c}|*{5}{c}|} \hline & \multicolumn{5}{c|}{类型 I} & \multicolumn{5}{c|}{类型 II} \\ \hline 病人 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 基因 1 & 230 & -1350 & -1580 & -400 & -760 & 970 & 110 & -50 & -190 & -200 \\ 基因 2 & 470 & -850 & -0.8 & -280 & 120 & 390 & -1730 & -1360 & -1 & -330 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline \end{tabular}
\[ \langle f, g \rangle &= \int_{-a}^{a} dx \, f(x)^* g(x). \\ e_k &:= \frac{1}{\sqrt{2a}} \exp\left(\frac{ik\pi x}{a}\right), \quad k \in \mathbb{Z}. \]
\begin{align*} \hat{\mathcal{H}} \equiv \bigoplus_{j \in \mathbb{Z}} L^2(\mathbb{R}_+, \mathbb{C}^2) \end{align*}
用落体法验证机械能守恒定律的实验中,运动系统获得的动能往往 \_(填大于、等于、小于)它所减少的势能,其主要原因是 \_ 。为了减少实验误差,对悬挂在纸带下的重锤的质量要求是 \_。
\[ \underline{\mathbf{F}}_{12} = m_1 \underline{\mathbf{a}}_1 &= \frac{d \underline{\mathbf{P}}_1}{dt} \quad and \quad \underline{\mathbf{F}}_{21} = m_2 \underline{\mathbf{a}}_2 = \frac{d \underline{\mathbf{P}}_2}{dt}\ \\ \underline{\mathbf{F}}_{12} + \underline{\mathbf{F}}_{21} &= \frac{d}{dt} (\underline{\mathbf{P}}_1 + \underline{\mathbf{P}}_2) = 0 \quad (\textit{Newton III}) \] Therefore \((\underline{\mathbf{P}}_1 + \underline{\mathbf{P}}_2)\) = constant
and along the circle \(K\) \[ \kappa(\xi, \eta) = \frac{1}{\sqrt{\frac{\xi^2 + \eta^2}{2}} + \delta} \left| 2 v (\xi \sin \theta + \eta \cos \beta) + c \right|, \]
\[ \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} dy e^{-ixy} = \sqrt{2\pi} \, \delta(x) \\ \int_{0}^{\infty} dx \, e^{-iqx} = \frac{1}{iq} + \pi \, \delta(q) \]
As stated above, Eq. (5.51) must be differentiated to be used in the Prandtl Lifting Line Theory. We get \[ \frac{d\Gamma}{dy} = \frac{d\Gamma}{d\theta} \frac{d\theta}{dy} = 2bV_\infty \sum_{n=1}^{N} nA_n \cos n\theta \frac{d\theta}{dy} \tag{5.52} \]
电场强度是空间坐标的\textbf{矢量函数},\(E = E_{(x, y, z)}\),即\textbf{矢量场}。为与其它矢量场,如速度场、引力场等相区别,我们称它为\textbf{电场}。简言之,电场就是带电体周围的一个具有特定性质的空间。 在此空间中,处一点电荷\(q\),会受到作用力\(F\),由(1.4.1)知,应有: \[ F = qE(r) \]
\textbf{Proof:} Let \(V = \{a_1, a_2, a_3, \ldots, a_n\}\) be a totally ordered set. Now, we arrange its elements according to their order. Then \[ V = \{a_{i_1}, a_{i_2}, a_{i_3}, \ldots, a_{i_n}\} \] As \(V\) is finite, totally ordered, therefore if we take any subset of \(V\) it remains with a least element, and hence \(V\) is a well order. Now, if \[ W = \{b_{i_1}, b_{i_2}, \ldots, b_{i_m}\} \]
\[ V = \int_{-\infty}^{\infty} \frac{\Gamma \sin \theta}{4\pi r^2} dl \tag{5.8} \] where \(\theta\) is the angle formed by \(r\) and the filament. The geometry gives \[ r = \frac{h}{\sin \theta}, \quad l = \frac{h}{\tan \theta}, \quad dl = \frac{h}{\sin^2 \theta} d\theta \tag{5.9} \] which gives \[ V = -\frac{\Gamma}{4\pi h} \int_{\pi}^{0} \sin \theta d\theta. \tag{5.10} \]
\[ \frac{dz}{dx} &= \lambda \cos(\lambda \varphi) z, \\ z(x_0) &= -\sin(\lambda x_0 y_0) \] [ 其中 \(\varphi = \varphi(x; x_0, y_0, \lambda)\) 是 (4.17) 的解 ] 可以解得 \[ \frac{\partial \varphi}{\partial x_0} = -\sin(\lambda x_0 y_0) e^{\int_{x_0}^{x} \lambda \cos(\lambda \varphi) dx} \] 因此 \[ \left. \frac{\partial \varphi}{\partial x_0} \right|_{x_0 = y_0 = 0} = 0. \]
\[ 2. \, & A, B, E, F^{nm} \quad r(A+B) \le r(A)+r(B) \\ & \text{法一:证明:} r(A+B) \le \dim(im(A,B)) \\ & \forall \alpha \in im(B), \beta \gamma \in F^{nm}, s.t. \, d = (A^{t}B)\beta = \beta t A B \\ & \Rightarrow im(A+B) \subset ma A t im B \\ & dim(im(A+B)) \le dim(A at im B) \le dim(A at im B) \]
\[ &\underline{a} = \frac{dv}{dt} = \text{constant} \\ &\underline{r} = 0 \quad \text{at} \quad t = 0 \\ &\int_{v_0}^{v} d\underline{v} = \int_{0}^{t} \underline{a} \, dt \]
\(\therefore \, T'(F)\) is the zero map from \(U \to F\).
\textbf{2.1 Azuma-Hoffding inequality} Given a filtration \(\{ \mathcal{F}_1 \}_1\) of our underlying space \(\mathcal{X},\) recall that \(\{ \Delta_i \}_1\) are called \textit{martingale differences} if, for every \(i,\) it holds that \(\Delta_i \in \mathcal{F}_n\) and \(\mathbb{E} \left[ \Delta_i | \mathcal{F}_i \right] = 0\). The following theorem gives a very useful concentration bound for averages of boundedmartingale differences. Theorem (Azuma-Hoffding): Suppose that \(\{ \Delta_i \}_1\) are mergingale differences with respect to the filtration \(\{ F_i \},\) and let \(A_i B_i \in \mathcal{F}_{i-1}\) satisfy \(A_i \leq \Delta_i \leq B_i\) almost surely for every \(i\). Then \[ \mathbb{P} \left[ \frac{1}{n} \sum_i \Delta_i > t \right] \leq \exp \left( -\frac{2n^2 t^2}{\sum_i^n \| B_i - A_i \|_\infty^2} \right). \] In comparison to Hoffding's inequality, Azuma-Hoffding affords not only the use of non-uniform boundedness, but additionally requires no independence of the random variables. \textit{Proof}. We start with a typical Chernoff bound. \[ \mathbb{P} \left[ \sum_i \Delta_i > t \right] \leq \mathbb{E} \left[ e^{t \sum \Delta_i} \right] e^{-xt} = \mathbb{E} \left[ \mathbb{E} \left[ e^{t \sum \Delta_i} | \mathcal{F}_{n-1} \right] \right] e^{-xt} \]
\(v = a_r x^r + a_{r+1} x^{r+1} + a_{r+2} x^{r+2} + \cdots,\) with \(a_r \neq 0,\) that is, \[ v = \sum_i a_i x^i, \quad i = r, r+1, r+2, \cdots, \]
和奖赏的近似,但它在求平均值 “批处理式” 进行的,即在一个完整的采样轨迹完成后再对所有的状态动作对进行更新。实际上这个更新过程能增大且进行。对于状态动作对 \((x, a)\),不妨假定基于 \(t\) 个采样已估计出值函数 \(Q_t^\pi(x, a) = \frac{1}{t} \sum_{i=1}^t r_i\) 则在得到第 \(t + 1\) 个采样 \(r_{t+1}\) 时,类似式(16.3),有 \[ Q_{t+1}^\pi(x, a) = Q_t^\pi(x, a) + \frac{1}{t+1} \left( r_{t+1} - Q_t^\pi(x, a) \right) \tag{16.29} \] 显然,只需给 \(Q_\pi^x(x, a)\) 加上增量 \(\frac{1}{t+1} (r_{t+1} - Q_t^\pi(x, a))\) 即可。更一般的,将 \(\frac{1}{t+1}\) 转换为系数 \(\alpha_{t+1}\) 则可将增量项写作 \(\alpha_{t+1} (r_{t+1} - Q_t^\pi(x, a))\)。在实践中通常令 \(\alpha_t\) 为一个较小的正数值 \(\alpha_t\) 若将 \(Q_t^\pi(x, a)\) 展开为每步累积奖赏之和,则可看出系数之和为 \(1\),即令 \(\alpha_t = \alpha\) 不会影响 \(Q_t\) 是累积奖赏之和这一性质。更新步长 \(\alpha\) 越大,则越靠后的累积奖赏越重要。
Find orthogonal \(Q\) and upper triangular \(R\) such that \(A = QR \Rightarrow QR\) decomposition. We find \(Q\) through a number of simple Householder transforms. If \(A_2 = [a_1, \ldots, a_n]\) has only two rows, \(a_1 = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}\), we find \(H\) such that \[ H a_1 = b_1 = \begin{bmatrix} \| a_1 \|_2 \\ 0 \end{bmatrix}. \] Then, \[ H A = \begin{bmatrix} \| a_1 \|_2 & b_2 & \cdots & b_n \\ 0 & & & \end{bmatrix} = R. \] Thus, \(A = QR\) with \(Q = H^T = H\). Which \(H\) to take? \[ w = \frac{a_1 - b_1}{\| a_1 - b_1 \|}, \quad \text{and} \quad H = I - 2ww^T. \]
1. \textbf{Convergence}: If \(0 \leq u_n \leq a_n\) for all \(n\), and \(\sum_{n=1}^{\infty} a_n\) is convergent, then \(\sum_{n=1}^{\infty} u_n\) is convergent. 2. \textbf{Divergence}: If \(0 \leq b_n \leq v_n\) for all \(n\), and \(\sum_{n=1}^{\infty} b_n\) is divergent, then \(\sum_{n=1}^{\infty} v_n\) diverges.
\frac{d^2 u}{dz^2} + \left\{ \sum_{r=1}^{4} \frac{1 - \alpha_r - \beta_r}{z - a_r} \right\} \frac{du}{dz} + \left\{ \sum_{r=1}^{4} \frac{\alpha_r \beta_r}{(z - a_r)^2} + \frac{A z^2 + 2B z + C}{\prod_{r=1}^{4} (z - a_r)} \right\} u = 0,
\[ C_l &= \frac{2\Gamma_0}{V_\infty c_r} = 2\pi [\alpha_{\text{eff}} - \alpha_{L=0}] \\ &= \frac{2\Gamma_0}{V_\infty c_r} = 2\pi [\alpha - \alpha_i - \alpha_{L=0}] \\ &= 2\pi \left[ \alpha - \frac{\Gamma_0}{2bV_\infty} - \alpha_{L=0} \right] \]
\[ \vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z)) \] 梯度 \(\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)\) 散度 \(\nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\) 旋度 \(\nabla \times \vec{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)=\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \\ \end{vmatrix}\)
Rearranging, we get \[ 0 = (\sin^2 \theta + (\cos \theta - \lambda)^2) x_2 = (1 + \lambda^2 - 2 \cos \theta \lambda) x_2. \] Since \(\lambda^2 = 1\) and \(|\cos \theta| < 1\), \((1 + \lambda^2 - 2 \cos \theta \lambda) > 0\) so we must have \(x_2 = 0\), so \((\ast)\) implies that \(x_1 = 0\) as well \(\Longrightarrow \Longleftarrow\). If \(\theta = k \pi\) for some integer \(k\), then \(R_\theta = \pm I_2\), so any one-dimensional subspace of \(\mathbb{R}^2\) is a nontrivial \(R_\theta\)-invariant subspace.
3. 甲、乙两物体分别在恒力 \(F_1\) 和 \(F_2\) 的作用下运动,其动量 \(P\) 与时间 \(t\) 的关系如图6-1所示。设甲在时间 \(t_1\) 内受到的冲量为 \(I_1\),乙在时间 \(t_2\) 内受到的冲量为 \(I_2\),则 \(F_1, F_2, I_1, I_2\) 的大小关系是 A. \(F_1 > F_2, I_1 = I_2\). B. \(F_1 < F_2, I_1 < I_2\). C. \(F_1 > F_2, I_1 > I_2\). D. \(F_1 = F_2, I_1 = I_2\).
\begin{enumerate}[(i)] \item \(\mu(Q_x(h)) > 0\) for \(x \in \mathbb{R}^n, h > 0\); \item sets of the form \[ \left\{ x : \sup_{h > 0} \frac{\nu(Q_x(h))}{\mu(Q_x(h))} > \alpha \right\}, \quad \left\{ x : \limsup_{h \to 0} \frac{\nu(Q_x(h))}{\mu(Q_x(h))} > \alpha \right\}, \text{ etc.,} \] are measurable. \end{enumerate}
由 D'Alembert 公式,可分别得到上面三个问题的解。 \[ V(x, t) &= \frac{1}{2} [f(x+at) + f(x-at)] \\ W(x, t) &= \frac{1}{2} [g(y+at) + g(y-at)] + \frac{1}{2a} \int_{y-at}^{y+at} \varphi(\xi) d\xi \\ h(x, t) &= \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi \\ \] 由叠加原理,解的表达式为: \[ u = \frac{1}{2} [f(x+at) + f(x-at)] + \frac{1}{2} [g(y+at) + g(y-at)] + \frac{1}{2a} \int_{y-at}^{y+at} \varphi(\xi) d\xi + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\xi) d\xi \]
By the Cayley-Hamilton Theorem, we have \[ 0 &= p_A(A) = A^3 - 2A^2 - A + 2I \implies \\ -2I &= A^3 - 2A^2 - A = A \left( A^2 - 2A - I \right) \implies \]
Recall that if \(p^{(t)} \in P_n\), \[ [T(p^{(t)})]_B = [T]_B [p^{(t)}]_B, \] where \([p^{(t)}]_B\) and \([T(p^{(t)})]_B\) denote the coordinate vectors of \(p^{(t)}\) and \(T(p^{(t)})\) with respect to \(B\), respectively. We use this to find \(R(T)\) and \(N(T)\), but this problem can also be done without using matrix representation.
\(\text{(ii)} \quad \frac{d}{dx} B_{\nu}^{(n)}(x) = \nu B_{\nu-1}^{(n)}(x),\) \(\text{(iii)} \quad \int_a^x B_{\nu}^{(n)}(t) dt = \frac{1}{\nu + 1} \left[ B_{\nu + 1}^{(n)}(x) - B_{\nu + 1}^{(n)}(a) \right],\) \(\text{(iv)} \quad B_{\nu}^{(n)}(x + 1) = B_{\nu}^{(n)}(x) + \nu B_{\nu - 1}^{(n-1)}(x),\) \(\text{(v)} \quad B_{\nu}^{(n)}(n - x) = (-1)^{\nu} B_{\nu}^{(n)}(x).\) 5. 证明下列递推关系 \[ (\nu - n) B_{\nu}^{(n)}(x) - \nu x B_{\nu}^{(n)}(x) + n B_{\nu + 1}^{(n)}(x + 1) &= 0,\\ B_{\nu}^{(n+1)}(x) &= \left(1 - \frac{\nu}{n}\right) B_{\nu}^{(n)}(x) + \nu \left(\frac{x}{n} - 1\right) B_{\nu - 1}^{(n)}(x). \]
一根长为 \(2l\) 的细线 \(CD\),其 \(D\) 端挂着一个质量为 \(M\) 的小球,另一端 \(C\) 用两根长为 \(l\) 的细线悬挂在天花板上相距 \(2l\) 的 \(A, B\) 两点 (图 6-13),在跟 \(ABC\) 同一竖直平面内有一颗质量为 \(m\)、水平速度为 \(v_0\) 的子弹从左方很快击中小球,并留在球内与球一起运动,恰能使 \(CD\) 线摆到竖直方向成 \(\alpha = 60^\circ\) 角的地方;求: (1) 此时 \(AC\) 段中的张力; (2) 子弹的人射速度应满足什么条件; (3) 小球刚开始摆动时 \(CD\) 线中的张力。
\[ \frac{1}{4\pi} \iiint \left( E_X^2 + E_Y^2 + E_Z^2 \right) \, dx \, dy \, dz &< \infty \] and \(\text{div} \, \mathbf{E} = 0\). Let \[ V(\mathbf{E}, \mathbf{E}) = \frac{1}{4\pi} \iiint \left( E_X^2 + E_Y^2 + E_Z^2 \right) \, dx \, dy \, dz \] Let \[ T(\mathbf{H}, \mathbf{H}) = \frac{1}{4\pi} \iiint \left( H_X^2 + H_Y^2 + H_Z^2 \right) \, dx \, dy \, dz \]
exercise in higher dimensional integration to compute that \[ \beta([0,x]) = \sqrt{n} \sqrt{M_1 \cdots M_{3n}} \, C_n x^{3n/2} \] where \(C_n\) depends only on \(n\). Let \(D_n = C_n \sqrt{M_1 \cdots M_{3n}}\). Then \[ P(B) = 3n/2 \, D_n \sqrt{n} \int_0^\infty e^{-x/B} x^{3n/2 - 1} \, dx \]
\[ H_{i_1, \ldots, i_k; j_1, \ldots, j_k} &= \begin{pmatrix} h_{i_1 i_1} & \cdots & h_{i_1 i_k} \\ \vdots & \ddots & \vdots \\ h_{i_k i_1} & \cdots & h_{i_k i_k} \end{pmatrix}, \quad y = \begin{pmatrix} y_{i_1} \\ \vdots \\ y_{i_k} \end{pmatrix}, \quad i_1 < \cdots < i_k. \] \[ y^* H_{i_1, \ldots, i_k; j_1, \ldots, j_k} y = x^* H x > 0, \quad x \neq 0. \]
\textit{(10.49) Theorem} Let \(\mu\) satisfy the stated conditions, and let \(f\) be a Borel measurable function which is integrable (\(d\mu\)) over every bounded Borel set in \(\mathbb{R}^n\). Then \[ \lim_{h \to 0} \frac{1}{\mu(Q_x(h))} \int_{Q_x(h)} f \, d\mu = f(x) \quad \text{a.e.} (\mu). \] \textit{Proof}. Assume first that \(f \in L(\mathbb{R}^n; d\mu)\). For any integrable \(g\), we have \[ \left| \frac{1}{\mu(Q_x(h))} \int_{Q_x(h)} f \, d\mu - f(x) \right| &\leq \frac{1}{\mu(Q_x(h))} \int_{Q_x(h)} |f - g| \, d\mu \\ &\quad + \left| \frac{1}{\mu(Q_x(h))} \int_{Q_x(h)} g \, d\mu - f(x) \right|. \]
判断函数的奇偶性(定义域关于原点对称) 当 \(f(-x) = f(x)\) 时 为偶函数 当 \(f(-x) = -f(x)\) 时 为奇函数 注:\(f(0) = 0\) 是奇函数也是偶函数
其中 \(n_i\) 和 \(p_j\) 分别是零点 \(a_i\) 和极点 \(b_j\) 的阶,积分是沿 \(C\) 的正向一周(逆时针)。 \textbf{证} 按科希(Cauchy)定理 \[ \frac{1}{2\pi i} \oint_C \frac{\varphi(z) \psi'(z)}{\psi(z)} dz = \frac{1}{2\pi i} \left[ \sum_{(a_i)} \int_{a_i} \frac{\varphi(z) \psi'(z)}{\psi(z)} dz + \sum_{(b_j)} \int_{b_j} \frac{\varphi(z) \psi'(z)}{\psi(z)} dz \right], \tag{2} \] \((a_i)\), \((b_j)\) 分别表示积分路线是正向绕 \(a_i\) 点, \(b_j\) 点一周的围道,每一个这样的围道内只含一个零点或者一个极点。 在 \(a_i\) 的邻域内
\[ \forall G, H \in L^1 (\mu), \quad \frac{\sum_{k=0}^{n-1} \int_M G \circ T^k \, d\mu}{\sum_{k=0}^{n-1} \int_M H \circ T^k \, d\mu} \overset{\mu-\text{a.e.}}{\underset{ n \to \infty}{\longrightarrow}}\frac{\int_M G \, d\mu}{\int_M H \, d\mu}, \tag{7} \] provided \(\int_M H \, d\mu \neq 0\). It follows from (a direct adaptation) of \([7]\) (one can also apply \([14, \text{Theorem 2.6}]\)) that \((M, T, \mu)\) satisfies a Law of Large Numbers of the following form \[ \forall T > 0, \forall H \in L^1 (\mu), \quad \left(\epsilon^\frac{1}{2} \sum_{k=0}^{\lfloor t/\epsilon \rfloor -1} H \circ T^k \right)_{t \in [0, T]} \overset{L_{\mu}||\cdot||_\infty}{\underset{\epsilon \to 0}{\longrightarrow}} \left( \int_M H \, d\mu \, (L_t (0))_{t \in [0, T]} \right), \tag{8}\]
\[ \Rightarrow \gamma = -\frac{v^2}{(c2-\nu)^2} \frac{1}{\frac{1}{\sqrt{1-{v^2}/{c^2}}}} =\frac{-v}{c\sqrt{(1-\frac{v^2}{c^2})}} = -\frac{v}{c\sqrt{1-v^2/c^2}} \] \[ \Rightarrow \alpha^2 = -\left(\frac{-v^2}{c^2\nu^2}\right) \frac{c^2}{v^2} = \frac{1c^2}{c^2(1-v^2/c^2)} = \frac{1}{1-v^2/c^2} \] \[ \Rightarrow \alpha = \frac{1}{\sqrt{1-v^2/c^2}} \]
In terms of this notion of sum for disjoint questions we can write down certain important properties of the functions \(E \rightarrow Q_E^A\) from \(\Omega\) to \(\mathcal{Q}\) and \(Q \rightarrow m_{\alpha}(Q)\) from \(\mathcal{Q}\) to the reals. For each \(A\), \(Q^A\) has the properties: \begin{itemize} \item[(a)] \(E \cap F = \varnothing\) implies \(Q_E^A \circ Q_F^A\). \item[(b)] \(E_i \cap E_j = \varnothing\) for \(i \ne j\) implies \(Q_{E_1 \cup E_2 \cup \ldots}^A = Q_{E_1}^A + Q_{E_2}^A + \cdots\). \item[(c)] \(Q_\varnothing^A = 0, \quad Q_R^A = 1\). \end{itemize}
21. 如图3-18所示,跨过定滑轮的细绳一端固定在木箱上,另一端被站在箱内的人拉住。已知箱子质量\(M = 40 \, \text{kg}\),人的质量\(m = 60 \, \text{kg}\),当人以\(F = 550 \, \text{N}\)的力拉绳时,人对箱子的压力多大?取\(g = 10 \, \text{m/s}^2\)。
证明 由引理 2 可知, \(\mathcal{S}\) 有一个基 (1.6), 它的线性组合生成整个线性空间 \(\mathcal{S}\). 这就是说, (1.7) 式表示齐次线性微分方程组 (1.2) 的通解. 通常称齐次线性微分方程组 (1.2) 的 \(n\) 个线性无关的解为一个**基本解组**. 因此, 求 (1.2) 的通解只须求它的一个基本解组. 假设已知 \[ y_1(x), \cdots, y_n(x) \tag{1.8} \]
\(X\)可看成是抛一枚硬币直到出现一次正面为止所需要抛的次数。泊松分布 如果 \[ f(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x \geq 0, \] 则\(X\)服从参数为\(\lambda\)的泊松分布,记为\(X \sim \text{Poisson}(\lambda)\)。易见 \[ \sum_{x=0}^{\infty} f(x) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} e^{\lambda} = 1. \]
于是,我们可取以细棒为轴,长度为\(l\),半径为\(r\)的圆柱面作为高斯面。由高斯定理可得 \[ 2\pi r \cdot l \cdot E = \frac{1}{\varepsilon_0} \cdot l \cdot \eta_e, \quad E = \frac{\eta_e}{2\pi r \varepsilon_0}, \] 即 \[ E = \frac{\eta_e}{2\pi \varepsilon_0 r^2} \cdot r. \] 说明!对于\textbf{有限长}的带电细棒,问题将不再是一维的,而是二维的。必须根据电场叠加原理通过积分去计算。
自然, 这里所有的矢量运算都是在二维坐标系xy 内进行的, 将上式右边的第一个积分变换为环绕板面的封闭周线的积分中, \[ \int \nabla \cdot (\Delta \xi \nabla \delta \xi) \, dV = \oint \Delta \xi (n \cdot \nabla \delta \xi) \, dV = \oint \Delta \xi \, \frac{\partial \delta \xi}{\partial n} \, dV, \] 式中 \(\alpha \beta \alpha\) 表示沿边界外法线方向的导数。对第二个积分作用样的变换, 我们得到 \[ \int \nabla \delta \xi \cdot \nabla \Delta \xi \, dV &= \int \nabla \cdot (\delta \xi \nabla \Delta \xi) \, dV - \int \delta \xi \Delta^2 \xi \, dV = \\ &= \oint \delta \xi (n \cdot \nabla) \, \Delta \xi \, dV - \int \delta \xi \Delta^2 \xi \, dV = \oint \delta \xi \, \frac{\partial \Delta \xi}{\partial n} \, dV - \int \delta \xi \, \Delta^2 \xi \, dV. \]
\[ \alpha_{\text{eff}} &= \alpha_{\text{eff}}(y_o) \quad \text{because of downwash} \\ \alpha_{L=0} &= \alpha_{L=0}(y_o) \quad \text{because of aerodynamic twist} \]
\[ J = \frac{D(x,y,z)}{D(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0 \] \[ \iiint\limits_{\Omega} f(x, y, z) \, dV = \iiint\limits_{\Omega'} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| J \right| \, du \, dv \, dw \]
\[ V_j^+ &= \left( \frac{j+1}{r} \right)^2 \left[ \left( 1 - \frac{rA}{j+1} \right)^2 + \frac{r^2 B}{j+1} \right], \\ &\geq \frac{|j|^2}{4r^2} \left[ \left( 1 - 2\delta^{1+\alpha} \right)^2 - 4(\alpha + 1)\delta^{1+\alpha} \right], \\ &\geq \frac{|j|^{2\alpha\delta}}{4\delta^2} \left[ \left( 1 - 2\delta^{1+\alpha} \right)^2 - 4(\alpha + 1)\delta^{1+\alpha} \right]. \]
\[ \psi'(\epsilon) &= \kappa (Ae^{re} - Be^{-re}) \\ \psi'(-\epsilon) &= \kappa (Ae^{-re} - Be^{re}) \\ \psi'(\epsilon) &- \psi'(-\epsilon) = \kappa A (e^{re} - e^{-re}) - \kappa B (e^{-re} - e^{re}) \]
the last step follows from arguing as in part (i). \(\therefore\) For \(i = 1, \ldots, n\), \[ 1 = a \sum_{j=1}^{n} b_{ij} \implies \sum_{j=1}^{n} b_{ij} = \frac{1}{a}. \]
\[ \alpha \sum_{n=0}^{\infty}P_{x}(\alpha) t^n - \sum_{n=0}^{\infty} P_{n}(x) t^{n+1} &= \sum_{n=0}^{\infty} P_{n}(x) n t^{n-1} \\ &- \alpha, \sum_{n=0}^{\infty} P_{n}(x) n t^n \\ &+ \, \sum_{n=0}^{\infty} P_{n}(x) n t^{n+1} \]
\[ \text{则有} \int_{t_0} v^2 dx dt \leq \iint_{k\tau} {v}^2 dx dt. \] 再令 \(G(\tau) = \iint_{k\tau} v^2 dx dt,\) 故有 \(\frac{d G(\tau)}{dt} \leq G(\tau) \leq 0 \implies G(\tau) = \int_{t_0}^t v^2 dx dt = 0 \implies v = 0.\) 因而 \(v = u - \bar{u} = 0 \implies u = \bar{u},\) 即解唯一。
电流的形式穿过曲面流走。把这个思想翻译成数学语言可表达为,流出闭合曲面的电流 \[ I = \frac{dq}{dt} = -\frac{d\left( \iiint \rho(\mathbf{x}', t) \, dV \right)}{dt} = -\iiint \frac{\partial \rho(\mathbf{x}', t)}{\partial t} \, dV \tag{1.20} \] 其中 \(\rho(\mathbf{x}', t)\) 是闭合曲面内的电荷密度。式\((1.20)\)中对函数 \(\rho(\mathbf{x}', t)\) 的两个不同的操作(对变空间的积分和对时间的微分)顺序的交换,变成先求时间微分并再积分空间体积。使得在积分号外的时间微分变成在积分号内的时间微分。与此简略,流出闭合曲面的电流为 \[ I = \oiint \mathbf{J} \cdot d\mathbf{S} = \iiint (\nabla \cdot \mathbf{J}) \, dV \tag{1.21} \] 比较式\((1.20)\)和式\((1.21)\),右边的积分对任意大小、任意形状、任意放置的体积成立。因而 \[ \nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t} = 0 \tag{1.22} \]
互斥事件:在一次观测中不可能同时发生的事件。 加法原理:对两互斥事件A和B,它们中任意一个出现的概率为: \[ P(A + B) = P(A) + P(B) \] 完备性:完备的互斥事件出现的总概率为1: \[ P(\sum A_i) = 1 \]
真空中静电场的\textbf{高斯定理}:通过任意闭合曲面(或称高斯面)\(S\) 的电通量等于该面内全部电荷的代数和除以 \(\varepsilon _0\),与面外的电荷无关。 高斯定理的\textbf{数学表述}是: \[ \Phi _{E} = \iint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon _0} \sum_{(S内)} q \tag{1.5.4} \]\textbf{说明}: (1)静电场有源,电荷是它的源; (2)\(\mathbf{E}\) 是 \(S\) 面上的电场,E 由全空间电荷的分布决定; (3)\(d\mathbf{S}\) 的方向规定为指向外的法线方向。
\alpha x - x \alpha = 0, \[ \alpha \left( -i \hbar \frac{\partial}{\partial x} \right) - \left( -i \hbar \frac{\partial}{\partial x} \right) \alpha = i \hbar 2x. \tag{5} \] Equations (5) are just the equations 37, and their general solution is \[ \alpha = x^2 + c, \tag{6} \]
若 \(\lim_{z \to z_0} f(z)\), \(\lim_{z \to z_0} g(z)\) 存在,则 \[ (1) \lim_{z \to z_0} (f(z) \pm g(z)) &= \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) \\ (2) \lim_{z \to z_0} f(z) g(z) &= \lim_{z \to z_0} f(z) \lim_{z \to z_0} g(z) \\ (3) \lim_{z \to z_0} \frac{f(z)}{g(z)} &= \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} \quad (\lim_{z \to z_0} g(z) \neq 0) \] 若函数极限存在,则必唯一。
\[ C_{D_i} = 2 AR \left\{ \int_{0}^{\pi} \left( \sum_{n=1}^{N} A_n \sin n\theta \right) \left( \sum_{m=1}^{N} m A_m \sin m\theta \right) d\theta \right\} \tag{5.59} \] Which is easily evaluated since \[ \int_{0}^{\pi} \sin m\theta \sin k\theta d\theta &= \begin{cases} \frac{\pi}{2} & \text{if } m = k \\ 0 & \text{if } m \neq k \end{cases} \tag{5.56} \]