image
imagewidth (px)
64
6.58k
text
stringlengths
2
2.09k
\[ \frac{\partial A_3}{\partial x^2} - \frac{\partial A_2}{\partial x^3} &= -\eta \left\{ \int_0^{x^1} \frac{2 \, du}{[u^2 + (x^2)^2 + (x^3)^2]^{3/2}}\right. \\ &- \left. \frac{3[(x^2)^2 + (x^3)^2]}{[u^2 + (x^2)^2 + (x^3)^2]^{5/2}} \, du \right\} \\ &= -\eta \left[ \int_0^{x^1} \frac{\partial}{\partial u} \frac{u \, du}{[u^2 + (x^2)^2 + (x^3)^2]^{3/2}} \right] = \eta \frac{x^1}{r^3} = F_{23}. \]
此外,在电动力学中,以下的运算也是常常要用到的。 恒等式: \[ &\nabla \times \nabla \varphi = 0 \quad (\text{梯度的旋度恒为零})\\ &\nabla \cdot (\nabla \times \mathbf{A}) = 0 \quad (\text{旋度的散度恒为零}) \] 矢量变换公式: \[ &\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}\\ &\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) \]
\[ \sin \omega_{\text{min}} = \frac{1}{\sqrt{\frac{4 \delta^2}{r^2} + \frac{4 r^2}{l^2}}} \]
这里应用了 (3.1.8), 定理得证。 用 \(\sigma_a^{EF}\) 乘 (3.1.12) 得出 \[ \sigma_a^{EF} \Gamma_{BC}^b \Gamma_{Ei}^A + \sigma_a^{EF} \Gamma_{BF}^i = \Gamma_{BC}^i \sigma_a^{AB} \epsilon_E^F = \Gamma_{BC}^i \sigma_a^{AB}, \] 这里应用了 (2.4.36)。由 (2.4.30) 可知 \[ \sigma_{BC}^i = l_{ab} \epsilon_C^{AB} \epsilon_D^{CD}, \] 即 \(\sigma_{BC}^i\) 是一张量, 它的协变微分为 \[ \sigma_{BC,a}^{AB} = \frac{\partial}{\partial x^i} \sigma_{BC}^{AB} - \sigma_{BC}^{AB} \Gamma_{Ei}^A + \sigma_a^{EF} \Gamma_{BF}^i + \sigma_a^{BC} \Gamma_{Fi}^B, \]
\begin{align*} \vec{A} &= A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k} \\ \vec{B} &= B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k} \\ \vec{A} \cdot \vec{B} &= A_x B_x + A_y B_y + A_z B_z \end{align*}
\[ \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}, \quad a > 0, b > 0, c > 0 \] 证明:原式 \[ &=\lim_{x \to 0} \left( 1 + \frac{a^x + b^x + c^x - 3}{3} \right)^{\frac{3}{a^x + b^x + c^x - 3} \cdot \frac{a^x + b^x + c^x - 3}{3x}} \\ &= e^ {\lim_{x\to 0} \frac{a^x + b^x + c^x - 3}{3x}} \] 而 \[ \lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{3x} = \lim_{x \to 0} \frac{a^x \ln a + b^x \ln b + c^x \ln c}{3} = \frac{1}{3} \ln (abc) \] 故 \[ \lim_{x \to 0} \left( \frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} = e^{ \ln (abc)^\frac{1}{3}} = \sqrt{abc} \]
\[ N &= \int_{0}^{\mu_{F}} \frac{4\pi mS}{h^3} \, d\epsilon = \frac{2\pi mS}{h^3} \mu_{F}\\ &\Rightarrow \mu_{F} = \frac{Nh^3}{2\pi mS} \]
\textbf{定义 1 覆盖} 给定集合 \(A \subset X\),如果 \(X\) 的若干子集的集合 \(\{X_i\} \subseteq X^*\) 满足 \(A \subseteq \bigcup X_i\),那么我们说集合 \(\{X_i\}\)覆盖了 \(A\)。称 \(\{X_i\}\)为 \(A\) 的一个覆盖 (cover)。
当数学模型不能得到精确解时,通常要用数值方法求近似解。 截断误差(方法误差):近似解(数值解)与精确解之间的误差。 例:函数\(f(x)\)用泰勒(Taylor)多项式 \[ P_n(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots + \frac{f^{(n)}(0)}{n!} x^n \] 近似代替,则数值方法的截断误差为 \[ R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}, \quad \text{在 } 0 \leq \xi \leq x \text{ 之间}. \] 舍入误差:计算机的字长有限导致数值表示和计算过程产生误差。数值分析主要讨论截断误差和舍入误差。
欧勒公式(6)中的余项 \(R_n\) 还可以简化。为此,引进周期为1的函数 \(P_\lambda(t)\): \[ P_\lambda(t) &= \varphi_\lambda(t)/\lambda!, \quad \text{当 } 0 \leq t < 1, \\ P_\lambda(t + 1) &= P_\lambda(t), \quad \lambda \text{为非负整数。} \tag{8} \] 于是 \[ R_n = h^{2n+1} \int_0^1 P_{2n}(t) \sum_{j=0}^{m-1} F^{(2n)}[a + h(t + s_j)] dt. \] 把 \(t+s_j\) 换成 \(t\),利用 \(P_\lambda(t)\) 的周期性,有 \[ R_n = h^{2n+1} \sum_{j=0}^{m-1} \int_0^1 P_{2n}(t) F^{(2n)}(a + ht) dt. \]
and is therefore situated in the middle of the lower surface. In general, with increasing \(f/\delta\), the minimum value of \(\sigma\) moves from the trailing edge to the middle of the lower surface; the point where \(\sigma = \frac{1}{2}\) again from the trailing edge to the leading edge, while the maximum value of \(\sigma\) moves simultaneously from the leading edge to the middle of the upper surface.
eigenvalues are all real. Now, since \(i \hbar\) is a constant, it follows from 30 that \[ x \left( -i \hbar \frac{\partial}{\partial x} \right) - \left( -i \hbar \frac{\partial}{\partial x} \right) x = i \hbar, \tag{2} \] so that the specific operators \(x\) and \(-i \hbar \frac{\partial}{\partial x}\) have just the com-
\[ \eta^\perp A^2 \eta^\perp \leq \frac{1}{\mu} \eta^\perp V \eta^\perp \leq \frac{1}{\mu} H_0^2 + \frac{2\varepsilon_0}{\mu}. \]
在这个区域内的任意连续函数\(f(s,t)\),有完备性关系 \[ \iint \left| f(s,t) \right|^2 dsdt = \sum_{m=1}^{\infty} \left| \iint \overline{\omega_m (s,t)} f(s,t) dsdt \right|^2, \tag{20} \] 这里设两正交函数组\(\{\varphi_n(s)\},\{\psi_m(t)\}\)的权都是1。 证明这定理,只要注意由\(\{\varphi_n\}\)的完备性有 \[ \int_a^b \left| f(s,t) \right|^2 ds = \sum_{n=1}^{\infty} \left| g_n(t) \right|^2, \tag{21} \] 其中 \[ g_n(t) = \int_a^b \overline{\varphi_n(s)} f(s,t) ds. \tag{22} \]
With \(A_{m-1} = Q_{m-1} R_{m-1}\), we let \(Q_m = H_1 \begin{bmatrix} 1 \\ Q_{m-1} \end{bmatrix}\) and \(R_m = \begin{bmatrix} r_{11} & \tilde{a}_1^T \\ 0 & R_{m-1} \end{bmatrix}\). \[ \Rightarrow Q_m R_m = H_1 \begin{bmatrix} r_{11} & \tilde{a}_1^T \\ 0 & Q_{m-1} R_{m-1} \end{bmatrix} = H_1 \begin{bmatrix} r_{11} & \tilde{a}_1^T \\ 0 & A_{m-1} \end{bmatrix} = A_m. \] \(\Rightarrow\) QR decomposition by Householder transforms (replacing Gram-Schmidt). \(Q_m\): a product of at most \(m - 1\) Householder matrices. Note: For \(H = I - 2w_2 w_2^T\), we have \(\begin{bmatrix} 1 & \\ & H \end{bmatrix} = I - 2w_1 w_1^T \text{ with } w_1 = \begin{bmatrix} 0 \\ w_2 \end{bmatrix}.\)
\[ \begin{cases} \frac{\partial^2 R}{\partial t^2} - a^2 \frac{\partial^2 R}{\partial x^2} &= 0 \quad (t > \tau) \\ R|_{t=\tau} = 0, \quad \frac{\partial R}{\partial t}|_{t=\tau} &= f(x,\tau) \\ R|_{x=0} = R|_{x=l} &= 0 \end{cases} \tag{3.3.11} \] 的解(其中 \(\tau \geq 0\) 是参数),则 \[ u(x,t) &= \int_0^t R(x,t,\tau) \, d\tau \tag{3.3.12} \] 就是混合问题(I)的解。
can be constructed by describing on the \(z\) plane, with the aid of the formula \(z = \zeta + \frac{\eta^2}{4\zeta}\), the circle \(K\), determined by the camber and radii difference. This circle passes through the point \(\zeta = -\frac{1}{2}\).
\begin{align*} (1) \quad & \Rightarrow -\left(1 - \frac{B^2}{v^2}\right) = c^2 - c^2\left(\frac{1 - \beta^2}{\beta v}\right)^2 = 1 \\ & \Rightarrow -c^2 \left(\frac{1 - \beta^2}{v^2}\right) \left(1 + \frac{(1 - \beta^2)}{\beta^2}\right) = 1 \\ & \Rightarrow -c^2 \left(\frac{1 - \beta^2}{v^2}\right) -\left(\frac{\beta^2 + 1 - \beta^2}{\beta^2}\right) = 1 \\ & \Rightarrow -c^2(1 - \beta^2) = v^2 \beta^2 \\ & \quad \Rightarrow -c^2 + c^2 \beta^2 = v^2 \beta^2 \\ & \Rightarrow (c^2 - v^2) \beta^2 = c^2 \quad \Rightarrow \beta^2 = \frac{c^2}{c^2 - v^2} \quad \Rightarrow \beta = \frac{c}{\sqrt{c^2 - v^2}} \\ & \Rightarrow \beta = \frac{c}{c\sqrt{1 - v^2/c^2}} = \frac{1}{\sqrt{1 - v^2/c^2}} \quad \end{align*}
\[ \therefore \, A^{10} = A \left( 2A^2 + A - 2I \right)^3 \] \[ = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1022 & 0 \\ 0 & 512 & 0 \\ -2 & -851 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2046 & 0 \\ 0 & 1024 & 0 \\ 0 & -1705 & 1 \end{bmatrix} \]
\textbf{2.4.2} WTS \[ \dim(U/V) + \dim(V) = \dim(U). \] By the rank equation, we have \(r(\tilde{I}) + n(\tilde{I}) = \dim(U)\), so it is sufficient to show that \(R(\tilde{I}) = U/V\) and \(N(\tilde{I}) = V\). To see this, note that \(\forall [u] \in U/V\), \[ [u] = \tilde{I}(u) \quad \textit{so} \quad R(\tilde{I}) = U/V. \] Also note that \(v \in N(\tilde{I})\) \[ \Leftrightarrow [v] = \tilde{I}(v) = 0 \Leftrightarrow v \in V, \quad \textit{so} \quad N(\tilde{I}) = V. \]
\[ &\times \frac{l!}{(l-r)!}(x-1)^{l-r} \frac{l!}{(r+m)!}(x+1)^{r+m} \\ &=(-1)^m \frac{(l+m)!}{(l-m)!}(1-x^2)^{-m} \frac{d^{l-m}}{dx^{l-m}}(x^2-1)^l, \] 故 \[ P_l^{-m}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x). \tag{8} \]
我们先来看一个例子。 \textbf{例1} 求双参数函数族 \[ y = C_1 e^x \cos x + C_2 e^x \sin x \tag{1.14} \] 所满足的微分方程。 解 把 \((1.14)\) 对 \(x\) 先后求导两次, 得出 \[ y' &= C_1 e^x (\cos x - \sin x) + C_2 e^x (\sin x + \cos x), \tag{1.15} \\ y'' &= C_1 e^x (-2 \sin x) + C_2 e^x (2 \cos x). \tag{1.16} \] 从 \((1.14)\) 和 \((1.15)\) 两式可知 Jacobi 行列式 \[ \frac{D(y, y')}{D(C_1, C_2)} = \begin{vmatrix} e^x \cos x & e^x \sin x \\ e^x (\cos x - \sin x) & e^x (\sin x + \cos x) \end{vmatrix} = e^{2x} \neq 0. \] 这说明 \((1.14)\) 中包含的两个任意常数 \(C_1\) 和 \(C_2\) 是独立的。据此, 可
\[ N &= \sum a_x = \int_0^\infty g(\epsilon) \frac{1}{e^{\frac{\epsilon}{kT}} + 1} \, d\epsilon \\ &= \int_0^\infty g(\epsilon) f_{FD}(\epsilon) \, d\epsilon \]
\textbf{3.2. Singular Value Decomposition.} \textbf{Theorem.} Let \(A\) be an \(m \times n\) matrix with non-zero singular values \(s_1, \ldots, s_r\). Then \[ A = UDV^*, \quad D = \begin{pmatrix} s_1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & s_r & \cdots & 0 \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}_{m \times n}, \] \(U\) and \(V\) are unitary.
\[ T(\omega) &= T(R^{-1}(v)) = (R^{-1} \circ S \circ R)(R^{-1}(v)) \\ &= R^{-1} \circ S(v) = R^{-1}(\lambda v) = \lambda R^{-1}(v) = \lambda \omega, \] so \(\lambda\) is an eigenvalue of \(S\).
\[ &\left| \int_{C_R} f(z) \, dz \right| \leq \int_{C_R} |f(z)z| \left| \frac{dz}{z} \right| \to 0 \\ &\text{当} \, R \to \infty \quad \int_{C_R} f(z) \, dz \to 0 \\ &\text{故} \, \left( \int_{-\infty}^{+\infty} f(x) \, dx + \lim_{R \to \infty} \int_{C_R} f(z) \, dz = 2\pi i \sum_{k=1}^{n} f( b_k) \right. \Big| \, I_m b_k > 0 \Big) \]
如果 \(z_0\) 是方程 \(w'' + pw' + qw = 0\) 的奇点, 则在 \(z_0\) 的邻域 \(0 < |z - z_0| < R\) 内 ( \(R\) 够小使环状域内无方程的奇点 ), 方程的两个线性无关解为 \[ w_1(z) &= (z - z_0)^{\rho_1} \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n, \tag{15} \\ w_2(z) &= (z - z_0)^{\rho_2} \sum_{n=-\infty}^{\infty} d_n (z - z_0)^n. \tag{16} \]
根据实验中两球碰撞前后的落点位置(图6-8),能验证两球作弹性正碰的关系式是 A. \(OP + OM = ON.\) B. \(OP + OM = O'N.\) C. \(OP^2 + OM^2 = ON^2.\) D. \(OP^2 + OM^2 = O'N^2.\)
\[ \frac{\partial F}{\partial x} &= \frac{\partial R}{\partial x} + i \frac{\partial T}{\partial x} \\ \frac{\partial F}{\partial (i y)} &= -i \frac{\partial R}{\partial y} + \frac{\partial T}{\partial y} \]
We have \[ \begin{pmatrix} P^* & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I_{n-1} & b \\ b^* & h_{nn} \end{pmatrix} \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} &= \begin{pmatrix} P^* P & P^* b \\ b^* P & h_{nn} \end{pmatrix} = H \quad \text{if} \; b = (P^*)^{-1} \begin{pmatrix} h_{1n} \\ \vdots \\ h_{n-1,n} \end{pmatrix}. \] Thus, \[ \det P^* \det \begin{pmatrix} I_{n-1} & b \\ b^* & h_{nn} \end{pmatrix} \det P = \det H, \]
\[ V(f,f) &= k \int_{0}^{\ell} \left( \frac{df}{dx} \right)^2 dx = -k \int_{0}^{\ell} \left( \frac{d^2 f}{dx^2} \right) f \, dx = -\frac{k}{\mu} T \left( \frac{d^2 f}{dx^2}, f \right) \] We see that \(I^*\) restricted to \(\mathcal{M}\) is \(-\frac{k}{\mu} \left( \frac{d^2 f}{dx^2} \right)\), so the classical "equations of motion" are \[ \frac{\partial^2 f}{\partial t^2} = -\frac{k}{\mu} \frac{\partial^2 f}{\partial x^2} \]
\[ \sum_{a=1}^r v^a_b(\sigma) A^{-1}(\tau) T_a A(\tau) = A^{-1}(\tau) A^{-1}(\sigma) \frac{\partial A(\sigma)}{\partial \sigma^b} A(\tau). \]
若 \(|a| = 0\),则 \(b \neq 0\)。 原式: \[ \int_0^{\frac{\pi}{2}} \ln(b^2 \cos^2 x) \, dx = \int_0^{\frac{\pi}{2}} (2 \ln |b| + 2 \ln \cos x) \, dx \] 可以改写为: \[ = \pi \ln |b| + 2 \int_0^{\frac{\pi}{2}} \ln (\cos x )\, dx \] 而 \[ \int_0^{\frac{\pi}{2}} \ln (\cos x) \, dx = \int_0^{\frac{\pi}{2}} \ln (\sin x) \, dx = -\frac{\pi}{2} \ln 2 \]
and simply means that \(\psi_s\) is a common eigenstate of both \(\hat{B}\) and \(\hat{A}\). A more appropriate symbolization would be \(\psi_{\alpha, \beta}\). Summarizing, we have \[ \left[ \hat{A}, \hat{B} \right] = 0 \implies \begin{cases} \hat{A} \psi_{\alpha, \beta} = \alpha \psi_{\alpha, \beta} \\ \hat{B} \psi_{\alpha, \beta} = \beta \psi_{\alpha, \beta} \end{cases} \tag{4.57} \] The inverse is also true. Assume that the following hold \[ \begin{cases} \hat{A} \psi_{\alpha, s} = \alpha \psi_{\alpha, s} \\ \hat{B} \psi_{\alpha, s} = \beta \psi_{\alpha, s} \end{cases} \tag{4.58} \]
\textbf{Interval:} An interval is the set of real numbers, e.g., \(I = [a, b] = \{ x \mid a \leq x \leq b \}\). The length of an interval is equal to the difference of the end points of the interval, e.g., if \(I = [a, b]\), \begin{align*} L(I) = b - a. \end{align*} Thus, intervals \([a, b]\) and \((a, b)^c\) have the same length.
7. 甲、乙两名滑冰运动员的质量分别为 \(M_{\text{甲}} = 80 \text{kg}, M_{\text{乙}} = 40 \text{kg}\),两人面对面沿水平方向拉着弹簧作圆周运动(图4-5),此时两个相距 \(0.9 \text{m}\),弹簧秤的示数为 \(9.2 \text{N}\),则下列判断中正确的是 ( ) A. 两人的线速度相同,约为 \(40 \text{m/s}\)。 B. 两人的角速度相同,约为 \(6 \text{rad/s}\)。 C. 两人的运动半径相同,都是 \(0.45 \text{m}\)。 D. 两人的运动半径不同,甲为 \(0.3 \text{m}\),乙为 \(0.6 \text{m}\)。
全称命题的否定是特称命题 \[ \forall x \in M, P(x) \Rightarrow \exists x \in M, \lnot P(x) \\ \exists x \in M, P(x) \Rightarrow \forall x \in M, \lnot P(x) \]
\[ N &= \frac{1}{2\pi i} \oint_C \frac{1 - t\varphi(\zeta)}{\zeta - a - t\varphi(\zeta)} d\zeta \\ &= \frac{1}{2\pi i} \oint_C \left[ 1 - t\varphi(\zeta) \right] \sum_{n=0}^{\infty} \frac{[t\varphi(\zeta)]^n}{(\zeta - a)^{n+1}} d\zeta \\ &= \sum_{n=0}^{\infty} \frac{t^n}{n!} \frac{d^n}{da^n} \left[ \varphi(a) \right]^n - \sum_{n=0}^{\infty} \frac{t^{n+1}}{(n+1)!} \frac{d^{n-1}}{da^{n+1}} \left[ \varphi(a) \right]^{n+1} \\ &= 1, \]
To understand further the meaning of \(Q_1 \leq Q_2\) and \(Q_1 \circ Q_2\), consider the case in which \(Q_1 = Q_{E_1}^A\) and \(Q_2 = Q_{E_2}^A\), where \(A\) is some observable. Then \(E_1 \subset E_2\) implies \(Q_{E_1}^A \leq Q_{E_2}^A\) and \(E_1 \cap E_2 = \varnothing\) implies \(Q_{E_1}^A \circ Q_{E_2}^A\). We pause at this stage to point out that all our axioms so far are satisfied for the \(p\) of classical mechanics and to see what our various
\(x_1 \in E_1\) with \(|\Omega_{x_1}| > \alpha_1 / 2\). Let \[ E_2 = E_1 - \Omega_{x_1}, \quad \alpha_2 = \sup \{ |\Omega_x| : x \in E_2 \}. \] If \(\alpha_2 \neq 0\), choose \(x_2 \in E_2\) with \(|\Omega_{x_2}| > \alpha_2 / 2\). Proceed in this way, obtaining at the \(k\)th stage \[ E_k &= E_{k-1} - \Omega_{x_{k-1}} = E - \bigcup_{j=1}^{k-1} \Omega_{x_j}, \\ \alpha_k &= \sup \{ |\Omega_x| : x \in E_k \}, \\ x_k &\in E_k, \quad |\Omega_{x_k}| > \alpha_k / 2. \]
A question closely related to the computation of the ground state energy is whether the ground state exhibits Bose-Einstein condensation (BEC). If \(\psi_N\) denotes the ground state vector, this means that the largest eigenvalue of the associated reduced one particle density matrix \(\gamma_N^{(1)} = \text{tr}_{2, \ldots, N} |\psi_N \rangle \langle \psi_N |\) remains of size one in the limit \(N \to \infty\): \[\liminf_{N \to \infty} \| \gamma_N^{(1)} \|_{\text{op}} > 0.\]
\[ \text{triplet} \implies \begin{cases} |1, 1\rangle &= |\uparrow\rangle^{(1)} |\uparrow\rangle^{(2)} \\ |1, 0\rangle &= \frac{1}{\sqrt{2}} \left( |\uparrow\rangle^{(1)} |\downarrow\rangle^{(2)} + |\downarrow\rangle^{(1)} |\uparrow\rangle^{(2)} \right) \\ |1, -1\rangle &= |\downarrow\rangle^{(1)} |\downarrow\rangle^{(2)} \end{cases} \tag{20.162} \] and \[ \text{singlet} \implies |0, 0\rangle &= \frac{1}{\sqrt{2}} \left( |\uparrow\rangle^{(1)} |\downarrow\rangle^{(2)} - |\downarrow\rangle^{(1)} |\uparrow\rangle^{(2)} \right). \tag{20.163} \]
弹性钢球 \(A\) 和 \(B\) 的质量分别为 \(M\) 和 \(m\),且 \(M \ge m\),使两钢球分别沿光滑斜面从同样高度 \(h\) 处自由下滑,结果在光滑水平面上的 \(O\) 处发生碰撞,碰后小球 \(B\) 反弹,沿原斜面上升的高度为 \(h'\),则 ( ) A. \(h' = h\). B. \(h' = 2h\). C. \(h' = 4h\). D. \(h' = 9h\).
Assume now that \(r(S), r(T) \neq 0\). First suppose \(R(S) \cap R(T) \neq \{ 0 \}\). Let \(\{ u_1, \ldots, u_k \}\) be a basis for \(R(S) \cap R(T)\) and extend it to get bases \(\{ u_1, \ldots, u_k, v_1, \ldots, v_l \}\) and \(\{ u_1, \ldots, u_k, w_1, \ldots, w_m \}\) for \(R(S)\) and \(R(T)\) respectively. It is sufficient to show that \(B := \{ u_1, \ldots, u_k, v_1, \ldots, v_l, w_1, \ldots, w_m \}\) spans \(R(S+T)\), because then we have \[ r(S+T) \leq k + l + m \leq (k + l) + (k + m) = r(S) + r(T). \]
\[ K_0(x, x'; t - t_0) = \langle x | e^{-\frac{i}{\hbar} \hat{H}_0 (t - t_0)} | x' \rangle = \langle x | e^{-\frac{i}{\hbar} \hat{H}_0 (t - t_0)} \left( \int_{-\infty}^{+\infty} dp | p \rangle \langle p | \right) | x' \rangle, \tag{24.4} \] where we have inserted a complete set of energy eigenstates, which for the free particle coincide with the momentum eigenstates. Next, we have \[ K_0(x, x'; t - t_0) = \int_{-\infty}^{+\infty} dp \langle x | p \rangle e^{-\frac{i}{\hbar} \frac{p^2}{2m} (t - t_0)} \langle p | x' \rangle = \int_{-\infty}^{+\infty} \frac{dp}{2\pi \hbar} e^{-\frac{i}{\hbar} \frac{p^2}{2m} (t - t_0)} e^{\frac{i}{\hbar} p (x - x')}. \tag{24.5} \]
Guess the form: let \(P = k \, M_0^a r^b G^c\) (k is a dimensionless constant) Dimensions of \(G \to (MLT^{-2}) \cdot L^2 M^{-2}\) \[ T^1 &= M^a L^b (M^{-1} L^3 T^{-2})^c \\ &= M^{(a-c)} L^{b+3c} T^{-2c} \]
\(f(z) = u(x, y) + iv(x, y)\),其中 \[ u(x, y) = v(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases} \] 令\(f(z) = u(x, y) + iv(x, y)\),则在点\(z = 0\)满足\(C-R\)方程: \[ \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} = 0 \\ \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} = 0 \] 但\(u(x, y), v(x, y)\)在点\((0, 0)\)不连续,所以复变函数\(f(z)\)在\(z = 0\)不连续,从而不可导。
\[ \oint_{|z|=1} \frac{dz}{\varepsilon z^2 + 2z + \varepsilon} \]
17. 某学生做“验证牛顿第二定律”的实验在平衡摩擦力时,把长木板的一端垫得过高,使得倾角偏大。他所得倒的 \(a-F\) 关系可用下列哪根图线表示?图3-14中 \(a\) 是小车的加速度,\(F\) 是细线作用于小车的拉力。答:\_。
其中 \(\omega\) 为角频率 \[ \omega = c \lvert \mathbf{K} \rvert. \] 配分函数是 \[ Q &= \sum_{n_k, \lambda} e^{-E}\\ &= \prod_{k, \lambda} (1 + e^{-\beta \hbar \omega} + e^{-2\beta \hbar \omega} + \cdots)\\ &= \prod_{k, \lambda} \frac{1}{1 - e^{-\beta \hbar \omega}}. \]将 (1.50) 式代入到 (1.37) 式有 \[ -\frac{F}{kT} = \ln Q = -\sum_{k, \lambda} \ln(1 - e^{-\beta \hbar \omega}). \]
To get \(8\), \[ \Phi = V\ \frac{3}{4}\ \pi\ (x=E)^{\frac{3}{2}} = R^3 S \] \[ R^2 S^{\frac{2}{3}} = \left(\frac{4}{3}\pi V\right)^{\frac{2}{3}} 2\sqrt{E} \] \[ E' = (c_1)^{-1} R^{-2} \left(\frac{4}{3}\pi V\right)^{2/3} S^{2/3} \] in which \(E'\) is the energy of the energy-surface containing \(S\) cells.
合力与重力大小相等,方向相反,作出绳OB在两个位置时力的合成图,如图1,由图看出,\(F_{OA}\)逐渐减小,\(F_{OB}\)先减小后增大, 当 \(\theta = 90^{\circ}\)时,\(F_{OB}\)最小,选项B正确。
\[ \sin \alpha \cos \beta &= \frac{1}{2} \left[ \sin(\alpha + \beta) + \sin(\alpha - \beta) \right] \\ \cos \alpha \sin \beta &= \frac{1}{2} \left[ \sin(\alpha + \beta) - \sin(\alpha - \beta) \right] \\ \cos \alpha \cos \beta &= \frac{1}{2} \left[ \cos(\alpha + \beta) + \cos(\alpha - \beta) \right] \\ \sin \alpha \sin \beta &= -\frac{1}{2} \left[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \right] \]
\textbf{Examples.} \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}\). We have \(A^* A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}\) and \[ s_1 = \sqrt{2}, \quad s_2 = 1, \quad v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \] Then, \[ A v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \sqrt{2} u_1, \quad A v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = u_2, \quad u_3 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}. \] We have \[ U = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A = \sqrt{2} u_1 v_1^* + u_2 v_2^*. \]
Similarly, \(T(\alpha u) = \alpha T(u) \in Y\) since \(Y\) is closed under scalar multiplication, so \(du \in T^{-1}(Y)\). First, note that if \(r(S) = r(T) = 0\), then \(S\) and \(T\) are both identically \(0\), and we have:\(r(S+T) = 0 = r(S) + r(T).\) Similarly, if \(r(S) = 0\) then \(r(S+T) = r(T)\) and if \(r(T) = 0\) then:\(r(S+T) = r(S) = 0.\)
\[ A \xi^{-1} + B \xi &= C \xi^{-1} + D \xi \\ i k (C \xi^{-1} - D \xi) - i k (A \xi^{-1} - B \xi) &= g (C \xi^{-1} + D \xi) \\ F \xi &= C \xi + D \xi^{-1} \\ i k F \xi - i k (C \xi^{-1} - D \xi^{-1}) &= g (C \xi + D \xi^{-1}) \] \[ \Rightarrow \begin{cases} A \xi^{-1} + B \xi &= C \xi^{-1} + D \xi \\ A \xi^{-1} - B \xi &= (1 + i \xi^{-1}) C \xi^{-1} - (1 - i \xi) D \xi \\ F \xi &= C \xi + D \xi^{-1} \\ F \xi &= (1 - i \xi) C \xi + (-1 - i \xi) D \xi^{-1} \end{cases} \]
Two integration constants \(c_1\) and \(c_2\) are determined by two initial conditions.
and that corresponding to \(A^{2}B'\) must be both \[ \left[ A \left( \frac{AB + BA}{2} \right) + \left( \frac{AB + BA}{2} \right) A \right] / 2 = \frac{A^2 B + 2ABA + BA^2}{4} \] and \[ \frac{A^2 B + BA^2}{2} \]
1. 一向右运动的车厢顶上悬挂两单摆 \(M\) 与 \(N\),它们只能在如图3-1所示平面内摆动,某一瞬时出现图示情景,由此可知车厢的运动及两单摆相对车厢运动的可能情况是 ( ) A. 车厢作匀速直线运动,\(M\) 在摆动,\(N\) 静止。 B. 车厢作匀速直线运动,\(M\) 在摆动,\(N\) 也在摆动。 C. 车厢作匀速直线运动,\(M\) 静止,\(N\) 在摆动。 D. 车厢作匀加速直线运动,\(M\) 静止,\(N\) 也静止。
\[ \mathscr{F} = \text{LinSpan} \left( \prod_{i \in [k]} \phi_i : k \in \mathbb{N} \right) \]
\[ pL &= \frac{N}{\beta} \frac{\partial}{\partial L} \ln Z \\ &= \frac{NkT}{L} \Rightarrow pL = NkT \]
\[ \sin \alpha + \sin \beta &= 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \sin \alpha - \sin \beta &= 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \]
\[ f(x) &= \sum_{k \in \mathbb{Z}} \alpha_k e_k(x) = \frac{1}{\sqrt{2a}} \sum_{k \in \mathbb{Z}} \alpha_k \exp \left( \frac{ik\pi x}{a} \right), \\ \alpha_k &= \langle e_k, f \rangle = \frac{1}{\sqrt{2a}} \int_{-a}^{a} dx \exp \left( \frac{-ik\pi x}{a} \right) f(x). \]
\textbf{Example.} Let \(A = \begin{pmatrix} 3 & 2 - i & -3i \\ 2 + i & 0 & 1 - i \\ 3i & 1 + i & 0 \end{pmatrix}\). Find \(A^{100}\). Matrix \(A\) is Hermitian. We have \[ \det(A - \lambda I) = -(\lambda + 1)(\lambda + 2)(\lambda - 6), \quad \lambda_1 = -1, \; \lambda_2 = -2, \; \lambda_3 = 6. \] One can find three orthogonal eigenvectors: \[ v_1 &= \begin{pmatrix} -1 \\ 1 + 2i \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 + 3i \\ -2 - i \\ 5 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 - 21i \\ 6 - 9i \\ 13 \end{pmatrix}. \]
关系:给出集合\(A \times A\)中元素的一个性质\(R\)。若\(a, b \in A\),\((a, b)\)有性质\(R\),则称\(A\)与\(B\)有关系\(R\),记为\(aRb\)。 命题:集合\(A\)中关系\(R\)可由\(A \times A\)中子集\(\{(a, b) | a, b \in A, aRb\}\)来刻画;反之,由\(A \times A\)的一个子集\(R\),也可确定\(A\)的一个关系\(R: aRb,\)若\((a, b) \in R\)。
11. 如图2-3所示,\(A, B\)两小车相距\(s = 7 \, \text{m}\)时,\(A\)在水平拉力和摩擦力作用下,正以\(v_A = 4 \, \text{m/s}\)的速度向右匀速运动,小车\(B\)此时以速度\(v_B = 10 \, \text{m/s}\)向右匀减速运动,加速度\(a = -2 \, \text{m/s}^2\),则小车\(A\)追上\(B\)需经历的时间为 \_。
\[ f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( a_k \cos \left( \frac{k \pi x}{a} \right) + b_k \sin \left( \frac{k \pi x}{a} \right) \right). \]
零点,把 \(f(x)\) 的零点叫做函数 \(y = f(x)\) 的零点(需要知道一点高级方程 )。 二分法:对于区间 \([a, b]\) 上连续不断且 \(f(a) \cdot f(b) < 0\) 的函数 \(y = f(x)\),通过不断地选择 \(f(x)\) 的零点所在的区间与第一个,使区间的两个端点逐步逼近零点,进而得到 \(f(x)\) 的近似零点。
The following formula holds good for the velocity \(q\) at which the air flows by every point on the Joukowski figure. \[ q = \frac{\kappa (\xi, \eta)}{\left| \frac{dz}{d\xi} \right|} \] From \(z = \xi + \frac{b^2}{4\xi}\) it follows that
\[ \begin{cases} \frac{dy}{dx} = \frac{\partial \varphi}{\partial x}(x, C_1, \cdots, C_n), \\ \cdots \cdots \cdots \\ \frac{d^n y}{dx^n} = \frac{\partial^n \varphi}{\partial x^n}(x, C_1, \cdots, C_n). \end{cases} \]
The geometry can be found by going back to the lift coefficient and Eqs. (5.23), (5.21) and (5.2) \[ C_l &= \frac{2\Gamma(y_o)}{V_\infty c(y_o)} \tag{5.23} \\ C_l &= 2\pi \left[ \alpha_{\text{eff}} - \alpha_{L=0} \right] \tag{5.21} \\ \alpha_{\text{eff}} &= \alpha - \alpha_i \tag{5.2} \]
\[ \text{Recall the Frenet–Serret formula:} \quad (2.27)\begin{pmatrix} T_s \\ N_s \\ B_s \end{pmatrix} &= \begin{pmatrix} 0 & k & 0 \\ -k & 0 & t \\ 0 & -t & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}. \] In particular,\[ (2.28) \gamma_{ss} &= \kappa = kN, \\ (2.29) \gamma_{sss} &= k_s N - k^2 T + ktB. \] Computing the normal derivatives, we obtain\[ \nabla_s \kappa &= (\gamma_{sss})^\perp = k_s N + ktB, \\ (2.30) \nabla_s^2 \kappa &= ((k_s N + ktB)_s)^\perp = (k_{ss} - kt^2)N + (2k_s t + kt_s)B. \]
\[ C_L &= 0.77 \\ C_{D_i} &= \frac{C_L^2}{\pi AR} = \frac{(0.77)^2}{\pi (5.09)} = 0.037 \]
10. 如图3-9所示,\(A, B\) 两木块靠在一起沿斜面下滑,已知 \(A, B\) 与斜面间的动摩擦因数分别为 \(\mu_A\) 与 \(\mu_B\),设 \(A, B\) 间相互作用力为 \(N\),则下列判断中正确的是 A. 当 \(\mu_A = \mu_B\) 时,一定一起匀速下滑。 B. 当 \(\mu_A > \mu_B\) 时,不可能一起匀速下滑。 C. 当 \(\mu_B = \mu_B\) 时,一定有 \(N = 0\)。 D. 两者一起加速下滑时,一定有 \(N \neq 0\)。
3) For any \(z \in [0,1]\): \[ \int_{X+y} (z)= \int_{[0,1]}\mathbf{1}_{[0,z]}(z-x) dx &= \int_{\max(0,z-1)}^{\min(1,z)} dz = \min(1,z) - \max(0,z-1) = z - \max(0,z-1) = 1 - |z-1| \] 4) For all \(z > 0\): \[ \int e^{-\lambda x} \mathbf{1}_{[0,\infty)}(x) \cdot e^{-\lambda(z-x)} \mathbf{1}_{[0,\infty)}(z-x) dx &= \lambda e^{-\lambda z} \int_0^z dx = \lambda^2 e^{-\lambda z} e^{-\lambda z} \]
这两个不等式的右方是指数函数数 \(m \exp(2M\rho)\) 的幂级数展开的普通项, 因此, 序列 \[ u_n &= u_0 + (u_1 - u_0) + \cdots + (u_n - u_{n-1}), \\ v_n &= v_0 + (v_1 - v_0) + \cdots + (v_n - v_{n-1}), \] 在 \(|z| \leq R_1\) 中一致收敛. 于是, 按外氏关于解析函数序列的定理, 这两个序列的极限函数 \(u(z)\) 和 \(v(z)\) 是 \(|z| < R\) 内的解析函数. 又 \[ u(z) &= \lim_{n \to \infty} (z) = \alpha + \lim_{n \to \infty} \left[ \int_0^{z} [a u_{n-1} + b v_{n-1}] d \zeta \right] \\ &= \alpha + \left[ \int_0^{z} [a u + b v] d \zeta \right] \]
\[ \begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = X(L) = 0 \end{cases} \] 和关于 \(T(t)\) 的常微分方程 \[ T''(t) + a^2 \lambda T(t) = 0 \] 第二步:解固有值问题,求出固有值 \(\lambda_k\) 和固有函数 \(X_k(x)\) 后,对于每一个 \(\lambda_k\) ,求出常微分方程 \[ T''(t) + a^2 \lambda_k T(t) = 0 \] 的通解 \(T_k(t)\),得到满足方程及边界条件的一系列特解 \(u_k(x,t) = X_k(x) T_k(t)\)。
\[ \Gamma(n &+ \mu + 1) \int_{-1}^1 (1 - t^2)^{\mu - \frac{1}{2}} H_{2n} \left( \sqrt{x} t \right) dt \\ &= (-1)^n \sqrt{\pi} (2n) ! \Gamma \left( \mu + \frac{1}{2} \right) L_n^{\mu}(x) \ \left( \text{Re}(\mu) > -\frac{1}{2} \right), \] 其中 \(L_n^{\mu}(z)\) 是广义拉革尔多项式。 31. 证明, 若 \(\rho = 1/\xi\), 有 \[ \frac{d^n}{d\xi^n} f(\xi) = (-)^n \rho^{n+1} \frac{d^n}{d\rho^n} \left\{ \rho^{n-1} f \left( \frac{1}{\rho} \right) \right\}. \] 利用这公式, 由拉革尔多项式 \(L_n^{\mu}(z)\) 的生成函数 (6.14 节 (8) 式) 推出 \(L_n^{\mu}(z)\) 的微商表示 (6.14 节 (5))。 32. 证明 \[ F\left( \alpha, Y, \frac{xy}{x-1} \right) &= (1 - x)^a \sum_{n=0}^{\infty} \frac{(\alpha)_n}{(Y)_n} L_n^{\gamma-1}(y) x^n \\ &\quad (1 \mid x \mid < 1, y > 0) \] (Erdelyi (1953), Vol. 1, p. 276, (5)). 6.14 节 (8) 式是这个展开式的特殊情形: \(a = \gamma = \mu + 1\).
and this value is \[ F_{\text{max}} = \frac{\sqrt{\left(\delta \cos \left( \lambda + \gamma \right) - \frac{l}{2} \sin \beta \right)^2 + \left( \frac{l}{2} \sin \beta \right)^2}}{\delta \cos A} \tag{71} \] We now make the assumption, corresponding to the already
Another interesting example is the sign function \(f: [-\pi, \pi] \rightarrow \mathbb{R}\) defined by \[ f(x) := \text{sign}(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{cases} \tag{3.43} \] The periodically continued version of this function is shown in Fig. 7. Since \(f\) is an anti-symmetric function, the Fourier series only contains sine terms. (Alternatively and equivalently, we can think of \(f\) as a function on the \([0, \pi]\) and work out the sine Fourier series.) For the Fourier coefficients we
\[ Thus \ \exists \, a_1, \ldots, a_k, a_{k+1}, \ldots, a_{k+l}, \, b_1, \ldots, b_k, b_{k+1}, \ldots, b_{k+m} \in \mathbb{F} \ s t \] \[ S(u) &= a_1 u_1 + \cdots + a_k u_k + a_{k+1} v_1 + \cdots + a_{k+l} v_l \\ T(u) &= b_1 u_1 + \cdots + b_k u_k + b_{k+1} w_1 + \cdots + b_{k+m} w_m \]
\[ 1 - \frac{1}{\frac{\sigma^2}{\sigma_t^2} + 1} = \frac{\frac{\sigma^2}{\sigma_t^2}}{\frac{\sigma^2}{\sigma_t^2} + 1} = \frac{\sigma^2}{\sigma^2 + \sigma_t^2} \]
\[ \frac{\pi_\theta \left( a_t \mid s_t \right)}{\pi_{\theta \text{old}} \left( a_t \mid s_t \right)} \]
\textbf{定义 2 切向量的加法} 给定流形 \(N\),其上一点 \(p \in N\)。\(p\) 出发的两个道零等价类 \([r_1]\) 和 \([r_2]\) 的和定义为,任取 \(p\) 附近一图 \((U, \varphi)\),令 \([r_1] + [r_2] = [\varphi^{-1}(\varphi(r_1) + \varphi(r_2))]\)。 \textbf{定理 2} 给定流形 \(N\),其上一点 \(p \in N\) 处有两个图 \((U, \varphi)\) 和 \((V, \phi)\)。对 \(p\) 出发的两条道首 \(r_1\) 和 \(r_2\),按以上定义得的和(注意,这是 \(N\) 上的一个道零等价类),在两个图中的计算结果一致。
\[ \log(\det(A + \Sigma H)) - \log(A) &= \log\left(\det(I + \Sigma A^{-1/2} H A^{-1/2})\right) \\ &= \log(\det(I + \Sigma \hat{H})) \quad \text{where} \quad \hat{H} = A^{-1/2} H A^{-1/2} \] \(\hat{H}\) is symmetric positive definite, let \(\lambda_i\) be its eigenvalue. Then \[ \log(\det(I + \Sigma \hat{H})) &= \sum_{\tau=1}^{m} \log(1 + \Sigma \lambda_i) &= \Sigma \sum_{i=1}^{m} \lambda_i + o( \Sigma) \\ &= \Sigma \operatorname{Tr}(\hat{H}) + o( \Sigma) \]
\[ d_j := \frac{d}{dr} - \frac{j}{r} + A(r), \quad d_j^* := -\frac{d}{dr} - \frac{(j+1)}{r} + A(r) \]
\[ &T(f,f) =\iiint\mu(\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}) \mathrm{dx~dy~dz} \\ &\mathrm{V}(\mathbf{f},\mathbf{f}) =c_{1}\iiint_{\mathbf{R}}\left[\frac{\partial\ell_{1}}{\partial\mathbf{x}}+\frac{\partial\ell_{2}}{\partial\mathbf{y}}+\frac{\partial\ell_{3}}{\partial\mathbf{z}}\right]^{2} \mathrm{dx~dy~dz} \\ &+ c_{2}\iiint\left[\left(\frac{\partial\ell_{1}}{\partial z}+\frac{\partial\ell_{3}}{\partial x}\right)^{2}+\left(\frac{\partial\ell_{2}}{\partial z}+\frac{\partial\ell_{3}}{\partial y}\right)^{2}\right. \\ &+\left({\frac{\partial\ell_{1}}{\partial\mathbf{y}}}+{\frac{\partial\ell_{2}}{\partial\mathbf{x}}}\right)^{2}+2\biggl({\frac{\partial\ell_{1}}{\partial\mathbf{x}}}\biggr)^{2} \\ &+ 2\biggl(\frac{\partial\ell_{2}}{\partial \mathrm{y}}\biggr)^{2} + 2\biggl(\frac{\partial\ell_{3}}{\partial \mathrm{z}}\biggr)^{2} \biggr] \mathrm{dx~dy~dz} \]
\textbf{Ring} \textit{Def}: A non-empty set \(R\) is called a ring if i) \(R\) is an abelian group under addition. ii) \(R\) is a semi-group under multiplication. iii) Distributive law holds. \begin{align*} a \cdot (b + c) &= a \cdot b + a \cdot c\\ (a + b) \cdot c &= a \cdot c + b \cdot c \end{align*}
This comes from \(4 = 2 \times 2\), \[ \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} &= \begin{pmatrix} 2 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} 2 & a \\ 0 & b \end{pmatrix} \implies a = \frac{1}{2}, \, b = \frac{\sqrt{7}}{2}, \] and \[ \begin{pmatrix} 4 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} &= \begin{pmatrix} 2 & 0 & 0 \\ \frac{1}{2} & \frac{\sqrt{7}}{2} & 0 \\ a & b & c \end{pmatrix} \begin{pmatrix} 2 & \frac{1}{2} & a \\ 0 & \frac{\sqrt{7}}{2} & b \\ 0 & 0 & c \end{pmatrix} \implies a = -\frac{1}{2}, \, b = \frac{5\sqrt{7}}{14}, \, c = \frac{\sqrt{42}}{7}. \]
1) There is equiprobability for the drawing of cards, denoted \(\{RR, RS, RS, BS\}\), and for each card, each side is equiprobable. We can represent the outcome with the sample space\[ \Omega = \{(RR, R), (BB, B), (RB, R), (RS, R)\} \]with probabilities \(\frac{1}{3}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{6}\). 2) Let \(A\) be the event "The hidden side is white" and \(B\) the event "The revealed side is red." Then Bayes' rule gives \[ P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\{RS, RS\})}{P(\{(RR, R), (RB, R)\})} = \frac{1/6}{1/3 + 1/6} = \frac{1}{3} \]
For the costing part, see the costing part correction. To diagonalize an entire matrix using power iteration, under the assumption that the eigenvalues are non-degenerate \(|\lambda_1| > |\lambda_2| > \ldots > |\lambda_k|\), we can simply apply power iteration to the matrix \[ \Pi^* = \Pi - \sum_{j=1}^{p}\sigma_j\sigma_j^T \] to obtain the eigenvalue eigenvector pair \((\lambda_{p+1}, \nu_{p+1})\). Indeed, \[ \Pi^* = \Pi - \sum_{j=1}^{p}\sigma_j\sigma_j^T = \sum_{j=p+1}^{k}\sigma_j\sigma_j^T \] where we used \[ \Pi = \sum_{j=1}^{k}\sigma_j\sigma_j^T. \] Since \(|\lambda_{p+1}| > |\lambda_{p+2}| > \ldots > |\lambda_k|\), the largest eigenvalue of \(\Pi^*\) is \(\lambda_{p+1}\).
\textit{Example 4.} \textbf{Galileo's Law:} A point-like object in free-fall near the surface of the earth obeys the equation: \[ \ddot{x} = -g \] where \(x\) is the coordinate giving the height of the body above the surface of the earth and \(g\) is a universal constant. In other words, \(F = mg\) is the \textit{gravitational force}. \textit{Example 5.} \textbf{Newton's Law of gravitation:} suppose \(x\) denotes the spatial position of an object near another point-like object of gravitational mass \(M\) at the origin; then Newton's Law of gravitation says that: \[ \ddot{x} = -\frac{GMm}{|x|^2} \] where \(m\) is the gravitational mass of the object, and \(G\) is a universal constant. \textit{Example 6.} \textbf{Hooke's Law:} suppose \(x\) is the coordinate describing the position from equilibrium of a point-mass attached to a spring. Then Hooke's Law says that: \[ \ddot{x} = -k^2x \] where \(k\) is some constant associated with the spring. This example is sometimes referred to as \textit{simple harmonic motion}, and we shall return to it frequently.
在这里我们引用了热力学公式(1.67)并不表明统计力学依赖于热力学。对统计力学,本身完全可以自成体系的,我们引入热力学公式是说明可以从正则系综导出这些热力学公式来。 假设由体积 \(V\) 相等的 \(M\) 个相同的系统组成的系综,每个系统的粒子都是同类的。系统虫相同,但处于不同的位置,所以是可以区分的。又设每个系统的粒子数是相当大,图1.6 表示 \(M\) 个系统所组成的系综。
\[ \frac{\partial \varphi \nu(x)}{\partial \tilde{x}^i} \varphi \tilde{\nu}(x) &= -\varphi \nu(x) \frac{\partial \varphi \tilde{\nu}(x)}{\partial \tilde{x}^i} \\ &= -\varphi \nu(x) \frac{\partial \varphi \nu(x)}{\partial \varphi \tilde{\nu}(x)} \frac{\partial \varphi \tilde{\nu}(x)}{\partial \tilde{x}^i} \\ &= -\sum_{a,b=1}^r v^a_b (\varphi \nu(x)) \frac{\partial \varphi \tilde{\nu}(x)}{\partial \tilde{x}^i} T_b, \]
\textbf{Theorem.} A Hermitian matrix \(H\) is positive definite if and only if all its leading principal minors are positive, that is, \[ \det H_{1, \ldots, k; 1, \ldots, k} > 0, \quad k = 1, \ldots, n, \] or explicitly, \[ h_{11} > 0, \quad \det \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} > 0, \quad \ldots, \quad \det \begin{pmatrix} h_{11} & \cdots & h_{1n} \\ \vdots & \ddots & \vdots \\ h_{n1} & \cdots & h_{nn} \end{pmatrix} > 0. \] \textit{Proof.} Assume that \(H\) is positive definite. Let \(H_k = H_{1, \ldots, k; 1, \ldots, k} = \begin{pmatrix} h_{11} & \cdots & h_{1k} \\ \vdots & \ddots & \vdots \\ h_{k1} & \cdots & h_{kk} \end{pmatrix}\). Let \(y \in \mathbb{C}^k\).
The gravitational force law \[ \vec{\mathbf{F}} = -G \frac{m_1 m_2}{r^2} \frac{\vec{r}}{r} \] can be approximated in the vicinity of Earth's surface: \(M =\) Earth's mass \(r \approx\) E. radius \(R_0 = 6370 \, \text{km}\) \[ g = \frac{GM}{R_0^2} \approx 9.81 \, \frac{\text{m}}{\text{s}^2} \] \(F = mg\) along vertical towards Earth center
\textbf{Example.} Matrix \(A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}\) is simple, but not normal. \(A\) has two distinct eigenvalues \(\lambda_1 = 1\), \(\lambda_2 = -1\). Hence, \(A\) is simple. It is easily verified that \(A^* A \neq A A^*\). \[ A \begin{pmatrix} 1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{but} \quad A^* \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{is not an eigenvector of } A^*. \] \[ A^* \begin{pmatrix} 2 \\ 1 \end{pmatrix} &= \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -\begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{are not orthogonal}. \]
Going back to the expressions for the absorption and emission rates, we have \[ \frac{\Gamma_{\text{abs}}}{\Gamma_{\text{em}}} &= \frac{|\langle n_{\mathbf{k}}^{(\lambda)} - 1 | \langle B | \mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} | A \rangle | n_{\mathbf{k}}^{(\lambda)} \rangle |^2}{|\langle n_{\mathbf{k}}^{(\lambda)} + 1 | \langle A | \mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p} e^{-i \mathbf{k} \cdot \mathbf{r}} | B \rangle | n_{\mathbf{k}}^{(\lambda)} \rangle |^2} \\ &= \frac{n_{\mathbf{k}}^{(\lambda)} |\langle B | \mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} | A \rangle |^2}{(n_{\mathbf{k}}^{(\lambda)} + 1) |\langle A | \mathbf{e}_{\mathbf{k}}^{(\lambda)} \cdot \mathbf{p} e^{-i \mathbf{k} \cdot \mathbf{r}} | B \rangle |^2}. \tag{23.56} \] However, since\(^2\) \[ \langle B | \mathbf{e} \cdot \mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} | A \rangle &= \langle A | e^{-i \mathbf{k} \cdot \mathbf{r}} (\mathbf{e} \cdot \mathbf{p}) | B \rangle^* = \langle A | (\mathbf{e} \cdot \mathbf{p}) e^{-i \mathbf{k} \cdot \mathbf{r}} | B \rangle^*, \]
\[ &= (t-1)(-1)^{1+1} \det \begin{pmatrix}\begin{bmatrix} t-2 & 0 \\ 1 & t+1 \end{bmatrix}\end{pmatrix} \\ &\quad + 2(-1)^{1+3} \det \begin{pmatrix}\begin{bmatrix} -2 & 0 \\ t-2 & 0\end{bmatrix} \end{pmatrix} \]
The corresponding 1-D Schrodinger equation for moving electrons can be written as \begin{align*} \frac{d^2 \psi}{dx^2} + \frac{\theta x^2 m}{h^2} \left[ E - V(x) \right] \psi = 0 \tag{2}\\ V(x_1) = V(x + a) \tag{1}\\ \frac{d^2 \psi}{dx^2} + \frac{\theta x^2 m}{h^2} \left[ E - V(x) \right] \psi = 0 \tag{2} \end{align*}