code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
from __future__ import annotations import asyncio import logging import pprint import uuid from collections import defaultdict from copy import deepcopy from datetime import datetime from operator import itemgetter from types import TracebackType from typing import Any, cast from aiohttp import ClientSession, ClientWebSocketResponse, WSMsgType, client_exceptions from .const import ( MAX_SERVER_SCHEMA_VERSION, MIN_SERVER_SCHEMA_VERSION, PACKAGE_NAME, __version__, ) from .event import Event from .exceptions import ( CannotConnect, ConnectionClosed, ConnectionFailed, FailedCommand, FailedZWaveCommand, InvalidMessage, InvalidServerVersion, InvalidState, NotConnected, ) from .model.driver import Driver from .model.version import VersionInfo, VersionInfoDataType SIZE_PARSE_JSON_EXECUTOR = 8192 # Message IDs INITIALIZE_MESSAGE_ID = "initialize" GET_INITIAL_LOG_CONFIG_MESSAGE_ID = "get-initial-log-config" START_LISTENING_MESSAGE_ID = "start-listening" LISTEN_MESSAGE_IDS = ( GET_INITIAL_LOG_CONFIG_MESSAGE_ID, INITIALIZE_MESSAGE_ID, START_LISTENING_MESSAGE_ID, ) class Client: """Class to manage the IoT connection.""" def __init__( self, ws_server_url: str, aiohttp_session: ClientSession, schema_version: int = MAX_SERVER_SCHEMA_VERSION, additional_user_agent_components: dict[str, str] | None = None, record_messages: bool = False, ): """Initialize the Client class.""" self.ws_server_url = ws_server_url self.aiohttp_session = aiohttp_session self.driver: Driver | None = None # The WebSocket client self._client: ClientWebSocketResponse | None = None # Version of the connected server self.version: VersionInfo | None = None self.schema_version: int = schema_version self.additional_user_agent_components = { PACKAGE_NAME: __version__, **(additional_user_agent_components or {}), } self._logger = logging.getLogger(__package__) self._loop = asyncio.get_running_loop() self._result_futures: dict[str, asyncio.Future] = {} self._shutdown_complete_event: asyncio.Event | None = None self._record_messages = record_messages self._recorded_commands: defaultdict[str, dict] = defaultdict(dict) self._recorded_events: list[dict] = [] def __repr__(self) -> str: """Return the representation.""" prefix = "" if self.connected else "not " return f"{type(self).__name__}(ws_server_url={self.ws_server_url!r}, {prefix}connected)" @property def connected(self) -> bool: """Return if we're currently connected.""" return self._client is not None and not self._client.closed @property def recording_messages(self) -> bool: """Return True if messages are being recorded.""" return self._record_messages async def async_send_command( self, message: dict[str, Any], require_schema: int | None = None ) -> dict: """Send a command and get a response.""" if require_schema is not None and require_schema > self.schema_version: assert self.version raise InvalidServerVersion( self.version, require_schema, "Command not available due to incompatible server version. Update the Z-Wave " f"JS Server to a version that supports at least api schema {require_schema}.", ) future: "asyncio.Future[dict]" = self._loop.create_future() message_id = message["messageId"] = uuid.uuid4().hex self._result_futures[message_id] = future await self._send_json_message(message) try: return await future finally: self._result_futures.pop(message_id) async def async_send_command_no_wait( self, message: dict[str, Any], require_schema: int | None = None ) -> None: """Send a command without waiting for the response.""" if require_schema is not None and require_schema > self.schema_version: assert self.version raise InvalidServerVersion( self.version, require_schema, "Command not available due to incompatible server version. Update the Z-Wave " f"JS Server to a version that supports at least api schema {require_schema}.", ) message["messageId"] = uuid.uuid4().hex await self._send_json_message(message) async def connect(self) -> None: """Connect to the websocket server.""" if self.driver is not None: raise InvalidState("Re-connected with existing driver") self._logger.debug("Trying to connect") try: self._client = await self.aiohttp_session.ws_connect( self.ws_server_url, heartbeat=55, compress=15, max_msg_size=0, ) except ( client_exceptions.WSServerHandshakeError, client_exceptions.ClientError, ) as err: raise CannotConnect(err) from err self.version = version = VersionInfo.from_message( cast(VersionInfoDataType, await self._receive_json_or_raise()) ) # basic check for server schema version compatibility if ( self.version.min_schema_version > MAX_SERVER_SCHEMA_VERSION or self.version.max_schema_version < MIN_SERVER_SCHEMA_VERSION ): await self._client.close() assert self.version raise InvalidServerVersion( self.version, MIN_SERVER_SCHEMA_VERSION, f"Z-Wave JS Server version ({self.version.server_version}) is " "incompatible. Update the Z-Wave JS Server to a version that supports " f"at least api schema {MIN_SERVER_SCHEMA_VERSION}", ) # store the (highest possible) schema version we're going to use/request # this is a bit future proof as we might decide to use a pinned version at some point # for now we just negotiate the highest available schema version and # guard incompatibility with the MIN_SERVER_SCHEMA_VERSION if self.version.max_schema_version < MAX_SERVER_SCHEMA_VERSION: self.schema_version = self.version.max_schema_version self._logger.info( "Connected to Home %s (Server %s, Driver %s, Using Schema %s)", version.home_id, version.server_version, version.driver_version, self.schema_version, ) async def initialize(self) -> None: """Initialize connection to server by setting schema version and user agent.""" assert self._client # set preferred schema version on the server # note: we already check for (in)compatible schemas in the connect call await self._send_json_message( { "command": "initialize", "messageId": INITIALIZE_MESSAGE_ID, "schemaVersion": self.schema_version, "additionalUserAgentComponents": self.additional_user_agent_components, } ) set_api_msg = await self._receive_json_or_raise() if not set_api_msg["success"]: # this should not happen, but just in case await self._client.close() raise FailedCommand(set_api_msg["messageId"], set_api_msg["errorCode"]) async def listen(self, driver_ready: asyncio.Event) -> None: """Start listening to the websocket.""" if not self.connected: raise InvalidState("Not connected when start listening") assert self._client try: await self.initialize() await self._send_json_message( { "command": "driver.get_log_config", "messageId": GET_INITIAL_LOG_CONFIG_MESSAGE_ID, } ) log_msg = await self._receive_json_or_raise() # this should not happen, but just in case if not log_msg["success"]: await self._client.close() raise FailedCommand(log_msg["messageId"], log_msg["errorCode"]) # send start_listening command to the server # we will receive a full state dump and from now on get events await self._send_json_message( {"command": "start_listening", "messageId": START_LISTENING_MESSAGE_ID} ) state_msg = await self._receive_json_or_raise() if not state_msg["success"]: await self._client.close() raise FailedCommand(state_msg["messageId"], state_msg["errorCode"]) self.driver = cast( Driver, await self._loop.run_in_executor( None, Driver, self, state_msg["result"]["state"], log_msg["result"]["config"], ), ) driver_ready.set() self._logger.info( "Z-Wave JS initialized. %s nodes", len(self.driver.controller.nodes) ) await self.receive_until_closed() except ConnectionClosed: pass finally: self._logger.debug("Listen completed. Cleaning up") for future in self._result_futures.values(): future.cancel() self._result_futures.clear() if not self._client.closed: await self._client.close() if self._shutdown_complete_event: self._shutdown_complete_event.set() async def disconnect(self) -> None: """Disconnect the client.""" self._logger.debug("Closing client connection") if not self.connected: return assert self._client # 'listen' was never called if self.driver is None: await self._client.close() return self._shutdown_complete_event = asyncio.Event() await self._client.close() await self._shutdown_complete_event.wait() self._shutdown_complete_event = None self.driver = None def begin_recording_messages(self) -> None: """Begin recording messages for replay later.""" if self._record_messages: raise InvalidState("Already recording messages") self._record_messages = True def end_recording_messages(self) -> list[dict]: """End recording messages and return messages that were recorded.""" if not self._record_messages: raise InvalidState("Not recording messages") self._record_messages = False data = sorted( (*self._recorded_commands.values(), *self._recorded_events), key=itemgetter("ts"), ) self._recorded_commands.clear() self._recorded_events.clear() return list(data) async def receive_until_closed(self) -> None: """Receive messages until client is closed.""" assert self._client while not self._client.closed: data = await self._receive_json_or_raise() self._handle_incoming_message(data) async def _receive_json_or_raise(self) -> dict: """Receive json or raise.""" assert self._client msg = await self._client.receive() if msg.type in (WSMsgType.CLOSE, WSMsgType.CLOSED, WSMsgType.CLOSING): raise ConnectionClosed("Connection was closed.") if msg.type == WSMsgType.ERROR: raise ConnectionFailed() if msg.type != WSMsgType.TEXT: raise InvalidMessage(f"Received non-Text message: {msg.type}") try: if len(msg.data) > SIZE_PARSE_JSON_EXECUTOR: data: dict = await self._loop.run_in_executor(None, msg.json) else: data = msg.json() except ValueError as err: raise InvalidMessage("Received invalid JSON.") from err if self._logger.isEnabledFor(logging.DEBUG): self._logger.debug("Received message:\n%s\n", pprint.pformat(msg)) return data def _handle_incoming_message(self, msg: dict) -> None: """Handle incoming message. Run all async tasks in a wrapper to log appropriately. """ if msg["type"] == "result": future = self._result_futures.get(msg["messageId"]) if future is None: # no listener for this result return if self._record_messages and msg["messageId"] not in LISTEN_MESSAGE_IDS: self._recorded_commands[msg["messageId"]].update( { "result_ts": datetime.utcnow().isoformat(), "result_msg": deepcopy(msg), } ) if msg["success"]: future.set_result(msg["result"]) return if msg["errorCode"] != "zwave_error": err = FailedCommand(msg["messageId"], msg["errorCode"]) else: err = FailedZWaveCommand( msg["messageId"], msg["zwaveErrorCode"], msg["zwaveErrorMessage"] ) future.set_exception(err) return if msg["type"] != "event": # Can't handle self._logger.debug( "Received message with unknown type '%s': %s", msg["type"], msg, ) return if self._record_messages: self._recorded_events.append( { "record_type": "event", "ts": datetime.utcnow().isoformat(), "type": msg["event"]["event"], "event_msg": deepcopy(msg), } ) event = Event(type=msg["event"]["event"], data=msg["event"]) self.driver.receive_event(event) # type: ignore async def _send_json_message(self, message: dict[str, Any]) -> None: """Send a message. Raises NotConnected if client not connected. """ if not self.connected: raise NotConnected if self._logger.isEnabledFor(logging.DEBUG): self._logger.debug("Publishing message:\n%s\n", pprint.pformat(message)) assert self._client assert "messageId" in message if self._record_messages and message["messageId"] not in LISTEN_MESSAGE_IDS: # We don't need to deepcopy command_msg because it is always released by # the caller after the command is sent. self._recorded_commands[message["messageId"]].update( { "record_type": "command", "ts": datetime.utcnow().isoformat(), "command": message["command"], "command_msg": message, } ) await self._client.send_json(message) async def async_start_listening_logs(self) -> None: """Send command to start listening to log events.""" await self.async_send_command( {"command": "start_listening_logs"}, require_schema=31 ) async def async_stop_listening_logs(self) -> None: """Send command to stop listening to log events.""" await self.async_send_command( {"command": "stop_listening_logs"}, require_schema=31 ) async def __aenter__(self) -> "Client": """Connect to the websocket.""" await self.connect() return self async def __aexit__( self, exc_type: Exception, exc_value: str, traceback: TracebackType ) -> None: """Disconnect from the websocket.""" await self.disconnect()
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/client.py
client.py
from __future__ import annotations import asyncio import aiohttp from .client import Client from .model.controller.firmware import ( ControllerFirmwareUpdateData, ControllerFirmwareUpdateResult, ) from .model.node import Node from .model.node.firmware import NodeFirmwareUpdateData, NodeFirmwareUpdateResult async def update_firmware( url: str, node: Node, updates: list[NodeFirmwareUpdateData], session: aiohttp.ClientSession, additional_user_agent_components: dict[str, str] | None = None, ) -> NodeFirmwareUpdateResult: """Send updateFirmware command to Node.""" client = Client( url, session, additional_user_agent_components=additional_user_agent_components ) await client.connect() await client.initialize() receive_task = asyncio.get_running_loop().create_task(client.receive_until_closed()) cmd = { "command": "node.update_firmware", "nodeId": node.node_id, "updates": [update.to_dict() for update in updates], } data = await client.async_send_command(cmd, require_schema=29) await client.disconnect() if not receive_task.done(): receive_task.cancel() return NodeFirmwareUpdateResult(node, data["result"]) async def controller_firmware_update_otw( url: str, firmware_file: ControllerFirmwareUpdateData, session: aiohttp.ClientSession, additional_user_agent_components: dict[str, str] | None = None, ) -> ControllerFirmwareUpdateResult: """ Send firmwareUpdateOTW command to Controller. Sending the wrong firmware to a controller can brick it and make it unrecoverable. Consumers of this library should build mechanisms to ensure that users understand the risks. """ client = Client( url, session, additional_user_agent_components=additional_user_agent_components ) await client.connect() await client.initialize() receive_task = asyncio.get_running_loop().create_task(client.receive_until_closed()) data = await client.async_send_command( { "command": "controller.firmware_update_otw", **firmware_file.to_dict(), }, require_schema=29, ) await client.disconnect() if not receive_task.done(): receive_task.cancel() return ControllerFirmwareUpdateResult(data["result"])
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/firmware.py
firmware.py
from __future__ import annotations from typing import TYPE_CHECKING from .const import RssiError if TYPE_CHECKING: from .const import CommandClass from .model.value import Value from .model.version import VersionInfo class BaseZwaveJSServerError(Exception): """Base Zwave JS Server exception.""" class TransportError(BaseZwaveJSServerError): """Exception raised to represent transport errors.""" def __init__(self, message: str, error: Exception | None = None) -> None: """Initialize a transport error.""" super().__init__(message) self.error = error class ConnectionClosed(TransportError): """Exception raised when the connection is closed.""" class CannotConnect(TransportError): """Exception raised when failed to connect the client.""" def __init__(self, error: Exception) -> None: """Initialize a cannot connect error.""" super().__init__(f"{error}", error) class ConnectionFailed(TransportError): """Exception raised when an established connection fails.""" def __init__(self, error: Exception | None = None) -> None: """Initialize a connection failed error.""" if error is None: super().__init__("Connection failed.") return super().__init__(f"{error}", error) class NotFoundError(BaseZwaveJSServerError): """Exception that is raised when an entity can't be found.""" class NotConnected(BaseZwaveJSServerError): """Exception raised when not connected to client.""" class InvalidState(BaseZwaveJSServerError): """Exception raised when data gets in invalid state.""" class InvalidMessage(BaseZwaveJSServerError): """Exception raised when an invalid message is received.""" class InvalidServerVersion(BaseZwaveJSServerError): """Exception raised when connected to server with incompatible version.""" def __init__( self, version_info: "VersionInfo", required_schema_version: int, message: str, ) -> None: """Initialize an invalid server version error.""" self.server_version = version_info.server_version self.server_max_schema_version = version_info.max_schema_version self.required_schema_version = required_schema_version super().__init__(message) class FailedCommand(BaseZwaveJSServerError): """When a command has failed.""" def __init__( self, message_id: str, error_code: str, msg: str | None = None ) -> None: """Initialize a failed command error.""" super().__init__(msg or f"Command failed: {error_code}") self.message_id = message_id self.error_code = error_code class FailedZWaveCommand(FailedCommand): """When a command has failed because of Z-Wave JS error.""" def __init__( self, message_id: str, zwave_error_code: int, zwave_error_message: str ): """Initialize a failed command error.""" super().__init__( message_id, "zwave_error", f"Z-Wave error {zwave_error_code}: {zwave_error_message}", ) self.zwave_error_code = zwave_error_code self.zwave_error_message = zwave_error_message class UnparseableValue(BaseZwaveJSServerError): """Exception raised when a value can't be parsed.""" class UnwriteableValue(BaseZwaveJSServerError): """Exception raised when trying to change a read only Value.""" class InvalidNewValue(BaseZwaveJSServerError): """Exception raised when target new value is invalid based on Value metadata.""" class ValueTypeError(BaseZwaveJSServerError): """Exception raised when target Zwave value is the wrong type.""" class SetValueFailed(BaseZwaveJSServerError): """ Exception raise when setting a value fails. Refer to https://zwave-js.github.io/node-zwave-js/#/api/node?id=setvalue for possible reasons. """ class BulkSetConfigParameterFailed(BaseZwaveJSServerError): """ Exception raised when bulk setting a config parameter fails. Derived from another exception """ class InvalidCommandClass(BaseZwaveJSServerError): """Exception raised when Zwave Value has an invalid command class.""" def __init__(self, value: "Value", command_class: "CommandClass") -> None: """Initialize an invalid Command Class error.""" self.value = value self.command_class = command_class super().__init__( f"Value {value} does not match expected command class: {command_class}" ) class UnknownValueData(BaseZwaveJSServerError): """ Exception raised when Zwave Value has data that the library can't parse. This can be caused by an upstream issue with the driver, or missing support in the library. """ def __init__(self, value: "Value", path: str) -> None: """Initialize an unknown data error.""" self.value = value self.path = path super().__init__( f"Value {value} has unknown data in the following location: {path}. " f"A reinterview of node {value.node} may correct this issue, but if it " "doesn't, please report this issue as it may be caused by either an " "upstream issue with the driver or missing support for this data in the " "library" ) class RssiErrorReceived(BaseZwaveJSServerError): """Exception raised when an RSSI error is received.""" def __init__(self, error: "RssiError") -> None: """Initialize an RSSI error.""" self.error = error super().__init__() class RepeaterRssiErrorReceived(BaseZwaveJSServerError): """Exception raised when an RSSI error is received in list of RSSIs.""" def __init__(self, rssi_list: list[int]) -> None: """Initialize an RSSI error.""" self.rssi_list = rssi_list rssi_errors = [item.value for item in RssiError] self.error_list = [ RssiError(rssi_) if rssi_ in rssi_errors else None for rssi_ in rssi_list ] super().__init__()
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/exceptions.py
exceptions.py
from __future__ import annotations from dataclasses import dataclass, field from enum import Enum, IntEnum from importlib import metadata from typing import TypedDict PACKAGE_NAME = "zwave-js-server-python" __version__ = metadata.version(PACKAGE_NAME) # minimal server schema version we can handle MIN_SERVER_SCHEMA_VERSION = 31 # max server schema version we can handle (and our code is compatible with) MAX_SERVER_SCHEMA_VERSION = 31 VALUE_UNKNOWN = "unknown" NOT_INTERVIEWED = "None" INTERVIEW_FAILED = "Failed" CURRENT_STATE_PROPERTY = "currentState" TARGET_STATE_PROPERTY = "targetState" CURRENT_VALUE_PROPERTY = "currentValue" TARGET_VALUE_PROPERTY = "targetValue" DURATION_PROPERTY = "duration" TRANSITION_DURATION_OPTION = "transitionDuration" VOLUME_OPTION = "volume" class CommandStatus(str, Enum): """Status of a command sent to zwave-js-server.""" ACCEPTED = "accepted" QUEUED = "queued" # Multiple inheritance so that LogLevel will JSON serialize properly # Reference: https://stackoverflow.com/a/51976841 class LogLevel(str, Enum): """Enum for log levels used by node-zwave-js.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/log/shared.ts#L12 # https://github.com/winstonjs/triple-beam/blame/master/config/npm.js#L14 ERROR = "error" WARN = "warn" INFO = "info" HTTP = "http" VERBOSE = "verbose" DEBUG = "debug" SILLY = "silly" class CommandClass(IntEnum): """Enum with all known CommandClasses.""" SENSOR_ALARM = 156 SILENCE_ALARM = 157 SWITCH_ALL = 39 ANTITHEFT = 93 ANTITHEFT_UNLOCK = 126 APPLICATION_CAPABILITY = 87 APPLICATION_STATUS = 34 ASSOCIATION = 133 ASSOCIATION_COMMAND_CONFIGURATION = 155 ASSOCIATION_GRP_INFO = 89 AUTHENTICATION = 161 AUTHENTICATION_MEDIA_WRITE = 162 BARRIER_OPERATOR = 102 BASIC = 32 BASIC_TARIFF_INFO = 54 BASIC_WINDOW_COVERING = 80 BATTERY = 128 SENSOR_BINARY = 48 SWITCH_BINARY = 37 SWITCH_TOGGLE_BINARY = 40 CLIMATE_CONTROL_SCHEDULE = 70 CENTRAL_SCENE = 91 CLOCK = 129 SWITCH_COLOR = 51 CONFIGURATION = 112 CONTROLLER_REPLICATION = 33 CRC_16_ENCAP = 86 DCP_CONFIG = 58 DCP_MONITOR = 59 DEVICE_RESET_LOCALLY = 90 DOOR_LOCK = 98 DOOR_LOCK_LOGGING = 76 ENERGY_PRODUCTION = 144 ENTRY_CONTROL = 111 FIRMWARE_UPDATE_MD = 122 GENERIC_SCHEDULE = 163 GEOGRAPHIC_LOCATION = 140 GROUPING_NAME = 123 HAIL = 130 HRV_STATUS = 55 HRV_CONTROL = 57 HUMIDITY_CONTROL_MODE = 109 HUMIDITY_CONTROL_OPERATING_STATE = 110 HUMIDITY_CONTROL_SETPOINT = 100 INCLUSION_CONTROLLER = 116 INDICATOR = 135 IP_ASSOCIATION = 92 IP_CONFIGURATION = 154 IR_REPEATER = 160 IRRIGATION = 107 LANGUAGE = 137 LOCK = 118 MAILBOX = 105 MANUFACTURER_PROPRIETARY = 145 MANUFACTURER_SPECIFIC = 114 MARK = 239 METER = 50 METER_TBL_CONFIG = 60 METER_TBL_MONITOR = 61 METER_TBL_PUSH = 62 MTP_WINDOW_COVERING = 81 MULTI_CHANNEL = 96 MULTI_CHANNEL_ASSOCIATION = 142 MULTI_CMD = 143 SENSOR_MULTILEVEL = 49 SWITCH_MULTILEVEL = 38 SWITCH_TOGGLE_MULTILEVEL = 41 NETWORK_MANAGEMENT_BASIC = 77 NETWORK_MANAGEMENT_INCLUSION = 52 NETWORK_MANAGEMENT_INSTALLATION_MAINTENANCE = 103 NETWORK_MANAGEMENT_PRIMARY = 84 NETWORK_MANAGEMENT_PROXY = 82 NO_OPERATION = 0 NODE_NAMING = 119 NODE_PROVISIONING = 120 NOTIFICATION = 113 POWERLEVEL = 115 PREPAYMENT = 63 PREPAYMENT_ENCAPSULATION = 65 PROPRIETARY = 136 PROTECTION = 117 METER_PULSE = 53 RATE_TBL_CONFIG = 72 RATE_TBL_MONITOR = 73 REMOTE_ASSOCIATION_ACTIVATE = 124 REMOTE_ASSOCIATION = 125 SCENE_ACTIVATION = 43 SCENE_ACTUATOR_CONF = 44 SCENE_CONTROLLER_CONF = 45 SCHEDULE = 83 SCHEDULE_ENTRY_LOCK = 78 SCREEN_ATTRIBUTES = 147 SCREEN_MD = 146 SECURITY = 152 SECURITY_2 = 159 SECURITY_SCHEME0_MARK = 61696 SENSOR_CONFIGURATION = 158 SIMPLE_AV_CONTROL = 148 SOUND_SWITCH = 121 SUPERVISION = 108 TARIFF_CONFIG = 74 TARIFF_TBL_MONITOR = 75 THERMOSTAT_FAN_MODE = 68 THERMOSTAT_FAN_STATE = 69 THERMOSTAT_MODE = 64 THERMOSTAT_OPERATING_STATE = 66 THERMOSTAT_SETBACK = 71 THERMOSTAT_SETPOINT = 67 TIME = 138 TIME_PARAMETERS = 139 TRANSPORT_SERVICE = 85 USER_CODE = 99 VERSION = 134 WAKE_UP = 132 WINDOW_COVERING = 106 ZIP = 35 ZIP_6LOWPAN = 79 ZIP_GATEWAY = 95 ZIP_NAMING = 104 ZIP_ND = 88 ZIP_PORTAL = 97 ZWAVEPLUS_INFO = 94 class ProtocolVersion(IntEnum): """Protocol version.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/Types.ts#L149 UNKNOWN = 0 VERSION_2_0 = 1 VERSION_4_2X_OR_5_0X = 2 VERSION_4_5X_OR_6_0X = 3 class NodeStatus(IntEnum): """Enum with all Node status values.""" # https://zwave-js.github.io/node-zwave-js/#/api/node?id=status UNKNOWN = 0 ASLEEP = 1 AWAKE = 2 DEAD = 3 ALIVE = 4 class ConfigurationValueType(str, Enum): """Enum for configuration value types.""" BOOLEAN = "boolean" ENUMERATED = "enumerated" MANUAL_ENTRY = "manual_entry" RANGE = "range" UNDEFINED = "undefined" class NodeType(IntEnum): """Enum with all Node types.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/capabilities/NodeInfo.ts#L151-L156 CONTROLLER = 0 END_NODE = 1 # Exclusion enums class ExclusionStrategy(IntEnum): """Enum with all exclusion strategies.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L49-L56 EXCLUDE_ONLY = 0 DISABLE_PROVISIONING_ENTRY = 1 UNPROVISION = 2 # Inclusion enums class InclusionStrategy(IntEnum): """Enum for all known inclusion strategies.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L9-L46 DEFAULT = 0 SMART_START = 1 INSECURE = 2 SECURITY_S0 = 3 SECURITY_S2 = 4 class SecurityClass(IntEnum): """Enum for all known security classes.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/security/SecurityClass.ts#L3-L17 NONE = -1 S2_UNAUTHENTICATED = 0 S2_AUTHENTICATED = 1 S2_ACCESS_CONTROL = 2 S0_LEGACY = 7 class QRCodeVersion(IntEnum): """Enum for all known QR Code versions.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/security/QR.ts#L43-L46 S2 = 0 SMART_START = 1 class Protocols(IntEnum): """Enum for all known protocols.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/capabilities/Protocols.ts#L1-L4 ZWAVE = 0 ZWAVE_LONG_RANGE = 1 # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/security/QR.ts#L41 MINIMUM_QR_STRING_LENGTH = 52 class ZwaveFeature(IntEnum): """Enum for all known Zwave features.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Features.ts#L4 SMART_START = 0 class PowerLevel(IntEnum): """Enum for all known power levels.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/PowerlevelCC.ts#L38 NORMAL_POWER = 0 DBM_MINUS_1 = 1 DBM_MINUS_2 = 2 DBM_MINUS_3 = 3 DBM_MINUS_4 = 4 DBM_MINUS_5 = 5 DBM_MINUS_6 = 6 DBM_MINUS_7 = 7 DBM_MINUS_8 = 8 DBM_MINUS_9 = 9 class InclusionState(IntEnum): """Enum for all known inclusion states.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L154 IDLE = 0 INCLUDING = 1 EXCLUDING = 2 BUSY = 3 SMART_START = 4 class RFRegion(IntEnum): """Enum for all known RF regions.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/serialapi/misc/SerialAPISetupMessages.ts#L41 EUROPE = 0 USA = 1 AUSTRALIA_AND_NEW_ZEALAND = 2 HONG_KONG = 3 INDIA = 5 ISRAEL = 6 RUSSIA = 7 CHINA = 8 USA_LONG_RANGE = 9 JAPAN = 32 KOREA = 33 UNKNOWN = 254 DEFAULT_EU = 255 class ProtocolDataRate(IntEnum): """Enum for all known protocol data rates.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/capabilities/Protocols.ts#L6 ZWAVE_9K6 = 1 ZWAVE_40K = 2 ZWAVE_100K = 3 LONG_RANGE_100K = 4 class RssiError(IntEnum): """Enum for all known RSSI errors.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/SendDataShared.ts#L79 NOT_AVAILABLE = 127 RECEIVER_SATURATED = 126 NO_SIGNAL_DETECTED = 125 class ProvisioningEntryStatus(IntEnum): """Enum for all known provisioning entry statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L136 ACTIVE = 0 INACTIVE = 1 class SecurityBootstrapFailure(IntEnum): """Enum with all security bootstrap failure reasons.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L16 USER_CANCELED = 0 NO_KEYS_CONFIGURED = 1 S2_NO_USER_CALLBACKS = 2 TIMEOUT = 3 PARAMETER_MISMATCH = 4 NODE_CANCELED = 5 S2_INCORRECT_PIN = 6 S2_WRONG_SECURITY_LEVEL = 7 UNKNOWN = 8 class SetValueStatus(IntEnum): """Enum for all known setValue statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/cc/src/lib/API.ts#L83 # The device reports no support for this command NO_DEVICE_SUPPORT = 0 # The device has accepted the command and is working on it WORKING = 1 # The device has rejected the command FAIL = 2 # The endpoint specified in the value ID does not exist ENDPOINT_NOT_FOUND = 3 # The given CC or its API is not implemented (yet) or it has no `setValue` implementation NOT_IMPLEMENTED = 4 # The value to set (or a related value) is invalid INVALID_VALUE = 5 # The command was sent successfully, but it is unknown whether it was executed SUCCESS_UNSUPERVISED = 254 # The device has executed the command successfully SUCCESS = 255 SET_VALUE_SUCCESS = ( SetValueStatus.SUCCESS, SetValueStatus.SUCCESS_UNSUPERVISED, SetValueStatus.WORKING, ) class RemoveNodeReason(IntEnum): """Enum for all known reasons why a node was removed.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L266 # The node was excluded by the user or an inclusion controller EXCLUDED = 0 # The node was excluded by an inclusion controller PROXY_EXCLUDED = 1 # The node was removed using the "remove failed node" feature REMOVE_FAILED = 2 # The node was replaced using the "replace failed node" feature REPLACED = 3 # The node was replaced by an inclusion controller PROXY_REPLACED = 4 # The node was reset locally and was auto-removed RESET = 5 # SmartStart inclusion failed, and the node was auto-removed as a result. SMART_START_FAILED = 6 class Weekday(IntEnum): """Enum for all known weekdays.""" UNKNOWN = 0 MONDAY = 1 TUESDAY = 2 WEDNESDAY = 3 THURSDAY = 4 FRIDAY = 5 SATURDAY = 6 SUNDAY = 7 class DateAndTimeDataType(TypedDict, total=False): """Represent a date and time data type.""" hour: int minute: int weekday: int second: int year: int month: int day: int dstOffset: int standardOffset: int @dataclass class DateAndTime: """Represent a date and time.""" data: DateAndTimeDataType hour: int | None = field(init=False) minute: int | None = field(init=False) weekday: Weekday | None = field(default=None, init=False) second: int | None = field(init=False) year: int | None = field(init=False) month: int | None = field(init=False) day: int | None = field(init=False) dst_offset: int | None = field(init=False) standard_offset: int | None = field(init=False) def __post_init__(self) -> None: """Post initialization.""" self.hour = self.data.get("hour") self.minute = self.data.get("minute") if weekday := self.data.get("weekday"): self.weekday = Weekday(weekday) self.second = self.data.get("second") self.year = self.data.get("year") self.month = self.data.get("month") self.day = self.data.get("day") self.dst_offset = self.data.get("dstOffset") self.standard_offset = self.data.get("standardOffset") class ControllerStatus(IntEnum): """Enum for all known controller statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/core/src/consts/ControllerStatus.TS # The controller is ready to accept commands and transmit READY = 0 # The controller is unresponsive UNRESPONSIVE = 1 # The controller is unable to transmit JAMMED = 2
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/const/__init__.py
__init__.py
from __future__ import annotations from enum import IntEnum THERMOSTAT_MODE_PROPERTY = "mode" THERMOSTAT_SETPOINT_PROPERTY = "setpoint" THERMOSTAT_OPERATING_STATE_PROPERTY = "state" THERMOSTAT_CURRENT_TEMP_PROPERTY = "Air temperature" THERMOSTAT_HUMIDITY_PROPERTY = "Humidity" THERMOSTAT_FAN_MODE_PROPERTY = "mode" THERMOSTAT_FAN_OFF_PROPERTY = "off" THERMOSTAT_FAN_STATE_PROPERTY = "state" class ThermostatMode(IntEnum): """Enum with all (known/used) Z-Wave ThermostatModes.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/ThermostatModeCC.ts#L53-L70 OFF = 0 HEAT = 1 COOL = 2 AUTO = 3 AUXILIARY = 4 RESUME_ON = 5 FAN = 6 FURNACE = 7 DRY = 8 MOIST = 9 AUTO_CHANGE_OVER = 10 HEATING_ECON = 11 COOLING_ECON = 12 AWAY = 13 FULL_POWER = 15 MANUFACTURER_SPECIFIC = 31 class ThermostatOperatingState(IntEnum): """Enum with all (known/used) Z-Wave Thermostat OperatingStates.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/ThermostatOperatingStateCC.ts#L38-L51 IDLE = 0 HEATING = 1 COOLING = 2 FAN_ONLY = 3 PENDING_HEAT = 4 PENDING_COOL = 5 VENT_ECONOMIZER = 6 AUX_HEATING = 7 SECOND_STAGE_HEATING = 8 SECOND_STAGE_COOLING = 9 SECOND_STAGE_AUX_HEAT = 10 THIRD_STAGE_AUX_HEAT = 11 class ThermostatSetpointType(IntEnum): """ Enum with all (known/used) Z-Wave Thermostat Setpoint Types. Returns tuple of (property_key, property_key_name). """ # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/ThermostatSetpointCC.ts#L53-L66 NA = 0 HEATING = 1 COOLING = 2 FURNACE = 7 DRY_AIR = 8 MOIST_AIR = 9 AUTO_CHANGEOVER = 10 ENERGY_SAVE_HEATING = 11 ENERGY_SAVE_COOLING = 12 AWAY_HEATING = 13 AWAY_COOLING = 14 FULL_POWER = 15 THERMOSTAT_MODE_SETPOINT_MAP: dict[int, list[ThermostatSetpointType]] = { ThermostatMode.OFF: [], ThermostatMode.HEAT: [ThermostatSetpointType.HEATING], ThermostatMode.COOL: [ThermostatSetpointType.COOLING], ThermostatMode.AUTO: [ ThermostatSetpointType.HEATING, ThermostatSetpointType.COOLING, ], ThermostatMode.AUXILIARY: [ThermostatSetpointType.HEATING], ThermostatMode.FURNACE: [ThermostatSetpointType.FURNACE], ThermostatMode.DRY: [ThermostatSetpointType.DRY_AIR], ThermostatMode.MOIST: [ThermostatSetpointType.MOIST_AIR], ThermostatMode.AUTO_CHANGE_OVER: [ThermostatSetpointType.AUTO_CHANGEOVER], ThermostatMode.HEATING_ECON: [ThermostatSetpointType.ENERGY_SAVE_HEATING], ThermostatMode.COOLING_ECON: [ThermostatSetpointType.ENERGY_SAVE_COOLING], ThermostatMode.AWAY: [ ThermostatSetpointType.AWAY_HEATING, ThermostatSetpointType.AWAY_COOLING, ], ThermostatMode.FULL_POWER: [ThermostatSetpointType.FULL_POWER], }
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/const/command_class/thermostat.py
thermostat.py
from __future__ import annotations from enum import IntEnum VALUE_PROPERTY = "value" CC_SPECIFIC_SCALE = "scale" CC_SPECIFIC_METER_TYPE = "meterType" CC_SPECIFIC_RATE_TYPE = "rateType" RESET_METER_CC_API = "reset" # optional attributes when calling the Meter CC reset API. # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/MeterCC.ts#L873-L881 RESET_METER_OPTION_TARGET_VALUE = "targetValue" RESET_METER_OPTION_TYPE = "type" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/config/config/meters.json class MeterType(IntEnum): """Enum with all known meter types.""" ELECTRIC = 1 GAS = 2 WATER = 3 HEATING = 4 COOLING = 5 class MeterScaleType(IntEnum): """Common base class for meter scale enums.""" class ElectricScale(MeterScaleType): """Enum with all known electric meter scale values.""" KILOWATT_HOUR = 0 KILOVOLT_AMPERE_HOUR = 1 WATT = 2 PULSE_COUNT = 3 VOLT = 4 AMPERE = 5 POWER_FACTOR = 6 KILOVOLT_AMPERE_REACTIVE = 7 KILOVOLT_AMPERE_REACTIVE_HOUR = 8 class GasScale(MeterScaleType): """Enum with all known gas meter scale values.""" CUBIC_METER = 0 CUBIC_FEET = 1 PULSE_COUNT = 3 class WaterScale(MeterScaleType): """Enum with all known water meter scale values.""" CUBIC_METER = 0 CUBIC_FEET = 1 US_GALLON = 2 PULSE_COUNT = 3 class HeatingScale(MeterScaleType): """Enum with all known heating meter scale values.""" KILOWATT_HOUR = 0 CoolingScale = HeatingScale METER_TYPE_TO_SCALE_ENUM_MAP: dict[MeterType, type[MeterScaleType]] = { MeterType.ELECTRIC: ElectricScale, MeterType.GAS: GasScale, MeterType.WATER: WaterScale, MeterType.HEATING: HeatingScale, MeterType.COOLING: CoolingScale, } ENERGY_TOTAL_INCREASING_METER_TYPES: list[MeterScaleType] = [ ElectricScale.KILOWATT_HOUR, ElectricScale.KILOVOLT_AMPERE_HOUR, ElectricScale.KILOVOLT_AMPERE_REACTIVE_HOUR, HeatingScale.KILOWATT_HOUR, CoolingScale.KILOWATT_HOUR, ElectricScale.PULSE_COUNT, ] POWER_METER_TYPES: list[MeterScaleType] = [ ElectricScale.WATT, ElectricScale.KILOVOLT_AMPERE_REACTIVE, ] POWER_FACTOR_METER_TYPES: list[MeterScaleType] = [ElectricScale.POWER_FACTOR] VOLTAGE_METER_TYPES: list[MeterScaleType] = [ElectricScale.VOLT] CURRENT_METER_TYPES: list[MeterScaleType] = [ElectricScale.AMPERE] GAS_METER_TYPES: list[MeterScaleType] = [ GasScale.CUBIC_METER, GasScale.CUBIC_FEET, GasScale.PULSE_COUNT, ] WATER_METER_TYPES: list[MeterScaleType] = [ WaterScale.CUBIC_METER, WaterScale.CUBIC_FEET, WaterScale.US_GALLON, WaterScale.PULSE_COUNT, ] UNIT_KILOWATT_HOUR: list[MeterScaleType] = [ ElectricScale.KILOWATT_HOUR, HeatingScale.KILOWATT_HOUR, CoolingScale.KILOWATT_HOUR, ] UNIT_KILOVOLT_AMPERE_HOUR: list[MeterScaleType] = [ElectricScale.KILOVOLT_AMPERE_HOUR] UNIT_WATT: list[MeterScaleType] = [ElectricScale.WATT] UNIT_PULSE_COUNT: list[MeterScaleType] = [ ElectricScale.PULSE_COUNT, GasScale.PULSE_COUNT, WaterScale.PULSE_COUNT, ] UNIT_VOLT: list[MeterScaleType] = [ElectricScale.VOLT] UNIT_AMPERE: list[MeterScaleType] = [ElectricScale.AMPERE] UNIT_POWER_FACTOR: list[MeterScaleType] = [ElectricScale.POWER_FACTOR] UNIT_KILOVOLT_AMPERE_REACTIVE: list[MeterScaleType] = [ ElectricScale.KILOVOLT_AMPERE_REACTIVE ] UNIT_KILOVOLT_AMPERE_REACTIVE_HOUR: list[MeterScaleType] = [ ElectricScale.KILOVOLT_AMPERE_REACTIVE_HOUR ] UNIT_CUBIC_METER: list[MeterScaleType] = [GasScale.CUBIC_METER, WaterScale.CUBIC_METER] UNIT_CUBIC_FEET: list[MeterScaleType] = [GasScale.CUBIC_FEET, WaterScale.CUBIC_FEET] UNIT_US_GALLON: list[MeterScaleType] = [WaterScale.US_GALLON]
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/const/command_class/meter.py
meter.py
from __future__ import annotations from enum import Enum, IntEnum from .. import CommandClass class DoorLockMode(IntEnum): """Enum with all (known/used) Z-Wave lock states for CommandClass.DOOR_LOCK.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/commandclass/DoorLockCC.ts#L56-L65 UNSECURED = 0 UNSECURED_WITH_TIMEOUT = 1 INSIDE_UNSECURED = 2 INSIDE_UNSECURED_WITH_TIMEOUT = 3 OUTSIDE_UNSECURED = 4 OUTSIDE_UNSECURED_WITH_TIMEOUT = 5 UNKNOWN = 254 SECURED = 255 class OperationType(IntEnum): """Enum with all (known/used) Z-Wave lock operation types.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/cc/src/lib/_Types.ts#L496 CONSTANT = 1 TIMED = 2 DOOR_LOCK_CC_UNSECURED_MAP = { OperationType.CONSTANT: { DoorLockMode.UNSECURED, DoorLockMode.INSIDE_UNSECURED, DoorLockMode.OUTSIDE_UNSECURED, }, OperationType.TIMED: { DoorLockMode.UNSECURED_WITH_TIMEOUT, DoorLockMode.INSIDE_UNSECURED_WITH_TIMEOUT, DoorLockMode.OUTSIDE_UNSECURED_WITH_TIMEOUT, }, } class LatchStatus(str, Enum): """Enum with all (known/used) Z-Wave latch statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/cc/src/cc/DoorLockCC.ts#L854 OPEN = "open" CLOSED = "closed" class BoltStatus(str, Enum): """Enum with all (known/used) Z-Wave bolt statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/cc/src/cc/DoorLockCC.ts#L854 LOCKED = "locked" UNLOCKED = "unlocked" class DoorStatus(str, Enum): """Enum with all (known/used) Z-Wave door statuses.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/cc/src/cc/DoorLockCC.ts#L854 OPEN = "open" CLOSED = "closed" class CodeSlotStatus(IntEnum): """Enum with all (known/used) Z-Wave code slot statuses.""" AVAILABLE = 0 ENABLED = 1 DISABLED = 2 # Depending on the Command Class being used by the lock, the lock state is # different so we need a map to track it LOCK_CMD_CLASS_TO_LOCKED_STATE_MAP = { CommandClass.DOOR_LOCK: DoorLockMode.SECURED, CommandClass.LOCK: True, } # Door Lock CC value constants BOLT_STATUS_PROPERTY = "boltStatus" CURRENT_AUTO_RELOCK_TIME_PROPERTY = "autoRelockTime" CURRENT_BLOCK_TO_BLOCK_PROPERTY = "blockToBlock" CURRENT_HOLD_AND_RELEASE_TIME_PROPERTY = "holdAndReleaseTime" CURRENT_INSIDE_HANDLES_CAN_OPEN_DOOR_PROPERTY = "insideHandlesCanOpenDoor" CURRENT_LOCK_TIMEOUT_PROPERTY = "lockTimeout" CURRENT_MODE_PROPERTY = "currentMode" CURRENT_OPERATION_TYPE_PROPERTY = "operationType" CURRENT_OUTSIDE_HANDLES_CAN_OPEN_DOOR_PROPERTY = "outsideHandlesCanOpenDoor" CURRENT_TWIST_ASSIST_PROPERTY = "twistAssist" DOOR_STATUS_PROPERTY = "doorStatus" LATCH_STATUS_PROPERTY = "latchStatus" TARGET_MODE_PROPERTY = "targetMode" # Door Lock CC configuration constants TARGET_AUTO_RELOCK_TIME_PROPERTY = CURRENT_AUTO_RELOCK_TIME_PROPERTY TARGET_BLOCK_TO_BLOCK_PROPERTY = CURRENT_BLOCK_TO_BLOCK_PROPERTY TARGET_HOLD_AND_RELEASE_TIME_PROPERTY = CURRENT_HOLD_AND_RELEASE_TIME_PROPERTY TARGET_INSIDE_HANDLES_CAN_OPEN_DOOR_PROPERTY = "insideHandlesCanOpenDoorConfiguration" TARGET_LOCK_TIMEOUT_PROPERTY = "lockTimeoutConfiguration" TARGET_OPERATION_TYPE_PROPERTY = CURRENT_OPERATION_TYPE_PROPERTY TARGET_OUTSIDE_HANDLES_CAN_OPEN_DOOR_PROPERTY = "outsideHandlesCanOpenDoorConfiguration" TARGET_TWIST_ASSIST_PROPERTY = CURRENT_TWIST_ASSIST_PROPERTY # Lock CC constants LOCKED_PROPERTY = "locked" # User Code CC constants LOCK_USERCODE_PROPERTY = "userCode" LOCK_USERCODE_STATUS_PROPERTY = "userIdStatus" ATTR_CODE_SLOT = "code_slot" ATTR_IN_USE = "in_use" ATTR_NAME = "name" ATTR_USERCODE = "usercode" # Depending on the Command Class being used by the lock, the locked state property # is different so we need a map to track it LOCK_CMD_CLASS_TO_PROPERTY_MAP = { CommandClass.DOOR_LOCK: TARGET_MODE_PROPERTY, CommandClass.LOCK: LOCKED_PROPERTY, }
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/const/command_class/lock.py
lock.py
from __future__ import annotations import logging from typing import cast from ..const import CommandClass, CommandStatus, ConfigurationValueType, SetValueStatus from ..exceptions import ( BulkSetConfigParameterFailed, InvalidNewValue, NotFoundError, SetValueFailed, ValueTypeError, ) from ..model.node import Node from ..model.value import ConfigurationValue, SetValueResult, get_value_id_str _LOGGER = logging.getLogger(__name__) def dump_node_state(node: Node) -> dict: """Get state from a node.""" return { **node.data, "values": {value_id: value.data for value_id, value in node.values.items()}, "endpoints": {idx: endpoint.data for idx, endpoint in node.endpoints.items()}, } def partial_param_bit_shift(property_key: int) -> int: """Get the number of bits to shift the value for a given property key.""" # We can get the binary representation of the property key, reverse it, # and find the first 1 return bin(property_key)[::-1].index("1") async def async_set_config_parameter( node: Node, new_value: int | str, property_or_property_name: int | str, property_key: int | str | None = None, endpoint: int = 0, ) -> tuple[ConfigurationValue, CommandStatus]: """ Set a value for a config parameter on this node. new_value and property_ can be provided as labels, so we need to resolve them to the appropriate key """ config_values = node.get_configuration_values() # If a property name is provided, we have to search for the correct value since # we can't use value ID if isinstance(property_or_property_name, str): try: zwave_value = next( config_value for config_value in config_values.values() if config_value.property_name == property_or_property_name and config_value.endpoint == endpoint ) except StopIteration: raise NotFoundError( "Configuration parameter with parameter name " f"{property_or_property_name} on node {node} endpoint {endpoint} " "could not be found" ) from None else: value_id = get_value_id_str( node, CommandClass.CONFIGURATION, property_or_property_name, endpoint=endpoint, property_key=property_key, ) if value_id not in config_values: raise NotFoundError( f"Configuration parameter with value ID {value_id} could not be " "found" ) from None zwave_value = config_values[value_id] new_value = _validate_and_transform_new_value(zwave_value, new_value) # Finally attempt to set the value and return the Value object if successful result = await node.async_set_value(zwave_value, new_value) if result and result.status not in ( SetValueStatus.WORKING, SetValueStatus.SUCCESS, SetValueStatus.SUCCESS_UNSUPERVISED, ): raise SetValueFailed(str(result)) status = CommandStatus.ACCEPTED if result is not None else CommandStatus.QUEUED return zwave_value, status async def async_bulk_set_partial_config_parameters( node: Node, property_: int, new_value: int | dict[int | str, int | str], endpoint: int = 0, ) -> CommandStatus: """Bulk set partial configuration values on this node.""" config_values = node.get_configuration_values() partial_param_values = { value_id: value for value_id, value in config_values.items() if value.property_ == property_ and value.endpoint == endpoint and value.property_key is not None } if not partial_param_values: # If we find a value with this property_, we know this value isn't split # into partial params if ( get_value_id_str( node, CommandClass.CONFIGURATION, property_, endpoint=endpoint ) in config_values ): # If the new value is provided as a dict, we don't have enough information # to set the parameter. if isinstance(new_value, dict): raise ValueTypeError( f"Configuration parameter {property_} for node {node.node_id} " f"endpoint {endpoint} does not have partials" ) # If the new value is provided as an int, we may as well try to set it # using the standard utility function _LOGGER.info( "Falling back to async_set_config_parameter because no partials " "were found" ) _, cmd_status = await async_set_config_parameter( node, new_value, property_, endpoint=endpoint ) return cmd_status # Otherwise if we can't find any values with this property, this config # parameter does not exist raise NotFoundError( f"Configuration parameter {property_} for node {node.node_id} endpoint " f"{endpoint} not found" ) # If new_value is a dictionary, we need to calculate the full value to send if isinstance(new_value, dict): new_value = _get_int_from_partials_dict( node, partial_param_values, property_, new_value, endpoint=endpoint ) else: _validate_raw_int(partial_param_values, new_value) cmd_response = await node.async_send_command( "set_value", valueId={ "commandClass": CommandClass.CONFIGURATION.value, "endpoint": endpoint, "property": property_, }, value=new_value, require_schema=29, ) # If we didn't wait for a response, we assume the command has been queued if cmd_response is None: return CommandStatus.QUEUED result = SetValueResult(cmd_response["result"]) if result.status not in ( SetValueStatus.WORKING, SetValueStatus.SUCCESS, SetValueStatus.SUCCESS_UNSUPERVISED, ): raise SetValueFailed(str(result)) return CommandStatus.ACCEPTED def _validate_and_transform_new_value( zwave_value: ConfigurationValue, new_value: int | str ) -> int: """Validate a new value and return the integer value to set.""" # If needed, convert a state label to its key. We know the state exists because # of the validation above. if isinstance(new_value, str): try: new_value = int( next( key for key, label in zwave_value.metadata.states.items() if label == new_value ) ) except StopIteration: raise InvalidNewValue( f"State '{new_value}' not found for parameter {zwave_value.value_id}" ) from None if zwave_value.configuration_value_type == ConfigurationValueType.UNDEFINED: # We need to use the Configuration CC API to set the value for this type raise NotImplementedError("Configuration values of undefined type can't be set") return new_value def _bulk_set_validate_and_transform_new_value( zwave_value: ConfigurationValue, property_key: int, new_partial_value: int | str ) -> int: """ Validate and transform new value for a bulk set function call. Returns a bulk set friendly error if validation fails. """ try: return _validate_and_transform_new_value(zwave_value, new_partial_value) except (InvalidNewValue, NotImplementedError) as err: raise BulkSetConfigParameterFailed( f"Config parameter {zwave_value.value_id} failed validation on partial " f"parameter {property_key}" ) from err def _get_int_from_partials_dict( node: Node, partial_param_values: dict[str, ConfigurationValue], property_: int, new_value: dict[int | str, int | str], endpoint: int = 0, ) -> int: """Take an input dict for a set of partial values and compute the raw int value.""" int_value = 0 provided_partial_values = [] # For each property key provided, we bit shift the partial value using the # property_key for property_key_or_name, partial_value in new_value.items(): # If the dict key is a property key, we can generate the value ID to find the # partial value if isinstance(property_key_or_name, int): value_id = get_value_id_str( node, CommandClass.CONFIGURATION, property_, property_key=property_key_or_name, endpoint=endpoint, ) if value_id not in partial_param_values: raise NotFoundError( f"Bitmask {property_key_or_name} ({hex(property_key_or_name)}) " f"not found for parameter {property_} on node {node} endpoint " f"{endpoint}" ) zwave_value = partial_param_values[value_id] # If the dict key is a property name, we have to find the value from the list # of partial param values else: try: zwave_value = next( value for value in partial_param_values.values() if value.property_name == property_key_or_name and value.endpoint == endpoint ) except StopIteration: raise NotFoundError( f"Partial parameter with label '{property_key_or_name}'" f"not found for parameter {property_} on node {node} endpoint " f"{endpoint}" ) from None provided_partial_values.append(zwave_value) property_key = cast(int, zwave_value.property_key) partial_value = _bulk_set_validate_and_transform_new_value( zwave_value, property_key, partial_value ) int_value += partial_value << partial_param_bit_shift(property_key) # To set partial parameters in bulk, we also have to include cached values for # property keys that haven't been specified missing_values = set(partial_param_values.values()) - set(provided_partial_values) int_value += sum( cast(int, property_value.value) << partial_param_bit_shift(cast(int, property_value.property_key)) for property_value in missing_values ) return int_value def _validate_raw_int( partial_param_values: dict[str, ConfigurationValue], new_value: int ) -> None: """ Validate raw value against all partial values. Raises if a partial value in the raw value is invalid. """ # Break down the bulk value into partial values and validate them against # each partial parameter's metadata by looping through the property values # starting with the highest property key for zwave_value in sorted( partial_param_values.values(), key=lambda val: cast(int, val.property_key), reverse=True, ): property_key = cast(int, zwave_value.property_key) multiplication_factor = 2 ** partial_param_bit_shift(property_key) partial_value = int(new_value / multiplication_factor) new_value = new_value % multiplication_factor _bulk_set_validate_and_transform_new_value( zwave_value, property_key, partial_value )
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/util/node.py
node.py
from __future__ import annotations from typing import Any, cast from ..client import Client from ..const import CommandClass from ..model.node import Node, _get_value_id_dict_from_value_data from ..model.value import SetValueResult, ValueDataType async def _async_send_command( client: Client, command: str, nodes: list[Node] | None = None, require_schema: int | None = None, **kwargs: Any, ) -> dict: """Send a multicast command.""" if nodes: cmd = { "command": f"multicast_group.{command}", "nodeIDs": [node.node_id for node in nodes], **kwargs, } else: cmd = {"command": f"broadcast_node.{command}", **kwargs} return await client.async_send_command(cmd, require_schema) async def async_multicast_set_value( client: Client, new_value: Any, value_data: ValueDataType, nodes: list[Node] | None = None, options: dict | None = None, ) -> SetValueResult: """Send a multicast set_value command.""" result = await _async_send_command( client, "set_value", nodes, valueId=_get_value_id_dict_from_value_data(value_data), value=new_value, options=options, require_schema=29, ) return SetValueResult(result["result"]) async def async_multicast_get_endpoint_count( client: Client, nodes: list[Node] | None = None ) -> int: """Send a multicast get_endpoint_count command.""" result = await _async_send_command( client, "get_endpoint_count", nodes, require_schema=5 ) return cast(int, result["count"]) async def async_multicast_endpoint_supports_cc( client: Client, endpoint: int, command_class: CommandClass, nodes: list[Node] | None = None, ) -> bool: """Send a supports_cc command to a multicast endpoint.""" result = await _async_send_command( client, "supports_cc", nodes, index=endpoint, commandClass=command_class, require_schema=5, ) return cast(bool, result["supported"]) async def async_multicast_endpoint_get_cc_version( client: Client, endpoint: int, command_class: CommandClass, nodes: list[Node] | None = None, ) -> int: """Send a get_cc_version command to a multicast endpoint.""" result = await _async_send_command( client, "get_cc_version", nodes, index=endpoint, commandClass=command_class, require_schema=5, ) return cast(int, result["version"]) async def async_multicast_endpoint_invoke_cc_api( client: Client, endpoint: int, command_class: CommandClass, method_name: str, args: list[Any] | None = None, nodes: list[Node] | None = None, ) -> Any: """Send a invoke_cc_api command to a multicast endpoint.""" result = await _async_send_command( client, "invoke_cc_api", nodes, index=endpoint, commandClass=command_class, methodName=method_name, args=args, require_schema=5, ) return result["response"] async def async_multicast_endpoint_supports_cc_api( client: Client, endpoint: int, command_class: CommandClass, nodes: list[Node] | None = None, ) -> bool: """Send a supports_cc_api command to a multicast endpoint.""" result = await _async_send_command( client, "supports_cc_api", nodes, index=endpoint, commandClass=command_class, require_schema=5, ) return cast(bool, result["supported"])
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/util/multicast.py
multicast.py
from __future__ import annotations from typing import TypedDict, cast from ..const import CommandClass from ..const.command_class.lock import ( ATTR_CODE_SLOT, ATTR_IN_USE, ATTR_NAME, ATTR_USERCODE, LOCK_USERCODE_PROPERTY, LOCK_USERCODE_STATUS_PROPERTY, CodeSlotStatus, ) from ..exceptions import NotFoundError from ..model.node import Node from ..model.value import SetValueResult, Value, get_value_id_str def get_code_slot_value(node: Node, code_slot: int, property_name: str) -> Value: """Get a code slot value.""" value = node.values.get( get_value_id_str( node, CommandClass.USER_CODE, property_name, endpoint=0, property_key=code_slot, ) ) if not value: raise NotFoundError(f"{property_name} for code slot {code_slot} not found") return value class CodeSlot(TypedDict, total=False): """Represent a code slot.""" code_slot: int # required name: str # required in_use: bool | None # required usercode: str | None def _get_code_slots(node: Node, include_usercode: bool = False) -> list[CodeSlot]: """Get all code slots on the lock and optionally include usercode.""" code_slot = 1 slots: list[CodeSlot] = [] # Loop until we can't find a code slot while True: try: value = get_code_slot_value(node, code_slot, LOCK_USERCODE_PROPERTY) status_value = get_code_slot_value( node, code_slot, LOCK_USERCODE_STATUS_PROPERTY ) except NotFoundError: return slots code_slot = int(value.property_key) # type: ignore in_use = ( None if status_value.value is None else status_value.value == CodeSlotStatus.ENABLED ) # we know that code slots will always have a property key # that is an int, so we can ignore mypy slot = { ATTR_CODE_SLOT: code_slot, ATTR_NAME: value.metadata.label, ATTR_IN_USE: in_use, } if include_usercode: slot[ATTR_USERCODE] = value.value slots.append(cast(CodeSlot, slot)) code_slot += 1 def get_code_slots(node: Node) -> list[CodeSlot]: """Get all code slots on the lock and whether or not they are used.""" return _get_code_slots(node, False) def get_usercodes(node: Node) -> list[CodeSlot]: """Get all code slots and usercodes on the lock.""" return _get_code_slots(node, True) def get_usercode(node: Node, code_slot: int) -> CodeSlot: """Get usercode from slot X on the lock.""" value = get_code_slot_value(node, code_slot, LOCK_USERCODE_PROPERTY) status_value = get_code_slot_value(node, code_slot, LOCK_USERCODE_STATUS_PROPERTY) code_slot = int(value.property_key) # type: ignore in_use = ( None if status_value.value is None else status_value.value == CodeSlotStatus.ENABLED ) return cast( CodeSlot, { ATTR_CODE_SLOT: code_slot, ATTR_NAME: value.metadata.label, ATTR_IN_USE: in_use, ATTR_USERCODE: value.value, }, ) async def get_usercode_from_node(node: Node, code_slot: int) -> CodeSlot: """ Fetch a usercode directly from a node. Should be used when Z-Wave JS's ValueDB hasn't been populated for this code slot. This call will populate the ValueDB and trigger value update events from the driver. """ await node.async_invoke_cc_api( CommandClass.USER_CODE, "get", code_slot, wait_for_result=True ) return get_usercode(node, code_slot) async def set_usercode( node: Node, code_slot: int, usercode: str ) -> SetValueResult | None: """Set the usercode to index X on the lock.""" value = get_code_slot_value(node, code_slot, LOCK_USERCODE_PROPERTY) if len(str(usercode)) < 4: raise ValueError("User code must be at least 4 digits") return await node.async_set_value(value, usercode) async def clear_usercode(node: Node, code_slot: int) -> SetValueResult | None: """Clear a code slot on the lock.""" value = get_code_slot_value(node, code_slot, LOCK_USERCODE_STATUS_PROPERTY) return await node.async_set_value(value, CodeSlotStatus.AVAILABLE.value)
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/util/lock.py
lock.py
from __future__ import annotations from dataclasses import dataclass, field from enum import StrEnum from typing import TYPE_CHECKING, Any, TypedDict from ..const import VALUE_UNKNOWN, CommandClass, ConfigurationValueType, SetValueStatus from ..event import Event from ..util.helpers import parse_buffer from .duration import Duration, DurationDataType if TYPE_CHECKING: from .node import Node class ValueType(StrEnum): """Enum with all value types.""" ANY = "any" BOOLEAN = "boolean" NUMBER = "number" STRING = "string" class MetaDataType(TypedDict, total=False): """Represent a metadata data dict type.""" type: str # required readable: bool # required writeable: bool # required description: str label: str min: int | None max: int | None unit: str states: dict[str, str] ccSpecific: dict[str, Any] valueChangeOptions: list[str] allowManualEntry: bool valueSize: int stateful: bool secret: bool class ValueDataType(TypedDict, total=False): """Represent a value data dict type.""" commandClass: int # required commandClassName: str # required endpoint: int property: int | str # required propertyName: str # required propertyKey: int | str propertyKeyName: str value: Any newValue: Any prevValue: Any metadata: MetaDataType # required ccVersion: int # required def _init_value(node: "Node", val: ValueDataType) -> "Value" | "ConfigurationValue": """Initialize a Value object from ValueDataType.""" if val["commandClass"] == CommandClass.CONFIGURATION: return ConfigurationValue(node, val) return Value(node, val) def _get_value_id_str_from_dict(node: "Node", val: ValueDataType) -> str: """Return string ID of value from ValueDataType dict.""" return get_value_id_str( node, val["commandClass"], val["property"], val.get("endpoint"), val.get("propertyKey"), ) def get_value_id_str( node: "Node", command_class: int, property_: int | str, endpoint: int | None = None, property_key: int | str | None = None, ) -> str: """Return string ID of value.""" # If endpoint is not provided, assume root endpoint endpoint_ = endpoint or 0 value_id = f"{node.node_id}-{command_class}-{endpoint_}-{property_}" # Property key is only included when it has a value if property_key is not None: value_id += f"-{property_key}" return value_id class ValueMetadata: """Represent metadata on a value instance.""" def __init__(self, data: MetaDataType) -> None: """Initialize metadata.""" self.data = data @property def type(self) -> str: """Return type.""" return self.data["type"] @property def readable(self) -> bool | None: """Return readable.""" return self.data.get("readable") @property def writeable(self) -> bool | None: """Return writeable.""" return self.data.get("writeable") @property def label(self) -> str | None: """Return label.""" return self.data.get("label") @property def description(self) -> str | None: """Return description.""" return self.data.get("description") @property def min(self) -> int | None: """Return min.""" return self.data.get("min") @property def max(self) -> int | None: """Return max.""" return self.data.get("max") @property def unit(self) -> str | None: """Return unit.""" return self.data.get("unit") @property def states(self) -> dict: """Return (optional) states.""" return self.data.get("states", {}) @property def cc_specific(self) -> dict[str, Any]: """Return ccSpecific.""" return self.data.get("ccSpecific", {}) @property def value_change_options(self) -> list[str]: """Return valueChangeOptions.""" return self.data.get("valueChangeOptions", []) @property def allow_manual_entry(self) -> bool | None: """Return allowManualEntry.""" return self.data.get("allowManualEntry") @property def value_size(self) -> int | None: """Return valueSize.""" return self.data.get("valueSize") @property def stateful(self) -> bool | None: """Return stateful.""" return self.data.get("stateful") @property def secret(self) -> bool | None: """Return secret.""" return self.data.get("secret") def update(self, data: MetaDataType) -> None: """Update data.""" self.data.update(data) class Value: """Represent a Z-Wave JS value.""" def __init__(self, node: "Node", data: ValueDataType) -> None: """Initialize value.""" self.node = node self.data: ValueDataType = {} self._value: Any = None self._metadata = ValueMetadata({"type": "unknown"}) self.update(data) def __repr__(self) -> str: """Return the representation.""" return f"{type(self).__name__}(value_id={self.value_id!r})" def __hash__(self) -> int: """Return the hash.""" return hash((self.node, self.value_id)) def __eq__(self, other: object) -> bool: """Return whether this instance equals another.""" if not isinstance(other, Value): return False return self.node == other.node and self.value_id == other.value_id @property def value_id(self) -> str: """Return value ID.""" return _get_value_id_str_from_dict(self.node, self.data) @property def metadata(self) -> ValueMetadata: """Return value metadata.""" return self._metadata @property def value(self) -> Any | None: """Return value.""" # Treat unknown values like they are None if self._value == VALUE_UNKNOWN: return None return self._value @property def command_class_name(self) -> str: """Return commandClassName.""" return self.data["commandClassName"] @property def command_class(self) -> int: """Return commandClass.""" return self.data["commandClass"] @property def cc_version(self) -> int: """Return commandClass version.""" return self.data["ccVersion"] @property def endpoint(self) -> int | None: """Return endpoint.""" return self.data.get("endpoint") @property def property_(self) -> int | str: """Return property. Note the underscore in the end of this property name. That's there to not confuse Python to think it's a property decorator. """ return self.data["property"] @property def property_key(self) -> int | str | None: """Return propertyKey.""" return self.data.get("propertyKey") @property def property_name(self) -> str | None: """Return propertyName.""" return self.data.get("propertyName") @property def property_key_name(self) -> str | None: """Return propertyKeyName.""" return self.data.get("propertyKeyName") def receive_event(self, event: Event) -> None: """Receive an event.""" self.update(event.data["args"]) def update(self, data: ValueDataType) -> None: """Update data.""" self.data.update(data) self.data.pop("prevValue", None) if "newValue" in self.data: self.data["value"] = self.data.pop("newValue") if "metadata" in data: self._metadata.update(data["metadata"]) self._value = self.data.get("value") # Handle buffer dict and json string in value. if self._value is not None and self.metadata.type == "buffer": self._value = parse_buffer(self._value) class ValueNotification(Value): """ Model for a Value Notification message. https://zwave-js.github.io/node-zwave-js/#/api/node?id=quotvalue-notificationquot """ # format is the same as a Value message, subclassed for easier identifying and future use class ConfigurationValue(Value): """Model for a Configuration Value.""" @property def configuration_value_type(self) -> ConfigurationValueType: """Return configuration value type.""" min_ = self.metadata.min max_ = self.metadata.max states = self.metadata.states allow_manual_entry = self.metadata.allow_manual_entry type_ = self.metadata.type if (max_ == 1 and min_ == 0 or type_ == ValueType.BOOLEAN) and not states: return ConfigurationValueType.BOOLEAN if ( allow_manual_entry and not max_ == min_ == 0 and not (max_ is None and min_ is None) ): return ConfigurationValueType.MANUAL_ENTRY if states: return ConfigurationValueType.ENUMERATED if (max_ is not None or min_ is not None) and not max_ == min_ == 0: return ConfigurationValueType.RANGE return ConfigurationValueType.UNDEFINED class SetValueResultDataType(TypedDict, total=False): """Represent a setValue result data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/v11-dev/packages/cc/src/lib/API.ts#L103 status: int # required remainingDuration: DurationDataType message: str @dataclass class SetValueResult: """Result from setValue command.""" data: SetValueResultDataType status: SetValueStatus = field(init=False) remaining_duration: Duration | None = field(init=False) message: str | None = field(init=False) def __post_init__(self) -> None: """Post init.""" self.status = SetValueStatus(self.data["status"]) self.remaining_duration = ( Duration(duration_data) if (duration_data := self.data.get("remainingDuration")) else None ) self.message = self.data.get("message") def __repr__(self) -> str: """Return the representation.""" status = self.status.name.replace("_", " ").title() if self.status == SetValueStatus.WORKING: assert self.remaining_duration return f"{status} ({self.remaining_duration})" if self.status in ( SetValueStatus.ENDPOINT_NOT_FOUND, SetValueStatus.INVALID_VALUE, SetValueStatus.NOT_IMPLEMENTED, ): assert self.message return f"{status}: {self.message}" return status
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/value.py
value.py
from __future__ import annotations from dataclasses import dataclass, field from typing import Literal, TypedDict from ..const import CommandClass class LogMessageContextDataType(TypedDict, total=False): """Represent a log message context data dict type.""" source: Literal["config", "serial", "controller", "driver"] # required type: Literal["controller", "value", "node"] nodeId: int header: str direction: Literal["inbound", "outbound", "none"] change: Literal["added", "removed", "updated", "notification"] internal: bool endpoint: int commandClass: int property: int | str propertyKey: int | str @dataclass class LogMessageContext: """Represent log message context information.""" data: LogMessageContextDataType source: Literal["config", "serial", "controller", "driver"] = field(init=False) type: Literal["controller", "value", "node"] | None = field(init=False) node_id: int | None = field(init=False) header: str | None = field(init=False) direction: Literal["inbound", "outbound", "none"] | None = field(init=False) change: Literal["added", "removed", "updated", "notification"] | None = field( init=False ) internal: bool | None = field(init=False) endpoint: int | None = field(init=False) command_class: CommandClass | None = field(init=False, default=None) property_: int | str | None = field(init=False) property_key: int | str | None = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.source = self.data["source"] self.type = self.data.get("type") self.node_id = self.data.get("nodeId") self.header = self.data.get("header") self.direction = self.data.get("direction") self.change = self.data.get("change") self.internal = self.data.get("internal") self.endpoint = self.data.get("endpoint") if (command_class := self.data.get("commandClass")) is not None: self.command_class = CommandClass(command_class) self.property_ = self.data.get("property") self.property_key = self.data.get("propertyKey") class LogMessageDataType(TypedDict, total=False): """Represent a log message data dict type.""" source: Literal["driver"] # required event: Literal["logging"] # required message: str | list[str] # required formattedMessage: str | list[str] # required direction: str # required level: str # required context: LogMessageContextDataType # required primaryTags: str secondaryTags: str secondaryTagPadding: int multiline: bool timestamp: str label: str def _process_message(message: str | list[str]) -> list[str]: """Process a message and always return a list.""" if isinstance(message, str): return str(message).splitlines() # We will assume each item in the array is on a separate line so we can # remove trailing line breaks return [message.rstrip("\n") for message in message] @dataclass class LogMessage: """Represent a log message.""" data: LogMessageDataType message: list[str] = field(init=False) formatted_message: list[str] = field(init=False) direction: str = field(init=False) level: str = field(init=False) context: LogMessageContext = field(init=False) primary_tags: str | None = field(init=False) secondary_tags: str | None = field(init=False) secondary_tag_padding: int | None = field(init=False) multiline: bool | None = field(init=False) timestamp: str | None = field(init=False) label: str | None = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.message = _process_message(self.data["message"]) self.formatted_message = _process_message(self.data["formattedMessage"]) self.direction = self.data["direction"] self.level = self.data["level"] self.context = LogMessageContext(self.data["context"]) self.primary_tags = self.data.get("primaryTags") self.secondary_tags = self.data.get("secondaryTags") self.secondary_tag_padding = self.data.get("secondaryTagPadding") self.multiline = self.data.get("multiline") self.timestamp = self.data.get("timestamp") self.label = self.data.get("label")
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/log_message.py
log_message.py
from __future__ import annotations from typing import TYPE_CHECKING, Any, TypedDict, cast from ..const import NodeStatus from ..event import EventBase from ..exceptions import FailedCommand, NotFoundError from .command_class import CommandClass, CommandClassInfo, CommandClassInfoDataType from .device_class import DeviceClass, DeviceClassDataType from .value import ConfigurationValue, Value if TYPE_CHECKING: from ..client import Client from .node.data_model import NodeDataType class EndpointDataType(TypedDict, total=False): """Represent an endpoint data dict type.""" nodeId: int # required index: int # required deviceClass: DeviceClassDataType | None installerIcon: int userIcon: int endpointLabel: str commandClasses: list[CommandClassInfoDataType] # required class Endpoint(EventBase): """Model for a Zwave Node's endpoint.""" def __init__( self, client: "Client", data: EndpointDataType, values: dict[str, ConfigurationValue | Value], ) -> None: """Initialize.""" super().__init__() self.client = client self.data: EndpointDataType = data self.values: dict[str, ConfigurationValue | Value] = {} self.update(data, values) def __repr__(self) -> str: """Return the representation.""" return f"{type(self).__name__}(node_id={self.node_id}, index={self.index})" def __hash__(self) -> int: """Return the hash.""" return hash((self.client.driver, self.node_id, self.index)) def __eq__(self, other: object) -> bool: """Return whether this instance equals another.""" if not isinstance(other, Endpoint): return False return ( self.client.driver == other.client.driver and self.node_id == other.node_id and self.index == other.index ) @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def index(self) -> int: """Return index property.""" return self.data["index"] @property def device_class(self) -> DeviceClass | None: """Return the device_class.""" if (device_class := self.data.get("deviceClass")) is None: return None return DeviceClass(device_class) @property def installer_icon(self) -> int | None: """Return installer icon property.""" return self.data.get("installerIcon") @property def user_icon(self) -> int | None: """Return user icon property.""" return self.data.get("userIcon") @property def command_classes(self) -> list[CommandClassInfo]: """Return all CommandClasses supported on this node.""" return [CommandClassInfo(cc) for cc in self.data["commandClasses"]] @property def endpoint_label(self) -> str | None: """Return endpoint label property.""" return self.data.get("endpointLabel") def update( self, data: EndpointDataType, values: dict[str, ConfigurationValue | Value] ) -> None: """Update the endpoint data.""" self.data = data # Remove stale values self.values = { value_id: val for value_id, val in self.values.items() if value_id in values } # Populate new values for value_id, value in values.items(): if value_id not in self.values: self.values[value_id] = value async def async_send_command( self, cmd: str, require_schema: int | None = None, wait_for_result: bool | None = None, **cmd_kwargs: Any, ) -> dict[str, Any] | None: """ Send an endpoint command. For internal use only. If wait_for_result is not None, it will take precedence, otherwise we will decide to wait or not based on the node status. """ if self.client.driver is None: raise FailedCommand( "Command failed", "failed_command", "The client is not connected" ) node = self.client.driver.controller.nodes[self.node_id] kwargs = {} message = { "command": f"endpoint.{cmd}", "nodeId": self.node_id, "endpoint": self.index, **cmd_kwargs, } if require_schema is not None: kwargs["require_schema"] = require_schema if wait_for_result or ( wait_for_result is None and node.status != NodeStatus.ASLEEP ): result = await self.client.async_send_command(message, **kwargs) return result await self.client.async_send_command_no_wait(message, **kwargs) return None async def async_invoke_cc_api( self, command_class: CommandClass, method_name: str, *args: Any, wait_for_result: bool | None = None, ) -> Any: """Call endpoint.invoke_cc_api command.""" if not any(cc.id == command_class.value for cc in self.command_classes): raise NotFoundError( f"Command class {command_class} not found on endpoint {self}" ) result = await self.async_send_command( "invoke_cc_api", commandClass=command_class.value, methodName=method_name, args=list(args), require_schema=7, wait_for_result=wait_for_result, ) if not result: return None return result["response"] async def async_supports_cc_api(self, command_class: CommandClass) -> bool: """Call endpoint.supports_cc_api command.""" result = await self.async_send_command( "supports_cc_api", commandClass=command_class.value, require_schema=7, wait_for_result=True, ) assert result return cast(bool, result["supported"]) async def async_supports_cc(self, command_class: CommandClass) -> bool: """Call endpoint.supports_cc command.""" result = await self.async_send_command( "supports_cc", commandClass=command_class.value, require_schema=23, wait_for_result=True, ) assert result return cast(bool, result["supported"]) async def async_controls_cc(self, command_class: CommandClass) -> bool: """Call endpoint.controls_cc command.""" result = await self.async_send_command( "controls_cc", commandClass=command_class.value, require_schema=23, wait_for_result=True, ) assert result return cast(bool, result["controlled"]) async def async_is_cc_secure(self, command_class: CommandClass) -> bool: """Call endpoint.is_cc_secure command.""" result = await self.async_send_command( "is_cc_secure", commandClass=command_class.value, require_schema=23, wait_for_result=True, ) assert result return cast(bool, result["secure"]) async def async_get_cc_version(self, command_class: CommandClass) -> bool: """Call endpoint.get_cc_version command.""" result = await self.async_send_command( "get_cc_version", commandClass=command_class.value, require_schema=23, wait_for_result=True, ) assert result return cast(bool, result["version"]) async def async_get_node_unsafe(self) -> "NodeDataType": """Call endpoint.get_node_unsafe command.""" result = await self.async_send_command( "get_node_unsafe", require_schema=23, wait_for_result=True, ) assert result return cast("NodeDataType", result["node"])
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/endpoint.py
endpoint.py
from __future__ import annotations from typing import TYPE_CHECKING, Any, Literal, cast from ..event import BaseEventModel, Event, EventBase from .controller import Controller from .log_config import LogConfig, LogConfigDataType from .log_message import LogMessage, LogMessageDataType try: from pydantic.v1 import create_model_from_typeddict except ImportError: from pydantic import create_model_from_typeddict if TYPE_CHECKING: from ..client import Client class BaseDriverEventModel(BaseEventModel): """Base model for a driver event.""" source: Literal["driver"] class LogConfigUpdatedEventModel(BaseDriverEventModel): """Model for `log config updated` event data.""" event: Literal["log config updated"] config: LogConfigDataType class AllNodesReadyEventModel(BaseDriverEventModel): """Model for `all nodes ready` event data.""" event: Literal["all nodes ready"] LoggingEventModel = create_model_from_typeddict( LogMessageDataType, __base__=BaseDriverEventModel ) DRIVER_EVENT_MODEL_MAP: dict[str, type["BaseDriverEventModel"]] = { "all nodes ready": AllNodesReadyEventModel, "log config updated": LogConfigUpdatedEventModel, "logging": LoggingEventModel, } class CheckConfigUpdates: """Represent config updates check.""" def __init__(self, data: dict) -> None: """Initialize class.""" self.installed_version: str = data["installedVersion"] self.update_available: bool = data["updateAvailable"] self.new_version: str | None = data.get("newVersion") class Driver(EventBase): """Represent a Z-Wave JS driver.""" def __init__( self, client: "Client", state: dict, log_config: LogConfigDataType ) -> None: """Initialize driver.""" super().__init__() self.client = client self.controller = Controller(client, state) self.log_config = LogConfig.from_dict(log_config) def __hash__(self) -> int: """Return the hash.""" return hash(self.controller) def __eq__(self, other: object) -> bool: """Return whether this instance equals another.""" if not isinstance(other, Driver): return False return self.controller == other.controller def receive_event(self, event: Event) -> None: """Receive an event.""" if event.data["source"] != "driver": self.controller.receive_event(event) return DRIVER_EVENT_MODEL_MAP[event.type](**event.data) self._handle_event_protocol(event) self.emit(event.type, event.data) async def _async_send_command( self, command: str, require_schema: int | None = None, **kwargs: Any ) -> dict: """Send a driver command. For internal use only.""" return await self.client.async_send_command( { "command": f"driver.{command}", **kwargs, }, require_schema, ) async def async_update_log_config(self, log_config: LogConfig) -> None: """Update log config for driver.""" await self._async_send_command( "update_log_config", config=log_config.to_dict(), require_schema=4 ) async def async_get_log_config(self) -> LogConfig: """Return current log config for driver.""" result = await self._async_send_command("get_log_config", require_schema=4) return LogConfig.from_dict(result["config"]) async def async_enable_statistics( self, application_name: str, application_version: str ) -> None: """Send command to enable data collection.""" await self._async_send_command( "enable_statistics", applicationName=application_name, applicationVersion=application_version, require_schema=4, ) async def async_disable_statistics(self) -> None: """Send command to stop listening to log events.""" await self._async_send_command("disable_statistics", require_schema=4) async def async_is_statistics_enabled(self) -> bool: """Send command to start listening to log events.""" result = await self._async_send_command( "is_statistics_enabled", require_schema=4 ) return cast(bool, result["statisticsEnabled"]) async def async_check_for_config_updates(self) -> CheckConfigUpdates: """Send command to check for config updates.""" result = await self._async_send_command( "check_for_config_updates", require_schema=5 ) return CheckConfigUpdates(result) async def async_install_config_update(self) -> bool: """Send command to install config update.""" result = await self._async_send_command( "install_config_update", require_schema=5 ) return cast(bool, result["success"]) async def async_set_preferred_scales( self, scales: dict[str | int, str | int] ) -> None: """Send command to set preferred sensor scales.""" await self._async_send_command( "set_preferred_scales", scales=scales, require_schema=6 ) async def async_enable_error_reporting(self) -> None: """Send command to enable Sentry error reporting.""" await self._async_send_command("enable_error_reporting", require_schema=16) async def async_hard_reset(self) -> None: """Send command to hard reset controller.""" await self._async_send_command("hard_reset", require_schema=25) async def async_try_soft_reset(self) -> None: """Send command to try to soft reset controller.""" await self._async_send_command("try_soft_reset", require_schema=25) async def async_soft_reset(self) -> None: """Send command to soft reset controller.""" await self._async_send_command("soft_reset", require_schema=25) async def async_shutdown(self) -> bool: """Send command to shutdown controller.""" data = await self._async_send_command("shutdown", require_schema=27) return cast(bool, data["success"]) def handle_logging(self, event: Event) -> None: """Process a driver logging event.""" event.data["log_message"] = LogMessage(cast(LogMessageDataType, event.data)) def handle_log_config_updated(self, event: Event) -> None: """Process a driver log config updated event.""" event.data["log_config"] = self.log_config = LogConfig.from_dict( event.data["config"] ) def handle_all_nodes_ready(self, event: Event) -> None: """Process a driver all nodes ready event."""
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/driver.py
driver.py
from __future__ import annotations from typing import Any, Literal, TypedDict class DeviceDeviceDataType(TypedDict, total=False): """Represent a device device data dict type.""" productType: str productId: str class DeviceDevice: """Model for a Zwave Node's device config's device.""" def __init__(self, data: DeviceDeviceDataType) -> None: """Initialize.""" self.data = data @property def product_type(self) -> str | None: """Return product type.""" return self.data.get("productType") @property def product_id(self) -> str | None: """Return product id.""" return self.data.get("productId") class DeviceFirmwareVersionRangeDataType(TypedDict, total=False): """Represent a device firmware version range data dict type.""" min: str max: str class DeviceFirmwareVersionRange: """Model for a Zwave Node's device config's firmware version range.""" def __init__(self, data: DeviceFirmwareVersionRangeDataType) -> None: """Initialize.""" self.data = data @property def min(self) -> str | None: """Return min version.""" return self.data.get("min") @property def max(self) -> str | None: """Return max version.""" return self.data.get("max") class CommentDataType(TypedDict): """Represent a device config's comment data dict type.""" # See PR for suggested meanings of each level: # https://github.com/zwave-js/node-zwave-js/pull/3947 level: Literal["info", "warning", "error"] text: str class DeviceMetadataDataType(TypedDict, total=False): """Represent a device metadata data dict type.""" wakeup: str inclusion: str exclusion: str reset: str manual: str comments: CommentDataType | list[CommentDataType] class DeviceMetadata: """Model for a Zwave Node's device config's metadata.""" def __init__(self, data: DeviceMetadataDataType) -> None: """Initialize.""" self.data = data @property def wakeup(self) -> str | None: """Return wakeup instructions.""" return self.data.get("wakeup") @property def inclusion(self) -> str | None: """Return inclusion instructions.""" return self.data.get("inclusion") @property def exclusion(self) -> str | None: """Return exclusion instructions.""" return self.data.get("exclusion") @property def reset(self) -> str | None: """Return reset instructions.""" return self.data.get("reset") @property def manual(self) -> str | None: """Return manual instructions.""" return self.data.get("manual") @property def comments(self) -> list[CommentDataType]: """Return list of comments about device.""" comments = self.data.get("comments", []) if isinstance(comments, dict): return [comments] return comments class DeviceConfigDataType(TypedDict, total=False): """Represent a device config data dict type.""" filename: str manufacturer: str manufacturerId: str label: str description: str devices: list[DeviceDeviceDataType] firmwareVersion: DeviceFirmwareVersionRangeDataType associations: dict[str, dict] paramInformation: dict[str, dict] supportsZWavePlus: bool proprietary: dict compat: dict[str, Any] metadata: DeviceMetadataDataType isEmbedded: bool class DeviceConfig: """Model for a Zwave Node's device config.""" def __init__(self, data: DeviceConfigDataType) -> None: """Initialize.""" self.data = data self._devices = [ DeviceDevice(device) for device in self.data.get("devices", []) ] self._firmware_version = DeviceFirmwareVersionRange( self.data.get("firmwareVersion", {}) ) self._metadata = DeviceMetadata(self.data.get("metadata", {})) @property def filename(self) -> str | None: """Return config filename.""" return self.data.get("filename") @property def manufacturer(self) -> str | None: """Return name of the manufacturer.""" return self.data.get("manufacturer") @property def manufacturer_id(self) -> str | None: # TODO: In the dump this is an int. """Return manufacturer id (as defined in the specs) as a 4-digit hexadecimal string.""" return self.data.get("manufacturerId") @property def label(self) -> str | None: """Return short label for the device.""" return self.data.get("label") @property def description(self) -> str | None: """Return longer description of the device, usually the full name.""" return self.data.get("description") @property def devices(self) -> list[DeviceDevice]: """Return list of product type and product ID combinations.""" return self._devices @property def firmware_version(self) -> DeviceFirmwareVersionRange: """Return firmware version range this config is valid for.""" return self._firmware_version @property def associations(self) -> dict[str, dict]: """Return dict of association groups the device supports.""" return self.data.get("associations", {}) @property def param_information(self) -> dict[str, dict]: """Return dictionary of configuration parameters the device supports.""" return self.data.get("paramInformation", {}) @property def supports_zwave_plus(self) -> bool | None: """Return if the device complies with the Z-Wave+ standard.""" return self.data.get("supportsZWavePlus") @property def proprietary(self) -> dict: """Return dictionary of settings for the proprietary CC.""" return self.data.get("proprietary", {}) @property def compat(self) -> dict[str, dict]: """Return compatibility flags.""" return self.data.get("compat", {}) @property def metadata(self) -> DeviceMetadata: """Return metadata.""" return self._metadata @property def is_embedded(self) -> bool | None: """Return whether device config is embedded in zwave-js-server.""" return self.data.get("isEmbedded")
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/device_config.py
device_config.py
from __future__ import annotations from typing import TYPE_CHECKING, Any, Literal, TypedDict from ..const.command_class.multilevel_switch import MultilevelSwitchCommand from ..const.command_class.power_level import PowerLevelTestStatus from ..util.helpers import parse_buffer if TYPE_CHECKING: from .node import Node class BaseNotificationDataType(TypedDict): """Represent a base notification event data dict type.""" source: Literal["node"] # required event: Literal["notification"] # required nodeId: int # required ccId: int # required class EntryControlNotificationArgsDataType(TypedDict, total=False): """Represent args for a Entry Control CC notification event data dict type.""" eventType: int # required eventTypeLabel: str # required dataType: int # required dataTypeLabel: str # required eventData: str | dict[str, Any] class EntryControlNotificationDataType(BaseNotificationDataType): """Represent an Entry Control CC notification event data dict type.""" args: EntryControlNotificationArgsDataType # required class EntryControlNotification: """Model for a Zwave Node's Entry Control CC notification event.""" def __init__(self, node: "Node", data: EntryControlNotificationDataType) -> None: """Initialize.""" self.node = node self.data = data @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def command_class(self) -> int: """Return command class.""" return self.data["ccId"] @property def event_type(self) -> int: """Return event type property.""" return self.data["args"]["eventType"] @property def event_type_label(self) -> str: """Return event type label property.""" return self.data["args"]["eventTypeLabel"] @property def data_type(self) -> int: """Return data type property.""" return self.data["args"]["dataType"] @property def data_type_label(self) -> str: """Return data type label property.""" return self.data["args"]["dataTypeLabel"] @property def event_data(self) -> str | None: """Return event data property.""" if event_data := self.data["args"].get("eventData"): return parse_buffer(event_data) return None class NotificationNotificationArgsDataType(TypedDict, total=False): """Represent args for a Notification CC notification event data dict type.""" type: int # required label: str # required event: int # required eventLabel: str # required parameters: dict[str, Any] class NotificationNotificationDataType(BaseNotificationDataType): """Represent a Notification CC notification event data dict type.""" args: NotificationNotificationArgsDataType # required class NotificationNotification: """Model for a Zwave Node's Notification CC notification event.""" def __init__(self, node: "Node", data: NotificationNotificationDataType) -> None: """Initialize.""" self.node = node self.data = data @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def command_class(self) -> int: """Return command class.""" return self.data["ccId"] @property def type_(self) -> int: """Return type property.""" return self.data["args"]["type"] @property def label(self) -> str: """Return label property.""" return self.data["args"]["label"] @property def event(self) -> int: """Return event property.""" return self.data["args"]["event"] @property def event_label(self) -> str: """Return notification label property.""" return self.data["args"]["eventLabel"] @property def parameters(self) -> dict[str, Any]: """Return installer icon property.""" return self.data["args"].get("parameters", {}) class PowerLevelNotificationArgsDataType(TypedDict): """Represent args for a Power Level CC notification event data dict type.""" testNodeId: int status: int acknowledgedFrames: int class PowerLevelNotificationDataType(BaseNotificationDataType): """Represent a Power Level CC notification event data dict type.""" args: PowerLevelNotificationArgsDataType # required class PowerLevelNotification: """Model for a Zwave Node's Power Level CC notification event.""" def __init__(self, node: "Node", data: PowerLevelNotificationDataType) -> None: """Initialize.""" self.node = node self.data = data @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def command_class(self) -> int: """Return command class.""" return self.data["ccId"] @property def test_node_id(self) -> int: """Return test node ID property.""" return self.data["args"]["testNodeId"] @property def status(self) -> PowerLevelTestStatus: """Return status.""" return PowerLevelTestStatus(self.data["args"]["status"]) @property def acknowledged_frames(self) -> int: """Return acknowledged frames property.""" return self.data["args"]["acknowledgedFrames"] class MultilevelSwitchNotificationArgsDataType(TypedDict, total=False): """Represent args for a Multi Level Switch CC notification event data dict type.""" eventType: int # required eventTypeLabel: str # required direction: str class MultilevelSwitchNotificationDataType(BaseNotificationDataType): """Represent a Multi Level Switch CC notification event data dict type.""" args: MultilevelSwitchNotificationArgsDataType # required class MultilevelSwitchNotification: """Model for a Zwave Node's Multi Level CC notification event.""" def __init__( self, node: "Node", data: MultilevelSwitchNotificationDataType ) -> None: """Initialize.""" self.node = node self.data = data @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def command_class(self) -> int: """Return command class.""" return self.data["ccId"] @property def event_type(self) -> MultilevelSwitchCommand: """Return event type property.""" return MultilevelSwitchCommand(self.data["args"]["eventType"]) @property def event_type_label(self) -> str: """Return event type label property.""" return self.data["args"]["eventTypeLabel"] @property def direction(self) -> str | None: """Return direction property.""" if direction := self.data["args"].get("direction"): return direction return None
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/notification.py
notification.py
from __future__ import annotations from dataclasses import dataclass, field from functools import cached_property from typing import TYPE_CHECKING, TypedDict from zwave_js_server.exceptions import RepeaterRssiErrorReceived, RssiErrorReceived from ..const import ProtocolDataRate, RssiError if TYPE_CHECKING: from ..client import Client from .node import Node class RouteStatisticsDataType(TypedDict, total=False): """Represent a route statistics data dict type.""" protocolDataRate: int repeaters: list[int] rssi: int repeaterRSSI: list[int] routeFailedBetween: list[int] class RouteStatisticsDict(TypedDict): """Represent a route statistics data dict type.""" protocol_data_rate: int repeaters: list["Node"] rssi: int | None repeater_rssi: list[int] route_failed_between: tuple["Node", "Node"] | None @dataclass class RouteStatistics: """Represent route statistics.""" client: "Client" data: RouteStatisticsDataType protocol_data_rate: ProtocolDataRate = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.protocol_data_rate = ProtocolDataRate(self.data["protocolDataRate"]) @cached_property def repeaters(self) -> list["Node"]: """Return repeaters.""" assert self.client.driver return [ self.client.driver.controller.nodes[node_id] for node_id in self.data["repeaters"] ] @property def rssi(self) -> int | None: """Return RSSI.""" if (rssi := self.data.get("rssi")) is None: return None if rssi in [item.value for item in RssiError]: raise RssiErrorReceived(RssiError(rssi)) return rssi @property def repeater_rssi(self) -> list[int]: """Return repeater RSSI.""" repeater_rssi = self.data.get("repeaterRSSI", []) rssi_errors = [item.value for item in RssiError] if any(rssi_ in rssi_errors for rssi_ in repeater_rssi): raise RepeaterRssiErrorReceived(repeater_rssi) return repeater_rssi @cached_property def route_failed_between(self) -> tuple["Node", "Node"] | None: """Return route failed between.""" if (node_ids := self.data.get("routeFailedBetween")) is None: return None assert self.client.driver assert len(node_ids) == 2 return ( self.client.driver.controller.nodes[node_ids[0]], self.client.driver.controller.nodes[node_ids[1]], ) def as_dict(self) -> RouteStatisticsDict: """Return route statistics as dict.""" return { "protocol_data_rate": self.protocol_data_rate.value, "repeaters": self.repeaters, "rssi": self.data.get("rssi"), "repeater_rssi": self.data.get("repeaterRSSI", []), "route_failed_between": ( self.route_failed_between[0], self.route_failed_between[1], ) if self.route_failed_between else None, }
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/statistics.py
statistics.py
from __future__ import annotations from dataclasses import dataclass, field from typing import TypedDict from ...const import PowerLevel class LifelineHealthCheckResultDataType(TypedDict, total=False): """Represent a lifeline health check result data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/Types.ts#L171 latency: int # required numNeighbors: int # required failedPingsNode: int # required rating: int # required routeChanges: int minPowerlevel: int failedPingsController: int snrMargin: int class LifelineHealthCheckSummaryDataType(TypedDict): """Represent a lifeline health check summary data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/_Types.ts#L254 results: list[LifelineHealthCheckResultDataType] rating: int @dataclass class LifelineHealthCheckResult: """Represent a lifeline health check result.""" data: LifelineHealthCheckResultDataType latency: int = field(init=False) num_neighbors: int = field(init=False) failed_pings_node: int = field(init=False) rating: int = field(init=False) route_changes: int | None = field(init=False) min_power_level: PowerLevel | None = field(init=False, default=None) failed_pings_controller: int | None = field(init=False) snr_margin: int | None = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.latency = self.data["latency"] self.num_neighbors = self.data["numNeighbors"] self.failed_pings_node = self.data["failedPingsNode"] self.rating = self.data["rating"] self.route_changes = self.data.get("routeChanges") if (min_power_level := self.data.get("minPowerlevel")) is not None: self.min_power_level = PowerLevel(min_power_level) self.failed_pings_controller = self.data.get("failedPingsController") self.snr_margin = self.data.get("snrMargin") @dataclass class LifelineHealthCheckSummary: """Represent a lifeline health check summary update.""" data: LifelineHealthCheckSummaryDataType rating: int = field(init=False) results: list[LifelineHealthCheckResult] = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.rating = self.data["rating"] self.results = [ LifelineHealthCheckResult(r) for r in self.data.get("results", []) ] class RouteHealthCheckResultDataType(TypedDict, total=False): """Represent a route health check result data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/_Types.ts#L285 numNeighbors: int # required rating: int # required failedPingsToTarget: int failedPingsToSource: int minPowerlevelSource: int minPowerlevelTarget: int class RouteHealthCheckSummaryDataType(TypedDict): """Represent a route health check summary data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/_Types.ts#L317 results: list[RouteHealthCheckResultDataType] rating: int @dataclass class RouteHealthCheckResult: """Represent a route health check result.""" data: RouteHealthCheckResultDataType num_neighbors: int = field(init=False) rating: int = field(init=False) failed_pings_to_target: int | None = field(init=False) failed_pings_to_source: int | None = field(init=False) min_power_level_source: PowerLevel | None = field(init=False, default=None) min_power_level_target: PowerLevel | None = field(init=False, default=None) def __post_init__(self) -> None: """Post initialize.""" self.num_neighbors = self.data["numNeighbors"] self.rating = self.data["rating"] self.failed_pings_to_target = self.data.get("failedPingsToTarget") self.failed_pings_to_source = self.data.get("failedPingsToSource") if (min_power_level_source := self.data.get("minPowerlevelSource")) is not None: self.min_power_level_source = PowerLevel(min_power_level_source) if (min_power_level_target := self.data.get("minPowerlevelTarget")) is not None: self.min_power_level_target = PowerLevel(min_power_level_target) @dataclass class RouteHealthCheckSummary: """Represent a route health check summary update.""" data: RouteHealthCheckSummaryDataType rating: int = field(init=False) results: list[RouteHealthCheckResult] = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.rating = self.data["rating"] self.results = [RouteHealthCheckResult(r) for r in self.data.get("results", [])] @dataclass class TestPowerLevelProgress: """Class to represent a test power level progress update.""" acknowledged: int total: int @dataclass class CheckHealthProgress: """Represent a check lifeline/route health progress update.""" rounds: int total_rounds: int last_rating: int last_result: LifelineHealthCheckResult | RouteHealthCheckResult
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/node/health_check.py
health_check.py
from __future__ import annotations from dataclasses import asdict, dataclass, field from enum import IntEnum from typing import TYPE_CHECKING, TypedDict, cast from ...const import VALUE_UNKNOWN from ...util.helpers import convert_bytes_to_base64 if TYPE_CHECKING: from . import Node class NodeFirmwareUpdateDataDataType(TypedDict, total=False): """Represent a firmware update data dict type.""" filename: str # required file: str # required fileFormat: str firmwareTarget: int @dataclass class NodeFirmwareUpdateData: """Firmware update data.""" filename: str file: bytes file_format: str | None = None firmware_target: int | None = None def to_dict(self) -> NodeFirmwareUpdateDataDataType: """Convert firmware update data to dict.""" data: NodeFirmwareUpdateDataDataType = { "filename": self.filename, "file": convert_bytes_to_base64(self.file), } if self.file_format is not None: data["fileFormat"] = self.file_format if self.firmware_target is not None: data["firmwareTarget"] = self.firmware_target return data class NodeFirmwareUpdateCapabilitiesDataType(TypedDict, total=False): """Represent a firmware update capabilities dict type.""" firmwareUpgradable: bool # required firmwareTargets: list[int] continuesToFunction: bool | str supportsActivation: bool | str class NodeFirmwareUpdateCapabilitiesDict(TypedDict, total=False): """Represent a dict from FirmwareUpdateCapabilities.""" firmware_upgradable: bool # required firmware_targets: list[int] continues_to_function: bool | None supports_activation: bool | None @dataclass class NodeFirmwareUpdateCapabilities: """Model for firmware update capabilities.""" data: NodeFirmwareUpdateCapabilitiesDataType firmware_upgradable: bool = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.firmware_upgradable = self.data["firmwareUpgradable"] @property def firmware_targets(self) -> list[int]: """Return firmware targets.""" if not self.firmware_upgradable: raise TypeError("Firmware is not upgradeable.") return self.data["firmwareTargets"] @property def continues_to_function(self) -> bool | None: """Return whether node continues to function during update.""" if not self.firmware_upgradable: raise TypeError("Firmware is not upgradeable.") if (val := self.data["continuesToFunction"]) == VALUE_UNKNOWN: return None assert isinstance(val, bool) return val @property def supports_activation(self) -> bool | None: """Return whether node supports delayed activation of the new firmware.""" if not self.firmware_upgradable: raise TypeError("Firmware is not upgradeable.") if (val := self.data["supportsActivation"]) == VALUE_UNKNOWN: return None assert isinstance(val, bool) return val def to_dict(self) -> NodeFirmwareUpdateCapabilitiesDict: """Return dict representation of the object.""" if not self.firmware_upgradable: return {"firmware_upgradable": self.firmware_upgradable} return { "firmware_upgradable": self.firmware_upgradable, "firmware_targets": self.firmware_targets, "continues_to_function": self.continues_to_function, "supports_activation": self.supports_activation, } class NodeFirmwareUpdateStatus(IntEnum): """Enum with all node firmware update status values. https://zwave-js.github.io/node-zwave-js/#/api/node?id=quotfirmware-update-finishedquot """ ERROR_TIMEOUT = -1 ERROR_CHECKSUM = 0 ERROR_TRANSMISSION_FAILED = 1 ERROR_INVALID_MANUFACTURER_ID = 2 ERROR_INVALID_FIRMWARE_ID = 3 ERROR_INVALID_FIRMWARE_TARGET = 4 ERROR_INVALID_HEADER_INFORMATION = 5 ERROR_INVALID_HEADER_FORMAT = 6 ERROR_INSUFFICIENT_MEMORY = 7 ERROR_INVALID_HARDWARE_VERSION = 8 OK_WAITING_FOR_ACTIVATION = 253 OK_NO_RESTART = 254 OK_RESTART_PENDING = 255 class NodeFirmwareUpdateProgressDataType(TypedDict): """Represent a node firmware update progress dict type.""" currentFile: int totalFiles: int sentFragments: int totalFragments: int progress: float @dataclass class NodeFirmwareUpdateProgress: """Model for a node firmware update progress data.""" node: "Node" data: NodeFirmwareUpdateProgressDataType current_file: int = field(init=False) total_files: int = field(init=False) sent_fragments: int = field(init=False) total_fragments: int = field(init=False) progress: float = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.current_file = self.data["currentFile"] self.total_files = self.data["totalFiles"] self.sent_fragments = self.data["sentFragments"] self.total_fragments = self.data["totalFragments"] self.progress = float(self.data["progress"]) class NodeFirmwareUpdateResultDataType(TypedDict, total=False): """Represent a node firmware update result dict type.""" status: int # required success: bool # required waitTime: int reInterview: bool # required @dataclass class NodeFirmwareUpdateResult: """Model for node firmware update result data.""" node: "Node" data: NodeFirmwareUpdateResultDataType status: NodeFirmwareUpdateStatus = field(init=False) success: bool = field(init=False) wait_time: int | None = field(init=False) reinterview: bool = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.status = NodeFirmwareUpdateStatus(self.data["status"]) self.success = self.data["success"] self.wait_time = self.data.get("waitTime") self.reinterview = self.data["reInterview"] class NodeFirmwareUpdateFileInfoDataType(TypedDict): """Represent a firmware update file info data dict type.""" target: int url: str integrity: str # sha256 @dataclass class NodeFirmwareUpdateFileInfo: """Represent a firmware update file info.""" target: int url: str integrity: str @classmethod def from_dict( cls, data: NodeFirmwareUpdateFileInfoDataType ) -> "NodeFirmwareUpdateFileInfo": """Initialize from dict.""" return cls(**data) def to_dict(self) -> NodeFirmwareUpdateFileInfoDataType: """Return dict representation of the object.""" return cast(NodeFirmwareUpdateFileInfoDataType, asdict(self)) class NodeFirmwareUpdateInfoDataType(TypedDict): """Represent a firmware update info data dict type.""" version: str changelog: str files: list[NodeFirmwareUpdateFileInfoDataType] @dataclass class NodeFirmwareUpdateInfo: """Represent a firmware update info.""" version: str changelog: str files: list[NodeFirmwareUpdateFileInfo] @classmethod def from_dict( cls, data: NodeFirmwareUpdateInfoDataType ) -> "NodeFirmwareUpdateInfo": """Initialize from dict.""" return cls( version=data["version"], changelog=data["changelog"], files=[ NodeFirmwareUpdateFileInfo.from_dict(file) for file in data["files"] ], ) def to_dict(self) -> NodeFirmwareUpdateInfoDataType: """Return dict representation of the object.""" return cast( NodeFirmwareUpdateInfoDataType, { "version": self.version, "changelog": self.changelog, "files": [file.to_dict() for file in self.files], }, )
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/node/firmware.py
firmware.py
from __future__ import annotations from typing import Literal from ...const import CommandClass from ...event import BaseEventModel from ..notification import ( EntryControlNotificationArgsDataType, NotificationNotificationArgsDataType, PowerLevelNotificationArgsDataType, ) from ..value import ValueDataType from .data_model import NodeDataType from .firmware import ( NodeFirmwareUpdateProgressDataType, NodeFirmwareUpdateResultDataType, ) from .statistics import NodeStatisticsDataType try: from pydantic.v1 import BaseModel except ImportError: from pydantic import BaseModel class BaseNodeEventModel(BaseEventModel): """Base model for a node event.""" source: Literal["node"] nodeId: int class AliveEventModel(BaseNodeEventModel): """Model for `alive` event data.""" event: Literal["alive"] class CheckHealthProgressEventModel(BaseNodeEventModel): """ Model for `check health progress` type events data. Includes `check lifeline health progress` and `check route health progress` events. """ rounds: int totalRounds: int lastRating: int class CheckLifelineHealthProgressEventModel(CheckHealthProgressEventModel): """Model for `check lifeline health progress` event data.""" event: Literal["check lifeline health progress"] class CheckRouteHealthProgressEventModel(CheckHealthProgressEventModel): """Model for `check route health progress` event data.""" event: Literal["check route health progress"] class DeadEventModel(BaseNodeEventModel): """Model for `dead` event data.""" event: Literal["dead"] class InterviewCompletedEventModel(BaseNodeEventModel): """Model for `interview completed` event data.""" event: Literal["interview completed"] class InterviewFailedEventArgsModel(BaseModel): """Model for `interview failed` event args.""" errorMessage: str isFinal: bool attempt: int | None maxAttempts: int | None class InterviewFailedEventModel(BaseNodeEventModel): """Model for `interview failed` event data.""" event: Literal["interview failed"] args: InterviewFailedEventArgsModel class InterviewStageCompletedEventModel(BaseNodeEventModel): """Model for `interview stage completed` event data.""" event: Literal["interview stage completed"] stageName: str class InterviewStartedEventModel(BaseNodeEventModel): """Model for `interview started` event data.""" event: Literal["interview started"] class NotificationEventModel(BaseNodeEventModel): """Model for `notification` event data.""" event: Literal["notification"] ccId: CommandClass args: ( NotificationNotificationArgsDataType | EntryControlNotificationArgsDataType | PowerLevelNotificationArgsDataType ) class ReadyEventModel(BaseNodeEventModel): """Model for `ready` event data.""" event: Literal["ready"] nodeState: NodeDataType class SleepEventModel(BaseNodeEventModel): """Model for `sleep` event data.""" event: Literal["sleep"] class StatisticsUpdatedEventModel(BaseNodeEventModel): """Model for `statistics updated` event data.""" event: Literal["statistics updated"] statistics: NodeStatisticsDataType class TestPowerLevelProgressEventModel(BaseNodeEventModel): """Model for `test powerlevel progress` event data.""" event: Literal["test powerlevel progress"] acknowledged: int total: int class ValueEventModel(BaseNodeEventModel): """ Model for `value` events data. Subclass for event models for `metadata updated`, `value added`, `value notification`, `value removed`, and `value updated`. """ args: ValueDataType class MetadataUpdatedEventModel(ValueEventModel): """Model for `metadata updated` event data.""" event: Literal["metadata updated"] class ValueAddedEventModel(ValueEventModel): """Model for `value added` event data.""" event: Literal["value added"] class ValueNotificationEventModel(ValueEventModel): """Model for `value notification` event data.""" event: Literal["value notification"] class ValueRemovedEventModel(ValueEventModel): """Model for `value removed` event data.""" event: Literal["value removed"] class ValueUpdatedEventModel(ValueEventModel): """Model for `value updated` event data.""" event: Literal["value updated"] class WakeUpEventModel(BaseNodeEventModel): """Model for `wake up` event data.""" event: Literal["wake up"] class FirmwareUpdateFinishedEventModel(BaseNodeEventModel): """Model for `firmware update finished` event data.""" event: Literal["firmware update finished"] result: NodeFirmwareUpdateResultDataType class FirmwareUpdateProgressEventModel(BaseNodeEventModel): """Model for `firmware update progress` event data.""" event: Literal["firmware update progress"] progress: NodeFirmwareUpdateProgressDataType NODE_EVENT_MODEL_MAP: dict[str, type["BaseNodeEventModel"]] = { "alive": AliveEventModel, "check lifeline health progress": CheckLifelineHealthProgressEventModel, "check route health progress": CheckRouteHealthProgressEventModel, "dead": DeadEventModel, "firmware update finished": FirmwareUpdateFinishedEventModel, "firmware update progress": FirmwareUpdateProgressEventModel, "interview completed": InterviewCompletedEventModel, "interview failed": InterviewFailedEventModel, "interview stage completed": InterviewStageCompletedEventModel, "interview started": InterviewStartedEventModel, "metadata updated": MetadataUpdatedEventModel, "notification": NotificationEventModel, "ready": ReadyEventModel, "sleep": SleepEventModel, "statistics updated": StatisticsUpdatedEventModel, "test powerlevel progress": TestPowerLevelProgressEventModel, "value added": ValueAddedEventModel, "value notification": ValueNotificationEventModel, "value removed": ValueRemovedEventModel, "value updated": ValueUpdatedEventModel, "wake up": WakeUpEventModel, }
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/node/event_model.py
event_model.py
from __future__ import annotations from contextlib import suppress from dataclasses import dataclass, field from datetime import datetime from typing import TYPE_CHECKING, TypedDict from zwave_js_server.exceptions import RssiErrorReceived from ...const import RssiError from ..statistics import RouteStatistics, RouteStatisticsDataType if TYPE_CHECKING: from ...client import Client class NodeStatisticsDataType(TypedDict, total=False): """Represent a node statistics data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/node/NodeStatistics.ts#L21-L33 commandsTX: int # required commandsRX: int # required commandsDroppedTX: int # required commandsDroppedRX: int # required timeoutResponse: int # required rtt: int rssi: int lwr: RouteStatisticsDataType nlwr: RouteStatisticsDataType lastSeen: str @dataclass class NodeStatistics: """Represent a node statistics update.""" client: "Client" data: NodeStatisticsDataType commands_tx: int = field(init=False) commands_rx: int = field(init=False) commands_dropped_rx: int = field(init=False) commands_dropped_tx: int = field(init=False) timeout_response: int = field(init=False) rtt: int | None = field(init=False) lwr: RouteStatistics | None = field(init=False, default=None) nlwr: RouteStatistics | None = field(init=False, default=None) last_seen: datetime | None = field(init=False, default=None) def __post_init__(self) -> None: """Post initialize.""" self.commands_tx = self.data["commandsTX"] self.commands_rx = self.data["commandsRX"] self.commands_dropped_rx = self.data["commandsDroppedRX"] self.commands_dropped_tx = self.data["commandsDroppedTX"] self.timeout_response = self.data["timeoutResponse"] self.rtt = self.data.get("rtt") if last_seen := self.data.get("lastSeen"): self.last_seen = datetime.fromisoformat(last_seen) if lwr := self.data.get("lwr"): with suppress(ValueError): self.lwr = RouteStatistics(self.client, lwr) if nlwr := self.data.get("nlwr"): with suppress(ValueError): self.nlwr = RouteStatistics(self.client, nlwr) @property def rssi(self) -> int | None: """ Return average RSSI of frames received by this node. Consecutive non-error measurements are combined using an exponential moving average. """ if not self.data or (rssi_ := self.data.get("rssi")) is None: return None if rssi_ in [item.value for item in RssiError]: raise RssiErrorReceived(RssiError(rssi_)) return rssi_
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/node/statistics.py
statistics.py
from __future__ import annotations import asyncio import copy import logging from datetime import datetime from typing import TYPE_CHECKING, Any, cast from ...const import ( INTERVIEW_FAILED, NOT_INTERVIEWED, CommandClass, DateAndTime, NodeStatus, PowerLevel, SecurityClass, ) from ...event import Event, EventBase from ...exceptions import ( FailedCommand, NotFoundError, UnparseableValue, UnwriteableValue, ) from ..command_class import CommandClassInfo from ..device_class import DeviceClass from ..device_config import DeviceConfig from ..endpoint import Endpoint from ..notification import ( EntryControlNotification, EntryControlNotificationDataType, MultilevelSwitchNotification, MultilevelSwitchNotificationDataType, NotificationNotification, NotificationNotificationDataType, PowerLevelNotification, PowerLevelNotificationDataType, ) from ..value import ( ConfigurationValue, MetaDataType, SetValueResult, Value, ValueDataType, ValueMetadata, ValueNotification, _get_value_id_str_from_dict, _init_value, ) from .data_model import NodeDataType from .event_model import NODE_EVENT_MODEL_MAP from .firmware import ( NodeFirmwareUpdateCapabilities, NodeFirmwareUpdateCapabilitiesDataType, NodeFirmwareUpdateProgress, NodeFirmwareUpdateProgressDataType, NodeFirmwareUpdateResult, NodeFirmwareUpdateResultDataType, ) from .health_check import ( CheckHealthProgress, LifelineHealthCheckResult, LifelineHealthCheckSummary, RouteHealthCheckResult, RouteHealthCheckSummary, TestPowerLevelProgress, ) from .statistics import NodeStatistics, NodeStatisticsDataType if TYPE_CHECKING: from ...client import Client # pylint: disable=too-many-lines _LOGGER = logging.getLogger(__package__) DEFAULT_NODE_STATISTICS = NodeStatisticsDataType( commandsTX=0, commandsRX=0, commandsDroppedTX=0, commandsDroppedRX=0, timeoutResponse=0, ) def _get_value_id_dict_from_value_data(value_data: ValueDataType) -> dict[str, Any]: """Return a value ID dict from ValueDataType.""" data = { "commandClass": value_data["commandClass"], "property": value_data["property"], } if (endpoint := value_data.get("endpoint")) is not None: data["endpoint"] = endpoint if (property_key := value_data.get("propertyKey")) is not None: data["propertyKey"] = property_key return data class Node(EventBase): """Represent a Z-Wave JS node.""" def __init__(self, client: "Client", data: NodeDataType) -> None: """Initialize the node.""" super().__init__() self.client = client self.data: NodeDataType = {} self._device_config = DeviceConfig({}) self._statistics = NodeStatistics( client, data.get("statistics", DEFAULT_NODE_STATISTICS) ) self._firmware_update_progress: NodeFirmwareUpdateProgress | None = None self.values: dict[str, ConfigurationValue | Value] = {} self.endpoints: dict[int, Endpoint] = {} self._status_event = asyncio.Event() self.update(data) def __repr__(self) -> str: """Return the representation.""" return f"{type(self).__name__}(node_id={self.node_id})" def __hash__(self) -> int: """Return the hash.""" return hash((self.client.driver, self.node_id)) def __eq__(self, other: object) -> bool: """Return whether this instance equals another.""" if not isinstance(other, Node): return False return ( self.client.driver == other.client.driver and self.node_id == other.node_id ) @property def node_id(self) -> int: """Return node ID property.""" return self.data["nodeId"] @property def index(self) -> int: """Return index property.""" return self.data["index"] @property def device_class(self) -> DeviceClass | None: """Return the device_class.""" if (device_class := self.data.get("deviceClass")) is None: return None return DeviceClass(device_class) @property def installer_icon(self) -> int | None: """Return installer icon property.""" return self.data.get("installerIcon") @property def user_icon(self) -> int | None: """Return user icon property.""" return self.data.get("userIcon") @property def status(self) -> NodeStatus: """Return the status.""" return NodeStatus(self.data["status"]) @property def ready(self) -> bool | None: """Return the ready.""" return self.data.get("ready") @property def is_listening(self) -> bool | None: """Return the is_listening.""" return self.data.get("isListening") @property def is_frequent_listening(self) -> bool | str | None: """Return the is_frequent_listening.""" return self.data.get("isFrequentListening") @property def is_routing(self) -> bool | None: """Return the is_routing.""" return self.data.get("isRouting") @property def max_data_rate(self) -> int | None: """Return the max_data_rate.""" return self.data.get("maxDataRate") @property def supported_data_rates(self) -> list[int]: """Return the supported_data_rates.""" return self.data.get("supportedDataRates", []) @property def is_secure(self) -> bool | None: """Return the is_secure.""" if (is_secure := self.data.get("isSecure")) == "unknown": return None return is_secure @property def protocol_version(self) -> int | None: """Return the protocol_version.""" return self.data.get("protocolVersion") @property def supports_beaming(self) -> bool | None: """Return the supports_beaming.""" return self.data.get("supportsBeaming") @property def supports_security(self) -> bool | None: """Return the supports_security.""" return self.data.get("supportsSecurity") @property def manufacturer_id(self) -> int | None: """Return the manufacturer_id.""" return self.data.get("manufacturerId") @property def product_id(self) -> int | None: """Return the product_id.""" return self.data.get("productId") @property def product_type(self) -> int | None: """Return the product_type.""" return self.data.get("productType") @property def firmware_version(self) -> str | None: """Return the firmware_version.""" return self.data.get("firmwareVersion") @property def zwave_plus_version(self) -> int | None: """Return the zwave_plus_version.""" return self.data.get("zwavePlusVersion") @property def zwave_plus_node_type(self) -> int | None: """Return the zwave_plus_node_type.""" return self.data.get("zwavePlusNodeType") @property def zwave_plus_role_type(self) -> int | None: """Return the zwave_plus_role_type.""" return self.data.get("zwavePlusRoleType") @property def name(self) -> str | None: """Return the name.""" return self.data.get("name") @property def location(self) -> str | None: """Return the location.""" return self.data.get("location") @property def device_config(self) -> DeviceConfig: """Return the device_config.""" return self._device_config @property def label(self) -> str | None: """Return the label.""" return self.data.get("label") @property def device_database_url(self) -> str | None: """Return the device database URL.""" return self.data.get("deviceDatabaseUrl") @property def endpoint_count_is_dynamic(self) -> bool | None: """Return the endpoint_count_is_dynamic.""" return self.data.get("endpointCountIsDynamic") @property def endpoints_have_identical_capabilities(self) -> bool | None: """Return the endpoints_have_identical_capabilities.""" return self.data.get("endpointsHaveIdenticalCapabilities") @property def individual_endpoint_count(self) -> int | None: """Return the individual_endpoint_count.""" return self.data.get("individualEndpointCount") @property def aggregated_endpoint_count(self) -> int | None: """Return the aggregated_endpoint_count.""" return self.data.get("aggregatedEndpointCount") @property def interview_attempts(self) -> int | None: """Return the interview_attempts.""" return self.data.get("interviewAttempts") @property def interview_stage(self) -> int | str | None: """Return the interview_stage.""" return self.data.get("interviewStage") @property def in_interview(self) -> bool: """Return whether node is currently being interviewed.""" return ( not self.ready and not self.awaiting_manual_interview and self.interview_stage != INTERVIEW_FAILED ) @property def awaiting_manual_interview(self) -> bool: """Return whether node requires a manual interview.""" return self.interview_stage in (None, NOT_INTERVIEWED) @property def command_classes(self) -> list[CommandClassInfo]: """Return all CommandClasses supported on this node.""" return self.endpoints[0].command_classes @property def statistics(self) -> NodeStatistics: """Return statistics property.""" return self._statistics @property def firmware_update_progress(self) -> NodeFirmwareUpdateProgress | None: """Return firmware update progress.""" return self._firmware_update_progress @property def highest_security_class(self) -> SecurityClass | None: """Return highest security class configured on the node.""" if (security_class := self.data.get("highestSecurityClass")) is None: return None return SecurityClass(security_class) @property def is_controller_node(self) -> bool: """Return whether the node is a controller node.""" return self.data["isControllerNode"] @property def keep_awake(self) -> bool: """Return whether the node is set to keep awake.""" return self.data["keepAwake"] @property def last_seen(self) -> datetime | None: """Return when the node was last seen.""" if last_seen := self.data.get("lastSeen"): return datetime.fromisoformat(last_seen) return None @property def default_volume(self) -> int | float | None: """Return the default volume.""" return self.data.get("defaultVolume") @property def default_transition_duration(self) -> int | float | None: """Return the default transition duration.""" return self.data.get("defaultTransitionDuration") def update(self, data: NodeDataType) -> None: """Update the internal state data.""" self.data = copy.deepcopy(data) self._device_config = DeviceConfig(self.data.get("deviceConfig", {})) self._statistics = NodeStatistics( self.client, self.data.get("statistics", DEFAULT_NODE_STATISTICS) ) new_values_data = { _get_value_id_str_from_dict(self, val): val for val in self.data.pop("values") } new_value_ids = set(new_values_data) stale_value_ids = set(self.values) - new_value_ids # Remove stale values for value_id in stale_value_ids: self.values.pop(value_id) # Updating existing values and populate new values. Preserve value order if # initializing values for the node for the first time by using the key order # which is deterministic for value_id in ( new_value_ids - stale_value_ids if stale_value_ids else list(new_values_data) ): val = new_values_data[value_id] try: if value_id in self.values: self.values[value_id].update(val) else: self.values[value_id] = _init_value(self, val) except UnparseableValue: # If we can't parse the value, don't store it pass new_endpoints_data = { endpoint["index"]: endpoint for endpoint in self.data.pop("endpoints") } new_endpoint_idxs = set(new_endpoints_data) stale_endpoint_idxs = set(self.endpoints) - new_endpoint_idxs # Remove stale endpoints for endpoint_idx in stale_endpoint_idxs: self.endpoints.pop(endpoint_idx) # Add new endpoints or update existing ones for endpoint_idx in new_endpoint_idxs - stale_endpoint_idxs: endpoint = new_endpoints_data[endpoint_idx] values = { value_id: value for value_id, value in self.values.items() if self.index == value.endpoint } if endpoint_idx in self.endpoints: self.endpoints[endpoint_idx].update(endpoint, values) else: self.endpoints[endpoint_idx] = Endpoint(self.client, endpoint, values) def get_command_class_values( self, command_class: CommandClass, endpoint: int | None = None ) -> dict[str, ConfigurationValue | Value]: """Return all values for a given command class.""" return { value_id: value for value_id, value in self.values.items() if value.command_class == command_class and (endpoint is None or value.endpoint == endpoint) } def get_configuration_values(self) -> dict[str, ConfigurationValue]: """Return all configuration values for a node.""" return cast( dict[str, ConfigurationValue], self.get_command_class_values(CommandClass.CONFIGURATION), ) def receive_event(self, event: Event) -> None: """Receive an event.""" NODE_EVENT_MODEL_MAP[event.type](**event.data) self._handle_event_protocol(event) event.data["node"] = self self.emit(event.type, event.data) async def async_send_command( self, cmd: str, require_schema: int | None = None, wait_for_result: bool | None = None, **cmd_kwargs: Any, ) -> dict[str, Any] | None: """ Send a node command. For internal use only. If wait_for_result is not None, it will take precedence, otherwise we will decide to wait or not based on the node status. """ kwargs = {} message = {"command": f"node.{cmd}", "nodeId": self.node_id, **cmd_kwargs} if require_schema is not None: kwargs["require_schema"] = require_schema if wait_for_result: result = await self.client.async_send_command(message, **kwargs) return result if wait_for_result is None and self.status not in ( NodeStatus.ASLEEP, NodeStatus.DEAD, ): result_task = asyncio.create_task( self.client.async_send_command(message, **kwargs) ) status_task = asyncio.create_task(self._status_event.wait()) await asyncio.wait( [result_task, status_task], return_when=asyncio.FIRST_COMPLETED, ) status_task.cancel() if self._status_event.is_set() and not result_task.done(): result_task.cancel() return None return result_task.result() await self.client.async_send_command_no_wait(message, **kwargs) return None async def async_set_value( self, val: Value | str, new_value: Any, options: dict | None = None, wait_for_result: bool | None = None, ) -> SetValueResult | None: """Send setValue command to Node for given value (or value_id).""" # a value may be specified as value_id or the value itself if not isinstance(val, Value): if val not in self.values: raise NotFoundError(f"Value {val} not found on node {self}") val = self.values[val] if val.metadata.writeable is False: raise UnwriteableValue cmd_args = { "valueId": _get_value_id_dict_from_value_data(val.data), "value": new_value, } if options: option = next( ( option for option in options if option not in val.metadata.value_change_options ), None, ) if option is not None: raise NotFoundError( f"Option {option} not found on value {val} on node {self}" ) cmd_args["options"] = options # the value object needs to be send to the server result = await self.async_send_command( "set_value", **cmd_args, require_schema=29, wait_for_result=wait_for_result ) if result is None: return None return SetValueResult(result["result"]) async def async_refresh_info(self) -> None: """Send refreshInfo command to Node.""" await self.async_send_command("refresh_info", wait_for_result=False) async def async_refresh_values(self) -> None: """Send refreshValues command to Node.""" await self.async_send_command( "refresh_values", wait_for_result=False, require_schema=4 ) async def async_refresh_cc_values(self, command_class: CommandClass) -> None: """Send refreshCCValues command to Node.""" await self.async_send_command( "refresh_cc_values", commandClass=command_class, wait_for_result=False, require_schema=4, ) async def async_get_defined_value_ids(self) -> list[Value]: """Send getDefinedValueIDs command to Node.""" data = await self.async_send_command( "get_defined_value_ids", wait_for_result=True ) if data is None: # We should never reach this code raise FailedCommand("Command failed", "failed_command") return [ _init_value(self, cast(ValueDataType, value_id)) for value_id in data["valueIds"] ] async def async_get_value_metadata(self, val: Value | str) -> ValueMetadata: """Send getValueMetadata command to Node.""" # a value may be specified as value_id or the value itself if not isinstance(val, Value): val = self.values[val] # the value object needs to be send to the server data = await self.async_send_command( "get_value_metadata", valueId=_get_value_id_dict_from_value_data(val.data), wait_for_result=True, ) return ValueMetadata(cast(MetaDataType, data)) async def async_get_firmware_update_capabilities( self, ) -> NodeFirmwareUpdateCapabilities: """Send getFirmwareUpdateCapabilities command to Node.""" data = await self.async_send_command( "get_firmware_update_capabilities", require_schema=7, wait_for_result=True, ) assert data return NodeFirmwareUpdateCapabilities( cast(NodeFirmwareUpdateCapabilitiesDataType, data["capabilities"]) ) async def async_get_firmware_update_capabilities_cached( self, ) -> NodeFirmwareUpdateCapabilities: """Send getFirmwareUpdateCapabilitiesCached command to Node.""" data = await self.async_send_command( "get_firmware_update_capabilities_cached", require_schema=21, wait_for_result=True, ) assert data return NodeFirmwareUpdateCapabilities( cast(NodeFirmwareUpdateCapabilitiesDataType, data["capabilities"]) ) async def async_abort_firmware_update(self) -> None: """Send abortFirmwareUpdate command to Node.""" await self.async_send_command("abort_firmware_update", wait_for_result=True) async def async_poll_value(self, val: Value | str) -> None: """Send pollValue command to Node for given value (or value_id).""" # a value may be specified as value_id or the value itself if not isinstance(val, Value): val = self.values[val] await self.async_send_command( "poll_value", valueId=_get_value_id_dict_from_value_data(val.data), require_schema=1, ) async def async_ping(self) -> bool: """Send ping command to Node.""" data = ( await self.async_send_command( "ping", require_schema=5, wait_for_result=True ) or {} ) return cast(bool, data.get("responded", False)) async def async_invoke_cc_api( self, command_class: CommandClass, method_name: str, *args: Any, wait_for_result: bool | None = None, ) -> Any: """Call endpoint.invoke_cc_api command.""" return await self.endpoints[0].async_invoke_cc_api( command_class, method_name, *args, wait_for_result=wait_for_result ) async def async_supports_cc_api(self, command_class: CommandClass) -> bool: """Call endpoint.supports_cc_api command.""" return await self.endpoints[0].async_supports_cc_api(command_class) async def async_supports_cc(self, command_class: CommandClass) -> bool: """Call endpoint.supports_cc command.""" return await self.endpoints[0].async_supports_cc(command_class) async def async_controls_cc(self, command_class: CommandClass) -> bool: """Call endpoint.controls_cc command.""" return await self.endpoints[0].async_controls_cc(command_class) async def async_is_cc_secure(self, command_class: CommandClass) -> bool: """Call endpoint.is_cc_secure command.""" return await self.endpoints[0].async_is_cc_secure(command_class) async def async_get_cc_version(self, command_class: CommandClass) -> bool: """Call endpoint.get_cc_version command.""" return await self.endpoints[0].async_get_cc_version(command_class) async def async_get_node_unsafe(self) -> NodeDataType: """Call endpoint.get_node_unsafe command.""" return await self.endpoints[0].async_get_node_unsafe() async def async_has_security_class(self, security_class: SecurityClass) -> bool: """Return whether node has the given security class.""" data = await self.async_send_command( "has_security_class", securityClass=security_class, require_schema=8, wait_for_result=True, ) assert data return cast(bool, data["hasSecurityClass"]) async def async_get_highest_security_class(self) -> SecurityClass: """Get the highest security class that a node supports.""" data = await self.async_send_command( "get_highest_security_class", require_schema=8, wait_for_result=True ) assert data return SecurityClass(data["highestSecurityClass"]) async def async_test_power_level( self, test_node: "Node", power_level: PowerLevel, test_frame_count: int ) -> int: """Send testPowerLevel command to Node.""" data = await self.async_send_command( "test_powerlevel", testNodeId=test_node.node_id, powerlevel=power_level, testFrameCount=test_frame_count, require_schema=13, wait_for_result=True, ) assert data return cast(int, data["framesAcked"]) async def async_check_lifeline_health( self, rounds: int | None = None ) -> LifelineHealthCheckSummary: """Send checkLifelineHealth command to Node.""" kwargs = {} if rounds is not None: kwargs["rounds"] = rounds data = await self.async_send_command( "check_lifeline_health", require_schema=13, wait_for_result=True, **kwargs, ) assert data return LifelineHealthCheckSummary(data["summary"]) async def async_check_route_health( self, target_node: "Node", rounds: int | None = None ) -> RouteHealthCheckSummary: """Send checkRouteHealth command to Node.""" kwargs = {"targetNodeId": target_node.node_id} if rounds is not None: kwargs["rounds"] = rounds data = await self.async_send_command( "check_route_health", require_schema=13, wait_for_result=True, **kwargs, ) assert data return RouteHealthCheckSummary(data["summary"]) async def async_get_state(self) -> NodeDataType: """Get node state.""" data = await self.async_send_command( "get_state", require_schema=14, wait_for_result=True ) assert data return cast(NodeDataType, data["state"]) async def async_set_name( self, name: str, update_cc: bool = True, wait_for_result: bool | None = None ) -> None: """Set node name.""" # If we may not potentially update the name CC, we should just wait for the # result because the change is local to the driver if not update_cc: wait_for_result = True await self.async_send_command( "set_name", name=name, updateCC=update_cc, wait_for_result=wait_for_result, require_schema=14, ) self.data["name"] = name async def async_set_location( self, location: str, update_cc: bool = True, wait_for_result: bool | None = None, ) -> None: """Set node location.""" # If we may not potentially update the location CC, we should just wait for the # result because the change is local to the driver if not update_cc: wait_for_result = True await self.async_send_command( "set_location", location=location, updateCC=update_cc, wait_for_result=wait_for_result, require_schema=14, ) self.data["location"] = location async def async_is_firmware_update_in_progress(self) -> bool: """ Send isFirmwareUpdateInProgress command to Node. If `True`, a firmware update for this node is in progress. """ data = await self.async_send_command( "is_firmware_update_in_progress", require_schema=21, wait_for_result=True ) assert data return cast(bool, data["progress"]) async def async_set_keep_awake(self, keep_awake: bool) -> None: """Set node keep awake state.""" await self.async_send_command( "set_keep_awake", keepAwake=keep_awake, wait_for_result=True, require_schema=14, ) self.data["keepAwake"] = keep_awake async def async_interview(self) -> None: """Interview node.""" await self.async_send_command( "interview", wait_for_result=False, require_schema=22, ) async def async_get_value_timestamp(self, val: Value | str) -> int: """Send getValueTimestamp command to Node for given value (or value_id).""" # a value may be specified as value_id or the value itself if not isinstance(val, Value): val = self.values[val] data = await self.async_send_command( "get_value_timestamp", valueId=_get_value_id_dict_from_value_data(val.data), require_schema=27, wait_for_result=True, ) assert data return cast(int, data["timestamp"]) async def async_manually_idle_notification_value(self, val: Value | str) -> None: """Send manuallyIdleNotificationValue command to Node for given value (or value_id).""" # a value may be specified as value_id or the value itself if not isinstance(val, Value): val = self.values[val] if val.command_class != CommandClass.NOTIFICATION: raise ValueError( "Value must be of CommandClass.NOTIFICATION to manually idle it" ) await self.async_send_command( "manually_idle_notification_value", valueId=_get_value_id_dict_from_value_data(val.data), require_schema=28, wait_for_result=False, ) async def async_set_date_and_time(self, datetime_: datetime | None = None) -> bool: """Send setDateAndTime command to Node.""" args = {} if datetime_: args["date"] = datetime_.isoformat() data = await self.async_send_command( "set_date_and_time", **args, require_schema=28, wait_for_result=True, ) assert data return cast(bool, data["success"]) async def async_get_date_and_time(self) -> DateAndTime: """Send getDateAndTime command to Node.""" data = await self.async_send_command( "get_date_and_time", require_schema=31, wait_for_result=True, ) assert data return DateAndTime(data["dateAndTime"]) async def async_is_health_check_in_progress(self) -> bool: """Send isHealthCheckInProgress command to Node.""" data = await self.async_send_command( "is_health_check_in_progress", require_schema=31, wait_for_result=True, ) assert data return cast(bool, data["progress"]) async def async_abort_health_check(self) -> None: """Send abortHealthCheck command to Node.""" await self.async_send_command( "abort_health_check", require_schema=31, wait_for_result=True, ) async def async_set_default_volume( self, default_volume: int | float | None ) -> None: """Send setDefaultVolume command to Node.""" cmd_kwargs = {} self.data["defaultVolume"] = default_volume if default_volume is not None: cmd_kwargs["defaultVolume"] = default_volume await self.async_send_command( "set_default_volume", require_schema=31, wait_for_result=None, **cmd_kwargs, ) async def async_set_default_transition_duration( self, default_duration_transition: int | float | None ) -> None: """Send setDefaultTransitionDuration command to Node.""" cmd_kwargs = {} self.data["defaultTransitionDuration"] = default_duration_transition if default_duration_transition is not None: cmd_kwargs["defaultTransitionDuration"] = default_duration_transition await self.async_send_command( "set_default_transition_duration", require_schema=31, wait_for_result=None, **cmd_kwargs, ) async def async_has_device_config_changed(self) -> bool: """Send hasDeviceConfigChanged command to Node.""" data = await self.async_send_command( "has_device_config_changed", require_schema=31, wait_for_result=True, ) assert data return cast(bool, data["changed"]) def handle_test_powerlevel_progress(self, event: Event) -> None: """Process a test power level progress event.""" event.data["test_power_level_progress"] = TestPowerLevelProgress( event.data["acknowledged"], event.data["total"] ) def handle_check_lifeline_health_progress(self, event: Event) -> None: """Process a check lifeline health progress event.""" event.data["check_lifeline_health_progress"] = CheckHealthProgress( event.data["rounds"], event.data["totalRounds"], event.data["lastRating"], LifelineHealthCheckResult(event.data["lastResult"]), ) def handle_check_route_health_progress(self, event: Event) -> None: """Process a check route health progress event.""" event.data["check_route_health_progress"] = CheckHealthProgress( event.data["rounds"], event.data["totalRounds"], event.data["lastRating"], RouteHealthCheckResult(event.data["lastResult"]), ) def handle_wake_up(self, event: Event) -> None: """Process a node wake up event.""" # pylint: disable=unused-argument self._status_event.clear() self.data["status"] = NodeStatus.AWAKE def handle_sleep(self, event: Event) -> None: """Process a node sleep event.""" # pylint: disable=unused-argument self._status_event.set() self.data["status"] = NodeStatus.ASLEEP def handle_dead(self, event: Event) -> None: """Process a node dead event.""" # pylint: disable=unused-argument self._status_event.set() self.data["status"] = NodeStatus.DEAD def handle_alive(self, event: Event) -> None: """Process a node alive event.""" # pylint: disable=unused-argument self._status_event.clear() self.data["status"] = NodeStatus.ALIVE def handle_interview_started(self, event: Event) -> None: """Process a node interview started event.""" # pylint: disable=unused-argument self.data["ready"] = False self.data["interviewStage"] = None def handle_interview_stage_completed(self, event: Event) -> None: """Process a node interview stage completed event.""" self.data["interviewStage"] = event.data["stageName"] def handle_interview_failed(self, event: Event) -> None: """Process a node interview failed event.""" # pylint: disable=unused-argument self.data["interviewStage"] = INTERVIEW_FAILED def handle_interview_completed(self, event: Event) -> None: """Process a node interview completed event.""" # pylint: disable=unused-argument self.data["ready"] = True def handle_ready(self, event: Event) -> None: """Process a node ready event.""" # the event contains a full dump of the node self.update(event.data["nodeState"]) def handle_value_added(self, event: Event) -> None: """Process a node value added event.""" self.handle_value_updated(event) def handle_value_updated(self, event: Event) -> None: """Process a node value updated event.""" evt_val_data: ValueDataType = event.data["args"] value_id = _get_value_id_str_from_dict(self, evt_val_data) value = self.values.get(value_id) if value is None: value = _init_value(self, evt_val_data) self.values[value.value_id] = event.data["value"] = value else: value.receive_event(event) event.data["value"] = value def handle_value_removed(self, event: Event) -> None: """Process a node value removed event.""" value_id = _get_value_id_str_from_dict(self, event.data["args"]) event.data["value"] = self.values.pop(value_id) def handle_value_notification(self, event: Event) -> None: """Process a node value notification event.""" # if value is found, use value data as base and update what is provided # in the event, otherwise use the event data event_data = event.data["args"] if value := self.values.get(_get_value_id_str_from_dict(self, event_data)): value_notification = ValueNotification( self, cast(ValueDataType, dict(value.data)) ) value_notification.update(event_data) else: value_notification = ValueNotification(self, event_data) event.data["value_notification"] = value_notification def handle_metadata_updated(self, event: Event) -> None: """Process a node metadata updated event.""" # handle metadata updated as value updated (as its a value object with # included metadata) self.handle_value_updated(event) def handle_notification(self, event: Event) -> None: """Process a node notification event.""" command_class = CommandClass(event.data["ccId"]) if command_class == CommandClass.NOTIFICATION: event.data["notification"] = NotificationNotification( self, cast(NotificationNotificationDataType, event.data) ) elif command_class == CommandClass.SWITCH_MULTILEVEL: event.data["notification"] = MultilevelSwitchNotification( self, cast(MultilevelSwitchNotificationDataType, event.data) ) elif command_class == CommandClass.ENTRY_CONTROL: event.data["notification"] = EntryControlNotification( self, cast(EntryControlNotificationDataType, event.data) ) elif command_class == CommandClass.POWERLEVEL: event.data["notification"] = PowerLevelNotification( self, cast(PowerLevelNotificationDataType, event.data) ) else: _LOGGER.info("Unhandled notification command class: %s", command_class.name) def handle_firmware_update_progress(self, event: Event) -> None: """Process a node firmware update progress event.""" self._firmware_update_progress = event.data[ "firmware_update_progress" ] = NodeFirmwareUpdateProgress( self, cast(NodeFirmwareUpdateProgressDataType, event.data["progress"]) ) def handle_firmware_update_finished(self, event: Event) -> None: """Process a node firmware update finished event.""" self._firmware_update_progress = None event.data["firmware_update_finished"] = NodeFirmwareUpdateResult( self, cast(NodeFirmwareUpdateResultDataType, event.data["result"]) ) def handle_statistics_updated(self, event: Event) -> None: """Process a statistics updated event.""" self.data["statistics"] = statistics = event.data["statistics"] event.data["statistics_updated"] = self._statistics = NodeStatistics( self.client, statistics ) if last_seen := statistics.get("lastSeen"): self.data["lastSeen"] = last_seen
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/node/__init__.py
__init__.py
from __future__ import annotations from dataclasses import dataclass, field from enum import IntEnum from typing import TypedDict from ...util.helpers import convert_bytes_to_base64 class ControllerFirmwareUpdateDataDataType(TypedDict, total=False): """Represent a controller firmware update data dict type.""" filename: str # required file: str # required fileFormat: str @dataclass class ControllerFirmwareUpdateData: """Controller firmware update data.""" filename: str file: bytes file_format: str | None = None def to_dict(self) -> ControllerFirmwareUpdateDataDataType: """Convert firmware update data to dict.""" data: ControllerFirmwareUpdateDataDataType = { "filename": self.filename, "file": convert_bytes_to_base64(self.file), } if self.file_format is not None: data["fileFormat"] = self.file_format return data class ControllerFirmwareUpdateStatus(IntEnum): """Enum with all controller firmware update status values. https://zwave-js.github.io/node-zwave-js/#/api/controller?id=quotfirmware-update-finishedquot """ ERROR_TIMEOUT = 0 # The maximum number of retry attempts for a firmware fragments were reached ERROR_RETRY_LIMIT_REACHED = 1 # The update was aborted by the bootloader ERROR_ABORTED = 2 # This controller does not support firmware updates ERROR_NOT_SUPPORTED = 3 OK = 255 class ControllerFirmwareUpdateProgressDataType(TypedDict): """Represent a controller firmware update progress dict type.""" sentFragments: int totalFragments: int progress: float @dataclass class ControllerFirmwareUpdateProgress: """Model for a controller firmware update progress data.""" data: ControllerFirmwareUpdateProgressDataType sent_fragments: int = field(init=False) total_fragments: int = field(init=False) progress: float = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.sent_fragments = self.data["sentFragments"] self.total_fragments = self.data["totalFragments"] self.progress = float(self.data["progress"]) class ControllerFirmwareUpdateResultDataType(TypedDict): """Represent a controller firmware update result dict type.""" status: int success: bool @dataclass class ControllerFirmwareUpdateResult: """Model for controller firmware update result data.""" data: ControllerFirmwareUpdateResultDataType status: ControllerFirmwareUpdateStatus = field(init=False) success: bool = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.status = ControllerFirmwareUpdateStatus(self.data["status"]) self.success = self.data["success"]
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/controller/firmware.py
firmware.py
from __future__ import annotations from dataclasses import dataclass from typing import Any, TypedDict from ...const import Protocols, ProvisioningEntryStatus, QRCodeVersion, SecurityClass class InclusionGrantDataType(TypedDict): """Representation of an inclusion grant data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/Inclusion.ts#L48-L56 securityClasses: list[int] clientSideAuth: bool @dataclass class InclusionGrant: """Representation of an inclusion grant.""" security_classes: list[SecurityClass] client_side_auth: bool def to_dict(self) -> InclusionGrantDataType: """Return InclusionGrantDataType dict from self.""" return { "securityClasses": [sec_cls.value for sec_cls in self.security_classes], "clientSideAuth": self.client_side_auth, } @classmethod def from_dict(cls, data: InclusionGrantDataType) -> "InclusionGrant": """Return InclusionGrant from InclusionGrantDataType dict.""" return cls( security_classes=[ SecurityClass(sec_cls) for sec_cls in data["securityClasses"] ], client_side_auth=data["clientSideAuth"], ) @dataclass class ProvisioningEntry: """Class to represent the base fields of a provisioning entry.""" dsk: str security_classes: list[SecurityClass] requested_security_classes: list[SecurityClass] | None = None status: ProvisioningEntryStatus = ProvisioningEntryStatus.ACTIVE additional_properties: dict[str, Any] | None = None def to_dict(self) -> dict[str, Any]: """Return PlannedProvisioning data dict from self.""" data = { "dsk": self.dsk, "securityClasses": [sec_cls.value for sec_cls in self.security_classes], "status": self.status.value, **(self.additional_properties or {}), } if self.requested_security_classes: data["requestedSecurityClasses"] = [ sec_cls.value for sec_cls in self.requested_security_classes ] return data @classmethod def from_dict(cls, data: dict[str, Any]) -> "ProvisioningEntry": """Return ProvisioningEntry from data dict.""" cls_instance = cls( dsk=data["dsk"], security_classes=[ SecurityClass(sec_cls) for sec_cls in data["securityClasses"] ], additional_properties={ k: v for k, v in data.items() if k not in {"dsk", "securityClasses", "requestedSecurityClasses", "status"} }, ) if "requestedSecurityClasses" in data: cls_instance.requested_security_classes = [ SecurityClass(sec_cls) for sec_cls in data["requestedSecurityClasses"] ] if "status" in data: cls_instance.status = ProvisioningEntryStatus(data["status"]) return cls_instance @dataclass class QRProvisioningInformationMixin: """Mixin class to represent the base fields of a QR provisioning information.""" version: QRCodeVersion generic_device_class: int specific_device_class: int installer_icon_type: int manufacturer_id: int product_type: int product_id: int application_version: str max_inclusion_request_interval: int | None uuid: str | None supported_protocols: list[Protocols] | None @dataclass class QRProvisioningInformation(ProvisioningEntry, QRProvisioningInformationMixin): """Representation of provisioning information retrieved from a QR code.""" def to_dict(self) -> dict[str, Any]: """Return QRProvisioningInformation data dict from self.""" data = { "version": self.version.value, "securityClasses": [sec_cls.value for sec_cls in self.security_classes], "dsk": self.dsk, "status": self.status.value, "genericDeviceClass": self.generic_device_class, "specificDeviceClass": self.specific_device_class, "installerIconType": self.installer_icon_type, "manufacturerId": self.manufacturer_id, "productType": self.product_type, "productId": self.product_id, "applicationVersion": self.application_version, **(self.additional_properties or {}), } if self.requested_security_classes: data["requestedSecurityClasses"] = [ sec_cls.value for sec_cls in self.requested_security_classes ] if self.max_inclusion_request_interval is not None: data["maxInclusionRequestInterval"] = self.max_inclusion_request_interval if self.uuid is not None: data["uuid"] = self.uuid if self.supported_protocols is not None: data["supportedProtocols"] = [ protocol.value for protocol in self.supported_protocols ] return data @classmethod def from_dict(cls, data: dict[str, Any]) -> "QRProvisioningInformation": """Return QRProvisioningInformation from data dict.""" cls_instance = cls( version=QRCodeVersion(data["version"]), security_classes=[ SecurityClass(sec_cls) for sec_cls in data["securityClasses"] ], dsk=data["dsk"], generic_device_class=data["genericDeviceClass"], specific_device_class=data["specificDeviceClass"], installer_icon_type=data["installerIconType"], manufacturer_id=data["manufacturerId"], product_type=data["productType"], product_id=data["productId"], application_version=data["applicationVersion"], max_inclusion_request_interval=data.get("maxInclusionRequestInterval"), uuid=data.get("uuid"), supported_protocols=[ Protocols(supported_protocol) for supported_protocol in data.get("supportedProtocols", []) ], additional_properties={ k: v for k, v in data.items() if k not in { "version", "securityClasses", "requestedSecurityClasses", "dsk", "genericDeviceClass", "specificDeviceClass", "installerIconType", "manufacturerId", "productType", "productId", "applicationVersion", "maxInclusionRequestInterval", "uuid", "supportedProtocols", "status", } }, ) if "requestedSecurityClasses" in data: cls_instance.requested_security_classes = [ SecurityClass(sec_cls) for sec_cls in data["requestedSecurityClasses"] ] if "status" in data: cls_instance.status = ProvisioningEntryStatus(data["status"]) return cls_instance
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/controller/inclusion_and_provisioning.py
inclusion_and_provisioning.py
from __future__ import annotations from typing import Literal, TypedDict from ...const import RemoveNodeReason from ...event import BaseEventModel from ..node.data_model import FoundNodeDataType, NodeDataType from .firmware import ( ControllerFirmwareUpdateProgressDataType, ControllerFirmwareUpdateResultDataType, ) from .inclusion_and_provisioning import InclusionGrantDataType from .statistics import ControllerStatisticsDataType class InclusionResultDataType(TypedDict, total=False): """Represent an inclusion result data dict type.""" lowSecurity: bool # required lowSecurityReason: int class BaseControllerEventModel(BaseEventModel): """Base model for a controller event.""" source: Literal["controller"] class ExclusionFailedEventModel(BaseControllerEventModel): """Model for `exclusion failed` event data.""" event: Literal["exclusion failed"] class ExclusionStartedEventModel(BaseControllerEventModel): """Model for `exclusion started` event data.""" event: Literal["exclusion started"] class ExclusionStoppedEventModel(BaseControllerEventModel): """Model for `exclusion stopped` event data.""" event: Literal["exclusion stopped"] class FirmwareUpdateFinishedEventModel(BaseControllerEventModel): """Model for `firmware update finished` event data.""" event: Literal["firmware update finished"] result: ControllerFirmwareUpdateResultDataType class FirmwareUpdateProgressEventModel(BaseControllerEventModel): """Model for `firmware update progress` event data.""" event: Literal["firmware update progress"] progress: ControllerFirmwareUpdateProgressDataType class GrantSecurityClassesEventModel(BaseControllerEventModel): """Model for `grant security classes` event data.""" event: Literal["grant security classes"] requested: InclusionGrantDataType class HealNetworkDoneEventModel(BaseControllerEventModel): """Model for `heal network done` event data.""" event: Literal["heal network done"] result: dict[int, str] class HealNetworkProgressEventModel(BaseControllerEventModel): """Model for `heal network progress` event data.""" event: Literal["heal network progress"] progress: dict[int, str] class InclusionAbortedEventModel(BaseControllerEventModel): """Model for `inclusion aborted` event data.""" event: Literal["inclusion aborted"] class InclusionFailedEventModel(BaseControllerEventModel): """Model for `inclusion failed` event data.""" event: Literal["inclusion failed"] class InclusionStartedEventModel(BaseControllerEventModel): """Model for `inclusion started` event data.""" event: Literal["inclusion started"] secure: bool class InclusionStoppedEventModel(BaseControllerEventModel): """Model for `inclusion stopped` event data.""" event: Literal["inclusion stopped"] class NodeAddedEventModel(BaseControllerEventModel): """Model for `node added` event data.""" event: Literal["node added"] node: NodeDataType result: InclusionResultDataType class NodeFoundEventModel(BaseControllerEventModel): """Model for `node found` event data.""" event: Literal["node found"] node: FoundNodeDataType class NodeRemovedEventModel(BaseControllerEventModel): """Model for `node removed` event data.""" event: Literal["node removed"] node: NodeDataType reason: RemoveNodeReason class NVMBackupAndConvertProgressEventModel(BaseControllerEventModel): """Base model for `nvm backup progress` and `nvm convert progress` event data.""" bytesRead: int total: int class NVMBackupProgressEventModel(NVMBackupAndConvertProgressEventModel): """Model for `nvm backup progress` event data.""" event: Literal["nvm backup progress"] class NVMConvertProgressEventModel(NVMBackupAndConvertProgressEventModel): """Model for `nvm convert progress` event data.""" event: Literal["nvm convert progress"] class NVMRestoreProgressEventModel(BaseControllerEventModel): """Model for `nvm restore progress` event data.""" event: Literal["nvm restore progress"] bytesWritten: int total: int class StatisticsUpdatedEventModel(BaseControllerEventModel): """Model for `statistics updated` event data.""" event: Literal["statistics updated"] statistics: ControllerStatisticsDataType class ValidateDSKAndEnterPINEventModel(BaseControllerEventModel): """Model for `validate dsk and enter pin` event data.""" event: Literal["validate dsk and enter pin"] dsk: str class IdentifyEventModel(BaseControllerEventModel): """Model for `identify` event data.""" event: Literal["identify"] nodeId: int class StatusChangedEventModel(BaseControllerEventModel): """Model for `status changed` event data.""" event: Literal["status changed"] status: int CONTROLLER_EVENT_MODEL_MAP: dict[str, type["BaseControllerEventModel"]] = { "exclusion failed": ExclusionFailedEventModel, "exclusion started": ExclusionStartedEventModel, "exclusion stopped": ExclusionStoppedEventModel, "firmware update finished": FirmwareUpdateFinishedEventModel, "firmware update progress": FirmwareUpdateProgressEventModel, "grant security classes": GrantSecurityClassesEventModel, "heal network done": HealNetworkDoneEventModel, "heal network progress": HealNetworkProgressEventModel, "identify": IdentifyEventModel, "inclusion aborted": InclusionAbortedEventModel, "inclusion failed": InclusionFailedEventModel, "inclusion started": InclusionStartedEventModel, "inclusion stopped": InclusionStoppedEventModel, "node added": NodeAddedEventModel, "node found": NodeFoundEventModel, "node removed": NodeRemovedEventModel, "nvm backup progress": NVMBackupProgressEventModel, "nvm convert progress": NVMConvertProgressEventModel, "nvm restore progress": NVMRestoreProgressEventModel, "statistics updated": StatisticsUpdatedEventModel, "status changed": StatusChangedEventModel, "validate dsk and enter pin": ValidateDSKAndEnterPINEventModel, }
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/controller/event_model.py
event_model.py
from __future__ import annotations from contextlib import suppress from dataclasses import dataclass, field from typing import TYPE_CHECKING, TypedDict from ..statistics import RouteStatistics, RouteStatisticsDataType if TYPE_CHECKING: from ...client import Client class ControllerLifelineRoutesDataType(TypedDict): """Represent a controller lifeline routes data dict type.""" lwr: RouteStatisticsDataType nlwr: RouteStatisticsDataType @dataclass class ControllerLifelineRoutes: """Represent controller lifeline routes.""" client: "Client" data: ControllerLifelineRoutesDataType lwr: RouteStatistics | None = field(init=False, default=None) nlwr: RouteStatistics | None = field(init=False, default=None) def __post_init__(self) -> None: """Post initialize.""" if lwr := self.data.get("lwr"): with suppress(ValueError): self.lwr = RouteStatistics(self.client, lwr) if nlwr := self.data.get("nlwr"): with suppress(ValueError): self.nlwr = RouteStatistics(self.client, nlwr) class ChannelRSSIDataType(TypedDict): """Represent a channel RSSI data dict type.""" average: int current: int class BackgroundRSSIDataType(TypedDict, total=False): """Represent a background RSSI data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/ControllerStatistics.ts#L40 timestamp: int # required channel0: ChannelRSSIDataType # required channel1: ChannelRSSIDataType # required channel2: ChannelRSSIDataType class ControllerStatisticsDataType(TypedDict, total=False): """Represent a controller statistics data dict type.""" # https://github.com/zwave-js/node-zwave-js/blob/master/packages/zwave-js/src/lib/controller/ControllerStatistics.ts#L20-L39 messagesTX: int # required messagesRX: int # required messagesDroppedTX: int # required messagesDroppedRX: int # required NAK: int # required CAN: int # required timeoutACK: int # required timeoutResponse: int # required timeoutCallback: int # required backgroundRSSI: BackgroundRSSIDataType @dataclass class ChannelRSSI: """Represent a channel RSSI.""" data: ChannelRSSIDataType average: int = field(init=False) current: int = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.average = self.data["average"] self.current = self.data["current"] @dataclass class BackgroundRSSI: """Represent a background RSSI update.""" data: BackgroundRSSIDataType timestamp: int = field(init=False) channel_0: ChannelRSSI = field(init=False) channel_1: ChannelRSSI = field(init=False) channel_2: ChannelRSSI | None = field(init=False) def __post_init__(self) -> None: """Post initialize.""" self.timestamp = self.data["timestamp"] self.channel_0 = ChannelRSSI(self.data["channel0"]) self.channel_1 = ChannelRSSI(self.data["channel1"]) if not (channel_2 := self.data.get("channel2")): self.channel_2 = None return self.channel_2 = ChannelRSSI(channel_2) @dataclass class ControllerStatistics: """Represent a controller statistics update.""" data: ControllerStatisticsDataType messages_tx: int = field(init=False) messages_rx: int = field(init=False) messages_dropped_rx: int = field(init=False) messages_dropped_tx: int = field(init=False) nak: int = field(init=False) can: int = field(init=False) timeout_ack: int = field(init=False) timeout_response: int = field(init=False) timeout_callback: int = field(init=False) background_rssi: BackgroundRSSI | None = field(init=False, default=None) def __post_init__(self) -> None: """Post initialize.""" self.messages_tx = self.data["messagesTX"] self.messages_rx = self.data["messagesRX"] self.messages_dropped_rx = self.data["messagesDroppedRX"] self.messages_dropped_tx = self.data["messagesDroppedTX"] self.nak = self.data["NAK"] self.can = self.data["CAN"] self.timeout_ack = self.data["timeoutACK"] self.timeout_response = self.data["timeoutResponse"] self.timeout_callback = self.data["timeoutCallback"] if background_rssi := self.data.get("backgroundRSSI"): self.background_rssi = BackgroundRSSI(background_rssi)
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/controller/statistics.py
statistics.py
from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Literal, cast from zwave_js_server.model.node.firmware import ( NodeFirmwareUpdateFileInfo, NodeFirmwareUpdateInfo, ) from ...const import ( MINIMUM_QR_STRING_LENGTH, ControllerStatus, ExclusionStrategy, InclusionState, InclusionStrategy, NodeType, QRCodeVersion, RemoveNodeReason, RFRegion, ZwaveFeature, ) from ...event import Event, EventBase from ...util.helpers import convert_base64_to_bytes, convert_bytes_to_base64 from ..association import AssociationAddress, AssociationGroup from ..node import Node from ..node.firmware import NodeFirmwareUpdateResult from .data_model import ControllerDataType from .event_model import CONTROLLER_EVENT_MODEL_MAP from .firmware import ControllerFirmwareUpdateProgress, ControllerFirmwareUpdateResult from .inclusion_and_provisioning import ( InclusionGrant, ProvisioningEntry, QRProvisioningInformation, ) from .statistics import ( ControllerLifelineRoutes, ControllerStatistics, ControllerStatisticsDataType, ) if TYPE_CHECKING: from ...client import Client DEFAULT_CONTROLLER_STATISTICS = ControllerStatisticsDataType( messagesTX=0, messagesRX=0, messagesDroppedTX=0, messagesDroppedRX=0, NAK=0, CAN=0, timeoutACK=0, timeoutResponse=0, timeoutCallback=0, ) @dataclass class NVMProgress: """Class to represent an NVM backup/restore progress event.""" bytes_read_or_written: int total_bytes: int class Controller(EventBase): """Represent a Z-Wave JS controller.""" def __init__(self, client: "Client", state: dict) -> None: """Initialize controller.""" super().__init__() self.client = client self.nodes: dict[int, Node] = {} self._heal_network_progress: dict[int, str] | None = None self._statistics = ControllerStatistics(DEFAULT_CONTROLLER_STATISTICS) self._firmware_update_progress: ControllerFirmwareUpdateProgress | None = None for node_state in state["nodes"]: node = Node(client, node_state) self.nodes[node.node_id] = node self.update(state["controller"]) def __repr__(self) -> str: """Return the representation.""" return f"{type(self).__name__}(home_id={self.home_id})" def __hash__(self) -> int: """Return the hash.""" return hash(self.home_id) def __eq__(self, other: object) -> bool: """Return whether this instance equals another.""" if not isinstance(other, Controller): return False return self.home_id == other.home_id @property def sdk_version(self) -> str | None: """Return sdk_version.""" return self.data.get("sdkVersion") @property def controller_type(self) -> int | None: """Return controller_type.""" return self.data.get("type") @property def home_id(self) -> int | None: """Return home_id.""" return self.data.get("homeId") @property def own_node_id(self) -> int | None: """Return own_node_id.""" return self.data.get("ownNodeId") @property def own_node(self) -> Node | None: """Return own_node.""" if self.own_node_id is None: return None return self.nodes.get(self.own_node_id) @property def is_primary(self) -> bool | None: """Return is_primary.""" return self.data.get("isPrimary") @property def is_using_home_id_from_other_network(self) -> bool | None: """Return is_using_home_id_from_other_network.""" return self.data.get("isUsingHomeIdFromOtherNetwork") @property def is_SIS_present(self) -> bool | None: # pylint: disable=invalid-name """Return is_SIS_present.""" return self.data.get("isSISPresent") @property def was_real_primary(self) -> bool | None: """Return was_real_primary.""" return self.data.get("wasRealPrimary") @property def is_suc(self) -> bool | None: """Return is_suc.""" return self.data.get("isSUC") @property def node_type(self) -> NodeType | None: """Return node_type.""" if (node_type := self.data.get("nodeType")) is not None: return NodeType(node_type) return None @property def firmware_version(self) -> str | None: """Return firmware_version.""" return self.data.get("firmwareVersion") @property def manufacturer_id(self) -> int | None: """Return manufacturer_id.""" return self.data.get("manufacturerId") @property def product_type(self) -> int | None: """Return product_type.""" return self.data.get("productType") @property def product_id(self) -> int | None: """Return product_id.""" return self.data.get("productId") @property def supported_function_types(self) -> list[int]: """Return supported_function_types.""" return self.data.get("supportedFunctionTypes", []) @property def suc_node_id(self) -> int | None: """Return suc_node_id.""" return self.data.get("sucNodeId") @property def supports_timers(self) -> bool | None: """Return supports_timers.""" return self.data.get("supportsTimers") @property def is_heal_network_active(self) -> bool | None: """Return is_heal_network_active.""" return self.data.get("isHealNetworkActive") @property def statistics(self) -> ControllerStatistics: """Return statistics property.""" return self._statistics @property def heal_network_progress(self) -> dict[int, str] | None: """Return heal network progress state.""" return self._heal_network_progress @property def inclusion_state(self) -> InclusionState: """Return inclusion state.""" return InclusionState(self.data["inclusionState"]) @property def rf_region(self) -> RFRegion | None: """Return RF region of controller.""" if (rf_region := self.data.get("rfRegion")) is None: return None return RFRegion(rf_region) @property def firmware_update_progress(self) -> ControllerFirmwareUpdateProgress | None: """Return firmware update progress.""" return self._firmware_update_progress @property def status(self) -> ControllerStatus: """Return status.""" return ControllerStatus(self.data["status"]) def update(self, data: ControllerDataType) -> None: """Update controller data.""" self.data = data self._statistics = ControllerStatistics( self.data.get("statistics", DEFAULT_CONTROLLER_STATISTICS) ) async def async_begin_inclusion( self, inclusion_strategy: Literal[ InclusionStrategy.DEFAULT, InclusionStrategy.SECURITY_S0, InclusionStrategy.SECURITY_S2, InclusionStrategy.INSECURE, ], force_security: bool | None = None, provisioning: str | ProvisioningEntry | QRProvisioningInformation | None = None, dsk: str | None = None, ) -> bool: """Send beginInclusion command to Controller.""" # Most functionality was introduced in Schema 8 require_schema = 8 options: dict[str, Any] = {"strategy": inclusion_strategy} # forceSecurity can only be used with the default inclusion strategy if force_security is not None: if inclusion_strategy != InclusionStrategy.DEFAULT: raise ValueError( "`forceSecurity` option is only supported with inclusion_strategy=DEFAULT" ) options["forceSecurity"] = force_security # provisioning can only be used with the S2 inclusion strategy and may need # additional processing if provisioning is not None: if inclusion_strategy != InclusionStrategy.SECURITY_S2: raise ValueError( "`provisioning` option is only supported with inclusion_strategy=SECURITY_S2" ) if dsk is not None: raise ValueError("Only one of `provisioning` and `dsk` can be provided") # Provisioning option was introduced in Schema 11 require_schema = 11 # String is assumed to be the QR code string so we can pass as is if isinstance(provisioning, str): if len( provisioning ) < MINIMUM_QR_STRING_LENGTH or not provisioning.startswith("90"): raise ValueError( f"QR code string must be at least {MINIMUM_QR_STRING_LENGTH} characters " "long and start with `90`" ) options["provisioning"] = provisioning # If we get a Smart Start QR code, we provision the node and return because # inclusion is over elif ( isinstance(provisioning, QRProvisioningInformation) and provisioning.version == QRCodeVersion.SMART_START ): raise ValueError( "Smart Start QR codes can't use the normal inclusion process. Use the " "provision_smart_start_node command to provision this device." ) # Otherwise we assume the data is ProvisioningEntry or # QRProvisioningInformation that is not a Smart Start QR code else: options["provisioning"] = provisioning.to_dict() if dsk is not None: if inclusion_strategy != InclusionStrategy.SECURITY_S2: raise ValueError( "`dsk` option is only supported with inclusion_strategy=SECURITY_S2" ) require_schema = 25 options["dsk"] = dsk data = await self.client.async_send_command( { "command": "controller.begin_inclusion", "options": options, }, require_schema=require_schema, ) return cast(bool, data["success"]) async def async_provision_smart_start_node( self, provisioning_info: ProvisioningEntry | QRProvisioningInformation | str, ) -> None: """Send provisionSmartStartNode command to Controller.""" if ( isinstance(provisioning_info, QRProvisioningInformation) and provisioning_info.version == QRCodeVersion.S2 ): raise ValueError( "An S2 QR Code can't be used to pre-provision a Smart Start node" ) await self.client.async_send_command( { "command": "controller.provision_smart_start_node", "entry": provisioning_info if isinstance(provisioning_info, str) else provisioning_info.to_dict(), }, require_schema=11, ) async def async_unprovision_smart_start_node( self, dsk_or_node_id: int | str ) -> None: """Send unprovisionSmartStartNode command to Controller.""" await self.client.async_send_command( { "command": "controller.unprovision_smart_start_node", "dskOrNodeId": dsk_or_node_id, }, require_schema=11, ) async def async_get_provisioning_entry( self, dsk_or_node_id: int | str ) -> ProvisioningEntry | None: """Send getProvisioningEntry command to Controller.""" data = await self.client.async_send_command( { "command": "controller.get_provisioning_entry", "dskOrNodeId": dsk_or_node_id, }, require_schema=17, ) if "entry" in data: return ProvisioningEntry.from_dict(data["entry"]) return None async def async_get_provisioning_entries(self) -> list[ProvisioningEntry]: """Send getProvisioningEntries command to Controller.""" data = await self.client.async_send_command( { "command": "controller.get_provisioning_entries", }, require_schema=11, ) return [ProvisioningEntry.from_dict(entry) for entry in data.get("entries", [])] async def async_stop_inclusion(self) -> bool: """Send stopInclusion command to Controller.""" data = await self.client.async_send_command( {"command": "controller.stop_inclusion"} ) return cast(bool, data["success"]) async def async_begin_exclusion( self, strategy: ExclusionStrategy | None = None ) -> bool: """Send beginExclusion command to Controller.""" payload: dict[str, str | dict[str, ExclusionStrategy]] = { "command": "controller.begin_exclusion" } if strategy is not None: payload["options"] = {"strategy": strategy} data = await self.client.async_send_command(payload, require_schema=22) return cast(bool, data["success"]) async def async_stop_exclusion(self) -> bool: """Send stopExclusion command to Controller.""" data = await self.client.async_send_command( {"command": "controller.stop_exclusion"} ) return cast(bool, data["success"]) async def async_remove_failed_node(self, node: Node) -> None: """Send removeFailedNode command to Controller.""" await self.client.async_send_command( {"command": "controller.remove_failed_node", "nodeId": node.node_id} ) async def async_replace_failed_node( self, node: Node, inclusion_strategy: Literal[ InclusionStrategy.DEFAULT, InclusionStrategy.SECURITY_S0, InclusionStrategy.SECURITY_S2, InclusionStrategy.INSECURE, ], force_security: bool | None = None, provisioning: str | ProvisioningEntry | QRProvisioningInformation | None = None, ) -> bool: """Send replaceFailedNode command to Controller.""" # Most functionality was introduced in Schema 8 require_schema = 8 options: dict[str, Any] = {"strategy": inclusion_strategy} # forceSecurity can only be used with the default inclusion strategy if force_security is not None: if inclusion_strategy != InclusionStrategy.DEFAULT: raise ValueError( "`forceSecurity` option is only supported with inclusion_strategy=DEFAULT" ) options["forceSecurity"] = force_security # provisioning can only be used with the S2 inclusion strategy and may need # additional processing if provisioning is not None: if inclusion_strategy != InclusionStrategy.SECURITY_S2: raise ValueError( "`provisioning` option is only supported with inclusion_strategy=SECURITY_S2" ) # Provisioning option was introduced in Schema 11 require_schema = 11 # String is assumed to be the QR code string so we can pass as is if isinstance(provisioning, str): if len( provisioning ) < MINIMUM_QR_STRING_LENGTH or not provisioning.startswith("90"): raise ValueError( f"QR code string must be at least {MINIMUM_QR_STRING_LENGTH} characters " "long and start with `90`" ) options["provisioning"] = provisioning # Otherwise we assume the data is ProvisioningEntry or # QRProvisioningInformation else: options["provisioning"] = provisioning.to_dict() data = await self.client.async_send_command( { "command": "controller.replace_failed_node", "nodeId": node.node_id, "options": options, }, require_schema=require_schema, ) return cast(bool, data["success"]) async def async_heal_node(self, node: Node) -> bool: """Send healNode command to Controller.""" data = await self.client.async_send_command( {"command": "controller.heal_node", "nodeId": node.node_id} ) return cast(bool, data["success"]) async def async_begin_healing_network(self) -> bool: """Send beginHealingNetwork command to Controller.""" data = await self.client.async_send_command( {"command": "controller.begin_healing_network"} ) return cast(bool, data["success"]) async def async_stop_healing_network(self) -> bool: """Send stopHealingNetwork command to Controller.""" data = await self.client.async_send_command( {"command": "controller.stop_healing_network"} ) success = cast(bool, data["success"]) if success: self._heal_network_progress = None self.data["isHealNetworkActive"] = False return success async def async_is_failed_node(self, node: Node) -> bool: """Send isFailedNode command to Controller.""" data = await self.client.async_send_command( {"command": "controller.is_failed_node", "nodeId": node.node_id} ) return cast(bool, data["failed"]) async def async_get_association_groups( self, source: AssociationAddress ) -> dict[int, AssociationGroup]: """Send getAssociationGroups command to Controller.""" source_data = {"nodeId": source.node_id} if source.endpoint is not None: source_data["endpoint"] = source.endpoint data = await self.client.async_send_command( { "command": "controller.get_association_groups", **source_data, } ) groups = {} for key, group in data["groups"].items(): groups[int(key)] = AssociationGroup( max_nodes=group["maxNodes"], is_lifeline=group["isLifeline"], multi_channel=group["multiChannel"], label=group["label"], profile=group.get("profile"), issued_commands=group.get("issuedCommands", {}), ) return groups async def async_get_associations( self, source: AssociationAddress ) -> dict[int, list[AssociationAddress]]: """Send getAssociations command to Controller.""" source_data = {"nodeId": source.node_id} if source.endpoint is not None: source_data["endpoint"] = source.endpoint data = await self.client.async_send_command( { "command": "controller.get_associations", **source_data, } ) associations = {} for key, association_addresses in data["associations"].items(): associations[int(key)] = [ AssociationAddress( node_id=association_address["nodeId"], endpoint=association_address.get("endpoint"), ) for association_address in association_addresses ] return associations async def async_is_association_allowed( self, source: AssociationAddress, group: int, association: AssociationAddress ) -> bool: """Send isAssociationAllowed command to Controller.""" source_data = {"nodeId": source.node_id} if source.endpoint is not None: source_data["endpoint"] = source.endpoint association_data = {"nodeId": association.node_id} if association.endpoint is not None: association_data["endpoint"] = association.endpoint data = await self.client.async_send_command( { "command": "controller.is_association_allowed", **source_data, "group": group, "association": association_data, } ) return cast(bool, data["allowed"]) async def async_add_associations( self, source: AssociationAddress, group: int, associations: list[AssociationAddress], wait_for_result: bool = False, ) -> None: """Send addAssociations command to Controller.""" source_data = {"nodeId": source.node_id} if source.endpoint is not None: source_data["endpoint"] = source.endpoint associations_data = [] for association in associations: association_data = {"nodeId": association.node_id} if association.endpoint is not None: association_data["endpoint"] = association.endpoint associations_data.append(association_data) cmd = { "command": "controller.add_associations", **source_data, "group": group, "associations": associations_data, } if wait_for_result: await self.client.async_send_command(cmd) else: await self.client.async_send_command_no_wait(cmd) async def async_remove_associations( self, source: AssociationAddress, group: int, associations: list[AssociationAddress], wait_for_result: bool = False, ) -> None: """Send removeAssociations command to Controller.""" source_data = {"nodeId": source.node_id} if source.endpoint is not None: source_data["endpoint"] = source.endpoint associations_data = [] for association in associations: association_data = {"nodeId": association.node_id} if association.endpoint is not None: association_data["endpoint"] = association.endpoint associations_data.append(association_data) cmd = { "command": "controller.remove_associations", **source_data, "group": group, "associations": associations_data, } if wait_for_result: await self.client.async_send_command(cmd) else: await self.client.async_send_command_no_wait(cmd) async def async_remove_node_from_all_associations( self, node: Node, wait_for_result: bool = False, ) -> None: """Send removeNodeFromAllAssociations command to Controller.""" cmd = { "command": "controller.remove_node_from_all_associations", "nodeId": node.node_id, } if wait_for_result: await self.client.async_send_command(cmd) else: await self.client.async_send_command_no_wait(cmd) async def async_get_node_neighbors(self, node: Node) -> list[int]: """Send getNodeNeighbors command to Controller to get node's neighbors.""" data = await self.client.async_send_command( { "command": "controller.get_node_neighbors", "nodeId": node.node_id, } ) return cast(list[int], data["neighbors"]) async def async_grant_security_classes( self, inclusion_grant: InclusionGrant ) -> None: """Send grantSecurityClasses command to Controller.""" await self.client.async_send_command( { "command": "controller.grant_security_classes", "inclusionGrant": inclusion_grant.to_dict(), } ) async def async_validate_dsk_and_enter_pin(self, pin: str) -> None: """Send validateDSKAndEnterPIN command to Controller.""" await self.client.async_send_command( { "command": "controller.validate_dsk_and_enter_pin", "pin": pin, } ) async def async_supports_feature(self, feature: ZwaveFeature) -> bool | None: """ Send supportsFeature command to Controller. When None is returned it means the driver does not yet know whether the controller supports the input feature. """ data = await self.client.async_send_command( {"command": "controller.supports_feature", "feature": feature.value}, require_schema=12, ) return cast(bool | None, data.get("supported")) async def async_get_state(self) -> ControllerDataType: """Get controller state.""" data = await self.client.async_send_command( {"command": "controller.get_state"}, require_schema=14 ) return cast(ControllerDataType, data["state"]) async def async_backup_nvm_raw(self) -> bytes: """Send backupNVMRaw command to Controller.""" data = await self.client.async_send_command( {"command": "controller.backup_nvm_raw"}, require_schema=14 ) return convert_base64_to_bytes(data["nvmData"]) async def async_restore_nvm(self, file: bytes) -> None: """Send restoreNVM command to Controller.""" await self.client.async_send_command( { "command": "controller.restore_nvm", "nvmData": convert_bytes_to_base64(file), }, require_schema=14, ) async def async_get_power_level(self) -> dict[str, int]: """Send getPowerlevel command to Controller.""" data = await self.client.async_send_command( {"command": "controller.get_powerlevel"}, require_schema=14 ) return { "power_level": data["powerlevel"], "measured_0_dbm": data["measured0dBm"], } async def async_set_power_level( self, power_level: int, measured_0_dbm: int ) -> bool: """Send setPowerlevel command to Controller.""" data = await self.client.async_send_command( { "command": "controller.set_powerlevel", "powerlevel": power_level, "measured0dBm": measured_0_dbm, }, require_schema=14, ) return cast(bool, data["success"]) async def async_get_rf_region(self) -> RFRegion: """Send getRFRegion command to Controller.""" data = await self.client.async_send_command( {"command": "controller.get_rf_region"}, require_schema=14 ) return RFRegion(data["region"]) async def async_set_rf_region(self, rf_region: RFRegion) -> bool: """Send setRFRegion command to Controller.""" data = await self.client.async_send_command( { "command": "controller.set_rf_region", "region": rf_region.value, }, require_schema=14, ) return cast(bool, data["success"]) async def async_get_known_lifeline_routes( self, ) -> dict[Node, ControllerLifelineRoutes]: """Send getKnownLifelineRoutes command to Controller.""" data = await self.client.async_send_command( {"command": "controller.get_known_lifeline_routes"}, require_schema=16 ) return { self.nodes[node_id]: ControllerLifelineRoutes(self.client, lifeline_routes) for node_id, lifeline_routes in data["routes"].items() } async def async_is_any_ota_firmware_update_in_progress(self) -> bool: """ Send isAnyOTAFirmwareUpdateInProgress command to Controller. If `True`, a firmware update is in progress on at least one node. """ data = await self.client.async_send_command( {"command": "controller.is_any_ota_firmware_update_in_progress"}, require_schema=21, ) assert data return cast(bool, data["progress"]) async def async_get_available_firmware_updates( self, node: Node, api_key: str, include_prereleases: bool = False ) -> list[NodeFirmwareUpdateInfo]: """Send getAvailableFirmwareUpdates command to Controller.""" data = await self.client.async_send_command( { "command": "controller.get_available_firmware_updates", "nodeId": node.node_id, "apiKey": api_key, "includePrereleases": include_prereleases, }, require_schema=24, ) assert data return [NodeFirmwareUpdateInfo.from_dict(update) for update in data["updates"]] async def async_firmware_update_ota( self, node: Node, updates: list[NodeFirmwareUpdateFileInfo] ) -> NodeFirmwareUpdateResult: """Send firmwareUpdateOTA command to Controller.""" data = await self.client.async_send_command( { "command": "controller.firmware_update_ota", "nodeId": node.node_id, "updates": [update.to_dict() for update in updates], }, require_schema=29, ) return NodeFirmwareUpdateResult(node, data["result"]) async def async_is_firmware_update_in_progress(self) -> bool: """Send isFirmwareUpdateInProgress command to Controller.""" data = await self.client.async_send_command( {"command": "controller.is_firmware_update_in_progress"}, require_schema=26 ) return cast(bool, data["progress"]) def receive_event(self, event: Event) -> None: """Receive an event.""" if event.data["source"] == "node": node = self.nodes.get(event.data["nodeId"]) if node is None: # TODO handle event for unknown node pass else: node.receive_event(event) return if event.data["source"] != "controller": # TODO decide what to do here print( f"Controller doesn't know how to handle/forward this event: {event.data}" ) CONTROLLER_EVENT_MODEL_MAP[event.type](**event.data) self._handle_event_protocol(event) event.data["controller"] = self self.emit(event.type, event.data) def handle_firmware_update_progress(self, event: Event) -> None: """Process a firmware update progress event.""" self._firmware_update_progress = event.data[ "firmware_update_progress" ] = ControllerFirmwareUpdateProgress(event.data["progress"]) def handle_firmware_update_finished(self, event: Event) -> None: """Process a firmware update finished event.""" self._firmware_update_progress = None event.data["firmware_update_finished"] = ControllerFirmwareUpdateResult( event.data["result"] ) def handle_inclusion_failed(self, event: Event) -> None: """Process an inclusion failed event.""" def handle_exclusion_failed(self, event: Event) -> None: """Process an exclusion failed event.""" def handle_inclusion_started(self, event: Event) -> None: """Process an inclusion started event.""" def handle_exclusion_started(self, event: Event) -> None: """Process an exclusion started event.""" def handle_inclusion_stopped(self, event: Event) -> None: """Process an inclusion stopped event.""" def handle_exclusion_stopped(self, event: Event) -> None: """Process an exclusion stopped event.""" def handle_node_found(self, event: Event) -> None: """Process a node found event.""" def handle_node_added(self, event: Event) -> None: """Process a node added event.""" node = event.data["node"] = Node(self.client, event.data["node"]) self.nodes[node.node_id] = node def handle_node_removed(self, event: Event) -> None: """Process a node removed event.""" event.data["reason"] = RemoveNodeReason(event.data["reason"]) event.data["node"] = self.nodes.pop(event.data["node"]["nodeId"]) # Remove client from node since it's no longer connected to the controller event.data["node"].client = None def handle_heal_network_progress(self, event: Event) -> None: """Process a heal network progress event.""" self._heal_network_progress = event.data["progress"].copy() self.data["isHealNetworkActive"] = True def handle_heal_network_done(self, event: Event) -> None: """Process a heal network done event.""" # pylint: disable=unused-argument self._heal_network_progress = None self.data["isHealNetworkActive"] = False def handle_statistics_updated(self, event: Event) -> None: """Process a statistics updated event.""" self.data["statistics"] = statistics = event.data["statistics"] self._statistics = event.data["statistics_updated"] = ControllerStatistics( statistics ) def handle_grant_security_classes(self, event: Event) -> None: """Process a grant security classes event.""" event.data["requested_grant"] = InclusionGrant.from_dict( event.data["requested"] ) def handle_validate_dsk_and_enter_pin(self, event: Event) -> None: """Process a validate dsk and enter pin event.""" def handle_inclusion_aborted(self, event: Event) -> None: """Process an inclusion aborted event.""" def handle_nvm_backup_progress(self, event: Event) -> None: """Process a nvm backup progress event.""" event.data["nvm_backup_progress"] = NVMProgress( event.data["bytesRead"], event.data["total"] ) def handle_nvm_convert_progress(self, event: Event) -> None: """Process a nvm convert progress event.""" event.data["nvm_convert_progress"] = NVMProgress( event.data["bytesRead"], event.data["total"] ) def handle_nvm_restore_progress(self, event: Event) -> None: """Process a nvm restore progress event.""" event.data["nvm_restore_progress"] = NVMProgress( event.data["bytesWritten"], event.data["total"] ) def handle_identify(self, event: Event) -> None: """Process an identify event.""" # TODO handle event for unknown node if node := self.nodes.get(event.data["nodeId"]): event.data["node"] = node def handle_status_changed(self, event: Event) -> None: """Process a status changed event.""" self.data["status"] = event.data["status"] event.data["status"] = ControllerStatus(event.data["status"])
zwave-js-server-python
/zwave_js_server_python-0.51.0-py3-none-any.whl/zwave_js_server/model/controller/__init__.py
__init__.py
import asyncio import json import threading import time from .helpers import prepare_devices from .WebsocketListener import WebsocketListener class ZWaveMe: """Main controller class""" def __init__( self, url, token=None, on_device_create=None, on_device_update=None, on_device_remove=None, on_device_destroy=None, on_new_device=None, platforms=None, ): self.on_device_create = on_device_create self.on_device_update = on_device_update self.on_device_remove = on_device_remove self.on_device_destroy = on_device_destroy self.on_new_device = on_new_device self.url = url self.token = token self.platforms = platforms self._ws = None self._wshost = None self.thread = None self.devices = [] self.uuid = None self.is_closed = False def start_ws(self): """Launch thread.""" self.thread = threading.Thread(target=self.init_websocket) self.thread.daemon = True self.thread.start() async def get_connection(self): """verify connection""" loop = asyncio.get_event_loop() await loop.run_in_executor(None, self.start_ws) try: await asyncio.wait_for(self._ws.connect(), timeout=10.0) return True except asyncio.TimeoutError: await self.close_ws() return False async def wait_for_info(self): while not self.uuid: await asyncio.sleep(0.1) return self.uuid async def close_ws(self): loop = asyncio.get_event_loop() self.is_closed = True blocking_tasks = [ loop.run_in_executor(None, self.thread.join), loop.run_in_executor(None, self._ws.close), ] await asyncio.wait(blocking_tasks) async def get_uuid(self): """Get uuid info""" loop = asyncio.get_event_loop() loop.run_in_executor(None, self.get_info) try: await asyncio.wait_for(self.wait_for_info(), timeout=5.0) return self.uuid except asyncio.TimeoutError: return def send_command(self, device_id, command): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "data": { "method": "GET", "url": "/ZAutomation/api/v1/devices/{}/command/{}".format( device_id, command ), }, } ) ) def get_devices(self): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "responseEvent": "get_devices", "data": {"method": "GET", "url": "/ZAutomation/api/v1/devices"}, } ) ) def get_device_info(self, device_id): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "responseEvent": "get_device_info", "data": { "method": "GET", "url": "/ZAutomation/api/v1/devices/{}".format(device_id), }, } ) ) def get_info(self): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "responseEvent": "get_info", "data": { "method": "GET", "url": "/ZAutomation/api/v1/system/first-access", }, } ) ) def init_websocket(self): # keep websocket open indefinitely while True: if self.is_closed: return self._ws = WebsocketListener( ZWaveMe=self, on_message=self.on_message, on_error=self.on_error, on_close=self.on_close, token=self.token, url=self.url, ) try: self._ws.run_forever(ping_interval=5) finally: self._ws.close() time.sleep(5) def on_message(self, _, utf): if utf: dict_data = json.loads(utf) if "type" not in dict_data.keys(): return try: if dict_data["type"] == "get_devices": if "data" not in dict_data or "body" not in dict_data["data"]: return body = json.loads(dict_data["data"]["body"]) if "devices" in body["data"]: self.devices = prepare_devices([ device for device in body["data"]["devices"] if device["deviceType"] in self.platforms ]) if self.on_device_create: self.on_device_create(self.devices) elif dict_data["type"] == "get_device_info": if "data" not in dict_data or "body" not in dict_data["data"]: return body = json.loads(dict_data["data"]["body"]) if "id" in body["data"]: new_device = prepare_devices( [ body["data"], ] )[0] if self.on_new_device: self.on_new_device(new_device) elif dict_data["type"] == "me.z-wave.devices.level": device = prepare_devices( [ dict_data["data"], ] )[0] if device.deviceType == "sensorMultilevel": device.level = str( round(float(dict_data["data"]["metrics"]["level"]), 1) ) if self.on_device_update: self.on_device_update(device) elif dict_data["type"] == "me.z-wave.namespaces.update": for data in dict_data["data"]: if data["id"] == "devices_all": new_devices = [x["deviceId"] for x in data["params"]] devices_to_install = set(new_devices) - set( [x["id"] for x in self.devices] ) for device in devices_to_install: self.get_device_info(device) elif dict_data["type"] == "get_info": uuid = json.loads(dict_data["data"]["body"])["data"]["uuid"] if uuid and uuid is not None: self.uuid = uuid elif dict_data["type"] == "me.z-wave.devices.remove": if self.on_device_remove: self.on_device_remove(dict_data["data"]) elif dict_data["type"] == "me.z-wave.devices.wipe": if self.on_device_destroy: self.on_device_destroy(dict_data["data"]) except Exception as e: pass def on_error(self, *args, **kwargs): error = args[-1] def on_close(self, _, *args): self._ws.connected = False def get_ws(self): return self._ws def get_wshost(self): return self._wshost
zwave-me-ws
/zwave_me_ws-0.4.3-py3-none-any.whl/zwave_me_ws/ZWaveMe.py
ZWaveMe.py
from dataclasses import dataclass, field from typing import Union FIELDS = [ "id", "deviceType", "probeType", "locationName", "manufacturer", "firmware", "tags", "creatorId", "nodeId", ] METRICS_SCALE = ["title", "level", "scaleTitle", "min", "max", "color", "isFailed"] TYPE_TAGS = { 'type-sensor-binary': "sensorBinary", 'type-light': "lightMultilevel", 'type-button': "toggleButton", 'type-thermostat': "thermostat", 'type-motor': "motor", 'type-fan': "fan", 'type-doorlock': "doorlock", 'type-number': "switchMultilevel", 'type-switch': "switchBinary", 'type-sensor': "sensorMultilevel", 'type-siren': "siren", } @dataclass class ZWaveMeData: id: str deviceType: str title: str level: Union[str, int, float] deviceIdentifier: str probeType: str = "" scaleTitle: str = "" min: str = "" max: str = "" color: dict = field(default_factory=dict) isFailed: bool = False locationName: str = "" manufacturer: str = "" firmware: str = "" tags: list[str] = field(default_factory=list) nodeId: str = "" creatorId: str = "" def prepare_devices(devices: list[dict]) -> list[ZWaveMeData]: prepared_devices = [] for device in devices: if device['permanently_hidden']: continue prepared_device = { **{key: device[key] for key in FIELDS if key in device}, **{ key: device["metrics"][key] for key in METRICS_SCALE if key in device["metrics"] }, } prepared_device = set_device_type(prepared_device) if prepared_device["deviceType"] == "motor": if prepared_device["level"] == "off": prepared_device["level"] = 0 if prepared_device["level"] == "on": prepared_device["level"] = 99.0 prepared_device["level"] = float(prepared_device["level"]) if "creatorId" in prepared_device and "nodeId" in prepared_device: prepared_device[ "deviceIdentifier" ] = f"{prepared_device['creatorId']}_{prepared_device['nodeId']}" else: prepared_device["deviceIdentifier"] = prepared_device["id"] prepared_devices.append(prepared_device) return [ZWaveMeData(**d) for d in prepared_devices] def set_device_type(prepared_device): if prepared_device["probeType"] == "siren": prepared_device["deviceType"] = "siren" if prepared_device["tags"]: for tag in prepared_device["tags"]: if tag in TYPE_TAGS: prepared_device["deviceType"] = TYPE_TAGS[tag] prepared_device = set_value_by_device_type(prepared_device) return prepared_device if prepared_device["probeType"] == "motor": prepared_device["deviceType"] = "motor" elif prepared_device["probeType"] == "fan": prepared_device["deviceType"] = "fan" elif prepared_device['deviceType'] == 'sensorMultilevel': if prepared_device["probeType"] == "light": prepared_device['deviceType'] = 'lightMultilevel' prepared_device = set_light_level(prepared_device) elif prepared_device['deviceType'] == 'switchMultilevel': prepared_device['deviceType'] = 'lightMultilevel' prepared_device = set_light_level(prepared_device) elif 'alarm' in prepared_device["probeType"]: prepared_device["deviceType"] = "sensorBinary" prepared_device = set_value_by_device_type(prepared_device) return prepared_device def set_value_by_device_type(prepared_device) -> dict: if prepared_device['deviceType'] == "sensorBinary": if prepared_device['level'] in ('on', 'off'): return prepared_device elif prepared_device['level'] in ('open', 'close'): prepared_device['level'] = {'open': 'off', 'close': 'on'}[prepared_device['level']] else: prepared_device['level'] = 'on' if bool(prepared_device['level']) else 'off' elif prepared_device['deviceType'] == 'lightMultilevel': prepared_device = set_light_level(prepared_device) elif prepared_device['deviceType'] == 'toggleButton': return prepared_device elif prepared_device['deviceType'] == 'thermostat': if str(prepared_device['level']).replace('.', '', 1).isdigit(): return prepared_device elif prepared_device['level'] == 'on': prepared_device['level'] = 99 elif prepared_device['level'] == 'off': prepared_device['level'] = 0 else: prepared_device['level'] = 99 if bool(prepared_device['level']) else 0 elif prepared_device['deviceType'] == 'motor': if str(prepared_device['level']).replace('.', '', 1).isdigit(): return prepared_device elif prepared_device['level'] == 'on': prepared_device['level'] = 99 elif prepared_device['level'] == 'off': prepared_device['level'] = 0 else: prepared_device['level'] = 99 if bool(prepared_device['level']) else 0 elif prepared_device['deviceType'] == 'fan': if str(prepared_device['level']).replace('.', '', 1).isdigit(): return prepared_device elif prepared_device['level'] == 'on': prepared_device['level'] = 99 elif prepared_device['level'] == 'off': prepared_device['level'] = 0 else: prepared_device['level'] = 99 if bool(prepared_device['level']) else 0 elif prepared_device['deviceType'] == 'doorlock': if prepared_device['level'] in ('open', 'close'): return prepared_device elif prepared_device['level'] in ('on', 'off'): prepared_device['level'] = {'off': 'open', 'on': 'close'}[prepared_device['level']] else: prepared_device['level'] = 'close' if bool(prepared_device['level']) else 'on' elif prepared_device['deviceType'] == 'switchMultilevel': if str(prepared_device['level']).replace('.', '', 1).isdigit(): return prepared_device elif prepared_device['level'] == 'on': prepared_device['level'] = 99 elif prepared_device['level'] == 'off': prepared_device['level'] = 0 else: prepared_device['level'] = 99 if bool(prepared_device['level']) else 0 elif prepared_device['deviceType'] == 'switchBinary': if prepared_device['level'] in ('on', 'off'): return prepared_device elif prepared_device['level'] in ('open', 'close'): prepared_device['level'] = {'open': 'off', 'close': 'on'}[prepared_device['level']] else: prepared_device['level'] = 'on' if bool(prepared_device['level']) else 'off' elif prepared_device['deviceType'] == 'sensorMultilevel': if str(prepared_device['level']).replace('.', '', 1).isdigit(): return prepared_device elif prepared_device['level'] == 'on': prepared_device['level'] = 99 elif prepared_device['level'] == 'off': prepared_device['level'] = 0 else: prepared_device['level'] = 99 if bool(prepared_device['level']) else 0 elif prepared_device['deviceType'] == 'siren': if prepared_device['level'] in ('on', 'off'): return prepared_device elif prepared_device['level'] in ('open', 'close'): prepared_device['level'] = {'open': 'off', 'close': 'on'}[prepared_device['level']] else: prepared_device['level'] = 'on' if bool(prepared_device['level']) else 'off' return prepared_device def set_light_level(prepared_device): if str(prepared_device['level']).replace('.', '', 1).isdigit(): prepared_device["color"] = { "r": round(2.55 * float(prepared_device["level"])), "g": round(2.55 * float(prepared_device["level"])), "b": round(2.55 * float(prepared_device["level"])), } prepared_device["level"] = ( "on" if float(prepared_device["level"]) > 0 else "off" ) elif prepared_device['level'] == 'on': prepared_device["color"] = { "r": 255, "g": 255, "b": 255, } elif prepared_device['level'] == 'off': prepared_device["color"] = { "r": 0, "g": 0, "b": 0, } else: prepared_device['level'] = 'on' if bool(prepared_device['level']) else 'off' if prepared_device['level'] == 'on': prepared_device["color"] = { "r": 255, "g": 255, "b": 255, } elif prepared_device['level'] == 'off': prepared_device["color"] = { "r": 0, "g": 0, "b": 0, } return prepared_device
zwave-me-ws
/zwave_me_ws-0.4.3-py3-none-any.whl/zwave_me_ws/helpers.py
helpers.py
import json import threading from .WebsocketListener import WebsocketListener import time class ZWaveMe: """Main controller class""" def __init__(self, on_device_create, on_device_update, on_new_device, url, token, platforms=None): self.on_device_create = on_device_create self.on_device_update = on_device_update self.on_new_device = on_new_device self.url = url self.token = token self.platforms = platforms self._ws = None self._wshost = None self.start_ws() self.thread = None self.devices = [] def start_ws(self): """get/find the websocket host""" self.thread = threading.Thread(target=self.init_websocket) self.thread.daemon = True self.thread.start() def send_command(self, device_id, command): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "data": { "method": "GET", "url": "/ZAutomation/api/v1/devices/{}/command/{}".format( device_id, command ) } } ) ) def get_device_info(self, device_id): self._ws.send( json.dumps( { "event": "httpEncapsulatedRequest", "data": { "method": "GET", "url": "/ZAutomation/api/v1/devices/{}".format( device_id ) } } ) ) def init_websocket(self): # keep websocket open indefinitely while True: self._ws = WebsocketListener( ZWaveMe=self, on_message=self.on_message, on_error=self.on_error, on_close=self.on_close, token=self.token, url=self.url, ) try: self._ws.run_forever(ping_interval=5) finally: self._ws.close() time.sleep(5) def on_message(self, _, utf): if utf: dict_data = json.loads(utf) if "type" not in dict_data.keys(): return try: if dict_data["type"] == "ws-reply": body = json.loads(dict_data["data"]["body"]) if "devices" in body["data"]: self.devices = [ device for device in body["data"]["devices"] if device["deviceType"] in self.platforms ] self.on_device_create(self.devices) elif "id" in body['data']: self.on_new_device(body['data']) elif dict_data["type"] == "me.z-wave.devices.level": self.on_device_update(dict_data["data"]) elif dict_data["type"] == "me.z-wave.namespaces.update": for data in dict_data['data']: if data['id'] == 'devices_all': new_devices = [x['deviceId'] for x in data['params']] devices_to_install = set(new_devices)-set([x['id'] for x in self.devices]) for device in devices_to_install: self.get_device_info(device) except Exception as e: pass def on_error(self, *args, **kwargs): error = args[-1] def on_close(self, _, *args): self._ws.connected = False def get_ws(self): return self._ws def get_wshost(self): return self._wshost
zwave-ws
/zwave_ws-0.1.15-py3-none-any.whl/zwave_ws/ZWaveMe.py
ZWaveMe.py
Zweifach ======== Zweifach (german for "two times") is an app to make integration of django-otp a bit more biased. Integration of two factor auth is enforced by a middleware which will ensure two things: - make sure a user who is required to enable 2FA for its account will be redirected to the setup-view until setup is done. - make sure a user who has 2FA enabled will be redirected to verify-view for token input after login until verified. Quickstart ---------- - Install packages by running 'pip install zweifach django-otp qrcode' - Add 'zweifach' to INSTALLED_APPS. - Add 'zweifach.middleware.ZweifachMiddleware' to MIDDLEWARE, *after* AuthenticationMiddleware. - Inlcude 'zweifach.urls' somewhere in your url-config. - Configure django-otp as described further down below Settings -------- settings.ZWEIFACH_AUTH_REQUIRED default: [] A list of checks which determine, if a user needs 2FA to use its account. examaple:: ZWEIFACH_AUTH_REQUIRED = [ lambda user: user.is_staff, # all staff unsers must use two factor auth lambda user: '2fa' in user.groups.values_list("name", flat=True), # all users in group '2fa' must use two factor auth ] settings.ZWEIFACH_URL_EXCLUDES default: [] A list of url which are always accessible without 2FA. Verify and Setup views are always excluded as well as settings.LOGIN_URL and the admin login view, if admin is enabled. example:: ZWEIFACH_URL_EXCLUDES = [ '/imprint/', '/faq/how-to-setup-2fa/', ] Note: If a url is accessible without login, it can of course still be viewed without any 2FA interaction. Notes about django-otp configuration ------------------------------------ A compatible installation of django-otp should be setup as follows: Add to INSTALLED_APPS:: 'django_otp', 'django_otp.plugins.otp_totp', 'django_otp.plugins.otp_static', Add to MIDDLEWARE (between AuthenticationMiddleware and ZweifachMiddleware):: 'django_otp.middleware.OTPMiddleware' Configure issuer:: OTP_TOTP_ISSUER = 'MyProject' Usage ----- To generate static recovery tokens (also useful for first login on freshly installed systems) use:: ./manage.py addstatictoken <username> Development ----------- Ensure basic code style with:: tox Build package with:: python3 -m build Upload package to PyPI:: python3 -m twine upload dist/zweifach-x.x.x*
zweifach
/zweifach-1.0.3.tar.gz/zweifach-1.0.3/README.rst
README.rst
from __future__ import unicode_literals import os import sys import ast from io import StringIO from contextlib import contextmanager from itertools import chain from functools import reduce __version__ = '0.1.0' __version_info__ = (0, 1, 0) PY2 = sys.version_info[0] == 2 def walk_preorder(tree): """ Yields the nodes in the `tree` in preorder. """ yield tree for child in ast.iter_child_nodes(tree): for descendent in walk_preorder(child): yield descendent def to_source(tree): """ Returns the Python source code representation of the `tree`. """ writer = _SourceWriter() writer.visit(tree) return writer.output.getvalue() class _SourceWriter(ast.NodeVisitor): def __init__(self): self.output = StringIO() self.indentation_level = 0 self.newline = True @contextmanager def indented(self): self.indentation_level += 1 try: yield finally: self.indentation_level -= 1 def write(self, source): if self.newline: self.newline = False self.write_indentation() self.output.write(source) def write_indentation(self): self.write(' ' * self.indentation_level) def write_newline(self): if self.newline: self.newline = False self.write('\n') self.newline = True def write_line(self, source): self.write(source) self.write_newline() def write_identifier(self, identifier): if PY2: self.write(identifier.decode('ascii')) else: self.write(identifier) def write_repr(self, obj): if PY2: self.write(repr(obj).decode('ascii')) else: self.write(repr(obj)) def writing_comma_separated(self, items): if items: for item in items[:-1]: yield item self.write(', ') yield items[-1] def write_comma_separated_nodes(self, nodes): for node in self.writing_comma_separated(nodes): self.visit(node) @contextmanager def writing_statement(self): yield self.write_newline() def visit_statements(self, statements): for statement in statements[:-1]: self.visit(statement) if isinstance(statement, (ast.FunctionDef, ast.ClassDef)): self.write_newline() self.visit(statements[-1]) def visit_Module(self, node): self.visit_statements(node.body) def visit_FunctionDef(self, node): for decorator in node.decorator_list: self.write('@') self.visit(decorator) self.write_newline() self.write('def ') self.write_identifier(node.name) self.write('(') self.visit(node.args) self.write(')') if not PY2 and node.returns is not None: self.write(' -> ') self.visit(node.returns) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) def visit_ClassDef(self, node): for decorator in node.decorator_list: self.write('@') self.visit(decorator) self.write_newline() self.write('class ') self.write_identifier(node.name) if ( node.bases or (not PY2 and (node.keywords or node.starargs or node.kwargs)) ): self.write('(') self.write_comma_separated_nodes(node.bases) if not PY2: if node.keywords: if node.bases: self.write(', ') self.write_comma_separated_nodes(node.keywords) if node.starargs is not None: if node.bases or node.keywords: self.write(', ') self.write('*') self.visit(node.starargs) if node.kwargs is not None: if node.bases or node.keywords or node.starargs: self.write(', ') self.write('**') self.visit(node.kwargs) self.write(')') self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) def visit_Return(self, node): with self.writing_statement(): self.write('return') if node.value: self.write(' ') self.visit(node.value) def visit_Delete(self, node): with self.writing_statement(): self.write('del ') self.write_comma_separated_nodes(node.targets) def visit_Assign(self, node): with self.writing_statement(): for target in node.targets: self.visit(target) self.write(' = ') self.visit(node.value) def visit_AugAssign(self, node): with self.writing_statement(): self.visit(node.target) self.write(' ') self.visit(node.op) self.write('= ') self.visit(node.value) if PY2: def visit_Print(self, node): with self.writing_statement(): self.write('print') if node.values: self.write(' ') self.write_comma_separated_nodes(node.values) if not node.nl: self.write(',') def visit_For(self, node): self.write('for ') self.visit(node.target) self.write(' in ') self.visit(node.iter) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) if node.orelse: self.write_line('else:') with self.indented(): self.visit_statements(node.orelse) def visit_While(self, node): self.write('while ') self.visit(node.test) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) if node.orelse: self.write_line('else:') with self.indented(): self.visit_statements(node.orelse) def visit_If(self, node): self.write('if ') self.visit(node.test) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) if node.orelse: self.write_line('else:') with self.indented(): self.visit_statements(node.orelse) def visit_With(self, node): self.write('with ') if PY2: self.visit(node.context_expr) if node.optional_vars: self.write(' as ') self.visit(node.optional_vars) else: self.write_comma_separated_nodes(node.items) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) def visit_Raise(self, node): with self.writing_statement(): self.write('raise') if PY2: if node.type is not None: self.write(' ') self.visit(node.type) if node.inst is not None: self.write(', ') self.visit(node.inst) if node.tback is not None: self.write(', ') self.visit(node.tback) else: if node.exc is not None: self.write(' ') self.visit(node.exc) if node.cause is not None: self.write(' from ') self.visit(node.cause) def visit_Try(self, node): self.write_line('try:') with self.indented(): self.visit_statements(node.body) for excepthandler in node.handlers: self.visit(excepthandler) if node.orelse: self.write_line('else:') with self.indented(): self.visit_statements(node.orelse) if node.finalbody: self.write_line('finally:') with self.indented(): self.visit_statements(node.finalbody) if PY2: def visit_TryExcept(self, node): self.write_line('try:') with self.indented(): self.visit_statements(node.body) for excepthandler in node.handlers: self.visit(excepthandler) if node.orelse: self.write_line('else:') with self.indented(): self.visit_statements(node.orelse) def visit_TryFinally(self, node): self.write_line('try:') with self.indented(): self.visit_statements(node.body) self.write_line('finally:') with self.indented(): self.visit_statements(node.finalbody) def visit_Assert(self, node): with self.writing_statement(): self.write('assert ') self.visit(node.test) if node.msg is not None: self.write(', ') self.visit(node.msg) def visit_Import(self, node): with self.writing_statement(): self.write('import ') self.write_comma_separated_nodes(node.names) def visit_ImportFrom(self, node): with self.writing_statement(): self.write('from ') if node.module is None: self.write('.') else: self.write_identifier(node.module) self.write(' import ') self.write_comma_separated_nodes(node.names) def visit_Global(self, node): with self.writing_statement(): self.write('global ') for name in self.writing_comma_separated(node.names): self.write_identifier(name) def visit_Nonlocal(self, node): with self.writing_statement(): self.write('nonlocal ') for name in self.writing_comma_separated(node.names): self.write_identifier(name) def visit_Expr(self, node): with self.writing_statement(): self.visit(node.value) def visit_Pass(self, node): self.write_line('pass') def visit_Break(self, node): self.write_line('break') def visit_Continue(self, node): self.write_line('continue') def visit_BoolOp(self, node): def write_value(value): if _requires_parentheses(node, value): self.write('(') self.visit(value) self.write(')') else: self.visit(value) for value in node.values[:-1]: write_value(value) self.visit(node.op) write_value(node.values[-1]) def visit_BinOp(self, node): if ( _requires_parentheses(node, node.left) or PY2 and isinstance(node.left, ast.Num) and node.left.n < 0 ): self.write('(') self.visit(node.left) self.write(')') else: self.visit(node.left) self.write(u' ') self.visit(node.op) self.write(u' ') if _requires_parentheses( ast.Mult() if isinstance(node.op, ast.Pow) else node, node.right ): self.write('(') self.visit(node.right) self.write(')') else: self.visit(node.right) def visit_UnaryOp(self, node): self.visit(node.op) if _requires_parentheses(node, node.operand): self.write('(') self.visit(node.operand) self.write(')') else: self.visit(node.operand) def visit_Lambda(self, node): self.write('lambda ') self.visit(node.args) self.write(': ') self.visit(node.body) def visit_IfExp(self, node): if _requires_parentheses(node, node.body): self.write('(') self.visit(node.body) self.write(')') else: self.visit(node.body) self.write(' if ') if _requires_parentheses(node, node.test): self.write('(') self.visit(node.test) self.write(')') else: self.visit(node.test) self.write(' else ') self.visit(node.orelse) def visit_Dict(self, node): self.write('{') items = list(zip(node.keys, node.values)) for key, value in self.writing_comma_separated(items): self.visit(key) self.write(': ') self.visit(value) self.write('}') def visit_Set(self, node): self.write('{') self.write_comma_separated_nodes(node.elts) self.write('}') def visit_ListComp(self, node): self.write('[') self.visit(node.elt) for generator in node.generators: self.visit(generator) self.write(']') def visit_SetComp(self, node): self.write('{') self.visit(node.elt) for generator in node.generators: self.visit(generator) self.write('}') def visit_DictComp(self, node): self.write('{') self.visit(node.key) self.write(': ') self.visit(node.value) for generator in node.generators: self.visit(generator) self.write('}') def visit_GeneratorExp(self, node): self.write('(') self.visit(node.elt) for generator in node.generators: self.visit(generator) self.write(')') def visit_Yield(self, node): self.write('yield') if node.value is not None: self.write(' ') self.visit(node.value) def visit_YieldFrom(self, node): self.write('yield from ') self.visit(node.value) def visit_Compare(self, node): self.visit(node.left) for op, comparator in zip(node.ops, node.comparators): self.write(' ') self.visit(op) self.write(' ') self.visit(comparator) def visit_Call(self, node): if _requires_parentheses(node, node.func): self.write('(') self.visit(node.func) self.write(')') else: self.visit(node.func) self.write('(') self.write_comma_separated_nodes(node.args) if node.keywords: if node.args: self.write(', ') self.write_comma_separated_nodes(node.keywords) if node.starargs is not None: if node.args or node.keywords: self.write(', ') self.write('*') self.visit(node.starargs) if node.kwargs: if node.args or node.keywords or node.starargs: self.write(', ') self.write('**') self.visit(node.kwargs) self.write(')') if PY2: def visit_Repr(self, node): self.write('`') self.visit(node.value) self.write('`') def visit_Num(self, node): self.write_repr(node.n) def visit_Str(self, node): self.write_repr(node.s) def visit_Bytes(self, node): self.write_repr(node.s) def visit_Ellipsis(self, node): self.write('...') def visit_Attribute(self, node): if ( _requires_parentheses(node, node.value) and not isinstance(node.value, ast.Attribute) ): self.write('(') self.visit(node.value) self.write(')') else: self.visit(node.value) self.write('.') self.write_identifier(node.attr) def visit_Subscript(self, node): if ( _requires_parentheses(node, node.value) and not isinstance(node.value, ast.Subscript) ): self.write('(') self.visit(node.value) self.write(')') else: self.visit(node.value) self.write('[') self.visit(node.slice) self.write(']') def visit_Starred(self, node): self.write('*') self.visit(node.value) def visit_Name(self, node): self.write_identifier(node.id) def visit_List(self, node): self.write('[') self.write_comma_separated_nodes(node.elts) self.write(']') def visit_Tuple(self, node): self.write_comma_separated_nodes(node.elts) def visit_Slice(self, node): if node.lower is not None: self.visit(node.lower) self.write(':') if node.upper is not None: if node.lower is None: self.write(':') self.visit(node.upper) if node.step is not None: if node.lower is None and node.upper is None: self.write('::') if node.lower is not None or node.upper is not None: self.write(':') self.visit(node.step) if node.lower is None and node.upper is None and node.step is None: self.write(':') def visit_And(self, node): self.write(' and ') def visit_Or(self, node): self.write(' or ') def visit_Add(self, node): self.write('+') def visit_Sub(self, node): self.write('-') def visit_Mult(self, node): self.write('*') def visit_Div(self, node): self.write('/') def visit_Mod(self, node): self.write('%') def visit_Pow(self, node): self.write('**') def visit_LShift(self, node): self.write('<<') def visit_RShift(self, node): self.write('>>') def visit_BitOr(self, node): self.write('|') def visit_BitXor(self, node): self.write('^') def visit_BitAnd(self, node): self.write('&') def visit_FloorDiv(self, node): self.write('//') def visit_Invert(self, node): self.write('~') def visit_Not(self, node): self.write('not ') def visit_UAdd(self, node): self.write('+') def visit_USub(self, node): self.write('-') def visit_Eq(self, node): self.write('==') def visit_NotEq(self, node): self.write('!=') def visit_Lt(self, node): self.write('<') def visit_LtE(self, node): self.write('<=') def visit_Gt(self, node): self.write('>') def visit_GtE(self, node): self.write('>=') def visit_Is(self, node): self.write('is') def visit_IsNot(self, node): self.write('is not') def visit_In(self, node): self.write('in') def visit_NotIn(self, node): self.write('not in') def visit_comprehension(self, node): self.write(' for ') self.visit(node.target) self.write(' in ') self.visit(node.iter) if node.ifs: self.write(' if ') for filter in node.ifs[:-1]: self.visit(filter) self.write(' if ') self.visit(node.ifs[-1]) def visit_ExceptHandler(self, node): self.write('except') if node.type is not None: self.write(' ') self.visit(node.type) if node.name is not None: self.write(' as ') if PY2: self.visit(node.name) else: self.write(node.name) self.write(':') self.write_newline() with self.indented(): self.visit_statements(node.body) def visit_arguments(self, node): if node.args: if node.defaults: non_defaults = node.args[:-len(node.defaults)] defaults = node.args[-len(node.defaults):] else: non_defaults = node.args defaults = [] if non_defaults: self.write_comma_separated_nodes(non_defaults) if defaults: if non_defaults: self.write(', ') for argument, default in zip(defaults, node.defaults): self.visit(argument) self.write('=') self.visit(default) if node.vararg: if node.args: self.write(', ') self.write('*') self.write_identifier(node.vararg) if not PY2 and node.kwonlyargs: if not node.vararg: self.write('*, ') arguments = list(zip(node.kwonlyargs, node.kw_defaults)) if arguments: for argument, default in self.writing_comma_separated(arguments): self.visit(argument) if default is not None: self.write('=') self.visit(default) if node.kwarg: if node.args or node.vararg or (not PY2 and node.kwonlyargs): self.write(', ') self.write('**') self.write_identifier(node.kwarg) def visit_arg(self, node): self.write(node.arg) if node.annotation is not None: self.write(': ') self.visit(node.annotation) def visit_keyword(self, node): self.write_identifier(node.arg) self.write('=') self.visit(node.value) def visit_alias(self, node): self.write_identifier(node.name) if node.asname is not None: self.write(' as ') self.write_identifier(node.asname) def visit_withitem(self, node): self.visit(node.context_expr) if node.optional_vars is not None: self.write(' as ') self.visit(node.optional_vars) _precedence_tower = [ {ast.Lambda}, {ast.IfExp}, {ast.Or}, {ast.And}, {ast.Not}, { ast.In, ast.NotIn, ast.Is, ast.IsNot, ast.Lt, ast.LtE, ast.Gt, ast.GtE, ast.NotEq, ast.Eq }, {ast.BitOr}, {ast.BitXor}, {ast.BitAnd}, {ast.LShift, ast.RShift}, {ast.Add, ast.Sub}, {ast.Mult, ast.Div, ast.FloorDiv, ast.Mod}, {ast.UAdd, ast.USub, ast.Invert}, {ast.Pow}, {ast.Subscript, ast.Call, ast.Attribute}, { ast.Tuple, ast.List, ast.Dict, ast.Set, ast.ListComp, ast.DictComp, ast.SetComp } ] _all_nodes = set(chain.from_iterable(_precedence_tower)) _node2lower_equal_upper_nodes = {} lower = set() for i, nodes in enumerate(_precedence_tower): lower = reduce(set.union, _precedence_tower[:i], set()) upper = reduce(set.union, _precedence_tower[i + 1:], set()) for node in nodes: _node2lower_equal_upper_nodes[node] = (lower, nodes, upper) def _requires_parentheses(parent, child): def _normalize(obj): if isinstance(obj, (ast.BoolOp, ast.BinOp, ast.UnaryOp)): return obj.op.__class__ return obj.__class__ parent, child = _normalize(parent), _normalize(child) lower, equal = _node2lower_equal_upper_nodes[parent][:2] return child in lower | equal def dump(node, annotate_fields=True, include_attributes=False): """ Like :func:`ast.dump` but with a more readable return value, making the output actually useful for debugging purposes. """ def _format(node, level=0): if isinstance(node, ast.AST): fields = [ (name, _format(value, level)) for name, value in ast.iter_fields(node) ] if include_attributes and node._attributes: fields.extend((name, _format(getattr(node, name), level)) for name in node._attributes) return '{}({})'.format( node.__class__.__name__, ', '.join( map('='.join, fields) if annotate_fields else (value for _, value in fields) ) ) elif isinstance(node, list): if node: indentation = ' ' * (level + 1) lines = ['['] lines.extend( indentation + _format(n, level + 1) + ',' for n in node ) lines.append(indentation + ']') return '\n'.join(lines) return '[]' return repr(node).decode('ascii') if PY2 else repr(node) if not isinstance(node, ast.AST): raise TypeError( 'expected AST, got {!r}'.format(node.__class__.__name__) ) return _format(node) def is_possible_target(node): """ Returns `True`, if the `node` could be a target for example in an assignment statement ignoring the expression contexts. """ return ( isinstance(node, (ast.Name, ast.Subscript, ast.Attribute)) or isinstance(node, (ast.Tuple, ast.List)) and all( is_possible_target(element) or not PY2 and isinstance(element, ast.Starred) and is_possible_target(element.value) for element in node.elts ) ) def set_target_contexts(node): """ Given a node that could be a target, sets the `.ctx` attribute to :class:`ast.Store` instances as appropriate. """ node.ctx = ast.Store() if isinstance(node, (ast.Tuple, ast.List)): for element in node.elts: set_target_contexts(element) elif not PY2 and isinstance(node, ast.Starred): set_target_contexts(node.value)
zweig
/zweig-0.1.0.tar.gz/zweig-0.1.0/zweig.py
zweig.py
from typing import Callable, Dict, Union import sys import traceback import warnings import os import io import struct import fnmatch from pathlib import Path import docopt from hurry.filesize import size as human_readable_size __version__ = '0.0.0' WAD_MAGIC = b'ZWF!' docopt_usage = __doc__ + """ usage: zwf list [options] <file> zwf extract [options] <file> <dir> [<glob>] options: -l List more information -H Show file sizes in human-readable form --verbose Print more info --traceback Print stack trace on errors """ class CommandError(RuntimeError): pass def read_wad(f: io.RawIOBase): f.seek(0) header = f.read(256) if header[:4] != WAD_MAGIC: raise CommandError( f'File does not appear to be a Zwift WAD file, Expected ' f'magic: {WAD_MAGIC}, actual: {header[:4]}') body_size = struct.unpack('<I', header[248:252])[0] wad_size = 256 + body_size actual_size = os.fstat(f.fileno()).st_size if actual_size < wad_size: raise CommandError(f'Truncated wad file: header implies ' f'{wad_size} bytes but file is {actual_size} bytes') if actual_size > wad_size: warnings.warn( f'wad file is larger than header implies. expected size: ' f'{actual_size} bytes, actual size: {actual_size} bytes') entry_pointers = read_entry_pointers(f) return {'file': f, 'entry_pointers': entry_pointers} def read_entry_pointers(f): # There's a 8k block containing 8-byte chunks. First 4 bytes are a pointer # to a wad file entry, second 4 bytes seem to be either 0 or 1. When 0 the # pointer is null and the entry seems not to be used. Null and active # entries are spread throughout. data = f.read(1024*8) entries = list(struct.iter_unpack('<I?xxx', data)) offset = min(ptr for ptr, in_use in entries if in_use) - 1024*8 - 256 assert offset != 0 return [ptr - offset for ptr, in_use in entries if in_use] def cstring(data): end = data.index(b'\x00') if end < 0: return data return data[:end] def read_wad_entry(wad, ptr, include_body: Union[bool, Callable[[Dict], bool]] = True): f = wad['file'] assert ptr in wad['entry_pointers'] f.seek(ptr) header = f.read(192) # Not sure what encoding (if any) is used path = cstring(header[4:100]).decode('ascii') size = struct.unpack('<I', header[104:108])[0] entry = { 'path': path, 'size': size } if callable(include_body) and include_body(entry) or include_body: entry['body'] = f.read(size) return entry def list_wad(wad, long_listing=False, human_readable_sizes=False): for ptr in wad['entry_pointers']: entry = read_wad_entry(wad, ptr, include_body=False) if long_listing: if human_readable_sizes: size = human_readable_size(entry['size']) else: size = entry['size'] print(f'{size} {entry["path"]}') else: print(entry["path"]) def extract_wad(wad, dest_dir: Path, entry_predicate: Callable[[Dict], bool], verbose=False): if not dest_dir.is_dir(): raise CommandError( f'Destination directory is not an existing directory') if next(dest_dir.iterdir(), None) is not None: raise CommandError(f'Destination dir is not empty') for ptr in wad['entry_pointers']: entry = read_wad_entry(wad, ptr, include_body=entry_predicate) if 'body' not in entry: continue entry_path = dest_dir / entry['path'] if dest_dir not in entry_path.parents: raise CommandError(f'Entry would extract out of destination ' f'directory: {entry["path"]!r}') if verbose: print(f' extracting: {entry["path"]} ... ', end='', flush=True) entry_path.parent.mkdir(parents=True, exist_ok=True) with open(entry_path, 'wb') as f: f.write(entry['body']) if verbose: print(f'done') def main(): args = docopt.docopt(docopt_usage) try: f = open(args['<file>'], 'rb') wad = read_wad(f) if args['list']: list_wad(wad, long_listing=args['-l'], human_readable_sizes=args['-H']) elif args['extract']: dest = Path(args['<dir>']) if args['--verbose']: print(f' Zwift WAD: {args["<file>"]}') print(f'Destination: {dest}') predicate = lambda x: True if args['<glob>']: glob = args['<glob>'] predicate = lambda entry: fnmatch.fnmatchcase(entry['path'], glob) extract_wad(wad, dest, entry_predicate=predicate, verbose=args['--verbose']) else: raise NotImplementedError() except CommandError as e: print(f'Fatal: {e}', file=sys.stderr) if args['--traceback']: print('\nTraceback follows:\n', file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) if __name__ == '__main__': main()
zwf
/zwf-0.1.0.tar.gz/zwf-0.1.0/zwf.py
zwf.py
MIT License Copyright (c) 2021 damon anton permezel Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
zwi
/zwi-0.3a1.tar.gz/zwi-0.3a1/LICENSE.md
LICENSE.md
[![logo](https://raw.githubusercontent.com/permezel/zwi/master/logo.png)](https://zwift.com/) # zwi Here are some small python programmes to facilitate viewing Zwift data. # requirements a Zwift user account python3.9 or later pip3 # usage The easist way to use this is to use `pip3 install` to install everything you need. Prior to that, you should probably have done something like: ZWI_ENV=/tmp/zwi_env python3 --version python3 -m venv ${ZWI_ENV} . ${ZWI_ENV}/bin/activate At this point, you will have a dedicated play area to install `zwi` and dependencies. pip3 install zwi This will install everything required, and place two command scripts in `${ZWI_ENV}/bin` which will be in your `${PATH}` while the environjment is activated. zwi --help ## version zwi version The `version` function returns the version number of the currently installewd `zwi` package. ## authentication Before you can do much of interest, you must store your authentication information in the local key store. For OsX, this is the system keychain. For linux, it is something similar. zwi auth --help zwi auth [email protected] --password=SuperSecret123 zwi auth You can have the `auth` programme prompt for both `name` and `password`. You need to enter the password twice, in that case, and it will not be stored unless it successfully aithenticates with the Zwift server. ## verification zwi check --help zwi check The `check` function will verify that the stored credentials function. At times on MacOS, the keychain decides it doesn't like you any more and requires you to enter your login password, twice, whenever `zwi` access the stored user name and password. Make sure you click on `always allow` unless you need to practice typing your password. ## initialise/reset database Once you are authenticated, the next step is to populate the local database cache with information from Zwift. `zwi` maintains state in `${HOME}/.zwi/`. An `sqlite3` database is used to cache the state of the user's `followers` and `followees` lists. In addition, the profiles of all Zwift users encountered (via the `followers`/`followees` lists) are saved in a separate database. zwi reset --help zwi reset The `reset` function deletes the `${HOME}/.zwi/zwi.db` database file if it exists, creates the `sqlite3` database, and populates the database with the `followers` and `followees` tables. It will not delete the profiles database, but it will ensure that there are profile entries for each user in the `followers` and `followees` lists. ## update followers/followees database zwi update --help zwi -v update The `update` function refreshes the `followers` and `followees` information. (Currently, this function is being fleshed out. It does not yet report any differences. Also, it fails to process deletions.) ## update profile database zwi pro-update --help zwi [-v] pro-update [--force] The `pro-update` function will update the local DB profile cache using information in the local Zwift user `followers` and `followees` DB cache. ## list profile database entries zwi pro-list --help zwi pro-list The profiles list can be displayed. ## bokeh zwibok serve [--port=#] The `profile` database can be viewed using the `zwibok` app. This will pop up a page on your browser allowing you to explore various attributes of the users in the `profile` data base. It should be more or less obvious. Eventually I might try to write some usage info, but as it is more or less a proof-of-concept, it might change again soon. Basically, it presents an X/Y plot of subsets of the data. You can select different data columns for X and Y. You can adjust range sliders to reduce the set of data points in the plot. Male-only or female-only or both can be selected. The cross-hairs of the cursor select users and display some more info pertaining to the user. ## gui zwi gui --help zwi gui The `gui` function pops up a window displaying data from the local database copy of the Zwift `followers` and `followees` tables. This was my second attempt at writing a gui to view some of the data. Currently, it only displays information from the `followers` and `followees` lists. Key Bingings (for OSX): CMD-1 Switch to `followers` table. CMD-2 Switch to `followees` table. CMD-a Toggle `auto` mode. CMD-n Move to next entry. CMD-p Move to previous entry. CMD-f Search (not yet implemented). CMD-q Quit If `auto` mode is enabled: CMD-n increase interval CMD-p decrease interval The slider at the bottom can be used to move rapidly thru the list. For Linux, it appears the key bindings map to the CTRL key. The menu items will indicate whatever it is. ## followees zwi wees --help zwi wees The `wees` function will check the cached followees list (them who's followed). Any subject who is being followed but who is not reciprocating is displayed. You will have to manually search for the user in the Zwift companion and decide what punishment to hand out. ## followers zwi wers --help zwi wers The `wers` function will check the cached followers list and display any lacking reciprocity. Certain users will follow you, but not respond to reciprocal follow requests, remaining forever in limbo. One can always try unfollowing/refollowing to see if the recalcitrant is interested in reciprocity. As above, as far as I know, one has to use the Zwift companion app to search by name. ## inspect other user's public information. Per the Zwift privacy policy, various data are publicly accessible. The `inspect` command facilitates examination of the publicly available data. zwi inspect --help zwi inspect --zid=ZwiftUser zwi -v inspect --zid=ZwiftUser --update ## removing authentication information The `clear` function will remove any cached user/password information from the keystore. # development I have been using `anaconda` on `OsX` for development. Supposedly, this will install things to facilitate development: conda env create -f environment.yml conda activate zwi flit install --symlink pip3 install zwift-client pip3 install PyQt5 # hints When manually deleting followees, using the Zwift companion app, and searching by name, I find it helps to type in the bits of the name which are more likely to be unique, so as to limit the lists presented. # user feedback ## issues If you have any problems with or questions about this image, please contact me through a [GitHub issue](https://github.com/permezel/zwi/issues).
zwi
/zwi-0.3a1.tar.gz/zwi-0.3a1/README.md
README.md
======================= Zwift Mobile API client ======================= .. image:: https://img.shields.io/pypi/v/zwift-client.svg :target: https://pypi.python.org/pypi/zwift-client .. image:: https://img.shields.io/travis/jsmits/zwift-client.svg :target: https://travis-ci.org/jsmits/zwift-client .. image:: https://pyup.io/repos/github/jsmits/zwift-client/shield.svg :target: https://pyup.io/repos/github/jsmits/zwift-client/ :alt: Updates Zwift Mobile API client written in Python. Heavily inspired by zwift-mobile-api_. Installation ------------ :: $ pip install zwift-client Usage ----- Client ++++++ :: >>> from zwift import Client >>> username = 'your-username' >>> password = 'your-password' >>> player_id = your-player-id >>> client = Client(username, password) Profile +++++++ :: >>> profile = client.get_profile() >>> profile.profile # fetch your profile data >>> profile.followers >>> profile.followees >>> profile.get_activities() # metadata of your activities >>> profile.latest_activity # metadata of your latest activity Activity ++++++++ :: >>> activity = client.get_activity(player_id) >>> activities = activity.list() # your activities (default start is 0, default limit is 20) >>> activities = activity.list(start=20, limit=50) >>> latest_activity_id = activities[0]['id'] >>> activity.get_activity(latest_activity_id) # metadata of your latest activity >>> activity.get_data(latest_activity_id) # processed FIT file data World +++++ :: >>> world = client.get_world(1) # get world with id 1 >>> world.players # players currently present in this world >>> world.player_status(player_id) # current player status information like speed, cadence, power, etc. Credits --------- This package was created with cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template. .. _cookiecutter: https://github.com/audreyr/cookiecutter .. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage .. _zwift-mobile-api: https://github.com/Ogadai/zwift-mobile-api
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/README.rst
README.rst
.. highlight:: shell ============ Contributing ============ Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways: Types of Contributions ---------------------- Report Bugs ~~~~~~~~~~~ Report bugs at https://github.com/jsmits/zwift-client/issues. If you are reporting a bug, please include: * Your operating system name and version. * Any details about your local setup that might be helpful in troubleshooting. * Detailed steps to reproduce the bug. Fix Bugs ~~~~~~~~ Look through the GitHub issues for bugs. Anything tagged with "bug" and "help wanted" is open to whoever wants to implement it. Implement Features ~~~~~~~~~~~~~~~~~~ Look through the GitHub issues for features. Anything tagged with "enhancement" and "help wanted" is open to whoever wants to implement it. Write Documentation ~~~~~~~~~~~~~~~~~~~ Zwift Mobile API client could always use more documentation, whether as part of the official Zwift Mobile API client docs, in docstrings, or even on the web in blog posts, articles, and such. Submit Feedback ~~~~~~~~~~~~~~~ The best way to send feedback is to file an issue at https://github.com/jsmits/zwift-client/issues. If you are proposing a feature: * Explain in detail how it would work. * Keep the scope as narrow as possible, to make it easier to implement. * Remember that this is a volunteer-driven project, and that contributions are welcome :) Get Started! ------------ Ready to contribute? Here's how to set up `zwift-client` for local development. 1. Fork the `zwift-client` repo on GitHub. 2. Clone your fork locally:: $ git clone [email protected]:your_name_here/zwift-client.git 3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:: $ mkvirtualenv zwift-client $ cd zwift-client/ $ python setup.py develop 4. Create a branch for local development:: $ git checkout -b name-of-your-bugfix-or-feature Now you can make your changes locally. 5. When you're done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:: $ flake8 zwift tests $ python setup.py test or py.test $ tox To get flake8 and tox, just pip install them into your virtualenv. 6. Commit your changes and push your branch to GitHub:: $ git add . $ git commit -m "Your detailed description of your changes." $ git push origin name-of-your-bugfix-or-feature 7. Submit a pull request through the GitHub website. Pull Request Guidelines ----------------------- Before you submit a pull request, check that it meets these guidelines: 1. The pull request should include tests. 2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst. 3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/jsmits/zwift-client/pull_requests and make sure that the tests pass for all supported Python versions. Tips ---- To run a subset of tests:: $ py.test tests.test_zwift
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/CONTRIBUTING.rst
CONTRIBUTING.rst
.. highlight:: shell ============ Installation ============ Stable release -------------- To install Zwift Mobile API client, run this command in your terminal: .. code-block:: console $ pip install zwift-client This is the preferred method to install Zwift Mobile API client, as it will always install the most recent stable release. If you don't have `pip`_ installed, this `Python installation guide`_ can guide you through the process. .. _pip: https://pip.pypa.io .. _Python installation guide: http://docs.python-guide.org/en/latest/starting/installation/ From sources ------------ The sources for Zwift Mobile API client can be downloaded from the `Github repo`_. You can either clone the public repository: .. code-block:: console $ git clone git://github.com/jsmits/zwift-client Or download the `tarball`_: .. code-block:: console $ curl -OL https://github.com/jsmits/zwift-client/tarball/master Once you have a copy of the source, you can install it with: .. code-block:: console $ python setup.py install .. _Github repo: https://github.com/jsmits/zwift-client .. _tarball: https://github.com/jsmits/zwift-client/tarball/master
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/docs/installation.rst
installation.rst
from __future__ import print_function import time import requests class AuthToken: def __init__(self, username, password): self.username = username self.password = password # variables from the API response self.access_token = None self.expires_in = None self.id_token = None self.not_before_policy = None self.refresh_token = None self.refresh_expires_in = None self.session_state = None self.token_type = None # absolute expire times of the access and refresh tokens self.access_token_expiration = None self.refresh_token_expiration = None def fetch_token_data(self): if self.have_valid_refresh_token(): data = { "refresh_token": self.refresh_token, "grant_type": "refresh_token", } else: data = { "username": self.username, "password": self.password, "grant_type": "password", } data['client_id'] = "Zwift_Mobile_Link" r = requests.post( 'https://secure.zwift.com/auth/realms/zwift/tokens/access/codes', data=data) if not r.ok: # TODO: handle exceptions pass return r.json() def update_token_data(self): """Parse the access token response.""" token_data = self.fetch_token_data() now = time.time() for key, value in token_data.items(): key = key.replace('-', '_') setattr(self, key, value) self.access_token_expiration = now + self.expires_in - 5 self.refresh_token_expiration = now + self.refresh_expires_in - 5 def have_valid_access_token(self): if not self.access_token or time.time() > self.access_token_expiration: return False else: return True def have_valid_refresh_token(self): if (not self.refresh_token or time.time() > self.refresh_token_expiration): return False else: return True def get_access_token(self): if self.have_valid_access_token(): return self.access_token else: self.update_token_data() return self.access_token
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/zwift/auth.py
auth.py
import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='zwift_messages.proto', package='', syntax='proto3', serialized_pb=_b('\n\x14zwift_messages.proto\"\xc6\x03\n\x0bPlayerState\x12\n\n\x02id\x18\x01 \x01(\x05\x12\x11\n\tworldTime\x18\x02 \x01(\x03\x12\x10\n\x08\x64istance\x18\x03 \x01(\x05\x12\x10\n\x08roadTime\x18\x04 \x01(\x05\x12\x0c\n\x04laps\x18\x05 \x01(\x05\x12\r\n\x05speed\x18\x06 \x01(\x05\x12\x14\n\x0croadPosition\x18\x08 \x01(\x05\x12\x12\n\ncadenceUHz\x18\t \x01(\x05\x12\x11\n\theartrate\x18\x0b \x01(\x05\x12\r\n\x05power\x18\x0c \x01(\x05\x12\x0f\n\x07heading\x18\r \x01(\x03\x12\x0c\n\x04lean\x18\x0e \x01(\x05\x12\x10\n\x08\x63limbing\x18\x0f \x01(\x05\x12\x0c\n\x04time\x18\x10 \x01(\x05\x12\x0b\n\x03\x66\x31\x39\x18\x13 \x01(\x05\x12\x0b\n\x03\x66\x32\x30\x18\x14 \x01(\x05\x12\x10\n\x08progress\x18\x15 \x01(\x05\x12\x17\n\x0f\x63ustomisationId\x18\x16 \x01(\x03\x12\x14\n\x0cjustWatching\x18\x17 \x01(\x05\x12\x10\n\x08\x63\x61lories\x18\x18 \x01(\x05\x12\t\n\x01x\x18\x19 \x01(\x02\x12\x10\n\x08\x61ltitude\x18\x1a \x01(\x02\x12\t\n\x01y\x18\x1b \x01(\x02\x12\x17\n\x0fwatchingRiderId\x18\x1c \x01(\x05\x12\x0f\n\x07groupId\x18\x1d \x01(\x05\x12\r\n\x05sport\x18\x1f \x01(\x03\"\xd1\x01\n\x0e\x43lientToServer\x12\x11\n\tconnected\x18\x01 \x01(\x05\x12\x10\n\x08rider_id\x18\x02 \x01(\x05\x12\x12\n\nworld_time\x18\x03 \x01(\x03\x12\x1b\n\x05state\x18\x07 \x01(\x0b\x32\x0c.PlayerState\x12\r\n\x05seqno\x18\x04 \x01(\x05\x12\x0c\n\x04tag8\x18\x08 \x01(\x03\x12\x0c\n\x04tag9\x18\t \x01(\x03\x12\x13\n\x0blast_update\x18\n \x01(\x03\x12\r\n\x05tag11\x18\x0b \x01(\x03\x12\x1a\n\x12last_player_update\x18\x0c \x01(\x03\"\xe2\x01\n\rSegmentResult\x12\n\n\x02id\x18\x01 \x01(\x03\x12\x10\n\x08rider_id\x18\x02 \x01(\x03\x12\x19\n\x11\x65vent_subgroup_id\x18\x06 \x01(\x03\x12\x12\n\nfirst_name\x18\x07 \x01(\t\x12\x11\n\tlast_name\x18\x08 \x01(\t\x12\x17\n\x0f\x66inish_time_str\x18\n \x01(\t\x12\x12\n\nelapsed_ms\x18\x0b \x01(\x03\x12\x12\n\npowermeter\x18\x0c \x01(\x05\x12\x0e\n\x06weight\x18\r \x01(\x05\x12\r\n\x05power\x18\x0f \x01(\x05\x12\x11\n\theartrate\x18\x13 \x01(\x05\"z\n\x0eSegmentResults\x12\x10\n\x08world_id\x18\x01 \x01(\x03\x12\x12\n\nsegment_id\x18\x02 \x01(\x03\x12\x19\n\x11\x65vent_subgroup_id\x18\x03 \x01(\x03\x12\'\n\x0fsegment_results\x18\x04 \x03(\x0b\x32\x0e.SegmentResult\"\x11\n\x0fUnknownMessage1\"\x10\n\x0eUnknownMessage\"\xe1\x01\n\x0eServerToClient\x12\x0c\n\x04tag1\x18\x01 \x01(\x05\x12\x10\n\x08rider_id\x18\x02 \x01(\x05\x12\x12\n\nworld_time\x18\x03 \x01(\x03\x12\r\n\x05seqno\x18\x04 \x01(\x05\x12#\n\rplayer_states\x18\x08 \x03(\x0b\x32\x0c.PlayerState\x12\'\n\x0eplayer_updates\x18\t \x03(\x0b\x32\x0f.UnknownMessage\x12\r\n\x05tag11\x18\x0b \x01(\x03\x12\r\n\x05tag17\x18\x11 \x01(\x03\x12\x10\n\x08num_msgs\x18\x12 \x01(\x05\x12\x0e\n\x06msgnum\x18\x13 \x01(\x05\"u\n\x0fWorldAttributes\x12\x10\n\x08world_id\x18\x01 \x01(\x05\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0c\n\x04tag3\x18\x03 \x01(\x03\x12\x0c\n\x04tag5\x18\x04 \x01(\x03\x12\x12\n\nworld_time\x18\x06 \x01(\x03\x12\x12\n\nclock_time\x18\x07 \x01(\x03\"$\n\x0eWorldAttribute\x12\x12\n\nworld_time\x18\x02 \x01(\x03\"\xa9\x01\n\x15\x45ventSubgroupProtobuf\x12\n\n\x02id\x18\x01 \x01(\x05\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\r\n\x05rules\x18\x08 \x01(\x05\x12\r\n\x05route\x18\x16 \x01(\x05\x12\x0c\n\x04laps\x18\x19 \x01(\x05\x12\x15\n\rstartLocation\x18\x1d \x01(\x05\x12\r\n\x05label\x18\x1e \x01(\x05\x12\x10\n\x08paceType\x18\x1f \x01(\x05\x12\x12\n\njerseyHash\x18$ \x01(\x05\"\xf1\x01\n\x0fRiderAttributes\x12\n\n\x02\x66\x32\x18\x02 \x01(\x05\x12\n\n\x02\x66\x33\x18\x03 \x01(\x05\x12;\n\x10\x61ttributeMessage\x18\x04 \x01(\x0b\x32!.RiderAttributes.AttributeMessage\x12\x0f\n\x07theirId\x18\n \x01(\x05\x12\x0b\n\x03\x66\x31\x33\x18\r \x01(\x05\x1ak\n\x10\x41ttributeMessage\x12\x0c\n\x04myId\x18\x01 \x01(\x05\x12\x0f\n\x07theirId\x18\x02 \x01(\x05\x12\x11\n\tfirstName\x18\x03 \x01(\t\x12\x10\n\x08lastName\x18\x04 \x01(\t\x12\x13\n\x0b\x63ountryCode\x18\x05 \x01(\x05\"&\n\x08Profiles\x12\x1a\n\x08profiles\x18\x01 \x03(\x0b\x32\x08.Profile\"\x8a\x03\n\x07Profile\x12\n\n\x02id\x18\x01 \x01(\x05\x12\x11\n\tfirstName\x18\x04 \x01(\t\x12\x10\n\x08lastName\x18\x05 \x01(\t\x12\x0c\n\x04male\x18\x06 \x01(\x05\x12\x0e\n\x06weight\x18\t \x01(\x05\x12\x10\n\x08\x62odyType\x18\x0c \x01(\x05\x12\x13\n\x0b\x63ountryCode\x18\" \x01(\x05\x12\x15\n\rtotalDistance\x18# \x01(\x05\x12\x1c\n\x14totalDistanceClimbed\x18$ \x01(\x05\x12\x1a\n\x12totalTimeInMinutes\x18% \x01(\x05\x12\x16\n\x0etotalWattHours\x18) \x01(\x05\x12\x0e\n\x06height\x18* \x01(\x05\x12\x1d\n\x15totalExperiencePoints\x18. \x01(\x05\x12\x18\n\x10\x61\x63hievementLevel\x18\x31 \x01(\x05\x12\x13\n\x0bpowerSource\x18\x34 \x01(\x05\x12\x0b\n\x03\x61ge\x18\x37 \x01(\x05\x12\x1a\n\x12launchedGameClient\x18l \x01(\t\x12\x19\n\x11\x63urrentActivityId\x18m \x01(\x05\x62\x06proto3') ) _PLAYERSTATE = _descriptor.Descriptor( name='PlayerState', full_name='PlayerState', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='PlayerState.id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='worldTime', full_name='PlayerState.worldTime', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='distance', full_name='PlayerState.distance', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='roadTime', full_name='PlayerState.roadTime', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='laps', full_name='PlayerState.laps', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='speed', full_name='PlayerState.speed', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='roadPosition', full_name='PlayerState.roadPosition', index=6, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cadenceUHz', full_name='PlayerState.cadenceUHz', index=7, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='heartrate', full_name='PlayerState.heartrate', index=8, number=11, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='power', full_name='PlayerState.power', index=9, number=12, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='heading', full_name='PlayerState.heading', index=10, number=13, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lean', full_name='PlayerState.lean', index=11, number=14, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='climbing', full_name='PlayerState.climbing', index=12, number=15, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='time', full_name='PlayerState.time', index=13, number=16, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f19', full_name='PlayerState.f19', index=14, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f20', full_name='PlayerState.f20', index=15, number=20, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='progress', full_name='PlayerState.progress', index=16, number=21, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='customisationId', full_name='PlayerState.customisationId', index=17, number=22, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='justWatching', full_name='PlayerState.justWatching', index=18, number=23, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='calories', full_name='PlayerState.calories', index=19, number=24, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='x', full_name='PlayerState.x', index=20, number=25, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='altitude', full_name='PlayerState.altitude', index=21, number=26, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='y', full_name='PlayerState.y', index=22, number=27, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='watchingRiderId', full_name='PlayerState.watchingRiderId', index=23, number=28, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='groupId', full_name='PlayerState.groupId', index=24, number=29, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='sport', full_name='PlayerState.sport', index=25, number=31, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=25, serialized_end=479, ) _CLIENTTOSERVER = _descriptor.Descriptor( name='ClientToServer', full_name='ClientToServer', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='connected', full_name='ClientToServer.connected', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rider_id', full_name='ClientToServer.rider_id', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='world_time', full_name='ClientToServer.world_time', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='state', full_name='ClientToServer.state', index=3, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='seqno', full_name='ClientToServer.seqno', index=4, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag8', full_name='ClientToServer.tag8', index=5, number=8, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag9', full_name='ClientToServer.tag9', index=6, number=9, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='last_update', full_name='ClientToServer.last_update', index=7, number=10, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag11', full_name='ClientToServer.tag11', index=8, number=11, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='last_player_update', full_name='ClientToServer.last_player_update', index=9, number=12, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=482, serialized_end=691, ) _SEGMENTRESULT = _descriptor.Descriptor( name='SegmentResult', full_name='SegmentResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='SegmentResult.id', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rider_id', full_name='SegmentResult.rider_id', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='event_subgroup_id', full_name='SegmentResult.event_subgroup_id', index=2, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='first_name', full_name='SegmentResult.first_name', index=3, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='last_name', full_name='SegmentResult.last_name', index=4, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='finish_time_str', full_name='SegmentResult.finish_time_str', index=5, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='elapsed_ms', full_name='SegmentResult.elapsed_ms', index=6, number=11, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='powermeter', full_name='SegmentResult.powermeter', index=7, number=12, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight', full_name='SegmentResult.weight', index=8, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='power', full_name='SegmentResult.power', index=9, number=15, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='heartrate', full_name='SegmentResult.heartrate', index=10, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=694, serialized_end=920, ) _SEGMENTRESULTS = _descriptor.Descriptor( name='SegmentResults', full_name='SegmentResults', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='world_id', full_name='SegmentResults.world_id', index=0, number=1, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='segment_id', full_name='SegmentResults.segment_id', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='event_subgroup_id', full_name='SegmentResults.event_subgroup_id', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='segment_results', full_name='SegmentResults.segment_results', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=922, serialized_end=1044, ) _UNKNOWNMESSAGE1 = _descriptor.Descriptor( name='UnknownMessage1', full_name='UnknownMessage1', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1046, serialized_end=1063, ) _UNKNOWNMESSAGE = _descriptor.Descriptor( name='UnknownMessage', full_name='UnknownMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1065, serialized_end=1081, ) _SERVERTOCLIENT = _descriptor.Descriptor( name='ServerToClient', full_name='ServerToClient', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='tag1', full_name='ServerToClient.tag1', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rider_id', full_name='ServerToClient.rider_id', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='world_time', full_name='ServerToClient.world_time', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='seqno', full_name='ServerToClient.seqno', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='player_states', full_name='ServerToClient.player_states', index=4, number=8, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='player_updates', full_name='ServerToClient.player_updates', index=5, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag11', full_name='ServerToClient.tag11', index=6, number=11, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag17', full_name='ServerToClient.tag17', index=7, number=17, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='num_msgs', full_name='ServerToClient.num_msgs', index=8, number=18, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='msgnum', full_name='ServerToClient.msgnum', index=9, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1084, serialized_end=1309, ) _WORLDATTRIBUTES = _descriptor.Descriptor( name='WorldAttributes', full_name='WorldAttributes', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='world_id', full_name='WorldAttributes.world_id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='WorldAttributes.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag3', full_name='WorldAttributes.tag3', index=2, number=3, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tag5', full_name='WorldAttributes.tag5', index=3, number=4, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='world_time', full_name='WorldAttributes.world_time', index=4, number=6, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='clock_time', full_name='WorldAttributes.clock_time', index=5, number=7, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1311, serialized_end=1428, ) _WORLDATTRIBUTE = _descriptor.Descriptor( name='WorldAttribute', full_name='WorldAttribute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='world_time', full_name='WorldAttribute.world_time', index=0, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1430, serialized_end=1466, ) _EVENTSUBGROUPPROTOBUF = _descriptor.Descriptor( name='EventSubgroupProtobuf', full_name='EventSubgroupProtobuf', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='EventSubgroupProtobuf.id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='EventSubgroupProtobuf.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='rules', full_name='EventSubgroupProtobuf.rules', index=2, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='route', full_name='EventSubgroupProtobuf.route', index=3, number=22, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='laps', full_name='EventSubgroupProtobuf.laps', index=4, number=25, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='startLocation', full_name='EventSubgroupProtobuf.startLocation', index=5, number=29, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label', full_name='EventSubgroupProtobuf.label', index=6, number=30, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='paceType', full_name='EventSubgroupProtobuf.paceType', index=7, number=31, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='jerseyHash', full_name='EventSubgroupProtobuf.jerseyHash', index=8, number=36, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1469, serialized_end=1638, ) _RIDERATTRIBUTES_ATTRIBUTEMESSAGE = _descriptor.Descriptor( name='AttributeMessage', full_name='RiderAttributes.AttributeMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='myId', full_name='RiderAttributes.AttributeMessage.myId', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='theirId', full_name='RiderAttributes.AttributeMessage.theirId', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='firstName', full_name='RiderAttributes.AttributeMessage.firstName', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lastName', full_name='RiderAttributes.AttributeMessage.lastName', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='countryCode', full_name='RiderAttributes.AttributeMessage.countryCode', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1775, serialized_end=1882, ) _RIDERATTRIBUTES = _descriptor.Descriptor( name='RiderAttributes', full_name='RiderAttributes', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='f2', full_name='RiderAttributes.f2', index=0, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f3', full_name='RiderAttributes.f3', index=1, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='attributeMessage', full_name='RiderAttributes.attributeMessage', index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='theirId', full_name='RiderAttributes.theirId', index=3, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f13', full_name='RiderAttributes.f13', index=4, number=13, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_RIDERATTRIBUTES_ATTRIBUTEMESSAGE, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1641, serialized_end=1882, ) _PROFILES = _descriptor.Descriptor( name='Profiles', full_name='Profiles', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='profiles', full_name='Profiles.profiles', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1884, serialized_end=1922, ) _PROFILE = _descriptor.Descriptor( name='Profile', full_name='Profile', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='Profile.id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='firstName', full_name='Profile.firstName', index=1, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='lastName', full_name='Profile.lastName', index=2, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='male', full_name='Profile.male', index=3, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='weight', full_name='Profile.weight', index=4, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='bodyType', full_name='Profile.bodyType', index=5, number=12, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='countryCode', full_name='Profile.countryCode', index=6, number=34, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='totalDistance', full_name='Profile.totalDistance', index=7, number=35, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='totalDistanceClimbed', full_name='Profile.totalDistanceClimbed', index=8, number=36, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='totalTimeInMinutes', full_name='Profile.totalTimeInMinutes', index=9, number=37, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='totalWattHours', full_name='Profile.totalWattHours', index=10, number=41, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='Profile.height', index=11, number=42, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='totalExperiencePoints', full_name='Profile.totalExperiencePoints', index=12, number=46, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='achievementLevel', full_name='Profile.achievementLevel', index=13, number=49, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='powerSource', full_name='Profile.powerSource', index=14, number=52, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='age', full_name='Profile.age', index=15, number=55, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='launchedGameClient', full_name='Profile.launchedGameClient', index=16, number=108, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='currentActivityId', full_name='Profile.currentActivityId', index=17, number=109, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1925, serialized_end=2319, ) _CLIENTTOSERVER.fields_by_name['state'].message_type = _PLAYERSTATE _SEGMENTRESULTS.fields_by_name['segment_results'].message_type = _SEGMENTRESULT _SERVERTOCLIENT.fields_by_name['player_states'].message_type = _PLAYERSTATE _SERVERTOCLIENT.fields_by_name['player_updates'].message_type = _UNKNOWNMESSAGE _RIDERATTRIBUTES_ATTRIBUTEMESSAGE.containing_type = _RIDERATTRIBUTES _RIDERATTRIBUTES.fields_by_name['attributeMessage'].message_type = _RIDERATTRIBUTES_ATTRIBUTEMESSAGE _PROFILES.fields_by_name['profiles'].message_type = _PROFILE DESCRIPTOR.message_types_by_name['PlayerState'] = _PLAYERSTATE DESCRIPTOR.message_types_by_name['ClientToServer'] = _CLIENTTOSERVER DESCRIPTOR.message_types_by_name['SegmentResult'] = _SEGMENTRESULT DESCRIPTOR.message_types_by_name['SegmentResults'] = _SEGMENTRESULTS DESCRIPTOR.message_types_by_name['UnknownMessage1'] = _UNKNOWNMESSAGE1 DESCRIPTOR.message_types_by_name['UnknownMessage'] = _UNKNOWNMESSAGE DESCRIPTOR.message_types_by_name['ServerToClient'] = _SERVERTOCLIENT DESCRIPTOR.message_types_by_name['WorldAttributes'] = _WORLDATTRIBUTES DESCRIPTOR.message_types_by_name['WorldAttribute'] = _WORLDATTRIBUTE DESCRIPTOR.message_types_by_name['EventSubgroupProtobuf'] = _EVENTSUBGROUPPROTOBUF DESCRIPTOR.message_types_by_name['RiderAttributes'] = _RIDERATTRIBUTES DESCRIPTOR.message_types_by_name['Profiles'] = _PROFILES DESCRIPTOR.message_types_by_name['Profile'] = _PROFILE _sym_db.RegisterFileDescriptor(DESCRIPTOR) PlayerState = _reflection.GeneratedProtocolMessageType('PlayerState', (_message.Message,), dict( DESCRIPTOR = _PLAYERSTATE, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:PlayerState) )) _sym_db.RegisterMessage(PlayerState) ClientToServer = _reflection.GeneratedProtocolMessageType('ClientToServer', (_message.Message,), dict( DESCRIPTOR = _CLIENTTOSERVER, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:ClientToServer) )) _sym_db.RegisterMessage(ClientToServer) SegmentResult = _reflection.GeneratedProtocolMessageType('SegmentResult', (_message.Message,), dict( DESCRIPTOR = _SEGMENTRESULT, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:SegmentResult) )) _sym_db.RegisterMessage(SegmentResult) SegmentResults = _reflection.GeneratedProtocolMessageType('SegmentResults', (_message.Message,), dict( DESCRIPTOR = _SEGMENTRESULTS, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:SegmentResults) )) _sym_db.RegisterMessage(SegmentResults) UnknownMessage1 = _reflection.GeneratedProtocolMessageType('UnknownMessage1', (_message.Message,), dict( DESCRIPTOR = _UNKNOWNMESSAGE1, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:UnknownMessage1) )) _sym_db.RegisterMessage(UnknownMessage1) UnknownMessage = _reflection.GeneratedProtocolMessageType('UnknownMessage', (_message.Message,), dict( DESCRIPTOR = _UNKNOWNMESSAGE, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:UnknownMessage) )) _sym_db.RegisterMessage(UnknownMessage) ServerToClient = _reflection.GeneratedProtocolMessageType('ServerToClient', (_message.Message,), dict( DESCRIPTOR = _SERVERTOCLIENT, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:ServerToClient) )) _sym_db.RegisterMessage(ServerToClient) WorldAttributes = _reflection.GeneratedProtocolMessageType('WorldAttributes', (_message.Message,), dict( DESCRIPTOR = _WORLDATTRIBUTES, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:WorldAttributes) )) _sym_db.RegisterMessage(WorldAttributes) WorldAttribute = _reflection.GeneratedProtocolMessageType('WorldAttribute', (_message.Message,), dict( DESCRIPTOR = _WORLDATTRIBUTE, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:WorldAttribute) )) _sym_db.RegisterMessage(WorldAttribute) EventSubgroupProtobuf = _reflection.GeneratedProtocolMessageType('EventSubgroupProtobuf', (_message.Message,), dict( DESCRIPTOR = _EVENTSUBGROUPPROTOBUF, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:EventSubgroupProtobuf) )) _sym_db.RegisterMessage(EventSubgroupProtobuf) RiderAttributes = _reflection.GeneratedProtocolMessageType('RiderAttributes', (_message.Message,), dict( AttributeMessage = _reflection.GeneratedProtocolMessageType('AttributeMessage', (_message.Message,), dict( DESCRIPTOR = _RIDERATTRIBUTES_ATTRIBUTEMESSAGE, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:RiderAttributes.AttributeMessage) )) , DESCRIPTOR = _RIDERATTRIBUTES, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:RiderAttributes) )) _sym_db.RegisterMessage(RiderAttributes) _sym_db.RegisterMessage(RiderAttributes.AttributeMessage) Profiles = _reflection.GeneratedProtocolMessageType('Profiles', (_message.Message,), dict( DESCRIPTOR = _PROFILES, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:Profiles) )) _sym_db.RegisterMessage(Profiles) Profile = _reflection.GeneratedProtocolMessageType('Profile', (_message.Message,), dict( DESCRIPTOR = _PROFILE, __module__ = 'zwift_messages_pb2' # @@protoc_insertion_point(class_scope:Profile) )) _sym_db.RegisterMessage(Profile) # @@protoc_insertion_point(module_scope)
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/zwift/zwift_messages_pb2.py
zwift_messages_pb2.py
from . import zwift_messages_pb2 from .request import Request COURSE_TO_WORLD = {3: 1, 4: 2, 5: 3, 6: 1} class COURSES: WATOPIA = 3 RICHMOND = 4 LONDON = 5 class World: def __init__(self, world_id, get_access_token): self.world_id = world_id self.request = Request(get_access_token) @property def players(self): return self.request.json('/relay/worlds/{}'.format(self.world_id)) def player_status(self, player_id): buffer = self.request.protobuf( '/relay/worlds/{}/players/{}'.format(self.world_id, player_id)) player_state = zwift_messages_pb2.PlayerState() player_state.ParseFromString(buffer) return PlayerStateWrapper(player_state) class PlayerStateWrapper(object): """ Wrap a PlayerState instance to make it more usable. Fields provided by wrapped player_state: id, worldTime, distance, roadTime, laps, speed, roadPosition, cadenceUHz, heartrate, power, heading, lean, climbing, time, f19, f20, progress, customisationId, justWatching, calories, x, altitude, y, watchingRiderId, groupId, sport """ class TURN_SIGNALS: RIGHT = 'right' LEFT = 'left' STRAIGHT = 'straight' def __init__(self, player_state): self.player_state = player_state @property def ride_ons(self): return (self.player_state.f19 >> 24) & 0xfff @property def is_turning(self): return (self.player_state.f19 & 8) != 0 @property def is_forward(self): return (self.player_state.f19 & 4) != 0 @property def course(self): return (self.player_state.f19 & 0xff0000) >> 16 @property def world(self): return COURSE_TO_WORLD[self.course] @property def road_id(self): return (self.player_state.f20 & 0xff00) >> 8 @property def road_direction(self): return (self.player_state.f20 & 0xffff000000) >> 24 @property def turn_signal(self): signal_code = self.player_state.f20 & 0x70 if signal_code == 0x10: return self.TURN_SIGNALS.RIGHT elif signal_code == 0x20: return self.TURN_SIGNALS.LEFT elif signal_code == 0x40: return self.TURN_SIGNALS.STRAIGHT else: return None @property def power_up(self): return self.player_state.f20 & 0xf @property def has_feather_boost(self): return self.power_up == 0 @property def has_draft_boost(self): return self.power_up == 1 @property def has_aero_boost(self): return self.power_up == 5 @property def cadence(self): return int((self.player_state.cadenceUHz * 60) / 1000000) def __getattr__(self, item): """ First try to get the requested item from the player_state. When it's not found, try to get it directly from the wrapper. """ try: return getattr(self.player_state, item) except AttributeError: return self.__getattribute__(item)
zwift-client
/zwift-client-0.2.0.tar.gz/zwift-client-0.2.0/zwift/world.py
world.py
import xml.etree.ElementTree as ET def parse_cadence(row: str) -> int: """Parses cadence value string 'Xrpm' and returns X as int""" keyword = 'rpm' if keyword not in row: return -1, row if ',' in row: keyword += ',' cadence, rest = row.split(keyword) if '/' in cadence: cadence = sum([int(c) for c in cadence.split('/')])/2 return int(cadence), rest def parse_power(row: str) -> int: """Parses power value string 'X%' or 'XW' and returns X as int""" power = row if '%' in power: power, _ = power.split('%') if 'W' in power: power, _ = power.split('W') return float(power)/100 def parse_duration(row: str) -> int: """Parses duration value string 'Xhr', 'Ymin' or 'Zsec' and returns (X::Y::Z) as seconds""" import re def filter_digits(s): return "".join(re.findall('\d+', s)) seconds = 0 if 'hr' in row: hr, row = row.split('hr') seconds += int(filter_digits(hr)) * 3600 if 'min' in row: min, row = row.split('min') seconds += int(filter_digits(min)) * 60 if 'sec' in row: sec, _ = row.split('sec') seconds += int(filter_digits(sec)) return seconds class ZSteadyState: def __init__(self, row: str) -> None: duration, row = [r.strip() for r in row.split('@')] duration = parse_duration(duration) cadence, row = parse_cadence(row) self.duration = duration self.power = parse_power(row) self.cadence = cadence def __repr__(self) -> str: return f'SteadyState (duration: {self.duration} power: {self.power} cadence: {self.cadence}' def to_xml(self, root: ET.Element) -> ET.Element: """Creates an XML element from the steady state interval data Params root : ET.Element Root of the created steady state interval XML element """ interval = ET.SubElement(root, 'SteadyState') interval.set('Duration', str(self.duration)) interval.set('Power', str(self.power)) if self.cadence > 0: interval.set('Cadence', str(self.cadence)) return interval class ZRangedInterval(): def __init__(self, row: str) -> None: duration, row = row.split('from') cadence = -1 if '@' in duration: duration, cadence = duration.split('@') cadence, _ = parse_cadence(cadence) duration = parse_duration(duration) from_power, to_power = [parse_power(p) for p in row.split('to')] self.duration = duration self.from_power = from_power self.to_power = to_power self.cadence = cadence self.name = "Warmup" if from_power < to_power else "Cooldown" def __repr__(self) -> str: return f'{self.name} (duration: {self.duration} from_power: {self.from_power} to_power: {self.to_power} cadence: {self.cadence})' def to_xml(self, root: ET.Element) -> ET.Element: """Creates an XML element from the ranged interval interval data Params root : ET.Element Root of the created free ranged interval XML element """ interval = ET.SubElement(root, self.name) interval.set('Duration', str(self.duration)) interval.set('PowerLow', str(self.from_power)) interval.set("PowerHigh", str(self.to_power)) if self.cadence > 0: interval.set('Cadence', str(self.cadence)) class ZIntervalsT(): def __init__(self, row: str): number, rest = row.split('x') rest = rest.replace("rpm,", 'rpm') first_interval, second_interval = [ZSteadyState(r) for r in rest.split(',')] self.number = number self.first_interval = first_interval self.second_interval = second_interval def __repr__(self) -> str: return f'IntervalT ({self.number} x {self.first_interval}, {self.second_interval})' def to_xml(self, root: ET.Element) -> ET.Element: """Creates an XML element from the intervals data Params root : ET.Element Root of the created free ride intervals XML element """ interval = ET.SubElement(root, 'IntervalsT') interval.set('Repeat', str(self.number)) interval.set('OnDuration', str(self.first_interval.duration)) interval.set('OffDuration', str(self.second_interval.duration)) interval.set("OnPower", str(self.first_interval.power)) interval.set('OffPower', str(self.second_interval.power)) interval.set('Cadence', str(self.first_interval.cadence)) interval.set("CadenceResting", str(self.second_interval.cadence)) class ZFreeRide(): def __init__(self, row: str): duration, _ = row.split('free ride') cadence = -1 if '@' in duration: duration, cadence = duration.split("@") cadence = parse_cadence(cadence) duration = parse_duration(duration) self.duration = duration self.cadence = cadence self.flat_road = 1 def __repr__(self) -> str: return f'ZFreeRide (duration: {self.duration} cadence: {self.cadence})' def to_xml(self, root: ET.Element) -> ET.Element: """Creates an XML element from the free ride interval data Params root : ET.Element Root of the created free ride interval XML element """ interval = ET.SubElement(root, 'FreeRide') interval.set('Duration', str(self.duration)) interval.set('FlatRoad', str(self.flat_road)) if self.cadence > 0: interval.set("Cadence", str(self.cadence)) pass
zwift-workouts-parser
/zwift_workouts_parser-1.0.0-py3-none-any.whl/zwift_parser/zwift_intervals.py
zwift_intervals.py
from zwift_workout import ZWorkout, ZWorkoutParseMode class Parser: """ A class is used to parse any **bike** zwift workout, presented on the www.whatsonzwift.com """ def __init__(self, export_dir, urls, skip: bool = False, replace: bool = False) -> None: """ Parameters ---------- export_dir : str The folder that is used to save all the parsed workouts. urls : List[str] A list of urls that need to be parsed, can be either a direct link to a single workout, plan or a page which contains multiple plans/workouts. skip : Bool Should the workouts that can be downloaded be skipped by the parser? replace : Bool Should the workouts that can be downloaded be replaced with the files uploaded to the site? """ self.export_dir = export_dir self.skip = skip self.replace = replace for i, url in enumerate(urls): print(f'Parsing url {url} ({i+1}/{len(urls)})') parsed = self.__try_parse(url) if not parsed: print(f"Couldn't find a parser for {url} hence skipping it.") continue def __try_parse(self, url): parsed = self.__try_parse_plans(url); if not parsed: parsed = self.__try_parse_workout(url); return parsed def __try_parse_plans(self, url): plans_data = Parser.__get_web_content(url, 'div', 'card') if not plans_data: return False; any_parsed = False for i, plan_data in enumerate(plans_data): card_sports = plan_data.find('div', class_='card-sports') if not card_sports: continue card_classes = card_sports.i['class'] valid = ZWorkout.is_valid_sport_type(card_classes) url = plan_data.find('a', class_='button')['href'] if not valid: print(f"Couldn't parse {url} because some of the {card_classes} sports are not suppored yet") continue print(f"Parsing plan ({i+1}/{len(plans_data)})") self.__try_parse_workout(url) any_parsed = True return any_parsed def __try_parse_workout(self, url): workouts_data = Parser.__get_web_content(url, 'article', 'workout') if not workouts_data: print(f"Couldn't get workout data by {url} for unknown reason.") return False for i, workout_data in enumerate(workouts_data): print(f"- Parsing workout ({i+1}/{len(workouts_data)})") mode = ZWorkoutParseMode.DEFAULT if self.skip: mode = ZWorkoutParseMode.SKIP elif self.replace: mode = ZWorkoutParseMode.REPLACE ZWorkout(workout_data, mode).save(self.export_dir) return True def __get_web_content(url, tag, tag_class): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36 Vivaldi/4.3', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3', 'Accept-Encoding': 'none', 'Accept-Language': 'en-US,en;q=0.8', 'Connection': 'keep-alive' } import ssl, certifi, urllib.request req = urllib.request.Request(url, headers=headers) context = ssl.create_default_context(cafile=certifi.where()) response = urllib.request.urlopen(req, context=context) content = response.read().decode('utf-8') from bs4 import BeautifulSoup soup = BeautifulSoup(content, features='html.parser') return soup.find_all(tag, class_ = tag_class) import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description="Parses Zwift workouts from www.whatsonzwift.com") parser.add_argument('--skip', action='store_true', help='skips workouts which can be downloaded from the site') parser.add_argument('--replace', action='store_false', help='replaces workouts which can be downloaded from the site with their uploaded files') parser.add_argument('urls', metavar='URLs', type=str, nargs="+", help="an URL of the workout to parse") parser.add_argument('-ed', '--export_dir', nargs="?", default='export', help="output directory of the parsed workouts") args = parser.parse_args() if args.urls: Parser(**vars(args))
zwift-workouts-parser
/zwift_workouts_parser-1.0.0-py3-none-any.whl/zwift_parser/zwift_parser.py
zwift_parser.py
from typing import List import xml.etree.ElementTree as ET from bs4 import BeautifulSoup, element from zwift_intervals import * from enum import Enum class ZWorkoutParseMode(Enum): DEFAULT = 1 SKIP = 2 REPLACE = 3 class ZWorkout(): def is_valid_sport_type(class_values: List[str]): """Checks if workout's sport type is supported by the parser At the moment the parser supports only the bike workouts, so this function checks if there is a bike type in the sport types. Parameters ---------- class_values : List[str] A list of the class values on the workout's html page """ return len([s for s in class_values if 'bike' in s]) > 0 def parse_interval(raw_str: str): """Returns an interval based on some specific format of input raw interval string Return ------ ZFreeRide - If the raw interval string contains a 'free ride' sub-string in it for example '10 min free ride' ZRangedInterval - If the raw interval string contains a 'from','to' pair of the sub-strings for example '1 min from 50 to 90% FTP' ZIntervalT - If the raw interval string contains a 'x' symbol (meaning times) for example '10x 3min @ 100% FTP, 1 min @ 55% FTP' ZSteadyState - Otherwise for example '3min @ 100rpm, 95% FTP' """ if 'free ride' in raw_str: return ZFreeRide(raw_str) #10min free ride if 'from' in raw_str and 'to' in raw_str: return ZRangedInterval(raw_str) #1min from 50 to 90% FTP if 'x' in raw_str: return ZIntervalsT(raw_str) #10x 3min @ 100% FTP, 1min @ 55% FTP return ZSteadyState(raw_str) #3min @ 100rpmm, 95% FTP def __init__(self, article: element.Tag, mode: ZWorkoutParseMode = ZWorkoutParseMode.DEFAULT) -> None: self.path, self.filename = (None, None) self.mode = mode breadcrumbs = article.select_one('div.breadcrumbs') sport_type = breadcrumbs.find('h4')['class'] self.valid = ZWorkout.is_valid_sport_type(sport_type) if not self.valid: return try: breadcrumbs = [item.string.strip() for item in breadcrumbs] except Exception as e: #Sometimes if @ is contained in the breadcrumbs, it might be obfuscated with Cloudflare, so # it's not really possible to deobfuscate it back. This is why we just ignore it. self.valid = False return breadcrumbs = [slugify(b) for b in breadcrumbs if len(b) > 0 and b != '»' and b != 'Workouts'] self.filename = breadcrumbs.pop(-1) self.path = '/'.join(breadcrumbs) self.intervals = [] download_button = [a for a in article.find_all('a') if a.string and 'Download workout' in a.string] self.download_link = download_button[0]['href'] if download_button and self.mode is not ZWorkoutParseMode.DEFAULT else None if not self.download_link: def convert_to_string(data): output = [] if isinstance(data, element.NavigableString): return data.string for content in data.contents: if isinstance(content, str): output.append(content) else: output.extend([convert_to_string(c) for c in content.contents]) return "".join(output) data = article.select_one('div.one-third.column.workoutlist') for div in data.find_all('div'): interval = "".join([convert_to_string(c) for c in div.contents]) self.intervals.append(ZWorkout.parse_interval(interval)) overview = article.select_one('div.overview') self.author = 'Zwift Workouts Parser' self.description = overview.next_sibling if 'Author:' in overview.next_sibling.get_text(): self.author = overview.next_sibling self.description = self.author.next_sibling if not isinstance(self.author, str) and 'Author:' in self.author.get_text(): _, self.author = self.author.get_text().split('Author:') self.description = self.description.get_text("\n") self.name = 'Zwift Workout' self.sport_type = 'bike' self.lookup = { 'author': self.author, 'name': self.name, 'description': self.description, 'sport_type': self.sport_type, } def save(self, export_dir: str): """Saves workout to a specific folder Params ------ export_dir : str Folder to save the workout """ if not self.valid: return workout_fullname = f"{self.path}/{self.filename}" text = "" if not self.download_link: data = self.to_xml() import xml.etree.ElementTree as ET text = ET.tostring(data) xml_header = b'<?xml version="1.0" encoding="utf-8"?>' text = BeautifulSoup(text, 'xml').prettify().encode('utf-8') text = text.replace(xml_header, b'').strip() elif self.mode is ZWorkoutParseMode.REPLACE: import requests url = f"https://whatsonzwift.com{self.download_link}" text = requests.get(url, allow_redirects=True).content else: print(f"-- Skipped workout {workout_fullname}") return directory = f"{export_dir}/{self.path}" from os import path, makedirs if not path.isdir(directory): makedirs(directory) with open(f"{directory}/{slugify(self.filename, True)}.zwo", 'wb') as f: f.write(text) file_version = "Original" if self.download_link else "Parsed" print(f"-- Parsed workout {workout_fullname} ({file_version})") def to_xml(self, root : ET.Element = None) -> ET.Element: """Creates an XML element from the workout data Params root : ET.Element Root of the created workout XML element """ root = ET.Element('workout_file') for k,v in self.lookup.items(): ET.SubElement(root, k).text = v tags = ET.SubElement(root, 'tags') for t in tags: tag = ET.SubElement(tags, 'tag') tag.set('name', t) workout = ET.SubElement(root, 'workout') for i in self.intervals: i.to_xml(workout) return root import unicodedata import re def slugify(value, allow_unicode=False): """ Taken from https://github.com/django/django/blob/master/django/utils/text.py Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated dashes to single dashes. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace, dashes, and underscores. """ value = str(value) if allow_unicode: value = unicodedata.normalize('NFKC', value) else: value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = re.sub(r'[^\w\s-]', '', value) return re.sub(r'[-\s]+', '-', value).strip('-_')
zwift-workouts-parser
/zwift_workouts_parser-1.0.0-py3-none-any.whl/zwift_parser/zwift_workout.py
zwift_workout.py
__version__ = '0.1.0' def zwixel(): def rgb(fg = [255, 255, 255], bg = None): try: return f"\033[38;2;{fg[0]};{fg[1]};{fg[2]};48;2;{bg[0]};{bg[1]};{bg[2]}m" except: return f"\033[38;2;{fg[0]};{fg[1]};{fg[2]}m" boards = [[" " for i in range(20)] for i in range(20)] reset = "\033[0m" black = rgb(bg = [0, 0, 0]) + " " + reset lpp = [[0, 0], [1, 0], [3, 0], [4, 0], [9, 0], [11, 0], [16, 0], [2, 1], [3, 1], [8, 1], [10, 1], [13, 1], [15, 1], [16, 1], [17, 1], [2, 2], [14, 2], [16, 2], [17, 2], [18, 2], [1, 3], [16, 3], [17, 3], [2, 5], [0, 10], [1, 10], [0, 11], [19, 10], [1, 13], [0, 14], [0, 15], [1, 15], [0, 16], [1, 16], [2, 16], [4, 17], [6, 17], [7, 17], [8, 17], [9, 17], [16, 17], [6, 18], [7, 18], [6, 19]] lp = rgb(bg = [156, 36, 176]) + " " + reset for i in lpp: boards[i[1]][i[0]] = lp dpp = [[5, 0], [6, 0], [13, 0], [18, 0], [19, 1], [19, 2], [0, 3], [18, 6], [0, 7], [2, 8], [2, 9], [0, 18], [1, 18], [8, 18], [9, 18], [13, 18], [2, 19], [3, 19], [4, 19], [18, 19], [19, 19]] dp = rgb(bg = [101, 25, 114]) + " " + reset for i in dpp: boards[i[1]][i[0]] = dp bp = [[2, 0], [10, 0], [1, 1], [4, 1], [6, 1], [9, 1], [12, 1], [14, 1], [3, 2], [4, 2], [5, 2], [12, 2], [13, 2], [15, 2], [2, 3], [3, 3], [15, 3], [3, 4], [17, 4], [0, 5], [2, 6], [19, 6], [18, 7], [1, 8], [19, 8], [0, 9], [2, 10], [1, 11], [2, 11], [18, 11], [19, 12], [18, 13], [1, 14], [19, 14], [19, 15], [19, 16], [1, 17], [5, 17], [10, 17], [11, 17], [12, 17], [14, 17], [18, 17], [3, 18], [4, 18], [5, 18], [14, 18], [15, 18], [16, 18], [17, 18], [18, 18], [7, 19], [8, 19]] b = rgb(bg = [63, 81, 181]) + " " + reset for i in bp: boards[i[1]][i[0]] = b bp = [[0, 2], [1, 2], [18, 3], [19, 3], [0, 4], [1, 4], [2, 4], [18, 4], [19, 4], [1, 5], [18, 5], [19, 5], [0, 6], [1, 6], [1, 7], [2, 7], [19, 7], [0, 8], [1, 9], [19, 9], [19, 11], [0, 12], [1, 12], [18, 12], [0, 13], [19, 13], [7, 7], [8, 7], [7, 8], [8, 8], [12, 8], [13, 8], [12, 9], [13, 9], [7, 11], [8, 11], [9, 11], [9, 12], [10, 12], [11, 12], [12, 12], [13, 12]] for i in bp: boards[i[1]][i[0]] = black wp = [[6, 2], [7, 2], [8, 2], [9, 2], [10, 2], [11, 2], [4, 3], [5, 3], [11, 3], [12, 3], [13, 3], [14, 3], [4, 4], [14, 4], [15, 4], [16, 4], [3, 5], [4, 5], [16, 5], [17, 5], [3, 6], [17, 6], [3, 7], [17, 7], [3, 8], [17, 8], [18, 8], [3, 9], [18, 9], [3, 10], [18, 10], [3, 11], [17, 11], [2, 12], [17, 12], [2, 13], [17, 13], [2, 14], [17, 14], [18, 14], [2, 15], [18, 15], [3, 16], [18, 16], [4, 16], [5, 16], [6, 16], [7, 16], [8, 16], [9, 16], [10, 16], [11, 16], [12, 16], [13, 16], [14, 16], [15, 16], [16, 16], [17, 16]] w = rgb(bg = [255, 255, 255]) + " " + reset for i in wp: boards[i[1]][i[0]] = w for i, v in enumerate(boards[0]): if v == " ": boards[0][i] = black for i, v in enumerate(boards[1]): if v == " ": boards[1][i] = black for i, v in enumerate(boards[17]): if v == " ": boards[17][i] = black for i, v in enumerate(boards[18]): if v == " ": boards[18][i] = black for i, v in enumerate(boards[19]): if v == " ": boards[19][i] = black for i, v in enumerate(boards): for j, k in enumerate(v): if boards[i][j] == " ": boards[i][j] = rgb(bg = [255, 235, 59]) + " " + reset return boards
zwixel-pwack
/zwixel_pwack-0.1.0-py3-none-any.whl/zwixel_pwack/__init__.py
__init__.py
import talib def indicator(df): df['ma5'] = talib.MA(df['close'], timeperiod=5) df['ma10'] = talib.MA(df['close'], timeperiod=10) df['ma20'] = talib.MA(df['close'], timeperiod=20) df['macd'], df['macdsignal'], df['macdhist'] = talib.MACD(df['close'], fastperiod=12, slowperiod=26, signalperiod=9) df['rsi'] = talib.RSI(df['close'], timeperiod=14) df['cci'] = talib.CCI(df['high'], df['low'], df['close'], timeperiod=14) df['dx'] = talib.DX(df['high'], df['low'], df['close'], timeperiod=14) df['slowk'], df['slowd'] = talib.STOCH(df['high'], df['low'], df['close'], fastk_period=9, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['fastk'], df['fastd'] = talib.STOCHF(df['high'], df['low'], df['close'], fastk_period=9, fastd_period=3, fastd_matype=0) df['willr'] = talib.WILLR(df['high'], df['low'], df['close'], timeperiod=14) df['mom'] = talib.MOM(df['close'], timeperiod=10) df['roc'] = talib.ROC(df['close'], timeperiod=10) df['trix'] = talib.TRIX(df['close'], timeperiod=30) df['aroonup'], df['aroondown'] = talib.AROON(df['high'], df['low'], timeperiod=14) df['aroonosc'] = talib.AROONOSC(df['high'], df['low'], timeperiod=14) df['bop'] = talib.BOP(df['open'], df['high'], df['low'], df['close']) df['midpoint'] = talib.MIDPOINT(df['close'], timeperiod=14) df['midprice'] = talib.MIDPRICE(df['high'], df['low'], timeperiod=14) df['sar'] = talib.SAR(df['high'], df['low'], acceleration=0, maximum=0) df['trange'] = talib.TRANGE(df['high'], df['low'], df['close']) df['atr'] = talib.ATR(df['high'], df['low'], df['close'], timeperiod=14) df['natr'] = talib.NATR(df['high'], df['low'], df['close'], timeperiod=14) df['adx'] = talib.ADX(df['high'], df['low'], df['close'], timeperiod=14) df['adxr'] = talib.ADXR(df['high'], df['low'], df['close'], timeperiod=14) df['apo'] = talib.APO(df['close'], fastperiod=12, slowperiod=26, matype=0) df['ppo'] = talib.PPO(df['close'], fastperiod=12, slowperiod=26, matype=0) df['mfi'] = talib.MFI(df['high'], df['low'], df['close'], df['vol'], timeperiod=14) df['minus_di'] = talib.MINUS_DI(df['high'], df['low'], df['close'], timeperiod=14) df['minus_dm'] = talib.MINUS_DM(df['high'], df['low'], timeperiod=14) df['plus_di'] = talib.PLUS_DI(df['high'], df['low'], df['close'], timeperiod=14) df['plus_dm'] = talib.PLUS_DM(df['high'], df['low'], timeperiod=14) df['rocp'] = talib.ROCP(df['close'], timeperiod=10) df['rocr'] = talib.ROCR(df['close'], timeperiod=10) df['rocr100'] = talib.ROCR100(df['close'], timeperiod=10) df['ultosc'] = talib.ULTOSC(df['high'], df['low'], df['close'], timeperiod1=7, timeperiod2=14, timeperiod3=28) df['ema5'] = talib.EMA(df['close'], timeperiod=5) df['ema10'] = talib.EMA(df['close'], timeperiod=10) df['ema20'] = talib.EMA(df['close'], timeperiod=20) df['dema5'] = talib.DEMA(df['close'], timeperiod=5) df['dema10'] = talib.DEMA(df['close'], timeperiod=10) df['dema20'] = talib.DEMA(df['close'], timeperiod=20) df['tema5'] = talib.TEMA(df['close'], timeperiod=5) df['tema10'] = talib.TEMA(df['close'], timeperiod=10) df['tema20'] = talib.TEMA(df['close'], timeperiod=20) df['trima5'] = talib.TRIMA(df['close'], timeperiod=5) df['trima10'] = talib.TRIMA(df['close'], timeperiod=10) df['trima20'] = talib.TRIMA(df['close'], timeperiod=20) df['wma5'] = talib.WMA(df['close'], timeperiod=5) df['wma10'] = talib.WMA(df['close'], timeperiod=10) df['wma20'] = talib.WMA(df['close'], timeperiod=20) df['kama5'] = talib.KAMA(df['close'], timeperiod=5) df['kama10'] = talib.KAMA(df['close'], timeperiod=10) df['kama20'] = talib.KAMA(df['close'], timeperiod=20) df['obv'] = talib.OBV(df['close'], df['vol'])
zwkit
/zwkit-0.4.34-py3-none-any.whl/indicator/base.py
base.py
import pandas as pd import pywencai as wc import tushare as ts import os from kit import num_kit, path_kit import pathlib ''' 数据函数 ''' # 导入工程 class base_data_loader: """ 数据加载器 通过问财获得股票列表 通过tushare获得股票数据 """ def __init__(self, path="../data/", module="data/", file_name="base_data.csv"): self.path = path self.module = module self.file_name = file_name self.module_path = path + module self.question = None self.start = None self.end = None self.token = None self.symbol_index = dict() # 股票时间索引 self.filter = set() # 股票的过滤集 self.data = pd.DataFrame() path_kit.create_dir(self.module_path) def __daily_data(self, symbol, start, end, token): """ 获取日线数据 :param symbol: :param start: :param end: :return: """ api = ts.pro_api(token) df = ts.pro_bar( ts_code=symbol, api=api, start_date=str(start) + "0101", end_date=str(end) + "1231", adjfactor=True, asset="E", # 证券类型 E:股票和交易所基金,I:沪深指数,C:数字货币,FT:期货 FD:基金/O期权/H港股/CB可转债 freq="D", # D:日线 W:周 M:月 adj="hfq", # 不复权:None 前复权:qfq 后复权:hfq retry_count=99 # 重试次数 ) return df[::-1] def __daily(self, start_date, end_date, token, symbols: list): """ 获取日线数据 :param start_date: :param end_date: :param symbols: :return: """ result = pd.DataFrame() if len(symbols) == 0: return pd.DataFrame() for symbol in symbols: df = self.__daily_data(symbol, start_date, end_date, token) result = pd.concat([result, df]) return result def filter_symbols(self, symbols: list): """ 过滤数据列表 :param symbols: 以列表的形式填入股票代码 :return: """ symbols_set = set(symbols) self.filter.update(symbols_set) def __get_symbols_by_wc(self, question, columns: list): """ 股票列表 通过问财获得股票列表 """ result = pd.DataFrame() for i in range(self.start, self.end + 1): quest = question % (i, i - 1) data = wc.get(question=quest, loop=True) data = data[columns] data = data[~data['股票代码'].isin(self.filter)] data['trade_date'] = i result = pd.concat([result, data]) return result def get_data(self, question, start, end, token): """ 获取总数据集 优先在本地读取,如果本地没有从互联网获取 :param token: :param end: :param start: :param question: :param data_path: 默认的数据集路径 :return: """ self.question = question self.start = start self.end = end if os.path.exists(self.module_path + self.file_name): print("读取本地数据集") self.data = pd.read_csv(self.module_path + self.file_name) else: print("从互联网获取数据集") symbols_list = self.__get_symbols_by_wc(self.question, columns=['股票代码']) print("开始遍历") for index, symbol in enumerate(symbols_list['股票代码'].unique()): print("数据进度百分比:%s" % (index / len(symbols_list['股票代码'].unique()) * 100), end='\r', flush=True) self.data = pd.concat([self.data, self.__daily_data(symbol, self.start, self.end, token)]) # 重置索引 self.data = self.data.reset_index(drop=True) # 将日期转换为字符串 self.data['trade_date'] = self.data['trade_date'].apply(lambda x: str(x)) # 将数据里的数字类型转换为float self.data = self.data.applymap(lambda x: float(x) if isinstance(x, (int, float)) else x) return self.data def observe(self, mlflow): """ 观察数据集 :return: """ # 数据报告 mlflow.log_text("\n".join(self.__data_report()), self.module + "data_report.txt") # 获取每个股票的时间个数 mlflow.log_dict(self.data.groupby('ts_code')['trade_date'].count().to_dict(), self.module + "data_count.txt") # 每个数据的缺失日期情况 mlflow.log_text(self.__row_nan_trade_date(), self.module + "data_trade_nan.txt") def save(self, path=None, name=None): """ 保存数据集 :param name: :param path: :return: """ file_path = self.module_path if path is None else path file_name = self.file_name if name is None else name self.data.to_csv(file_path + file_name, index=False, encoding='utf-8', ) def __data_report(self): """ 数据报告 常规基础数据 :return: """ data = [] # stringbuffer的数据报告 data.append("开始日期:%s" % self.start) data.append("结束日期:%s" % self.end) data.append("数据总量:%s" % len(self.data)) data.append("数据列数:%s" % len(self.data.columns)) data.append("数据列名:%s" % self.data.columns.tolist()) data.append("数据集缺失值:%s" % self.data.isnull().sum()) return data def __row_nan_trade_date(self): text = '' symbols = self.data["ts_code"].unique() trades = self.data["trade_date"].unique() for symbol in symbols: trade_list = pd.DataFrame(trades) trade_list.columns = ['trade_date'] trade_data = pd.merge(trade_list, self.data[self.data['ts_code'] == symbol], on='trade_date', how='left') trade_data = trade_data[trade_data['ts_code'].isnull()] if len(trade_data) != 0: text = text + symbol + ',' text = text + ",".join(trade_data['trade_date'].astype('str').tolist()) + '\n' return text # 特征工程 class feature_data_loader: """ 数据特征工程 1.添加特征 2.观察数据集 3.保存数据集 """ def __init__(self, base_data=None, path="../data/", module="data/"): self.data = base_data self.features_list = [] self.result = pd.DataFrame() self.path = path self.module = module self.module_path = path + module def add_feature(self, feature): """ 添加特征 :param feature: :return: """ for func in feature: self.features_list.append(func) # 添加特征后,重新初始化数据集 def obverse(self): """ 观察数据集 :return: """ pass def create_execute(self, path=None): """ 执行特征工程 :return: """ file_path = self.module_path if path is None else path path_kit.create_dir(file_path + "/feature") symbol_list = self.data['ts_code'].unique() columns = self.data.columns for index, symbol in enumerate(symbol_list): print("数据进度百分比:%s" % (index / len(symbol_list) * 100)) symbol_data = pd.DataFrame(self.data[self.data['ts_code'] == symbol]) symbol_data.reset_index(drop=True, inplace=True) for func in self.features_list: func(symbol_data) # 将symbol_data 按照旧列和新列分成2个数据集 symbol_data_left = symbol_data[columns] symbol_data_right = symbol_data[symbol_data.columns[~symbol_data.columns.isin(symbol_data_left.columns)]] symbol_data_right.applymap(lambda x: round(float(x), 2) if isinstance(x, (int, float)) else x) # 将新列数据集和旧列数据集合并 data = pd.merge(symbol_data_left, symbol_data_right, left_index=True, right_index=True) # 如果行数据里有空值 则删除整行 data.dropna(axis=0, how='any', inplace=True) data.to_csv(file_path + "/feature/" + symbol + ".csv", index=False, encoding='utf-8') return self.result def to_execute(self, data, indicator): """ 执行特征工程 :return: """ symbol_list = data['ts_code'].unique() columns = data.columns for index, symbol in enumerate(symbol_list): print("数据进度百分比:%s" % (index / len(symbol_list) * 100)) symbol_data = pd.DataFrame(data[data['ts_code'] == symbol]) symbol_data.reset_index(drop=True, inplace=True) for func in indicator: func(symbol_data) # 将symbol_data 按照旧列和新列分成2个数据集 symbol_data_left = symbol_data[columns] symbol_data_right = symbol_data[symbol_data.columns[~symbol_data.columns.isin(symbol_data_left.columns)]] symbol_data_right.applymap(lambda x: round(float(x), 2) if isinstance(x, (int, float)) else x) # 将新列数据集和旧列数据集合并 data1 = pd.merge(symbol_data_left, symbol_data_right, left_index=True, right_index=True) return data1 # 训练测试工程 class trains_data_loader: def __init__(self, path="../data/", module="data/"): self.feature_dir = None self.path = path self.module = module self.module_path = path + module self.train_X = pd.DataFrame() self.train_y = pd.DataFrame() self.test_X = pd.DataFrame() self.test_y = pd.DataFrame() self.drop_column = [] def load_feature_dir(self, feature_dir): self.feature_dir = feature_dir def drop_columns(self, columns): """ 删除指定列 :param columns: :return: """ for column in columns: self.drop_column.append(column) def split_by_time(self, trains_start, trains_end, test_start, test_end): """ :param test_end: :param test_start: :param trains_end: :param trains_start: :param trans: :param start: :param end: :return: """ self.train_X = pd.DataFrame() self.train_y = pd.DataFrame() self.test_X = pd.DataFrame() self.test_y = pd.DataFrame() file_list = os.listdir(self.module_path + self.feature_dir) for index, file in enumerate(file_list): print(f"读取进度:{(index / len(file_list)) * 100}") data = pd.read_csv(self.module_path + self.feature_dir + file, encoding='utf-8') if len(data) == 0: continue trains_x = data[(data['trade_date'] > trains_start) & (data['trade_date'] < trains_end)] if len(trains_x) == 0: continue trains_y = trains_x['flag'] trains_x = trains_x.drop(self.drop_column, axis=1) self.train_X = pd.concat([self.train_X, trains_x]) self.train_y = pd.concat([self.train_y, trains_y]) test_X = data[(data['trade_date'] > test_start) & (data['trade_date'] < test_end)] if len(test_X) == 0: continue test_y = test_X['flag'] test_X = test_X.drop(self.drop_column, axis=1) self.test_X = pd.concat([self.test_X, test_X]) self.test_y = pd.concat([self.test_y, test_y]) def obverse(self, mlflow): pass # mlflow.log_metric("train_label_1", len(self.train_X[self.train_X['flag'] == 1]) / len(self.train_X) * 100) # mlflow.log_metric("train_label_0", len(self.train_X[self.train_X['flag'] == 1]) / len(self.train_X) * 100) # mlflow.log_metric("train_label_-1", len(self.train_X[self.train_X['flag'] == 1]) / len(self.train_X) * 100) def save(self, path=None): """ 保存数据集 :param path: :return: """ file_path = self.module_path if path is None else path self.train_X.to_pickle(file_path + 'train_X.pkl') self.train_y.to_pickle(file_path + 'train_y.pkl') self.test_X.to_pickle(file_path + 'test_X.pkl') self.test_y.to_pickle(file_path + 'test_y.pkl') class backtrader_data_loader: def __init__(self, path='../data/', module='data/', csv_data='dataset.csv'): self.path = path self.module = module self.data_path = self.path + self.module self.csv_data = csv_data self.data = pd.DataFrame() def get_data(self, start, end): """ 复权前的数据+ 复权后的指标 :param start: :param end: :return: """ data = pd.read_csv(self.path + self.csv_data) self.data = data[(data['trade_date'] > start) & (data['trade_date'] < end)] self.data['open'] = round(self.data['open'] / self.data['adj_factor'], 2) self.data['high'] = round(self.data['high'] / self.data['adj_factor'], 2) self.data['low'] = round(self.data['low'] / self.data['adj_factor'], 2) self.data['close'] = round(self.data['close'] / self.data['adj_factor'], 2) self.data['amount'] = round(self.data['amount'] / self.data['adj_factor'], 2) self.data.drop(['pre_close', 'change', 'pct_chg', 'flag'], axis=1, inplace=True) self.data['trade_date'] = self.data['trade_date'].apply(lambda x: pd.to_datetime(x, format='%Y%m%d')) self.data = self.data.rename(columns={'trade_date': 'datetime', 'vol': 'volume' }) return self.data def save(self, module, name): path = self.path + module if not os.path.exists(path): os.mkdir(path) self.data.to_csv(path + name, index=False, encoding='utf-8')
zwkit
/zwkit-0.4.34-py3-none-any.whl/data/dataset.py
dataset.py
import backtrader as bt import joblib import pandas as pd import os from kit import date_kit import datetime as dt import zw_backtrader.trade.trade_detail as td class base_strategy(bt.Strategy): """ 策略基类 同时只能持有一只股票 卖了以后有10天冷静期 """ params = ( ('model_path', ""), # 模型路径 ('log_path', '../data/backtrader/'), # 日志路径 ('log_name', f'logs_{date_kit.now()}.log'), # 日志名称 ('cold_date', 10) # 冷静期 ) def __init__(self): # 买卖列表 self.position_list = dict() # 拦截列表 self.filter_dict = dict() # 日志集合 self.log_text = [] def log(self, txt, dt=None): """ Logging function fot this strategy :param txt: :param dt: :return: """ dt = dt or self.datas[0].datetime.date(0) self.log_text.append(f'{dt.isoformat()}: {txt}') print(f'{dt.isoformat()}: {txt}') def start(self): """ 策略启动时执行 :return: """ self.model = joblib.load(self.params.model_path) # def prenext(self): # '''策略准备阶段,对应第1根bar ~ 第 min_period-1 根bar''' # # 该函数主要用于等待指标计算,指标计算完成前都会默认调用prenext()空函数 # # min_period 就是 __init__ 中计算完成所有指标的第1个值所需的最小时间段 # print('prenext函数') # # def nextstart(self): # '''策略正常运行的第一个时点,对应第 min_period 根bar''' # # 只有在 __init__ 中所有指标都有值可用的情况下,才会开始运行策略 # # nextstart()只运行一次,主要用于告知后面可以开始启动 next() 了 # # nextstart()的默认实现是简单地调用next(),所以next中的策略逻辑从第 min_period根bar就已经开始执行 # print('nextstart函数') def next(self): # 获取每只股票的信息 # 并放入模型验证 for index in range(len(self.datas)): self._next_execute(index) def _next_execute(self, index): symbol = self.datas[index]._name date = self.datas[index].datetime.date(0) self._sell_excute(date, index) if self._predict_excute(index) == 1: if self._filter_execute(symbol, date): self._buy_excute(symbol, index) else: pass # self.log(f'近期购买,过滤{symbol}') else: pass # self.log(f'预测不买入{symbol}') def _filter_execute(self, symbol, date): # 过滤持仓 if self.position_list.get(symbol) is not None: # 有持仓 不买入 return False else: # 过滤冷静期 filter_date = self.filter_dict.get(symbol) if filter_date is not None: if date < filter_date: # 日期小于冷静期 不买入 return False else: # 日期大于冷静期 买入 # 删除冷静期 self.filter_dict.pop(symbol) return True return True def _sell_excute(self, date, index): for k, v in self.position_list.items(): if date > v.sell_date: self.sell(data=self.datas[index], size=100, exectype=bt.Order.Market, price=self.datas[index].lines.close[0]) def _predict_excute(self, index): data = self._get_data(datas=self.datas[index], index=index) return self.model.predict(data) def _buy_excute(self, symbol, index): adj_factor = self.datas[index].lines.adj_factor[1] # open = round(self.datas[index].lines.open[1] / adj_factor, 2) # close = round(self.datas[index].lines.close[0] / adj_factor, 2) # high = round(self.datas[index].lines.high[0] / adj_factor, 2) # low = round(self.datas[index].lines.low[0] / adj_factor, 2) self.buy(data=self.datas[index], size=100) def _get_data(self, datas, index): # 这个index非常必要熬 data = pd.DataFrame() for v, k in enumerate(datas._colmapping): if self.data.data_schema is not None: if k not in self.data.data_schema: continue exec(f"data.loc[0,'{k}'] = self.datas[index].lines.{k}[0]") return data def stop(self): """ 策略结束时执行 将日志进行保存 :return: """ if os.path.exists(self.params.log_path) is False: os.mkdir(self.params.log_path) with open(self.params.log_path + self.params.log_name, mode='w') as f: f.write('\n'.join(self.log_text)) def notify_order(self, order): """ 订单状态变化时执行 :param order: :return: """ # 判断订单的状态 if order.status in [order.Submitted, order.Accepted]: return # 判断订单是否完成 if order.status in [order.Completed]: if order.isbuy(): self.log(f'买入{order.data._name},价格:{order.executed.price},成本:{order.executed.value},手续费:{order.executed.comm}') self.position_list.update({order.data._name: td.trade_detail(order.data.datetime.date(0), order.data._name, trade_id=order.ref, sell_date=order.data.datetime.date(3))}) else: self.log(f'卖出{order.data._name},价格:{order.executed.price},成本:{order.executed.value},手续费:{order.executed.comm}') self.position_list.pop(order.data._name) self.filter_dict[order.data._name] = order.data.datetime.date(0) + dt.timedelta(days=self.params.cold_date) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log(f'订单失败: {order.data._name} 状态: {order.getstatusname()}') def notify_trade(self, trade): """ 交易状态变化时执行 :param trade: :return: """ if not trade.isclosed: return self.log(f'利润,毛利:{trade.pnl},净利:{trade.pnlcomm}') # def notify_cashvalue(self, cash, value): # """ # 资金变化时执行 # :param cash: # :param value: # :return: # """ # self.log(f'资金:{cash},市值:{value}') # def notify_fund(self, cash, value, fundvalue, shares): # """ # 资金变化时执行 # :param cash: # :param value: # :param fundvalue: # :param shares: # :return: # """ # self.log(f'资金:{cash},市值:{value},净值:{fundvalue},持仓:{shares}') # class test_strategy(bt.Strategy): # """ # 策略基类 # """ # # def __init__(self): # # 买卖列表 # self.buying_list = [] # self.selling_list = [] # # def next(self): # for index in range(len(self.datas)): # data = self._get_data(datas=self.datas[index], index=index) # print(data) # # # 进行预测 # # def _get_data(self, datas, index): # data = pd.DataFrame() # for v, k in enumerate(datas._colmapping): # if k is None: # continue # exec(f"data.loc[0,'{k}'] = self.datas[index].lines.{k}[0]") # return data
zwkit
/zwkit-0.4.34-py3-none-any.whl/zw_backtrader/strategy/strategy.py
strategy.py
import os import platform import sys import struct # Because ctypes is new from Python 2.5, so pytransform doesn't work # before Python 2.5 # from ctypes import cdll, c_char, c_char_p, c_int, c_void_p, \ pythonapi, py_object, PYFUNCTYPE, CFUNCTYPE from fnmatch import fnmatch # # Support Platforms # plat_path = 'platforms' plat_table = ( ('windows', ('windows', 'cygwin-*')), ('darwin', ('darwin',)), ('ios', ('ios',)), ('linux', ('linux*',)), ('freebsd', ('freebsd*', 'openbsd*', 'isilon onefs')), ('poky', ('poky',)), ) arch_table = ( ('x86', ('i?86', )), ('x86_64', ('x64', 'x86_64', 'amd64', 'intel')), ('arm', ('armv5',)), ('armv6', ('armv6l',)), ('armv7', ('armv7l',)), ('ppc64', ('ppc64le',)), ('mips32', ('mips',)), ('aarch32', ('aarch32',)), ('aarch64', ('aarch64', 'arm64')) ) # # Hardware type # HT_HARDDISK, HT_IFMAC, HT_IPV4, HT_IPV6, HT_DOMAIN = range(5) # # Global # _pytransform = None class PytransformError(Exception): pass def dllmethod(func): def wrap(*args, **kwargs): return func(*args, **kwargs) return wrap @dllmethod def version_info(): prototype = PYFUNCTYPE(py_object) dlfunc = prototype(('version_info', _pytransform)) return dlfunc() @dllmethod def init_pytransform(): major, minor = sys.version_info[0:2] # Python2.5 no sys.maxsize but sys.maxint # bitness = 64 if sys.maxsize > 2**32 else 32 prototype = PYFUNCTYPE(c_int, c_int, c_int, c_void_p) init_module = prototype(('init_module', _pytransform)) ret = init_module(major, minor, pythonapi._handle) if (ret & 0xF000) == 0x1000: raise PytransformError('Initialize python wrapper failed (%d)' % (ret & 0xFFF)) return ret @dllmethod def init_runtime(): prototype = PYFUNCTYPE(c_int, c_int, c_int, c_int, c_int) _init_runtime = prototype(('init_runtime', _pytransform)) return _init_runtime(0, 0, 0, 0) @dllmethod def encrypt_code_object(pubkey, co, flags, suffix=''): _pytransform.set_option(6, suffix.encode()) prototype = PYFUNCTYPE(py_object, py_object, py_object, c_int) dlfunc = prototype(('encrypt_code_object', _pytransform)) return dlfunc(pubkey, co, flags) @dllmethod def generate_license_file(filename, priname, rcode, start=-1, count=1): prototype = PYFUNCTYPE(c_int, c_char_p, c_char_p, c_char_p, c_int, c_int) dlfunc = prototype(('generate_project_license_files', _pytransform)) return dlfunc(filename.encode(), priname.encode(), rcode.encode(), start, count) if sys.version_info[0] == 3 \ else dlfunc(filename, priname, rcode, start, count) @dllmethod def generate_license_key(prikey, keysize, rcode): prototype = PYFUNCTYPE(py_object, c_char_p, c_int, c_char_p) dlfunc = prototype(('generate_license_key', _pytransform)) return dlfunc(prikey, keysize, rcode) if sys.version_info[0] == 2 \ else dlfunc(prikey, keysize, rcode.encode()) @dllmethod def get_registration_code(): prototype = PYFUNCTYPE(py_object) dlfunc = prototype(('get_registration_code', _pytransform)) return dlfunc() @dllmethod def get_expired_days(): prototype = PYFUNCTYPE(py_object) dlfunc = prototype(('get_expired_days', _pytransform)) return dlfunc() @dllmethod def clean_obj(obj, kind): prototype = PYFUNCTYPE(c_int, py_object, c_int) dlfunc = prototype(('clean_obj', _pytransform)) return dlfunc(obj, kind) def clean_str(*args): tdict = { 'str': 0, 'bytearray': 1, 'unicode': 2 } for obj in args: k = tdict.get(type(obj).__name__) if k is None: raise RuntimeError('Can not clean object: %s' % obj) clean_obj(obj, k) def get_hd_info(hdtype, name=None): if hdtype not in range(HT_DOMAIN + 1): raise RuntimeError('Invalid parameter hdtype: %s' % hdtype) size = 256 t_buf = c_char * size buf = t_buf() cname = c_char_p(0 if name is None else name.encode('utf-8') if hasattr('name', 'encode') else name) if (_pytransform.get_hd_info(hdtype, buf, size, cname) == -1): raise PytransformError('Get hardware information failed') return buf.value.decode() def show_hd_info(): return _pytransform.show_hd_info() def assert_armored(*names): prototype = PYFUNCTYPE(py_object, py_object) dlfunc = prototype(('assert_armored', _pytransform)) def wrapper(func): def wrap_execute(*args, **kwargs): dlfunc(names) return func(*args, **kwargs) return wrap_execute return wrapper def check_armored(*names): try: prototype = PYFUNCTYPE(py_object, py_object) prototype(('assert_armored', _pytransform))(names) return True except RuntimeError: return False def get_license_info(): info = { 'ISSUER': None, 'EXPIRED': None, 'HARDDISK': None, 'IFMAC': None, 'IFIPV4': None, 'DOMAIN': None, 'DATA': None, 'CODE': None, } rcode = get_registration_code().decode() if rcode.startswith('*VERSION:'): index = rcode.find('\n') info['ISSUER'] = rcode[9:index].split('.')[0].replace('-sn-1.txt', '') rcode = rcode[index+1:] index = 0 if rcode.startswith('*TIME:'): from time import ctime index = rcode.find('\n') info['EXPIRED'] = ctime(float(rcode[6:index])) index += 1 if rcode[index:].startswith('*FLAGS:'): index += len('*FLAGS:') + 1 info['FLAGS'] = ord(rcode[index - 1]) prev = None start = index for k in ['HARDDISK', 'IFMAC', 'IFIPV4', 'DOMAIN', 'FIXKEY', 'CODE']: index = rcode.find('*%s:' % k) if index > -1: if prev is not None: info[prev] = rcode[start:index] prev = k start = index + len(k) + 2 info['CODE'] = rcode[start:] i = info['CODE'].find(';') if i > 0: info['DATA'] = info['CODE'][i+1:] info['CODE'] = info['CODE'][:i] return info def get_license_code(): return get_license_info()['CODE'] def get_user_data(): return get_license_info()['DATA'] def _match_features(patterns, s): for pat in patterns: if fnmatch(s, pat): return True def _gnu_get_libc_version(): try: prototype = CFUNCTYPE(c_char_p) ver = prototype(('gnu_get_libc_version', cdll.LoadLibrary('')))() return ver.decode().split('.') except Exception: pass def format_platform(platid=None): if platid: return os.path.normpath(platid) plat = platform.system().lower() mach = platform.machine().lower() for alias, platlist in plat_table: if _match_features(platlist, plat): plat = alias break if plat == 'linux': cname, cver = platform.libc_ver() if cname == 'musl': plat = 'musl' elif cname == 'libc': plat = 'android' elif cname == 'glibc': v = _gnu_get_libc_version() if v and len(v) >= 2 and (int(v[0]) * 100 + int(v[1])) < 214: plat = 'centos6' for alias, archlist in arch_table: if _match_features(archlist, mach): mach = alias break if plat == 'windows' and mach == 'x86_64': bitness = struct.calcsize('P'.encode()) * 8 if bitness == 32: mach = 'x86' return os.path.join(plat, mach) # Load _pytransform library def _load_library(path=None, is_runtime=0, platid=None, suffix='', advanced=0): path = os.path.dirname(__file__) if path is None \ else os.path.normpath(path) plat = platform.system().lower() for alias, platlist in plat_table: if _match_features(platlist, plat): plat = alias break name = '_pytransform' + suffix if plat == 'linux': filename = os.path.abspath(os.path.join(path, name + '.so')) elif plat in ('darwin', 'ios'): filename = os.path.join(path, name + '.dylib') elif plat == 'windows': filename = os.path.join(path, name + '.dll') elif plat in ('freebsd', 'poky'): filename = os.path.join(path, name + '.so') else: filename = None if platid is not None and os.path.isfile(platid): filename = platid elif platid is not None or not os.path.exists(filename) or not is_runtime: libpath = platid if platid is not None and os.path.isabs(platid) else \ os.path.join(path, plat_path, format_platform(platid)) filename = os.path.join(libpath, os.path.basename(filename)) if filename is None: raise PytransformError('Platform %s not supported' % plat) if not os.path.exists(filename): raise PytransformError('Could not find "%s"' % filename) try: m = cdll.LoadLibrary(filename) except Exception as e: if sys.flags.debug: print('Load %s failed:\n%s' % (filename, e)) raise # Removed from v4.6.1 # if plat == 'linux': # m.set_option(-1, find_library('c').encode()) if not os.path.abspath('.') == os.path.abspath(path): m.set_option(1, path.encode() if sys.version_info[0] == 3 else path) # Required from Python3.6 m.set_option(2, sys.byteorder.encode()) if sys.flags.debug: m.set_option(3, c_char_p(1)) m.set_option(4, c_char_p(not is_runtime)) # Disable advanced mode by default m.set_option(5, c_char_p(not advanced)) # Set suffix for private package if suffix: m.set_option(6, suffix.encode()) return m def pyarmor_init(path=None, is_runtime=0, platid=None, suffix='', advanced=0): global _pytransform _pytransform = _load_library(path, is_runtime, platid, suffix, advanced) return init_pytransform() def pyarmor_runtime(path=None, suffix='', advanced=0): if _pytransform is not None: return try: pyarmor_init(path, is_runtime=1, suffix=suffix, advanced=advanced) init_runtime() except Exception as e: if sys.flags.debug or hasattr(sys, '_catch_pyarmor'): raise sys.stderr.write("%s\n" % str(e)) sys.exit(1) # ---------------------------------------------------------- # End of pytransform # ---------------------------------------------------------- # # Not available from v5.6 # def generate_capsule(licfile): prikey, pubkey, prolic = _generate_project_capsule() capkey, newkey = _generate_pytransform_key(licfile, pubkey) return prikey, pubkey, capkey, newkey, prolic @dllmethod def _generate_project_capsule(): prototype = PYFUNCTYPE(py_object) dlfunc = prototype(('generate_project_capsule', _pytransform)) return dlfunc() @dllmethod def _generate_pytransform_key(licfile, pubkey): prototype = PYFUNCTYPE(py_object, c_char_p, py_object) dlfunc = prototype(('generate_pytransform_key', _pytransform)) return dlfunc(licfile.encode() if sys.version_info[0] == 3 else licfile, pubkey) # # Deprecated functions from v5.1 # @dllmethod def encrypt_project_files(proname, filelist, mode=0): prototype = PYFUNCTYPE(c_int, c_char_p, py_object, c_int) dlfunc = prototype(('encrypt_project_files', _pytransform)) return dlfunc(proname.encode(), filelist, mode) def generate_project_capsule(licfile): prikey, pubkey, prolic = _generate_project_capsule() capkey = _encode_capsule_key_file(licfile) return prikey, pubkey, capkey, prolic @dllmethod def _encode_capsule_key_file(licfile): prototype = PYFUNCTYPE(py_object, c_char_p, c_char_p) dlfunc = prototype(('encode_capsule_key_file', _pytransform)) return dlfunc(licfile.encode(), None) @dllmethod def encrypt_files(key, filelist, mode=0): t_key = c_char * 32 prototype = PYFUNCTYPE(c_int, t_key, py_object, c_int) dlfunc = prototype(('encrypt_files', _pytransform)) return dlfunc(t_key(*key), filelist, mode) @dllmethod def generate_module_key(pubname, key): t_key = c_char * 32 prototype = PYFUNCTYPE(py_object, c_char_p, t_key, c_char_p) dlfunc = prototype(('generate_module_key', _pytransform)) return dlfunc(pubname.encode(), t_key(*key), None) # # Compatible for PyArmor v3.0 # @dllmethod def old_init_runtime(systrace=0, sysprofile=1, threadtrace=0, threadprofile=1): '''Only for old version, before PyArmor 3''' pyarmor_init(is_runtime=1) prototype = PYFUNCTYPE(c_int, c_int, c_int, c_int, c_int) _init_runtime = prototype(('init_runtime', _pytransform)) return _init_runtime(systrace, sysprofile, threadtrace, threadprofile) @dllmethod def import_module(modname, filename): '''Only for old version, before PyArmor 3''' prototype = PYFUNCTYPE(py_object, c_char_p, c_char_p) _import_module = prototype(('import_module', _pytransform)) return _import_module(modname.encode(), filename.encode()) @dllmethod def exec_file(filename): '''Only for old version, before PyArmor 3''' prototype = PYFUNCTYPE(c_int, c_char_p) _exec_file = prototype(('exec_file', _pytransform)) return _exec_file(filename.encode())
zwlib
/zwlib-1.2.0.tar.gz/zwlib-1.2.0/pytransform/__init__.py
__init__.py
from __future__ import annotations import datetime as dt import typing as t from collections import deque from dataclasses import dataclass from enum import Enum, StrEnum, auto from textwrap import dedent from parsimonious.grammar import Grammar from parsimonious.nodes import Node, NodeVisitor RAW_GRAMMAR = r""" workout = ((comment / block) elws*)+ / elws block = tag ws "{" ((comment / params) / elws)+ "}" params = (message / value) ","? value = tag ws (string / range / rangeval) message = "@" ws duration ws string range = rangeval ws "->" ws rangeval rangeval = duration / numeric / zone duration = number ":" number percent = number "%" zone = ("Z" number) / "SS" numeric = percent / number elws = ws / emptyline comment = ~r"\;[^\r\n]*" tag = ~"[A-Z_]+" string = ~'"[^\"]+"' number = ~"\d+" ws = ~"\s*" emptyline = ws+ """ GRAMMAR = Grammar(RAW_GRAMMAR) class Tag(StrEnum): AUTHOR = auto() CADENCE = auto() COOLDOWN = auto() DESCRIPTION = auto() DURATION = auto() FREE = auto() FTP = auto() INTERVALS = auto() META = auto() NAME = auto() POWER = auto() RAMP = auto() REPEAT = auto() SEGMENT = auto() TAGS = auto() WARMUP = auto() MESSAGES = auto() # Included for tidier housekeeping, not a valid keyword in the ZWO file # Repeat segment metasyntax START_REPEAT = auto() END_REPEAT = auto() @dataclass(frozen=True, slots=True) class Percentage: value: int def __str__(self) -> str: return f"{self.value / 100:0.3f}" @classmethod def from_node(cls, node: Node) -> Percentage: return cls(value=int(node.text.rstrip("%"))) class PowerZone(Enum): Z1 = Percentage(value=50) Z2 = Percentage(value=65) Z3 = Percentage(value=81) SS = Percentage(value=90) Z4 = Percentage(value=95) Z5 = Percentage(value=109) Z6 = Percentage(value=125) Z7 = Percentage(value=150) def __str__(self) -> str: return str(self.value) @dataclass(frozen=True, slots=True) class Duration: value: dt.timedelta def __str__(self) -> str: return str(int(self.value.total_seconds())) @classmethod def from_node(cls, node: Node) -> Duration: minutes, seconds = (int(chunk) for chunk in node.text.split(":")) return cls(value=dt.timedelta(minutes=minutes, seconds=seconds)) RANGE_T = Percentage | Duration | PowerZone | int @dataclass(frozen=True, slots=True) class Range: left: RANGE_T right: RANGE_T @classmethod def from_node(cls, visited_children: list[Node]) -> Range: left, *_, right = visited_children # I'm not sure how to best keep the numeric values from nesting, I might be misunderstanding # how the parser is working or have something written poorly in the grammar but for now this # hack functions if isinstance(left, list): left = left[0] if isinstance(right, list): right = right[0] return cls(left=left, right=right) @dataclass(frozen=True, slots=True) class Message: timestamp: Duration message: str @classmethod def from_node(cls, visited_children: list[Node]) -> Message: _, _, timestamp, _, message = visited_children return cls(timestamp=timestamp, message=message) T = t.TypeVar("T") def deep_flatten(in_iter: list, key_type: type[T]) -> t.Generator[T, None, None]: """Accept an arbitrary list of lists and yield objects of the matching data type.""" # Use a deque as an iterator stack to keep track of any nested iterables iterators = deque((iter(in_iter),)) # Iterate over the elements of each iterable & add them to the stack if they're also a list, # otherwise yield only dicts & then pop the iterable once exhausted while iterators: for item in iterators[-1]: if isinstance(item, list): iterators.append(iter(item)) break elif isinstance(item, key_type): yield item else: iterators.pop() VAL_T = int | str | Percentage | Duration | Range | list[Message] | None PARAM_T = dict[Tag, VAL_T] BLOCK_T = dict[Tag, PARAM_T] class ZWOVisitor(NodeVisitor): grammar = GRAMMAR # Indices of visited_children are determined by the grammar specification def visit_workout(self, node: Node, visited_children: list[Node]) -> list[BLOCK_T]: # Catch an empty document if not node.text.strip(): return [] blocks = [] for chunk in visited_children[0]: # The grammar here matches comments or blocks, if there are no dictionaries then we # have a comment, which we just discard if block := list(deep_flatten(chunk, key_type=dict)): blocks.append(block[0]) return blocks def visit_block(self, node: Node, visited_children: list[Node]) -> BLOCK_T: tag = visited_children[0] params = list(deep_flatten(visited_children[-2], key_type=dict)) block_messages = list(deep_flatten(visited_children[-2], key_type=Message)) block_params: BLOCK_T = {tag: {key: val for param in params for key, val in param.items()}} block_params[Tag.MESSAGES] = block_messages if block_messages else None # type: ignore[assignment] # noqa: E501 return block_params def visit_value(self, node: Node, visited_children: list[Node]) -> PARAM_T: tag, _, value = visited_children # I'm not sure how to best keep the numeric values from nesting, I might be misunderstanding # how the parser is working or have something written poorly in the grammar but for now this # hack functions val = value[0] if isinstance(val, list): val = val[0] return {tag: val} def visit_string(self, node: Node, visited_children: list[Node]) -> str: return dedent(node.text.strip('"')) def visit_range(self, node: Node, visited_children: list[Node]) -> Range: return Range.from_node(visited_children) def visit_duration(self, node: Node, visited_children: list[Node]) -> Duration: return Duration.from_node(node) def visit_tag(self, node: Node, visited_children: list[Node]) -> Tag: return Tag[node.text] def visit_message(self, node: Node, visited_children: list[Node]) -> Message: return Message.from_node(visited_children) def visit_numeric(self, node: Node, visited_children: list[Node]) -> int | Percentage: return visited_children[0] # type: ignore[no-any-return] def visit_number(self, node: Node, visited_children: list[Node]) -> int: return int(node.text) def visit_percent(self, node: Node, visited_children: list[Node]) -> Percentage: return Percentage.from_node(node) def visit_zone(self, node: Node, visited_children: list[Node]) -> PowerZone: return PowerZone[node.text] def generic_visit(self, node: Node, visited_children: list[Node]) -> list[Node] | Node: return visited_children or node def parse_src(src: str) -> list[BLOCK_T]: """Parse the provided source into a list of raw workout blocks.""" tree = ZWOVisitor.grammar.parse(src) visitor = ZWOVisitor() parsed: list[BLOCK_T] = visitor.visit(tree) return parsed
zwolang
/zwolang-0.3.0-py3-none-any.whl/zwo/parser.py
parser.py
from collections import abc from zwo.parser import BLOCK_T, PARAM_T, Range, Tag, VAL_T class ZWOMValidationError(BaseException): # noqa: D101 ... def _check_keys(required: set[Tag], check_tags: abc.KeysView[Tag], block_tag: Tag) -> bool: missing = required - check_tags if missing: pretty_tags = ", ".join(tag.upper() for tag in missing) raise ZWOMValidationError(f"{block_tag.upper()} block missing required keys: {pretty_tags}") return True class ZWOMValidator: raw_blocks: list[BLOCK_T] validated_blocks: list[BLOCK_T] _ftp: int | None _in_repeat: bool _n_repeats: int __slots__ = ("raw_blocks", "validated_blocks", "_ftp", "_in_repeat", "_n_repeats") def __init__(self, raw_blocks: list[BLOCK_T]) -> None: self.raw_blocks = raw_blocks self._ftp = None self.validated_blocks = self.validate_scanned() def validate_scanned(self) -> list[BLOCK_T]: if Tag.META not in self.raw_blocks[0]: raise ZWOMValidationError("ZWOM file must begin with a META block") self.visit_meta_block(self.raw_blocks[0][Tag.META], Tag.META) # To account for expansion of any chunk repeats we need to build a new list # Initialize it with the META block since we skip it in the rest of the validation validated_blocks: list[BLOCK_T] = [self.raw_blocks[0]] repeat_blocks = [] self._in_repeat = False for block in self.raw_blocks[1:]: # Blocks only have one key, so we can dispatch validators using the first key block_tag = next(iter(block)) params = block[block_tag] match block_tag: case Tag.FREE | Tag.SEGMENT: self.visit_segment_block(params, block_tag) case Tag.RAMP | Tag.WARMUP | Tag.COOLDOWN: self.visit_ramp_block(params, block_tag) case Tag.INTERVALS: self.visit_interval_block(params, block_tag) case Tag.START_REPEAT: self.visit_start_repeat_block(params, block_tag) case Tag.END_REPEAT: self.visit_end_repeat_block(params, block_tag) case _: raise ZWOMValidationError(f"Unknown workout tag: '{block_tag}'") # Dispatch any additional generic parameter validation within the block for param, val in params.items(): match param: case Tag.POWER: self.visit_power(val) case Tag.CADENCE: self.visit_cadence(val, block_tag) case _: continue if self._in_repeat: # Don't include the repeat metablocks in the final output if block_tag != Tag.START_REPEAT: repeat_blocks.append(block) else: # Check to see if we've just hit the END_REPEAT tag & dump the blocks accordingly if repeat_blocks: validated_blocks.extend(repeat_blocks * self._n_repeats) repeat_blocks.clear() self._n_repeats = -1 else: # Don't include the repeat metablocks in the final output if block_tag != Tag.END_REPEAT: validated_blocks.append(block) # Make sure the chunk repeat block was closed if self._in_repeat: raise ZWOMValidationError("START_REPEAT is missing a matching END_REPEAT.") return validated_blocks def visit_meta_block(self, params: PARAM_T, block_tag: Tag) -> None: required_tags = {Tag.NAME, Tag.AUTHOR, Tag.DESCRIPTION} _check_keys(required_tags, params.keys(), block_tag) ftp = params.get(Tag.FTP) if ftp is not None: if isinstance(ftp, int): if ftp == 0: # The parser already won't accept negative numbers raise ZWOMValidationError(f"FTP must be > 0, received: {ftp}") self._ftp = ftp else: raise ZWOMValidationError( f"FTP must be a positive integer, received: '{type(ftp).__name__}'" ) def visit_segment_block(self, params: PARAM_T, block_tag: Tag) -> None: required_tags = {Tag.DURATION} if block_tag == Tag.SEGMENT: required_tags = required_tags | {Tag.POWER} _check_keys(required_tags, params.keys(), block_tag) def visit_ramp_block(self, params: PARAM_T, block_tag: Tag) -> None: required_tags = {Tag.DURATION, Tag.POWER} _check_keys(required_tags, params.keys(), block_tag) def visit_interval_block(self, params: PARAM_T, block_tag: Tag) -> None: required_tags = {Tag.REPEAT, Tag.DURATION, Tag.POWER} _check_keys(required_tags, params.keys(), block_tag) def visit_start_repeat_block(self, params: PARAM_T, block_tag: Tag) -> None: if self._in_repeat: raise ZWOMValidationError("Nested block chunk repetition is not supported.") required_tags = {Tag.REPEAT} _check_keys(required_tags, params.keys(), block_tag) n_repeats = params[Tag.REPEAT] # If we're here we know the key is there if not isinstance(n_repeats, int): raise ZWOMValidationError("START_REPEAT must have an integer REPEAT value.") if n_repeats == 0: raise ZWOMValidationError("REPEAT must be > 0.") self._in_repeat = True self._n_repeats = n_repeats def visit_end_repeat_block(self, params: PARAM_T, block_tag: Tag) -> None: if not self._in_repeat: raise ZWOMValidationError("Missing opening START_REPEAT block.") self._in_repeat = False def visit_power(self, power_spec: VAL_T) -> None: # Validate that an FTP is set in order to use absolute watts if isinstance(power_spec, int): if power_spec == 0: # The parser already won't accept negative numbers raise ZWOMValidationError(f"Power must be > 0, received: {power_spec}") if not self._ftp: raise ZWOMValidationError( "An FTP must be specified in the META block to use absolute watts." ) elif isinstance(power_spec, Range): if not self._ftp: if isinstance(power_spec.left, int) or isinstance(power_spec.right, int): raise ZWOMValidationError( "An FTP must be specified in the META block to use absolute watts." ) def visit_cadence(self, cadence_spec: VAL_T, block_tag: Tag) -> None: # Cadence range is only valid for use in an interval block if isinstance(cadence_spec, Range) and block_tag != Tag.INTERVALS: raise ZWOMValidationError("Cadence ranges are only valid for Interval blocks.") if block_tag == Tag.INTERVALS and not isinstance(cadence_spec, Range): raise ZWOMValidationError("Cadence spec for Interval blocks must be a range.")
zwolang
/zwolang-0.3.0-py3-none-any.whl/zwo/interpreter.py
interpreter.py
from dataclasses import dataclass from io import StringIO from pathlib import Path from xml.dom import minidom from zwo.interpreter import ZWOMValidator from zwo.parser import ( BLOCK_T, Duration, Message, PARAM_T, Percentage, PowerZone, Range, Tag, parse_src, ) STATIC_META_PARAMS = {"sportType": "bike"} BLOCK_MAPPING = { Tag.COOLDOWN: "Cooldown", Tag.FREE: "FreeRide", Tag.INTERVALS: "IntervalsT", Tag.RAMP: "Ramp", Tag.SEGMENT: "SteadyState", Tag.WARMUP: "WarmUp", } @dataclass(slots=True) class Workout: blocks: list[BLOCK_T] ftp: int | None = None def to_zwo(self, out_filepath: Path) -> None: doc = minidom.Document() root = doc.createElement("workout_file") doc.appendChild(root) # If we're here then we've validate that the meta tag is the first block doc = self.serialize_meta(doc, root, self.blocks[0][Tag.META]) doc = self.serialize_workout_blocks(doc, root, self.blocks[1:]) # Drop encoding line before writing the XML, Zwift doesn't use it buff = StringIO() buff.write(doc.toprettyxml(indent=" " * 4)) buff.seek(0) _ = buff.readline() out_filepath.write_text(buff.read()) def serialize_meta( self, doc: minidom.Document, root: minidom.Element, meta_block: PARAM_T ) -> minidom.Document: for tag, val in meta_block.items(): if tag == Tag.FTP: continue tmp = doc.createElement(tag) if tag == Tag.TAGS: if not isinstance(val, str): raise ValueError("Type narrowing, shouldn't be able to get here") for hashtag in val.split(): sub_tag = doc.createElement("tag") sub_tag.setAttribute("name", hashtag.lstrip("#")) tmp.appendChild(sub_tag) else: if tag == Tag.DESCRIPTION: if not isinstance(val, str): raise ValueError("Type narrowing, shouldn't be able to get here") tmp.appendChild(doc.createTextNode(val)) root.appendChild(tmp) # Add any remaining static parameters that Zwift is expecting for element, val in STATIC_META_PARAMS.items(): tmp = doc.createElement(element) tmp.appendChild(doc.createTextNode(val)) root.appendChild(tmp) return doc def serialize_workout_blocks( self, doc: minidom.Document, root: minidom.Element, blocks: list[BLOCK_T] ) -> minidom.Document: workout = doc.createElement("workout") root.appendChild(workout) n_blocks = len(blocks) for idx, block in enumerate(blocks, start=1): # Blocks only have one key, so we can dispatch serializers using the first key block_tag = next(iter(block)) params = block[block_tag] match block_tag: case Tag.FREE: block_element = self._build_simple_block( doc, BLOCK_MAPPING[block_tag], params, add_flat_road=True ) case Tag.SEGMENT: block_element = self._build_simple_block( doc, BLOCK_MAPPING[block_tag], params, add_power=True, add_pace=True ) case Tag.RAMP | Tag.WARMUP | Tag.COOLDOWN: zwift_key = _classify_ramp_type(idx, n_blocks) block_element = self._build_simple_block(doc, zwift_key, params, add_pace=True) block_element = self.serialize_ramp(block_element, params) case Tag.INTERVALS: block_element = self._build_simple_block( doc, BLOCK_MAPPING[block_tag], params, add_duration=False, add_cadence=False, # Unlike the other blocks, intervals have a range add_pace=True, ) block_element = self.serialize_interval(block_element, params) case _: ... if messages := block.get(Tag.MESSAGES): if not isinstance(messages, list): raise ValueError("Type narrowing, shouldn't be able to get here") block_element = self.serialize_messages(doc, block_element, messages) workout.appendChild(block_element) return doc def _build_simple_block( self, doc: minidom.Document, zwift_key: str, params: PARAM_T, add_duration: bool = True, add_cadence: bool = True, add_power: bool = False, add_flat_road: bool = False, add_pace: bool = False, ) -> minidom.Element: block_element: minidom.Element = doc.createElement(zwift_key) if add_duration: block_element.setAttribute("Duration", str(params[Tag.DURATION])) if add_cadence and (cadence := params.get(Tag.CADENCE)): block_element.setAttribute("Cadence", str(cadence)) if add_power: power = params[Tag.POWER] if not isinstance(power, (int, Percentage, PowerZone)): raise ValueError("Type narrowing, shouldn't be able to get here") block_element.setAttribute("Power", self.serialize_power(power)) if add_flat_road: block_element.setAttribute("FlatRoad", "0") if add_pace: block_element.setAttribute("pace", "0") return block_element def serialize_ramp(self, block_element: minidom.Element, params: PARAM_T) -> minidom.Element: power_range = params[Tag.POWER] if not isinstance(power_range, Range): raise ValueError("Type narrowing, shouldn't be able to get here") if isinstance(power_range.left, Duration) or isinstance(power_range.right, Duration): raise ValueError("Type narrowing, shouldn't be able to get here") block_element.setAttribute("PowerLow", self.serialize_power(power_range.left)) block_element.setAttribute("PowerHigh", self.serialize_power(power_range.right)) return block_element def serialize_interval( self, block_element: minidom.Element, params: PARAM_T ) -> minidom.Element: block_element.setAttribute("Repeat", str(params[Tag.REPEAT])) duration_range = params[Tag.DURATION] if not isinstance(duration_range, Range): raise ValueError("Type narrowing, shouldn't be able to get here") block_element.setAttribute("OnDuration", str(duration_range.left)) block_element.setAttribute("OffDuration", str(duration_range.right)) power_range = params[Tag.POWER] if not isinstance(power_range, Range): raise ValueError("Type narrowing, shouldn't be able to get here") if isinstance(power_range.left, Duration) or isinstance(power_range.right, Duration): raise ValueError("Type narrowing, shouldn't be able to get here") block_element.setAttribute("OnPower", self.serialize_power(power_range.left)) block_element.setAttribute("OffPower", self.serialize_power(power_range.right)) cadence_range = params.get(Tag.CADENCE) if not isinstance(cadence_range, Range): raise ValueError("Type narrowing, shouldn't be able to get here") if cadence_range: block_element.setAttribute("Cadence", str(cadence_range.left)) block_element.setAttribute("CadenceResting", str(cadence_range.right)) return block_element def serialize_messages( self, doc: minidom.Document, root: minidom.Element, messages: list[Message] ) -> minidom.Element: for message in messages: msg = doc.createElement("textevent") msg.setAttribute("timeoffset", str(message.timestamp)) msg.setAttribute("message", message.message) root.appendChild(msg) return root def serialize_power(self, power: int | Percentage | PowerZone) -> str: if isinstance(power, int): if self.ftp is None: raise ValueError("Type narrowing, shouldn't be able to get here") return str(power / self.ftp) else: return str(power) def _classify_ramp_type(block_idx: int, n_blocks: int) -> str: """ Locate the appropriate Zwift block tag for the provided ramp block location. While there is no specific Ramp block in the workout building UI, some experimental observations have been made: * If a ramp is at the very beginning of the workout, Zwift serializes it as a Warmup block * If there are multiple blocks in a workout and a ramp is at the end, Zwift serializes it as a Cooldown block * If there are multiple blocks in a workout and a ramp is not at the beginning or the end, Zwift serializes it as a Ramp block """ if block_idx == 1: return BLOCK_MAPPING[Tag.WARMUP] if block_idx == n_blocks: return BLOCK_MAPPING[Tag.COOLDOWN] else: return BLOCK_MAPPING[Tag.RAMP] def convert_zwom(zwom_filepath: Path, out_filepath: Path | None = None) -> None: """ Validate and convert the provided ZWOM file to ZWO. If no `out_filepath` is provided, the resulting ZWO file is written to the same directory as the input ZWOM file. NOTE: Any existing ZWO files sharing the specified name will be overwritten. """ if out_filepath is None: out_filepath = zwom_filepath.with_suffix(".zwo") blocks = parse_src(zwom_filepath.read_text()) val = ZWOMValidator(blocks) wo = Workout(val.validated_blocks, val._ftp) wo.to_zwo(out_filepath)
zwolang
/zwolang-0.3.0-py3-none-any.whl/zwo/serialize.py
serialize.py
# zwsp-steg-py Zero-Width Space Steganography. Encodes and decodes hidden messages as non printable/readable characters. This repository is a Python porting of [zwsp-steg-js](https://github.com/offdev/zwsp-steg-js). All credits to [offdev](https://github.com/offdev)! ### Installation ```bash $ pip install zwsp-steg-py ``` ### Usage Example ```.py import zwsp_steg encoded = zwsp_steg.encode('hidden message') decoded = zwsp_steg.decode(encoded) print(decoded) # hidden message ``` Note that decoding a message will ignore all non 'special' characters. That means if you hide your message within a readable string, and decode the whole string, you will only return the hidden message. ### Parameters You can use different sets of characters in different encoding / decoding modes. ```.py import zwsp_steg zwsp_steg.encode('hidden message', zwsp_steg.MODE_ZWSP) zwsp_steg.encode('hidden message', zwsp_steg.MODE_FULL) ``` #### Character sets used - **MODE_ZWSP**: Zero-Width Space (\u200b), Zero-Width Non-Joiner (\u200c), Zero-Width Joiner (\u200d) - **MODE_FULL**: All MODE_ZWSP characters, Left-To-Right Mark (\u200e), Right-To-Left Mark (\u200f) ### License [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)
zwsp-steg-py
/zwsp-steg-py-0.2.0.tar.gz/zwsp-steg-py-0.2.0/README.md
README.md
MODE_ZWSP = 0 MODE_FULL = 1 ZERO_WIDTH_SPACE = '\u200b' ZERO_WIDTH_NON_JOINER = '\u200c' ZERO_WIDTH_JOINER = '\u200d' LEFT_TO_RIGHT_MARK = '\u200e' RIGHT_TO_LEFT_MARK = '\u200f' list_ZWSP = [ ZERO_WIDTH_SPACE, ZERO_WIDTH_NON_JOINER, ZERO_WIDTH_JOINER, ] list_FULL = [ ZERO_WIDTH_SPACE, ZERO_WIDTH_NON_JOINER, ZERO_WIDTH_JOINER, LEFT_TO_RIGHT_MARK, RIGHT_TO_LEFT_MARK, ] def get_padding_length(mode): return 11 if mode == MODE_ZWSP else 7 # Keep padding as small as possible def to_base(num, b, numerals='0123456789abcdefghijklmnopqrstuvwxyz'): """ Python implementation of number.toString(radix) Thanks to jellyfishtree from https://stackoverflow.com/a/2267428 """ return ((num == 0) and numerals[0]) or (to_base(num // b, b, numerals).lstrip(numerals[0]) + numerals[num % b]) def encode(message, mode=MODE_FULL): if not isinstance(message, str): raise TypeError('Cannot encode {0}'.format(type(message).__name__)) alphabet = list_ZWSP if mode == MODE_ZWSP else list_FULL padding = get_padding_length(mode) encoded = '' if (len(message) == 0): return '' for message_char in message: code = '{0}{1}'.format('0' * padding, int(str(to_base(ord(message_char), len(alphabet))))) code = code[len(code) - padding:] for code_char in code: index = int(code_char) encoded = encoded + alphabet[index] return encoded def decode(message, mode=MODE_FULL): if not isinstance(message, str): raise TypeError('Cannot decode {0}'.format(type(message).__name__)) alphabet = list_ZWSP if mode == MODE_ZWSP else list_FULL padding = get_padding_length(mode) encoded = '' decoded = '' for message_char in message: if message_char in alphabet: encoded = encoded + str(alphabet.index(message_char)) if (len(encoded) % padding != 0): raise TypeError('Unknown encoding detected!') cur_encoded_char = '' for index, encoded_char in enumerate(encoded): cur_encoded_char = cur_encoded_char + encoded_char if index > 0 and (index + 1) % padding == 0: decoded = decoded + chr(int(cur_encoded_char, len(alphabet))) cur_encoded_char = '' return decoded
zwsp-steg-py
/zwsp-steg-py-0.2.0.tar.gz/zwsp-steg-py-0.2.0/zwsp_steg/steganography.py
steganography.py
__all__ = ['module', 'Identity', 'Lambda', 'PartialLambda', 'Flatten', 'View', 'ResizeBatch', 'Debugger', 'sigmoid_range', 'SigmoidRange', 'AdaptiveConcatPool1d', 'AdaptiveConcatPool2d', 'PoolType', 'adaptive_pool', 'PoolFlatten', 'NormType', 'BatchNorm', 'InstanceNorm', 'BatchNorm1dFlat', 'LinBnDrop', 'sigmoid', 'sigmoid_', 'vleaky_relu', 'init_default', 'init_linear', 'ConvLayer', 'AdaptiveAvgPool', 'MaxPool', 'AvgPool', 'trunc_normal_', 'Embedding', 'SelfAttention', 'PooledSelfAttention2d', 'SimpleSelfAttention', 'icnr_init', 'PixelShuffle_ICNR', 'sequential', 'SequentialEx', 'MergeLayer', 'Cat', 'SimpleCNN', 'ProdLayer', 'inplace_relu', 'SEModule', 'ResBlock', 'SEBlock', 'SEResNeXtBlock', 'SeparableBlock', 'swish', 'Swish', 'MishJitAutoFn', 'mish', 'Mish', 'ParameterModule', 'children_and_parameters', 'has_children', 'flatten_model', 'NoneReduce', 'in_channels'] # Cell from .imports import * from .torch_imports import * from .torch_core import * from torch.nn.utils import weight_norm, spectral_norm # Cell def module(*flds, **defaults): "Decorator to create an `nn.Module` using `f` as `forward` method" pa = [inspect.Parameter(o, inspect.Parameter.POSITIONAL_OR_KEYWORD) for o in flds] pb = [inspect.Parameter(k, inspect.Parameter.POSITIONAL_OR_KEYWORD, default=v) for k,v in defaults.items()] params = pa+pb all_flds = [*flds,*defaults.keys()] def _f(f): class c(nn.Module): def __init__(self, *args, **kwargs): super().__init__() for i,o in enumerate(args): kwargs[all_flds[i]] = o kwargs = merge(defaults,kwargs) for k,v in kwargs.items(): setattr(self,k,v) __repr__ = basic_repr(all_flds) forward = f c.__signature__ = inspect.Signature(params) c.__name__ = c.__qualname__ = f.__name__ c.__doc__ = f.__doc__ return c return _f # Cell @module() def Identity(self, x): "Do nothing at all" return x # Cell @module('func') def Lambda(self, x): "An easy way to create a pytorch layer for a simple `func`" return self.func(x) # Cell class PartialLambda(Lambda): "Layer that applies `partial(func, **kwargs)`" def __init__(self, func, **kwargs): super().__init__(partial(func, **kwargs)) self.repr = f'{func.__name__}, {kwargs}' def forward(self, x): return self.func(x) def __repr__(self): return f'{self.__class__.__name__}({self.repr})' # Cell @module(full=False) def Flatten(self, x): "Flatten `x` to a single dimension, e.g. at end of a model. `full` for rank-1 tensor" return TensorBase(x.view(-1) if self.full else x.view(x.size(0), -1)) # Cell class View(Module): "Reshape `x` to `size`" def __init__(self, *size): self.size = size def forward(self, x): return x.view(self.size) # Cell class ResizeBatch(Module): "Reshape `x` to `size`, keeping batch dim the same size" def __init__(self, *size): self.size = size def forward(self, x): return x.view((x.size(0),) + self.size) # Cell @module() def Debugger(self,x): "A module to debug inside a model." set_trace() return x # Cell def sigmoid_range(x, low, high): "Sigmoid function with range `(low, high)`" return torch.sigmoid(x) * (high - low) + low # Cell @module('low','high') def SigmoidRange(self, x): "Sigmoid module with range `(low, high)`" return sigmoid_range(x, self.low, self.high) # Cell class AdaptiveConcatPool1d(Module): "Layer that concats `AdaptiveAvgPool1d` and `AdaptiveMaxPool1d`" def __init__(self, size=None): self.size = size or 1 self.ap = nn.AdaptiveAvgPool1d(self.size) self.mp = nn.AdaptiveMaxPool1d(self.size) def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1) # Cell class AdaptiveConcatPool2d(Module): "Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`" def __init__(self, size=None): self.size = size or 1 self.ap = nn.AdaptiveAvgPool2d(self.size) self.mp = nn.AdaptiveMaxPool2d(self.size) def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1) # Cell class PoolType: Avg,Max,Cat = 'Avg','Max','Cat' # Cell def adaptive_pool(pool_type): return nn.AdaptiveAvgPool2d if pool_type=='Avg' else nn.AdaptiveMaxPool2d if pool_type=='Max' else AdaptiveConcatPool2d # Cell class PoolFlatten(nn.Sequential): "Combine `nn.AdaptiveAvgPool2d` and `Flatten`." def __init__(self, pool_type=PoolType.Avg): super().__init__(adaptive_pool(pool_type)(1), Flatten()) # Cell NormType = Enum('NormType', 'Batch BatchZero Weight Spectral Instance InstanceZero') # Cell def _get_norm(prefix, nf, ndim=2, zero=False, **kwargs): "Norm layer with `nf` features and `ndim` initialized depending on `norm_type`." assert 1 <= ndim <= 3 bn = getattr(nn, f"{prefix}{ndim}d")(nf, **kwargs) if bn.affine: bn.bias.data.fill_(1e-3) bn.weight.data.fill_(0. if zero else 1.) return bn # Cell @delegates(nn.BatchNorm2d) def BatchNorm(nf, ndim=2, norm_type=NormType.Batch, **kwargs): "BatchNorm layer with `nf` features and `ndim` initialized depending on `norm_type`." return _get_norm('BatchNorm', nf, ndim, zero=norm_type==NormType.BatchZero, **kwargs) # Cell @delegates(nn.InstanceNorm2d) def InstanceNorm(nf, ndim=2, norm_type=NormType.Instance, affine=True, **kwargs): "InstanceNorm layer with `nf` features and `ndim` initialized depending on `norm_type`." return _get_norm('InstanceNorm', nf, ndim, zero=norm_type==NormType.InstanceZero, affine=affine, **kwargs) # Cell class BatchNorm1dFlat(nn.BatchNorm1d): "`nn.BatchNorm1d`, but first flattens leading dimensions" def forward(self, x): if x.dim()==2: return super().forward(x) *f,l = x.shape x = x.contiguous().view(-1,l) return super().forward(x).view(*f,l) # Cell class LinBnDrop(nn.Sequential): "Module grouping `BatchNorm1d`, `Dropout` and `Linear` layers" def __init__(self, n_in, n_out, bn=True, p=0., act=None, lin_first=False): layers = [BatchNorm(n_out if lin_first else n_in, ndim=1)] if bn else [] if p != 0: layers.append(nn.Dropout(p)) lin = [nn.Linear(n_in, n_out, bias=not bn)] if act is not None: lin.append(act) layers = lin+layers if lin_first else layers+lin super().__init__(*layers) # Cell def sigmoid(input, eps=1e-7): "Same as `torch.sigmoid`, plus clamping to `(eps,1-eps)" return input.sigmoid().clamp(eps,1-eps) # Cell def sigmoid_(input, eps=1e-7): "Same as `torch.sigmoid_`, plus clamping to `(eps,1-eps)" return input.sigmoid_().clamp_(eps,1-eps) # Cell from torch.nn.init import kaiming_uniform_,uniform_,xavier_uniform_,normal_ # Cell def vleaky_relu(input, inplace=True): "`F.leaky_relu` with 0.3 slope" return F.leaky_relu(input, negative_slope=0.3, inplace=inplace) # Cell for o in F.relu,nn.ReLU,F.relu6,nn.ReLU6,F.leaky_relu,nn.LeakyReLU: o.__default_init__ = kaiming_uniform_ # Cell for o in F.sigmoid,nn.Sigmoid,F.tanh,nn.Tanh,sigmoid,sigmoid_: o.__default_init__ = xavier_uniform_ # Cell def init_default(m, func=nn.init.kaiming_normal_): "Initialize `m` weights with `func` and set `bias` to 0." if func and hasattr(m, 'weight'): func(m.weight) with torch.no_grad(): if getattr(m, 'bias', None) is not None: m.bias.fill_(0.) return m # Cell def init_linear(m, act_func=None, init='auto', bias_std=0.01): if getattr(m,'bias',None) is not None and bias_std is not None: if bias_std != 0: normal_(m.bias, 0, bias_std) else: m.bias.data.zero_() if init=='auto': if act_func in (F.relu_,F.leaky_relu_): init = kaiming_uniform_ else: init = getattr(act_func.__class__, '__default_init__', None) if init is None: init = getattr(act_func, '__default_init__', None) if init is not None: init(m.weight) # Cell def _conv_func(ndim=2, transpose=False): "Return the proper conv `ndim` function, potentially `transposed`." assert 1 <= ndim <=3 return getattr(nn, f'Conv{"Transpose" if transpose else ""}{ndim}d') # Cell defaults.activation=nn.ReLU # Cell class ConvLayer(nn.Sequential): "Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and `norm_type` layers." @delegates(nn.Conv2d) def __init__(self, ni, nf, ks=3, stride=1, padding=None, bias=None, ndim=2, norm_type=NormType.Batch, bn_1st=True, act_cls=defaults.activation, transpose=False, init='auto', xtra=None, bias_std=0.01, **kwargs): if padding is None: padding = ((ks-1)//2 if not transpose else 0) bn = norm_type in (NormType.Batch, NormType.BatchZero) inn = norm_type in (NormType.Instance, NormType.InstanceZero) if bias is None: bias = not (bn or inn) conv_func = _conv_func(ndim, transpose=transpose) conv = conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding, **kwargs) act = None if act_cls is None else act_cls() init_linear(conv, act, init=init, bias_std=bias_std) if norm_type==NormType.Weight: conv = weight_norm(conv) elif norm_type==NormType.Spectral: conv = spectral_norm(conv) layers = [conv] act_bn = [] if act is not None: act_bn.append(act) if bn: act_bn.append(BatchNorm(nf, norm_type=norm_type, ndim=ndim)) if inn: act_bn.append(InstanceNorm(nf, norm_type=norm_type, ndim=ndim)) if bn_1st: act_bn.reverse() layers += act_bn if xtra: layers.append(xtra) super().__init__(*layers) # Cell def AdaptiveAvgPool(sz=1, ndim=2): "nn.AdaptiveAvgPool layer for `ndim`" assert 1 <= ndim <= 3 return getattr(nn, f"AdaptiveAvgPool{ndim}d")(sz) # Cell def MaxPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False): "nn.MaxPool layer for `ndim`" assert 1 <= ndim <= 3 return getattr(nn, f"MaxPool{ndim}d")(ks, stride=stride, padding=padding) # Cell def AvgPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False): "nn.AvgPool layer for `ndim`" assert 1 <= ndim <= 3 return getattr(nn, f"AvgPool{ndim}d")(ks, stride=stride, padding=padding, ceil_mode=ceil_mode) # Cell def trunc_normal_(x, mean=0., std=1.): "Truncated normal initialization (approximation)" # From https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/12 return x.normal_().fmod_(2).mul_(std).add_(mean) # Cell class Embedding(nn.Embedding): "Embedding layer with truncated normal initialization" def __init__(self, ni, nf, std=0.01): super().__init__(ni, nf) trunc_normal_(self.weight.data, std=std) # Cell class SelfAttention(Module): "Self attention layer for `n_channels`." def __init__(self, n_channels): self.query,self.key,self.value = [self._conv(n_channels, c) for c in (n_channels//8,n_channels//8,n_channels)] self.gamma = nn.Parameter(tensor([0.])) def _conv(self,n_in,n_out): return ConvLayer(n_in, n_out, ks=1, ndim=1, norm_type=NormType.Spectral, act_cls=None, bias=False) def forward(self, x): #Notation from the paper. size = x.size() x = x.view(*size[:2],-1) f,g,h = self.query(x),self.key(x),self.value(x) beta = F.softmax(torch.bmm(f.transpose(1,2), g), dim=1) o = self.gamma * torch.bmm(h, beta) + x return o.view(*size).contiguous() # Cell class PooledSelfAttention2d(Module): "Pooled self attention layer for 2d." def __init__(self, n_channels): self.n_channels = n_channels self.query,self.key,self.value = [self._conv(n_channels, c) for c in (n_channels//8,n_channels//8,n_channels//2)] self.out = self._conv(n_channels//2, n_channels) self.gamma = nn.Parameter(tensor([0.])) def _conv(self,n_in,n_out): return ConvLayer(n_in, n_out, ks=1, norm_type=NormType.Spectral, act_cls=None, bias=False) def forward(self, x): n_ftrs = x.shape[2]*x.shape[3] f = self.query(x).view(-1, self.n_channels//8, n_ftrs) g = F.max_pool2d(self.key(x), [2,2]).view(-1, self.n_channels//8, n_ftrs//4) h = F.max_pool2d(self.value(x), [2,2]).view(-1, self.n_channels//2, n_ftrs//4) beta = F.softmax(torch.bmm(f.transpose(1, 2), g), -1) o = self.out(torch.bmm(h, beta.transpose(1,2)).view(-1, self.n_channels//2, x.shape[2], x.shape[3])) return self.gamma * o + x # Cell def _conv1d_spect(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False): "Create and initialize a `nn.Conv1d` layer with spectral normalization." conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias=bias) nn.init.kaiming_normal_(conv.weight) if bias: conv.bias.data.zero_() return spectral_norm(conv) # Cell class SimpleSelfAttention(Module): def __init__(self, n_in:int, ks=1, sym=False): self.sym,self.n_in = sym,n_in self.conv = _conv1d_spect(n_in, n_in, ks, padding=ks//2, bias=False) self.gamma = nn.Parameter(tensor([0.])) def forward(self,x): if self.sym: c = self.conv.weight.view(self.n_in,self.n_in) c = (c + c.t())/2 self.conv.weight = c.view(self.n_in,self.n_in,1) size = x.size() x = x.view(*size[:2],-1) convx = self.conv(x) xxT = torch.bmm(x,x.permute(0,2,1).contiguous()) o = torch.bmm(xxT, convx) o = self.gamma * o + x return o.view(*size).contiguous() # Cell def icnr_init(x, scale=2, init=nn.init.kaiming_normal_): "ICNR init of `x`, with `scale` and `init` function" ni,nf,h,w = x.shape ni2 = int(ni/(scale**2)) k = init(x.new_zeros([ni2,nf,h,w])).transpose(0, 1) k = k.contiguous().view(ni2, nf, -1) k = k.repeat(1, 1, scale**2) return k.contiguous().view([nf,ni,h,w]).transpose(0, 1) # Cell class PixelShuffle_ICNR(nn.Sequential): "Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`." def __init__(self, ni, nf=None, scale=2, blur=False, norm_type=NormType.Weight, act_cls=defaults.activation): super().__init__() nf = ifnone(nf, ni) layers = [ConvLayer(ni, nf*(scale**2), ks=1, norm_type=norm_type, act_cls=act_cls, bias_std=0), nn.PixelShuffle(scale)] layers[0][0].weight.data.copy_(icnr_init(layers[0][0].weight.data)) if blur: layers += [nn.ReplicationPad2d((1,0,1,0)), nn.AvgPool2d(2, stride=1)] super().__init__(*layers) # Cell def sequential(*args): "Create an `nn.Sequential`, wrapping items with `Lambda` if needed" if len(args) != 1 or not isinstance(args[0], OrderedDict): args = list(args) for i,o in enumerate(args): if not isinstance(o,nn.Module): args[i] = Lambda(o) return nn.Sequential(*args) # Cell class SequentialEx(Module): "Like `nn.Sequential`, but with ModuleList semantics, and can access module input" def __init__(self, *layers): self.layers = nn.ModuleList(layers) def forward(self, x): res = x for l in self.layers: res.orig = x nres = l(res) # We have to remove res.orig to avoid hanging refs and therefore memory leaks res.orig, nres.orig = None, None res = nres return res def __getitem__(self,i): return self.layers[i] def append(self,l): return self.layers.append(l) def extend(self,l): return self.layers.extend(l) def insert(self,i,l): return self.layers.insert(i,l) # Cell class MergeLayer(Module): "Merge a shortcut with the result of the module by adding them or concatenating them if `dense=True`." def __init__(self, dense:bool=False): self.dense=dense def forward(self, x): return torch.cat([x,x.orig], dim=1) if self.dense else (x+x.orig) # Cell class Cat(nn.ModuleList): "Concatenate layers outputs over a given dim" def __init__(self, layers, dim=1): self.dim=dim super().__init__(layers) def forward(self, x): return torch.cat([l(x) for l in self], dim=self.dim) # Cell class SimpleCNN(nn.Sequential): "Create a simple CNN with `filters`." def __init__(self, filters, kernel_szs=None, strides=None, bn=True): nl = len(filters)-1 kernel_szs = ifnone(kernel_szs, [3]*nl) strides = ifnone(strides , [2]*nl) layers = [ConvLayer(filters[i], filters[i+1], kernel_szs[i], stride=strides[i], norm_type=(NormType.Batch if bn and i<nl-1 else None)) for i in range(nl)] layers.append(PoolFlatten()) super().__init__(*layers) # Cell class ProdLayer(Module): "Merge a shortcut with the result of the module by multiplying them." def forward(self, x): return x * x.orig # Cell inplace_relu = partial(nn.ReLU, inplace=True) # Cell def SEModule(ch, reduction, act_cls=defaults.activation): nf = math.ceil(ch//reduction/8)*8 return SequentialEx(nn.AdaptiveAvgPool2d(1), ConvLayer(ch, nf, ks=1, norm_type=None, act_cls=act_cls), ConvLayer(nf, ch, ks=1, norm_type=None, act_cls=nn.Sigmoid), ProdLayer()) # Cell class ResBlock(Module): "Resnet block from `ni` to `nh` with `stride`" @delegates(ConvLayer.__init__) def __init__(self, expansion, ni, nf, stride=1, groups=1, reduction=None, nh1=None, nh2=None, dw=False, g2=1, sa=False, sym=False, norm_type=NormType.Batch, act_cls=defaults.activation, ndim=2, ks=3, pool=AvgPool, pool_first=True, **kwargs): norm2 = (NormType.BatchZero if norm_type==NormType.Batch else NormType.InstanceZero if norm_type==NormType.Instance else norm_type) if nh2 is None: nh2 = nf if nh1 is None: nh1 = nh2 nf,ni = nf*expansion,ni*expansion k0 = dict(norm_type=norm_type, act_cls=act_cls, ndim=ndim, **kwargs) k1 = dict(norm_type=norm2, act_cls=None, ndim=ndim, **kwargs) convpath = [ConvLayer(ni, nh2, ks, stride=stride, groups=ni if dw else groups, **k0), ConvLayer(nh2, nf, ks, groups=g2, **k1) ] if expansion == 1 else [ ConvLayer(ni, nh1, 1, **k0), ConvLayer(nh1, nh2, ks, stride=stride, groups=nh1 if dw else groups, **k0), ConvLayer(nh2, nf, 1, groups=g2, **k1)] if reduction: convpath.append(SEModule(nf, reduction=reduction, act_cls=act_cls)) if sa: convpath.append(SimpleSelfAttention(nf,ks=1,sym=sym)) self.convpath = nn.Sequential(*convpath) idpath = [] if ni!=nf: idpath.append(ConvLayer(ni, nf, 1, act_cls=None, ndim=ndim, **kwargs)) if stride!=1: idpath.insert((1,0)[pool_first], pool(stride, ndim=ndim, ceil_mode=True)) self.idpath = nn.Sequential(*idpath) self.act = defaults.activation(inplace=True) if act_cls is defaults.activation else act_cls() def forward(self, x): return self.act(self.convpath(x) + self.idpath(x)) # Cell def SEBlock(expansion, ni, nf, groups=1, reduction=16, stride=1, **kwargs): return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh1=nf*2, nh2=nf*expansion, **kwargs) # Cell def SEResNeXtBlock(expansion, ni, nf, groups=32, reduction=16, stride=1, base_width=4, **kwargs): w = math.floor(nf * (base_width / 64)) * groups return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh2=w, **kwargs) # Cell def SeparableBlock(expansion, ni, nf, reduction=16, stride=1, base_width=4, **kwargs): return ResBlock(expansion, ni, nf, stride=stride, reduction=reduction, nh2=nf*2, dw=True, **kwargs) # Cell from torch.jit import script # Cell @script def _swish_jit_fwd(x): return x.mul(torch.sigmoid(x)) @script def _swish_jit_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid))) class _SwishJitAutoFn(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return _swish_jit_fwd(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_variables[0] return _swish_jit_bwd(x, grad_output) # Cell def swish(x, inplace=False): return _SwishJitAutoFn.apply(x) # Cell class Swish(Module): def forward(self, x): return _SwishJitAutoFn.apply(x) # Cell @script def _mish_jit_fwd(x): return x.mul(torch.tanh(F.softplus(x))) @script def _mish_jit_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) x_tanh_sp = F.softplus(x).tanh() return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp)) class MishJitAutoFn(torch.autograd.Function): @staticmethod def forward(ctx, x): ctx.save_for_backward(x) return _mish_jit_fwd(x) @staticmethod def backward(ctx, grad_output): x = ctx.saved_variables[0] return _mish_jit_bwd(x, grad_output) # Cell def mish(x): return MishJitAutoFn.apply(x) # Cell class Mish(Module): def forward(self, x): return MishJitAutoFn.apply(x) # Cell for o in swish,Swish,mish,Mish: o.__default_init__ = kaiming_uniform_ # Cell class ParameterModule(Module): "Register a lone parameter `p` in a module." def __init__(self, p): self.val = p def forward(self, x): return x # Cell def children_and_parameters(m): "Return the children of `m` and its direct parameters not registered in modules." children = list(m.children()) children_p = sum([[id(p) for p in c.parameters()] for c in m.children()],[]) for p in m.parameters(): if id(p) not in children_p: children.append(ParameterModule(p)) return children # Cell def has_children(m): try: next(m.children()) except StopIteration: return False return True # Cell def flatten_model(m): "Return the list of all submodules and parameters of `m`" return sum(map(flatten_model,children_and_parameters(m)),[]) if has_children(m) else [m] # Cell class NoneReduce(): "A context manager to evaluate `loss_func` with none reduce." def __init__(self, loss_func): self.loss_func,self.old_red = loss_func,None def __enter__(self): if hasattr(self.loss_func, 'reduction'): self.old_red = self.loss_func.reduction self.loss_func.reduction = 'none' return self.loss_func else: return partial(self.loss_func, reduction='none') def __exit__(self, type, value, traceback): if self.old_red is not None: self.loss_func.reduction = self.old_red # Cell def in_channels(m): "Return the shape of the first weight layer in `m`." for l in flatten_model(m): if getattr(l, 'weight', None) is not None and l.weight.ndim==4: return l.weight.shape[1] raise Exception('No weight layer')
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/layers.py
layers.py
__all__ = ['BaseLoss', 'CrossEntropyLossFlat', 'BCEWithLogitsLossFlat', 'BCELossFlat', 'MSELossFlat', 'L1LossFlat', 'LabelSmoothingCrossEntropy', 'LabelSmoothingCrossEntropyFlat'] # Cell from .imports import * from .torch_imports import * from .torch_core import * from .layers import * # Cell class BaseLoss(): "Same as `loss_cls`, but flattens input and target." activation=decodes=noops def __init__(self, loss_cls, *args, axis=-1, flatten=True, floatify=False, is_2d=True, **kwargs): store_attr("axis,flatten,floatify,is_2d") self.func = loss_cls(*args,**kwargs) functools.update_wrapper(self, self.func) def __repr__(self): return f"FlattenedLoss of {self.func}" @property def reduction(self): return self.func.reduction @reduction.setter def reduction(self, v): self.func.reduction = v def _contiguous(self,x): return TensorBase(x.transpose(self.axis,-1).contiguous()) if isinstance(x,torch.Tensor) else x def __call__(self, inp, targ, **kwargs): inp,targ = map(self._contiguous, (inp,targ)) if self.floatify and targ.dtype!=torch.float16: targ = targ.float() if targ.dtype in [torch.int8, torch.int16, torch.int32]: targ = targ.long() if self.flatten: inp = inp.view(-1,inp.shape[-1]) if self.is_2d else inp.view(-1) return self.func.__call__(inp, targ.view(-1) if self.flatten else targ, **kwargs) # Cell @delegates() class CrossEntropyLossFlat(BaseLoss): "Same as `nn.CrossEntropyLoss`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, weight=None, ignore_index=-100, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(nn.CrossEntropyLoss, *args, axis=axis, **kwargs) def decodes(self, x): return x.argmax(dim=self.axis) def activation(self, x): return F.softmax(x, dim=self.axis) # Cell @delegates() class BCEWithLogitsLossFlat(BaseLoss): "Same as `nn.BCEWithLogitsLoss`, but flattens input and target." @use_kwargs_dict(keep=True, weight=None, reduction='mean', pos_weight=None) def __init__(self, *args, axis=-1, floatify=True, thresh=0.5, **kwargs): if kwargs.get('pos_weight', None) is not None and kwargs.get('flatten', None) is True: raise ValueError("`flatten` must be False when using `pos_weight` to avoid a RuntimeError due to shape mismatch") if kwargs.get('pos_weight', None) is not None: kwargs['flatten'] = False super().__init__(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) self.thresh = thresh def decodes(self, x): return x>self.thresh def activation(self, x): return torch.sigmoid(x) # Cell @use_kwargs_dict(weight=None, reduction='mean') def BCELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.BCELoss`, but flattens input and target." return BaseLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) # Cell @use_kwargs_dict(reduction='mean') def MSELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.MSELoss`, but flattens input and target." return BaseLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) # Cell @use_kwargs_dict(reduction='mean') def L1LossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.L1Loss`, but flattens input and target." return BaseLoss(nn.L1Loss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) # Cell class LabelSmoothingCrossEntropy(Module): y_int = True def __init__(self, eps:float=0.1, reduction='mean'): self.eps,self.reduction = eps,reduction def forward(self, output, target): c = output.size()[-1] log_preds = F.log_softmax(output, dim=-1) if self.reduction=='sum': loss = -log_preds.sum() else: loss = -log_preds.sum(dim=-1) #We divide by that size at the return line so sum and not mean if self.reduction=='mean': loss = loss.mean() return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target.long(), reduction=self.reduction) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1) # Cell @delegates() class LabelSmoothingCrossEntropyFlat(BaseLoss): "Same as `LabelSmoothingCrossEntropy`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, eps=0.1, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(LabelSmoothingCrossEntropy, *args, axis=axis, **kwargs) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/losses.py
losses.py
__all__ = ['AccumMetric', 'skm_to_fastai', 'optim_metric', 'accuracy', 'error_rate', 'top_k_accuracy', 'APScoreBinary', 'BalancedAccuracy', 'BrierScore', 'CohenKappa', 'F1Score', 'FBeta', 'HammingLoss', 'Jaccard', 'Precision', 'Recall', 'RocAuc', 'RocAucBinary', 'MatthewsCorrCoef', 'Perplexity', 'perplexity', 'accuracy_multi', 'APScoreMulti', 'BrierScoreMulti', 'F1ScoreMulti', 'FBetaMulti', 'HammingLossMulti', 'JaccardMulti', 'MatthewsCorrCoefMulti', 'PrecisionMulti', 'RecallMulti', 'RocAucMulti', 'mse', 'rmse', 'mae', 'msle', 'exp_rmspe', 'ExplainedVariance', 'R2Score', 'PearsonCorrCoef', 'SpearmanCorrCoef', 'foreground_acc', 'Dice', 'DiceMulti', 'JaccardCoeff', 'CorpusBLEUMetric', 'LossMetric', 'LossMetrics'] # Cell from .data.all import * from .optimizer import * from .learner import * # Cell import sklearn.metrics as skm import scipy.stats as scs # Cell mk_class('ActivationType', **{o:o.lower() for o in ['No', 'Sigmoid', 'Softmax', 'BinarySoftmax']}, doc="All possible activation classes for `AccumMetric") # Cell class AccumMetric(Metric): "Stores predictions and targets on CPU in accumulate to perform final calculations with `func`." def __init__(self, func, dim_argmax=None, activation=ActivationType.No, thresh=None, to_np=False, invert_arg=False, flatten=True, **kwargs): store_attr('func,dim_argmax,activation,thresh,flatten') self.to_np,self.invert_args,self.kwargs = to_np,invert_arg,kwargs def reset(self): "Clear all targs and preds" self.targs,self.preds = [],[] def accumulate(self, learn): "Store targs and preds from `learn`, using activation function and argmax as appropriate" pred = learn.pred if self.activation in [ActivationType.Softmax, ActivationType.BinarySoftmax]: pred = F.softmax(pred, dim=self.dim_argmax) if self.activation == ActivationType.BinarySoftmax: pred = pred[:, -1] elif self.activation == ActivationType.Sigmoid: pred = torch.sigmoid(pred) elif self.dim_argmax: pred = pred.argmax(dim=self.dim_argmax) if self.thresh: pred = (pred >= self.thresh) self.accum_values(pred,learn.y,learn) def accum_values(self, preds, targs,learn=None): "Store targs and preds" to_d = learn.to_detach if learn is not None else to_detach preds,targs = to_d(preds),to_d(targs) if self.flatten: preds,targs = flatten_check(preds,targs) self.preds.append(preds) self.targs.append(targs) def __call__(self, preds, targs): "Calculate metric on one batch of data" self.reset() self.accum_values(preds,targs) return self.value @property def value(self): "Value of the metric using accumulated preds and targs" if len(self.preds) == 0: return preds,targs = torch.cat(self.preds),torch.cat(self.targs) if self.to_np: preds,targs = preds.numpy(),targs.numpy() return self.func(targs, preds, **self.kwargs) if self.invert_args else self.func(preds, targs, **self.kwargs) @property def name(self): return self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__ # Cell def skm_to_fastai(func, is_class=True, thresh=None, axis=-1, activation=None, **kwargs): "Convert `func` from sklearn.metrics to a fastai metric" dim_argmax = axis if is_class and thresh is None else None if activation is None: activation = ActivationType.Sigmoid if (is_class and thresh is not None) else ActivationType.No return AccumMetric(func, dim_argmax=dim_argmax, activation=activation, thresh=thresh, to_np=True, invert_arg=True, **kwargs) # Cell def optim_metric(f, argname, bounds, tol=0.01, do_neg=True, get_x=False): "Replace metric `f` with a version that optimizes argument `argname`" def _f(preds, targs): def minfunc(x): kwargs = {argname:x} res = f(preds, targs, **kwargs) return -res if do_neg else res optres = scipy.optimize.minimize_scalar(minfunc, bounds=bounds, method='bounded', options={'xatol':0.01}) fun = -optres.fun if do_neg else optres.fun return (fun,optres.x) if get_x else fun _f.__name__ = f'opt_{f.__name__}' return _f # Cell def accuracy(inp, targ, axis=-1): "Compute accuracy with `targ` when `pred` is bs * n_classes" pred,targ = flatten_check(inp.argmax(dim=axis), targ) return (pred == targ).float().mean() # Cell def error_rate(inp, targ, axis=-1): "1 - `accuracy`" return 1 - accuracy(inp, targ, axis=axis) # Cell def top_k_accuracy(inp, targ, k=5, axis=-1): "Computes the Top-k accuracy (`targ` is in the top `k` predictions of `inp`)" inp = inp.topk(k=k, dim=axis)[1] targ = targ.unsqueeze(dim=axis).expand_as(inp) return (inp == targ).sum(dim=-1).float().mean() # Cell def APScoreBinary(axis=-1, average='macro', pos_label=1, sample_weight=None): "Average Precision for single-label binary classification problems" return skm_to_fastai(skm.average_precision_score, axis=axis, activation=ActivationType.BinarySoftmax, average=average, pos_label=pos_label, sample_weight=sample_weight) # Cell def BalancedAccuracy(axis=-1, sample_weight=None, adjusted=False): "Balanced Accuracy for single-label binary classification problems" return skm_to_fastai(skm.balanced_accuracy_score, axis=axis, sample_weight=sample_weight, adjusted=adjusted) # Cell def BrierScore(axis=-1, sample_weight=None, pos_label=None): "Brier score for single-label classification problems" return skm_to_fastai(skm.brier_score_loss, axis=axis, sample_weight=sample_weight, pos_label=pos_label) # Cell def CohenKappa(axis=-1, labels=None, weights=None, sample_weight=None): "Cohen kappa for single-label classification problems" return skm_to_fastai(skm.cohen_kappa_score, axis=axis, labels=labels, weights=weights, sample_weight=sample_weight) # Cell def F1Score(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): "F1 score for single-label classification problems" return skm_to_fastai(skm.f1_score, axis=axis, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def FBeta(beta, axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): "FBeta score with `beta` for single-label classification problems" return skm_to_fastai(skm.fbeta_score, axis=axis, beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def HammingLoss(axis=-1, sample_weight=None): "Hamming loss for single-label classification problems" return skm_to_fastai(skm.hamming_loss, axis=axis, sample_weight=sample_weight) # Cell def Jaccard(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): "Jaccard score for single-label classification problems" return skm_to_fastai(skm.jaccard_score, axis=axis, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def Precision(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): "Precision for single-label classification problems" return skm_to_fastai(skm.precision_score, axis=axis, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def Recall(axis=-1, labels=None, pos_label=1, average='binary', sample_weight=None): "Recall for single-label classification problems" return skm_to_fastai(skm.recall_score, axis=axis, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def RocAuc(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='ovr'): "Area Under the Receiver Operating Characteristic Curve for single-label multiclass classification problems" assert multi_class in ['ovr', 'ovo'] return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.Softmax, flatten=False, average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class) # Cell def RocAucBinary(axis=-1, average='macro', sample_weight=None, max_fpr=None, multi_class='raise'): "Area Under the Receiver Operating Characteristic Curve for single-label binary classification problems" return skm_to_fastai(skm.roc_auc_score, axis=axis, activation=ActivationType.BinarySoftmax, average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class) # Cell def MatthewsCorrCoef(sample_weight=None, **kwargs): "Matthews correlation coefficient for single-label classification problems" return skm_to_fastai(skm.matthews_corrcoef, sample_weight=sample_weight, **kwargs) # Cell class Perplexity(AvgLoss): "Perplexity (exponential of cross-entropy loss) for Language Models" @property def value(self): return torch.exp(self.total/self.count) if self.count != 0 else None @property def name(self): return "perplexity" perplexity = Perplexity() # Cell def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True): "Compute accuracy when `inp` and `targ` are the same size." inp,targ = flatten_check(inp,targ) if sigmoid: inp = inp.sigmoid() return ((inp>thresh)==targ.bool()).float().mean() # Cell def APScoreMulti(sigmoid=True, average='macro', pos_label=1, sample_weight=None): "Average Precision for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.average_precision_score, activation=activation, flatten=False, average=average, pos_label=pos_label, sample_weight=sample_weight) # Cell def BrierScoreMulti(thresh=0.5, sigmoid=True, sample_weight=None, pos_label=None): "Brier score for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.brier_score_loss, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight, pos_label=pos_label) # Cell def F1ScoreMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): "F1 score for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.f1_score, thresh=thresh, activation=activation, flatten=False, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def FBetaMulti(beta, thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): "FBeta score with `beta` for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.fbeta_score, thresh=thresh, activation=activation, flatten=False, beta=beta, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def HammingLossMulti(thresh=0.5, sigmoid=True, labels=None, sample_weight=None): "Hamming loss for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.hamming_loss, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight) # Cell def JaccardMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): "Jaccard score for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.jaccard_score, thresh=thresh, activation=activation, flatten=False, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def MatthewsCorrCoefMulti(thresh=0.5, sigmoid=True, sample_weight=None): "Matthews correlation coefficient for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.matthews_corrcoef, thresh=thresh, activation=activation, flatten=False, sample_weight=sample_weight) # Cell def PrecisionMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): "Precision for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.precision_score, thresh=thresh, activation=activation, flatten=False, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def RecallMulti(thresh=0.5, sigmoid=True, labels=None, pos_label=1, average='macro', sample_weight=None): "Recall for multi-label classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.recall_score, thresh=thresh, activation=activation, flatten=False, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) # Cell def RocAucMulti(sigmoid=True, average='macro', sample_weight=None, max_fpr=None): "Area Under the Receiver Operating Characteristic Curve for multi-label binary classification problems" activation = ActivationType.Sigmoid if sigmoid else ActivationType.No return skm_to_fastai(skm.roc_auc_score, activation=activation, flatten=False, average=average, sample_weight=sample_weight, max_fpr=max_fpr) # Cell def mse(inp,targ): "Mean squared error between `inp` and `targ`." return F.mse_loss(*flatten_check(inp,targ)) # Cell def _rmse(inp, targ): return torch.sqrt(F.mse_loss(inp, targ)) rmse = AccumMetric(_rmse) rmse.__doc__ = "Root mean squared error" # Cell def mae(inp,targ): "Mean absolute error between `inp` and `targ`." inp,targ = flatten_check(inp,targ) return torch.abs(inp - targ).mean() # Cell def msle(inp, targ): "Mean squared logarithmic error between `inp` and `targ`." inp,targ = flatten_check(inp,targ) return F.mse_loss(torch.log(1 + inp), torch.log(1 + targ)) # Cell def _exp_rmspe(inp,targ): inp,targ = torch.exp(inp),torch.exp(targ) return torch.sqrt(((targ - inp)/targ).pow(2).mean()) exp_rmspe = AccumMetric(_exp_rmspe) exp_rmspe.__doc__ = "Root mean square percentage error of the exponential of predictions and targets" # Cell def ExplainedVariance(sample_weight=None): "Explained variance between predictions and targets" return skm_to_fastai(skm.explained_variance_score, is_class=False, sample_weight=sample_weight) # Cell def R2Score(sample_weight=None): "R2 score between predictions and targets" return skm_to_fastai(skm.r2_score, is_class=False, sample_weight=sample_weight) # Cell @delegates(AccumMetric) def PearsonCorrCoef(dim_argmax=None, **kwargs): "Pearson correlation coefficient for regression problem" def pearsonr(x,y): return scs.pearsonr(x,y)[0] return AccumMetric(pearsonr, invert_arg=False, dim_argmax=dim_argmax, **kwargs) # Cell @delegates(AccumMetric) def SpearmanCorrCoef(dim_argmax=None, axis=0, nan_policy='propagate', **kwargs): "Spearman correlation coefficient for regression problem" def spearmanr(a,b=None,**kwargs): return scs.spearmanr(a,b,**kwargs)[0] return AccumMetric(partial(spearmanr, axis=axis, nan_policy=nan_policy), invert_arg=False, dim_argmax=dim_argmax, **kwargs) # Cell def foreground_acc(inp, targ, bkg_idx=0, axis=1): "Computes non-background accuracy for multiclass segmentation" targ = targ.squeeze(1) mask = targ != bkg_idx return (inp.argmax(dim=axis)[mask]==targ[mask]).float().mean() # Cell class Dice(Metric): "Dice coefficient metric for binary target in segmentation" def __init__(self, axis=1): self.axis = axis def reset(self): self.inter,self.union = 0,0 def accumulate(self, learn): pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y) self.inter += (pred*targ).float().sum().item() self.union += (pred+targ).float().sum().item() @property def value(self): return 2. * self.inter/self.union if self.union > 0 else None # Cell class DiceMulti(Metric): "Averaged Dice metric (Macro F1) for multiclass target in segmentation" def __init__(self, axis=1): self.axis = axis def reset(self): self.inter,self.union = {},{} def accumulate(self, learn): pred,targ = flatten_check(learn.pred.argmax(dim=self.axis), learn.y) for c in range(learn.pred.shape[self.axis]): p = torch.where(pred == c, 1, 0) t = torch.where(targ == c, 1, 0) c_inter = (p*t).float().sum().item() c_union = (p+t).float().sum().item() if c in self.inter: self.inter[c] += c_inter self.union[c] += c_union else: self.inter[c] = c_inter self.union[c] = c_union @property def value(self): binary_dice_scores = np.array([]) for c in self.inter: binary_dice_scores = np.append(binary_dice_scores, 2.*self.inter[c]/self.union[c] if self.union[c] > 0 else np.nan) return np.nanmean(binary_dice_scores) # Cell class JaccardCoeff(Dice): "Implementation of the Jaccard coefficient that is lighter in RAM" @property def value(self): return self.inter/(self.union-self.inter) if self.union > 0 else None # Cell class CorpusBLEUMetric(Metric): def __init__(self, vocab_sz=5000, axis=-1): "BLEU Metric calculated over the validation corpus" self.metric_name = 'CorpusBLEU' self.axis, self.vocab_sz = axis, vocab_sz self.pred_len,self.targ_len,self.samp_idx,self.corrects,self.counts, = 0,0,0,[0]*4,[0]*4 def reset(self): self.pred_len,self.targ_len,self.corrects,self.counts = 0,0,[0]*4,[0]*4 class NGram(): def __init__(self, ngram, max_n=5000): self.ngram,self.max_n = ngram,max_n def __eq__(self, other): if len(self.ngram) != len(other.ngram): return False return np.all(np.array(self.ngram) == np.array(other.ngram)) def __hash__(self): return int(sum([o * self.max_n**i for i,o in enumerate(self.ngram)])) def get_grams(self, x, n, max_n=5000): return x if n==1 else [self.NGram(x[i:i+n], max_n=max_n) for i in range(len(x)-n+1)] def get_correct_ngrams(self, pred, targ, n, max_n=5000): pred_grams,targ_grams = self.get_grams(pred, n, max_n=max_n),self.get_grams(targ, n, max_n=max_n) pred_cnt,targ_cnt = Counter(pred_grams),Counter(targ_grams) return sum([min(c, targ_cnt[g]) for g,c in pred_cnt.items()]),len(pred_grams) def accumulate(self, learn): if learn.training: return None else: last_output = learn.pred.argmax(dim=self.axis) last_target = learn.y for pred,targ in zip(last_output.cpu().numpy(),last_target.cpu().numpy()): self.pred_len += len(pred) self.targ_len += len(targ) smooth_mteval = 1 for i in range(4): c,t = self.get_correct_ngrams(pred, targ, i+1, max_n=self.vocab_sz) if c == 0: smooth_mteval *= 2 c = 1 / smooth_mteval # exp smoothing, method 3 from http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf self.corrects[i] += c self.counts[i] += t @property def value(self): if self.counts == 0: return None elif max(self.corrects) == 0: return 0.0 else: precs = [c/t for c,t in zip(self.corrects,self.counts)] len_penalty = math.exp(1 - self.targ_len/self.pred_len) if self.pred_len < self.targ_len else 1 return len_penalty * ((precs[0]*precs[1]*precs[2]*precs[3]) ** 0.25) # Cell class LossMetric(AvgMetric): "Create a metric from `loss_func.attr` named `nm`" def __init__(self, attr, nm=None): store_attr('attr,nm') def accumulate(self, learn): bs = find_bs(learn.yb) self.total += learn.to_detach(getattr(learn.loss_func, self.attr, 0))*bs self.count += bs @property def name(self): return self.attr if self.nm is None else self.nm # Cell def LossMetrics(attrs, nms=None): "List of `LossMetric` for each of `attrs` and `nms`" if isinstance(attrs, str): attrs = attrs.split(',') nms = attrs if nms is None else nms.split(',') if isinstance(nms, str) else nms return [LossMetric(a, n) for a,n in zip(attrs,nms)]
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/metrics.py
metrics.py
__all__ = ['Optimizer', 'sgd_step', 'weight_decay', 'l2_reg', 'average_grad', 'average_sqr_grad', 'momentum_step', 'SGD', 'rms_prop_step', 'RMSProp', 'step_stat', 'debias', 'adam_step', 'Adam', 'radam_step', 'RAdam', 'qhadam_step', 'QHAdam', 'larc_layer_lr', 'larc_step', 'Larc', 'lamb_step', 'Lamb', 'Lookahead', 'ranger', 'detuplify_pg', 'set_item_pg', 'pytorch_hp_map', 'OptimWrapper'] # Cell from .torch_basics import * # Cell class _BaseOptimizer(): "Common functionality between `Optimizer` and `OptimWrapper`" def all_params(self, n=slice(None), with_grad=False): res = L((p,pg,self.state[p],hyper) for pg,hyper in zip(self.param_lists[n],self.hypers[n]) for p in pg) return L(o for o in res if hasattr(o[0], 'grad') and o[0].grad is not None) if with_grad else res def _set_require_grad(self, rg, p,pg,state,h): p.requires_grad_(rg or state.get('force_train', False)) def freeze_to(self, n): self.frozen_idx = n if n >= 0 else len(self.param_lists) + n if self.frozen_idx >= len(self.param_lists): warn(f"Freezing {self.frozen_idx} groups; model has {len(self.param_lists)}; whole model is frozen.") for o in self.all_params(slice(n, None)): self._set_require_grad(True, *o) for o in self.all_params(slice(None, n)): self._set_require_grad(False, *o) def freeze(self): assert(len(self.param_lists)>1) self.freeze_to(-1) def set_freeze(self, n, rg, ignore_force_train=False): for p in self.param_lists[n]: p.requires_grad_(rg or (state.get('force_train', False) and not ignore_force_train)) def unfreeze(self): self.freeze_to(0) def set_hypers(self, **kwargs): L(kwargs.items()).starmap(self.set_hyper) def _set_hyper(self, k, v): for v_,h in zip(v, self.hypers): h[k] = v_ def set_hyper(self, k, v): if isinstance(v, slice): if v.start: v = even_mults(v.start, v.stop, len(self.param_lists)) else: v = [v.stop/10]*(len(self.param_lists)-1) + [v.stop] v = L(v, use_list=None) if len(v)==1: v = v*len(self.param_lists) assert len(v) == len(self.hypers), f"Trying to set {len(v)} values for {k} but there are {len(self.param_lists)} parameter groups." self._set_hyper(k, v) @property def param_groups(self): return [{**{'params': pg}, **hp} for pg,hp in zip(self.param_lists, self.hypers)] @param_groups.setter def param_groups(self, v): for pg,v_ in zip(self.param_lists,v): pg = v_['params'] for hyper,v_ in zip(self.hypers,v): for k,t in v_.items(): if k != 'params': hyper[k] = t # Cell def _update(state, new=None): if new is None: return state if isinstance(new, dict): state.update(new) return state # Cell class Optimizer(_BaseOptimizer): "Base optimizer class for the fastai library, updating `params` with `cbs`" _keep_on_clear = ['force_train', 'do_wd'] def __init__(self, params, cbs, train_bn=True, **defaults): params = L(params) self.cbs,self.state,self.train_bn = L(cbs),defaultdict(dict),train_bn defaults = merge(*self.cbs.attrgot('defaults'), defaults) self.param_lists = L(L(p) for p in params) if isinstance(params[0], (L,list)) else L([params]) self.hypers = L({} for _ in range_of(self.param_lists)) self.set_hypers(**defaults) self.frozen_idx = 0 def zero_grad(self): for p,*_ in self.all_params(with_grad=True): p.grad.detach_() p.grad.zero_() def step(self): for p,pg,state,hyper in self.all_params(with_grad=True): for cb in self.cbs: state = _update(state, cb(p, **{**state, **hyper})) self.state[p] = state def clear_state(self): for p,pg,state,hyper in self.all_params(): self.state[p] = {k: state[k] for k in self._keep_on_clear if k in state} def state_dict(self): state = [self.state[p] for p,*_ in self.all_params()] return {'state': state, 'hypers': self.hypers} def load_state_dict(self, sd): assert len(sd["hypers"]) == len(self.param_lists) assert len(sd["state"]) == sum([len(pg) for pg in self.param_lists]) self.hypers = sd['hypers'] self.state = {p: s for p,s in zip(self.all_params().itemgot(0), sd['state'])} # Cell def sgd_step(p, lr, **kwargs): p.data.add_(p.grad.data, alpha=-lr) # Cell def weight_decay(p, lr, wd, do_wd=True, **kwargs): "Weight decay as decaying `p` with `lr*wd`" if do_wd and wd!=0: p.data.mul_(1 - lr*wd) weight_decay.defaults = dict(wd=0.) # Cell def l2_reg(p, lr, wd, do_wd=True, **kwargs): "L2 regularization as adding `wd*p` to `p.grad`" if do_wd and wd!=0: p.grad.data.add_(p.data, alpha=wd) l2_reg.defaults = dict(wd=0.) # Cell def average_grad(p, mom, dampening=False, grad_avg=None, **kwargs): "Keeps track of the avg grads of `p` in `state` with `mom`." if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data) damp = 1-mom if dampening else 1. grad_avg.mul_(mom).add_(p.grad.data, alpha=damp) return {'grad_avg': grad_avg} average_grad.defaults = dict(mom=0.9) # Cell def average_sqr_grad(p, sqr_mom, dampening=True, sqr_avg=None, **kwargs): if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data) damp = 1-sqr_mom if dampening else 1. sqr_avg.mul_(sqr_mom).addcmul_(p.grad.data, p.grad.data, value=damp) return {'sqr_avg': sqr_avg} average_sqr_grad.defaults = dict(sqr_mom=0.99) # Cell def momentum_step(p, lr, grad_avg, **kwargs): "Step for SGD with momentum with `lr`" p.data.add_(grad_avg, alpha=-lr) # Cell def SGD(params, lr, mom=0., wd=0., decouple_wd=True): "A `Optimizer` for SGD with `lr` and `mom` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] if mom != 0: cbs.append(average_grad) cbs.append(sgd_step if mom==0 else momentum_step) return Optimizer(params, cbs, lr=lr, mom=mom, wd=wd) # Cell def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs): "Step for SGD with momentum with `lr`" denom = sqr_avg.sqrt().add_(eps) p.data.addcdiv_((grad_avg if grad_avg is not None else p.grad), denom, value=-lr) rms_prop_step.defaults = dict(eps=1e-8) # Cell def RMSProp(params, lr, sqr_mom=0.99, mom=0., wd=0., decouple_wd=True): "A `Optimizer` for RMSProp with `lr`, `sqr_mom`, `mom` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += ([average_sqr_grad] if mom==0. else [average_grad, average_sqr_grad]) cbs.append(rms_prop_step) return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, wd=wd) # Cell def step_stat(p, step=0, **kwargs): "Register the number of steps done in `state` for `p`" step += 1 return {'step' : step} # Cell def debias(mom, damp, step): return damp * (1 - mom**step) / (1-mom) # Cell def adam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs): "Step for Adam with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) p.data.addcdiv_(grad_avg, (sqr_avg/debias2).sqrt() + eps, value = -lr / debias1) return p adam_step._defaults = dict(eps=1e-5) # Cell def Adam(params, lr, mom=0.9, sqr_mom=0.99, eps=1e-5, wd=0.01, decouple_wd=True): "A `Optimizer` for Adam with `lr`, `mom`, `sqr_mom`, `eps` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, adam_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # Cell def radam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, beta, **kwargs): "Step for RAdam with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) r_inf = 2/(1-sqr_mom) - 1 r = r_inf - 2*step*sqr_mom**step/(1-sqr_mom**step) if r > 5: v = math.sqrt(((r-4) * (r-2) * r_inf)/((r_inf-4)*(r_inf-2)*r)) denom = (sqr_avg/debias2).sqrt() if eps: denom += eps if beta: denom = F.softplus(denom, beta) p.data.addcdiv_(grad_avg, denom, value = -lr*v / debias1) else: p.data.add_(grad_avg, alpha=-lr / debias1) return p radam_step._defaults = dict(eps=1e-5) # Cell def RAdam(params, lr, mom=0.9, sqr_mom=0.99, eps=1e-5, wd=0., beta=0., decouple_wd=True): "A `Optimizer` for Adam with `lr`, `mom`, `sqr_mom`, `eps` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, radam_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd, beta=beta) # Cell def qhadam_step(p, lr, mom, sqr_mom, sqr_avg, nu_1, nu_2, step, grad_avg, eps, **kwargs): debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) p.data.addcdiv_(((1-nu_1) * p.grad.data) + (nu_1 * (grad_avg / debias1)), (((1 - nu_2) * (p.grad.data)**2) + (nu_2 * (sqr_avg / debias2))).sqrt() + eps, value = -lr) return p qhadam_step._defaults = dict(eps=1e-8) # Cell def QHAdam(params, lr, mom=0.999, sqr_mom=0.999, nu_1=0.7, nu_2 = 1.0, eps=1e-8, wd=0., decouple_wd=True): "An `Optimizer` for Adam with `lr`, `mom`, `sqr_mom`, `nus`, eps` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), partial(average_sqr_grad, dampening=True), step_stat, qhadam_step] return Optimizer(params, cbs, lr=lr, nu_1=nu_1, nu_2=nu_2 , mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # Cell def larc_layer_lr(p, lr, trust_coeff, wd, eps, clip=True, **kwargs): "Computes the local lr before weight decay is applied" p_norm,g_norm = torch.norm(p.data),torch.norm(p.grad.data) local_lr = lr*trust_coeff * (p_norm) / (g_norm + p_norm * wd + eps) return {'local_lr': min(lr, local_lr) if clip else local_lr} larc_layer_lr.defaults = dict(trust_coeff=0.02, wd=0., eps=1e-8) # Cell def larc_step(p, local_lr, grad_avg=None, **kwargs): "Step for LARC `local_lr` on `p`" p.data.add_(p.grad.data if grad_avg is None else grad_avg, alpha = -local_lr) # Cell def Larc(params, lr, mom=0.9, clip=True, trust_coeff=0.02, eps=1e-8, wd=0., decouple_wd=True): "A `Optimizer` for Adam with `lr`, `mom`, `sqr_mom`, `eps` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] if mom!=0.: cbs.append(average_grad) cbs += [partial(larc_layer_lr, clip=clip), larc_step] return Optimizer(params, cbs, lr=lr, mom=mom, trust_coeff=trust_coeff, eps=eps, wd=wd) # Cell def lamb_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs): "Step for LAMB with `lr` on `p`" debias1 = debias(mom, 1-mom, step) debias2 = debias(sqr_mom, 1-sqr_mom, step) r1 = p.data.pow(2).mean().sqrt() step = (grad_avg/debias1) / ((sqr_avg/debias2).sqrt()+eps) r2 = step.pow(2).mean().sqrt() q = 1 if r1 == 0 or r2 == 0 else min(r1/r2,10) p.data.add_(step, alpha = -lr * q) lamb_step._defaults = dict(eps=1e-6, wd=0.) # Cell def Lamb(params, lr, mom=0.9, sqr_mom=0.99, eps=1e-5, wd=0., decouple_wd=True): "A `Optimizer` for Adam with `lr`, `mom`, `sqr_mom`, `eps` and `params`" cbs = [weight_decay] if decouple_wd else [l2_reg] cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, lamb_step] return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd) # Cell class Lookahead(Optimizer, GetAttr): "Wrap `opt` in a lookahead optimizer" _default='opt' def __init__(self, opt, k=6, alpha=0.5): store_attr('opt,k,alpha') self._init_state() def step(self): if self.slow_weights is None: self._copy_weights() self.opt.step() self.count += 1 if self.count%self.k != 0: return for slow_pg,fast_pg in zip(self.slow_weights,self.param_lists): for slow_p,fast_p in zip(slow_pg,fast_pg): slow_p.data.add_(fast_p.data-slow_p.data, alpha=self.alpha) fast_p.data.copy_(slow_p.data) def clear_state(self): self.opt.clear_state() self._init_state() def state_dict(self): state = self.opt.state_dict() state.update({'count': self.count, 'slow_weights': self.slow_weights}) return state def load_state_dict(self, sd): self.count = sd.pop('count') self.slow_weights = sd.pop('slow_weights') self.opt.load_state_dict(sd) def _init_state(self): self.count,self.slow_weights = 0,None def _copy_weights(self): self.slow_weights = L(L(p.clone().detach() for p in pg) for pg in self.param_lists) @property def param_lists(self): return self.opt.param_lists @param_lists.setter def param_lists(self, v): self.opt.param_lists = v # Cell @delegates(RAdam) def ranger(p, lr, mom=0.95, wd=0.01, eps=1e-6, **kwargs): "Convenience method for `Lookahead` with `RAdam`" return Lookahead(RAdam(p, lr=lr, mom=mom, wd=wd, eps=eps, **kwargs)) # Cell def detuplify_pg(d): res = {} for k,v in d.items(): if k == 'params': continue if is_listy(v): res.update(**{f'{k}__{i}': v_ for i,v_ in enumerate(v)}) else: res[k] = v return res # Cell def set_item_pg(pg, k, v): if '__' not in k: pg[k] = v else: name,idx = k.split('__') pg[name] = tuple(v if i==int(idx) else pg[name][i] for i in range_of(pg[name])) return pg # Cell pytorch_hp_map = {'momentum': 'mom', 'weight_decay': 'wd', 'alpha': 'sqr_mom', 'betas__0': 'mom', 'betas__1': 'sqr_mom'} # Cell class OptimWrapper(_BaseOptimizer, GetAttr): _xtra=['zero_grad', 'step', 'state_dict', 'load_state_dict'] _default='opt' def __init__(self, opt, hp_map=None): self.opt = opt if hp_map is None: hp_map = pytorch_hp_map self.fwd_map = {k: hp_map[k] if k in hp_map else k for k in detuplify_pg(opt.param_groups[0]).keys()} self.bwd_map = {v:k for k,v in self.fwd_map.items()} self.state = defaultdict(dict, {}) self.frozen_idx = 0 @property def hypers(self): return [{self.fwd_map[k]:v for k,v in detuplify_pg(pg).items() if k != 'params'} for pg in self.opt.param_groups] def _set_hyper(self, k, v): for pg,v_ in zip(self.opt.param_groups,v): pg = set_item_pg(pg, self.bwd_map[k], v_) def clear_state(self): self.opt.state = defaultdict(dict, {}) @property def param_lists(self): return [pg['params'] for pg in self.opt.param_groups] @param_lists.setter def param_lists(self, v): for pg,v_ in zip(self.opt.param_groups,v): pg['params'] = v_
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/optimizer.py
optimizer.py
__all__ = ['CancelStepException', 'CancelFitException', 'CancelEpochException', 'CancelTrainException', 'CancelValidException', 'CancelBatchException', 'replacing_yield', 'mk_metric', 'save_model', 'load_model', 'Learner', 'before_batch_cb', 'load_learner', 'to_detach_from_dl', 'Metric', 'AvgMetric', 'AvgLoss', 'AvgSmoothLoss', 'ValueMetric', 'Recorder'] # Cell from .data.all import * from .optimizer import * from .callback.core import * import pickle # Cell #nbdev_comment _all_ = ['CancelStepException','CancelFitException','CancelEpochException','CancelTrainException','CancelValidException','CancelBatchException'] # Cell defaults.lr = 1e-3 # Cell def replacing_yield(o, attr, val): "Context manager to temporarily replace an attribute" old = getattr(o,attr) try: yield setattr(o,attr,val) finally: setattr(o,attr,old) # Cell def mk_metric(m): "Convert `m` to an `AvgMetric`, unless it's already a `Metric`" if isinstance(m,type): m = m() return m if isinstance(m, Metric) else AvgMetric(m) # Cell def save_model(file, model, opt, with_opt=True, pickle_protocol=2): "Save `model` to `file` along with `opt` (if available, and if `with_opt`)" if rank_distrib(): return # don't save if child proc if opt is None: with_opt=False state = get_model(model).state_dict() if with_opt: state = {'model': state, 'opt':opt.state_dict()} torch.save(state, file, pickle_protocol=pickle_protocol) # Cell def load_model(file, model, opt, with_opt=True, device=None, strict=True): "Load `model` from `file` along with `opt` (if available, and if `with_opt`)" distrib_barrier() if isinstance(device, int): device = torch.device('cuda', device) elif device is None: device = 'cpu' state = torch.load(file, map_location=device) hasopt = set(state)=={'model', 'opt'} model_state = state['model'] if hasopt else state get_model(model).load_state_dict(model_state, strict=strict) if hasopt and with_opt: try: opt.load_state_dict(state['opt']) except: if with_opt: warn("Could not load the optimizer state.") elif with_opt: warn("Saved filed doesn't contain an optimizer state.") # Cell def _try_concat(o): try: return torch.cat(o) except: return sum([L(o_[i,:] for i in range_of(o_)) for o_ in o], L()) # Cell _before_epoch = [event.before_fit, event.before_epoch] _after_epoch = [event.after_epoch, event.after_fit] # Cell class _ConstantFunc(): "Returns a function that returns `o`" def __init__(self, o): self.o = o def __call__(self, *args, **kwargs): return self.o # Cell _loop = ['Start Fit', 'before_fit', 'Start Epoch Loop', 'before_epoch', 'Start Train', 'before_train', 'Start Batch Loop', 'before_batch', 'after_pred', 'after_loss', 'before_backward', 'before_step', 'after_step', 'after_cancel_batch', 'after_batch','End Batch Loop','End Train', 'after_cancel_train', 'after_train', 'Start Valid', 'before_validate','Start Batch Loop', '**CBs same as train batch**', 'End Batch Loop', 'End Valid', 'after_cancel_validate', 'after_validate', 'End Epoch Loop', 'after_cancel_epoch', 'after_epoch', 'End Fit', 'after_cancel_fit', 'after_fit'] # Cell class Learner(GetAttr): _default='model' def __init__(self, dls, model, loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=trainable_params, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95)): path = Path(path) if path is not None else getattr(dls, 'path', Path('.')) if loss_func is None: loss_func = getattr(dls.train_ds, 'loss_func', None) assert loss_func is not None, "Could not infer loss function from the data, please pass a loss function." self.dls,self.model = dls,model store_attr(but='dls,model,cbs') self.training,self.create_mbar,self.logger,self.opt,self.cbs = False,True,print,None,L() self.add_cbs(L(defaults.callbacks)+L(cbs)) self("after_create") @property def metrics(self): return self._metrics @metrics.setter def metrics(self,v): self._metrics = L(v).map(mk_metric) def _grab_cbs(self, cb_cls): return L(cb for cb in self.cbs if isinstance(cb, cb_cls)) def add_cbs(self, cbs): L(cbs).map(self.add_cb) return self def remove_cbs(self, cbs): L(cbs).map(self.remove_cb) return self def add_cb(self, cb): if isinstance(cb, type): cb = cb() cb.learn = self setattr(self, cb.name, cb) self.cbs.append(cb) return self def remove_cb(self, cb): if isinstance(cb, type): self.remove_cbs(self._grab_cbs(cb)) else: cb.learn = None if hasattr(self, cb.name): delattr(self, cb.name) if cb in self.cbs: self.cbs.remove(cb) return self @contextmanager def added_cbs(self, cbs): self.add_cbs(cbs) try: yield finally: self.remove_cbs(cbs) @contextmanager def removed_cbs(self, cbs): self.remove_cbs(cbs) try: yield self finally: self.add_cbs(cbs) def ordered_cbs(self, event): return [cb for cb in self.cbs.sorted('order') if hasattr(cb, event)] def __call__(self, event_name): L(event_name).map(self._call_one) def _call_one(self, event_name): if not hasattr(event, event_name): raise Exception(f'missing {event_name}') for cb in self.cbs.sorted('order'): cb(event_name) def _bn_bias_state(self, with_bias): return norm_bias_params(self.model, with_bias).map(self.opt.state) def create_opt(self): self.opt = self.opt_func(self.splitter(self.model), lr=self.lr) if not self.wd_bn_bias: for p in self._bn_bias_state(True ): p['do_wd'] = False if self.train_bn: for p in self._bn_bias_state(False): p['force_train'] = True def _split(self, b): i = getattr(self.dls, 'n_inp', 1 if len(b)==1 else len(b)-1) self.xb,self.yb = b[:i],b[i:] def _with_events(self, f, event_type, ex, final=noop): try: self(f'before_{event_type}'); f() except ex: self(f'after_cancel_{event_type}') self(f'after_{event_type}'); final() def all_batches(self): self.n_iter = len(self.dl) for o in enumerate(self.dl): self.one_batch(*o) def _do_one_batch(self): self.pred = self.model(*self.xb) self('after_pred') if len(self.yb): self.loss_grad = self.loss_func(self.pred, *self.yb) self.loss = self.loss_grad.clone() self('after_loss') if not self.training or not len(self.yb): return self('before_backward') self.loss_grad.backward() self._with_events(self.opt.step, 'step', CancelStepException) self.opt.zero_grad() def one_batch(self, i, b): self.iter = i self._split(b) self._with_events(self._do_one_batch, 'batch', CancelBatchException) def _do_epoch_train(self): self.dl = self.dls.train self._with_events(self.all_batches, 'train', CancelTrainException) def _do_epoch_validate(self, ds_idx=1, dl=None): if dl is None: dl = self.dls[ds_idx] self.dl = dl with torch.no_grad(): self._with_events(self.all_batches, 'validate', CancelValidException) def _do_epoch(self): self._do_epoch_train() self._do_epoch_validate() def _do_fit(self): for epoch in range(self.n_epoch): self.epoch=epoch self._with_events(self._do_epoch, 'epoch', CancelEpochException) def fit(self, n_epoch, lr=None, wd=None, cbs=None, reset_opt=False): with self.added_cbs(cbs): if reset_opt or not self.opt: self.create_opt() if wd is None: wd = self.wd if wd is not None: self.opt.set_hypers(wd=wd) self.opt.set_hypers(lr=self.lr if lr is None else lr) self.n_epoch = n_epoch self._with_events(self._do_fit, 'fit', CancelFitException, self._end_cleanup) def _end_cleanup(self): self.dl,self.xb,self.yb,self.pred,self.loss = None,(None,),(None,),None,None def __enter__(self): self(_before_epoch); return self def __exit__(self, exc_type, exc_value, tb): self(_after_epoch) def validation_context(self, cbs=None, inner=False): cms = [self.no_logging(),self.no_mbar()] if cbs: cms.append(self.added_cbs(cbs)) if not inner: cms.append(self) return ContextManagers(cms) def validate(self, ds_idx=1, dl=None, cbs=None): if dl is None: dl = self.dls[ds_idx] with self.validation_context(cbs=cbs): self._do_epoch_validate(ds_idx, dl) return getattr(self, 'final_record', None) @delegates(GatherPredsCallback.__init__) def get_preds(self, ds_idx=1, dl=None, with_input=False, with_decoded=False, with_loss=False, act=None, inner=False, reorder=True, cbs=None, **kwargs): if dl is None: dl = self.dls[ds_idx].new(shuffled=False, drop_last=False) else: try: len(dl) except TypeError as e: raise TypeError("`dl` is something other than a single `DataLoader` object") if reorder and hasattr(dl, 'get_idxs'): idxs = dl.get_idxs() dl = dl.new(get_idxs = _ConstantFunc(idxs)) cb = GatherPredsCallback(with_input=with_input, with_loss=with_loss, **kwargs) ctx_mgrs = self.validation_context(cbs=L(cbs)+[cb], inner=inner) if with_loss: ctx_mgrs.append(self.loss_not_reduced()) with ContextManagers(ctx_mgrs): self._do_epoch_validate(dl=dl) if act is None: act = getattr(self.loss_func, 'activation', noop) res = cb.all_tensors() pred_i = 1 if with_input else 0 if res[pred_i] is not None: res[pred_i] = act(res[pred_i]) if with_decoded: res.insert(pred_i+2, getattr(self.loss_func, 'decodes', noop)(res[pred_i])) if reorder and hasattr(dl, 'get_idxs'): res = nested_reorder(res, tensor(idxs).argsort()) return tuple(res) self._end_cleanup() def predict(self, item, rm_type_tfms=None, with_input=False): dl = self.dls.test_dl([item], rm_type_tfms=rm_type_tfms, num_workers=0) inp,preds,_,dec_preds = self.get_preds(dl=dl, with_input=True, with_decoded=True) i = getattr(self.dls, 'n_inp', -1) inp = (inp,) if i==1 else tuplify(inp) dec = self.dls.decode_batch(inp + tuplify(dec_preds))[0] dec_inp,dec_targ = map(detuplify, [dec[:i],dec[i:]]) res = dec_targ,dec_preds[0],preds[0] if with_input: res = (dec_inp,) + res return res def show_results(self, ds_idx=1, dl=None, max_n=9, shuffle=True, **kwargs): if dl is None: dl = self.dls[ds_idx].new(shuffle=shuffle) b = dl.one_batch() _,_,preds = self.get_preds(dl=[b], with_decoded=True) self.dls.show_results(b, preds, max_n=max_n, **kwargs) def show_training_loop(self): indent = 0 for s in _loop: if s.startswith('Start'): print(f'{" "*indent}{s}'); indent += 2 elif s.startswith('End'): indent -= 2; print(f'{" "*indent}{s}') else: print(f'{" "*indent} - {s:15}:', self.ordered_cbs(s)) @contextmanager def no_logging(self): return replacing_yield(self, 'logger', noop) @contextmanager def no_mbar(self): return replacing_yield(self, 'create_mbar', False) @contextmanager def loss_not_reduced(self): if hasattr(self.loss_func, 'reduction'): return replacing_yield(self.loss_func, 'reduction', 'none') else: return replacing_yield(self, 'loss_func', partial(self.loss_func, reduction='none')) def to_detach(self,b,cpu=True,gather=True): return self.dl.to_detach(b,cpu,gather) if hasattr(getattr(self,'dl',None),'to_detach') else to_detach(b,cpu,gather) Learner.x,Learner.y = add_props(lambda i,x: detuplify((x.xb,x.yb)[i])) # Cell add_docs(Learner, "Group together a `model`, some `dls` and a `loss_func` to handle training", add_cbs="Add `cbs` to the list of `Callback` and register `self` as their learner", add_cb="Add `cb` to the list of `Callback` and register `self` as their learner", remove_cbs="Remove `cbs` from the list of `Callback` and deregister `self` as their learner", remove_cb="Add `cb` from the list of `Callback` and deregister `self` as their learner", added_cbs="Context manage that temporarily adds `cbs`", removed_cbs="Context manage that temporarily removes `cbs`", ordered_cbs="List of `Callback`s, in order, for an `event` in the training loop", create_opt="Create an optimizer with default hyper-parameters", one_batch="Train or evaluate `self.model` on batch `(xb,yb)`", all_batches="Train or evaluate `self.model` on all the batches of `self.dl`", fit="Fit `self.model` for `n_epoch` using `cbs`. Optionally `reset_opt`.", validate="Validate on `dl` with potential new `cbs`.", get_preds="Get the predictions and targets on the `ds_idx`-th dbunchset or `dl`, optionally `with_input` and `with_loss`", predict="Prediction on `item`, fully decoded, loss function decoded and probabilities", validation_context="A `ContextManagers` suitable for validation, with optional `cbs`", show_results="Show some predictions on `ds_idx`-th dataset or `dl`", show_training_loop="Show each step in the training loop", no_logging="Context manager to temporarily remove `logger`", no_mbar="Context manager to temporarily prevent the master progress bar from being created", loss_not_reduced="A context manager to evaluate `loss_func` with reduction set to none.", to_detach="Calls `to_detach` if `self.dl` provides a `.to_detach` function otherwise calls global `to_detach`", __call__="Call `event_name` for all `Callback`s in `self.cbs`" ) # Cell if not hasattr(defaults, 'callbacks'): defaults.callbacks = [TrainEvalCallback] # Cell def _before_batch_cb(f, self): xb,yb = f(self, self.xb, self.yb) self.learn.xb,self.learn.yb = xb,yb # Cell def before_batch_cb(f): "Shortcut for creating a Callback on the `before_batch` event, which takes and returns `xb,yb`" return Callback(before_batch=partial(_before_batch_cb, f)) # Cell @patch @delegates(save_model) def save(self:Learner, file, **kwargs): "Save model and optimizer state (if `with_opt`) to `self.path/self.model_dir/file`" file = join_path_file(file, self.path/self.model_dir, ext='.pth') save_model(file, self.model, getattr(self,'opt',None), **kwargs) return file # Cell @patch @delegates(load_model) def load(self:Learner, file, device=None, **kwargs): "Load model and optimizer state (if `with_opt`) from `self.path/self.model_dir/file` using `device`" if device is None and hasattr(self.dls, 'device'): device = self.dls.device if self.opt is None: self.create_opt() file = join_path_file(file, self.path/self.model_dir, ext='.pth') load_model(file, self.model, self.opt, device=device, **kwargs) return self # Cell @patch def export(self:Learner, fname='export.pkl', pickle_module=pickle, pickle_protocol=2): "Export the content of `self` without the items and the optimizer state for inference" if rank_distrib(): return # don't export if child proc self._end_cleanup() old_dbunch = self.dls self.dls = self.dls.new_empty() state = self.opt.state_dict() if self.opt is not None else None self.opt = None with warnings.catch_warnings(): #To avoid the warning that come from PyTorch about model not being checked warnings.simplefilter("ignore") torch.save(self, self.path/fname, pickle_module=pickle_module, pickle_protocol=pickle_protocol) self.create_opt() if state is not None: self.opt.load_state_dict(state) self.dls = old_dbunch # Cell def load_learner(fname, cpu=True, pickle_module=pickle): "Load a `Learner` object in `fname`, optionally putting it on the `cpu`" distrib_barrier() res = torch.load(fname, map_location='cpu' if cpu else None, pickle_module=pickle_module) if hasattr(res, 'to_fp32'): res = res.to_fp32() if cpu: res.dls.cpu() return res # Cell def to_detach_from_dl(learn:(Learner,NoneType),b:object,cpu:bool=True,gather:bool=True): return learn.dl.to_detach(b,cpu,gather) if hasattr(getattr(learn,'dl',None),'to_detach') else to_detach(b,cpu,gather) # Cell @docs class Metric(): "Blueprint for defining a metric" def reset(self): pass def accumulate(self, learn): pass @property def value(self): raise NotImplementedError @property def name(self): return class2attr(self, 'Metric') _docs = dict( reset="Reset inner state to prepare for new computation", name="Name of the `Metric`, camel-cased and with Metric removed", accumulate="Use `learn` to update the state with new results", value="The value of the metric") # Cell def _maybe_reduce(val): if num_distrib()>1: val = val.clone() torch.distributed.all_reduce(val, op=torch.distributed.ReduceOp.SUM) val /= num_distrib() return val # Cell class AvgMetric(Metric): "Average the values of `func` taking into account potential different batch sizes" def __init__(self, func): self.func = func def reset(self): self.total,self.count = 0.,0 def accumulate(self, learn): bs = find_bs(learn.yb) self.total += learn.to_detach(self.func(learn.pred, *learn.yb))*bs self.count += bs @property def value(self): return self.total/self.count if self.count != 0 else None @property def name(self): return self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__ # Cell class AvgLoss(Metric): "Average the losses taking into account potential different batch sizes" def reset(self): self.total,self.count = 0.,0 def accumulate(self, learn): bs = find_bs(learn.yb) self.total += learn.to_detach(learn.loss.mean())*bs self.count += bs @property def value(self): return self.total/self.count if self.count != 0 else None @property def name(self): return "loss" # Cell class AvgSmoothLoss(Metric): "Smooth average of the losses (exponentially weighted with `beta`)" def __init__(self, beta=0.98): self.beta = beta def reset(self): self.count,self.val = 0,tensor(0.) def accumulate(self, learn): self.count += 1 self.val = torch.lerp(to_detach(learn.loss.mean(), gather=False), self.val, self.beta) @property def value(self): return self.val/(1-self.beta**self.count) # Cell class ValueMetric(Metric): "Use to include a pre-calculated metric value (for instance calculated in a `Callback`) and returned by `func`" def __init__(self, func, metric_name=None): store_attr('func, metric_name') @property def value(self): return self.func() @property def name(self): return self.metric_name if self.metric_name else self.func.__name__ # Cell from fastprogress.fastprogress import format_time # Cell def _maybe_item(t): t = t.value try: return t.item() except: return t # Cell class Recorder(Callback): "Callback that registers statistics (lr, loss and metrics) during training" _stateattrs=('lrs','iters','losses','values') remove_on_fetch,order = True,50 def __init__(self, add_time=True, train_metrics=False, valid_metrics=True, beta=0.98): store_attr('add_time,train_metrics,valid_metrics') self.loss,self.smooth_loss = AvgLoss(),AvgSmoothLoss(beta=beta) def before_fit(self): "Prepare state for training" self.lrs,self.iters,self.losses,self.values = [],[],[],[] names = self.metrics.attrgot('name') if self.train_metrics and self.valid_metrics: names = L('loss') + names names = names.map('train_{}') + names.map('valid_{}') elif self.valid_metrics: names = L('train_loss', 'valid_loss') + names else: names = L('train_loss') + names if self.add_time: names.append('time') self.metric_names = 'epoch'+names self.smooth_loss.reset() def after_batch(self): "Update all metrics and records lr and smooth loss in training" if len(self.yb) == 0: return mets = self._train_mets if self.training else self._valid_mets for met in mets: met.accumulate(self.learn) if not self.training: return self.lrs.append(self.opt.hypers[-1]['lr']) self.losses.append(self.smooth_loss.value) self.learn.smooth_loss = self.smooth_loss.value def before_epoch(self): "Set timer if `self.add_time=True`" self.cancel_train,self.cancel_valid = False,False if self.add_time: self.start_epoch = time.time() self.log = L(getattr(self, 'epoch', 0)) def before_train (self): self._train_mets[1:].map(Self.reset()) def before_validate(self): self._valid_mets.map(Self.reset()) def after_train (self): self.log += self._train_mets.map(_maybe_item) def after_validate(self): self.log += self._valid_mets.map(_maybe_item) def after_cancel_train(self): self.cancel_train = True def after_cancel_validate(self): self.cancel_valid = True def after_epoch(self): "Store and log the loss/metric values" self.learn.final_record = self.log[1:].copy() self.values.append(self.learn.final_record) if self.add_time: self.log.append(format_time(time.time() - self.start_epoch)) self.logger(self.log) self.iters.append(self.smooth_loss.count) @property def _train_mets(self): if getattr(self, 'cancel_train', False): return L() return L(self.smooth_loss) + (self.metrics if self.train_metrics else L()) @property def _valid_mets(self): if getattr(self, 'cancel_valid', False): return L() return (L(self.loss) + self.metrics if self.valid_metrics else L()) def plot_loss(self, skip_start=5, with_valid=True): plt.plot(list(range(skip_start, len(self.losses))), self.losses[skip_start:], label='train') if with_valid: idx = (np.array(self.iters)<skip_start).sum() plt.plot(self.iters[idx:], L(self.values[idx:]).itemgot(1), label='valid') plt.legend() # Cell add_docs(Recorder, before_train = "Reset loss and metrics state", after_train = "Log loss and metric values on the training set (if `self.training_metrics=True`)", before_validate = "Reset loss and metrics state", after_validate = "Log loss and metric values on the validation set", after_cancel_train = "Ignore training metrics for this epoch", after_cancel_validate = "Ignore validation metrics for this epoch", plot_loss = "Plot the losses from `skip_start` and onward") if Recorder not in defaults.callbacks: defaults.callbacks.append(Recorder) # Cell @patch def freeze_to(self:Learner, n): if self.opt is None: self.create_opt() self.opt.freeze_to(n) self.opt.clear_state() @patch def freeze(self:Learner): self.freeze_to(-1) @patch def unfreeze(self:Learner): self.freeze_to(0) add_docs(Learner, freeze_to="Freeze parameter groups up to `n`", freeze="Freeze up to last parameter group", unfreeze="Unfreeze the entire model") # Cell @patch def tta(self:Learner, ds_idx=1, dl=None, n=4, item_tfms=None, batch_tfms=None, beta=0.25, use_max=False): "Return predictions on the `ds_idx` dataset or `dl` using Test Time Augmentation" if dl is None: dl = self.dls[ds_idx] if item_tfms is not None or batch_tfms is not None: dl = dl.new(after_item=item_tfms, after_batch=batch_tfms) try: self(_before_epoch) with dl.dataset.set_split_idx(0), self.no_mbar(): if hasattr(self,'progress'): self.progress.mbar = master_bar(list(range(n))) aug_preds = [] for i in self.progress.mbar if hasattr(self,'progress') else range(n): self.epoch = i #To keep track of progress on mbar since the progress callback will use self.epoch aug_preds.append(self.get_preds(dl=dl, inner=True)[0][None]) aug_preds = torch.cat(aug_preds) aug_preds = aug_preds.max(0)[0] if use_max else aug_preds.mean(0) self.epoch = n with dl.dataset.set_split_idx(1): preds,targs = self.get_preds(dl=dl, inner=True) finally: self(event.after_fit) if use_max: return torch.stack([preds, aug_preds], 0).max(0)[0],targs preds = (aug_preds,preds) if beta is None else torch.lerp(aug_preds, preds, beta) return preds,targs
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/learner.py
learner.py
__all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"subplots": "00_torch_core.ipynb", "show_image": "00_torch_core.ipynb", "show_titled_image": "00_torch_core.ipynb", "show_images": "00_torch_core.ipynb", "ArrayBase": "00_torch_core.ipynb", "ArrayImageBase": "00_torch_core.ipynb", "ArrayImage": "00_torch_core.ipynb", "ArrayImageBW": "00_torch_core.ipynb", "ArrayMask": "00_torch_core.ipynb", "Tensor.__array_eq__": "00_torch_core.ipynb", "tensor": "00_torch_core.ipynb", "set_seed": "00_torch_core.ipynb", "get_random_states": "00_torch_core.ipynb", "set_random_states": "00_torch_core.ipynb", "no_random": "00_torch_core.ipynb", "unsqueeze": "00_torch_core.ipynb", "unsqueeze_": "00_torch_core.ipynb", "apply": "00_torch_core.ipynb", "maybe_gather": "00_torch_core.ipynb", "to_detach": "00_torch_core.ipynb", "to_half": "00_torch_core.ipynb", "to_float": "00_torch_core.ipynb", "defaults.use_cuda": "00_torch_core.ipynb", "default_device": "00_torch_core.ipynb", "to_device": "00_torch_core.ipynb", "to_cpu": "00_torch_core.ipynb", "to_np": "00_torch_core.ipynb", "to_concat": "00_torch_core.ipynb", "Tensor.set_meta": "00_torch_core.ipynb", "Tensor.as_subclass": "00_torch_core.ipynb", "TensorBase": "00_torch_core.ipynb", "TensorImageBase": "00_torch_core.ipynb", "TensorImage": "00_torch_core.ipynb", "TensorImageBW": "00_torch_core.ipynb", "TensorMask": "00_torch_core.ipynb", "TensorFlowField": "00_torch_core.ipynb", "TensorCategory": "00_torch_core.ipynb", "TensorMultiCategory": "00_torch_core.ipynb", "TitledTensorScalar": "00_torch_core.ipynb", "L.tensored": "00_torch_core.ipynb", "L.stack": "00_torch_core.ipynb", "L.cat": "00_torch_core.ipynb", "concat": "00_torch_core.ipynb", "Chunks": "00_torch_core.ipynb", "show_title": "00_torch_core.ipynb", "ShowTitle": "00_torch_core.ipynb", "TitledInt": "00_torch_core.ipynb", "TitledFloat": "00_torch_core.ipynb", "TitledStr": "00_torch_core.ipynb", "TitledTuple": "00_torch_core.ipynb", "TitledStr.truncate": "00_torch_core.ipynb", "pd.DataFrame.__init__": "00_torch_core.ipynb", "get_empty_df": "00_torch_core.ipynb", "display_df": "00_torch_core.ipynb", "get_first": "00_torch_core.ipynb", "one_param": "00_torch_core.ipynb", "item_find": "00_torch_core.ipynb", "find_device": "00_torch_core.ipynb", "find_bs": "00_torch_core.ipynb", "np_func": "00_torch_core.ipynb", "Module": "00_torch_core.ipynb", "get_model": "00_torch_core.ipynb", "one_hot": "00_torch_core.ipynb", "one_hot_decode": "00_torch_core.ipynb", "params": "00_torch_core.ipynb", "trainable_params": "00_torch_core.ipynb", "norm_types": "00_torch_core.ipynb", "norm_bias_params": "00_torch_core.ipynb", "batch_to_samples": "00_torch_core.ipynb", "Tensor.interp_1d": "00_torch_core.ipynb", "Tensor.pca": "00_torch_core.ipynb", "logit": "00_torch_core.ipynb", "num_distrib": "00_torch_core.ipynb", "rank_distrib": "00_torch_core.ipynb", "distrib_barrier": "00_torch_core.ipynb", "Path.save_array": "00_torch_core.ipynb", "Path.load_array": "00_torch_core.ipynb", "base_doc": "00_torch_core.ipynb", "doc": "00_torch_core.ipynb", "nested_reorder": "00_torch_core.ipynb", "make_cross_image": "00_torch_core.ipynb", "show_image_batch": "00_torch_core.ipynb", "requires_grad": "00_torch_core.ipynb", "init_default": "01_layers.ipynb", "cond_init": "00_torch_core.ipynb", "apply_leaf": "00_torch_core.ipynb", "apply_init": "00_torch_core.ipynb", "script_use_ctx": "00_torch_core.ipynb", "script_save_ctx": "00_torch_core.ipynb", "script_fwd": "00_torch_core.ipynb", "script_bwd": "00_torch_core.ipynb", "grad_module": "00_torch_core.ipynb", "module": "01_layers.ipynb", "Identity": "01_layers.ipynb", "Lambda": "01_layers.ipynb", "PartialLambda": "01_layers.ipynb", "Flatten": "01_layers.ipynb", "View": "01_layers.ipynb", "ResizeBatch": "01_layers.ipynb", "Debugger": "01_layers.ipynb", "sigmoid_range": "01_layers.ipynb", "SigmoidRange": "01_layers.ipynb", "AdaptiveConcatPool1d": "01_layers.ipynb", "AdaptiveConcatPool2d": "01_layers.ipynb", "PoolType": "01_layers.ipynb", "adaptive_pool": "01_layers.ipynb", "PoolFlatten": "01_layers.ipynb", "NormType": "01_layers.ipynb", "BatchNorm": "01_layers.ipynb", "InstanceNorm": "01_layers.ipynb", "BatchNorm1dFlat": "01_layers.ipynb", "LinBnDrop": "01_layers.ipynb", "sigmoid": "01_layers.ipynb", "sigmoid_": "01_layers.ipynb", "vleaky_relu": "01_layers.ipynb", "init_linear": "01_layers.ipynb", "defaults.activation": "01_layers.ipynb", "ConvLayer": "01_layers.ipynb", "AdaptiveAvgPool": "01_layers.ipynb", "MaxPool": "01_layers.ipynb", "AvgPool": "01_layers.ipynb", "trunc_normal_": "01_layers.ipynb", "Embedding": "01_layers.ipynb", "SelfAttention": "01_layers.ipynb", "PooledSelfAttention2d": "01_layers.ipynb", "SimpleSelfAttention": "01_layers.ipynb", "icnr_init": "01_layers.ipynb", "PixelShuffle_ICNR": "01_layers.ipynb", "sequential": "01_layers.ipynb", "SequentialEx": "01_layers.ipynb", "MergeLayer": "01_layers.ipynb", "Cat": "01_layers.ipynb", "SimpleCNN": "01_layers.ipynb", "ProdLayer": "01_layers.ipynb", "inplace_relu": "01_layers.ipynb", "SEModule": "01_layers.ipynb", "ResBlock": "01_layers.ipynb", "SEBlock": "01_layers.ipynb", "SEResNeXtBlock": "01_layers.ipynb", "SeparableBlock": "01_layers.ipynb", "swish": "01_layers.ipynb", "Swish": "01_layers.ipynb", "MishJitAutoFn": "01_layers.ipynb", "mish": "01_layers.ipynb", "Mish": "01_layers.ipynb", "ParameterModule": "01_layers.ipynb", "children_and_parameters": "01_layers.ipynb", "has_children": "01_layers.ipynb", "flatten_model": "01_layers.ipynb", "NoneReduce": "01_layers.ipynb", "in_channels": "01_layers.ipynb", "BaseLoss": "01a_losses.ipynb", "CrossEntropyLossFlat": "01a_losses.ipynb", "BCEWithLogitsLossFlat": "01a_losses.ipynb", "BCELossFlat": "01a_losses.ipynb", "MSELossFlat": "01a_losses.ipynb", "L1LossFlat": "01a_losses.ipynb", "LabelSmoothingCrossEntropy": "01a_losses.ipynb", "LabelSmoothingCrossEntropyFlat": "01a_losses.ipynb", "fa_collate": "02_data.load.ipynb", "fa_convert": "02_data.load.ipynb", "SkipItemException": "02_data.load.ipynb", "DataLoader": "02_data.load.ipynb", "TfmdDL": "03_data.core.ipynb", "DataLoaders": "03_data.core.ipynb", "FilteredBase": "03_data.core.ipynb", "TfmdLists": "03_data.core.ipynb", "decode_at": "03_data.core.ipynb", "show_at": "03_data.core.ipynb", "Datasets": "03_data.core.ipynb", "test_set": "03_data.core.ipynb", "DataLoaders.test_dl": "03_data.core.ipynb", "Config": "04_data.external.ipynb", "URLs": "04_data.external.ipynb", "download_url": "04_data.external.ipynb", "download_data": "04_data.external.ipynb", "file_extract": "04_data.external.ipynb", "newest_folder": "04_data.external.ipynb", "rename_extracted": "04_data.external.ipynb", "untar_data": "04_data.external.ipynb", "get_files": "05_data.transforms.ipynb", "FileGetter": "05_data.transforms.ipynb", "image_extensions": "05_data.transforms.ipynb", "get_image_files": "05_data.transforms.ipynb", "ImageGetter": "05_data.transforms.ipynb", "get_text_files": "05_data.transforms.ipynb", "ItemGetter": "05_data.transforms.ipynb", "AttrGetter": "05_data.transforms.ipynb", "RandomSplitter": "05_data.transforms.ipynb", "TrainTestSplitter": "05_data.transforms.ipynb", "IndexSplitter": "05_data.transforms.ipynb", "GrandparentSplitter": "05_data.transforms.ipynb", "FuncSplitter": "05_data.transforms.ipynb", "MaskSplitter": "05_data.transforms.ipynb", "FileSplitter": "05_data.transforms.ipynb", "ColSplitter": "05_data.transforms.ipynb", "RandomSubsetSplitter": "05_data.transforms.ipynb", "parent_label": "05_data.transforms.ipynb", "RegexLabeller": "05_data.transforms.ipynb", "ColReader": "05_data.transforms.ipynb", "CategoryMap": "05_data.transforms.ipynb", "Categorize": "05_data.transforms.ipynb", "Category": "05_data.transforms.ipynb", "MultiCategorize": "05_data.transforms.ipynb", "MultiCategory": "05_data.transforms.ipynb", "OneHotEncode": "05_data.transforms.ipynb", "EncodedMultiCategorize": "05_data.transforms.ipynb", "RegressionSetup": "05_data.transforms.ipynb", "get_c": "05_data.transforms.ipynb", "ToTensor": "05_data.transforms.ipynb", "IntToFloatTensor": "05_data.transforms.ipynb", "broadcast_vec": "05_data.transforms.ipynb", "Normalize": "05_data.transforms.ipynb", "TransformBlock": "06_data.block.ipynb", "CategoryBlock": "06_data.block.ipynb", "MultiCategoryBlock": "06_data.block.ipynb", "RegressionBlock": "06_data.block.ipynb", "DataBlock": "06_data.block.ipynb", "DataBlock.summary": "06_data.block.ipynb", "imagenet_stats": "07_vision.core.ipynb", "cifar_stats": "07_vision.core.ipynb", "mnist_stats": "07_vision.core.ipynb", "n_px": "07_vision.core.ipynb", "shape": "60_medical.imaging.ipynb", "aspect": "07_vision.core.ipynb", "Image.Image.reshape": "07_vision.core.ipynb", "Image.Image.to_bytes_format": "07_vision.core.ipynb", "Image.Image.to_thumb": "07_vision.core.ipynb", "Image.Image.resize_max": "07_vision.core.ipynb", "to_image": "07_vision.core.ipynb", "load_image": "07_vision.core.ipynb", "image2tensor": "07_vision.core.ipynb", "PILBase": "07_vision.core.ipynb", "PILImage": "07_vision.core.ipynb", "PILImageBW": "07_vision.core.ipynb", "PILMask": "07_vision.core.ipynb", "OpenMask": "07_vision.core.ipynb", "OpenMask.loss_func": "07_vision.core.ipynb", "PILMask.create": "07_vision.core.ipynb", "AddMaskCodes": "07_vision.core.ipynb", "TensorPoint": "07_vision.core.ipynb", "TensorPointCreate": "07_vision.core.ipynb", "TensorPointCreate.loss_func": "07_vision.core.ipynb", "TensorPoint.create": "07_vision.core.ipynb", "get_annotations": "07_vision.core.ipynb", "TensorBBox": "07_vision.core.ipynb", "LabeledBBox": "07_vision.core.ipynb", "encodes": "40_tabular.core.ipynb", "PointScaler": "07_vision.core.ipynb", "BBoxLabeler": "07_vision.core.ipynb", "decodes": "40_tabular.core.ipynb", "get_grid": "08_vision.data.ipynb", "clip_remove_empty": "08_vision.data.ipynb", "bb_pad": "08_vision.data.ipynb", "ImageBlock": "08_vision.data.ipynb", "MaskBlock": "08_vision.data.ipynb", "PointBlock": "08_vision.data.ipynb", "BBoxBlock": "08_vision.data.ipynb", "PointBlock.__doc__": "08_vision.data.ipynb", "BBoxBlock.__doc__": "08_vision.data.ipynb", "BBoxLblBlock": "08_vision.data.ipynb", "ImageDataLoaders": "08_vision.data.ipynb", "ImageDataLoaders.from_csv": "08_vision.data.ipynb", "ImageDataLoaders.from_name_func": "08_vision.data.ipynb", "ImageDataLoaders.from_path_re": "08_vision.data.ipynb", "ImageDataLoaders.from_name_re": "08_vision.data.ipynb", "SegmentationDataLoaders": "08_vision.data.ipynb", "RandTransform": "09_vision.augment.ipynb", "TensorTypes": "09_vision.augment.ipynb", "Image.Image.flip_lr": "09_vision.augment.ipynb", "TensorImageBase.flip_lr": "09_vision.augment.ipynb", "TensorPoint.flip_lr": "09_vision.augment.ipynb", "TensorBBox.flip_lr": "09_vision.augment.ipynb", "FlipItem": "09_vision.augment.ipynb", "PILImage.dihedral": "09_vision.augment.ipynb", "TensorImage.dihedral": "09_vision.augment.ipynb", "TensorPoint.dihedral": "09_vision.augment.ipynb", "TensorBBox.dihedral": "09_vision.augment.ipynb", "DihedralItem": "09_vision.augment.ipynb", "TensorBBox.crop_pad": "09_vision.augment.ipynb", "TensorPoint.crop_pad": "09_vision.augment.ipynb", "Image.Image.crop_pad": "09_vision.augment.ipynb", "CropPad": "09_vision.augment.ipynb", "RandomCrop": "09_vision.augment.ipynb", "OldRandomCrop": "09_vision.augment.ipynb", "Resize": "09_vision.augment.ipynb", "RandomResizedCrop": "09_vision.augment.ipynb", "RatioResize": "09_vision.augment.ipynb", "affine_grid": "09_vision.augment.ipynb", "TensorImage.affine_coord": "09_vision.augment.ipynb", "TensorMask.affine_coord": "09_vision.augment.ipynb", "TensorPoint.affine_coord": "09_vision.augment.ipynb", "TensorBBox.affine_coord": "09_vision.augment.ipynb", "AffineCoordTfm": "09_vision.augment.ipynb", "RandomResizedCropGPU": "09_vision.augment.ipynb", "mask_tensor": "09_vision.augment.ipynb", "affine_mat": "09_vision.augment.ipynb", "flip_mat": "09_vision.augment.ipynb", "TensorImage.flip_batch": "09_vision.augment.ipynb", "TensorMask.flip_batch": "09_vision.augment.ipynb", "TensorPoint.flip_batch": "09_vision.augment.ipynb", "TensorBBox.flip_batch": "09_vision.augment.ipynb", "Flip": "09_vision.augment.ipynb", "DeterministicDraw": "09_vision.augment.ipynb", "DeterministicFlip": "09_vision.augment.ipynb", "dihedral_mat": "09_vision.augment.ipynb", "TensorImage.dihedral_batch": "09_vision.augment.ipynb", "TensorMask.dihedral_batch": "09_vision.augment.ipynb", "TensorPoint.dihedral_batch": "09_vision.augment.ipynb", "TensorBBox.dihedral_batch": "09_vision.augment.ipynb", "Dihedral": "09_vision.augment.ipynb", "DeterministicDihedral": "09_vision.augment.ipynb", "rotate_mat": "09_vision.augment.ipynb", "TensorImage.rotate": "09_vision.augment.ipynb", "TensorMask.rotate": "09_vision.augment.ipynb", "TensorPoint.rotate": "09_vision.augment.ipynb", "TensorBBox.rotate": "09_vision.augment.ipynb", "Rotate": "09_vision.augment.ipynb", "zoom_mat": "09_vision.augment.ipynb", "TensorImage.zoom": "09_vision.augment.ipynb", "TensorMask.zoom": "09_vision.augment.ipynb", "TensorPoint.zoom": "09_vision.augment.ipynb", "TensorBBox.zoom": "09_vision.augment.ipynb", "Zoom": "09_vision.augment.ipynb", "find_coeffs": "09_vision.augment.ipynb", "apply_perspective": "09_vision.augment.ipynb", "TensorImage.warp": "09_vision.augment.ipynb", "TensorMask.warp": "09_vision.augment.ipynb", "TensorPoint.warp": "09_vision.augment.ipynb", "TensorBBox.warp": "09_vision.augment.ipynb", "Warp": "09_vision.augment.ipynb", "TensorImage.lighting": "09_vision.augment.ipynb", "SpaceTfm": "09_vision.augment.ipynb", "LightingTfm": "09_vision.augment.ipynb", "TensorImage.brightness": "09_vision.augment.ipynb", "Brightness": "09_vision.augment.ipynb", "TensorImage.contrast": "09_vision.augment.ipynb", "Contrast": "09_vision.augment.ipynb", "grayscale": "09_vision.augment.ipynb", "TensorImage.saturation": "09_vision.augment.ipynb", "Saturation": "09_vision.augment.ipynb", "rgb2hsv": "09_vision.augment.ipynb", "hsv2rgb": "09_vision.augment.ipynb", "TensorImage.hsv": "09_vision.augment.ipynb", "HSVTfm": "09_vision.augment.ipynb", "TensorImage.hue": "09_vision.augment.ipynb", "Hue": "09_vision.augment.ipynb", "cutout_gaussian": "09_vision.augment.ipynb", "norm_apply_denorm": "09_vision.augment.ipynb", "RandomErasing": "09_vision.augment.ipynb", "setup_aug_tfms": "09_vision.augment.ipynb", "aug_transforms": "09_vision.augment.ipynb", "download_images": "09b_vision.utils.ipynb", "resize_to": "09b_vision.utils.ipynb", "verify_image": "09b_vision.utils.ipynb", "verify_images": "09b_vision.utils.ipynb", "resize_image": "09b_vision.utils.ipynb", "resize_images": "09b_vision.utils.ipynb", "Box.__getitem__": "09c_vision.widgets.ipynb", "widget": "09c_vision.widgets.ipynb", "carousel": "09c_vision.widgets.ipynb", "ImagesCleaner": "09c_vision.widgets.ipynb", "ImageClassifierCleaner": "09c_vision.widgets.ipynb", "init_cnn": "11_vision.models.xresnet.ipynb", "XResNet": "11_vision.models.xresnet.ipynb", "xresnet18": "11_vision.models.xresnet.ipynb", "xresnet34": "11_vision.models.xresnet.ipynb", "xresnet50": "11_vision.models.xresnet.ipynb", "xresnet101": "11_vision.models.xresnet.ipynb", "xresnet152": "11_vision.models.xresnet.ipynb", "xresnet18_deep": "11_vision.models.xresnet.ipynb", "xresnet34_deep": "11_vision.models.xresnet.ipynb", "xresnet50_deep": "11_vision.models.xresnet.ipynb", "xresnet18_deeper": "11_vision.models.xresnet.ipynb", "xresnet34_deeper": "11_vision.models.xresnet.ipynb", "xresnet50_deeper": "11_vision.models.xresnet.ipynb", "se_kwargs1": "11_vision.models.xresnet.ipynb", "se_kwargs2": "11_vision.models.xresnet.ipynb", "se_kwargs3": "11_vision.models.xresnet.ipynb", "g0": "11_vision.models.xresnet.ipynb", "g1": "11_vision.models.xresnet.ipynb", "g2": "11_vision.models.xresnet.ipynb", "g3": "11_vision.models.xresnet.ipynb", "xse_resnet18": "11_vision.models.xresnet.ipynb", "xse_resnext18": "11_vision.models.xresnet.ipynb", "xresnext18": "11_vision.models.xresnet.ipynb", "xse_resnet34": "11_vision.models.xresnet.ipynb", "xse_resnext34": "11_vision.models.xresnet.ipynb", "xresnext34": "11_vision.models.xresnet.ipynb", "xse_resnet50": "11_vision.models.xresnet.ipynb", "xse_resnext50": "11_vision.models.xresnet.ipynb", "xresnext50": "11_vision.models.xresnet.ipynb", "xse_resnet101": "11_vision.models.xresnet.ipynb", "xse_resnext101": "11_vision.models.xresnet.ipynb", "xresnext101": "11_vision.models.xresnet.ipynb", "xse_resnet152": "11_vision.models.xresnet.ipynb", "xsenet154": "11_vision.models.xresnet.ipynb", "xse_resnext18_deep": "11_vision.models.xresnet.ipynb", "xse_resnext34_deep": "11_vision.models.xresnet.ipynb", "xse_resnext50_deep": "11_vision.models.xresnet.ipynb", "xse_resnext18_deeper": "11_vision.models.xresnet.ipynb", "xse_resnext34_deeper": "11_vision.models.xresnet.ipynb", "xse_resnext50_deeper": "11_vision.models.xresnet.ipynb", "Optimizer": "12_optimizer.ipynb", "sgd_step": "12_optimizer.ipynb", "weight_decay": "12_optimizer.ipynb", "weight_decay.defaults": "12_optimizer.ipynb", "l2_reg": "12_optimizer.ipynb", "l2_reg.defaults": "12_optimizer.ipynb", "average_grad": "12_optimizer.ipynb", "average_grad.defaults": "12_optimizer.ipynb", "average_sqr_grad": "12_optimizer.ipynb", "average_sqr_grad.defaults": "12_optimizer.ipynb", "momentum_step": "12_optimizer.ipynb", "SGD": "12_optimizer.ipynb", "rms_prop_step": "12_optimizer.ipynb", "rms_prop_step.defaults": "12_optimizer.ipynb", "RMSProp": "12_optimizer.ipynb", "step_stat": "12_optimizer.ipynb", "debias": "12_optimizer.ipynb", "adam_step": "12_optimizer.ipynb", "Adam": "12_optimizer.ipynb", "radam_step": "12_optimizer.ipynb", "RAdam": "12_optimizer.ipynb", "qhadam_step": "12_optimizer.ipynb", "QHAdam": "12_optimizer.ipynb", "larc_layer_lr": "12_optimizer.ipynb", "larc_layer_lr.defaults": "12_optimizer.ipynb", "larc_step": "12_optimizer.ipynb", "Larc": "12_optimizer.ipynb", "lamb_step": "12_optimizer.ipynb", "Lamb": "12_optimizer.ipynb", "Lookahead": "12_optimizer.ipynb", "ranger": "12_optimizer.ipynb", "detuplify_pg": "12_optimizer.ipynb", "set_item_pg": "12_optimizer.ipynb", "pytorch_hp_map": "12_optimizer.ipynb", "OptimWrapper": "12_optimizer.ipynb", "Callback": "13_callback.core.ipynb", "TrainEvalCallback": "13_callback.core.ipynb", "GatherPredsCallback": "13_callback.core.ipynb", "FetchPredsCallback": "13_callback.core.ipynb", "defaults.lr": "13a_learner.ipynb", "replacing_yield": "13a_learner.ipynb", "mk_metric": "13a_learner.ipynb", "save_model": "13a_learner.ipynb", "load_model": "13a_learner.ipynb", "Learner": "13a_learner.ipynb", "before_batch_cb": "13a_learner.ipynb", "Learner.save": "13a_learner.ipynb", "Learner.load": "13a_learner.ipynb", "Learner.export": "13a_learner.ipynb", "load_learner": "13a_learner.ipynb", "to_detach_from_dl": "13a_learner.ipynb", "Metric": "13a_learner.ipynb", "AvgMetric": "13a_learner.ipynb", "AvgLoss": "13a_learner.ipynb", "AvgSmoothLoss": "13a_learner.ipynb", "ValueMetric": "13a_learner.ipynb", "Recorder": "13a_learner.ipynb", "Learner.freeze_to": "13a_learner.ipynb", "Learner.freeze": "13a_learner.ipynb", "Learner.unfreeze": "13a_learner.ipynb", "Learner.tta": "13a_learner.ipynb", "flatten_check": "13b_metrics.ipynb", "AccumMetric": "13b_metrics.ipynb", "skm_to_fastai": "13b_metrics.ipynb", "optim_metric": "13b_metrics.ipynb", "accuracy": "13b_metrics.ipynb", "error_rate": "13b_metrics.ipynb", "top_k_accuracy": "13b_metrics.ipynb", "APScoreBinary": "13b_metrics.ipynb", "BalancedAccuracy": "13b_metrics.ipynb", "BrierScore": "13b_metrics.ipynb", "CohenKappa": "13b_metrics.ipynb", "F1Score": "13b_metrics.ipynb", "FBeta": "13b_metrics.ipynb", "HammingLoss": "13b_metrics.ipynb", "Jaccard": "13b_metrics.ipynb", "Precision": "13b_metrics.ipynb", "Recall": "13b_metrics.ipynb", "RocAuc": "13b_metrics.ipynb", "RocAucBinary": "13b_metrics.ipynb", "MatthewsCorrCoef": "13b_metrics.ipynb", "Perplexity": "13b_metrics.ipynb", "perplexity": "13b_metrics.ipynb", "accuracy_multi": "13b_metrics.ipynb", "APScoreMulti": "13b_metrics.ipynb", "BrierScoreMulti": "13b_metrics.ipynb", "F1ScoreMulti": "13b_metrics.ipynb", "FBetaMulti": "13b_metrics.ipynb", "HammingLossMulti": "13b_metrics.ipynb", "JaccardMulti": "13b_metrics.ipynb", "MatthewsCorrCoefMulti": "13b_metrics.ipynb", "PrecisionMulti": "13b_metrics.ipynb", "RecallMulti": "13b_metrics.ipynb", "RocAucMulti": "13b_metrics.ipynb", "mse": "13b_metrics.ipynb", "rmse": "13b_metrics.ipynb", "rmse.__doc__": "13b_metrics.ipynb", "mae": "13b_metrics.ipynb", "msle": "13b_metrics.ipynb", "exp_rmspe": "13b_metrics.ipynb", "exp_rmspe.__doc__": "13b_metrics.ipynb", "ExplainedVariance": "13b_metrics.ipynb", "R2Score": "13b_metrics.ipynb", "PearsonCorrCoef": "13b_metrics.ipynb", "SpearmanCorrCoef": "13b_metrics.ipynb", "foreground_acc": "13b_metrics.ipynb", "Dice": "13b_metrics.ipynb", "DiceMulti": "13b_metrics.ipynb", "JaccardCoeff": "13b_metrics.ipynb", "CorpusBLEUMetric": "13b_metrics.ipynb", "LossMetric": "13b_metrics.ipynb", "LossMetrics": "13b_metrics.ipynb", "annealer": "14_callback.schedule.ipynb", "sched_lin": "14_callback.schedule.ipynb", "sched_cos": "14_callback.schedule.ipynb", "sched_no": "14_callback.schedule.ipynb", "sched_exp": "14_callback.schedule.ipynb", "SchedLin": "14_callback.schedule.ipynb", "SchedCos": "14_callback.schedule.ipynb", "SchedNo": "14_callback.schedule.ipynb", "SchedExp": "14_callback.schedule.ipynb", "SchedLin.__doc__": "14_callback.schedule.ipynb", "SchedCos.__doc__": "14_callback.schedule.ipynb", "SchedExp.__doc__": "14_callback.schedule.ipynb", "SchedPoly": "14_callback.schedule.ipynb", "combine_scheds": "14_callback.schedule.ipynb", "combined_cos": "14_callback.schedule.ipynb", "ParamScheduler": "14_callback.schedule.ipynb", "Learner.fit_one_cycle": "14_callback.schedule.ipynb", "Recorder.plot_sched": "14_callback.schedule.ipynb", "Learner.fit_flat_cos": "14_callback.schedule.ipynb", "Learner.fit_sgdr": "14_callback.schedule.ipynb", "Learner.fine_tune": "14_callback.schedule.ipynb", "LRFinder": "14_callback.schedule.ipynb", "Recorder.plot_lr_find": "14_callback.schedule.ipynb", "SuggestedLRs": "14_callback.schedule.ipynb", "Learner.lr_find": "14_callback.schedule.ipynb", "CollectDataCallback": "14a_callback.data.ipynb", "CudaCallback": "14a_callback.data.ipynb", "WeightedDL": "14a_callback.data.ipynb", "Datasets.weighted_dataloaders": "14a_callback.data.ipynb", "PartialDL": "14a_callback.data.ipynb", "FilteredBase.partial_dataloaders": "14a_callback.data.ipynb", "Hook": "15_callback.hook.ipynb", "hook_output": "15_callback.hook.ipynb", "Hooks": "15_callback.hook.ipynb", "hook_outputs": "15_callback.hook.ipynb", "dummy_eval": "15_callback.hook.ipynb", "model_sizes": "15_callback.hook.ipynb", "num_features_model": "15_callback.hook.ipynb", "has_params": "15_callback.hook.ipynb", "HookCallback": "15_callback.hook.ipynb", "total_params": "15_callback.hook.ipynb", "layer_info": "15_callback.hook.ipynb", "module_summary": "15_callback.hook.ipynb", "Learner.summary": "15_callback.hook.ipynb", "ActivationStats": "15_callback.hook.ipynb", "UnetBlock": "15a_vision.models.unet.ipynb", "ResizeToOrig": "15a_vision.models.unet.ipynb", "DynamicUnet": "15a_vision.models.unet.ipynb", "ProgressCallback": "16_callback.progress.ipynb", "Learner.no_bar": "16_callback.progress.ipynb", "ShowGraphCallback": "16_callback.progress.ipynb", "CSVLogger": "16_callback.progress.ipynb", "TerminateOnNaNCallback": "17_callback.tracker.ipynb", "TrackerCallback": "17_callback.tracker.ipynb", "EarlyStoppingCallback": "17_callback.tracker.ipynb", "SaveModelCallback": "17_callback.tracker.ipynb", "ReduceLROnPlateau": "17_callback.tracker.ipynb", "MixedPrecision": "18_callback.fp16.ipynb", "FP16TestCallback": "18_callback.fp16.ipynb", "Learner.to_fp16": "18_callback.fp16.ipynb", "Learner.to_fp32": "18_callback.fp16.ipynb", "get_master": "18_callback.fp16.ipynb", "to_master_grads": "18_callback.fp16.ipynb", "to_model_params": "18_callback.fp16.ipynb", "test_overflow": "18_callback.fp16.ipynb", "grad_overflow": "18_callback.fp16.ipynb", "copy_clone": "18_callback.fp16.ipynb", "ModelToHalf": "18_callback.fp16.ipynb", "NonNativeMixedPrecision": "18_callback.fp16.ipynb", "Learner.to_to_non_native_fp16": "18_callback.fp16.ipynb", "Learner.to_non_native_fp32": "18_callback.fp16.ipynb", "ShortEpochCallback": "18a_callback.training.ipynb", "GradientAccumulation": "18a_callback.training.ipynb", "GradientClip": "18a_callback.training.ipynb", "set_bn_eval": "18a_callback.training.ipynb", "BnFreeze": "18a_callback.training.ipynb", "bn_types": "18a_callback.training.ipynb", "MCDropoutCallback": "18b_callback.preds.ipynb", "reduce_loss": "19_callback.mixup.ipynb", "MixHandler": "19_callback.mixup.ipynb", "MixUp": "19_callback.mixup.ipynb", "CutMix": "19_callback.mixup.ipynb", "Interpretation": "20_interpret.ipynb", "ClassificationInterpretation": "20_interpret.ipynb", "DataParallel.reset": "20a_distributed.ipynb", "ParallelTrainer": "20a_distributed.ipynb", "Learner.to_parallel": "20a_distributed.ipynb", "Learner.detach_parallel": "20a_distributed.ipynb", "Learner.parallel_ctx": "20a_distributed.ipynb", "DistributedDataParallel.reset": "20a_distributed.ipynb", "setup_distrib": "20a_distributed.ipynb", "teardown_distrib": "20a_distributed.ipynb", "DistributedDL": "20a_distributed.ipynb", "DistributedTrainer": "20a_distributed.ipynb", "Learner.to_distributed": "20a_distributed.ipynb", "Learner.detach_distributed": "20a_distributed.ipynb", "Learner.distrib_ctx": "20a_distributed.ipynb", "rank0_first": "20a_distributed.ipynb", "has_pool_type": "21_vision.learner.ipynb", "create_body": "21_vision.learner.ipynb", "create_head": "21_vision.learner.ipynb", "default_split": "21_vision.learner.ipynb", "model_meta": "21_vision.learner.ipynb", "create_cnn_model": "21_vision.learner.ipynb", "cnn_learner": "21_vision.learner.ipynb", "create_unet_model": "21_vision.learner.ipynb", "unet_learner": "21_vision.learner.ipynb", "GANModule": "24_vision.gan.ipynb", "basic_critic": "24_vision.gan.ipynb", "AddChannels": "24_vision.gan.ipynb", "basic_generator": "24_vision.gan.ipynb", "DenseResBlock": "24_vision.gan.ipynb", "gan_critic": "24_vision.gan.ipynb", "GANLoss": "24_vision.gan.ipynb", "AdaptiveLoss": "24_vision.gan.ipynb", "accuracy_thresh_expand": "24_vision.gan.ipynb", "set_freeze_model": "24_vision.gan.ipynb", "GANTrainer": "24_vision.gan.ipynb", "FixedGANSwitcher": "24_vision.gan.ipynb", "AdaptiveGANSwitcher": "24_vision.gan.ipynb", "GANDiscriminativeLR": "24_vision.gan.ipynb", "InvisibleTensor": "24_vision.gan.ipynb", "generate_noise": "24_vision.gan.ipynb", "gan_loss_from_func": "24_vision.gan.ipynb", "GANLearner": "24_vision.gan.ipynb", "GANLearner.from_learners": "24_vision.gan.ipynb", "GANLearner.wgan": "24_vision.gan.ipynb", "spec_add_spaces": "30_text.core.ipynb", "rm_useless_spaces": "30_text.core.ipynb", "replace_rep": "30_text.core.ipynb", "replace_wrep": "30_text.core.ipynb", "fix_html": "30_text.core.ipynb", "replace_all_caps": "30_text.core.ipynb", "replace_maj": "30_text.core.ipynb", "lowercase": "30_text.core.ipynb", "replace_space": "30_text.core.ipynb", "defaults.text_spec_tok": "30_text.core.ipynb", "defaults.text_proc_rules": "30_text.core.ipynb", "defaults.text_postproc_rules": "30_text.core.ipynb", "BaseTokenizer": "30_text.core.ipynb", "SpacyTokenizer": "30_text.core.ipynb", "WordTokenizer": "30_text.core.ipynb", "TokenizeWithRules": "30_text.core.ipynb", "tokenize1": "30_text.core.ipynb", "parallel_tokenize": "30_text.core.ipynb", "fn_counter_pkl": "30_text.core.ipynb", "fn_lengths_pkl": "30_text.core.ipynb", "tokenize_folder": "30_text.core.ipynb", "tokenize_files": "30_text.core.ipynb", "tokenize_texts": "30_text.core.ipynb", "tokenize_df": "30_text.core.ipynb", "tokenize_csv": "30_text.core.ipynb", "load_tokenized_csv": "30_text.core.ipynb", "Tokenizer": "30_text.core.ipynb", "eu_langs": "30_text.core.ipynb", "SentencePieceTokenizer": "30_text.core.ipynb", "SubwordTokenizer": "30_text.core.ipynb", "reverse_text": "31_text.data.ipynb", "make_vocab": "31_text.data.ipynb", "TensorText": "31_text.data.ipynb", "LMTensorText": "31_text.data.ipynb", "TensorText.__doc__": "31_text.data.ipynb", "LMTensorText.__doc__": "31_text.data.ipynb", "Numericalize": "31_text.data.ipynb", "LMDataLoader": "31_text.data.ipynb", "Pad_Input": "31_text.data.ipynb", "pad_input": "31_text.data.ipynb", "pad_chunk": "31_text.data.ipynb", "pad_input_chunk": "31_text.data.ipynb", "Pad_Chunk": "31_text.data.ipynb", "SortedDL": "31_text.data.ipynb", "TextBlock": "31_text.data.ipynb", "TextDataLoaders": "31_text.data.ipynb", "TextDataLoaders.from_csv": "31_text.data.ipynb", "dropout_mask": "32_text.models.awdlstm.ipynb", "RNNDropout": "32_text.models.awdlstm.ipynb", "WeightDropout": "32_text.models.awdlstm.ipynb", "EmbeddingDropout": "32_text.models.awdlstm.ipynb", "AWD_LSTM": "32_text.models.awdlstm.ipynb", "awd_lstm_lm_split": "32_text.models.awdlstm.ipynb", "awd_lstm_lm_config": "32_text.models.awdlstm.ipynb", "awd_lstm_clas_split": "32_text.models.awdlstm.ipynb", "awd_lstm_clas_config": "32_text.models.awdlstm.ipynb", "AWD_QRNN": "32_text.models.awdlstm.ipynb", "awd_qrnn_lm_config": "32_text.models.awdlstm.ipynb", "awd_qrnn_clas_config": "32_text.models.awdlstm.ipynb", "LinearDecoder": "33_text.models.core.ipynb", "SequentialRNN": "33_text.models.core.ipynb", "get_language_model": "33_text.models.core.ipynb", "SentenceEncoder": "33_text.models.core.ipynb", "masked_concat_pool": "33_text.models.core.ipynb", "PoolingLinearClassifier": "33_text.models.core.ipynb", "get_text_classifier": "33_text.models.core.ipynb", "ModelResetter": "34_callback.rnn.ipynb", "RNNCallback": "34_callback.rnn.ipynb", "RNNRegularizer": "34_callback.rnn.ipynb", "rnn_cbs": "34_callback.rnn.ipynb", "load_cpp": "36_text.models.qrnn.ipynb", "forget_mult_cuda": "36_text.models.qrnn.ipynb", "bwd_forget_mult_cuda": "36_text.models.qrnn.ipynb", "dispatch_cuda": "36_text.models.qrnn.ipynb", "forget_mult_CPU": "36_text.models.qrnn.ipynb", "ForgetMultGPU": "36_text.models.qrnn.ipynb", "QRNNLayer": "36_text.models.qrnn.ipynb", "QRNN": "36_text.models.qrnn.ipynb", "match_embeds": "37_text.learner.ipynb", "load_ignore_keys": "37_text.learner.ipynb", "clean_raw_keys": "37_text.learner.ipynb", "load_model_text": "37_text.learner.ipynb", "TextLearner": "37_text.learner.ipynb", "decode_spec_tokens": "37_text.learner.ipynb", "LMLearner": "37_text.learner.ipynb", "language_model_learner": "37_text.learner.ipynb", "text_classifier_learner": "37_text.learner.ipynb", "make_date": "40_tabular.core.ipynb", "add_datepart": "40_tabular.core.ipynb", "add_elapsed_times": "40_tabular.core.ipynb", "cont_cat_split": "40_tabular.core.ipynb", "df_shrink_dtypes": "40_tabular.core.ipynb", "df_shrink": "40_tabular.core.ipynb", "Tabular": "40_tabular.core.ipynb", "TabularPandas": "40_tabular.core.ipynb", "TabularProc": "40_tabular.core.ipynb", "Categorify": "40_tabular.core.ipynb", "setups": "40_tabular.core.ipynb", "FillStrategy": "40_tabular.core.ipynb", "FillMissing": "40_tabular.core.ipynb", "ReadTabBatch": "40_tabular.core.ipynb", "TabDataLoader": "40_tabular.core.ipynb", "TabularDataLoaders": "41_tabular.data.ipynb", "TabularDataLoaders.from_csv": "41_tabular.data.ipynb", "emb_sz_rule": "42_tabular.model.ipynb", "get_emb_sz": "42_tabular.model.ipynb", "TabularModel": "42_tabular.model.ipynb", "tabular_config": "42_tabular.model.ipynb", "TabularLearner": "43_tabular.learner.ipynb", "tabular_learner": "43_tabular.learner.ipynb", "TabularCollab": "45_collab.ipynb", "CollabDataLoaders": "45_collab.ipynb", "CollabDataLoaders.from_csv": "45_collab.ipynb", "EmbeddingDotBias": "45_collab.ipynb", "EmbeddingNN": "45_collab.ipynb", "collab_learner": "45_collab.ipynb", "get_dicom_files": "60_medical.imaging.ipynb", "Path.dcmread": "60_medical.imaging.ipynb", "TensorDicom": "60_medical.imaging.ipynb", "PILDicom": "60_medical.imaging.ipynb", "Path.png16read": "60_medical.imaging.ipynb", "pixels": "60_medical.imaging.ipynb", "scaled_px": "60_medical.imaging.ipynb", "array_freqhist_bins": "60_medical.imaging.ipynb", "Tensor.freqhist_bins": "60_medical.imaging.ipynb", "Tensor.hist_scaled_pt": "60_medical.imaging.ipynb", "Tensor.hist_scaled": "60_medical.imaging.ipynb", "DcmDataset.hist_scaled": "60_medical.imaging.ipynb", "Tensor.windowed": "60_medical.imaging.ipynb", "DcmDataset.windowed": "60_medical.imaging.ipynb", "dicom_windows": "60_medical.imaging.ipynb", "TensorCTScan": "60_medical.imaging.ipynb", "PILCTScan": "60_medical.imaging.ipynb", "DcmDataset.show": "60_medical.imaging.ipynb", "DcmDataset.pct_in_window": "60_medical.imaging.ipynb", "uniform_blur2d": "60_medical.imaging.ipynb", "gauss_blur2d": "60_medical.imaging.ipynb", "Tensor.mask_from_blur": "60_medical.imaging.ipynb", "DcmDataset.mask_from_blur": "60_medical.imaging.ipynb", "mask2bbox": "60_medical.imaging.ipynb", "crop_resize": "60_medical.imaging.ipynb", "Tensor.to_nchan": "60_medical.imaging.ipynb", "DcmDataset.to_nchan": "60_medical.imaging.ipynb", "Tensor.to_3chan": "60_medical.imaging.ipynb", "DcmDataset.to_3chan": "60_medical.imaging.ipynb", "Tensor.save_jpg": "60_medical.imaging.ipynb", "DcmDataset.save_jpg": "60_medical.imaging.ipynb", "Tensor.to_uint16": "60_medical.imaging.ipynb", "DcmDataset.to_uint16": "60_medical.imaging.ipynb", "Tensor.save_tif16": "60_medical.imaging.ipynb", "DcmDataset.save_tif16": "60_medical.imaging.ipynb", "DcmDataset.set_pixels": "60_medical.imaging.ipynb", "DcmDataset.pixel_array": "60_medical.imaging.ipynb", "DcmDataset.zoom": "60_medical.imaging.ipynb", "DcmDataset.zoom_to": "60_medical.imaging.ipynb", "DcmDataset.as_dict": "60_medical.imaging.ipynb", "pd.DataFrame.from_dicoms": "60_medical.imaging.ipynb", "DicomSegmentationDataLoaders": "60_medical.imaging.ipynb", "WandbCallback": "70_callback.wandb.ipynb", "Learner.gather_args": "70_callback.wandb.ipynb", "log_dataset": "70_callback.wandb.ipynb", "log_model": "70_callback.wandb.ipynb", "TensorBoardBaseCallback": "71_callback.tensorboard.ipynb", "TensorBoardCallback": "71_callback.tensorboard.ipynb", "TensorBoardProjectorCallback": "71_callback.tensorboard.ipynb", "projector_word_embeddings": "71_callback.tensorboard.ipynb", "NeptuneCallback": "72_callback.neptune.ipynb", "json_clean": "73_callback.captum.ipynb", "jsonutil.json_clean": "73_callback.captum.ipynb", "CaptumInterpretation": "73_callback.captum.ipynb", "CaptumInterpretation.insights": "73_callback.captum.ipynb", "synth_dbunch": "97_test_utils.ipynb", "RegModel": "97_test_utils.ipynb", "synth_learner": "97_test_utils.ipynb", "VerboseCallback": "97_test_utils.ipynb", "get_env": "97_test_utils.ipynb", "try_import": "97_test_utils.ipynb", "nvidia_smi": "97_test_utils.ipynb", "nvidia_mem": "97_test_utils.ipynb", "show_install": "97_test_utils.ipynb", "PYTORCH_URL": "99_pytorch_doc.ipynb", "pytorch_doc_link": "99_pytorch_doc.ipynb"} modules = ["torch_core.py", "layers.py", "losses.py", "data/load.py", "data/core.py", "data/external.py", "data/transforms.py", "data/block.py", "vision/core.py", "vision/data.py", "vision/augment.py", "vision/utils.py", "vision/widgets.py", "vision/models/xresnet.py", "optimizer.py", "callback/core.py", "learner.py", "metrics.py", "callback/schedule.py", "callback/data.py", "callback/hook.py", "vision/models/unet.py", "callback/progress.py", "callback/tracker.py", "callback/fp16.py", "callback/training.py", "callback/preds.py", "callback/mixup.py", "interpret.py", "distributed.py", "vision/learner.py", "vision/gan.py", "text/core.py", "text/data.py", "text/models/awdlstm.py", "text/models/core.py", "callback/rnn.py", "text/models/qrnn.py", "text/learner.py", "tabular/core.py", "tabular/data.py", "tabular/model.py", "tabular/learner.py", "collab.py", "medical/imaging.py", "medical/text.py", "callback/wandb.py", "callback/tensorboard.py", "callback/neptune.py", "callback/captum.py", "test_utils.py", "_pytorch_doc.py"] doc_url = "https://docs.fast.ai/" git_url = "https://github.com/fastai/fastai/tree/master/" def custom_doc_links(name): from nbdev.showdoc import try_external_doc_link return try_external_doc_link(name, ['fastcore', 'nbdev'])
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/_nbdev.py
_nbdev.py
__all__ = ['plot_top_losses', 'Interpretation', 'ClassificationInterpretation'] # Cell from .data.all import * from .optimizer import * from .learner import * import sklearn.metrics as skm # Cell @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") # Cell #nbdev_comment _all_ = ["plot_top_losses"] # Cell class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, dl, inputs, preds, targs, decoded, losses): store_attr("dl,inputs,preds,targs,decoded,losses") @classmethod def from_learner(cls, learn, ds_idx=1, dl=None, act=None): "Construct interpretation object from a learner" if dl is None: dl = learn.dls[ds_idx] return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None)) def top_losses(self, k=None, largest=True): "`k` largest(/smallest) losses and indexes, defaulting to all losses (sorted by `largest`)." return self.losses.topk(ifnone(k, len(self.losses)), largest=largest) def plot_top_losses(self, k, largest=True, **kwargs): losses,idx = self.top_losses(k, largest) if not isinstance(self.inputs, tuple): self.inputs = (self.inputs,) if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs) else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx])) b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,))) x,y,its = self.dl._pre_show_batch(b, max_n=k) b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,))) x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), self.preds[idx], losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knows how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) # Cell class ClassificationInterpretation(Interpretation): "Interpretation methods for classification models." def __init__(self, dl, inputs, preds, targs, decoded, losses): super().__init__(dl, inputs, preds, targs, decoded, losses) self.vocab = self.dl.vocab if is_listy(self.vocab): self.vocab = self.vocab[-1] def confusion_matrix(self): "Confusion matrix as an `np.ndarray`." x = torch.arange(0, len(self.vocab)) d,t = flatten_check(self.decoded, self.targs) cm = ((d==x[:,None]) & (t==x[:,None,None])).long().sum(2) return to_np(cm) def plot_confusion_matrix(self, normalize=False, title='Confusion matrix', cmap="Blues", norm_dec=2, plot_txt=True, **kwargs): "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix() if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(len(self.vocab)) plt.xticks(tick_marks, self.vocab, rotation=90) plt.yticks(tick_marks, self.vocab, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") ax = fig.gca() ax.set_ylim(len(self.vocab)-.5,-.5) plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) def most_confused(self, min_val=1): "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix() np.fill_diagonal(cm, 0) res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True) def print_classification_report(self): "Print scikit-learn classification report" d,t = flatten_check(self.decoded, self.targs) print(skm.classification_report(t, d, labels=list(self.vocab.o2i.values()), target_names=[str(v) for v in self.vocab]))
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/interpret.py
interpret.py
__all__ = ['ParallelTrainer', 'setup_distrib', 'teardown_distrib', 'DistributedDL', 'DistributedTrainer', 'rank0_first'] # Cell from .basics import * from .callback.progress import ProgressCallback from torch.nn.parallel import DistributedDataParallel, DataParallel from .data.load import _FakeLoader,_loaders # Cell @patch def reset(self: DataParallel): "Patch required `reset` call into `DataParallel`" if hasattr(self.module, 'reset'): self.module.reset() # Cell class ParallelTrainer(Callback): "Wrap a model `DataParallel` automatically" run_after,run_before = TrainEvalCallback,Recorder def __init__(self, device_ids): self.device_ids = device_ids def before_fit(self): self.learn.model = DataParallel(self.learn.model, device_ids=self.device_ids) def after_fit(self): self.learn.model = self.learn.model.module # Cell @patch def to_parallel(self: Learner, device_ids=None): "Add `ParallelTrainer` callback to a `Learner`" self.add_cb(ParallelTrainer(device_ids)) return self # Cell @patch def detach_parallel(self: Learner): "Remove `ParallelTrainer` callback from a Learner" self.remove_cb(ParallelTrainer) return self # Cell @patch @contextmanager def parallel_ctx(self: Learner, device_ids=None): "A context manager to adapt a learner to train in data parallel mode." try: self.to_parallel(device_ids) yield self finally: self.detach_parallel() # Cell @patch def reset(self: DistributedDataParallel): "Patch required `reset` call into `DistributedDataParallel`" if hasattr(self.module, 'reset'): self.module.reset() # Cell def setup_distrib(gpu=None): "Setup this process to participate in distributed training" if gpu is None: return gpu gpu = int(gpu) torch.cuda.set_device(int(gpu)) if num_distrib() > 0: torch.distributed.init_process_group(backend='nccl', init_method='env://') return gpu # Cell def teardown_distrib(): "Free distributed training resources" if torch.distributed.is_initialized(): torch.distributed.destroy_process_group() # Cell def _round_to_multiple(number,multiple): return int(math.ceil(number/multiple)*multiple) # Cell class DistributedDL(TfmdDL): "A `TfmdDL` which splits a batch into equal size pieces for each worker" def __init__(self,dl,rank=None,world_size=None): if rank is None: rank=rank_distrib() if world_size is None: world_size=num_distrib() store_attr() self.bs,self.device,self.drop_last,self.dataset,fake = attrgetter('bs','device','drop_last','dataset','fake_l')(dl) self.fake_l = _FakeLoader(self, fake.pin_memory, fake.num_workers, fake.timeout, persistent_workers=fake.persistent_workers) def _broadcast(self,t,rank): "Broadcasts t from rank `rank` to all other ranks. Returns t so t is same for all ranks after call." t = LongTensor(t).cuda() # nccl only works with cuda tensors torch.distributed.broadcast(t,rank) return t.cpu().tolist() def _to_detach(self,b,cpu=True,gather=True): return to_detach(b,cpu,gather) # member func so we can override for test def __len__(self): return _round_to_multiple(len(self.dl),self.world_size)//self.world_size def get_idxs(self): idxs = list(self.dl.get_idxs()) # compute get_idxs in all ranks (we'll only use rank 0 but size must be consistent) idxs = self._broadcast(idxs,0) # broadcast and receive it from rank 0 to all self.n = len(idxs) # we assumed n was dl.n but we really care about number of idxs # add extra samples to make it evenly divisible self.n_padded = _round_to_multiple(self.n,self.world_size) idxs += (idxs * (self.n_padded//self.n))[:self.n_padded-self.n] # idx needs to be repeated when n_padded>>n # slice padded idxs so that each rank gets self.n_padded//self.world_size tensors return idxs[self.rank*self.n_padded//self.world_size:(self.rank+1)*self.n_padded//self.world_size] def before_iter(self): self.i = 0 self.dl.before_iter() def randomize(self): self.dl.randomize() def after_batch(self,b): self.i += find_bs(b) return self.dl.after_batch(b) def after_iter(self): self.dl.after_iter() def create_batches(self,samps): return self.dl.create_batches(samps) def to_detach(self,b, cpu=True, gather=True): b = self._to_detach(b, cpu, gather) def _inner(b): if b.ndim>0: # for each rank, compute overflow of read idxs vs self.n and accumulate them to unpad totals after gathering n = sum([min(0,max(-len(b)//self.world_size, self.n-(self.i+r*self.n_padded//self.world_size))) for r in range(self.world_size)]) b = b[:n or None] return b return apply(_inner,b) if gather and all(hasattr(self,o) for o in ('i','n','n_padded')) else b # Cell class DistributedTrainer(Callback): "Wrap `model` in `DistributedDataParallel` and `dls` in `DistributedDL`" fup = None def __init__(self, cuda_id=0,sync_bn=True): store_attr() def before_fit(self): opt_kwargs = { 'find_unused_parameters' : DistributedTrainer.fup } if DistributedTrainer.fup is not None else {} self.learn.model = DistributedDataParallel( nn.SyncBatchNorm.convert_sync_batchnorm(self.model) if self.sync_bn else self.model, device_ids=[self.cuda_id], output_device=self.cuda_id, **opt_kwargs) self.old_dls = list(self.dls) self.learn.dls.loaders = [self._wrap_dl(dl) for dl in self.dls] if rank_distrib(): self.learn.logger=noop def _wrap_dl(self, dl): return dl if isinstance(dl,DistributedDL) else DistributedDL(dl) def before_train(self): self.learn.dl = self._wrap_dl(self.learn.dl) def before_validate(self): self.learn.dl = self._wrap_dl(self.learn.dl) def after_fit(self): self.learn.model,self.learn.dls.loaders = self.learn.model.module,self.old_dls # Cell @patch def to_distributed(self: Learner, cuda_id, sync_bn=True): "Add `DistributedTrainer` to a learner" self.add_cb(DistributedTrainer(cuda_id,sync_bn)) if rank_distrib(): self.remove_cb(ProgressCallback) return self # Cell @patch def detach_distributed(self: Learner): "Remove `DistributedTrainer` from a learner" if num_distrib() <=1: return self self.remove_cb(DistributedTrainer) if rank_distrib() and not hasattr(self, 'progress'): self.add_cb(ProgressCallback()) return self # Cell @patch @contextmanager def distrib_ctx(self: Learner, cuda_id=None,sync_bn=True): "A context manager to adapt a learner to train in distributed data parallel mode." # Figure out the GPU to use from rank. Create a dpg if none exists yet. if cuda_id is None: cuda_id = rank_distrib() if not torch.distributed.is_initialized(): setup_distrib(cuda_id) cleanup_dpg = torch.distributed.is_initialized() else: cleanup_dpg = False # Adapt self to DistributedDataParallel, yield, and cleanup afterwards. try: if num_distrib(): self.to_distributed(cuda_id,sync_bn) yield self finally: self.detach_distributed() if cleanup_dpg: teardown_distrib() # Cell def rank0_first(func, *args, **kwargs): "Execute `func` in the Rank-0 process first, then in other ranks in parallel." if args or kwargs: func = partial(func, *args, **kwargs) dummy_l = Learner(DataLoaders(device='cpu'), nn.Linear(1,1), loss_func=lambda: 0) with dummy_l.distrib_ctx(): if not rank_distrib(): res = func() distrib_barrier() if rank_distrib(): res = func() return res
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/distributed.py
distributed.py
import numpy as np import io,operator,sys,os,re,mimetypes,csv,itertools,json,shutil,glob,pickle,tarfile,collections import hashlib,itertools,types,inspect,functools,random,time,math,bz2,typing,numbers,string import multiprocessing,threading,urllib,tempfile,concurrent.futures,matplotlib,warnings,zipfile from concurrent.futures import as_completed from functools import partial,reduce from itertools import starmap,dropwhile,takewhile,zip_longest from copy import copy,deepcopy from multiprocessing import Lock,Process,Queue,queues from datetime import datetime from contextlib import redirect_stdout,contextmanager from collections.abc import Iterable,Iterator,Generator,Sequence from typing import Union,Optional from types import SimpleNamespace from pathlib import Path from collections import OrderedDict,defaultdict,Counter,namedtuple from enum import Enum,IntEnum from textwrap import TextWrapper from operator import itemgetter,attrgetter,methodcaller from urllib.request import urlopen # External modules import requests,yaml,matplotlib.pyplot as plt,pandas as pd,scipy from pandas.api.types import is_categorical_dtype,is_numeric_dtype from numpy import array,ndarray from scipy import ndimage from pdb import set_trace from fastcore.all import * from fastprogress.fastprogress import progress_bar,master_bar try: from types import WrapperDescriptorType,MethodWrapperType,MethodDescriptorType except ImportError: WrapperDescriptorType = type(object.__init__) MethodWrapperType = type(object().__str__) MethodDescriptorType = type(str.join) from types import BuiltinFunctionType,BuiltinMethodType,MethodType,FunctionType,LambdaType pd.options.display.max_colwidth = 600 NoneType = type(None) string_classes = (str,bytes) mimetypes.init() # PyTorch warnings warnings.filterwarnings("ignore", message='.*nonzero.*', category=UserWarning) warnings.filterwarnings("ignore", message='.*grid_sample.*', category=UserWarning) warnings.filterwarnings("ignore", message='.*Distutils.*', category=UserWarning) def is_iter(o): "Test whether `o` can be used in a `for` loop" #Rank 0 tensors in PyTorch are not really iterable return isinstance(o, (Iterable,Generator)) and getattr(o,'ndim',1) def is_coll(o): "Test whether `o` is a collection (i.e. has a usable `len`)" #Rank 0 tensors in PyTorch do not have working `len` return hasattr(o, '__len__') and getattr(o,'ndim',1) def all_equal(a,b): "Compares whether `a` and `b` are the same length and have the same contents" if not is_iter(b): return False return all(equals(a_,b_) for a_,b_ in itertools.zip_longest(a,b)) def noop (x=None, *args, **kwargs): "Do nothing" return x def noops(self, x=None, *args, **kwargs): "Do nothing (method)" return x def one_is_instance(a, b, t): return isinstance(a,t) or isinstance(b,t) def equals(a,b): "Compares `a` and `b` for equality; supports sublists, tensors and arrays too" if one_is_instance(a,b,type): return a==b if hasattr(a, '__array_eq__'): return a.__array_eq__(b) if hasattr(b, '__array_eq__'): return b.__array_eq__(a) cmp = (np.array_equal if one_is_instance(a, b, ndarray ) else operator.eq if one_is_instance(a, b, (str,dict,set)) else all_equal if is_iter(a) or is_iter(b) else operator.eq) return cmp(a,b) def pv(text, verbose): if verbose: print(text)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/imports.py
imports.py
__all__ = ['progress_bar', 'master_bar', 'subplots', 'show_image', 'show_titled_image', 'show_images', 'ArrayBase', 'ArrayImageBase', 'ArrayImage', 'ArrayImageBW', 'ArrayMask', 'tensor', 'set_seed', 'get_random_states', 'set_random_states', 'no_random', 'unsqueeze', 'unsqueeze_', 'apply', 'maybe_gather', 'to_detach', 'to_half', 'to_float', 'default_device', 'to_device', 'to_cpu', 'to_np', 'to_concat', 'TensorBase', 'TensorImageBase', 'TensorImage', 'TensorImageBW', 'TensorMask', 'TensorFlowField', 'TensorCategory', 'TensorMultiCategory', 'TitledTensorScalar', 'concat', 'Chunks', 'show_title', 'ShowTitle', 'TitledInt', 'TitledFloat', 'TitledStr', 'TitledTuple', 'get_empty_df', 'display_df', 'get_first', 'one_param', 'item_find', 'find_device', 'find_bs', 'np_func', 'Module', 'get_model', 'one_hot', 'one_hot_decode', 'params', 'trainable_params', 'norm_types', 'norm_bias_params', 'batch_to_samples', 'logit', 'num_distrib', 'rank_distrib', 'distrib_barrier', 'base_doc', 'doc', 'nested_reorder', 'make_cross_image', 'show_image_batch', 'requires_grad', 'init_default', 'cond_init', 'apply_leaf', 'apply_init', 'script_use_ctx', 'script_save_ctx', 'script_fwd', 'script_bwd', 'grad_module', 'flatten_check'] # Cell from .imports import * from .torch_imports import * # Cell #nbdev_comment _all_ = ['progress_bar','master_bar'] # Cell if torch.cuda.is_available(): if torch.cuda.current_device()==0: def_gpu = int(os.environ.get('DEFAULT_GPU') or 0) if torch.cuda.device_count()>=def_gpu: torch.cuda.set_device(def_gpu) torch.backends.cudnn.benchmark = True # Cell @delegates(plt.subplots, keep=True) def subplots(nrows=1, ncols=1, figsize=None, imsize=3,suptitle=None, **kwargs): if figsize is None: h=nrows*imsize if suptitle is None or imsize>2 else nrows*imsize+0.6 #https://github.com/matplotlib/matplotlib/issues/5355 figsize=(ncols*imsize, h) fig,ax = plt.subplots(nrows, ncols, figsize=figsize, **kwargs) if suptitle is not None: fig.suptitle(suptitle) if nrows*ncols==1: ax = array([ax]) return fig,ax # Cell def _fig_bounds(x): r = x//32 return min(5, max(1,r)) # Cell @delegates(plt.Axes.imshow, keep=True, but=['shape', 'imlim']) def show_image(im, ax=None, figsize=None, title=None, ctx=None, **kwargs): "Show a PIL or PyTorch image on `ax`." # Handle pytorch axis order if hasattrs(im, ('data','cpu','permute')): im = im.data.cpu() if im.shape[0]<5: im=im.permute(1,2,0) elif not isinstance(im,np.ndarray): im=array(im) # Handle 1-channel images if im.shape[-1]==1: im=im[...,0] ax = ifnone(ax,ctx) if figsize is None: figsize = (_fig_bounds(im.shape[0]), _fig_bounds(im.shape[1])) if ax is None: _,ax = plt.subplots(figsize=figsize) ax.imshow(im, **kwargs) if title is not None: ax.set_title(title) ax.axis('off') return ax # Cell @delegates(show_image, keep=True) def show_titled_image(o, **kwargs): "Call `show_image` destructuring `o` to `(img,title)`" show_image(o[0], title=str(o[1]), **kwargs) # Cell @delegates(subplots) def show_images(ims, nrows=1, ncols=None, titles=None, **kwargs): "Show all images `ims` as subplots with `rows` using `titles`." if ncols is None: ncols = int(math.ceil(len(ims)/nrows)) if titles is None: titles = [None]*len(ims) axs = subplots(nrows, ncols, **kwargs)[1].flat for im,t,ax in zip(ims, titles, axs): show_image(im, ax=ax, title=t) # Cell class ArrayBase(ndarray): "An `ndarray` that can modify casting behavior" @classmethod def _before_cast(cls, x): return x if isinstance(x,ndarray) else array(x) # Cell class ArrayImageBase(ArrayBase): "Base class for arrays representing images" _show_args = {'cmap':'viridis'} def show(self, ctx=None, **kwargs): return show_image(self, ctx=ctx, **{**self._show_args, **kwargs}) # Cell class ArrayImage(ArrayImageBase): "An array representing an image" pass # Cell class ArrayImageBW(ArrayImage): "An array representing an image" _show_args = {'cmap':'Greys'} # Cell class ArrayMask(ArrayImageBase): "An array representing an image mask" _show_args = {'alpha':0.5, 'cmap':'tab20', 'interpolation':'nearest'} # Cell @patch def __array_eq__(self:Tensor,b): return torch.equal(self,b) if self.dim() else self==b # Cell def _array2tensor(x): if x.dtype==np.uint16: x = x.astype(np.float32) return torch.from_numpy(x) # Cell @use_kwargs_dict(dtype=None, device=None, requires_grad=False, pin_memory=False) def tensor(x, *rest, **kwargs): "Like `torch.as_tensor`, but handle lists too, and can pass multiple vector elements directly." if len(rest): x = (x,)+rest # There was a Pytorch bug in dataloader using num_workers>0. Haven't confirmed if fixed # if isinstance(x, (tuple,list)) and len(x)==0: return tensor(0) res = (x if isinstance(x, Tensor) else torch.tensor(x, **kwargs) if isinstance(x, (tuple,list)) else _array2tensor(x) if isinstance(x, ndarray) else as_tensor(x.values, **kwargs) if isinstance(x, (pd.Series, pd.DataFrame)) else as_tensor(x, **kwargs) if hasattr(x, '__array__') or is_iter(x) else _array2tensor(array(x), **kwargs)) if res.dtype is torch.float64: return res.float() return res # Cell def set_seed(s, reproducible=False): "Set random seed for `random`, `torch`, and `numpy` (where available)" try: torch.manual_seed(s) except NameError: pass try: torch.cuda.manual_seed_all(s) except NameError: pass try: np.random.seed(s%(2**32-1)) except NameError: pass random.seed(s) if reproducible: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Cell def get_random_states(): "Gets states for `random`, `torch`, and `numpy` random number generators" return {'random_state':random.getstate(), 'numpy_state':np.random.get_state(), 'torch_state':torch.get_rng_state(), 'torch_cuda_state':torch.cuda.get_rng_state_all(), 'torch_deterministic':torch.backends.cudnn.deterministic, 'torch_benchmark':torch.backends.cudnn.benchmark} # Cell def set_random_states(random_state,numpy_state,torch_state,torch_cuda_state,torch_deterministic,torch_benchmark): "Set states for `random`, `torch`, and `numpy` random number generators" random.setstate(random_state) np.random.set_state(numpy_state) torch.set_rng_state(torch_state) torch.cuda.set_rng_state_all(torch_cuda_state) torch.backends.cudnn.deterministic=torch_deterministic torch.backends.cudnn.benchmark=torch_benchmark # Cell @contextmanager def no_random(seed=42,reproducible=True): "Stores and retrieves state of random number generators. Sets random seed for `random`, `torch`, and `numpy`." states = get_random_states() set_seed(seed,reproducible=reproducible) try: yield #we are managing global variables finally: set_random_states(**states) # Cell def unsqueeze(x, dim=-1, n=1): "Same as `torch.unsqueeze` but can add `n` dims" for _ in range(n): x = x.unsqueeze(dim) return x # Cell def unsqueeze_(x, dim=-1, n=1): "Same as `torch.unsqueeze_` but can add `n` dims" for _ in range(n): x.unsqueeze_(dim) return x # Cell def _fa_rebuild_tensor (cls, *args, **kwargs): return cls(torch._utils._rebuild_tensor_v2(*args, **kwargs)) def _fa_rebuild_qtensor(cls, *args, **kwargs): return cls(torch._utils._rebuild_qtensor (*args, **kwargs)) # Cell def apply(func, x, *args, **kwargs): "Apply `func` recursively to `x`, passing on args" if is_listy(x): return type(x)([apply(func, o, *args, **kwargs) for o in x]) if isinstance(x,dict): return {k: apply(func, v, *args, **kwargs) for k,v in x.items()} res = func(x, *args, **kwargs) return res if x is None else retain_type(res, x) # Cell def maybe_gather(x, axis=0): "Gather copies of `x` on `axis` (if training is distributed)" if num_distrib()<=1: return x ndim = x.ndim res = [x.new_zeros(*x.shape if ndim > 0 else (1,)) for _ in range(num_distrib())] torch.distributed.all_gather(res, x.contiguous() if ndim > 0 else x[None]) return torch.cat(res, dim=axis) if ndim > 0 else torch.cat(res, dim=axis).mean() # Cell def to_detach(b, cpu=True, gather=True): "Recursively detach lists of tensors in `b `; put them on the CPU if `cpu=True`." def _inner(x, cpu=True, gather=True): if not isinstance(x,Tensor): return x x = x.detach() if gather: x = maybe_gather(x) return x.cpu() if cpu else x return apply(_inner, b, cpu=cpu, gather=gather) # Cell def to_half(b): "Recursively map lists of tensors in `b ` to FP16." return apply(lambda x: x.half() if torch.is_floating_point(x) else x, b) # Cell def to_float(b): "Recursively map lists of int tensors in `b ` to float." return apply(lambda x: x.float() if torch.is_floating_point(x) else x, b) # Cell # None: True if available; True: error if not available; False: use CPU defaults.use_cuda = None # Cell def default_device(use_cuda=-1): "Return or set default device; `use_cuda`: None - CUDA if available; True - error if not available; False - CPU" if use_cuda != -1: defaults.use_cuda=use_cuda use = defaults.use_cuda or (torch.cuda.is_available() and defaults.use_cuda is None) assert torch.cuda.is_available() or not use return torch.device(torch.cuda.current_device()) if use else torch.device('cpu') # Cell def to_device(b, device=None): "Recursively put `b` on `device`." if defaults.use_cuda==False: device='cpu' elif device is None: device=default_device() def _inner(o): return o.to(device, non_blocking=True) if isinstance(o,Tensor) else o.to_device(device) if hasattr(o, "to_device") else o return apply(_inner, b) # Cell def to_cpu(b): "Recursively map lists of tensors in `b ` to the cpu." return to_device(b,'cpu') # Cell def to_np(x): "Convert a tensor to a numpy array." return apply(lambda o: o.data.cpu().numpy(), x) # Cell def to_concat(xs, dim=0): "Concat the element in `xs` (recursively if they are tuples/lists of tensors)" if not xs: return xs if is_listy(xs[0]): return type(xs[0])([to_concat([x[i] for x in xs], dim=dim) for i in range_of(xs[0])]) if isinstance(xs[0],dict): return {k: to_concat([x[k] for x in xs], dim=dim) for k in xs[0].keys()} #We may receive xs that are not concatenable (inputs of a text classifier for instance), # in this case we return a big list try: return retain_type(torch.cat(xs, dim=dim), xs[0]) except: return sum([L(retain_type(o_.index_select(dim, tensor(i)).squeeze(dim), xs[0]) for i in range_of(o_)) for o_ in xs], L()) # Cell @patch def set_meta(self:Tensor, x, as_copy=False): "Set all metadata in `__dict__`" if not hasattr(x,'__dict__'): return # XXX: change to `deepcopy` once PyTorch 1.7.1 is out, and check nb 23 segmentation fit works self.__dict__ = copy(x.__dict__) if as_copy else x.__dict__ # Cell if not hasattr(torch,'as_subclass'): torch.as_subclass = torch.Tensor.as_subclass # Cell @patch def as_subclass(self:Tensor, typ): "Cast to `typ` and include `__dict__` and meta" return retain_meta(self, torch.as_subclass(self, typ)) # Cell def _torch_handled(args, opt, func): if func not in opt: return False for oks in opt[func]: if all(isinstance(arg,ok) for arg,ok in zip(args,oks) if ok): return True # Cell class TensorBase(Tensor): "A `Tensor` which support subclass pickling, and maintains metadata when casting or after methods" debug,_opt = False,defaultdict(list) def __new__(cls, x, **kwargs): res = cast(tensor(x), cls) for k,v in kwargs.items(): setattr(res, k, v) return res @classmethod def _before_cast(cls, x): return tensor(x) def __repr__(self): return re.sub('tensor', self.__class__.__name__, super().__repr__()) def __reduce_ex__(self,proto): torch.utils.hooks.warn_if_has_hooks(self) args = (type(self), self.storage(), self.storage_offset(), tuple(self.size()), self.stride()) if self.is_quantized: args = args + (self.q_scale(), self.q_zero_point()) f = _fa_rebuild_qtensor if self.is_quantized else _fa_rebuild_tensor return (f, args + (self.requires_grad, OrderedDict())) @classmethod def register_func(cls, func, *oks): cls._opt[func].append(oks) def __torch_function__(self, func, types, args=(), kwargs=None): if self.debug and func.__name__ not in ('__str__','__repr__'): print(func, types, args, kwargs) convert=False if _torch_handled(args, self._opt, func): convert,types = type(self),(torch.Tensor,) res = super().__torch_function__(func, types, args=args, kwargs=kwargs) if convert: res = convert(res) if isinstance(res, TensorBase): res.set_meta(self, as_copy=True) return res def new_tensor(self, size, dtype=None, device=None, requires_grad=False): cls = type(self) return self.as_subclass(Tensor).new_tensor(size, dtype=dtype, device=device, requires_grad=requires_grad).as_subclass(cls) def new_ones(self, data, dtype=None, device=None, requires_grad=False): cls = type(self) return self.as_subclass(Tensor).new_ones(data, dtype=dtype, device=device, requires_grad=requires_grad).as_subclass(cls) def new(self, x=None): cls = type(self) res = self.as_subclass(Tensor).new() if x is None else self.as_subclass(Tensor).new(x) return res.as_subclass(cls) # Cell class TensorImageBase(TensorBase): _show_args = ArrayImageBase._show_args def show(self, ctx=None, **kwargs): return show_image(self, ctx=ctx, **{**self._show_args, **kwargs}) # Cell class TensorImage(TensorImageBase): pass # Cell class TensorImageBW(TensorImage): _show_args = ArrayImageBW._show_args # Cell class TensorMask(TensorImageBase): _show_args = ArrayMask._show_args def show(self, ctx=None, **kwargs): codes = getattr(self, 'codes', None) if codes is not None: kwargs = merge({'vmin': 1, 'vmax': len(codes)}, kwargs) return super().show(ctx=ctx, **kwargs) # Cell for o in Tensor.add,Tensor.sub,Tensor.mul,Tensor.div,Tensor.__rsub__,Tensor.__radd__,Tensor.matmul,Tensor.bmm: TensorBase.register_func(o, TensorMask, TensorImageBase) TensorBase.register_func(o, TensorImageBase, TensorMask) TensorMask.register_func(torch.einsum, str, TensorImageBase, TensorMask) TensorMask.register_func(torch.einsum, str, TensorMask, TensorImageBase) # Cell class TensorFlowField(TensorBase): pass TensorImage.register_func(F.grid_sample, TensorImageBase, TensorFlowField) # Cell class TensorCategory(TensorBase): pass # Cell class TensorMultiCategory(TensorCategory): pass # Cell class TitledTensorScalar(TensorBase): "A tensor containing a scalar that has a `show` method" def show(self, **kwargs): show_title(self.item(), **kwargs) # Cell @patch def tensored(self:L): "`mapped(tensor)`" return self.map(tensor) @patch def stack(self:L, dim=0): "Same as `torch.stack`" return torch.stack(list(self.tensored()), dim=dim) @patch def cat (self:L, dim=0): "Same as `torch.cat`" return torch.cat (list(self.tensored()), dim=dim) # Cell def concat(*ls): "Concatenate tensors, arrays, lists, or tuples" if not len(ls): return [] it = ls[0] if isinstance(it,torch.Tensor): res = torch.cat(ls) elif isinstance(it,ndarray): res = np.concatenate(ls) else: res = itertools.chain.from_iterable(map(L,ls)) if isinstance(it,(tuple,list)): res = type(it)(res) else: res = L(res) return retain_type(res, it) # Cell class Chunks: "Slice and int indexing into a list of lists" def __init__(self, chunks, lens=None): self.chunks = chunks self.lens = L(map(len,self.chunks) if lens is None else lens) self.cumlens = np.cumsum(0+self.lens) self.totlen = self.cumlens[-1] def __getitem__(self,i): if isinstance(i,slice): return retain_type(self.getslice(i), old=self.chunks[0]) di,idx = self.doc_idx(i) return retain_type(self.chunks[di][idx], old=self.chunks[0]) def getslice(self, i): st_d,st_i = self.doc_idx(ifnone(i.start,0)) en_d,en_i = self.doc_idx(ifnone(i.stop,self.totlen+1)) res = [self.chunks[st_d][st_i:(en_i if st_d==en_d else sys.maxsize)]] for b in range(st_d+1,en_d): res.append(self.chunks[b]) if st_d!=en_d and en_d<len(self.chunks): res.append(self.chunks[en_d][:en_i]) return concat(*res) def doc_idx(self, i): if i<0: i=self.totlen+i # count from end docidx = np.searchsorted(self.cumlens, i+1)-1 cl = self.cumlens[docidx] return docidx,i-cl # Cell def show_title(o, ax=None, ctx=None, label=None, color='black', **kwargs): "Set title of `ax` to `o`, or print `o` if `ax` is `None`" ax = ifnone(ax,ctx) if ax is None: print(o) elif hasattr(ax, 'set_title'): t = ax.title.get_text() if len(t) > 0: o = t+'\n'+str(o) ax.set_title(o, color=color) elif isinstance(ax, pd.Series): while label in ax: label += '_' ax = ax.append(pd.Series({label: o})) return ax # Cell class ShowTitle: "Base class that adds a simple `show`" _show_args = {'label': 'text'} def show(self, ctx=None, **kwargs): "Show self" return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs)) class TitledInt(Int, ShowTitle): _show_args = {'label': 'text'} def show(self, ctx=None, **kwargs): "Show self" return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs)) class TitledFloat(Float, ShowTitle): _show_args = {'label': 'text'} def show(self, ctx=None, **kwargs): "Show self" return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs)) class TitledStr(Str, ShowTitle): _show_args = {'label': 'text'} def show(self, ctx=None, **kwargs): "Show self" return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs)) class TitledTuple(fastuple, ShowTitle): _show_args = {'label': 'text'} def show(self, ctx=None, **kwargs): "Show self" return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs)) add_docs(TitledInt, "An `int` with `show`"); add_docs(TitledStr, "An `str` with `show`"); add_docs(TitledFloat, "A `float` with `show`"); add_docs(TitledTuple, "A `fastuple` with `show`") # Cell @patch def truncate(self:TitledStr, n): "Truncate self to `n`" words = self.split(' ')[:n] return TitledStr(' '.join(words)) # Cell if not hasattr(pd.DataFrame,'_old_init'): pd.DataFrame._old_init = pd.DataFrame.__init__ # Cell @patch def __init__(self:pd.DataFrame, data=None, index=None, columns=None, dtype=None, copy=False): if data is not None and isinstance(data, Tensor): data = to_np(data) self._old_init(data, index=index, columns=columns, dtype=dtype, copy=copy) # Cell def get_empty_df(n): "Return `n` empty rows of a dataframe" df = pd.DataFrame(index = range(n)) return [df.iloc[i] for i in range(n)] # Cell def display_df(df): "Display `df` in a notebook or defaults to print" try: from IPython.display import display, HTML except: return print(df) display(HTML(df.to_html())) # Cell def get_first(c): "Get the first element of c, even if c is a dataframe" return getattr(c, 'iloc', c)[0] # Cell def one_param(m): "First parameter in `m`" return first(m.parameters()) # Cell def item_find(x, idx=0): "Recursively takes the `idx`-th element of `x`" if is_listy(x): return item_find(x[idx]) if isinstance(x,dict): key = list(x.keys())[idx] if isinstance(idx, int) else idx return item_find(x[key]) return x # Cell def find_device(b): "Recursively search the device of `b`." return item_find(b).device # Cell def find_bs(b): "Recursively search the batch size of `b`." return item_find(b).shape[0] # Cell def np_func(f): "Convert a function taking and returning numpy arrays to one taking and returning tensors" def _inner(*args, **kwargs): nargs = [to_np(arg) if isinstance(arg,Tensor) else arg for arg in args] return tensor(f(*nargs, **kwargs)) functools.update_wrapper(_inner, f) return _inner # Cell class Module(nn.Module, metaclass=PrePostInitMeta): "Same as `nn.Module`, but no need for subclasses to call `super().__init__`" def __pre_init__(self, *args, **kwargs): super().__init__() def __init__(self): pass # Cell from torch.nn.parallel import DistributedDataParallel # Cell def get_model(model): "Return the model maybe wrapped inside `model`." return model.module if isinstance(model, (DistributedDataParallel, nn.DataParallel)) else model # Cell def one_hot(x, c): "One-hot encode `x` with `c` classes." res = torch.zeros(c, dtype=torch.uint8) if isinstance(x, Tensor) and x.numel()>0: res[x] = 1. else: res[list(L(x, use_list=None))] = 1. return res # Cell def one_hot_decode(x, vocab=None): return L(vocab[i] if vocab else i for i,x_ in enumerate(x) if x_==1) # Cell def params(m): "Return all parameters of `m`" return [p for p in m.parameters()] # Cell def trainable_params(m): "Return all trainable parameters of `m`" return [p for p in m.parameters() if p.requires_grad] # Cell norm_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm) # Cell def norm_bias_params(m, with_bias=True): "Return all bias and BatchNorm parameters" if isinstance(m, norm_types): return L(m.parameters()) res = L(m.children()).map(norm_bias_params, with_bias=with_bias).concat() if with_bias and getattr(m, 'bias', None) is not None: res.append(m.bias) return res # Cell def batch_to_samples(b, max_n=10): "'Transposes' a batch to (at most `max_n`) samples" if isinstance(b, Tensor): return retain_types(list(b[:max_n]), [b]) else: res = L(b).map(partial(batch_to_samples,max_n=max_n)) return retain_types(res.zip(), [b]) # Cell @patch def interp_1d(x:Tensor, xp, fp): "Same as `np.interp`" slopes = (fp[1:]-fp[:-1])/(xp[1:]-xp[:-1]) incx = fp[:-1] - (slopes*xp[:-1]) locs = (x[:,None]>=xp[None,:]).long().sum(1)-1 locs = locs.clamp(0,len(slopes)-1) return slopes[locs]*x + incx[locs] # Cell @patch def pca(x:Tensor, k=2): "Compute PCA of `x` with `k` dimensions." x = x-torch.mean(x,0) U,S,V = torch.svd(x.t()) return torch.mm(x,U[:,:k]) # Cell def logit(x): "Logit of `x`, clamped to avoid inf." x = x.clamp(1e-7, 1-1e-7) return -(1/x-1).log() # Cell def num_distrib(): "Return the number of processes in distributed training (if applicable)." return int(os.environ.get('WORLD_SIZE', 0)) # Cell def rank_distrib(): "Return the distributed rank of this process (if applicable)." return int(os.environ.get('RANK', 0)) # Cell def distrib_barrier(): "Place a synchronization barrier in distributed training" if num_distrib() > 1 and torch.distributed.is_initialized(): torch.distributed.barrier() # Cell # Saving arrays requires pytables - optional dependency try: import tables except: pass # Cell def _comp_filter(lib='lz4',lvl=3): return tables.Filters(complib=f'blosc:{lib}', complevel=lvl) # Cell @patch def save_array(p:Path, o, complib='lz4', lvl=3): "Save numpy array to a compressed `pytables` file, using compression level `lvl`" if isinstance(o,Tensor): o = to_np(o) with tables.open_file(p, mode='w', filters=_comp_filter(lib=complib,lvl=lvl)) as f: f.create_carray('/', 'data', obj=o) # Cell @patch def load_array(p:Path): "Save numpy array to a `pytables` file" with tables.open_file(p, 'r') as f: return f.root.data.read() # Cell def base_doc(elt): "Print a base documentation of `elt`" name = getattr(elt, '__qualname__', getattr(elt, '__name__', '')) print(f'{name}{inspect.signature(elt)}\n{inspect.getdoc(elt)}\n') print('To get a prettier result with hyperlinks to source code and documentation, install nbdev: pip install nbdev') # Cell def doc(elt): "Try to use doc form nbdev and fall back to `base_doc`" try: from nbdev.showdoc import doc doc(elt) except: base_doc(elt) # Cell def nested_reorder(t, idxs): "Reorder all tensors in `t` using `idxs`" if isinstance(t, (Tensor,L)): return t[idxs] elif is_listy(t): return type(t)(nested_reorder(t_, idxs) for t_ in t) if t is None: return t raise TypeError(f"Expected tensor, tuple, list or L but got {type(t)}") # Cell def make_cross_image(bw=True): "Create a tensor containing a cross image, either `bw` (True) or color" if bw: im = torch.zeros(5,5) im[2,:] = 1. im[:,2] = 1. else: im = torch.zeros(3,5,5) im[0,2,:] = 1. im[1,:,2] = 1. return im # Cell def show_image_batch(b, show=show_titled_image, items=9, cols=3, figsize=None, **kwargs): "Display batch `b` in a grid of size `items` with `cols` width" if items<cols: cols=items rows = (items+cols-1) // cols if figsize is None: figsize = (cols*3, rows*3) fig,axs = plt.subplots(rows, cols, figsize=figsize) for *o,ax in zip(*to_cpu(b), axs.flatten()): show(o, ax=ax, **kwargs) # Cell def requires_grad(m): "Check if the first parameter of `m` requires grad or not" ps = list(m.parameters()) return ps[0].requires_grad if len(ps)>0 else False # Cell def init_default(m, func=nn.init.kaiming_normal_): "Initialize `m` weights with `func` and set `bias` to 0." if func: if hasattr(m, 'weight'): func(m.weight) if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.) return m # Cell def cond_init(m, func): "Apply `init_default` to `m` unless it's a batchnorm module" if (not isinstance(m, norm_types)) and requires_grad(m): init_default(m, func) # Cell def apply_leaf(m, f): "Apply `f` to children of `m`." c = m.children() if isinstance(m, nn.Module): f(m) for l in c: apply_leaf(l,f) # Cell def apply_init(m, func=nn.init.kaiming_normal_): "Initialize all non-batchnorm layers of `m` with `func`." apply_leaf(m, partial(cond_init, func=func)) # Cell def script_use_ctx(f): "Decorator: create jit script and pass everything in `ctx.saved_variables to `f`, after `*args`" sf = torch.jit.script(f) def _f(ctx, *args, **kwargs): return sf(*args, *ctx.saved_variables, **kwargs) return update_wrapper(_f,f) # Cell def script_save_ctx(static, *argidx): "Decorator: create jit script and save args with indices `argidx` using `ctx.save_for_backward`" def _dec(f): sf = torch.jit.script(f) def _f(ctx, *args, **kwargs): if argidx: save = [args[o] for o in argidx] ctx.save_for_backward(*save) if not argidx: args = [ctx]+args return sf(*args, **kwargs) if static: _f = staticmethod(_f) return update_wrapper(_f,f) return _dec # Cell def script_fwd(*argidx): "Decorator: create static jit script and save args with indices `argidx` using `ctx.save_for_backward`" return script_save_ctx(True, *argidx) # Cell def script_bwd(f): "Decorator: create static jit script and pass everything in `ctx.saved_variables to `f`, after `*args`" return staticmethod(script_use_ctx(f)) # Cell def grad_module(cls): "Decorator: convert `cls` into an autograd function" class _c(nn.Module): def forward(self, *args, **kwargs): return cls.apply(*args, **kwargs) return _c # Comes from 13b_metrics.ipynb, cell def flatten_check(inp, targ): "Check that `out` and `targ` have the same number of elements and flatten them." inp,targ = TensorBase(inp.contiguous()).view(-1),TensorBase(targ.contiguous()).view(-1) test_eq(len(inp), len(targ)) return inp,targ
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/torch_core.py
torch_core.py
__all__ = ['TabularCollab', 'CollabDataLoaders', 'EmbeddingDotBias', 'EmbeddingNN', 'collab_learner'] # Cell from .tabular.all import * # Cell class TabularCollab(TabularPandas): "Instance of `TabularPandas` suitable for collaborative filtering (with no continuous variable)" with_cont=False # Cell class CollabDataLoaders(DataLoaders): "Base `DataLoaders` for collaborative filtering." @delegates(DataLoaders.from_dblock) @classmethod def from_df(cls, ratings, valid_pct=0.2, user_name=None, item_name=None, rating_name=None, seed=None, path='.', **kwargs): "Create a `DataLoaders` suitable for collaborative filtering from `ratings`." user_name = ifnone(user_name, ratings.columns[0]) item_name = ifnone(item_name, ratings.columns[1]) rating_name = ifnone(rating_name, ratings.columns[2]) cat_names = [user_name,item_name] splits = RandomSplitter(valid_pct=valid_pct, seed=seed)(range_of(ratings)) to = TabularCollab(ratings, [Categorify], cat_names, y_names=[rating_name], y_block=TransformBlock(), splits=splits) return to.dataloaders(path=path, **kwargs) @classmethod def from_csv(cls, csv, **kwargs): "Create a `DataLoaders` suitable for collaborative filtering from `csv`." return cls.from_df(pd.read_csv(csv), **kwargs) CollabDataLoaders.from_csv = delegates(to=CollabDataLoaders.from_df)(CollabDataLoaders.from_csv) # Cell class EmbeddingDotBias(Module): "Base dot model for collaborative filtering." def __init__(self, n_factors, n_users, n_items, y_range=None): self.y_range = y_range (self.u_weight, self.i_weight, self.u_bias, self.i_bias) = [Embedding(*o) for o in [ (n_users, n_factors), (n_items, n_factors), (n_users,1), (n_items,1) ]] def forward(self, x): users,items = x[:,0],x[:,1] dot = self.u_weight(users)* self.i_weight(items) res = dot.sum(1) + self.u_bias(users).squeeze() + self.i_bias(items).squeeze() if self.y_range is None: return res return torch.sigmoid(res) * (self.y_range[1]-self.y_range[0]) + self.y_range[0] @classmethod def from_classes(cls, n_factors, classes, user=None, item=None, y_range=None): "Build a model with `n_factors` by inferring `n_users` and `n_items` from `classes`" if user is None: user = list(classes.keys())[0] if item is None: item = list(classes.keys())[1] res = cls(n_factors, len(classes[user]), len(classes[item]), y_range=y_range) res.classes,res.user,res.item = classes,user,item return res def _get_idx(self, arr, is_item=True): "Fetch item or user (based on `is_item`) for all in `arr`" assert hasattr(self, 'classes'), "Build your model with `EmbeddingDotBias.from_classes` to use this functionality." classes = self.classes[self.item] if is_item else self.classes[self.user] c2i = {v:k for k,v in enumerate(classes)} try: return tensor([c2i[o] for o in arr]) except Exception as e: print(f"""You're trying to access {'an item' if is_item else 'a user'} that isn't in the training data. If it was in your original data, it may have been split such that it's only in the validation set now.""") def bias(self, arr, is_item=True): "Bias for item or user (based on `is_item`) for all in `arr`" idx = self._get_idx(arr, is_item) layer = (self.i_bias if is_item else self.u_bias).eval().cpu() return to_detach(layer(idx).squeeze(),gather=False) def weight(self, arr, is_item=True): "Weight for item or user (based on `is_item`) for all in `arr`" idx = self._get_idx(arr, is_item) layer = (self.i_weight if is_item else self.u_weight).eval().cpu() return to_detach(layer(idx),gather=False) # Cell class EmbeddingNN(TabularModel): "Subclass `TabularModel` to create a NN suitable for collaborative filtering." @delegates(TabularModel.__init__) def __init__(self, emb_szs, layers, **kwargs): super().__init__(emb_szs=emb_szs, n_cont=0, out_sz=1, layers=layers, **kwargs) # Cell @delegates(Learner.__init__) def collab_learner(dls, n_factors=50, use_nn=False, emb_szs=None, layers=None, config=None, y_range=None, loss_func=None, **kwargs): "Create a Learner for collaborative filtering on `dls`." emb_szs = get_emb_sz(dls, ifnone(emb_szs, {})) if loss_func is None: loss_func = MSELossFlat() if config is None: config = tabular_config() if y_range is not None: config['y_range'] = y_range if layers is None: layers = [n_factors] if use_nn: model = EmbeddingNN(emb_szs=emb_szs, layers=layers, **config) else: model = EmbeddingDotBias.from_classes(n_factors, dls.classes, y_range=y_range) return Learner(dls, model, loss_func=loss_func, **kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/collab.py
collab.py
import torch import torch.nn as nn from torch.autograd import Variable from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors class tofp16(nn.Module): """ Utility module that implements:: def forward(self, input): return input.half() """ def __init__(self): super(tofp16, self).__init__() def forward(self, input): return input.half() def BN_convert_float(module): """ Utility function for network_to_half(). Retained for legacy purposes. """ if isinstance(module, torch.nn.modules.batchnorm._BatchNorm) and module.affine is True: module.float() for child in module.children(): BN_convert_float(child) return module def network_to_half(network): """ Convert model to half precision in a batchnorm-safe way. Retained for legacy purposes. It is recommended to use FP16Model. """ return nn.Sequential(tofp16(), BN_convert_float(network.half())) def convert_module(module, dtype): """ Converts a module's immediate parameters and buffers to dtype. """ for param in module.parameters(recurse=False): if param is not None: if param.data.dtype.is_floating_point: param.data = param.data.to(dtype=dtype) if param._grad is not None and param._grad.data.dtype.is_floating_point: param._grad.data = param._grad.data.to(dtype=dtype) for buf in module.buffers(recurse=False): if buf is not None and buf.data.dtype.is_floating_point: buf.data = buf.data.to(dtype=dtype) def convert_network(network, dtype): """ Converts a network's parameters and buffers to dtype. """ for module in network.modules(): if isinstance(module, torch.nn.modules.batchnorm._BatchNorm) and module.affine is True: continue convert_module(module, dtype) if isinstance(module, torch.nn.RNNBase) or isinstance(module, torch.nn.modules.rnn.RNNBase): module.flatten_parameters() return network class FP16Model(nn.Module): """ Convert model to half precision in a batchnorm-safe way. """ def __init__(self, network): super(FP16Model, self).__init__() self.network = convert_network(network, dtype=torch.half) def forward(self, *inputs): inputs = tuple(t.half() for t in inputs) return self.network(*inputs) def backwards_debug_hook(grad): raise RuntimeError("master_params recieved a gradient in the backward pass!") def prep_param_lists(model, flat_master=False): """ Creates a list of FP32 master parameters for a given model, as in `Training Neural Networks with Mixed Precision: Real Examples`_. Args: model (torch.nn.Module): Existing Pytorch model flat_master (bool, optional, default=False): Flatten the master parameters into a single tensor, as a performance optimization. Returns: A tuple (``model_params``, ``master_params``). ``model_params`` is a list of the model's parameters for later use with :func:`model_grads_to_master_grads` and :func:`master_params_to_model_params`. ``master_params`` is a list of FP32 master gradients. If ``flat_master=True``, ``master_params`` will be a list with one element. Example:: model_params, master_params = prep_param_lists(model) .. warning:: Currently, if ``flat_master=True``, all the model's parameters must be the same type. If the model has parameters of different types, use ``flat_master=False``, or use :class:`FP16_Optimizer`. .. _`Training Neural Networks with Mixed Precision: Real Examples`: http://on-demand.gputechconf.com/gtc/2018/video/S81012/ """ model_params = [param for param in model.parameters() if param.requires_grad] if flat_master: # Give the user some more useful error messages try: # flatten_dense_tensors returns a contiguous flat array. # http://pytorch.org/docs/master/_modules/torch/_utils.html master_params = _flatten_dense_tensors([param.data for param in model_params]).float() except: print("Error in prep_param_lists: model may contain a mixture of parameters " "of different types. Use flat_master=False, or use F16_Optimizer.") raise master_params = torch.nn.Parameter(master_params) master_params.requires_grad = True # master_params.register_hook(backwards_debug_hook) if master_params.grad is None: master_params.grad = master_params.new(*master_params.size()) return model_params, [master_params] else: master_params = [param.clone().float().detach() for param in model_params] for param in master_params: param.requires_grad = True return model_params, master_params def model_grads_to_master_grads(model_params, master_params, flat_master=False): """ Copy model gradients to master gradients. Args: model_params: List of model parameters created by :func:`prep_param_lists`. master_params: List of FP32 master parameters created by :func:`prep_param_lists`. If ``master_params`` was created with ``flat_master=True``, ``flat_master=True`` should also be supplied to :func:`model_grads_to_master_grads`. """ if flat_master: # The flattening may incur one more deep copy than is necessary. master_params[0].grad.data.copy_( _flatten_dense_tensors([p.grad.data for p in model_params])) else: for model, master in zip(model_params, master_params): if model.grad is not None: if master.grad is None: master.grad = Variable(master.data.new(*master.data.size())) master.grad.data.copy_(model.grad.data) else: master.grad = None def master_params_to_model_params(model_params, master_params, flat_master=False): """ Copy master parameters to model parameters. Args: model_params: List of model parameters created by :func:`prep_param_lists`. master_params: List of FP32 master parameters created by :func:`prep_param_lists`. If ``master_params`` was created with ``flat_master=True``, ``flat_master=True`` should also be supplied to :func:`master_params_to_model_params`. """ if flat_master: for model, master in zip(model_params, _unflatten_dense_tensors(master_params[0].data, model_params)): model.data.copy_(master) else: for model, master in zip(model_params, master_params): model.data.copy_(master.data) # Backward compatibility fixes def to_python_float(t): if hasattr(t, 'item'): return t.item() else: return t[0] TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if TORCH_MAJOR == 0 and TORCH_MINOR <= 4: clip_grad_norm = torch.nn.utils.clip_grad_norm else: clip_grad_norm = torch.nn.utils.clip_grad_norm_
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/fp16_utils.py
fp16_utils.py
__all__ = ['TensorBoardBaseCallback', 'TensorBoardCallback', 'TensorBoardProjectorCallback', 'projector_word_embeddings'] # Cell from ..basics import * # Cell import tensorboard from torch.utils.tensorboard import SummaryWriter from .fp16 import ModelToHalf from .hook import hook_output # Cell class TensorBoardBaseCallback(Callback): "Base class for tensorboard callbacks" def __init__(self): self.run_projector = False def after_pred(self): if self.run_projector: self.feat = _add_projector_features(self.learn, self.h, self.feat) def after_validate(self): if not self.run_projector: return self.run_projector = False self._remove() _write_projector_embedding(self.learn, self.writer, self.feat) def after_fit(self): if self.run: self.writer.close() def _setup_projector(self): self.run_projector = True self.h = hook_output(self.learn.model[1][1] if not self.layer else self.layer) self.feat = {} def _setup_writer(self): self.writer = SummaryWriter(log_dir=self.log_dir) def _remove(self): if getattr(self, 'h', None): self.h.remove() def __del__(self): self._remove() # Cell class TensorBoardCallback(TensorBoardBaseCallback): "Saves model topology, losses & metrics for tensorboard and tensorboard projector during training" def __init__(self, log_dir=None, trace_model=True, log_preds=True, n_preds=9, projector=False, layer=None): super().__init__() store_attr() def before_fit(self): self.run = not hasattr(self.learn, 'lr_finder') and not hasattr(self, "gather_preds") and rank_distrib()==0 if not self.run: return self._setup_writer() if self.trace_model: if hasattr(self.learn, 'mixed_precision'): raise Exception("Can't trace model in mixed precision, pass `trace_model=False` or don't use FP16.") b = self.dls.one_batch() self.learn._split(b) self.writer.add_graph(self.model, *self.xb) def after_batch(self): self.writer.add_scalar('train_loss', self.smooth_loss, self.train_iter) for i,h in enumerate(self.opt.hypers): for k,v in h.items(): self.writer.add_scalar(f'{k}_{i}', v, self.train_iter) def after_epoch(self): for n,v in zip(self.recorder.metric_names[2:-1], self.recorder.log[2:-1]): self.writer.add_scalar(n, v, self.train_iter) if self.log_preds: b = self.dls.valid.one_batch() self.learn.one_batch(0, b) preds = getattr(self.loss_func, 'activation', noop)(self.pred) out = getattr(self.loss_func, 'decodes', noop)(preds) x,y,its,outs = self.dls.valid.show_results(b, out, show=False, max_n=self.n_preds) tensorboard_log(x, y, its, outs, self.writer, self.train_iter) def before_validate(self): if self.projector: self._setup_projector() # Cell class TensorBoardProjectorCallback(TensorBoardBaseCallback): "Extracts and exports image featuers for tensorboard projector during inference" def __init__(self, log_dir=None, layer=None): super().__init__() store_attr() def before_fit(self): self.run = not hasattr(self.learn, 'lr_finder') and hasattr(self, "gather_preds") and rank_distrib()==0 if not self.run: return self._setup_writer() def before_validate(self): self._setup_projector() # Cell def _write_projector_embedding(learn, writer, feat): lbls = [learn.dl.vocab[l] for l in feat['lbl']] if getattr(learn.dl, 'vocab', None) else None vecs = feat['vec'].squeeze() writer.add_embedding(vecs, metadata=lbls, label_img=feat['img'], global_step=learn.train_iter) # Cell def _add_projector_features(learn, hook, feat): img = _normalize_for_projector(learn.x) first_epoch = True if learn.iter == 0 else False feat['vec'] = hook.stored if first_epoch else torch.cat((feat['vec'], hook.stored),0) feat['img'] = img if first_epoch else torch.cat((feat['img'], img),0) if getattr(learn.dl, 'vocab', None): feat['lbl'] = learn.y if first_epoch else torch.cat((feat['lbl'], learn.y),0) return feat # Cell def _get_embeddings(model, layer): layer = model[0].encoder if layer == None else layer return layer.weight # Cell @typedispatch def _normalize_for_projector(x:TensorImage): # normalize tensor to be between 0-1 img = x.clone() sz = img.shape img = img.view(x.size(0), -1) img -= img.min(1, keepdim=True)[0] img /= img.max(1, keepdim=True)[0] img = img.view(*sz) return img # Cell from ..text.all import LMLearner, TextLearner # Cell def projector_word_embeddings(learn=None, layer=None, vocab=None, limit=-1, start=0, log_dir=None): "Extracts and exports word embeddings from language models embedding layers" if not layer: if isinstance(learn, LMLearner): layer = learn.model[0].encoder elif isinstance(learn, TextLearner): layer = learn.model[0].module.encoder emb = layer.weight img = torch.full((len(emb),3,8,8), 0.7) vocab = learn.dls.vocab[0] if vocab == None else vocab vocab = list(map(lambda x: f'{x}_', vocab)) writer = SummaryWriter(log_dir=log_dir) end = start + limit if limit >= 0 else -1 writer.add_embedding(emb[start:end], metadata=vocab[start:end], label_img=img[start:end]) writer.close() # Cell from ..vision.data import * # Cell @typedispatch def tensorboard_log(x:TensorImage, y: TensorCategory, samples, outs, writer, step): fig,axs = get_grid(len(samples), add_vert=1, return_fig=True) for i in range(2): axs = [b.show(ctx=c) for b,c in zip(samples.itemgot(i),axs)] axs = [r.show(ctx=c, color='green' if b==r else 'red') for b,r,c in zip(samples.itemgot(1),outs.itemgot(0),axs)] writer.add_figure('Sample results', fig, step) # Cell from ..vision.core import TensorPoint,TensorBBox # Cell @typedispatch def tensorboard_log(x:TensorImage, y: (TensorImageBase, TensorPoint, TensorBBox), samples, outs, writer, step): fig,axs = get_grid(len(samples), add_vert=1, return_fig=True, double=True) for i in range(2): axs[::2] = [b.show(ctx=c) for b,c in zip(samples.itemgot(i),axs[::2])] for x in [samples,outs]: axs[1::2] = [b.show(ctx=c) for b,c in zip(x.itemgot(0),axs[1::2])] writer.add_figure('Sample results', fig, step)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/tensorboard.py
tensorboard.py
__all__ = ['annealer', 'sched_lin', 'sched_cos', 'sched_no', 'sched_exp', 'SchedLin', 'SchedCos', 'SchedNo', 'SchedExp', 'SchedPoly', 'combine_scheds', 'combined_cos', 'ParamScheduler', 'LRFinder', 'SuggestedLRs'] # Cell from ..basics import * # Cell class _Annealer: def __init__(self, f, start, end): store_attr('f,start,end') def __call__(self, pos): return self.f(self.start, self.end, pos) # Cell def annealer(f): "Decorator to make `f` return itself partially applied." @functools.wraps(f) def _inner(start, end): return _Annealer(f, start, end) return _inner # Cell #TODO Jeremy, make this pickle #@annealer #def SchedLin(start, end, pos): return start + pos*(end-start) #@annealer #def SchedCos(start, end, pos): return start + (1 + math.cos(math.pi*(1-pos))) * (end-start) / 2 #@annealer #def SchedNo (start, end, pos): return start #@annealer #def SchedExp(start, end, pos): return start * (end/start) ** pos # #SchedLin.__doc__ = "Linear schedule function from `start` to `end`" #SchedCos.__doc__ = "Cosine schedule function from `start` to `end`" #SchedNo .__doc__ = "Constant schedule function with `start` value" #SchedExp.__doc__ = "Exponential schedule function from `start` to `end`" # Cell def sched_lin(start, end, pos): return start + pos*(end-start) def sched_cos(start, end, pos): return start + (1 + math.cos(math.pi*(1-pos))) * (end-start) / 2 def sched_no (start, end, pos): return start def sched_exp(start, end, pos): return start * (end/start) ** pos def SchedLin(start, end): return _Annealer(sched_lin, start, end) def SchedCos(start, end): return _Annealer(sched_cos, start, end) def SchedNo (start, end): return _Annealer(sched_no, start, end) def SchedExp(start, end): return _Annealer(sched_exp, start, end) SchedLin.__doc__ = "Linear schedule function from `start` to `end`" SchedCos.__doc__ = "Cosine schedule function from `start` to `end`" SchedNo .__doc__ = "Constant schedule function with `start` value" SchedExp.__doc__ = "Exponential schedule function from `start` to `end`" # Cell def SchedPoly(start, end, power): "Polynomial schedule (of `power`) function from `start` to `end`" def _inner(pos): return start + (end - start) * pos ** power return _inner # Cell def combine_scheds(pcts, scheds): "Combine `scheds` according to `pcts` in one function" assert sum(pcts) == 1. pcts = tensor([0] + L(pcts)) assert torch.all(pcts >= 0) pcts = torch.cumsum(pcts, 0) def _inner(pos): if int(pos) == 1: return scheds[-1](1.) idx = (pos >= pcts).nonzero().max() actual_pos = (pos-pcts[idx]) / (pcts[idx+1]-pcts[idx]) return scheds[idx](actual_pos.item()) return _inner # Cell def combined_cos(pct, start, middle, end): "Return a scheduler with cosine annealing from `start`→`middle` & `middle`→`end`" return combine_scheds([pct,1-pct], [SchedCos(start, middle), SchedCos(middle, end)]) # Cell @docs class ParamScheduler(Callback): "Schedule hyper-parameters according to `scheds`" order,run_valid = 60,False def __init__(self, scheds): self.scheds = scheds def before_fit(self): self.hps = {p:[] for p in self.scheds.keys()} def before_batch(self): self._update_val(self.pct_train) def _update_val(self, pct): for n,f in self.scheds.items(): self.opt.set_hyper(n, f(pct)) def after_batch(self): for p in self.scheds.keys(): self.hps[p].append(self.opt.hypers[-1][p]) def after_fit(self): if hasattr(self.learn, 'recorder') and hasattr(self, 'hps'): self.recorder.hps = self.hps _docs = {"before_fit": "Initialize container for hyper-parameters", "before_batch": "Set the proper hyper-parameters in the optimizer", "after_batch": "Record hyper-parameters of this batch", "after_fit": "Save the hyper-parameters in the recorder if there is one"} # Cell @patch def fit_one_cycle(self:Learner, n_epoch, lr_max=None, div=25., div_final=1e5, pct_start=0.25, wd=None, moms=None, cbs=None, reset_opt=False): "Fit `self.model` for `n_epoch` using the 1cycle policy." if self.opt is None: self.create_opt() self.opt.set_hyper('lr', self.lr if lr_max is None else lr_max) lr_max = np.array([h['lr'] for h in self.opt.hypers]) scheds = {'lr': combined_cos(pct_start, lr_max/div, lr_max, lr_max/div_final), 'mom': combined_cos(pct_start, *(self.moms if moms is None else moms))} self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd) # Cell @patch def plot_sched(self:Recorder, keys=None, figsize=None): keys = self.hps.keys() if keys is None else L(keys) rows,cols = (len(keys)+1)//2, min(2, len(keys)) figsize = figsize or (6*cols,4*rows) _, axs = plt.subplots(rows, cols, figsize=figsize) axs = axs.flatten() if len(keys) > 1 else L(axs) for p,ax in zip(keys, axs): ax.plot(self.hps[p]) ax.set_ylabel(p) # Cell @patch def fit_flat_cos(self:Learner, n_epoch, lr=None, div_final=1e5, pct_start=0.75, wd=None, cbs=None, reset_opt=False): "Fit `self.model` for `n_epoch` at flat `lr` before a cosine annealing." if self.opt is None: self.create_opt() self.opt.set_hyper('lr', self.lr if lr is None else lr) lr = np.array([h['lr'] for h in self.opt.hypers]) scheds = {'lr': combined_cos(pct_start, lr, lr, lr/div_final)} self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd) # Cell @patch def fit_sgdr(self:Learner, n_cycles, cycle_len, lr_max=None, cycle_mult=2, cbs=None, reset_opt=False, wd=None): "Fit `self.model` for `n_cycles` of `cycle_len` using SGDR." if self.opt is None: self.create_opt() self.opt.set_hyper('lr', self.lr if lr_max is None else lr_max) lr_max = np.array([h['lr'] for h in self.opt.hypers]) n_epoch = cycle_len * (cycle_mult**n_cycles-1)//(cycle_mult-1) pcts = [cycle_len * cycle_mult**i / n_epoch for i in range(n_cycles)] scheds = [SchedCos(lr_max, 0) for _ in range(n_cycles)] scheds = {'lr': combine_scheds(pcts, scheds)} self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd) # Cell @patch @delegates(Learner.fit_one_cycle) def fine_tune(self:Learner, epochs, base_lr=2e-3, freeze_epochs=1, lr_mult=100, pct_start=0.3, div=5.0, **kwargs): "Fine tune with `freeze` for `freeze_epochs` then with `unfreeze` from `epochs` using discriminative LR" self.freeze() self.fit_one_cycle(freeze_epochs, slice(base_lr), pct_start=0.99, **kwargs) base_lr /= 2 self.unfreeze() self.fit_one_cycle(epochs, slice(base_lr/lr_mult, base_lr), pct_start=pct_start, div=div, **kwargs) # Cell @docs class LRFinder(ParamScheduler): "Training with exponentially growing learning rate" def __init__(self, start_lr=1e-7, end_lr=10, num_it=100, stop_div=True): if is_listy(start_lr): self.scheds = {'lr': [SchedExp(s, e) for (s,e) in zip(start_lr,end_lr)]} else: self.scheds = {'lr': SchedExp(start_lr, end_lr)} self.num_it,self.stop_div = num_it,stop_div def before_fit(self): super().before_fit() self.learn.save('_tmp') self.best_loss = float('inf') def before_batch(self): self._update_val(self.train_iter/self.num_it) def after_batch(self): super().after_batch() if self.smooth_loss < self.best_loss: self.best_loss = self.smooth_loss if self.smooth_loss > 4*self.best_loss and self.stop_div: raise CancelFitException() if self.train_iter >= self.num_it: raise CancelFitException() def before_validate(self): raise CancelValidException() def after_fit(self): self.learn.opt.zero_grad() #Need to zero the gradients of the model before detaching the optimizer for future fits tmp_f = self.path/self.model_dir/'_tmp.pth' if tmp_f.exists(): self.learn.load('_tmp', with_opt=True) os.remove(tmp_f) _docs = {"before_fit": "Initialize container for hyper-parameters and save the model", "before_batch": "Set the proper hyper-parameters in the optimizer", "after_batch": "Record hyper-parameters of this batch and potentially stop training", "after_fit": "Save the hyper-parameters in the recorder if there is one and load the original model", "before_validate": "Skip the validation part of training"} # Cell @patch def plot_lr_find(self:Recorder, skip_end=5): "Plot the result of an LR Finder test (won't work if you didn't do `learn.lr_find()` before)" lrs = self.lrs if skip_end==0 else self.lrs [:-skip_end] losses = self.losses if skip_end==0 else self.losses[:-skip_end] fig, ax = plt.subplots(1,1) ax.plot(lrs, losses) ax.set_ylabel("Loss") ax.set_xlabel("Learning Rate") ax.set_xscale('log') # Cell SuggestedLRs = collections.namedtuple('SuggestedLRs', ['lr_min', 'lr_steep']) # Cell @patch def lr_find(self:Learner, start_lr=1e-7, end_lr=10, num_it=100, stop_div=True, show_plot=True, suggestions=True): "Launch a mock training to find a good learning rate, return lr_min, lr_steep if `suggestions` is True" n_epoch = num_it//len(self.dls.train) + 1 cb=LRFinder(start_lr=start_lr, end_lr=end_lr, num_it=num_it, stop_div=stop_div) with self.no_logging(): self.fit(n_epoch, cbs=cb) if show_plot: self.recorder.plot_lr_find() if suggestions: lrs,losses = tensor(self.recorder.lrs[num_it//10:-5]),tensor(self.recorder.losses[num_it//10:-5]) if len(losses) == 0: return lr_min = lrs[losses.argmin()].item() grads = (losses[1:]-losses[:-1]) / (lrs[1:].log()-lrs[:-1].log()) lr_steep = lrs[grads.argmin()].item() return SuggestedLRs(lr_min/10.,lr_steep)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/schedule.py
schedule.py
__all__ = ['CollectDataCallback', 'CudaCallback', 'WeightedDL', 'PartialDL'] # Cell from ..basics import * # Cell class CollectDataCallback(Callback): "Collect all batches, along with `pred` and `loss`, into `self.data`. Mainly for testing" def before_fit(self): self.data = L() def after_batch(self): self.data.append(self.learn.to_detach((self.xb,self.yb,self.pred,self.loss))) # Cell class CudaCallback(Callback): "Move data to CUDA device" def __init__(self, device=None): self.device = ifnone(device, default_device()) def before_batch(self): self.learn.xb,self.learn.yb = to_device(self.xb),to_device(self.yb) def before_fit(self): self.model.to(self.device) # Cell @delegates() class WeightedDL(TfmdDL): def __init__(self, dataset=None, bs=None, wgts=None, **kwargs): super().__init__(dataset=dataset, bs=bs, **kwargs) wgts = array([1.]*len(dataset) if wgts is None else wgts) self.wgts = wgts/wgts.sum() def get_idxs(self): if self.n==0: return [] if not self.shuffle: return super().get_idxs() return list(np.random.choice(self.n, self.n, p=self.wgts)) # Cell @patch @delegates(Datasets.dataloaders) def weighted_dataloaders(self:Datasets, wgts, bs=64, **kwargs): xtra_kwargs = [{}] * (self.n_subsets-1) return self.dataloaders(bs=bs, dl_type=WeightedDL, dl_kwargs=({'wgts':wgts}, *xtra_kwargs), **kwargs) # Cell @delegates() class PartialDL(TfmdDL): "Select randomly partial quantity of data at each epoch" def __init__(self, dataset=None, bs=None, partial_n=None, **kwargs): super().__init__(dataset=dataset, bs=bs, **kwargs) self.partial_n = min(partial_n, self.n) if partial_n else None def get_idxs(self): if self.partial_n is None: return super().get_idxs() return list(np.random.choice(self.n, self.partial_n, replace=False)) def __len__(self): if self.partial_n is None: return super().__len__() return self.partial_n//self.bs + (0 if self.drop_last or self.partial_n%self.bs==0 else 1) # Cell @patch @delegates(Datasets.dataloaders) def partial_dataloaders(self:FilteredBase, partial_n, bs=64, **kwargs): "Create a partial dataloader `PartialDL` for the training set" xtra_kwargs = [{}] * (self.n_subsets-1) return self.dataloaders(bs=bs, dl_type=PartialDL, dl_kwargs=({'partial_n':partial_n}, *xtra_kwargs), **kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/data.py
data.py
__all__ = ['ShortEpochCallback', 'GradientAccumulation', 'GradientClip', 'set_bn_eval', 'BnFreeze', 'bn_types'] # Cell from ..basics import * from .progress import * from .fp16 import * # Cell class ShortEpochCallback(Callback): "Fit just `pct` of an epoch, then stop" def __init__(self,pct=0.01,short_valid=True): self.pct,self.short_valid = pct,short_valid def after_batch(self): if self.iter/self.n_iter < self.pct: return if self.training: raise CancelTrainException if self.short_valid: raise CancelValidException # Cell class GradientAccumulation(Callback): "Accumulate gradients before updating weights" order,run_valid = MixedPrecision.order-4,False def __init__(self, n_acc=32): store_attr() def before_fit(self): self.count=0 def after_loss(self): self.learn.loss_grad /= self.n_acc/find_bs(self.learn.yb) def before_step(self): "Skip weight update if we have not seen enough items" self.learn.loss_grad *= self.n_acc/find_bs(self.learn.yb) # log correct loss self.count += find_bs(self.learn.yb) if self.count<self.n_acc: raise CancelBatchException() # skip step/zero_grad else: self.count=0 # Cell class GradientClip(Callback): "Clip norm of gradients" order=MixedPrecision.order+1 def __init__(self,max_norm:float=1., norm_type:float=2.0): store_attr() def before_step(self): nn.utils.clip_grad_norm_(self.parameters(), self.max_norm, self.norm_type) # Cell bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d) def set_bn_eval(m:nn.Module, use_eval=True)->None: "Set bn layers in eval mode for all recursive children of `m`." for l in m.children(): if isinstance(l, bn_types) and not next(l.parameters()).requires_grad: if use_eval: l.eval() else: l.train() set_bn_eval(l) class BnFreeze(Callback): run_after=TrainEvalCallback "Freeze moving average statistics in all non-trainable batchnorm layers." def before_train(self): set_bn_eval(self.model)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/training.py
training.py
__all__ = ['WandbCallback', 'log_dataset', 'log_model', 'wandb_process'] # Cell from ..basics import * from .progress import * from ..text.data import TensorText from ..tabular.all import TabularDataLoaders, Tabular from .hook import total_params # Cell import wandb # Cell class WandbCallback(Callback): "Saves model topology, losses & metrics" toward_end,remove_on_fetch,run_after = True,True,FetchPredsCallback # Record if watch has been called previously (even in another instance) _wandb_watch_called = False def __init__(self, log="gradients", log_preds=True, log_model=True, log_dataset=False, dataset_name=None, valid_dl=None, n_preds=36, seed=12345, reorder=True): # Check if wandb.init has been called if wandb.run is None: raise ValueError('You must call wandb.init() before WandbCallback()') # W&B log step self._wandb_step = wandb.run.step - 1 # -1 except if the run has previously logged data (incremented at each batch) self._wandb_epoch = 0 if not(wandb.run.step) else math.ceil(wandb.run.summary['epoch']) # continue to next epoch store_attr('log,log_preds,log_model,log_dataset,dataset_name,valid_dl,n_preds,seed,reorder') def before_fit(self): "Call watch method to log model topology, gradients & weights" self.run = not hasattr(self.learn, 'lr_finder') and not hasattr(self, "gather_preds") and rank_distrib()==0 if not self.run: return # Log config parameters log_config = self.learn.gather_args() _format_config(log_config) try: wandb.config.update(log_config, allow_val_change=True) except Exception as e: print(f'WandbCallback could not log config parameters -> {e}') if not WandbCallback._wandb_watch_called: WandbCallback._wandb_watch_called = True # Logs model topology and optionally gradients and weights wandb.watch(self.learn.model, log=self.log) # log dataset assert isinstance(self.log_dataset, (str, Path, bool)), 'log_dataset must be a path or a boolean' if self.log_dataset is True: if Path(self.dls.path) == Path('.'): print('WandbCallback could not retrieve the dataset path, please provide it explicitly to "log_dataset"') self.log_dataset = False else: self.log_dataset = self.dls.path if self.log_dataset: self.log_dataset = Path(self.log_dataset) assert self.log_dataset.is_dir(), f'log_dataset must be a valid directory: {self.log_dataset}' metadata = {'path relative to learner': os.path.relpath(self.log_dataset, self.learn.path)} log_dataset(path=self.log_dataset, name=self.dataset_name, metadata=metadata) # log model if self.log_model and not hasattr(self, 'save_model'): print('WandbCallback requires use of "SaveModelCallback" to log best model') self.log_model = False if self.log_preds: try: if not self.valid_dl: #Initializes the batch watched wandbRandom = random.Random(self.seed) # For repeatability self.n_preds = min(self.n_preds, len(self.dls.valid_ds)) idxs = wandbRandom.sample(range(len(self.dls.valid_ds)), self.n_preds) if isinstance(self.dls, TabularDataLoaders): test_items = getattr(self.dls.valid_ds.items, 'iloc', self.dls.valid_ds.items)[idxs] self.valid_dl = self.dls.test_dl(test_items, with_labels=True, process=False) else: test_items = [getattr(self.dls.valid_ds.items, 'iloc', self.dls.valid_ds.items)[i] for i in idxs] self.valid_dl = self.dls.test_dl(test_items, with_labels=True) self.learn.add_cb(FetchPredsCallback(dl=self.valid_dl, with_input=True, with_decoded=True, reorder=self.reorder)) except Exception as e: self.log_preds = False print(f'WandbCallback was not able to prepare a DataLoader for logging prediction samples -> {e}') def after_batch(self): "Log hyper-parameters and training loss" if self.training: self._wandb_step += 1 self._wandb_epoch += 1/self.n_iter hypers = {f'{k}_{i}':v for i,h in enumerate(self.opt.hypers) for k,v in h.items()} wandb.log({'epoch': self._wandb_epoch, 'train_loss': to_detach(self.smooth_loss.clone()), 'raw_loss': to_detach(self.loss.clone()), **hypers}, step=self._wandb_step) def log_predictions(self, preds): inp,preds,targs,out = preds b = tuplify(inp) + tuplify(targs) x,y,its,outs = self.valid_dl.show_results(b, out, show=False, max_n=self.n_preds) wandb.log(wandb_process(x, y, its, outs), step=self._wandb_step) def after_epoch(self): "Log validation loss and custom metrics & log prediction samples" # Correct any epoch rounding error and overwrite value self._wandb_epoch = round(self._wandb_epoch) wandb.log({'epoch': self._wandb_epoch}, step=self._wandb_step) # Log sample predictions if self.log_preds: try: self.log_predictions(self.learn.fetch_preds.preds) except Exception as e: self.log_preds = False print(f'WandbCallback was not able to get prediction samples -> {e}') wandb.log({n:s for n,s in zip(self.recorder.metric_names, self.recorder.log) if n not in ['train_loss', 'epoch', 'time']}, step=self._wandb_step) def after_fit(self): if self.log_model: if self.save_model.last_saved_path is None: print('WandbCallback could not retrieve a model to upload') else: metadata = {n:s for n,s in zip(self.recorder.metric_names, self.recorder.log) if n not in ['train_loss', 'epoch', 'time']} log_model(self.save_model.last_saved_path, metadata=metadata) self.run = True if self.log_preds: self.remove_cb(FetchPredsCallback) wandb.log({}) # ensure sync of last step # Cell @patch def gather_args(self:Learner): "Gather config parameters accessible to the learner" # args stored by `store_attr` cb_args = {f'{cb}':getattr(cb,'__stored_args__',True) for cb in self.cbs} args = {'Learner':self, **cb_args} # input dimensions try: n_inp = self.dls.train.n_inp args['n_inp'] = n_inp xb = self.dls.train.one_batch()[:n_inp] args.update({f'input {n+1} dim {i+1}':d for n in range(n_inp) for i,d in enumerate(list(detuplify(xb[n]).shape))}) except: print(f'Could not gather input dimensions') # other useful information with ignore_exceptions(): args['batch size'] = self.dls.bs args['batch per epoch'] = len(self.dls.train) args['model parameters'] = total_params(self.model)[0] args['device'] = self.dls.device.type args['frozen'] = bool(self.opt.frozen_idx) args['frozen idx'] = self.opt.frozen_idx args['dataset.tfms'] = f'{self.dls.dataset.tfms}' args['dls.after_item'] = f'{self.dls.after_item}' args['dls.before_batch'] = f'{self.dls.before_batch}' args['dls.after_batch'] = f'{self.dls.after_batch}' return args # Cell def _make_plt(img): "Make plot to image resolution" # from https://stackoverflow.com/a/13714915 my_dpi = 100 fig = plt.figure(frameon=False, dpi=my_dpi) h, w = img.shape[:2] fig.set_size_inches(w / my_dpi, h / my_dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) return fig, ax # Cell def _format_config_value(v): if isinstance(v, list): return [_format_config_value(item) for item in v] elif hasattr(v, '__stored_args__'): return {**_format_config(v.__stored_args__), '_name': v} return v # Cell def _format_config(config): "Format config parameters before logging them" for k,v in config.items(): if isinstance(v, dict): config[k] = _format_config(v) else: config[k] = _format_config_value(v) return config # Cell def _format_metadata(metadata): "Format metadata associated to artifacts" for k,v in metadata.items(): metadata[k] = str(v) # Cell def log_dataset(path, name=None, metadata={}, description='raw dataset'): "Log dataset folder" # Check if wandb.init has been called in case datasets are logged manually if wandb.run is None: raise ValueError('You must call wandb.init() before log_dataset()') path = Path(path) if not path.is_dir(): raise f'path must be a valid directory: {path}' name = ifnone(name, path.name) _format_metadata(metadata) artifact_dataset = wandb.Artifact(name=name, type='dataset', metadata=metadata, description=description) # log everything except "models" folder for p in path.ls(): if p.is_dir(): if p.name != 'models': artifact_dataset.add_dir(str(p.resolve()), name=p.name) else: artifact_dataset.add_file(str(p.resolve())) wandb.run.use_artifact(artifact_dataset) # Cell def log_model(path, name=None, metadata={}, description='trained model'): "Log model file" if wandb.run is None: raise ValueError('You must call wandb.init() before log_model()') path = Path(path) if not path.is_file(): raise f'path must be a valid file: {path}' name = ifnone(name, f'run-{wandb.run.id}-model') _format_metadata(metadata) artifact_model = wandb.Artifact(name=name, type='model', metadata=metadata, description=description) with artifact_model.new_file(name, mode='wb') as fa: fa.write(path.read_bytes()) wandb.run.log_artifact(artifact_model) # Cell @typedispatch def wandb_process(x:TensorImage, y, samples, outs): "Process `sample` and `out` depending on the type of `x/y`" res_input, res_pred, res_label = [],[],[] for s,o in zip(samples, outs): img = s[0].permute(1,2,0) res_input.append(wandb.Image(img, caption='Input data')) for t, capt, res in ((o[0], "Prediction", res_pred), (s[1], "Ground Truth", res_label)): fig, ax = _make_plt(img) # Superimpose label or prediction to input image ax = img.show(ctx=ax) ax = t.show(ctx=ax) res.append(wandb.Image(fig, caption=capt)) plt.close(fig) return {"Inputs":res_input, "Predictions":res_pred, "Ground Truth":res_label} # Cell @typedispatch def wandb_process(x:TensorImage, y:(TensorCategory,TensorMultiCategory), samples, outs): return {"Prediction Samples": [wandb.Image(s[0].permute(1,2,0), caption=f'Ground Truth: {s[1]}\nPrediction: {o[0]}') for s,o in zip(samples,outs)]} # Cell @typedispatch def wandb_process(x:TensorImage, y:TensorMask, samples, outs): res = [] codes = getattr(y, 'codes', None) class_labels = {i:f'{c}' for i,c in enumerate(codes)} if codes is not None else None for s,o in zip(samples, outs): img = s[0].permute(1,2,0) masks = {} for t, capt in ((o[0], "Prediction"), (s[1], "Ground Truth")): masks[capt] = {'mask_data':t.numpy().astype(np.uint8)} if class_labels: masks[capt]['class_labels'] = class_labels res.append(wandb.Image(img, masks=masks)) return {"Prediction Samples":res} # Cell @typedispatch def wandb_process(x:TensorText, y:(TensorCategory,TensorMultiCategory), samples, outs): data = [[s[0], s[1], o[0]] for s,o in zip(samples,outs)] return {"Prediction Samples": wandb.Table(data=data, columns=["Text", "Target", "Prediction"])} # Cell @typedispatch def wandb_process(x:Tabular, y:Tabular, samples, outs): df = x.all_cols for n in x.y_names: df[n+'_pred'] = y[n].values return {"Prediction Samples": wandb.Table(dataframe=df)} # Cell #nbdev_comment _all_ = ['wandb_process']
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/wandb.py
wandb.py
__all__ = ['TerminateOnNaNCallback', 'TrackerCallback', 'EarlyStoppingCallback', 'SaveModelCallback', 'ReduceLROnPlateau'] # Cell from ..basics import * from .progress import * from .fp16 import MixedPrecision # Cell class TerminateOnNaNCallback(Callback): "A `Callback` that terminates training if loss is NaN." order=-9 def after_batch(self): "Test if `last_loss` is NaN and interrupts training." if torch.isinf(self.loss) or torch.isnan(self.loss): raise CancelFitException # Cell class TrackerCallback(Callback): "A `Callback` that keeps track of the best value in `monitor`." order,remove_on_fetch = 60,True def __init__(self, monitor='valid_loss', comp=None, min_delta=0., reset_on_fit=True): if comp is None: comp = np.less if 'loss' in monitor or 'error' in monitor else np.greater if comp == np.less: min_delta *= -1 self.monitor,self.comp,self.min_delta,self.reset_on_fit,self.best= monitor,comp,min_delta,reset_on_fit,None def before_fit(self): "Prepare the monitored value" self.run = not hasattr(self, "lr_finder") and not hasattr(self, "gather_preds") if self.reset_on_fit or self.best is None: self.best = float('inf') if self.comp == np.less else -float('inf') assert self.monitor in self.recorder.metric_names[1:] self.idx = list(self.recorder.metric_names[1:]).index(self.monitor) def after_epoch(self): "Compare the last value to the best up to now" val = self.recorder.values[-1][self.idx] if self.comp(val - self.min_delta, self.best): self.best,self.new_best = val,True else: self.new_best = False def after_fit(self): self.run=True # Cell class EarlyStoppingCallback(TrackerCallback): "A `TrackerCallback` that terminates training when monitored quantity stops improving." def __init__(self, monitor='valid_loss', comp=None, min_delta=0., patience=1, reset_on_fit=True): super().__init__(monitor=monitor, comp=comp, min_delta=min_delta, reset_on_fit=reset_on_fit) self.patience = patience def before_fit(self): self.wait = 0; super().before_fit() def after_epoch(self): "Compare the value monitored to its best score and maybe stop training." super().after_epoch() if self.new_best: self.wait = 0 else: self.wait += 1 if self.wait >= self.patience: print(f'No improvement since epoch {self.epoch-self.wait}: early stopping') raise CancelFitException() # Cell class SaveModelCallback(TrackerCallback): "A `TrackerCallback` that saves the model's best during training and loads it at the end." _only_train_loop = True def __init__(self, monitor='valid_loss', comp=None, min_delta=0., fname='model', every_epoch=False, with_opt=False, reset_on_fit=True): super().__init__(monitor=monitor, comp=comp, min_delta=min_delta, reset_on_fit=reset_on_fit) # keep track of file path for loggers self.last_saved_path = None store_attr('fname,every_epoch,with_opt') def _save(self, name): self.last_saved_path = self.learn.save(name, with_opt=self.with_opt) def after_epoch(self): "Compare the value monitored to its best score and save if best." if self.every_epoch: self._save(f'{self.fname}_{self.epoch}') else: #every improvement super().after_epoch() if self.new_best: print(f'Better model found at epoch {self.epoch} with {self.monitor} value: {self.best}.') self._save(f'{self.fname}') def after_fit(self, **kwargs): "Load the best model." if not self.every_epoch: self.learn.load(f'{self.fname}', with_opt=self.with_opt) # Cell class ReduceLROnPlateau(TrackerCallback): "A `TrackerCallback` that reduces learning rate when a metric has stopped improving." def __init__(self, monitor='valid_loss', comp=None, min_delta=0., patience=1, factor=10., min_lr=0, reset_on_fit=True): super().__init__(monitor=monitor, comp=comp, min_delta=min_delta, reset_on_fit=reset_on_fit) self.patience,self.factor,self.min_lr = patience,factor,min_lr def before_fit(self): self.wait = 0; super().before_fit() def after_epoch(self): "Compare the value monitored to its best score and reduce LR by `factor` if no improvement." super().after_epoch() if self.new_best: self.wait = 0 else: self.wait += 1 if self.wait >= self.patience: old_lr = self.opt.hypers[-1]['lr'] for h in self.opt.hypers: h['lr'] = max(h['lr'] / self.factor, self.min_lr) self.wait = 0 if self.opt.hypers[-1]["lr"] < old_lr: print(f'Epoch {self.epoch}: reducing lr to {self.opt.hypers[-1]["lr"]}')
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/tracker.py
tracker.py
__all__ = ['Hook', 'hook_output', 'Hooks', 'hook_outputs', 'dummy_eval', 'model_sizes', 'num_features_model', 'has_params', 'HookCallback', 'total_params', 'layer_info', 'module_summary', 'ActivationStats'] # Cell from ..basics import * # Cell @docs class Hook(): "Create a hook on `m` with `hook_func`." def __init__(self, m, hook_func, is_forward=True, detach=True, cpu=False, gather=False): store_attr('hook_func,detach,cpu,gather') f = m.register_forward_hook if is_forward else m.register_backward_hook self.hook = f(self.hook_fn) self.stored,self.removed = None,False def hook_fn(self, module, input, output): "Applies `hook_func` to `module`, `input`, `output`." if self.detach: input,output = to_detach(input, cpu=self.cpu, gather=self.gather),to_detach(output, cpu=self.cpu, gather=self.gather) self.stored = self.hook_func(module, input, output) def remove(self): "Remove the hook from the model." if not self.removed: self.hook.remove() self.removed=True def __enter__(self, *args): return self def __exit__(self, *args): self.remove() _docs = dict(__enter__="Register the hook", __exit__="Remove the hook") # Cell def _hook_inner(m,i,o): return o if isinstance(o,Tensor) or is_listy(o) else list(o) def hook_output(module, detach=True, cpu=False, grad=False): "Return a `Hook` that stores activations of `module` in `self.stored`" return Hook(module, _hook_inner, detach=detach, cpu=cpu, is_forward=not grad) # Cell @docs class Hooks(): "Create several hooks on the modules in `ms` with `hook_func`." def __init__(self, ms, hook_func, is_forward=True, detach=True, cpu=False): self.hooks = [Hook(m, hook_func, is_forward, detach, cpu) for m in ms] def __getitem__(self,i): return self.hooks[i] def __len__(self): return len(self.hooks) def __iter__(self): return iter(self.hooks) @property def stored(self): return L(o.stored for o in self) def remove(self): "Remove the hooks from the model." for h in self.hooks: h.remove() def __enter__(self, *args): return self def __exit__ (self, *args): self.remove() _docs = dict(stored = "The states saved in each hook.", __enter__="Register the hooks", __exit__="Remove the hooks") # Cell def hook_outputs(modules, detach=True, cpu=False, grad=False): "Return `Hooks` that store activations of all `modules` in `self.stored`" return Hooks(modules, _hook_inner, detach=detach, cpu=cpu, is_forward=not grad) # Cell def dummy_eval(m, size=(64,64)): "Evaluate `m` on a dummy input of a certain `size`" ch_in = in_channels(m) x = one_param(m).new(1, ch_in, *size).requires_grad_(False).uniform_(-1.,1.) with torch.no_grad(): return m.eval()(x) # Cell def model_sizes(m, size=(64,64)): "Pass a dummy input through the model `m` to get the various sizes of activations." with hook_outputs(m) as hooks: _ = dummy_eval(m, size=size) return [o.stored.shape for o in hooks] # Cell def num_features_model(m): "Return the number of output features for `m`." sz,ch_in = 32,in_channels(m) while True: #Trying for a few sizes in case the model requires a big input size. try: return model_sizes(m, (sz,sz))[-1][1] except Exception as e: sz *= 2 if sz > 2048: raise e # Cell def has_params(m): "Check if `m` has at least one parameter" return len(list(m.parameters())) > 0 # Cell @funcs_kwargs class HookCallback(Callback): "`Callback` that can be used to register hooks on `modules`" _methods = ["hook"] hook = noops def __init__(self, modules=None, every=None, remove_end=True, is_forward=True, detach=True, cpu=True, **kwargs): store_attr('modules,every,remove_end,is_forward,detach,cpu') assert not kwargs def before_fit(self): "Register the `Hooks` on `self.modules`." if self.modules is None: self.modules = [m for m in flatten_model(self.model) if has_params(m)] if self.every is None: self._register() def before_batch(self): if self.every is None: return if self.training and self.train_iter%self.every==0: self._register() def after_batch(self): if self.every is None: return if self.training and self.train_iter%self.every==0: self._remove() def after_fit(self): "Remove the `Hooks`." if self.remove_end: self._remove() def _register(self): self.hooks = Hooks(self.modules, self.hook, self.is_forward, self.detach, self.cpu) def _remove(self): if getattr(self, 'hooks', None): self.hooks.remove() def __del__(self): self._remove() # Cell def total_params(m): "Give the number of parameters of a module and if it's trainable or not" params = sum([p.numel() for p in m.parameters()]) trains = [p.requires_grad for p in m.parameters()] return params, (False if len(trains)==0 else trains[0]) # Cell def layer_info(learn, *xb): "Return layer infos of `model` on `xb` (only support batch first inputs)" def _track(m, i, o): params, trainable, shape = '', '', '' same = any((x[0].shape[1:] == x[1].shape for x in zip(i, o))) if hasattr(m, 'weight'): # non activation layer params, trainable = total_params(m) shape = apply(lambda x: x.shape, o) return (type(m).__name__, params, trainable, shape, same) with Hooks(flatten_model(learn.model), _track) as h: batch = apply(lambda o:o[:1], xb) train_only_cbs = [cb for cb in learn.cbs if hasattr(cb, '_only_train_loop')] with learn.removed_cbs(train_only_cbs), learn.no_logging(), learn as l: r = l.get_preds(dl=[batch], inner=True, reorder=False) return h.stored # Cell def _print_shapes(o, bs): if isinstance(o, (torch.Size,tuple)): return ' x '.join([str(bs)] + [str(t) for t in o[1:]]) else: return str([_print_shapes(x, bs) for x in o]) # Cell def module_summary(learn, *xb): "Print a summary of `model` using `xb`" #Individual parameters wrapped in ParameterModule aren't called through the hooks in `layer_info`, # thus are not counted inside the summary #TODO: find a way to have them counted in param number somehow infos = layer_info(learn, *xb) n,bs = 76,find_bs(xb) inp_sz = _print_shapes(apply(lambda x:x.shape, xb), bs) res = f"{type(learn.model).__name__} (Input shape: {inp_sz})\n" res += "=" * n + "\n" res += f"{'Layer (type)':<20} {'Output Shape':<20} {'Param #':<10} {'Trainable':<10}\n" res += "=" * n ps,trn_ps,j = 0,0,0 infos = [o for o in infos if o is not None] #see comment in previous cell prev_sz = None for typ,np,trn,sz,chnged in infos: if sz is None: continue if j == 0: res += f'\n{"":<20} {_print_shapes(sz, bs)[:19]:<20}' # to avoid a double line at the top if not chnged and not prev_sz == sz and j > 0: res += "\n" + "_" * n + "\n" + f'{"":<20} {_print_shapes(sz, bs)[:19]:<20}' j = 1 res += f"\n{typ:<20} {'':<20} {np:<10} {str(trn):<10}" if np != '': ps += np if trn: trn_ps += np prev_sz = sz res += "\n" + "_" * n + "\n" res += f"\nTotal params: {ps:,}\n" res += f"Total trainable params: {trn_ps:,}\n" res += f"Total non-trainable params: {ps - trn_ps:,}\n\n" return PrettyString(res) # Cell @patch def summary(self:Learner): "Print a summary of the model, optimizer and loss function." xb = self.dls.train.one_batch()[:self.dls.train.n_inp] res = module_summary(self, *xb) res += f"Optimizer used: {self.opt_func}\nLoss function: {self.loss_func}\n\n" if self.opt is not None: res += f"Model " + ("unfrozen\n\n" if self.opt.frozen_idx==0 else f"frozen up to parameter group #{self.opt.frozen_idx}\n\n") res += "Callbacks:\n" + '\n'.join(f" - {cb}" for cb in self.cbs.sorted('order')) return PrettyString(res) # Cell @delegates() class ActivationStats(HookCallback): "Callback that record the mean and std of activations." order=-20 def __init__(self, with_hist=False, **kwargs): super().__init__(**kwargs) self.with_hist = with_hist def before_fit(self): "Initialize stats." super().before_fit() self.stats = L() def hook(self, m, i, o): if isinstance(o, tuple): return self.hook_multi_ouput(o) o = o.float() res = {'mean': o.mean().item(), 'std': o.std().item(), 'near_zero': (o<=0.05).long().sum().item()/o.numel()} if self.with_hist: res['hist'] = o.histc(40,0,10) return res def hook_multi_ouput(self,o_tuple): "For outputs of RNN which are [nested] tuples of tensors" res = [] for o in self._flatten_tuple(o_tuple): if not(isinstance(o, Tensor)): continue res.append(self.hook(None, None, o)) return res def _flatten_tuple(self, o_tuple): "Recursively flatten a [nested] tuple" res = [] for it in o_tuple: if isinstance(it, tuple): res += self._flatten_tuple(it) else: res += [it] return tuple(res) def after_batch(self): "Take the stored results and puts it in `self.stats`" if self.training and (self.every is None or self.train_iter%self.every == 0): self.stats.append(self.hooks.stored) super().after_batch() def layer_stats(self, idx): lstats = self.stats.itemgot(idx) return L(lstats.itemgot(o) for o in ('mean','std','near_zero')) def hist(self, idx): res = self.stats.itemgot(idx).itemgot('hist') return torch.stack(tuple(res)).t().float().log1p() def color_dim(self, idx, figsize=(10,5), ax=None): "The 'colorful dimension' plot" res = self.hist(idx) if ax is None: ax = subplots(figsize=figsize)[1][0] ax.imshow(res, origin='lower') ax.axis('off') def plot_layer_stats(self, idx): _,axs = subplots(1, 3, figsize=(12,3)) for o,ax,title in zip(self.layer_stats(idx),axs,('mean','std','% near zero')): ax.plot(o) ax.set_title(title)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/hook.py
hook.py
__all__ = ['NeptuneCallback'] # Cell import tempfile from ..basics import * from ..learner import Callback # Cell import neptune # Cell class NeptuneCallback(Callback): "Log losses, metrics, model weights, model architecture summary to neptune" def __init__(self, log_model_weights=True, keep_experiment_running=False): self.log_model_weights = log_model_weights self.keep_experiment_running = keep_experiment_running self.experiment = None if neptune.project is None: raise ValueError('You did not initialize project in neptune.\n', 'Please invoke `neptune.init("USERNAME/PROJECT_NAME")` before this callback.') def before_fit(self): try: self.experiment = neptune.get_experiment() except ValueError: print('No active experiment. Please invoke `neptune.create_experiment()` before this callback.') try: self.experiment.set_property('n_epoch', str(self.learn.n_epoch)) self.experiment.set_property('model_class', str(type(self.learn.model))) except: print(f'Did not log all properties. Check properties in the {neptune.get_experiment()}.') try: with tempfile.NamedTemporaryFile(mode='w') as f: with open(f.name, 'w') as g: g.write(repr(self.learn.model)) self.experiment.log_artifact(f.name, 'model_summary.txt') except: print('Did not log model summary. Check if your model is PyTorch model.') if self.log_model_weights and not hasattr(self.learn, 'save_model'): print('Unable to log model to Neptune.\n', 'Use "SaveModelCallback" to save model checkpoints that will be logged to Neptune.') def after_batch(self): # log loss and opt.hypers if self.learn.training: self.experiment.log_metric('batch__smooth_loss', self.learn.smooth_loss) self.experiment.log_metric('batch__loss', self.learn.loss) self.experiment.log_metric('batch__train_iter', self.learn.train_iter) for i, h in enumerate(self.learn.opt.hypers): for k, v in h.items(): self.experiment.log_metric(f'batch__opt.hypers.{k}', v) def after_epoch(self): # log metrics for n, v in zip(self.learn.recorder.metric_names, self.learn.recorder.log): if n not in ['epoch', 'time']: self.experiment.log_metric(f'epoch__{n}', v) if n == 'time': self.experiment.log_text(f'epoch__{n}', str(v)) # log model weights if self.log_model_weights and hasattr(self.learn, 'save_model'): if self.learn.save_model.every_epoch: _file = join_path_file(f'{self.learn.save_model.fname}_{self.learn.save_model.epoch}', self.learn.path / self.learn.model_dir, ext='.pth') else: _file = join_path_file(self.learn.save_model.fname, self.learn.path / self.learn.model_dir, ext='.pth') self.experiment.log_artifact(_file) def after_fit(self): if not self.keep_experiment_running: try: self.experiment.stop() except: print('No neptune experiment to stop.') else: print(f'Your experiment (id: {self.experiment.id}, name: {self.experiment.name}) is left in the running state.\n', 'You can log more data to it, like this: `neptune.log_metric()`')
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/neptune.py
neptune.py
__all__ = ['ProgressCallback', 'ShowGraphCallback', 'CSVLogger'] # Cell from ..basics import * # Cell @docs class ProgressCallback(Callback): "A `Callback` to handle the display of progress bars" order,_stateattrs = 60,('mbar','pbar') def before_fit(self): assert hasattr(self.learn, 'recorder') if self.create_mbar: self.mbar = master_bar(list(range(self.n_epoch))) if self.learn.logger != noop: self.old_logger,self.learn.logger = self.logger,self._write_stats self._write_stats(self.recorder.metric_names) else: self.old_logger = noop def before_epoch(self): if getattr(self, 'mbar', False): self.mbar.update(self.epoch) def before_train(self): self._launch_pbar() def before_validate(self): self._launch_pbar() def after_train(self): self.pbar.on_iter_end() def after_validate(self): self.pbar.on_iter_end() def after_batch(self): self.pbar.update(self.iter+1) if hasattr(self, 'smooth_loss'): self.pbar.comment = f'{self.smooth_loss:.4f}' def _launch_pbar(self): self.pbar = progress_bar(self.dl, parent=getattr(self, 'mbar', None), leave=False) self.pbar.update(0) def after_fit(self): if getattr(self, 'mbar', False): self.mbar.on_iter_end() delattr(self, 'mbar') if hasattr(self, 'old_logger'): self.learn.logger = self.old_logger def _write_stats(self, log): if getattr(self, 'mbar', False): self.mbar.write([f'{l:.6f}' if isinstance(l, float) else str(l) for l in log], table=True) _docs = dict(before_fit="Setup the master bar over the epochs", before_epoch="Update the master bar", before_train="Launch a progress bar over the training dataloader", before_validate="Launch a progress bar over the validation dataloader", after_train="Close the progress bar over the training dataloader", after_validate="Close the progress bar over the validation dataloader", after_batch="Update the current progress bar", after_fit="Close the master bar") if not hasattr(defaults, 'callbacks'): defaults.callbacks = [TrainEvalCallback, Recorder, ProgressCallback] elif ProgressCallback not in defaults.callbacks: defaults.callbacks.append(ProgressCallback) # Cell @patch @contextmanager def no_bar(self:Learner): "Context manager that deactivates the use of progress bars" has_progress = hasattr(self, 'progress') if has_progress: self.remove_cb(self.progress) try: yield self finally: if has_progress: self.add_cb(ProgressCallback()) # Cell class ShowGraphCallback(Callback): "Update a graph of training and validation loss" order,run_valid=65,False def before_fit(self): self.run = not hasattr(self.learn, 'lr_finder') and not hasattr(self, "gather_preds") if not(self.run): return self.nb_batches = [] assert hasattr(self.learn, 'progress') def after_train(self): self.nb_batches.append(self.train_iter) def after_epoch(self): "Plot validation loss in the pbar graph" if not self.nb_batches: return rec = self.learn.recorder iters = range_of(rec.losses) val_losses = [v[1] for v in rec.values] x_bounds = (0, (self.n_epoch - len(self.nb_batches)) * self.nb_batches[0] + len(rec.losses)) y_bounds = (0, max((max(Tensor(rec.losses)), max(Tensor(val_losses))))) self.progress.mbar.update_graph([(iters, rec.losses), (self.nb_batches, val_losses)], x_bounds, y_bounds) # Cell class CSVLogger(Callback): "Log the results displayed in `learn.path/fname`" order=60 def __init__(self, fname='history.csv', append=False): self.fname,self.append = Path(fname),append def read_log(self): "Convenience method to quickly access the log." return pd.read_csv(self.path/self.fname) def before_fit(self): "Prepare file with metric names." if hasattr(self, "gather_preds"): return self.path.parent.mkdir(parents=True, exist_ok=True) self.file = (self.path/self.fname).open('a' if self.append else 'w') self.file.write(','.join(self.recorder.metric_names) + '\n') self.old_logger,self.learn.logger = self.logger,self._write_line def _write_line(self, log): "Write a line with `log` and call the old logger." self.file.write(','.join([str(t) for t in log]) + '\n') self.file.flush() os.fsync(self.file.fileno()) self.old_logger(log) def after_fit(self): "Close the file and clean up." if hasattr(self, "gather_preds"): return self.file.close() self.learn.logger = self.old_logger
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/progress.py
progress.py
__all__ = ['CancelStepException', 'CancelFitException', 'CancelEpochException', 'CancelTrainException', 'CancelValidException', 'CancelBatchException', 'event', 'Callback', 'TrainEvalCallback', 'GatherPredsCallback', 'FetchPredsCallback'] # Cell from ..data.all import * from ..optimizer import * # Cell #nbdev_comment _all_ = ['CancelStepException','CancelFitException','CancelEpochException','CancelTrainException','CancelValidException','CancelBatchException'] # Cell _events = L.split('after_create before_fit before_epoch before_train before_batch after_pred after_loss \ before_backward before_step after_cancel_step after_step after_cancel_batch after_batch after_cancel_train \ after_train before_validate after_cancel_validate after_validate after_cancel_epoch \ after_epoch after_cancel_fit after_fit') mk_class('event', **_events.map_dict(), doc="All possible events as attributes to get tab-completion and typo-proofing") # Cell #nbdev_comment _all_ = ['event'] # Cell _inner_loop = "before_batch after_pred after_loss before_backward before_step after_step after_cancel_batch after_batch".split() # Cell @funcs_kwargs(as_method=True) class Callback(Stateful,GetAttr): "Basic class handling tweaks of the training loop by changing a `Learner` in various events" order,_default,learn,run,run_train,run_valid = 0,'learn',None,True,True,True _methods = _events def __init__(self, **kwargs): assert not kwargs, f'Passed unknown events: {kwargs}' def __repr__(self): return type(self).__name__ def __call__(self, event_name): "Call `self.{event_name}` if it's defined" _run = (event_name not in _inner_loop or (self.run_train and getattr(self, 'training', True)) or (self.run_valid and not getattr(self, 'training', False))) res = None if self.run and _run: res = getattr(self, event_name, noop)() if event_name=='after_fit': self.run=True #Reset self.run to True at each end of fit return res def __setattr__(self, name, value): if hasattr(self.learn,name): warn(f"You are shadowing an attribute ({name}) that exists in the learner. Use `self.learn.{name}` to avoid this") super().__setattr__(name, value) @property def name(self): "Name of the `Callback`, camel-cased and with '*Callback*' removed" return class2attr(self, 'Callback') # Cell class TrainEvalCallback(Callback): "`Callback` that tracks the number of iterations done and properly sets training/eval mode" order,run_valid = -10,False def after_create(self): self.learn.n_epoch = 1 def before_fit(self): "Set the iter and epoch counters to 0, put the model and the right device" self.learn.epoch,self.learn.loss = 0,tensor(0.) self.learn.train_iter,self.learn.pct_train = 0,0. if hasattr(self.dls, 'device'): self.model.to(self.dls.device) if hasattr(self.model, 'reset'): self.model.reset() def after_batch(self): "Update the iter counter (in training mode)" self.learn.pct_train += 1./(self.n_iter*self.n_epoch) self.learn.train_iter += 1 def before_train(self): "Set the model in training mode" self.learn.pct_train=self.epoch/self.n_epoch self.model.train() self.learn.training=True def before_validate(self): "Set the model in validation mode" self.model.eval() self.learn.training=False # Cell if not hasattr(defaults, 'callbacks'): defaults.callbacks = [TrainEvalCallback] # Cell _ex_docs = dict( CancelBatchException="Skip the rest of this batch and go to `after_batch`", CancelTrainException="Skip the rest of the training part of the epoch and go to `after_train`", CancelValidException="Skip the rest of the validation part of the epoch and go to `after_validate`", CancelEpochException="Skip the rest of this epoch and go to `after_epoch`", CancelStepException ="Skip stepping the optimizer", CancelFitException ="Interrupts training and go to `after_fit`") for c,d in _ex_docs.items(): mk_class(c,sup=Exception,doc=d) # Cell #TODO: save_targs and save_preds only handle preds/targets that have one tensor, not tuples of tensors. class GatherPredsCallback(Callback): "`Callback` that saves the predictions and targets, optionally `with_loss`" _stateattrs=('preds','targets','inputs','losses') def __init__(self, with_input=False, with_loss=False, save_preds=None, save_targs=None, concat_dim=0): store_attr("with_input,with_loss,save_preds,save_targs,concat_dim") def before_batch(self): if self.with_input: self.inputs.append((self.learn.to_detach(self.xb))) def before_validate(self): "Initialize containers" self.preds,self.targets = [],[] if self.with_input: self.inputs = [] if self.with_loss: self.losses = [] def after_batch(self): "Save predictions, targets and potentially losses" if not hasattr(self, 'pred'): return preds,targs = self.learn.to_detach(self.pred),self.learn.to_detach(self.yb) if self.save_preds is None: self.preds.append(preds) else: (self.save_preds/str(self.iter)).save_array(preds) if self.save_targs is None: self.targets.append(targs) else: (self.save_targs/str(self.iter)).save_array(targs[0]) if self.with_loss: bs = find_bs(self.yb) loss = self.loss if self.loss.numel() == bs else self.loss.view(bs,-1).mean(1) self.losses.append(self.learn.to_detach(loss)) def after_validate(self): "Concatenate all recorded tensors" if not hasattr(self, 'preds'): return if self.with_input: self.inputs = detuplify(to_concat(self.inputs, dim=self.concat_dim)) if not self.save_preds: self.preds = detuplify(to_concat(self.preds, dim=self.concat_dim)) if not self.save_targs: self.targets = detuplify(to_concat(self.targets, dim=self.concat_dim)) if self.with_loss: self.losses = to_concat(self.losses) def all_tensors(self): res = [None if self.save_preds else self.preds, None if self.save_targs else self.targets] if self.with_input: res = [self.inputs] + res if self.with_loss: res.append(self.losses) return res # Cell class FetchPredsCallback(Callback): "A callback to fetch predictions during the training loop" remove_on_fetch = True def __init__(self, ds_idx=1, dl=None, with_input=False, with_decoded=False, cbs=None, reorder=True): self.cbs = L(cbs) store_attr('ds_idx,dl,with_input,with_decoded,reorder') def after_validate(self): to_rm = L(cb for cb in self.learn.cbs if getattr(cb, 'remove_on_fetch', False)) with self.learn.removed_cbs(to_rm + self.cbs) as learn: self.preds = learn.get_preds(ds_idx=self.ds_idx, dl=self.dl, with_input=self.with_input, with_decoded=self.with_decoded, inner=True, reorder=self.reorder)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/core.py
core.py
__all__ = ['reduce_loss', 'MixHandler', 'MixUp', 'CutMix'] # Cell from ..basics import * from torch.distributions.beta import Beta # Cell def reduce_loss(loss, reduction='mean'): "Reduce the loss based on `reduction`" return loss.mean() if reduction == 'mean' else loss.sum() if reduction == 'sum' else loss # Cell class MixHandler(Callback): "A handler class for implementing `MixUp` style scheduling" run_valid = False def __init__(self, alpha=0.5): self.distrib = Beta(tensor(alpha), tensor(alpha)) def before_fit(self): self.stack_y = getattr(self.learn.loss_func, 'y_int', False) if self.stack_y: self.old_lf,self.learn.loss_func = self.learn.loss_func,self.loss_func def after_fit(self): if self.stack_y: self.learn.loss_func = self.old_lf def lf(self, pred, *yb): if not self.training: return self.old_lf(pred, *yb) with NoneReduce(self.old_lf) as lf: loss = torch.lerp(lf(pred,*self.yb1), lf(pred,*yb), self.lam) return reduce_loss(loss, getattr(self.old_lf, 'reduction', 'mean')) # Cell class MixUp(MixHandler): "Implementation of https://arxiv.org/abs/1710.09412" def __init__(self, alpha=.4): super().__init__(alpha) def before_batch(self): lam = self.distrib.sample((self.y.size(0),)).squeeze().to(self.x.device) lam = torch.stack([lam, 1-lam], 1) self.lam = lam.max(1)[0] shuffle = torch.randperm(self.y.size(0)).to(self.x.device) xb1,self.yb1 = tuple(L(self.xb).itemgot(shuffle)),tuple(L(self.yb).itemgot(shuffle)) nx_dims = len(self.x.size()) self.learn.xb = tuple(L(xb1,self.xb).map_zip(torch.lerp,weight=unsqueeze(self.lam, n=nx_dims-1))) if not self.stack_y: ny_dims = len(self.y.size()) self.learn.yb = tuple(L(self.yb1,self.yb).map_zip(torch.lerp,weight=unsqueeze(self.lam, n=ny_dims-1))) # Cell class CutMix(MixHandler): "Implementation of `https://arxiv.org/abs/1905.04899`" def __init__(self, alpha=1.): super().__init__(alpha) def before_batch(self): bs, _, H, W = self.x.size() self.lam = self.distrib.sample((1,)) shuffle = torch.randperm(bs) xb1,self.yb1 = self.x[shuffle], tuple((self.y[shuffle],)) x1, y1, x2, y2 = self.rand_bbox(W, H, self.lam) self.learn.xb[0][..., y1:y2, x1:x2] = xb1[..., y1:y2, x1:x2] self.lam = (1 - ((x2-x1)*(y2-y1))/float(W*H)).item() if not self.stack_y: ny_dims = len(self.y.size()) self.learn.yb = tuple(L(self.yb1,self.yb).map_zip(torch.lerp,weight=unsqueeze(self.lam, n=ny_dims-1))) def rand_bbox(self, W, H, lam): cut_rat = torch.sqrt(1. - lam) cut_w = torch.round(W * cut_rat).type(torch.long) cut_h = torch.round(H * cut_rat).type(torch.long) # uniform cx = torch.randint(0, W, (1,)) cy = torch.randint(0, H, (1,)) x1 = torch.clamp(cx - cut_w // 2, 0, W) y1 = torch.clamp(cy - cut_h // 2, 0, H) x2 = torch.clamp(cx + cut_w // 2, 0, W) y2 = torch.clamp(cy + cut_h // 2, 0, H) return x1, y1, x2, y2
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/mixup.py
mixup.py
__all__ = ['MixedPrecision', 'FP16TestCallback', 'get_master', 'to_master_grads', 'to_model_params', 'test_overflow', 'grad_overflow', 'copy_clone', 'ModelToHalf', 'NonNativeMixedPrecision'] # Cell from ..basics import * from .progress import * from torch.cuda.amp import GradScaler,autocast from torch.cuda.amp.grad_scaler import OptState # Cell @delegates(GradScaler) class MixedPrecision(Callback): "Mixed precision training using Pytorch's `autocast` and `GradScaler`" order = 10 def __init__(self, **kwargs): self.kwargs,self.autocast = kwargs,autocast() def before_fit(self): self.learn.scaler,self.scales = GradScaler(**self.kwargs),L() def before_batch(self): self.autocast.__enter__() def after_pred(self): if self.pred.dtype==torch.float16: self.learn.pred = to_float(self.pred) def after_loss(self): self.autocast.__exit__() def before_backward(self): self.learn.loss_grad = self.scaler.scale(self.loss_grad) def before_step(self): self.skipped=True self.scaler.step(self) if self.skipped: raise CancelStepException() self.scales.append(self.scaler.get_scale()) def after_step(self): self.learn.scaler.update() @property # pretend to be an optimizer for `GradScaler` def param_groups(self): return self.opt.param_groups def step(self, *args, **kwargs): self.skipped=False # Cell class FP16TestCallback(Callback): "Asserts that predictions are `float16` values" order = 9 def after_pred(self): assert self.pred.dtype==torch.float16 # Cell @patch @delegates(GradScaler) def to_fp16(self:Learner, **kwargs): return self.add_cb(MixedPrecision(**kwargs)) # Cell @patch def to_fp32(self:Learner): return self.remove_cb(MixedPrecision) # Cell from ..fp16_utils import convert_network, model_grads_to_master_grads, master_params_to_model_params # Cell from torch.nn.utils import parameters_to_vector # Cell def get_master(opt, flat_master=False): model_params = [[param for param in pg if getattr(param, 'requires_grad', False) and hasattr(param, 'data')] for pg in opt.param_lists] if flat_master: master_params = [] for pg in model_params: mp = parameters_to_vector([param.data.float() for param in pg]) mp = nn.Parameter(mp, requires_grad=True) if mp.grad is None: mp.grad = mp.new(*mp.size()) master_params.append([mp]) else: master_params = [[nn.Parameter(param.data.clone().float().detach(), requires_grad=True) for param in pg] for pg in model_params] return model_params, master_params # Cell def to_master_grads(model_pgs, master_pgs, flat_master=False): for (model_params,master_params) in zip(model_pgs,master_pgs): model_grads_to_master_grads(model_params, master_params, flat_master=flat_master) # Cell def to_model_params(model_pgs, master_pgs, flat_master=False)->None: for (model_params,master_params) in zip(model_pgs,master_pgs): master_params_to_model_params(model_params, master_params, flat_master=flat_master) # Cell def test_overflow(x): s = float(x.float().sum()) return (s == float('inf') or s == float('-inf') or s != s) # Cell def grad_overflow(pgs): for pg in pgs: for p in pg: if p.grad is not None and test_overflow(p.grad.data): return True return False # Cell def copy_clone(d): return {k:(v.detach().clone().float() if isinstance(v,Tensor) else v) for k,v in d.items()} # Cell def _copy_state(opt, pgs1, pgs2): opt.param_lists = pgs2 for pg1,pg2 in zip(pgs1, pgs2): for p1,p2 in zip(pg1, pg2): opt.state[p2] = copy_clone(opt.state.pop(p1, {})) # Cell class ModelToHalf(Callback): "Use with NonNativeMixedPrecision callback (but it needs to run at the very beginning)" order=-50 def before_fit(self): self.learn.model = convert_network(self.model, dtype=torch.float16) def after_fit (self): self.learn.model = convert_network(self.model, dtype=torch.float32) # Cell @docs class NonNativeMixedPrecision(Callback): "Run training in mixed precision" order=10 def __init__(self, loss_scale=512, flat_master=False, dynamic=True, max_loss_scale=2.**24, div_factor=2., scale_wait=500, clip=None): assert torch.backends.cudnn.enabled, "Mixed precision training requires cudnn." self.flat_master,self.dynamic,self.max_loss_scale = flat_master,dynamic,max_loss_scale self.div_factor,self.scale_wait,self.clip = div_factor,scale_wait,clip self.loss_scale = max_loss_scale if dynamic else loss_scale def before_fit(self): assert self.dls.device.type == 'cuda', "Mixed-precision training requires a GPU, remove the call `to_fp16`" if self.learn.opt is None: self.learn.create_opt() self.model_pgs,self.master_pgs = get_master(self.opt, self.flat_master) self.old_pgs = self.opt.param_lists #Changes the optimizer so that the optimization step is done in FP32. _copy_state(self.learn.opt, self.model_pgs, self.master_pgs) if self.dynamic: self.count = 0 def before_batch(self): self.learn.xb = to_half(self.xb) def after_pred(self): self.learn.pred = to_float(self.pred) def before_backward(self): self.learn.loss_grad *= self.loss_scale def before_step(self): #First, check for an overflow if self.dynamic and grad_overflow(self.model_pgs): self.loss_scale /= self.div_factor self.learn.loss_grad /= self.div_factor #to record correct loss self.model.zero_grad() raise CancelBatchException() #skip step and zero_grad to_master_grads(self.model_pgs, self.master_pgs, self.flat_master) for master_params in self.master_pgs: for param in master_params: if param.grad is not None: param.grad.div_(self.loss_scale) if self.clip is not None: for group in self.master_pgs: nn.utils.clip_grad_norm_(group, self.clip) # Check if it's been long enough without overflow if self.dynamic: self.count += 1 if self.count == self.scale_wait: self.count = 0 self.loss_scale *= self.div_factor def after_step(self): self.model.zero_grad() #Zero the gradients of the model manually (optimizer disconnected) to_model_params(self.model_pgs, self.master_pgs, self.flat_master) def after_batch(self): if self.training: self.learn.loss_grad /= self.loss_scale #Log correct loss def after_fit(self): if not hasattr(self,'master_pgs'): return _copy_state(self.learn.opt, self.master_pgs, self.model_pgs) self.learn.opt.param_lists = self.old_pgs delattr(self, "master_pgs") delattr(self, "model_pgs") delattr(self, "old_pgs") _docs = dict(before_fit="Put the model in FP16 and prepare the two copies of the parameters", before_batch="Put the input in FP16", after_pred="Put the output back to FP32 so that the loss is computed in FP32", before_backward="Apply loss scaling to avoid gradient underflow", before_step="Copy the gradients to the master param and undo the loss scaling", after_step="Copy the master params to the model params", after_batch="Ensure loss is logged correctly", after_fit="Put the model back in FP32") # Cell @patch @delegates(NonNativeMixedPrecision.__init__) def to_to_non_native_fp16(self:Learner, **kwargs): return self.add_cbs([ModelToHalf(), NonNativeMixedPrecision(**kwargs)]) # Cell @patch def to_non_native_fp32(self: Learner): return self.remove_cbs([ModelToHalf, NonNativeMixedPrecision])
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/fp16.py
fp16.py
__all__ = ['json_clean', 'CaptumInterpretation'] # Cell import tempfile from ..basics import * # Cell from ipykernel import jsonutil # Cell # Dirty hack as json_clean doesn't support CategoryMap type _json_clean=jsonutil.json_clean def json_clean(o): o = list(o.items) if isinstance(o,CategoryMap) else o return _json_clean(o) jsonutil.json_clean = json_clean # Cell from captum.attr import IntegratedGradients,NoiseTunnel,GradientShap,Occlusion from captum.attr import visualization as viz from matplotlib.colors import LinearSegmentedColormap from captum.insights import AttributionVisualizer, Batch from captum.insights.attr_vis.features import ImageFeature # Cell class CaptumInterpretation(): "Captum Interpretation for Resnet" def __init__(self,learn,cmap_name='custom blue',colors=None,N=256,methods=['original_image','heat_map'],signs=["all", "positive"],outlier_perc=1): store_attr('learn,cmap_name,colors,N,methods,signs,outlier_perc') self.colors = [(0, '#ffffff'),(0.25, '#000000'),(1, '#000000')] if self.colors is None else self.colors self.dls=learn.dls self.model=self.learn.model self.supported_metrics=['IG','NT','Occl'] def get_baseline_img(self, img_tensor,baseline_type): baseline_img=None if baseline_type=='zeros': baseline_img= img_tensor*0 if baseline_type=='uniform': baseline_img= torch.rand(img_tensor.shape) if baseline_type=='gauss': baseline_img= (torch.rand(img_tensor.shape).to(self.dls.device)+img_tensor)/2 return baseline_img.to(self.dls.device) def visualize(self,inp,metric='IG',n_steps=1000,baseline_type='zeros',nt_type='smoothgrad',strides = (3, 4, 4), sliding_window_shapes=(3,15, 15)): if metric not in self.supported_metrics: raise Exception(f"Metric {metric} is not supported. Currently {self.supported_metrics} are only supported") tls = L([TfmdLists(inp, t) for t in L(ifnone(self.dls.tfms,[None]))]) inp_data=list(zip(*(tls[0],tls[1])))[0] # Get Data enc_data,dec_data=self._get_enc_dec_data(inp_data) # Get Required Metrics attributions=self._get_attributions(enc_data,metric,n_steps,nt_type,baseline_type,strides,sliding_window_shapes) #Visualise the attributions self._viz(attributions,dec_data,metric) def _viz(self,attributions,dec_data,metric): default_cmap = LinearSegmentedColormap.from_list(self.cmap_name,self.colors, N=self.N) _ = viz.visualize_image_attr_multiple(np.transpose(attributions.squeeze().cpu().detach().numpy(), (1,2,0)), np.transpose(dec_data[0].numpy(), (1,2,0)), methods=self.methods, cmap=default_cmap, show_colorbar=True, signs=self.signs, outlier_perc=self.outlier_perc, titles=[f'Original Image - ({dec_data[1]})', metric]) def _get_enc_dec_data(self,inp_data): dec_data=self.dls.after_item(inp_data) enc_data=self.dls.after_batch(to_device(self.dls.before_batch(dec_data),self.dls.device)) return(enc_data,dec_data) def _get_attributions(self,enc_data,metric,n_steps,nt_type,baseline_type,strides,sliding_window_shapes): # Get Baseline baseline=self.get_baseline_img(enc_data[0],baseline_type) supported_metrics ={} if metric == 'IG': self._integrated_gradients = self._integrated_gradients if hasattr(self,'_integrated_gradients') else IntegratedGradients(self.model) return self._integrated_gradients.attribute(enc_data[0],baseline, target=enc_data[1], n_steps=200) elif metric == 'NT': self._integrated_gradients = self._integrated_gradients if hasattr(self,'_integrated_gradients') else IntegratedGradients(self.model) self._noise_tunnel= self._noise_tunnel if hasattr(self,'_noise_tunnel') else NoiseTunnel(self._integrated_gradients) return self._noise_tunnel.attribute(enc_data[0].to(self.dls.device), n_samples=1, nt_type=nt_type, target=enc_data[1]) elif metric == 'Occl': self._occlusion = self._occlusion if hasattr(self,'_occlusion') else Occlusion(self.model) return self._occlusion.attribute(enc_data[0].to(self.dls.device), strides = strides, target=enc_data[1], sliding_window_shapes=sliding_window_shapes, baselines=baseline) # Cell @patch def insights(x: CaptumInterpretation,inp_data,debug=True): _baseline_func= lambda o: o*0 _get_vocab = lambda vocab: list(map(str,vocab)) if isinstance(vocab[0],bool) else vocab dl = x.dls.test_dl(L(inp_data),with_labels=True, bs=4) normalize_func= next((func for func in dl.after_batch if type(func)==Normalize),noop) # captum v0.3 expects tensors without the batch dimension. if hasattr(normalize_func, 'mean'): if normalize_func.mean.ndim==4: normalize_func.mean.squeeze_(0) if hasattr(normalize_func, 'std'): if normalize_func.std.ndim==4: normalize_func.std.squeeze_(0) visualizer = AttributionVisualizer( models=[x.model], score_func=lambda o: torch.nn.functional.softmax(o, 1), classes=_get_vocab(dl.vocab), features=[ ImageFeature( "Image", baseline_transforms=[_baseline_func], input_transforms=[normalize_func], ) ], dataset=x._formatted_data_iter(dl,normalize_func) ) visualizer.render(debug=debug)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/captum.py
captum.py
__all__ = ['CutMix'] # Cell from torch.distributions.beta import Beta from ..vision.all import * # Cell class CutMix(Callback): "Implementation of `https://arxiv.org/abs/1905.04899`" run_after,run_valid = [Normalize],False def __init__(self, alpha=1.): self.distrib = Beta(tensor(alpha), tensor(alpha)) def before_fit(self): self.stack_y = getattr(self.learn.loss_func, 'y_int', False) if self.stack_y: self.old_lf,self.learn.loss_func = self.learn.loss_func,self.lf def after_fit(self): if self.stack_y: self.learn.loss_func = self.old_lf def before_batch(self): W, H = self.xb[0].size(3), self.xb[0].size(2) lam = self.distrib.sample((1,)).squeeze().to(self.x.device) lam = torch.stack([lam, 1-lam]) self.lam = lam.max() shuffle = torch.randperm(self.y.size(0)).to(self.x.device) xb1,self.yb1 = tuple(L(self.xb).itemgot(shuffle)),tuple(L(self.yb).itemgot(shuffle)) nx_dims = len(self.x.size()) x1, y1, x2, y2 = self.rand_bbox(W, H, self.lam) self.learn.xb[0][:, :, x1:x2, y1:y2] = xb1[0][:, :, x1:x2, y1:y2] self.lam = (1 - ((x2-x1)*(y2-y1))/float(W*H)).item() if not self.stack_y: ny_dims = len(self.y.size()) self.learn.yb = tuple(L(self.yb1,self.yb).map_zip(torch.lerp,weight=unsqueeze(self.lam, n=ny_dims-1))) def lf(self, pred, *yb): if not self.training: return self.old_lf(pred, *yb) with NoneReduce(self.old_lf) as lf: loss = torch.lerp(lf(pred,*self.yb1), lf(pred,*yb), self.lam) return reduce_loss(loss, getattr(self.old_lf, 'reduction', 'mean')) def rand_bbox(self, W, H, lam): cut_rat = torch.sqrt(1. - lam) cut_w = (W * cut_rat).type(torch.long) cut_h = (H * cut_rat).type(torch.long) # uniform cx = torch.randint(0, W, (1,)).to(self.x.device) cy = torch.randint(0, H, (1,)).to(self.x.device) x1 = torch.clamp(cx - cut_w // 2, 0, W) y1 = torch.clamp(cy - cut_h // 2, 0, H) x2 = torch.clamp(cx + cut_w // 2, 0, W) y2 = torch.clamp(cy + cut_h // 2, 0, H) return x1, y1, x2, y2
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/callback/cutmix.py
cutmix.py
__all__ = ['DcmDataset', 'DcmTag', 'DcmMultiValue', 'dcmread', 'get_dicom_files', 'DicomSegmentationDataLoaders', 'get_dicom_files', 'TensorDicom', 'PILDicom', 'pixels', 'scaled_px', 'array_freqhist_bins', 'dicom_windows', 'TensorCTScan', 'PILCTScan', 'uniform_blur2d', 'gauss_blur2d', 'mask2bbox', 'crop_resize', 'shape', 'DicomSegmentationDataLoaders'] # Cell from ..basics import * from ..vision.all import * from ..data.transforms import * import pydicom,kornia,skimage from pydicom.dataset import Dataset as DcmDataset from pydicom.tag import BaseTag as DcmTag from pydicom.multival import MultiValue as DcmMultiValue from PIL import Image try: import cv2 cv2.setNumThreads(0) except: pass # Cell #nbdev_comment _all_ = ['DcmDataset', 'DcmTag', 'DcmMultiValue', 'dcmread', 'get_dicom_files', 'DicomSegmentationDataLoaders'] # Cell def get_dicom_files(path, recurse=True, folders=None): "Get dicom files in `path` recursively, only in `folders`, if specified." return get_files(path, extensions=[".dcm",".dicom"], recurse=recurse, folders=folders) # Cell @patch def dcmread(fn:Path, force = False): "Open a `DICOM` file" return pydicom.dcmread(str(fn), force) # Cell class TensorDicom(TensorImage): "Inherits from `TensorImage` and converts the `pixel_array` into a `TensorDicom`" _show_args = {'cmap':'gray'} # Cell class PILDicom(PILBase): _open_args,_tensor_cls,_show_args = {},TensorDicom,TensorDicom._show_args @classmethod def create(cls, fn:(Path,str,bytes), mode=None)->None: "Open a `DICOM file` from path `fn` or bytes `fn` and load it as a `PIL Image`" if isinstance(fn,bytes): im = Image.fromarray(pydicom.dcmread(pydicom.filebase.DicomBytesIO(fn)).pixel_array) if isinstance(fn,(Path,str)): im = Image.fromarray(pydicom.dcmread(fn).pixel_array) im.load() im = im._new(im.im) return cls(im.convert(mode) if mode else im) PILDicom._tensor_cls = TensorDicom # Cell @patch def png16read(self:Path): return array(Image.open(self), dtype=np.uint16) # Cell @patch(as_prop=True) def pixels(self:DcmDataset): "`pixel_array` as a tensor" return tensor(self.pixel_array.astype(np.float32)) # Cell @patch(as_prop=True) def scaled_px(self:DcmDataset): "`pixels` scaled by `RescaleSlope` and `RescaleIntercept`" img = self.pixels if hasattr(self, 'RescaleSlope') and hasattr(self, 'RescaleIntercept') is not None: return img * self.RescaleSlope + self.RescaleIntercept else: return img # Cell def array_freqhist_bins(self, n_bins=100): "A numpy based function to split the range of pixel values into groups, such that each group has around the same number of pixels" imsd = np.sort(self.flatten()) t = np.array([0.001]) t = np.append(t, np.arange(n_bins)/n_bins+(1/2/n_bins)) t = np.append(t, 0.999) t = (len(imsd)*t+0.5).astype(np.int) return np.unique(imsd[t]) # Cell @patch def freqhist_bins(self:Tensor, n_bins=100): "A function to split the range of pixel values into groups, such that each group has around the same number of pixels" imsd = self.view(-1).sort()[0] t = torch.cat([tensor([0.001]), torch.arange(n_bins).float()/n_bins+(1/2/n_bins), tensor([0.999])]) t = (len(imsd)*t).long() return imsd[t].unique() # Cell @patch def hist_scaled_pt(self:Tensor, brks=None): # Pytorch-only version - switch to this if/when interp_1d can be optimized if brks is None: brks = self.freqhist_bins() brks = brks.to(self.device) ys = torch.linspace(0., 1., len(brks)).to(self.device) return self.flatten().interp_1d(brks, ys).reshape(self.shape).clamp(0.,1.) # Cell @patch def hist_scaled(self:Tensor, brks=None): "Scales a tensor using `freqhist_bins` to values between 0 and 1" if self.device.type=='cuda': return self.hist_scaled_pt(brks) if brks is None: brks = self.freqhist_bins() ys = np.linspace(0., 1., len(brks)) x = self.numpy().flatten() x = np.interp(x, brks.numpy(), ys) return tensor(x).reshape(self.shape).clamp(0.,1.) # Cell @patch def hist_scaled(self:DcmDataset, brks=None, min_px=None, max_px=None): "Pixels scaled to a `min_px` and `max_px` value" px = self.scaled_px if min_px is not None: px[px<min_px] = min_px if max_px is not None: px[px>max_px] = max_px return px.hist_scaled(brks=brks) # Cell @patch def windowed(self:Tensor, w, l): "Scale pixel intensity by window width and window level" px = self.clone() px_min = l - w//2 px_max = l + w//2 px[px<px_min] = px_min px[px>px_max] = px_max return (px-px_min) / (px_max-px_min) # Cell @patch def windowed(self:DcmDataset, w, l): return self.scaled_px.windowed(w,l) # Cell # From https://radiopaedia.org/articles/windowing-ct dicom_windows = types.SimpleNamespace( brain=(80,40), subdural=(254,100), stroke=(8,32), brain_bone=(2800,600), brain_soft=(375,40), lungs=(1500,-600), mediastinum=(350,50), abdomen_soft=(400,50), liver=(150,30), spine_soft=(250,50), spine_bone=(1800,400) ) # Cell class TensorCTScan(TensorImageBW): "Inherits from `TensorImageBW` and converts the `pixel_array` into a `TensorCTScan`" _show_args = {'cmap':'bone'} # Cell class PILCTScan(PILBase): _open_args,_tensor_cls,_show_args = {},TensorCTScan,TensorCTScan._show_args # Cell @patch @delegates(show_image) def show(self:DcmDataset, scale=True, cmap=plt.cm.bone, min_px=-1100, max_px=None, **kwargs): "Display a normalized dicom image by default" px = (self.windowed(*scale) if isinstance(scale,tuple) else self.hist_scaled(min_px=min_px,max_px=max_px,brks=scale) if isinstance(scale,(ndarray,Tensor)) else self.hist_scaled(min_px=min_px,max_px=max_px) if scale else self.scaled_px) show_image(px, cmap=cmap, **kwargs) # Cell @patch def show(self:DcmDataset, frames=1, scale=True, cmap=plt.cm.bone, min_px=-1100, max_px=None, **kwargs): "Adds functionality to view dicom images where each file may have more than 1 frame" px = (self.windowed(*scale) if isinstance(scale,tuple) else self.hist_scaled(min_px=min_px,max_px=max_px,brks=scale) if isinstance(scale,(ndarray,Tensor)) else self.hist_scaled(min_px=min_px,max_px=max_px) if scale else self.scaled_px) if px.ndim > 2: gh=[] p = px.shape; print(f'{p[0]} frames per file') for i in range(frames): u = px[i]; gh.append(u) show_images(gh, **kwargs) else: show_image(px, cmap=cmap, **kwargs) # Cell @patch def pct_in_window(dcm:DcmDataset, w, l): "% of pixels in the window `(w,l)`" px = dcm.scaled_px return ((px > l-w//2) & (px < l+w//2)).float().mean().item() # Cell def uniform_blur2d(x,s): "Uniformly apply blurring" w = x.new_ones(1,1,1,s)/s # Factor 2d conv into 2 1d convs x = unsqueeze(x, dim=0, n=4-x.dim()) r = (F.conv2d(x, w, padding=s//2)) r = (F.conv2d(r, w.transpose(-1,-2), padding=s//2)).cpu()[:,0] return r.squeeze() # Cell def gauss_blur2d(x,s): "Apply gaussian_blur2d kornia filter" s2 = int(s/4)*2+1 x2 = unsqueeze(x, dim=0, n=4-x.dim()) res = kornia.filters.gaussian_blur2d(x2, (s2,s2), (s,s), 'replicate') return res.squeeze() # Cell @patch def mask_from_blur(x:Tensor, window, sigma=0.3, thresh=0.05, remove_max=True): "Create a mask from the blurred image" p = x.windowed(*window) if remove_max: p[p==1] = 0 return gauss_blur2d(p, s=sigma*x.shape[-1])>thresh # Cell @patch def mask_from_blur(x:DcmDataset, window, sigma=0.3, thresh=0.05, remove_max=True): "Create a mask from the blurred image" return to_device(x.scaled_px).mask_from_blur(window, sigma, thresh, remove_max=remove_max) # Cell def _px_bounds(x, dim): c = x.sum(dim).nonzero().cpu() idxs,vals = torch.unique(c[:,0],return_counts=True) vs = torch.split_with_sizes(c[:,1],tuple(vals)) d = {k.item():v for k,v in zip(idxs,vs)} default_u = tensor([0,x.shape[-1]-1]) b = [d.get(o,default_u) for o in range(x.shape[0])] b = [tensor([o.min(),o.max()]) for o in b] return torch.stack(b) # Cell def mask2bbox(mask): no_batch = mask.dim()==2 if no_batch: mask = mask[None] bb1 = _px_bounds(mask,-1).t() bb2 = _px_bounds(mask,-2).t() res = torch.stack([bb1,bb2],dim=1).to(mask.device) return res[...,0] if no_batch else res # Cell def _bbs2sizes(crops, init_sz, use_square=True): bb = crops.flip(1) szs = (bb[1]-bb[0]) if use_square: szs = szs.max(0)[0][None].repeat((2,1)) overs = (szs+bb[0])>init_sz bb[0][overs] = init_sz-szs[overs] lows = (bb[0]/float(init_sz)) return lows,szs/float(init_sz) # Cell def crop_resize(x, crops, new_sz): # NB assumes square inputs. Not tested for non-square anythings! bs = x.shape[0] lows,szs = _bbs2sizes(crops, x.shape[-1]) if not isinstance(new_sz,(list,tuple)): new_sz = (new_sz,new_sz) id_mat = tensor([[1.,0,0],[0,1,0]])[None].repeat((bs,1,1)).to(x.device) with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=UserWarning) sp = F.affine_grid(id_mat, (bs,1,*new_sz))+1. grid = sp*unsqueeze(szs.t(),1,n=2)+unsqueeze(lows.t()*2.,1,n=2) return F.grid_sample(x.unsqueeze(1), grid-1) # Cell @patch def to_nchan(x:Tensor, wins, bins=None): res = [x.windowed(*win) for win in wins] if not isinstance(bins,int) or bins!=0: res.append(x.hist_scaled(bins).clamp(0,1)) dim = [0,1][x.dim()==3] return TensorCTScan(torch.stack(res, dim=dim)) # Cell @patch def to_nchan(x:DcmDataset, wins, bins=None): return x.scaled_px.to_nchan(wins, bins) # Cell @patch def to_3chan(x:Tensor, win1, win2, bins=None): return x.to_nchan([win1,win2],bins=bins) # Cell @patch def to_3chan(x:DcmDataset, win1, win2, bins=None): return x.scaled_px.to_3chan(win1, win2, bins) # Cell @patch def save_jpg(x:(Tensor,DcmDataset), path, wins, bins=None, quality=90): "Save tensor or dicom image into `jpg` format" fn = Path(path).with_suffix('.jpg') x = (x.to_nchan(wins, bins)*255).byte() im = Image.fromarray(x.permute(1,2,0).numpy(), mode=['RGB','CMYK'][x.shape[0]==4]) im.save(fn, quality=quality) # Cell @patch def to_uint16(x:(Tensor,DcmDataset), bins=None): "Convert into a unit16 array" d = x.hist_scaled(bins).clamp(0,1) * 2**16 return d.numpy().astype(np.uint16) # Cell @patch def save_tif16(x:(Tensor,DcmDataset), path, bins=None, compress=True): "Save tensor or dicom image into `tiff` format" fn = Path(path).with_suffix('.tif') Image.fromarray(x.to_uint16(bins)).save(str(fn), compression='tiff_deflate' if compress else None) # Cell @patch def set_pixels(self:DcmDataset, px): self.PixelData = px.tobytes() self.Rows,self.Columns = px.shape DcmDataset.pixel_array = property(DcmDataset.pixel_array.fget, set_pixels) # Cell @patch def zoom(self:DcmDataset, ratio): "Zoom image by specified ratio" with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) self.set_pixels(ndimage.zoom(self.pixel_array, ratio)) # Cell @patch def zoom_to(self:DcmDataset, sz): "Change image size to specified pixel size" if not isinstance(sz,(list,tuple)): sz=(sz,sz) rows,cols = sz self.zoom((rows/self.Rows,cols/self.Columns)) # Cell @patch(as_prop=True) def shape(self:DcmDataset): "Returns the shape of a dicom image as rows and columns" return self.Rows,self.Columns # Cell def _cast_dicom_special(x): cls = type(x) if not cls.__module__.startswith('pydicom'): return x if cls.__base__ == object: return x return cls.__base__(x) def _split_elem(res,k,v): if not isinstance(v,DcmMultiValue): return res[f'Multi{k}'] = 1 for i,o in enumerate(v): res[f'{k}{"" if i==0 else i}']=o # Cell @patch def as_dict(self:DcmDataset, px_summ=True, window=dicom_windows.brain): "Convert the header of a dicom into a dictionary" pxdata = (0x7fe0,0x0010) vals = [self[o] for o in self.keys() if o != pxdata] its = [(v.keyword,v.value) for v in vals] res = dict(its) res['fname'] = self.filename for k,v in its: _split_elem(res,k,v) if not px_summ: return res stats = 'min','max','mean','std' try: pxs = self.pixel_array for f in stats: res['img_'+f] = getattr(pxs,f)() res['img_pct_window'] = self.pct_in_window(*window) except Exception as e: for f in stats: res['img_'+f] = 0 print(res,e) for k in res: res[k] = _cast_dicom_special(res[k]) return res # Cell def _dcm2dict(fn, **kwargs): return fn.dcmread().as_dict(**kwargs) # Cell @delegates(parallel) def _from_dicoms(cls, fns, n_workers=0, **kwargs): return pd.DataFrame(parallel(_dcm2dict, fns, n_workers=n_workers, **kwargs)) pd.DataFrame.from_dicoms = classmethod(_from_dicoms) # Cell class DicomSegmentationDataLoaders(DataLoaders): "Basic wrapper around DICOM `DataLoaders` with factory methods for segmentation problems" @classmethod @delegates(DataLoaders.from_dblock) def from_label_func(cls, path, fnames, label_func, valid_pct=0.2, seed=None, codes=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from list of `fnames` in `path`s with `label_func`." dblock = DataBlock(blocks=(ImageBlock(cls=PILDicom), MaskBlock(codes=codes)), splitter=RandomSplitter(valid_pct, seed=seed), get_y=label_func, item_tfms=item_tfms, batch_tfms=batch_tfms) res = cls.from_dblock(dblock, fnames, path=path, **kwargs) return res
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/medical/imaging.py
imaging.py
__all__ = ['get_grid', 'clip_remove_empty', 'bb_pad', 'ImageBlock', 'MaskBlock', 'PointBlock', 'BBoxBlock', 'BBoxLblBlock', 'ImageDataLoaders', 'SegmentationDataLoaders'] # Cell from ..torch_basics import * from ..data.all import * from .core import * # Cell @delegates(subplots) def get_grid(n, nrows=None, ncols=None, add_vert=0, figsize=None, double=False, title=None, return_fig=False, **kwargs): "Return a grid of `n` axes, `rows` by `cols`" nrows = nrows or int(math.sqrt(n)) ncols = ncols or int(np.ceil(n/nrows)) if double: ncols*=2 ; n*=2 fig,axs = subplots(nrows, ncols, figsize=figsize, **kwargs) axs = [ax if i<n else ax.set_axis_off() for i, ax in enumerate(axs.flatten())][:n] if title is not None: fig.suptitle(title, weight='bold', size=14) return (fig,axs) if return_fig else axs # Cell def clip_remove_empty(bbox, label): "Clip bounding boxes with image border and label background the empty ones" bbox = torch.clamp(bbox, -1, 1) empty = ((bbox[...,2] - bbox[...,0])*(bbox[...,3] - bbox[...,1]) <= 0.) return (bbox[~empty], label[~empty]) # Cell def bb_pad(samples, pad_idx=0): "Function that collect `samples` of labelled bboxes and adds padding with `pad_idx`." samples = [(s[0], *clip_remove_empty(*s[1:])) for s in samples] max_len = max([len(s[2]) for s in samples]) def _f(img,bbox,lbl): bbox = torch.cat([bbox,bbox.new_zeros(max_len-bbox.shape[0], 4)]) lbl = torch.cat([lbl, lbl .new_zeros(max_len-lbl .shape[0])+pad_idx]) return img,bbox,lbl return [_f(*s) for s in samples] # Cell @typedispatch def show_batch(x:TensorImage, y, samples, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, figsize=figsize) ctxs = show_batch[object](x, y, samples, ctxs=ctxs, max_n=max_n, **kwargs) return ctxs # Cell @typedispatch def show_batch(x:TensorImage, y:TensorImage, samples, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize, double=True) for i in range(2): ctxs[i::2] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs[i::2],range(max_n))] return ctxs # Cell def ImageBlock(cls=PILImage): "A `TransformBlock` for images of `cls`" return TransformBlock(type_tfms=cls.create, batch_tfms=IntToFloatTensor) # Cell def MaskBlock(codes=None): "A `TransformBlock` for segmentation masks, potentially with `codes`" return TransformBlock(type_tfms=PILMask.create, item_tfms=AddMaskCodes(codes=codes), batch_tfms=IntToFloatTensor) # Cell PointBlock = TransformBlock(type_tfms=TensorPoint.create, item_tfms=PointScaler) BBoxBlock = TransformBlock(type_tfms=TensorBBox.create, item_tfms=PointScaler, dls_kwargs = {'before_batch': bb_pad}) PointBlock.__doc__ = "A `TransformBlock` for points in an image" BBoxBlock.__doc__ = "A `TransformBlock` for bounding boxes in an image" # Cell def BBoxLblBlock(vocab=None, add_na=True): "A `TransformBlock` for labeled bounding boxes, potentially with `vocab`" return TransformBlock(type_tfms=MultiCategorize(vocab=vocab, add_na=add_na), item_tfms=BBoxLabeler) # Cell class ImageDataLoaders(DataLoaders): "Basic wrapper around several `DataLoader`s with factory methods for computer vision problems" @classmethod @delegates(DataLoaders.from_dblock) def from_folder(cls, path, train='train', valid='valid', valid_pct=None, seed=None, vocab=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from imagenet style dataset in `path` with `train` and `valid` subfolders (or provide `valid_pct`)" splitter = GrandparentSplitter(train_name=train, valid_name=valid) if valid_pct is None else RandomSplitter(valid_pct, seed=seed) get_items = get_image_files if valid_pct else partial(get_image_files, folders=[train, valid]) dblock = DataBlock(blocks=(ImageBlock, CategoryBlock(vocab=vocab)), get_items=get_items, splitter=splitter, get_y=parent_label, item_tfms=item_tfms, batch_tfms=batch_tfms) return cls.from_dblock(dblock, path, path=path, **kwargs) @classmethod @delegates(DataLoaders.from_dblock) def from_path_func(cls, path, fnames, label_func, valid_pct=0.2, seed=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from list of `fnames` in `path`s with `label_func`" dblock = DataBlock(blocks=(ImageBlock, CategoryBlock), splitter=RandomSplitter(valid_pct, seed=seed), get_y=label_func, item_tfms=item_tfms, batch_tfms=batch_tfms) return cls.from_dblock(dblock, fnames, path=path, **kwargs) @classmethod def from_name_func(cls, path, fnames, label_func, **kwargs): "Create from the name attrs of `fnames` in `path`s with `label_func`" f = using_attr(label_func, 'name') return cls.from_path_func(path, fnames, f, **kwargs) @classmethod def from_path_re(cls, path, fnames, pat, **kwargs): "Create from list of `fnames` in `path`s with re expression `pat`" return cls.from_path_func(path, fnames, RegexLabeller(pat), **kwargs) @classmethod @delegates(DataLoaders.from_dblock) def from_name_re(cls, path, fnames, pat, **kwargs): "Create from the name attrs of `fnames` in `path`s with re expression `pat`" return cls.from_name_func(path, fnames, RegexLabeller(pat), **kwargs) @classmethod @delegates(DataLoaders.from_dblock) def from_df(cls, df, path='.', valid_pct=0.2, seed=None, fn_col=0, folder=None, suff='', label_col=1, label_delim=None, y_block=None, valid_col=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from `df` using `fn_col` and `label_col`" pref = f'{Path(path) if folder is None else Path(path)/folder}{os.path.sep}' if y_block is None: is_multi = (is_listy(label_col) and len(label_col) > 1) or label_delim is not None y_block = MultiCategoryBlock if is_multi else CategoryBlock splitter = RandomSplitter(valid_pct, seed=seed) if valid_col is None else ColSplitter(valid_col) dblock = DataBlock(blocks=(ImageBlock, y_block), get_x=ColReader(fn_col, pref=pref, suff=suff), get_y=ColReader(label_col, label_delim=label_delim), splitter=splitter, item_tfms=item_tfms, batch_tfms=batch_tfms) return cls.from_dblock(dblock, df, path=path, **kwargs) @classmethod def from_csv(cls, path, csv_fname='labels.csv', header='infer', delimiter=None, **kwargs): "Create from `path/csv_fname` using `fn_col` and `label_col`" df = pd.read_csv(Path(path)/csv_fname, header=header, delimiter=delimiter) return cls.from_df(df, path=path, **kwargs) @classmethod @delegates(DataLoaders.from_dblock) def from_lists(cls, path, fnames, labels, valid_pct=0.2, seed:int=None, y_block=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from list of `fnames` and `labels` in `path`" if y_block is None: y_block = MultiCategoryBlock if is_listy(labels[0]) and len(labels[0]) > 1 else ( RegressionBlock if isinstance(labels[0], float) else CategoryBlock) dblock = DataBlock.from_columns(blocks=(ImageBlock, y_block), splitter=RandomSplitter(valid_pct, seed=seed), item_tfms=item_tfms, batch_tfms=batch_tfms) return cls.from_dblock(dblock, (fnames, labels), path=path, **kwargs) ImageDataLoaders.from_csv = delegates(to=ImageDataLoaders.from_df)(ImageDataLoaders.from_csv) ImageDataLoaders.from_name_func = delegates(to=ImageDataLoaders.from_path_func)(ImageDataLoaders.from_name_func) ImageDataLoaders.from_path_re = delegates(to=ImageDataLoaders.from_path_func)(ImageDataLoaders.from_path_re) ImageDataLoaders.from_name_re = delegates(to=ImageDataLoaders.from_name_func)(ImageDataLoaders.from_name_re) # Cell class SegmentationDataLoaders(DataLoaders): "Basic wrapper around several `DataLoader`s with factory methods for segmentation problems" @classmethod @delegates(DataLoaders.from_dblock) def from_label_func(cls, path, fnames, label_func, valid_pct=0.2, seed=None, codes=None, item_tfms=None, batch_tfms=None, **kwargs): "Create from list of `fnames` in `path`s with `label_func`." dblock = DataBlock(blocks=(ImageBlock, MaskBlock(codes=codes)), splitter=RandomSplitter(valid_pct, seed=seed), get_y=label_func, item_tfms=item_tfms, batch_tfms=batch_tfms) res = cls.from_dblock(dblock, fnames, path=path, **kwargs) return res
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/data.py
data.py
__all__ = ['has_pool_type', 'create_body', 'create_head', 'default_split', 'model_meta', 'create_cnn_model', 'cnn_learner', 'create_unet_model', 'unet_learner', 'has_pool_type', 'create_body', 'create_head', 'default_split', 'model_meta', 'create_cnn_model', 'cnn_learner', 'create_unet_model', 'unet_learner'] # Cell from ..basics import * from .core import * from .data import * from .augment import * from . import models # Cell def _is_pool_type(l): return re.search(r'Pool[123]d$', l.__class__.__name__) # Cell def has_pool_type(m): "Return `True` if `m` is a pooling layer or has one in its children" if _is_pool_type(m): return True for l in m.children(): if has_pool_type(l): return True return False # Cell def _get_first_layer(m): "Access first layer of a model" c,p,n = m,None,None # child, parent, name for n in next(m.named_parameters())[0].split('.')[:-1]: p,c=c,getattr(c,n) return c,p,n # Cell def _load_pretrained_weights(new_layer, previous_layer): "Load pretrained weights based on number of input channels" n_in = getattr(new_layer, 'in_channels') if n_in==1: # we take the sum new_layer.weight.data = previous_layer.weight.data.sum(dim=1, keepdim=True) elif n_in==2: # we take first 2 channels + 50% new_layer.weight.data = previous_layer.weight.data[:,:2] * 1.5 else: # keep 3 channels weights and set others to null new_layer.weight.data[:,:3] = previous_layer.weight.data new_layer.weight.data[:,3:].zero_() # Cell def _update_first_layer(model, n_in, pretrained): "Change first layer based on number of input channels" if n_in == 3: return first_layer, parent, name = _get_first_layer(model) assert isinstance(first_layer, nn.Conv2d), f'Change of input channels only supported with Conv2d, found {first_layer.__class__.__name__}' assert getattr(first_layer, 'in_channels') == 3, f'Unexpected number of input channels, found {getattr(first_layer, "in_channels")} while expecting 3' params = {attr:getattr(first_layer, attr) for attr in 'out_channels kernel_size stride padding dilation groups padding_mode'.split()} params['bias'] = getattr(first_layer, 'bias') is not None params['in_channels'] = n_in new_layer = nn.Conv2d(**params) if pretrained: _load_pretrained_weights(new_layer, first_layer) setattr(parent, name, new_layer) # Cell def create_body(arch, n_in=3, pretrained=True, cut=None): "Cut off the body of a typically pretrained `arch` as determined by `cut`" model = arch(pretrained=pretrained) _update_first_layer(model, n_in, pretrained) #cut = ifnone(cut, cnn_config(arch)['cut']) if cut is None: ll = list(enumerate(model.children())) cut = next(i for i,o in reversed(ll) if has_pool_type(o)) if isinstance(cut, int): return nn.Sequential(*list(model.children())[:cut]) elif callable(cut): return cut(model) else: raise NamedError("cut must be either integer or a function") # Cell def create_head(nf, n_out, lin_ftrs=None, ps=0.5, concat_pool=True, bn_final=False, lin_first=False, y_range=None): "Model head that takes `nf` features, runs through `lin_ftrs`, and out `n_out` classes." lin_ftrs = [nf, 512, n_out] if lin_ftrs is None else [nf] + lin_ftrs + [n_out] ps = L(ps) if len(ps) == 1: ps = [ps[0]/2] * (len(lin_ftrs)-2) + ps actns = [nn.ReLU(inplace=True)] * (len(lin_ftrs)-2) + [None] pool = AdaptiveConcatPool2d() if concat_pool else nn.AdaptiveAvgPool2d(1) layers = [pool, Flatten()] if lin_first: layers.append(nn.Dropout(ps.pop(0))) for ni,no,p,actn in zip(lin_ftrs[:-1], lin_ftrs[1:], ps, actns): layers += LinBnDrop(ni, no, bn=True, p=p, act=actn, lin_first=lin_first) if lin_first: layers.append(nn.Linear(lin_ftrs[-2], n_out)) if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01)) if y_range is not None: layers.append(SigmoidRange(*y_range)) return nn.Sequential(*layers) # Cell from ..callback.hook import num_features_model # Cell def default_split(m): "Default split of a model between body and head" return L(m[0], m[1:]).map(params) # Cell def _xresnet_split(m): return L(m[0][:3], m[0][3:], m[1:]).map(params) def _resnet_split(m): return L(m[0][:6], m[0][6:], m[1:]).map(params) def _squeezenet_split(m:nn.Module): return L(m[0][0][:5], m[0][0][5:], m[1:]).map(params) def _densenet_split(m:nn.Module): return L(m[0][0][:7],m[0][0][7:], m[1:]).map(params) def _vgg_split(m:nn.Module): return L(m[0][0][:22], m[0][0][22:], m[1:]).map(params) def _alexnet_split(m:nn.Module): return L(m[0][0][:6], m[0][0][6:], m[1:]).map(params) _default_meta = {'cut':None, 'split':default_split} _xresnet_meta = {'cut':-4, 'split':_xresnet_split, 'stats':imagenet_stats} _resnet_meta = {'cut':-2, 'split':_resnet_split, 'stats':imagenet_stats} _squeezenet_meta = {'cut':-1, 'split': _squeezenet_split, 'stats':imagenet_stats} _densenet_meta = {'cut':-1, 'split':_densenet_split, 'stats':imagenet_stats} _vgg_meta = {'cut':-2, 'split':_vgg_split, 'stats':imagenet_stats} _alexnet_meta = {'cut':-2, 'split':_alexnet_split, 'stats':imagenet_stats} # Cell model_meta = { models.xresnet.xresnet18 :{**_xresnet_meta}, models.xresnet.xresnet34: {**_xresnet_meta}, models.xresnet.xresnet50 :{**_xresnet_meta}, models.xresnet.xresnet101:{**_xresnet_meta}, models.xresnet.xresnet152:{**_xresnet_meta}, models.resnet18 :{**_resnet_meta}, models.resnet34: {**_resnet_meta}, models.resnet50 :{**_resnet_meta}, models.resnet101:{**_resnet_meta}, models.resnet152:{**_resnet_meta}, models.squeezenet1_0:{**_squeezenet_meta}, models.squeezenet1_1:{**_squeezenet_meta}, models.densenet121:{**_densenet_meta}, models.densenet169:{**_densenet_meta}, models.densenet201:{**_densenet_meta}, models.densenet161:{**_densenet_meta}, models.vgg11_bn:{**_vgg_meta}, models.vgg13_bn:{**_vgg_meta}, models.vgg16_bn:{**_vgg_meta}, models.vgg19_bn:{**_vgg_meta}, models.alexnet:{**_alexnet_meta}} # Cell @delegates(create_head) def create_cnn_model(arch, n_out, pretrained=True, cut=None, n_in=3, init=nn.init.kaiming_normal_, custom_head=None, concat_pool=True, **kwargs): "Create custom convnet architecture" meta = model_meta.get(arch, _default_meta) body = create_body(arch, n_in, pretrained, ifnone(cut, meta['cut'])) if custom_head is None: nf = num_features_model(nn.Sequential(*body.children())) * (2 if concat_pool else 1) head = create_head(nf, n_out, concat_pool=concat_pool, **kwargs) else: head = custom_head model = nn.Sequential(body, head) if init is not None: apply_init(model[1], init) return model # Cell def _add_norm(dls, meta, pretrained): if not pretrained: return after_batch = dls.after_batch if first(o for o in after_batch.fs if isinstance(o,Normalize)): return stats = meta.get('stats') if stats is None: return after_batch.add(Normalize.from_stats(*stats)) # Cell @delegates(create_cnn_model) def cnn_learner(dls, arch, normalize=True, n_out=None, pretrained=True, config=None, # learner args loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=None, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95), # other model args **kwargs): "Build a convnet style learner from `dls` and `arch`" if config: warnings.warn('config param is deprecated. Pass your args directly to cnn_learner.') kwargs = {**config, **kwargs} meta = model_meta.get(arch, _default_meta) if normalize: _add_norm(dls, meta, pretrained) if n_out is None: n_out = get_c(dls) assert n_out, "`n_out` is not defined, and could not be inferred from data, set `dls.c` or pass `n_out`" model = create_cnn_model(arch, n_out, pretrained=pretrained, **kwargs) splitter=ifnone(splitter, meta['split']) learn = Learner(dls=dls, model=model, loss_func=loss_func, opt_func=opt_func, lr=lr, splitter=splitter, cbs=cbs, metrics=metrics, path=path, model_dir=model_dir, wd=wd, wd_bn_bias=wd_bn_bias, train_bn=train_bn, moms=moms) if pretrained: learn.freeze() # keep track of args for loggers store_attr('arch,normalize,n_out,pretrained', self=learn, **kwargs) return learn # Cell @delegates(models.unet.DynamicUnet.__init__) def create_unet_model(arch, n_out, img_size, pretrained=True, cut=None, n_in=3, **kwargs): "Create custom unet architecture" meta = model_meta.get(arch, _default_meta) body = create_body(arch, n_in, pretrained, ifnone(cut, meta['cut'])) model = models.unet.DynamicUnet(body, n_out, img_size, **kwargs) return model # Cell @delegates(create_unet_model) def unet_learner(dls, arch, normalize=True, n_out=None, pretrained=True, config=None, # learner args loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=None, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95), # other model args **kwargs): "Build a unet learner from `dls` and `arch`" if config: warnings.warn('config param is deprecated. Pass your args directly to unet_learner.') kwargs = {**config, **kwargs} meta = model_meta.get(arch, _default_meta) if normalize: _add_norm(dls, meta, pretrained) n_out = ifnone(n_out, get_c(dls)) assert n_out, "`n_out` is not defined, and could not be inferred from data, set `dls.c` or pass `n_out`" img_size = dls.one_batch()[0].shape[-2:] assert img_size, "image size could not be inferred from data" model = create_unet_model(arch, n_out, img_size, pretrained=pretrained, **kwargs) splitter=ifnone(splitter, meta['split']) learn = Learner(dls=dls, model=model, loss_func=loss_func, opt_func=opt_func, lr=lr, splitter=splitter, cbs=cbs, metrics=metrics, path=path, model_dir=model_dir, wd=wd, wd_bn_bias=wd_bn_bias, train_bn=train_bn, moms=moms) if pretrained: learn.freeze() # keep track of args for loggers store_attr('arch,normalize,n_out,pretrained', self=learn) if kwargs: store_attr(self=learn, **kwargs) return learn # Cell @typedispatch def show_results(x:TensorImage, y, samples, outs, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) ctxs = show_results[object](x, y, samples, outs, ctxs=ctxs, max_n=max_n, **kwargs) return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:TensorCategory, samples, outs, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) for i in range(2): ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs,range(max_n))] ctxs = [r.show(ctx=c, color='green' if b==r else 'red', **kwargs) for b,r,c,_ in zip(samples.itemgot(1),outs.itemgot(0),ctxs,range(max_n))] return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:(TensorMask, TensorPoint, TensorBBox), samples, outs, ctxs=None, max_n=6, nrows=None, ncols=1, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize, double=True, title='Target/Prediction') for i in range(2): ctxs[::2] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs[::2],range(2*max_n))] for o in [samples,outs]: ctxs[1::2] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(o.itemgot(0),ctxs[1::2],range(2*max_n))] return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:TensorImage, samples, outs, ctxs=None, max_n=10, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(3*min(len(samples), max_n), ncols=3, figsize=figsize, title='Input/Target/Prediction') for i in range(2): ctxs[i::3] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs[i::3],range(max_n))] ctxs[2::3] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(outs.itemgot(0),ctxs[2::3],range(max_n))] return ctxs # Cell @typedispatch def plot_top_losses(x: TensorImage, y:TensorCategory, samples, outs, raws, losses, nrows=None, ncols=None, figsize=None, **kwargs): axs = get_grid(len(samples), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize, title='Prediction/Actual/Loss/Probability') for ax,s,o,r,l in zip(axs, samples, outs, raws, losses): s[0].show(ctx=ax, **kwargs) ax.set_title(f'{o[0]}/{s[1]} / {l.item():.2f} / {r.max().item():.2f}') # Cell @typedispatch def plot_top_losses(x: TensorImage, y:TensorMultiCategory, samples, outs, raws, losses, nrows=None, ncols=None, figsize=None, **kwargs): axs = get_grid(len(samples), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) for i,(ax,s) in enumerate(zip(axs, samples)): s[0].show(ctx=ax, title=f'Image {i}', **kwargs) rows = get_empty_df(len(samples)) outs = L(s[1:] + o + (TitledStr(r), TitledFloat(l.item())) for s,o,r,l in zip(samples, outs, raws, losses)) for i,l in enumerate(["target", "predicted", "probabilities", "loss"]): rows = [b.show(ctx=r, label=l, **kwargs) for b,r in zip(outs.itemgot(i),rows)] display_df(pd.DataFrame(rows)) # Cell from ..basics import * from .core import * from .data import * from .augment import * from . import models # Cell def _is_pool_type(l): return re.search(r'Pool[123]d$', l.__class__.__name__) # Cell def has_pool_type(m): "Return `True` if `m` is a pooling layer or has one in its children" if _is_pool_type(m): return True for l in m.children(): if has_pool_type(l): return True return False # Cell def _get_first_layer(m): "Access first layer of a model" c,p,n = m,None,None # child, parent, name for n in next(m.named_parameters())[0].split('.')[:-1]: p,c=c,getattr(c,n) return c,p,n # Cell def _load_pretrained_weights(new_layer, previous_layer): "Load pretrained weights based on number of input channels" n_in = getattr(new_layer, 'in_channels') if n_in==1: # we take the sum new_layer.weight.data = previous_layer.weight.data.sum(dim=1, keepdim=True) elif n_in==2: # we take first 2 channels + 50% new_layer.weight.data = previous_layer.weight.data[:,:2] * 1.5 else: # keep 3 channels weights and set others to null new_layer.weight.data[:,:3] = previous_layer.weight.data new_layer.weight.data[:,3:].zero_() # Cell def _update_first_layer(model, n_in, pretrained): "Change first layer based on number of input channels" if n_in == 3: return first_layer, parent, name = _get_first_layer(model) assert isinstance(first_layer, nn.Conv2d), f'Change of input channels only supported with Conv2d, found {first_layer.__class__.__name__}' assert getattr(first_layer, 'in_channels') == 3, f'Unexpected number of input channels, found {getattr(first_layer, "in_channels")} while expecting 3' params = {attr:getattr(first_layer, attr) for attr in 'out_channels kernel_size stride padding dilation groups padding_mode'.split()} params['bias'] = getattr(first_layer, 'bias') is not None params['in_channels'] = n_in new_layer = nn.Conv2d(**params) if pretrained: _load_pretrained_weights(new_layer, first_layer) setattr(parent, name, new_layer) # Cell def create_body(arch, n_in=3, pretrained=True, cut=None): "Cut off the body of a typically pretrained `arch` as determined by `cut`" model = arch(pretrained=pretrained) _update_first_layer(model, n_in, pretrained) #cut = ifnone(cut, cnn_config(arch)['cut']) if cut is None: ll = list(enumerate(model.children())) cut = next(i for i,o in reversed(ll) if has_pool_type(o)) if isinstance(cut, int): return nn.Sequential(*list(model.children())[:cut]) elif callable(cut): return cut(model) else: raise NamedError("cut must be either integer or a function") # Cell def create_head(nf, n_out, lin_ftrs=None, ps=0.5, concat_pool=True, first_bn=True, bn_final=False, lin_first=False, y_range=None): "Model head that takes `nf` features, runs through `lin_ftrs`, and out `n_out` classes." if concat_pool: nf *= 2 lin_ftrs = [nf, 512, n_out] if lin_ftrs is None else [nf] + lin_ftrs + [n_out] bns = [first_bn] + [True]*len(lin_ftrs[1:]) ps = L(ps) if len(ps) == 1: ps = [ps[0]/2] * (len(lin_ftrs)-2) + ps actns = [nn.ReLU(inplace=True)] * (len(lin_ftrs)-2) + [None] pool = AdaptiveConcatPool2d() if concat_pool else nn.AdaptiveAvgPool2d(1) layers = [pool, Flatten()] if lin_first: layers.append(nn.Dropout(ps.pop(0))) for ni,no,bn,p,actn in zip(lin_ftrs[:-1], lin_ftrs[1:], bns, ps, actns): layers += LinBnDrop(ni, no, bn=bn, p=p, act=actn, lin_first=lin_first) if lin_first: layers.append(nn.Linear(lin_ftrs[-2], n_out)) if bn_final: layers.append(nn.BatchNorm1d(lin_ftrs[-1], momentum=0.01)) if y_range is not None: layers.append(SigmoidRange(*y_range)) return nn.Sequential(*layers) # Cell from ..callback.hook import num_features_model # Cell def default_split(m): "Default split of a model between body and head" return L(m[0], m[1:]).map(params) # Cell def _xresnet_split(m): return L(m[0][:3], m[0][3:], m[1:]).map(params) def _resnet_split(m): return L(m[0][:6], m[0][6:], m[1:]).map(params) def _squeezenet_split(m:nn.Module): return L(m[0][0][:5], m[0][0][5:], m[1:]).map(params) def _densenet_split(m:nn.Module): return L(m[0][0][:7],m[0][0][7:], m[1:]).map(params) def _vgg_split(m:nn.Module): return L(m[0][0][:22], m[0][0][22:], m[1:]).map(params) def _alexnet_split(m:nn.Module): return L(m[0][0][:6], m[0][0][6:], m[1:]).map(params) _default_meta = {'cut':None, 'split':default_split} _xresnet_meta = {'cut':-4, 'split':_xresnet_split, 'stats':imagenet_stats} _resnet_meta = {'cut':-2, 'split':_resnet_split, 'stats':imagenet_stats} _squeezenet_meta = {'cut':-1, 'split': _squeezenet_split, 'stats':imagenet_stats} _densenet_meta = {'cut':-1, 'split':_densenet_split, 'stats':imagenet_stats} _vgg_meta = {'cut':-2, 'split':_vgg_split, 'stats':imagenet_stats} _alexnet_meta = {'cut':-2, 'split':_alexnet_split, 'stats':imagenet_stats} # Cell model_meta = { models.xresnet.xresnet18 :{**_xresnet_meta}, models.xresnet.xresnet34: {**_xresnet_meta}, models.xresnet.xresnet50 :{**_xresnet_meta}, models.xresnet.xresnet101:{**_xresnet_meta}, models.xresnet.xresnet152:{**_xresnet_meta}, models.resnet18 :{**_resnet_meta}, models.resnet34: {**_resnet_meta}, models.resnet50 :{**_resnet_meta}, models.resnet101:{**_resnet_meta}, models.resnet152:{**_resnet_meta}, models.squeezenet1_0:{**_squeezenet_meta}, models.squeezenet1_1:{**_squeezenet_meta}, models.densenet121:{**_densenet_meta}, models.densenet169:{**_densenet_meta}, models.densenet201:{**_densenet_meta}, models.densenet161:{**_densenet_meta}, models.vgg11_bn:{**_vgg_meta}, models.vgg13_bn:{**_vgg_meta}, models.vgg16_bn:{**_vgg_meta}, models.vgg19_bn:{**_vgg_meta}, models.alexnet:{**_alexnet_meta}} # Cell @delegates(create_head) def create_cnn_model(arch, n_out, pretrained=True, cut=None, n_in=3, init=nn.init.kaiming_normal_, custom_head=None, concat_pool=True, **kwargs): "Create custom convnet architecture" meta = model_meta.get(arch, _default_meta) body = create_body(arch, n_in, pretrained, ifnone(cut, meta['cut'])) if custom_head is None: nf = num_features_model(nn.Sequential(*body.children())) head = create_head(nf, n_out, concat_pool=concat_pool, **kwargs) else: head = custom_head model = nn.Sequential(body, head) if init is not None: apply_init(model[1], init) return model # Cell def _add_norm(dls, meta, pretrained): if not pretrained: return after_batch = dls.after_batch if first(o for o in after_batch.fs if isinstance(o,Normalize)): return stats = meta.get('stats') if stats is None: return after_batch.add(Normalize.from_stats(*stats)) # Cell @delegates(create_cnn_model) def cnn_learner(dls, arch, normalize=True, n_out=None, pretrained=True, config=None, # learner args loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=None, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95), # other model args **kwargs): "Build a convnet style learner from `dls` and `arch`" if config: warnings.warn('config param is deprecated. Pass your args directly to cnn_learner.') kwargs = {**config, **kwargs} meta = model_meta.get(arch, _default_meta) if normalize: _add_norm(dls, meta, pretrained) if n_out is None: n_out = get_c(dls) assert n_out, "`n_out` is not defined, and could not be inferred from data, set `dls.c` or pass `n_out`" model = create_cnn_model(arch, n_out, pretrained=pretrained, **kwargs) splitter=ifnone(splitter, meta['split']) learn = Learner(dls=dls, model=model, loss_func=loss_func, opt_func=opt_func, lr=lr, splitter=splitter, cbs=cbs, metrics=metrics, path=path, model_dir=model_dir, wd=wd, wd_bn_bias=wd_bn_bias, train_bn=train_bn, moms=moms) if pretrained: learn.freeze() # keep track of args for loggers store_attr('arch,normalize,n_out,pretrained', self=learn, **kwargs) return learn # Cell @delegates(models.unet.DynamicUnet.__init__) def create_unet_model(arch, n_out, img_size, pretrained=True, cut=None, n_in=3, **kwargs): "Create custom unet architecture" meta = model_meta.get(arch, _default_meta) body = create_body(arch, n_in, pretrained, ifnone(cut, meta['cut'])) model = models.unet.DynamicUnet(body, n_out, img_size, **kwargs) return model # Cell @delegates(create_unet_model) def unet_learner(dls, arch, normalize=True, n_out=None, pretrained=True, config=None, # learner args loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=None, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95), # other model args **kwargs): "Build a unet learner from `dls` and `arch`" if config: warnings.warn('config param is deprecated. Pass your args directly to unet_learner.') kwargs = {**config, **kwargs} meta = model_meta.get(arch, _default_meta) if normalize: _add_norm(dls, meta, pretrained) n_out = ifnone(n_out, get_c(dls)) assert n_out, "`n_out` is not defined, and could not be inferred from data, set `dls.c` or pass `n_out`" img_size = dls.one_batch()[0].shape[-2:] assert img_size, "image size could not be inferred from data" model = create_unet_model(arch, n_out, img_size, pretrained=pretrained, **kwargs) splitter=ifnone(splitter, meta['split']) learn = Learner(dls=dls, model=model, loss_func=loss_func, opt_func=opt_func, lr=lr, splitter=splitter, cbs=cbs, metrics=metrics, path=path, model_dir=model_dir, wd=wd, wd_bn_bias=wd_bn_bias, train_bn=train_bn, moms=moms) if pretrained: learn.freeze() # keep track of args for loggers store_attr('arch,normalize,n_out,pretrained', self=learn, **kwargs) return learn # Cell @typedispatch def show_results(x:TensorImage, y, samples, outs, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) ctxs = show_results[object](x, y, samples, outs, ctxs=ctxs, max_n=max_n, **kwargs) return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:TensorCategory, samples, outs, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) for i in range(2): ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs,range(max_n))] ctxs = [r.show(ctx=c, color='green' if b==r else 'red', **kwargs) for b,r,c,_ in zip(samples.itemgot(1),outs.itemgot(0),ctxs,range(max_n))] return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:(TensorMask, TensorPoint, TensorBBox), samples, outs, ctxs=None, max_n=6, nrows=None, ncols=1, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize, double=True, title='Target/Prediction') for i in range(2): ctxs[::2] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs[::2],range(2*max_n))] for o in [samples,outs]: ctxs[1::2] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(o.itemgot(0),ctxs[1::2],range(2*max_n))] return ctxs # Cell @typedispatch def show_results(x:TensorImage, y:TensorImage, samples, outs, ctxs=None, max_n=10, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(3*min(len(samples), max_n), ncols=3, figsize=figsize, title='Input/Target/Prediction') for i in range(2): ctxs[i::3] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs[i::3],range(max_n))] ctxs[2::3] = [b.show(ctx=c, **kwargs) for b,c,_ in zip(outs.itemgot(0),ctxs[2::3],range(max_n))] return ctxs # Cell @typedispatch def plot_top_losses(x: TensorImage, y:TensorCategory, samples, outs, raws, losses, nrows=None, ncols=None, figsize=None, **kwargs): axs = get_grid(len(samples), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize, title='Prediction/Actual/Loss/Probability') for ax,s,o,r,l in zip(axs, samples, outs, raws, losses): s[0].show(ctx=ax, **kwargs) ax.set_title(f'{o[0]}/{s[1]} / {l.item():.2f} / {r.max().item():.2f}') # Cell @typedispatch def plot_top_losses(x: TensorImage, y:TensorMultiCategory, samples, outs, raws, losses, nrows=None, ncols=None, figsize=None, **kwargs): axs = get_grid(len(samples), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) for i,(ax,s) in enumerate(zip(axs, samples)): s[0].show(ctx=ax, title=f'Image {i}', **kwargs) rows = get_empty_df(len(samples)) outs = L(s[1:] + o + (TitledStr(r), TitledFloat(l.item())) for s,o,r,l in zip(samples, outs, raws, losses)) for i,l in enumerate(["target", "predicted", "probabilities", "loss"]): rows = [b.show(ctx=r, label=l, **kwargs) for b,r in zip(outs.itemgot(i),rows)] display_df(pd.DataFrame(rows))
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/learner.py
learner.py
__all__ = ['RandTransform', 'TensorTypes', 'FlipItem', 'DihedralItem', 'PadMode', 'CropPad', 'RandomCrop', 'OldRandomCrop', 'ResizeMethod', 'Resize', 'RandomResizedCrop', 'RatioResize', 'affine_grid', 'AffineCoordTfm', 'RandomResizedCropGPU', 'mask_tensor', 'affine_mat', 'flip_mat', 'Flip', 'DeterministicDraw', 'DeterministicFlip', 'dihedral_mat', 'Dihedral', 'DeterministicDihedral', 'rotate_mat', 'Rotate', 'zoom_mat', 'Zoom', 'find_coeffs', 'apply_perspective', 'Warp', 'SpaceTfm', 'LightingTfm', 'Brightness', 'Contrast', 'grayscale', 'Saturation', 'rgb2hsv', 'hsv2rgb', 'HSVTfm', 'Hue', 'cutout_gaussian', 'norm_apply_denorm', 'RandomErasing', 'setup_aug_tfms', 'aug_transforms'] # Cell from ..data.all import * from .core import * from .data import * # Cell from torch import stack, zeros_like as t0, ones_like as t1 from torch.distributions.bernoulli import Bernoulli # Cell class RandTransform(DisplayedTransform): "A transform that before_call its state at each `__call__`" do,nm,supports,split_idx = True,None,[],0 def __init__(self, p=1., nm=None, before_call=None, **kwargs): store_attr('p') super().__init__(**kwargs) self.before_call = ifnone(before_call,self.before_call) def before_call(self, b, split_idx): "Set `self.do` based on `self.p`" self.do = self.p==1. or random.random() < self.p def __call__(self, b, split_idx=None, **kwargs): self.before_call(b, split_idx=split_idx) return super().__call__(b, split_idx=split_idx, **kwargs) if self.do else b # Cell def _neg_axis(x, axis): x[...,axis] = -x[...,axis] return x TensorTypes = (TensorImage,TensorMask,TensorPoint,TensorBBox) # Internal Cell @patch def flip_lr(x:Image.Image): return x.transpose(Image.FLIP_LEFT_RIGHT) @patch def flip_lr(x:TensorImageBase): return x.flip(-1) @patch def flip_lr(x:TensorPoint): return TensorPoint(_neg_axis(x.clone(), 0)) @patch def flip_lr(x:TensorBBox): return TensorBBox(TensorPoint(x.view(-1,2)).flip_lr().view(-1,4)) # Cell class FlipItem(RandTransform): "Randomly flip with probability `p`" def __init__(self, p=0.5): super().__init__(p=p) def encodes(self, x:(Image.Image,*TensorTypes)): return x.flip_lr() # Internal Cell @patch def dihedral(x:PILImage, k): return x if k==0 else x.transpose(k-1) @patch def dihedral(x:TensorImage, k): if k in [1,3,4,7]: x = x.flip(-1) if k in [2,4,5,7]: x = x.flip(-2) if k in [3,5,6,7]: x = x.transpose(-1,-2) return x @patch def dihedral(x:TensorPoint, k): if k in [1,3,4,7]: x = _neg_axis(x, 0) if k in [2,4,5,7]: x = _neg_axis(x, 1) if k in [3,5,6,7]: x = x.flip(1) return x @patch def dihedral(x:TensorBBox, k): pnts = TensorPoint(x.view(-1,2)).dihedral(k).view(-1,2,2) tl,br = pnts.min(dim=1)[0],pnts.max(dim=1)[0] return TensorBBox(torch.cat([tl, br], dim=1), img_size=x.img_size) # Cell class DihedralItem(RandTransform): "Randomly flip with probability `p`" def before_call(self, b, split_idx): super().before_call(b, split_idx) self.k = random.randint(0,7) def encodes(self, x:(Image.Image,*TensorTypes)): return x.dihedral(self.k) # Cell from torchvision.transforms.functional import pad as tvpad # Cell mk_class('PadMode', **{o:o.lower() for o in ['Zeros', 'Border', 'Reflection']}, doc="All possible padding mode as attributes to get tab-completion and typo-proofing") # Cell #nbdev_comment _all_ = ['PadMode'] # Internal Cell _pad_modes = {'zeros': 'constant', 'border': 'edge', 'reflection': 'reflect'} @patch def _do_crop_pad(x:Image.Image, sz, tl, orig_sz, pad_mode=PadMode.Zeros, resize_mode=Image.BILINEAR, resize_to=None): if any(tl.ge(0)): # At least one dim is inside the image, so needs to be cropped c = tl.max(0) x = x.crop((*c, *c.add(sz).min(orig_sz))) if any(tl.lt(0)): # At least one dim is outside the image, so needs to be padded p = (-tl).max(0) f = (sz-orig_sz-p).max(0) x = tvpad(x, (*p, *f), padding_mode=_pad_modes[pad_mode]) if resize_to is not None: x = x.resize(resize_to, resize_mode) return x @patch def _do_crop_pad(x:TensorPoint, sz, tl, orig_sz, pad_mode=PadMode.Zeros, resize_to=None, **kwargs): #assert pad_mode==PadMode.Zeros,"Only zero padding is supported for `TensorPoint` and `TensorBBox`" orig_sz,sz,tl = map(FloatTensor, (orig_sz,sz,tl)) return TensorPoint((x+1)*orig_sz/sz - tl*2/sz - 1, sz=sz if resize_to is None else resize_to) @patch def _do_crop_pad(x:TensorBBox, sz, tl, orig_sz, pad_mode=PadMode.Zeros, resize_to=None, **kwargs): bbox = TensorPoint._do_crop_pad(x.view(-1,2), sz, tl, orig_sz, pad_mode, resize_to).view(-1,4) return TensorBBox(bbox, img_size=x.img_size) @patch def crop_pad(x:(TensorBBox,TensorPoint,Image.Image), sz, tl=None, orig_sz=None, pad_mode=PadMode.Zeros, resize_mode=Image.BILINEAR, resize_to=None): if isinstance(sz,int): sz = (sz,sz) orig_sz = fastuple(_get_sz(x) if orig_sz is None else orig_sz) sz,tl = fastuple(sz),fastuple(((_get_sz(x)-sz)//2) if tl is None else tl) return x._do_crop_pad(sz, tl, orig_sz=orig_sz, pad_mode=pad_mode, resize_mode=resize_mode, resize_to=resize_to) # Cell def _process_sz(size): if isinstance(size,int): size=(size,size) return fastuple(size[1],size[0]) def _get_sz(x): if isinstance(x, tuple): x = x[0] if not isinstance(x, Tensor): return fastuple(x.size) return fastuple(getattr(x, 'img_size', getattr(x, 'sz', (x.shape[-1], x.shape[-2])))) # Cell @delegates() class CropPad(DisplayedTransform): "Center crop or pad an image to `size`" order = 0 def __init__(self, size, pad_mode=PadMode.Zeros, **kwargs): size = _process_sz(size) store_attr() super().__init__(**kwargs) def encodes(self, x:(Image.Image,TensorBBox,TensorPoint)): orig_sz = _get_sz(x) tl = (orig_sz-self.size)//2 return x.crop_pad(self.size, tl, orig_sz=orig_sz, pad_mode=self.pad_mode) # Cell @delegates() class RandomCrop(RandTransform): "Randomly crop an image to `size`" split_idx,order = None,1 def __init__(self, size, **kwargs): size = _process_sz(size) store_attr() super().__init__(**kwargs) def before_call(self, b, split_idx): self.orig_sz = _get_sz(b) if split_idx: self.tl = (self.orig_sz-self.size)//2 else: wd = self.orig_sz[0] - self.size[0] hd = self.orig_sz[1] - self.size[1] w_rand = (wd, -1) if wd < 0 else (0, wd) h_rand = (hd, -1) if hd < 0 else (0, hd) self.tl = fastuple(random.randint(*w_rand), random.randint(*h_rand)) def encodes(self, x:(Image.Image,TensorBBox,TensorPoint)): return x.crop_pad(self.size, self.tl, orig_sz=self.orig_sz) # Cell class OldRandomCrop(CropPad): "Randomly crop an image to `size`" def before_call(self, b, split_idx): super().before_call(b, split_idx) w,h = self.orig_sz if not split_idx: self.tl = (random.randint(0,w-self.cp_size[0]), random.randint(0,h-self.cp_size[1])) # Cell mk_class('ResizeMethod', **{o:o.lower() for o in ['Squish', 'Crop', 'Pad']}, doc="All possible resize method as attributes to get tab-completion and typo-proofing") # Cell #nbdev_comment _all_ = ['ResizeMethod'] # Cell @delegates() class Resize(RandTransform): split_idx,mode,mode_mask,order = None,Image.BILINEAR,Image.NEAREST,1 "Resize image to `size` using `method`" def __init__(self, size, method=ResizeMethod.Crop, pad_mode=PadMode.Reflection, resamples=(Image.BILINEAR, Image.NEAREST), **kwargs): size = _process_sz(size) store_attr() super().__init__(**kwargs) self.mode,self.mode_mask = resamples def before_call(self, b, split_idx): if self.method==ResizeMethod.Squish: return self.pcts = (0.5,0.5) if split_idx else (random.random(),random.random()) def encodes(self, x:(Image.Image,TensorBBox,TensorPoint)): orig_sz = _get_sz(x) if self.method==ResizeMethod.Squish: return x.crop_pad(orig_sz, fastuple(0,0), orig_sz=orig_sz, pad_mode=self.pad_mode, resize_mode=self.mode_mask if isinstance(x,PILMask) else self.mode, resize_to=self.size) w,h = orig_sz op = (operator.lt,operator.gt)[self.method==ResizeMethod.Pad] m = w/self.size[0] if op(w/self.size[0],h/self.size[1]) else h/self.size[1] cp_sz = (int(m*self.size[0]),int(m*self.size[1])) tl = fastuple(int(self.pcts[0]*(w-cp_sz[0])), int(self.pcts[1]*(h-cp_sz[1]))) return x.crop_pad(cp_sz, tl, orig_sz=orig_sz, pad_mode=self.pad_mode, resize_mode=self.mode_mask if isinstance(x,PILMask) else self.mode, resize_to=self.size) # Cell @delegates() class RandomResizedCrop(RandTransform): "Picks a random scaled crop of an image and resize it to `size`" split_idx,order = None,1 def __init__(self, size, min_scale=0.08, ratio=(3/4, 4/3), resamples=(Image.BILINEAR, Image.NEAREST), val_xtra=0.14, **kwargs): size = _process_sz(size) store_attr() super().__init__(**kwargs) self.mode,self.mode_mask = resamples def before_call(self, b, split_idx): w,h = self.orig_sz = _get_sz(b) if split_idx: xtra = math.ceil(max(*self.size[:2])*self.val_xtra/8)*8 self.final_size = (self.size[0]+xtra, self.size[1]+xtra) self.tl,self.cp_size = (0,0),self.orig_sz return self.final_size = self.size for attempt in range(10): area = random.uniform(self.min_scale,1.) * w * h ratio = math.exp(random.uniform(math.log(self.ratio[0]), math.log(self.ratio[1]))) nw = int(round(math.sqrt(area * ratio))) nh = int(round(math.sqrt(area / ratio))) if nw <= w and nh <= h: self.cp_size = (nw,nh) self.tl = random.randint(0,w-nw), random.randint(0,h - nh) return if w/h < self.ratio[0]: self.cp_size = (w, int(w/self.ratio[0])) elif w/h > self.ratio[1]: self.cp_size = (int(h*self.ratio[1]), h) else: self.cp_size = (w, h) self.tl = ((w-self.cp_size[0])//2, (h-self.cp_size[1])//2) def encodes(self, x:(Image.Image,TensorBBox,TensorPoint)): res = x.crop_pad(self.cp_size, self.tl, orig_sz=self.orig_sz, resize_mode=self.mode_mask if isinstance(x,PILMask) else self.mode, resize_to=self.final_size) if self.final_size != self.size: res = res.crop_pad(self.size) #Validation set: one final center crop return res # Cell class RatioResize(DisplayedTransform): 'Resizes the biggest dimension of an image to `max_sz` maintaining the aspect ratio' order = 1 def __init__(self, max_sz, resamples=(Image.BILINEAR, Image.NEAREST), **kwargs): store_attr() super().__init__(**kwargs) def encodes(self, x:(Image.Image,TensorBBox,TensorPoint)): w,h = _get_sz(x) if w >= h: nw,nh = self.max_sz,h*self.max_sz/w else: nw,nh = w*self.max_sz/h,self.max_sz return Resize(size=(int(nh),int(nw)), resamples=self.resamples)(x) # Cell def _init_mat(x): mat = torch.eye(3, device=x.device).float() return mat.unsqueeze(0).expand(x.size(0), 3, 3).contiguous() # Cell def _grid_sample(x, coords, mode='bilinear', padding_mode='reflection', align_corners=None): "Resample pixels in `coords` from `x` by `mode`, with `padding_mode` in ('reflection','border','zeros')." #coords = coords.permute(0, 3, 1, 2).contiguous().permute(0, 2, 3, 1) # optimize layout for grid_sample if mode=='bilinear': # hack to get smoother downwards resampling mn,mx = coords.min(),coords.max() # max amount we're affine zooming by (>1 means zooming in) z = 1/(mx-mn).item()*2 # amount we're resizing by, with 100% extra margin d = min(x.shape[-2]/coords.shape[-2], x.shape[-1]/coords.shape[-1])/2 # If we're resizing up by >200%, and we're zooming less than that, interpolate first if d>1 and d>z: # Pytorch > v1.4.x needs an extra argument when calling nn.functional.interpolate to preserve previous behaviour if (int(torch.__version__[0:4].replace(".", "")) > 14): x = F.interpolate(x, scale_factor=1/d, mode='area', recompute_scale_factor=True) else: x = F.interpolate(x, scale_factor=1/d, mode='area') return F.grid_sample(x, coords, mode=mode, padding_mode=padding_mode, align_corners=align_corners) # Cell def affine_grid(theta, size, align_corners=None): return TensorFlowField(F.affine_grid(theta, size, align_corners=align_corners)) # Internal Cell @patch def affine_coord(x: TensorImage, mat=None, coord_tfm=None, sz=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True): if mat is None and coord_tfm is None and sz is None: return x size = tuple(x.shape[-2:]) if sz is None else (sz,sz) if isinstance(sz,int) else tuple(sz) if mat is None: mat = _init_mat(x)[:,:2] coords = affine_grid(mat, x.shape[:2] + size, align_corners=align_corners) if coord_tfm is not None: coords = coord_tfm(coords) return TensorImage(_grid_sample(x, coords, mode=mode, padding_mode=pad_mode, align_corners=align_corners)) @patch def affine_coord(x: TensorMask, mat=None, coord_tfm=None, sz=None, mode='nearest', pad_mode=PadMode.Reflection, align_corners=True): add_dim = (x.ndim==3) if add_dim: x = x[:,None] res = TensorImage.affine_coord(x.float(), mat, coord_tfm, sz, mode, pad_mode, align_corners).long() if add_dim: res = res[:,0] return TensorMask(res) @patch def affine_coord(x: TensorPoint, mat=None, coord_tfm=None, sz=None, mode='nearest', pad_mode=PadMode.Zeros, align_corners=True): #assert pad_mode==PadMode.Zeros, "Only zero padding is supported for `TensorPoint` and `TensorBBox`" if sz is None: sz = getattr(x, "img_size", None) if coord_tfm is not None: x = coord_tfm(x, invert=True) if mat is not None: mat = TensorPoint(mat) x = (x - mat[:,:,2].unsqueeze(1)) @ torch.inverse(mat[:,:,:2].transpose(1,2)) return TensorPoint(x, sz=sz) @patch def affine_coord(x: TensorBBox, mat=None, coord_tfm=None, sz=None, mode='nearest', pad_mode=PadMode.Zeros, align_corners=True): if mat is None and coord_tfm is None: return x if sz is None: sz = getattr(x, "img_size", None) bs,n = x.shape[:2] pnts = stack([x[...,:2], stack([x[...,0],x[...,3]],dim=2), stack([x[...,2],x[...,1]],dim=2), x[...,2:]], dim=2) pnts = TensorPoint(pnts.view(bs, 4*n, 2), img_size=sz).affine_coord(mat, coord_tfm, sz, mode, pad_mode) pnts = pnts.view(bs, n, 4, 2) tl,dr = pnts.min(dim=2)[0],pnts.max(dim=2)[0] return TensorBBox(torch.cat([tl, dr], dim=2), img_size=sz) # Cell def _prepare_mat(x, mat): h,w = getattr(x, 'img_size', x.shape[-2:]) mat[:,0,1] *= h/w mat[:,1,0] *= w/h return mat[:,:2] # Cell class AffineCoordTfm(RandTransform): "Combine and apply affine and coord transforms" order,split_idx = 30,None def __init__(self, aff_fs=None, coord_fs=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, mode_mask='nearest', align_corners=None, **kwargs): store_attr(but=['aff_fs','coord_fs']) super().__init__(**kwargs) self.aff_fs,self.coord_fs = L(aff_fs),L(coord_fs) self.cp_size = None if size is None else (size,size) if isinstance(size, int) else tuple(size) def before_call(self, b, split_idx): while isinstance(b, tuple): b = b[0] self.split_idx = split_idx self.do,self.mat = True,self._get_affine_mat(b) for t in self.coord_fs: t.before_call(b) def compose(self, tfm): "Compose `self` with another `AffineCoordTfm` to only do the interpolation step once" # TODO: keep `name` up to date with the combination # TODO: have option to only show a subset of the attrs, e.g. for `Flip` self.aff_fs += tfm.aff_fs self.coord_fs += tfm.coord_fs def _get_affine_mat(self, x): aff_m = _init_mat(x) if self.split_idx: return _prepare_mat(x, aff_m) ms = [f(x) for f in self.aff_fs] ms = [m for m in ms if m is not None] for m in ms: aff_m = aff_m @ m return _prepare_mat(x, aff_m) def _encode(self, x, mode, reverse=False): coord_func = None if len(self.coord_fs)==0 or self.split_idx else partial(compose_tfms, tfms=self.coord_fs, reverse=reverse) return x.affine_coord(self.mat, coord_func, sz=self.size, mode=mode, pad_mode=self.pad_mode, align_corners=self.align_corners) def encodes(self, x:TensorImage): return self._encode(x, self.mode) def encodes(self, x:TensorMask): return self._encode(x, self.mode_mask) def encodes(self, x:(TensorPoint, TensorBBox)): return self._encode(x, self.mode, reverse=True) # Cell class RandomResizedCropGPU(RandTransform): "Picks a random scaled crop of an image and resize it to `size`" split_idx,order = None,30 def __init__(self, size, min_scale=0.08, ratio=(3/4, 4/3), mode='bilinear', valid_scale=1., **kwargs): if isinstance(size, int): size = (size,size) store_attr() super().__init__(**kwargs) def before_call(self, b, split_idx): self.do = True h,w = fastuple((b[0] if isinstance(b, tuple) else b).shape[-2:]) for attempt in range(10): if split_idx: break area = random.uniform(self.min_scale,1.) * w * h ratio = math.exp(random.uniform(math.log(self.ratio[0]), math.log(self.ratio[1]))) nw = int(round(math.sqrt(area * ratio))) nh = int(round(math.sqrt(area / ratio))) if nw <= w and nh <= h: self.cp_size = (nh,nw) self.tl = random.randint(0,h - nh),random.randint(0,w-nw) return if w/h < self.ratio[0]: self.cp_size = (int(w/self.ratio[0]), w) elif w/h > self.ratio[1]: self.cp_size = (h, int(h*self.ratio[1])) else: self.cp_size = (h, w) if split_idx: self.cp_size = (int(self.cp_size[0]*self.valid_scale), int(self.cp_size[1]*self.valid_scale)) self.tl = ((h-self.cp_size[0])//2,(w-self.cp_size[1])//2) def encodes(self, x:TensorImage): x = x[...,self.tl[0]:self.tl[0]+self.cp_size[0], self.tl[1]:self.tl[1]+self.cp_size[1]] return TensorImage(x).affine_coord(sz=self.size, mode=self.mode) # Cell def mask_tensor(x, p=0.5, neutral=0., batch=False): "Mask elements of `x` with `neutral` with probability `1-p`" if p==1.: return x if batch: return x if random.random() < p else x.new_zeros(*x.size()) + neutral if neutral != 0: x.add_(-neutral) mask = x.new_empty(*x.size()).bernoulli_(p) x.mul_(mask) return x.add_(neutral) if neutral != 0 else x # Cell def _draw_mask(x, def_draw, draw=None, p=0.5, neutral=0., batch=False): "Creates mask_tensor based on `x` with `neutral` with probability `1-p`. " if draw is None: draw=def_draw if callable(draw): res=draw(x) elif is_listy(draw): assert len(draw)>=x.size(0) res = tensor(draw[:x.size(0)], dtype=x.dtype, device=x.device) else: res = x.new_zeros(x.size(0)) + draw return TensorBase(mask_tensor(res, p=p, neutral=neutral, batch=batch)) # Cell def affine_mat(*ms): "Restructure length-6 vector `ms` into an affine matrix with 0,0,1 in the last line" return stack([stack([ms[0], ms[1], ms[2]], dim=1), stack([ms[3], ms[4], ms[5]], dim=1), stack([t0(ms[0]), t0(ms[0]), t1(ms[0])], dim=1)], dim=1) # Cell def flip_mat(x, p=0.5, draw=None, batch=False): "Return a random flip matrix" def _def_draw(x): return x.new_ones(x.size(0)) mask = x.new_ones(x.size(0)) - 2*_draw_mask(x, _def_draw, draw=draw, p=p, batch=batch) return affine_mat(mask, t0(mask), t0(mask), t0(mask), t1(mask), t0(mask)) # Cell def _get_default(x, mode=None, pad_mode=None): if mode is None: mode='bilinear' if isinstance(x, TensorMask) else 'bilinear' if pad_mode is None: pad_mode=PadMode.Zeros if isinstance(x, (TensorPoint, TensorBBox)) else PadMode.Reflection x0 = x[0] if isinstance(x, tuple) else x return x0,mode,pad_mode # Internal Cell @patch def flip_batch(x: (TensorImage,TensorMask,TensorPoint,TensorBBox), p=0.5, draw=None, size=None, mode=None, pad_mode=None, align_corners=True, batch=False): x0,mode,pad_mode = _get_default(x, mode, pad_mode) mat=flip_mat(x0, p=p, draw=draw, batch=batch) return x.affine_coord(mat=mat[:,:2], sz=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class Flip(AffineCoordTfm): "Randomly flip a batch of images with a probability `p`" def __init__(self, p=0.5, draw=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, batch=False): aff_fs = partial(flip_mat, p=p, draw=draw, batch=batch) super().__init__(aff_fs, size=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners, p=p) # Cell class DeterministicDraw(): def __init__(self, vals): self.vals,self.count = vals,-1 def __call__(self, x): self.count += 1 return x.new_zeros(x.size(0)) + self.vals[self.count%len(self.vals)] # Cell class DeterministicFlip(Flip): "Flip the batch every other call" def __init__(self, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, **kwargs): super().__init__(p=1., draw=DeterministicDraw([0,1]), mode=mode, pad_mode=pad_mode, align_corners=align_corners, **kwargs) # Cell def dihedral_mat(x, p=0.5, draw=None, batch=False): "Return a random dihedral matrix" def _def_draw(x): return torch.randint(0,8, (x.size(0),), device=x.device) def _def_draw_b(x): return random.randint(0,7) + x.new_zeros((x.size(0),)).long() idx = _draw_mask(x, _def_draw_b if batch else _def_draw, draw=draw, p=p, batch=batch).long() xs = tensor([1,-1,1,-1,-1,1,1,-1], device=x.device).gather(0, idx) ys = tensor([1,1,-1,1,-1,-1,1,-1], device=x.device).gather(0, idx) m0 = tensor([1,1,1,0,1,0,0,0], device=x.device).gather(0, idx) m1 = tensor([0,0,0,1,0,1,1,1], device=x.device).gather(0, idx) return affine_mat(xs*m0, xs*m1, t0(xs), ys*m1, ys*m0, t0(xs)).float() # Internal Cell @patch def dihedral_batch(x: (TensorImage,TensorMask,TensorPoint,TensorBBox), p=0.5, draw=None, size=None, mode=None, pad_mode=None, batch=False, align_corners=True): x0,mode,pad_mode = _get_default(x, mode, pad_mode) mat = _prepare_mat(x, dihedral_mat(x0, p=p, draw=draw, batch=batch)) return x.affine_coord(mat=mat, sz=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class Dihedral(AffineCoordTfm): "Apply a random dihedral transformation to a batch of images with a probability `p`" def __init__(self, p=0.5, draw=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=None, batch=False): f = partial(dihedral_mat, p=p, draw=draw, batch=batch) super().__init__(aff_fs=f, size=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class DeterministicDihedral(Dihedral): def __init__(self, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=None): "Flip the batch every other call" super().__init__(p=1., draw=DeterministicDraw(list(range(8))), pad_mode=pad_mode, align_corners=align_corners) # Cell def rotate_mat(x, max_deg=10, p=0.5, draw=None, batch=False): "Return a random rotation matrix with `max_deg` and `p`" def _def_draw(x): return x.new_empty(x.size(0)).uniform_(-max_deg, max_deg) def _def_draw_b(x): return x.new_zeros(x.size(0)) + random.uniform(-max_deg, max_deg) thetas = _draw_mask(x, _def_draw_b if batch else _def_draw, draw=draw, p=p, batch=batch) * math.pi/180 return affine_mat(thetas.cos(), thetas.sin(), t0(thetas), -thetas.sin(), thetas.cos(), t0(thetas)) # Internal Cell @patch @delegates(rotate_mat) def rotate(x: (TensorImage,TensorMask,TensorPoint,TensorBBox), size=None, mode=None, pad_mode=None, align_corners=True, **kwargs): x0,mode,pad_mode = _get_default(x, mode, pad_mode) mat = _prepare_mat(x, rotate_mat(x0, **kwargs)) return x.affine_coord(mat=mat, sz=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class Rotate(AffineCoordTfm): "Apply a random rotation of at most `max_deg` with probability `p` to a batch of images" def __init__(self, max_deg=10, p=0.5, draw=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, batch=False): aff_fs = partial(rotate_mat, max_deg=max_deg, p=p, draw=draw, batch=batch) super().__init__(aff_fs=aff_fs, size=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell def zoom_mat(x, min_zoom=1., max_zoom=1.1, p=0.5, draw=None, draw_x=None, draw_y=None, batch=False): "Return a random zoom matrix with `max_zoom` and `p`" def _def_draw(x): return x.new_empty(x.size(0)).uniform_(min_zoom, max_zoom) def _def_draw_b(x): return x.new_zeros(x.size(0)) + random.uniform(min_zoom, max_zoom) def _def_draw_ctr(x): return x.new_empty(x.size(0)).uniform_(0,1) def _def_draw_ctr_b(x): return x.new_zeros(x.size(0)) + random.uniform(0,1) assert(min_zoom<=max_zoom) s = 1/_draw_mask(x, _def_draw_b if batch else _def_draw, draw=draw, p=p, neutral=1., batch=batch) def_draw_c = _def_draw_ctr_b if batch else _def_draw_ctr col_pct = _draw_mask(x, def_draw_c, draw=draw_x, p=1., batch=batch) row_pct = _draw_mask(x, def_draw_c, draw=draw_y, p=1., batch=batch) col_c = (1-s) * (2*col_pct - 1) row_c = (1-s) * (2*row_pct - 1) return affine_mat(s, t0(s), col_c, t0(s), s, row_c) # Internal Cell @patch @delegates(zoom_mat) def zoom(x: (TensorImage,TensorMask,TensorPoint,TensorBBox), size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, **kwargs): x0,mode,pad_mode = _get_default(x, mode, pad_mode) return x.affine_coord(mat=zoom_mat(x0, **kwargs)[:,:2], sz=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class Zoom(AffineCoordTfm): "Apply a random zoom of at most `max_zoom` with probability `p` to a batch of images" def __init__(self,min_zoom=1., max_zoom=1.1, p=0.5, draw=None, draw_x=None, draw_y=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, batch=False, align_corners=True): aff_fs = partial(zoom_mat, min_zoom=min_zoom, max_zoom=max_zoom, p=p, draw=draw, draw_x=draw_x, draw_y=draw_y, batch=batch) super().__init__(aff_fs, size=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell def find_coeffs(p1, p2): "Find coefficients for warp tfm from `p1` to `p2`" m = [] p = p1[:,0,0] #The equations we'll need to solve. for i in range(p1.shape[1]): m.append(stack([p2[:,i,0], p2[:,i,1], t1(p), t0(p), t0(p), t0(p), -p1[:,i,0]*p2[:,i,0], -p1[:,i,0]*p2[:,i,1]])) m.append(stack([t0(p), t0(p), t0(p), p2[:,i,0], p2[:,i,1], t1(p), -p1[:,i,1]*p2[:,i,0], -p1[:,i,1]*p2[:,i,1]])) #The 8 scalars we seek are solution of AX = B A = stack(m).permute(2, 0, 1) B = p1.view(p1.shape[0], 8, 1) return torch.solve(B,A)[0] # Cell def apply_perspective(coords, coeffs): "Apply perspective tranfom on `coords` with `coeffs`" sz = coords.shape coords = coords.view(sz[0], -1, 2) coeffs = torch.cat([coeffs, t1(coeffs[:,:1])], dim=1).view(coeffs.shape[0], 3,3) coords1 = coords @ coeffs[...,:2].transpose(1,2) + coeffs[...,2].unsqueeze(1) if (coords1[...,2]==0.).any(): return coords[...,:2].view(*sz) coords = coords1/coords1[...,2].unsqueeze(-1) return coords[...,:2].view(*sz) # Cell class _WarpCoord(): def __init__(self, magnitude=0.2, p=0.5, draw_x=None, draw_y=None, batch=False): store_attr() self.coeffs = None def _def_draw(self, x): if not self.batch: return x.new_empty(x.size(0)).uniform_(-self.magnitude, self.magnitude) return x.new_zeros(x.size(0)) + random.uniform(-self.magnitude, self.magnitude) def before_call(self, x): x_t = _draw_mask(x, self._def_draw, self.draw_x, p=self.p, batch=self.batch) y_t = _draw_mask(x, self._def_draw, self.draw_y, p=self.p, batch=self.batch) orig_pts = torch.tensor([[-1,-1], [-1,1], [1,-1], [1,1]], dtype=x.dtype, device=x.device) self.orig_pts = orig_pts.unsqueeze(0).expand(x.size(0),4,2) targ_pts = stack([stack([-1-y_t, -1-x_t]), stack([-1+y_t, 1+x_t]), stack([ 1+y_t, -1+x_t]), stack([ 1-y_t, 1-x_t])]) self.targ_pts = targ_pts.permute(2,0,1) def __call__(self, x, invert=False): coeffs = find_coeffs(self.targ_pts, self.orig_pts) if invert else find_coeffs(self.orig_pts, self.targ_pts) return apply_perspective(x, coeffs) # Internal Cell @patch @delegates(_WarpCoord.__init__) def warp(x:(TensorImage,TensorMask,TensorPoint,TensorBBox), size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, **kwargs): x0,mode,pad_mode = _get_default(x, mode, pad_mode) coord_tfm = _WarpCoord(**kwargs) coord_tfm.before_call(x0) return x.affine_coord(coord_tfm=coord_tfm, sz=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners) # Cell class Warp(AffineCoordTfm): "Apply perspective warping with `magnitude` and `p` on a batch of matrices" def __init__(self, magnitude=0.2, p=0.5, draw_x=None, draw_y=None,size=None, mode='bilinear', pad_mode=PadMode.Reflection, batch=False, align_corners=True): store_attr() coord_fs = _WarpCoord(magnitude=magnitude, p=p, draw_x=draw_x, draw_y=draw_y, batch=batch) super().__init__(coord_fs=coord_fs, size=size, mode=mode, pad_mode=pad_mode, align_corners=align_corners ) # Cell @patch def lighting(x: TensorImage, func): return TensorImage(torch.sigmoid(func(logit(x)))) # Cell class SpaceTfm(RandTransform): "Apply `fs` to the logits" order = 40 def __init__(self, fs, space_fn, **kwargs): super().__init__(**kwargs) self.space_fn=space_fn self.fs=L(fs) def before_call(self, b, split_idx): self.do = True while isinstance(b, tuple): b = b[0] for t in self.fs: t.before_call(b) def compose(self, tfm): "Compose `self` with another `LightingTransform`" self.fs += tfm.fs def encodes(self,x:TensorImage): return self.space_fn(x,partial(compose_tfms, tfms=self.fs)) # Cell class LightingTfm(SpaceTfm): "Apply `fs` to the logits" order = 40 def __init__(self, fs, **kwargs): super().__init__(fs, TensorImage.lighting, **kwargs) # Cell class _BrightnessLogit(): def __init__(self, max_lighting=0.2, p=0.75, draw=None, batch=False): store_attr() def _def_draw(self, x): if not self.batch: return x.new_empty(x.size(0)).uniform_(0.5*(1-self.max_lighting), 0.5*(1+self.max_lighting)) return x.new_zeros(x.size(0)) + random.uniform(0.5*(1-self.max_lighting), 0.5*(1+self.max_lighting)) def before_call(self, x): self.change = _draw_mask(x, self._def_draw, draw=self.draw, p=self.p, neutral=0.5, batch=self.batch) def __call__(self, x): return x.add_(logit(self.change[:,None,None,None])) # Internal Cell @patch @delegates(_BrightnessLogit.__init__) def brightness(x: TensorImage, **kwargs): func = _BrightnessLogit(**kwargs) func.before_call(x) return x.lighting(func) # Cell class Brightness(LightingTfm): def __init__(self, max_lighting=0.2, p=0.75, draw=None, batch=False): "Apply change in brightness of `max_lighting` to batch of images with probability `p`." store_attr() super().__init__(_BrightnessLogit(max_lighting, p, draw, batch)) # Cell class _ContrastLogit(): def __init__(self, max_lighting=0.2, p=0.75, draw=None, batch=False): store_attr() def _def_draw(self, x): if not self.batch: res = x.new_empty(x.size(0)).uniform_(math.log(1-self.max_lighting), -math.log(1-self.max_lighting)) else: res = x.new_zeros(x.size(0)) + random.uniform(math.log(1-self.max_lighting), -math.log(1-self.max_lighting)) return torch.exp(res) def before_call(self, x): self.change = _draw_mask(x, self._def_draw, draw=self.draw, p=self.p, neutral=1., batch=self.batch) def __call__(self, x): return x.mul_(self.change[:,None,None,None]) # Internal Cell @patch @delegates(_ContrastLogit.__init__) def contrast(x: TensorImage, **kwargs): func = _ContrastLogit(**kwargs) func.before_call(x) return x.lighting(func) # Cell class Contrast(LightingTfm): "Apply change in contrast of `max_lighting` to batch of images with probability `p`." def __init__(self,max_lighting=0.2, p=0.75, draw=None, batch=False): store_attr() super().__init__(_ContrastLogit(max_lighting, p, draw, batch)) # Cell def grayscale(x): "Tensor to grayscale tensor. Uses the ITU-R 601-2 luma transform. " return (x*torch.tensor([0.2989,0.5870,0.1140],device=x.device)[...,None,None]).sum(1)[:,None] # Cell class _SaturationLogit(): def __init__(self, max_lighting=0.2, p=0.75, draw=None, batch=False): store_attr() def _def_draw(self, x): if not self.batch: res = x.new_empty(x.size(0)).uniform_(math.log(1-self.max_lighting), -math.log(1-self.max_lighting)) else: res = x.new_zeros(x.size(0)) + random.uniform(math.log(1-self.max_lighting), -math.log(1-self.max_lighting)) return torch.exp(res) def before_call(self, x): self.change = _draw_mask(x, self._def_draw, draw=self.draw, p=self.p, neutral=1., batch=self.batch) def __call__(self, x): #interpolate between grayscale and original in-place gs = grayscale(x) gs.mul_(1-self.change[:,None,None,None]) x.mul_(self.change[:,None,None,None]) return x.add_(gs) # Internal Cell @patch @delegates(_SaturationLogit.__init__) def saturation(x: TensorImage, **kwargs): func = _SaturationLogit(**kwargs) func.before_call(x) return x.lighting(func) # Cell class Saturation(LightingTfm): "Apply change in saturation of `max_lighting` to batch of images with probability `p`." # Ref: https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.functional.adjust_saturation def __init__(self,max_lighting=0.2, p=0.75, draw=None, batch=False): store_attr() super().__init__(_SaturationLogit(max_lighting, p, draw, batch)) # Cell def rgb2hsv(img): "Converts a RGB image to an HSV image. Note: Will not work on logit space images." r, g, b = img.unbind(1) # temp commented out due to https://github.com/pytorch/pytorch/issues/47069 # maxc = torch.max(img, dim=1).values # minc = torch.min(img, dim=1).values maxc = torch.max(img, dim=1)[0] minc = torch.min(img, dim=1)[0] eqc = maxc == minc cr = maxc - minc s = cr / torch.where(eqc, maxc.new_ones(()), maxc) cr_divisor = torch.where(eqc, maxc.new_ones(()), cr) rc = (maxc - r) / cr_divisor gc = (maxc - g) / cr_divisor bc = (maxc - b) / cr_divisor hr = (maxc == r) * (bc - gc) hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc) hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc) h = (hr + hg + hb) h = torch.fmod((h / 6.0 + 1.0), 1.0) return torch.stack((h, s, maxc),dim=1) # Cell def hsv2rgb(img): "Converts a HSV image to an RGB image." h, s, v = img.unbind(1) i = torch.floor(h * 6.0) f = (h * 6.0) - i i = i.to(dtype=torch.int32) p = torch.clamp((v * (1.0 - s)), 0.0, 1.0) q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0) t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0) i = i % 6 mask = i[:,None] == torch.arange(6,device=i.device)[:, None, None][None] a1 = torch.stack((v, q, p, p, t, v),dim=1) a2 = torch.stack((t, v, v, q, p, p),dim=1) a3 = torch.stack((p, p, t, v, v, q),dim=1) a4 = torch.stack((a1, a2, a3),dim=1) return torch.einsum("nijk, nxijk -> nxjk", mask.to(dtype=img.dtype), a4) # Internal Cell @patch def hsv(x: TensorImage, func): return TensorImage(hsv2rgb(func(rgb2hsv(x)))) # Cell class HSVTfm(SpaceTfm): "Apply `fs` to the images in HSV space" def __init__(self, fs, **kwargs): super().__init__(fs, TensorImage.hsv, **kwargs) # Cell class _Hue(): def __init__(self, max_hue=0.1, p=0.75, draw=None, batch=False): store_attr() def _def_draw(self, x): if not self.batch: res = x.new_empty(x.size(0)).uniform_(math.log(1-self.max_hue), -math.log(1-self.max_hue)) else: res = x.new_zeros(x.size(0)) + random.uniform(math.log(1-self.max_hue), -math.log(1-self.max_hue)) return torch.exp(res) def before_call(self, x): self.change = _draw_mask(x, self._def_draw, draw=self.draw, p=self.p, neutral=0., batch=self.batch) def __call__(self, x): h,s,v = x.unbind(1) h += self.change[:,None,None] h = h % 1.0 return x.set_(torch.stack((h, s, v),dim=1)) # Internal Cell @patch @delegates(_Hue.__init__) def hue(x: TensorImage, **kwargs): func = _Hue(**kwargs) func.before_call(x) return TensorImage(x.hsv(func)) # Cell class Hue(HSVTfm): "Apply change in hue of `max_hue` to batch of images with probability `p`." # Ref: https://pytorch.org/docs/stable/torchvision/transforms.html#torchvision.transforms.functional.adjust_hue def __init__(self,max_hue=0.1, p=0.75, draw=None, batch=False): super().__init__(_Hue(max_hue, p, draw, batch)) # Cell def cutout_gaussian(x, areas): "Replace all `areas` in `x` with N(0,1) noise" chan,img_h,img_w = x.shape[-3:] for rl,rh,cl,ch in areas: x[..., rl:rh, cl:ch].normal_() return x # Cell def norm_apply_denorm(x, f, nrm): "Normalize `x` with `nrm`, then apply `f`, then denormalize" y = f(nrm(x.clone())) return nrm.decode(y).clamp(0,1) # Cell def _slice(area, sz): bound = int(round(math.sqrt(area))) loc = random.randint(0, max(sz-bound, 0)) return loc,loc+bound # Cell class RandomErasing(RandTransform): "Randomly selects a rectangle region in an image and randomizes its pixels." order = 100 # After Normalize def __init__(self, p=0.5, sl=0., sh=0.3, min_aspect=0.3, max_count=1): store_attr() super().__init__(p=p) self.log_ratio = (math.log(min_aspect), math.log(1/min_aspect)) def _bounds(self, area, img_h, img_w): r_area = random.uniform(self.sl,self.sh) * area aspect = math.exp(random.uniform(*self.log_ratio)) return _slice(r_area*aspect, img_h) + _slice(r_area/aspect, img_w) def encodes(self,x:TensorImage): count = random.randint(1, self.max_count) _,img_h,img_w = x.shape[-3:] area = img_h*img_w/count areas = [self._bounds(area, img_h, img_w) for _ in range(count)] return cutout_gaussian(x, areas) # Cell def _compose_same_tfms(tfms): tfms = L(tfms) if len(tfms) == 0: return None res = tfms[0] for tfm in tfms[1:]: res.compose(tfm) return res # Cell def setup_aug_tfms(tfms): "Go through `tfms` and combines together affine/coord or lighting transforms" aff_tfms = [tfm for tfm in tfms if isinstance(tfm, AffineCoordTfm)] lig_tfms = [tfm for tfm in tfms if isinstance(tfm, LightingTfm)] others = [tfm for tfm in tfms if tfm not in aff_tfms+lig_tfms] lig_tfm = _compose_same_tfms(lig_tfms) aff_tfm = _compose_same_tfms(aff_tfms) res = [aff_tfm] if aff_tfm is not None else [] if lig_tfm is not None: res.append(lig_tfm) return res + others # Cell def aug_transforms(mult=1.0, do_flip=True, flip_vert=False, max_rotate=10., min_zoom=1., max_zoom=1.1, max_lighting=0.2, max_warp=0.2, p_affine=0.75, p_lighting=0.75, xtra_tfms=None, size=None, mode='bilinear', pad_mode=PadMode.Reflection, align_corners=True, batch=False, min_scale=1.): "Utility func to easily create a list of flip, rotate, zoom, warp, lighting transforms." res,tkw = [],dict(size=size if min_scale==1. else None, mode=mode, pad_mode=pad_mode, batch=batch, align_corners=align_corners) max_rotate,max_lighting,max_warp = array([max_rotate,max_lighting,max_warp])*mult if do_flip: res.append(Dihedral(p=0.5, **tkw) if flip_vert else Flip(p=0.5, **tkw)) if max_warp: res.append(Warp(magnitude=max_warp, p=p_affine, **tkw)) if max_rotate: res.append(Rotate(max_deg=max_rotate, p=p_affine, **tkw)) if min_zoom<1 or max_zoom>1: res.append(Zoom(min_zoom=min_zoom, max_zoom=max_zoom, p=p_affine, **tkw)) if max_lighting: res.append(Brightness(max_lighting=max_lighting, p=p_lighting, batch=batch)) res.append(Contrast(max_lighting=max_lighting, p=p_lighting, batch=batch)) if min_scale!=1.: xtra_tfms = RandomResizedCropGPU(size, min_scale=min_scale, ratio=(1,1)) + L(xtra_tfms) return setup_aug_tfms(res + L(xtra_tfms))
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/augment.py
augment.py
__all__ = ['Image', 'ToTensor', 'imagenet_stats', 'cifar_stats', 'mnist_stats', 'n_px', 'shape', 'aspect', 'to_image', 'load_image', 'image2tensor', 'PILBase', 'PILImage', 'PILImageBW', 'PILMask', 'OpenMask', 'AddMaskCodes', 'TensorPoint', 'TensorPointCreate', 'get_annotations', 'TensorBBox', 'LabeledBBox', 'encodes', 'encodes', 'PointScaler', 'BBoxLabeler', 'decodes', 'encodes', 'decodes'] # Cell from ..torch_basics import * from ..data.all import * from PIL import Image # Cell #nbdev_comment _all_ = ['Image','ToTensor'] # Cell imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) cifar_stats = ([0.491, 0.482, 0.447], [0.247, 0.243, 0.261]) mnist_stats = ([0.131], [0.308]) # Cell if not hasattr(Image,'_patched'): _old_sz = Image.Image.size.fget @patch(as_prop=True) def size(x:Image.Image): return fastuple(_old_sz(x)) Image._patched = True # Cell @patch(as_prop=True) def n_px(x: Image.Image): return x.size[0] * x.size[1] # Cell @patch(as_prop=True) def shape(x: Image.Image): return x.size[1],x.size[0] # Cell @patch(as_prop=True) def aspect(x: Image.Image): return x.size[0]/x.size[1] # Cell @patch def reshape(x: Image.Image, h, w, resample=0): "`resize` `x` to `(w,h)`" return x.resize((w,h), resample=resample) # Cell @patch def to_bytes_format(im:Image.Image, format='png'): "Convert to bytes, default to PNG format" arr = io.BytesIO() im.save(arr, format=format) return arr.getvalue() # Cell @patch def to_thumb(self:Image.Image, h, w=None): "Same as `thumbnail`, but uses a copy" if w is None: w=h im = self.copy() im.thumbnail((w,h)) return im # Cell @patch def resize_max(x: Image.Image, resample=0, max_px=None, max_h=None, max_w=None): "`resize` `x` to `max_px`, or `max_h`, or `max_w`" h,w = x.shape if max_px and x.n_px>max_px: h,w = fastuple(h,w).mul(math.sqrt(max_px/x.n_px)) if max_h and h>max_h: h,w = (max_h ,max_h*w/h) if max_w and w>max_w: h,w = (max_w*h/w,max_w ) return x.reshape(round(h), round(w), resample=resample) # Cell def to_image(x): "Convert a tensor or array to a PIL int8 Image" if isinstance(x,Image.Image): return x if isinstance(x,Tensor): x = to_np(x.permute((1,2,0))) if x.dtype==np.float32: x = (x*255).astype(np.uint8) return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4]) # Cell def load_image(fn, mode=None): "Open and load a `PIL.Image` and convert to `mode`" im = Image.open(fn) im.load() im = im._new(im.im) return im.convert(mode) if mode else im # Cell def image2tensor(img): "Transform image to byte tensor in `c*h*w` dim order." res = tensor(img) if res.dim()==2: res = res.unsqueeze(-1) return res.permute(2,0,1) # Cell class PILBase(Image.Image, metaclass=BypassNewMeta): _bypass_type=Image.Image _show_args = {'cmap':'viridis'} _open_args = {'mode': 'RGB'} @classmethod def create(cls, fn:(Path,str,Tensor,ndarray,bytes), **kwargs)->None: "Open an `Image` from path `fn`" if isinstance(fn,TensorImage): fn = fn.permute(1,2,0).type(torch.uint8) if isinstance(fn, TensorMask): fn = fn.type(torch.uint8) if isinstance(fn,Tensor): fn = fn.numpy() if isinstance(fn,ndarray): return cls(Image.fromarray(fn)) if isinstance(fn,bytes): fn = io.BytesIO(fn) return cls(load_image(fn, **merge(cls._open_args, kwargs))) def show(self, ctx=None, **kwargs): "Show image using `merge(self._show_args, kwargs)`" return show_image(self, ctx=ctx, **merge(self._show_args, kwargs)) def __repr__(self): return f'{self.__class__.__name__} mode={self.mode} size={"x".join([str(d) for d in self.size])}' # Cell class PILImage(PILBase): pass # Cell class PILImageBW(PILImage): _show_args,_open_args = {'cmap':'Greys'},{'mode': 'L'} # Cell class PILMask(PILBase): _open_args,_show_args = {'mode':'L'},{'alpha':0.5, 'cmap':'tab20'} # Cell OpenMask = Transform(PILMask.create) OpenMask.loss_func = CrossEntropyLossFlat(axis=1) PILMask.create = OpenMask # Cell class AddMaskCodes(Transform): "Add the code metadata to a `TensorMask`" def __init__(self, codes=None): self.codes = codes if codes is not None: self.vocab,self.c = codes,len(codes) def decodes(self, o:TensorMask): if self.codes is not None: o.codes=self.codes return o # Cell class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx # Cell TensorPointCreate = Transform(TensorPoint.create) TensorPointCreate.loss_func = MSELossFlat() TensorPoint.create = TensorPointCreate # Cell def get_annotations(fname, prefix=None): "Open a COCO style json in `fname` and returns the lists of filenames (with maybe `prefix`) and labelled bboxes." annot_dict = json.load(open(fname)) id2images, id2bboxes, id2cats = {}, collections.defaultdict(list), collections.defaultdict(list) classes = {o['id']:o['name'] for o in annot_dict['categories']} for o in annot_dict['annotations']: bb = o['bbox'] id2bboxes[o['image_id']].append([bb[0],bb[1], bb[0]+bb[2], bb[1]+bb[3]]) id2cats[o['image_id']].append(classes[o['category_id']]) id2images = {o['id']:ifnone(prefix, '') + o['file_name'] for o in annot_dict['images'] if o['id'] in id2bboxes} ids = list(id2images.keys()) return [id2images[k] for k in ids], [(id2bboxes[k], id2cats[k]) for k in ids] # Cell from matplotlib import patches, patheffects # Cell def _draw_outline(o, lw): o.set_path_effects([patheffects.Stroke(linewidth=lw, foreground='black'), patheffects.Normal()]) def _draw_rect(ax, b, color='white', text=None, text_size=14, hw=True, rev=False): lx,ly,w,h = b if rev: lx,ly,w,h = ly,lx,h,w if not hw: w,h = w-lx,h-ly patch = ax.add_patch(patches.Rectangle((lx,ly), w, h, fill=False, edgecolor=color, lw=2)) _draw_outline(patch, 4) if text is not None: patch = ax.text(lx,ly, text, verticalalignment='top', color=color, fontsize=text_size, weight='bold') _draw_outline(patch,1) # Cell class TensorBBox(TensorPoint): "Basic type for a tensor of bounding boxes in an image" @classmethod def create(cls, x, img_size=None)->None: return cls(tensor(x).view(-1, 4).float(), img_size=img_size) def show(self, ctx=None, **kwargs): x = self.view(-1,4) for b in x: _draw_rect(ctx, b, hw=False, **kwargs) return ctx # Cell class LabeledBBox(L): "Basic type for a list of bounding boxes in an image" def show(self, ctx=None, **kwargs): for b,l in zip(self.bbox, self.lbl): if l != '#na#': ctx = retain_type(b, self.bbox).show(ctx=ctx, text=l) return ctx bbox,lbl = add_props(lambda i,self: self[i]) # Cell PILImage ._tensor_cls = TensorImage PILImageBW._tensor_cls = TensorImageBW PILMask ._tensor_cls = TensorMask # Cell @ToTensor def encodes(self, o:PILBase): return o._tensor_cls(image2tensor(o)) @ToTensor def encodes(self, o:PILMask): return o._tensor_cls(image2tensor(o)[0]) # Cell def _scale_pnts(y, sz, do_scale=True, y_first=False): if y_first: y = y.flip(1) res = y * 2/tensor(sz).float() - 1 if do_scale else y return TensorPoint(res, img_size=sz) def _unscale_pnts(y, sz): return TensorPoint((y+1) * tensor(sz).float()/2, img_size=sz) # Cell class PointScaler(Transform): "Scale a tensor representing points" order = 1 def __init__(self, do_scale=True, y_first=False): self.do_scale,self.y_first = do_scale,y_first def _grab_sz(self, x): self.sz = [x.shape[-1], x.shape[-2]] if isinstance(x, Tensor) else x.size return x def _get_sz(self, x): return getattr(x, 'img_size') if self.sz is None else self.sz def setups(self, dl): res = first(dl.do_item(0), risinstance(TensorPoint)) if res is not None: self.c = res.numel() def encodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def decodes(self, x:(PILBase,TensorImageBase)): return self._grab_sz(x) def encodes(self, x:TensorPoint): return _scale_pnts(x, self._get_sz(x), self.do_scale, self.y_first) def decodes(self, x:TensorPoint): return _unscale_pnts(x.view(-1, 2), self._get_sz(x)) # Cell class BBoxLabeler(Transform): def setups(self, dl): self.vocab = dl.vocab def decode (self, x, **kwargs): self.bbox,self.lbls = None,None return self._call('decodes', x, **kwargs) def decodes(self, x:TensorMultiCategory): self.lbls = [self.vocab[a] for a in x] return x if self.bbox is None else LabeledBBox(self.bbox, self.lbls) def decodes(self, x:TensorBBox): self.bbox = x return self.bbox if self.lbls is None else LabeledBBox(self.bbox, self.lbls) # Cell #LabeledBBox can be sent in a tl with MultiCategorize (depending on the order of the tls) but it is already decoded. @MultiCategorize def decodes(self, x:LabeledBBox): return x # Cell @PointScaler def encodes(self, x:TensorBBox): pnts = self.encodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox) @PointScaler def decodes(self, x:TensorBBox): pnts = self.decodes(cast(x.view(-1,2), TensorPoint)) return cast(pnts.view(-1, 4), TensorBBox)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/core.py
core.py
__all__ = ['download_images', 'resize_to', 'verify_image', 'verify_images', 'resize_image', 'resize_images'] # Cell from ..torch_basics import * from ..data.all import * from .core import * from pathlib import Path # Cell def _get_downloaded_image_filename(dest, name, suffix): start_index = 1 candidate_name = name while (dest/f"{candidate_name}{suffix}").is_file(): candidate_name = f"{candidate_name}{start_index}" start_index += 1 return candidate_name # Cell def _download_image_inner(dest, inp, timeout=4, preserve_filename=False): i,url = inp url_path = Path(url) suffix = url_path.suffix if url_path.suffix else '.jpg' name = _get_downloaded_image_filename(dest, url_path.stem, suffix) if preserve_filename else f"{i:08d}" try: download_url(url, dest/f"{name}{suffix}", overwrite=True, show_progress=False, timeout=timeout) except Exception as e: f"Couldn't download {url}." # Cell def download_images(dest, url_file=None, urls=None, max_pics=1000, n_workers=8, timeout=4, preserve_filename=False): "Download images listed in text file `url_file` to path `dest`, at most `max_pics`" if urls is None: urls = url_file.read_text().strip().split("\n")[:max_pics] dest = Path(dest) dest.mkdir(exist_ok=True) parallel(partial(_download_image_inner, dest, timeout=timeout, preserve_filename=preserve_filename), list(enumerate(urls)), n_workers=n_workers) # Cell def resize_to(img, targ_sz, use_min=False): "Size to resize to, to hit `targ_sz` at same aspect ratio, in PIL coords (i.e w*h)" w,h = img.size min_sz = (min if use_min else max)(w,h) ratio = targ_sz/min_sz return int(w*ratio),int(h*ratio) # Cell def verify_image(fn): "Confirm that `fn` can be opened" try: im = Image.open(fn) im.draft(im.mode, (32,32)) im.load() return True except: return False # Cell def verify_images(fns): "Find images in `fns` that can't be opened" return L(fns[i] for i,o in enumerate(parallel(verify_image, fns)) if not o) # Cell def resize_image(file, dest, max_size=None, n_channels=3, ext=None, img_format=None, resample=Image.BILINEAR, resume=False, **kwargs ): "Resize file to dest to max_size" dest = Path(dest) dest_fname = dest/file.name if resume and dest_fname.exists(): return if verify_image(file): img = Image.open(file) imgarr = np.array(img) img_channels = 1 if len(imgarr.shape) == 2 else imgarr.shape[2] if (max_size is not None and (img.height > max_size or img.width > max_size)) or img_channels != n_channels: if ext is not None: dest_fname=dest_fname.with_suffix(ext) if max_size is not None: new_sz = resize_to(img, max_size) img = img.resize(new_sz, resample=resample) if n_channels == 3: img = img.convert("RGB") img.save(dest_fname, img_format, **kwargs) # Cell def resize_images(path, max_workers=defaults.cpus, max_size=None, recurse=False, dest=Path('.'), n_channels=3, ext=None, img_format=None, resample=Image.BILINEAR, resume=None, **kwargs): "Resize files on path recursively to dest to max_size" path = Path(path) if resume is None and dest != Path('.'): resume=False os.makedirs(dest, exist_ok=True) files = get_image_files(path, recurse=recurse) parallel(resize_image, files, max_workers=max_workers, max_size=max_size, dest=dest, n_channels=n_channels, ext=ext, img_format=img_format, resample=resample, resume=resume, **kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/utils.py
utils.py
__all__ = ['HBox', 'VBox', 'widgets', 'Button', 'Checkbox', 'Dropdown', 'Layout', 'Box', 'Output', 'Label', 'FileUpload', 'widget', 'carousel', 'ImagesCleaner', 'ImageClassifierCleaner'] # Cell from ..torch_basics import * from ..data.all import * from .core import * from ipywidgets import HBox,VBox,widgets,Button,Checkbox,Dropdown,Layout,Box,Output,Label,FileUpload # Cell #nbdev_comment _all_ = ['HBox','VBox','widgets','Button','Checkbox','Dropdown','Layout','Box','Output','Label','FileUpload'] # Cell @patch def __getitem__(self:Box, i): return self.children[i] # Cell def widget(im, *args, **layout): "Convert anything that can be `display`ed by IPython into a widget" o = Output(layout=merge(*args, layout)) with o: display(im) return o # Cell def _update_children(change): for o in change['owner'].children: if not o.layout.flex: o.layout.flex = '0 0 auto' # Cell def carousel(children=(), **layout): "A horizontally scrolling carousel" def_layout = dict(overflow='scroll hidden', flex_flow='row', display='flex') res = Box([], layout=merge(def_layout, layout)) res.observe(_update_children, names='children') res.children = children return res # Cell def _open_thumb(fn, h, w): return Image.open(fn).to_thumb(h, w).convert('RGBA') # Cell class ImagesCleaner: "A widget that displays all images in `fns` along with a `Dropdown`" def __init__(self, opts=(), height=128, width=256, max_n=30): opts = ('<Keep>', '<Delete>')+tuple(opts) store_attr('opts,height,width,max_n') self.widget = carousel(width='100%') def set_fns(self, fns): self.fns = L(fns)[:self.max_n] ims = parallel(_open_thumb, self.fns, h=self.height, w=self.width, progress=False, n_workers=min(len(self.fns)//10,defaults.cpus)) self.widget.children = [VBox([widget(im, height=f'{self.height}px'), Dropdown( options=self.opts, layout={'width': 'max-content'})]) for im in ims] def _ipython_display_(self): display(self.widget) def values(self): return L(self.widget.children).itemgot(1).attrgot('value') def delete(self): return self.values().argwhere(eq('<Delete>')) def change(self): idxs = self.values().argwhere(not_(in_(['<Delete>','<Keep>']))) return idxs.zipwith(self.values()[idxs]) # Cell def _get_iw_info(learn, ds_idx=0): dl = learn.dls[ds_idx].new(shuffle=False, drop_last=False) inp,probs,targs,preds,losses = learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True) inp,targs = L(zip(*dl.decode_batch((inp,targs), max_n=9999))) return L([dl.dataset.items,targs,losses]).zip() # Cell @delegates(ImagesCleaner) class ImageClassifierCleaner(GetAttr): "A widget that provides an `ImagesCleaner` with a CNN `Learner`" def __init__(self, learn, **kwargs): vocab = learn.dls.vocab self.default = self.iw = ImagesCleaner(vocab, **kwargs) self.dd_cats = Dropdown(options=vocab) self.dd_ds = Dropdown(options=('Train','Valid')) self.iwis = _get_iw_info(learn,0),_get_iw_info(learn,1) self.dd_ds.observe(self.on_change_ds, 'value') self.dd_cats.observe(self.on_change_ds, 'value') self.on_change_ds() self.widget = VBox([self.dd_cats, self.dd_ds, self.iw.widget]) def _ipython_display_(self): display(self.widget) def on_change_ds(self, change=None): info = L(o for o in self.iwis[self.dd_ds.index] if o[1]==self.dd_cats.value) self.iw.set_fns(info.sorted(2, reverse=True).itemgot(0))
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/widgets.py
widgets.py
__all__ = ['GANModule', 'basic_critic', 'AddChannels', 'basic_generator', 'DenseResBlock', 'gan_critic', 'GANLoss', 'AdaptiveLoss', 'accuracy_thresh_expand', 'set_freeze_model', 'GANTrainer', 'FixedGANSwitcher', 'AdaptiveGANSwitcher', 'GANDiscriminativeLR', 'InvisibleTensor', 'generate_noise', 'gan_loss_from_func', 'GANLearner'] # Cell from ..basics import * from .all import * # Cell class GANModule(Module): "Wrapper around a `generator` and a `critic` to create a GAN." def __init__(self, generator=None, critic=None, gen_mode=False): if generator is not None: self.generator=generator if critic is not None: self.critic =critic store_attr('gen_mode') def forward(self, *args): return self.generator(*args) if self.gen_mode else self.critic(*args) def switch(self, gen_mode=None): "Put the module in generator mode if `gen_mode`, in critic mode otherwise." self.gen_mode = (not self.gen_mode) if gen_mode is None else gen_mode # Cell @delegates(ConvLayer.__init__) def basic_critic(in_size, n_channels, n_features=64, n_extra_layers=0, norm_type=NormType.Batch, **kwargs): "A basic critic for images `n_channels` x `in_size` x `in_size`." layers = [ConvLayer(n_channels, n_features, 4, 2, 1, norm_type=None, **kwargs)] cur_size, cur_ftrs = in_size//2, n_features layers += [ConvLayer(cur_ftrs, cur_ftrs, 3, 1, norm_type=norm_type, **kwargs) for _ in range(n_extra_layers)] while cur_size > 4: layers.append(ConvLayer(cur_ftrs, cur_ftrs*2, 4, 2, 1, norm_type=norm_type, **kwargs)) cur_ftrs *= 2 ; cur_size //= 2 init = kwargs.get('init', nn.init.kaiming_normal_) layers += [init_default(nn.Conv2d(cur_ftrs, 1, 4, padding=0), init), Flatten()] return nn.Sequential(*layers) # Cell class AddChannels(Module): "Add `n_dim` channels at the end of the input." def __init__(self, n_dim): self.n_dim=n_dim def forward(self, x): return x.view(*(list(x.shape)+[1]*self.n_dim)) # Cell @delegates(ConvLayer.__init__) def basic_generator(out_size, n_channels, in_sz=100, n_features=64, n_extra_layers=0, **kwargs): "A basic generator from `in_sz` to images `n_channels` x `out_size` x `out_size`." cur_size, cur_ftrs = 4, n_features//2 while cur_size < out_size: cur_size *= 2; cur_ftrs *= 2 layers = [AddChannels(2), ConvLayer(in_sz, cur_ftrs, 4, 1, transpose=True, **kwargs)] cur_size = 4 while cur_size < out_size // 2: layers.append(ConvLayer(cur_ftrs, cur_ftrs//2, 4, 2, 1, transpose=True, **kwargs)) cur_ftrs //= 2; cur_size *= 2 layers += [ConvLayer(cur_ftrs, cur_ftrs, 3, 1, 1, transpose=True, **kwargs) for _ in range(n_extra_layers)] layers += [nn.ConvTranspose2d(cur_ftrs, n_channels, 4, 2, 1, bias=False), nn.Tanh()] return nn.Sequential(*layers) # Cell _conv_args = dict(act_cls = partial(nn.LeakyReLU, negative_slope=0.2), norm_type=NormType.Spectral) def _conv(ni, nf, ks=3, stride=1, self_attention=False, **kwargs): if self_attention: kwargs['xtra'] = SelfAttention(nf) return ConvLayer(ni, nf, ks=ks, stride=stride, **_conv_args, **kwargs) # Cell @delegates(ConvLayer) def DenseResBlock(nf, norm_type=NormType.Batch, **kwargs): "Resnet block of `nf` features. `conv_kwargs` are passed to `conv_layer`." return SequentialEx(ConvLayer(nf, nf, norm_type=norm_type, **kwargs), ConvLayer(nf, nf, norm_type=norm_type, **kwargs), MergeLayer(dense=True)) # Cell def gan_critic(n_channels=3, nf=128, n_blocks=3, p=0.15): "Critic to train a `GAN`." layers = [ _conv(n_channels, nf, ks=4, stride=2), nn.Dropout2d(p/2), DenseResBlock(nf, **_conv_args)] nf *= 2 # after dense block for i in range(n_blocks): layers += [ nn.Dropout2d(p), _conv(nf, nf*2, ks=4, stride=2, self_attention=(i==0))] nf *= 2 layers += [ ConvLayer(nf, 1, ks=4, bias=False, padding=0, norm_type=NormType.Spectral, act_cls=None), Flatten()] return nn.Sequential(*layers) # Cell class GANLoss(GANModule): "Wrapper around `crit_loss_func` and `gen_loss_func`" def __init__(self, gen_loss_func, crit_loss_func, gan_model): super().__init__() store_attr('gen_loss_func,crit_loss_func,gan_model') def generator(self, output, target): "Evaluate the `output` with the critic then uses `self.gen_loss_func`" fake_pred = self.gan_model.critic(output) self.gen_loss = self.gen_loss_func(fake_pred, output, target) return self.gen_loss def critic(self, real_pred, input): "Create some `fake_pred` with the generator from `input` and compare them to `real_pred` in `self.crit_loss_func`." fake = self.gan_model.generator(input).requires_grad_(False) fake_pred = self.gan_model.critic(fake) self.crit_loss = self.crit_loss_func(real_pred, fake_pred) return self.crit_loss # Cell class AdaptiveLoss(Module): "Expand the `target` to match the `output` size before applying `crit`." def __init__(self, crit): self.crit = crit def forward(self, output, target): return self.crit(output, target[:,None].expand_as(output).float()) # Cell def accuracy_thresh_expand(y_pred, y_true, thresh=0.5, sigmoid=True): "Compute accuracy after expanding `y_true` to the size of `y_pred`." if sigmoid: y_pred = y_pred.sigmoid() return ((y_pred>thresh).byte()==y_true[:,None].expand_as(y_pred).byte()).float().mean() # Cell def set_freeze_model(m, rg): for p in m.parameters(): p.requires_grad_(rg) # Cell class GANTrainer(Callback): "Handles GAN Training." run_after = TrainEvalCallback def __init__(self, switch_eval=False, clip=None, beta=0.98, gen_first=False, show_img=True): store_attr('switch_eval,clip,gen_first,show_img') self.gen_loss,self.crit_loss = AvgSmoothLoss(beta=beta),AvgSmoothLoss(beta=beta) def _set_trainable(self): train_model = self.generator if self.gen_mode else self.critic loss_model = self.generator if not self.gen_mode else self.critic set_freeze_model(train_model, True) set_freeze_model(loss_model, False) if self.switch_eval: train_model.train() loss_model.eval() def before_fit(self): "Initialize smootheners." self.generator,self.critic = self.model.generator,self.model.critic self.gen_mode = self.gen_first self.switch(self.gen_mode) self.crit_losses,self.gen_losses = [],[] self.gen_loss.reset() ; self.crit_loss.reset() #self.recorder.no_val=True #self.recorder.add_metric_names(['gen_loss', 'disc_loss']) #self.imgs,self.titles = [],[] def before_validate(self): "Switch in generator mode for showing results." self.switch(gen_mode=True) def before_batch(self): "Clamp the weights with `self.clip` if it's not None, set the correct input/target." if self.training and self.clip is not None: for p in self.critic.parameters(): p.data.clamp_(-self.clip, self.clip) if not self.gen_mode: (self.learn.xb,self.learn.yb) = (self.yb,self.xb) def after_batch(self): "Record `last_loss` in the proper list." if not self.training: return if self.gen_mode: self.gen_loss.accumulate(self.learn) self.gen_losses.append(self.gen_loss.value) self.last_gen = self.learn.to_detach(self.pred) else: self.crit_loss.accumulate(self.learn) self.crit_losses.append(self.crit_loss.value) def before_epoch(self): "Put the critic or the generator back to eval if necessary." self.switch(self.gen_mode) #def after_epoch(self): # "Show a sample image." # if not hasattr(self, 'last_gen') or not self.show_img: return # data = self.learn.data # img = self.last_gen[0] # norm = getattr(data,'norm',False) # if norm and norm.keywords.get('do_y',False): img = data.denorm(img) # img = data.train_ds.y.reconstruct(img) # self.imgs.append(img) # self.titles.append(f'Epoch {epoch}') # pbar.show_imgs(self.imgs, self.titles) # return add_metrics(last_metrics, [getattr(self.smoothenerG,'smooth',None),getattr(self.smoothenerC,'smooth',None)]) def switch(self, gen_mode=None): "Switch the model and loss function, if `gen_mode` is provided, in the desired mode." self.gen_mode = (not self.gen_mode) if gen_mode is None else gen_mode self._set_trainable() self.model.switch(gen_mode) self.loss_func.switch(gen_mode) # Cell class FixedGANSwitcher(Callback): "Switcher to do `n_crit` iterations of the critic then `n_gen` iterations of the generator." run_after = GANTrainer def __init__(self, n_crit=1, n_gen=1): store_attr('n_crit,n_gen') def before_train(self): self.n_c,self.n_g = 0,0 def after_batch(self): "Switch the model if necessary." if not self.training: return if self.learn.gan_trainer.gen_mode: self.n_g += 1 n_iter,n_in,n_out = self.n_gen,self.n_c,self.n_g else: self.n_c += 1 n_iter,n_in,n_out = self.n_crit,self.n_g,self.n_c target = n_iter if isinstance(n_iter, int) else n_iter(n_in) if target == n_out: self.learn.gan_trainer.switch() self.n_c,self.n_g = 0,0 # Cell class AdaptiveGANSwitcher(Callback): "Switcher that goes back to generator/critic when the loss goes below `gen_thresh`/`crit_thresh`." run_after = GANTrainer def __init__(self, gen_thresh=None, critic_thresh=None): store_attr('gen_thresh,critic_thresh') def after_batch(self): "Switch the model if necessary." if not self.training: return if self.gan_trainer.gen_mode: if self.gen_thresh is None or self.loss < self.gen_thresh: self.gan_trainer.switch() else: if self.critic_thresh is None or self.loss < self.critic_thresh: self.gan_trainer.switch() # Cell class GANDiscriminativeLR(Callback): "`Callback` that handles multiplying the learning rate by `mult_lr` for the critic." run_after = GANTrainer def __init__(self, mult_lr=5.): self.mult_lr = mult_lr def before_batch(self): "Multiply the current lr if necessary." if not self.learn.gan_trainer.gen_mode and self.training: self.learn.opt.set_hyper('lr', self.learn.opt.hypers[0]['lr']*self.mult_lr) def after_batch(self): "Put the LR back to its value if necessary." if not self.learn.gan_trainer.gen_mode: self.learn.opt.set_hyper('lr', self.learn.opt.hypers[0]['lr']/self.mult_lr) # Cell class InvisibleTensor(TensorBase): def show(self, ctx=None, **kwargs): return ctx # Cell def generate_noise(fn, size=100): return cast(torch.randn(size), InvisibleTensor) # Cell @typedispatch def show_batch(x:InvisibleTensor, y:TensorImage, samples, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, figsize=figsize) ctxs = show_batch[object](x, y, samples, ctxs=ctxs, max_n=max_n, **kwargs) return ctxs # Cell @typedispatch def show_results(x:InvisibleTensor, y:TensorImage, samples, outs, ctxs=None, max_n=10, nrows=None, ncols=None, figsize=None, **kwargs): if ctxs is None: ctxs = get_grid(min(len(samples), max_n), nrows=nrows, ncols=ncols, add_vert=1, figsize=figsize) ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(outs.itemgot(0),ctxs,range(max_n))] return ctxs # Cell def gan_loss_from_func(loss_gen, loss_crit, weights_gen=None): "Define loss functions for a GAN from `loss_gen` and `loss_crit`." def _loss_G(fake_pred, output, target, weights_gen=weights_gen): ones = fake_pred.new_ones(fake_pred.shape[0]) weights_gen = ifnone(weights_gen, (1.,1.)) return weights_gen[0] * loss_crit(fake_pred, ones) + weights_gen[1] * loss_gen(output, target) def _loss_C(real_pred, fake_pred): ones = real_pred.new_ones (real_pred.shape[0]) zeros = fake_pred.new_zeros(fake_pred.shape[0]) return (loss_crit(real_pred, ones) + loss_crit(fake_pred, zeros)) / 2 return _loss_G, _loss_C # Cell def _tk_mean(fake_pred, output, target): return fake_pred.mean() def _tk_diff(real_pred, fake_pred): return real_pred.mean() - fake_pred.mean() # Cell @delegates() class GANLearner(Learner): "A `Learner` suitable for GANs." def __init__(self, dls, generator, critic, gen_loss_func, crit_loss_func, switcher=None, gen_first=False, switch_eval=True, show_img=True, clip=None, cbs=None, metrics=None, **kwargs): gan = GANModule(generator, critic) loss_func = GANLoss(gen_loss_func, crit_loss_func, gan) if switcher is None: switcher = FixedGANSwitcher(n_crit=5, n_gen=1) trainer = GANTrainer(clip=clip, switch_eval=switch_eval, gen_first=gen_first, show_img=show_img) cbs = L(cbs) + L(trainer, switcher) metrics = L(metrics) + L(*LossMetrics('gen_loss,crit_loss')) super().__init__(dls, gan, loss_func=loss_func, cbs=cbs, metrics=metrics, **kwargs) @classmethod def from_learners(cls, gen_learn, crit_learn, switcher=None, weights_gen=None, **kwargs): "Create a GAN from `learn_gen` and `learn_crit`." losses = gan_loss_from_func(gen_learn.loss_func, crit_learn.loss_func, weights_gen=weights_gen) return cls(gen_learn.dls, gen_learn.model, crit_learn.model, *losses, switcher=switcher, **kwargs) @classmethod def wgan(cls, dls, generator, critic, switcher=None, clip=0.01, switch_eval=False, **kwargs): "Create a WGAN from `data`, `generator` and `critic`." return cls(dls, generator, critic, _tk_mean, _tk_diff, switcher=switcher, clip=clip, switch_eval=switch_eval, **kwargs) GANLearner.from_learners = delegates(to=GANLearner.__init__)(GANLearner.from_learners) GANLearner.wgan = delegates(to=GANLearner.__init__)(GANLearner.wgan)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/gan.py
gan.py
__all__ = ['UnetBlock', 'ResizeToOrig', 'DynamicUnet'] # Cell from ...torch_basics import * from ...callback.hook import * # Cell def _get_sz_change_idxs(sizes): "Get the indexes of the layers where the size of the activation changes." feature_szs = [size[-1] for size in sizes] sz_chg_idxs = list(np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0]) return sz_chg_idxs # Cell class UnetBlock(Module): "A quasi-UNet block, using `PixelShuffle_ICNR upsampling`." @delegates(ConvLayer.__init__) def __init__(self, up_in_c, x_in_c, hook, final_div=True, blur=False, act_cls=defaults.activation, self_attention=False, init=nn.init.kaiming_normal_, norm_type=None, **kwargs): self.hook = hook self.shuf = PixelShuffle_ICNR(up_in_c, up_in_c//2, blur=blur, act_cls=act_cls, norm_type=norm_type) self.bn = BatchNorm(x_in_c) ni = up_in_c//2 + x_in_c nf = ni if final_div else ni//2 self.conv1 = ConvLayer(ni, nf, act_cls=act_cls, norm_type=norm_type, **kwargs) self.conv2 = ConvLayer(nf, nf, act_cls=act_cls, norm_type=norm_type, xtra=SelfAttention(nf) if self_attention else None, **kwargs) self.relu = act_cls() apply_init(nn.Sequential(self.conv1, self.conv2), init) def forward(self, up_in): s = self.hook.stored up_out = self.shuf(up_in) ssh = s.shape[-2:] if ssh != up_out.shape[-2:]: up_out = F.interpolate(up_out, s.shape[-2:], mode='nearest') cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1)) return self.conv2(self.conv1(cat_x)) # Cell class ResizeToOrig(Module): "Merge a shortcut with the result of the module by adding them or concatenating them if `dense=True`." def __init__(self, mode='nearest'): self.mode = mode def forward(self, x): if x.orig.shape[-2:] != x.shape[-2:]: x = F.interpolate(x, x.orig.shape[-2:], mode=self.mode) return x # Cell class DynamicUnet(SequentialEx): "Create a U-Net from a given architecture." def __init__(self, encoder, n_out, img_size, blur=False, blur_final=True, self_attention=False, y_range=None, last_cross=True, bottle=False, act_cls=defaults.activation, init=nn.init.kaiming_normal_, norm_type=None, **kwargs): imsize = img_size sizes = model_sizes(encoder, size=imsize) sz_chg_idxs = list(reversed(_get_sz_change_idxs(sizes))) self.sfs = hook_outputs([encoder[i] for i in sz_chg_idxs], detach=False) x = dummy_eval(encoder, imsize).detach() ni = sizes[-1][1] middle_conv = nn.Sequential(ConvLayer(ni, ni*2, act_cls=act_cls, norm_type=norm_type, **kwargs), ConvLayer(ni*2, ni, act_cls=act_cls, norm_type=norm_type, **kwargs)).eval() x = middle_conv(x) layers = [encoder, BatchNorm(ni), nn.ReLU(), middle_conv] for i,idx in enumerate(sz_chg_idxs): not_final = i!=len(sz_chg_idxs)-1 up_in_c, x_in_c = int(x.shape[1]), int(sizes[idx][1]) do_blur = blur and (not_final or blur_final) sa = self_attention and (i==len(sz_chg_idxs)-3) unet_block = UnetBlock(up_in_c, x_in_c, self.sfs[i], final_div=not_final, blur=do_blur, self_attention=sa, act_cls=act_cls, init=init, norm_type=norm_type, **kwargs).eval() layers.append(unet_block) x = unet_block(x) ni = x.shape[1] if imsize != sizes[0][-2:]: layers.append(PixelShuffle_ICNR(ni, act_cls=act_cls, norm_type=norm_type)) layers.append(ResizeToOrig()) if last_cross: layers.append(MergeLayer(dense=True)) ni += in_channels(encoder) layers.append(ResBlock(1, ni, ni//2 if bottle else ni, act_cls=act_cls, norm_type=norm_type, **kwargs)) layers += [ConvLayer(ni, n_out, ks=1, act_cls=None, norm_type=norm_type, **kwargs)] apply_init(nn.Sequential(layers[3], layers[-2]), init) #apply_init(nn.Sequential(layers[2]), init) if y_range is not None: layers.append(SigmoidRange(*y_range)) super().__init__(*layers) def __del__(self): if hasattr(self, "sfs"): self.sfs.remove()
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/models/unet.py
unet.py
__all__ = ['init_cnn', 'XResNet', 'xresnet18', 'xresnet34', 'xresnet50', 'xresnet101', 'xresnet152', 'xresnet18_deep', 'xresnet34_deep', 'xresnet50_deep', 'xresnet18_deeper', 'xresnet34_deeper', 'xresnet50_deeper', 'se_kwargs1', 'se_kwargs2', 'se_kwargs3', 'g0', 'g1', 'g2', 'g3', 'xse_resnet18', 'xse_resnext18', 'xresnext18', 'xse_resnet34', 'xse_resnext34', 'xresnext34', 'xse_resnet50', 'xse_resnext50', 'xresnext50', 'xse_resnet101', 'xse_resnext101', 'xresnext101', 'xse_resnet152', 'xsenet154', 'xse_resnext18_deep', 'xse_resnext34_deep', 'xse_resnext50_deep', 'xse_resnext18_deeper', 'xse_resnext34_deeper', 'xse_resnext50_deeper'] # Cell from ...torch_basics import * from torchvision.models.utils import load_state_dict_from_url # Cell def init_cnn(m): if getattr(m, 'bias', None) is not None: nn.init.constant_(m.bias, 0) if isinstance(m, (nn.Conv1d,nn.Conv2d,nn.Conv3d,nn.Linear)): nn.init.kaiming_normal_(m.weight) for l in m.children(): init_cnn(l) # Cell class XResNet(nn.Sequential): @delegates(ResBlock) def __init__(self, block, expansion, layers, p=0.0, c_in=3, n_out=1000, stem_szs=(32,32,64), widen=1.0, sa=False, act_cls=defaults.activation, ndim=2, ks=3, stride=2, **kwargs): store_attr('block,expansion,act_cls,ndim,ks') if ks % 2 == 0: raise Exception('kernel size has to be odd!') stem_szs = [c_in, *stem_szs] stem = [ConvLayer(stem_szs[i], stem_szs[i+1], ks=ks, stride=stride if i==0 else 1, act_cls=act_cls, ndim=ndim) for i in range(3)] block_szs = [int(o*widen) for o in [64,128,256,512] +[256]*(len(layers)-4)] block_szs = [64//expansion] + block_szs blocks = self._make_blocks(layers, block_szs, sa, stride, **kwargs) super().__init__( *stem, MaxPool(ks=ks, stride=stride, padding=ks//2, ndim=ndim), *blocks, AdaptiveAvgPool(sz=1, ndim=ndim), Flatten(), nn.Dropout(p), nn.Linear(block_szs[-1]*expansion, n_out), ) init_cnn(self) def _make_blocks(self, layers, block_szs, sa, stride, **kwargs): return [self._make_layer(ni=block_szs[i], nf=block_szs[i+1], blocks=l, stride=1 if i==0 else stride, sa=sa and i==len(layers)-4, **kwargs) for i,l in enumerate(layers)] def _make_layer(self, ni, nf, blocks, stride, sa, **kwargs): return nn.Sequential( *[self.block(self.expansion, ni if i==0 else nf, nf, stride=stride if i==0 else 1, sa=sa and i==(blocks-1), act_cls=self.act_cls, ndim=self.ndim, ks=self.ks, **kwargs) for i in range(blocks)]) # Cell def _xresnet(pretrained, expansion, layers, **kwargs): # TODO pretrain all sizes. Currently will fail with non-xrn50 url = 'https://s3.amazonaws.com/fast-ai-modelzoo/xrn50_940.pth' res = XResNet(ResBlock, expansion, layers, **kwargs) if pretrained: res.load_state_dict(load_state_dict_from_url(url, map_location='cpu')['model'], strict=False) return res def xresnet18 (pretrained=False, **kwargs): return _xresnet(pretrained, 1, [2, 2, 2, 2], **kwargs) def xresnet34 (pretrained=False, **kwargs): return _xresnet(pretrained, 1, [3, 4, 6, 3], **kwargs) def xresnet50 (pretrained=False, **kwargs): return _xresnet(pretrained, 4, [3, 4, 6, 3], **kwargs) def xresnet101(pretrained=False, **kwargs): return _xresnet(pretrained, 4, [3, 4, 23, 3], **kwargs) def xresnet152(pretrained=False, **kwargs): return _xresnet(pretrained, 4, [3, 8, 36, 3], **kwargs) def xresnet18_deep (pretrained=False, **kwargs): return _xresnet(pretrained, 1, [2,2,2,2,1,1], **kwargs) def xresnet34_deep (pretrained=False, **kwargs): return _xresnet(pretrained, 1, [3,4,6,3,1,1], **kwargs) def xresnet50_deep (pretrained=False, **kwargs): return _xresnet(pretrained, 4, [3,4,6,3,1,1], **kwargs) def xresnet18_deeper(pretrained=False, **kwargs): return _xresnet(pretrained, 1, [2,2,1,1,1,1,1,1], **kwargs) def xresnet34_deeper(pretrained=False, **kwargs): return _xresnet(pretrained, 1, [3,4,6,3,1,1,1,1], **kwargs) def xresnet50_deeper(pretrained=False, **kwargs): return _xresnet(pretrained, 4, [3,4,6,3,1,1,1,1], **kwargs) # Cell se_kwargs1 = dict(groups=1 , reduction=16) se_kwargs2 = dict(groups=32, reduction=16) se_kwargs3 = dict(groups=32, reduction=0) g0 = [2,2,2,2] g1 = [3,4,6,3] g2 = [3,4,23,3] g3 = [3,8,36,3] # Cell def xse_resnet18(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, 1, g0, n_out=n_out, **se_kwargs1, **kwargs) def xse_resnext18(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g0, n_out=n_out, **se_kwargs2, **kwargs) def xresnext18(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g0, n_out=n_out, **se_kwargs3, **kwargs) def xse_resnet34(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, 1, g1, n_out=n_out, **se_kwargs1, **kwargs) def xse_resnext34(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g1, n_out=n_out, **se_kwargs2, **kwargs) def xresnext34(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g1, n_out=n_out, **se_kwargs3, **kwargs) def xse_resnet50(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, 4, g1, n_out=n_out, **se_kwargs1, **kwargs) def xse_resnext50(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, g1, n_out=n_out, **se_kwargs2, **kwargs) def xresnext50(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, g1, n_out=n_out, **se_kwargs3, **kwargs) def xse_resnet101(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, 4, g2, n_out=n_out, **se_kwargs1, **kwargs) def xse_resnext101(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, g2, n_out=n_out, **se_kwargs2, **kwargs) def xresnext101(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, g2, n_out=n_out, **se_kwargs3, **kwargs) def xse_resnet152(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, 4, g3, n_out=n_out, **se_kwargs1, **kwargs) def xsenet154(n_out=1000, pretrained=False, **kwargs): return XResNet(SEBlock, g3, groups=64, reduction=16, p=0.2, n_out=n_out) def xse_resnext18_deep (n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g0+[1,1], n_out=n_out, **se_kwargs2, **kwargs) def xse_resnext34_deep (n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, g1+[1,1], n_out=n_out, **se_kwargs2, **kwargs) def xse_resnext50_deep (n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, g1+[1,1], n_out=n_out, **se_kwargs2, **kwargs) def xse_resnext18_deeper(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, [2,2,1,1,1,1,1,1], n_out=n_out, **se_kwargs2, **kwargs) def xse_resnext34_deeper(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 1, [3,4,4,2,2,1,1,1], n_out=n_out, **se_kwargs2, **kwargs) def xse_resnext50_deeper(n_out=1000, pretrained=False, **kwargs): return XResNet(SEResNeXtBlock, 4, [3,4,4,2,2,1,1,1], n_out=n_out, **se_kwargs2, **kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/vision/models/xresnet.py
xresnet.py
__all__ = ['Config', 'URLs', 'download_url', 'download_data', 'file_extract', 'newest_folder', 'rename_extracted', 'untar_data'] # Cell from ..torch_basics import * # Cell class Config: "Setup config at `~/.fastai` unless it exists already." config_path = Path(os.getenv('FASTAI_HOME', '~/.fastai')).expanduser() config_file = config_path/'config.yml' def __init__(self): self.config_path.mkdir(parents=True, exist_ok=True) if not self.config_file.exists(): self.create_config() self.d = self.load_config() def __getitem__(self,k): k = k.lower() if k not in self.d: k = k+'_path' return Path(self.d[k]) def __getattr__(self,k): if k=='d': raise AttributeError return self[k] def __setitem__(self,k,v): self.d[k] = str(v) def __contains__(self,k): return k in self.d def load_config(self): "load and return config if version equals 2 in existing, else create new config." with open(self.config_file, 'r') as f: config = yaml.safe_load(f) if 'version' in config and config['version'] == 2: return config elif 'version' in config: self.create_config(config) else: self.create_config() return self.load_config() def create_config(self, cfg=None): "create new config with default paths and set `version` to 2." config = {'data_path': str(self.config_path/'data'), 'archive_path': str(self.config_path/'archive'), 'storage_path': '/tmp', 'model_path': str(self.config_path/'models'), 'version': 2} if cfg is not None: cfg['version'] = 2 config = merge(config, cfg) self.save_file(config) def save(self): self.save_file(self.d) def save_file(self, config): "save config file at default config location `~/.fastai/config.yml`." with self.config_file.open('w') as f: yaml.dump(config, f, default_flow_style=False) # Cell class URLs(): "Global constants for dataset and model URLs." LOCAL_PATH = Path.cwd() MDL = 'http://files.fast.ai/models/' S3 = 'https://s3.amazonaws.com/fast-ai-' URL = f'{S3}sample/' S3_IMAGE = f'{S3}imageclas/' S3_IMAGELOC = f'{S3}imagelocal/' S3_AUDI = f'{S3}audio/' S3_NLP = f'{S3}nlp/' S3_COCO = f'{S3}coco/' S3_MODEL = f'{S3}modelzoo/' # main datasets ADULT_SAMPLE = f'{URL}adult_sample.tgz' BIWI_SAMPLE = f'{URL}biwi_sample.tgz' CIFAR = f'{URL}cifar10.tgz' COCO_SAMPLE = f'{S3_COCO}coco_sample.tgz' COCO_TINY = f'{S3_COCO}coco_tiny.tgz' HUMAN_NUMBERS = f'{URL}human_numbers.tgz' IMDB = f'{S3_NLP}imdb.tgz' IMDB_SAMPLE = f'{URL}imdb_sample.tgz' ML_SAMPLE = f'{URL}movie_lens_sample.tgz' ML_100k = 'http://files.grouplens.org/datasets/movielens/ml-100k.zip' MNIST_SAMPLE = f'{URL}mnist_sample.tgz' MNIST_TINY = f'{URL}mnist_tiny.tgz' MNIST_VAR_SIZE_TINY = f'{S3_IMAGE}mnist_var_size_tiny.tgz' PLANET_SAMPLE = f'{URL}planet_sample.tgz' PLANET_TINY = f'{URL}planet_tiny.tgz' IMAGENETTE = f'{S3_IMAGE}imagenette2.tgz' IMAGENETTE_160 = f'{S3_IMAGE}imagenette2-160.tgz' IMAGENETTE_320 = f'{S3_IMAGE}imagenette2-320.tgz' IMAGEWOOF = f'{S3_IMAGE}imagewoof2.tgz' IMAGEWOOF_160 = f'{S3_IMAGE}imagewoof2-160.tgz' IMAGEWOOF_320 = f'{S3_IMAGE}imagewoof2-320.tgz' IMAGEWANG = f'{S3_IMAGE}imagewang.tgz' IMAGEWANG_160 = f'{S3_IMAGE}imagewang-160.tgz' IMAGEWANG_320 = f'{S3_IMAGE}imagewang-320.tgz' # kaggle competitions download dogs-vs-cats -p {DOGS.absolute()} DOGS = f'{URL}dogscats.tgz' # image classification datasets CALTECH_101 = f'{S3_IMAGE}caltech_101.tgz' CARS = f'{S3_IMAGE}stanford-cars.tgz' CIFAR_100 = f'{S3_IMAGE}cifar100.tgz' CUB_200_2011 = f'{S3_IMAGE}CUB_200_2011.tgz' FLOWERS = f'{S3_IMAGE}oxford-102-flowers.tgz' FOOD = f'{S3_IMAGE}food-101.tgz' MNIST = f'{S3_IMAGE}mnist_png.tgz' PETS = f'{S3_IMAGE}oxford-iiit-pet.tgz' # NLP datasets AG_NEWS = f'{S3_NLP}ag_news_csv.tgz' AMAZON_REVIEWS = f'{S3_NLP}amazon_review_full_csv.tgz' AMAZON_REVIEWS_POLARITY = f'{S3_NLP}amazon_review_polarity_csv.tgz' DBPEDIA = f'{S3_NLP}dbpedia_csv.tgz' MT_ENG_FRA = f'{S3_NLP}giga-fren.tgz' SOGOU_NEWS = f'{S3_NLP}sogou_news_csv.tgz' WIKITEXT = f'{S3_NLP}wikitext-103.tgz' WIKITEXT_TINY = f'{S3_NLP}wikitext-2.tgz' YAHOO_ANSWERS = f'{S3_NLP}yahoo_answers_csv.tgz' YELP_REVIEWS = f'{S3_NLP}yelp_review_full_csv.tgz' YELP_REVIEWS_POLARITY = f'{S3_NLP}yelp_review_polarity_csv.tgz' # Image localization datasets BIWI_HEAD_POSE = f"{S3_IMAGELOC}biwi_head_pose.tgz" CAMVID = f'{S3_IMAGELOC}camvid.tgz' CAMVID_TINY = f'{URL}camvid_tiny.tgz' LSUN_BEDROOMS = f'{S3_IMAGE}bedroom.tgz' PASCAL_2007 = f'{S3_IMAGELOC}pascal_2007.tgz' PASCAL_2012 = f'{S3_IMAGELOC}pascal_2012.tgz' # Audio classification datasets MACAQUES = 'https://storage.googleapis.com/ml-animal-sounds-datasets/macaques.zip' ZEBRA_FINCH = 'https://storage.googleapis.com/ml-animal-sounds-datasets/zebra_finch.zip' # Medical Imaging datasets #SKIN_LESION = f'{S3_IMAGELOC}skin_lesion.tgz' SIIM_SMALL = f'{S3_IMAGELOC}siim_small.tgz' TCGA_SMALL = f'{S3_IMAGELOC}tcga_small.tgz' #Pretrained models OPENAI_TRANSFORMER = f'{S3_MODEL}transformer.tgz' WT103_FWD = f'{S3_MODEL}wt103-fwd.tgz' WT103_BWD = f'{S3_MODEL}wt103-bwd.tgz' def path(url='.', c_key='archive'): "Return local path where to download based on `c_key`" fname = url.split('/')[-1] local_path = URLs.LOCAL_PATH/('models' if c_key=='models' else 'data')/fname if local_path.exists(): return local_path return Config()[c_key]/fname # Cell def download_url(url, dest, overwrite=False, pbar=None, show_progress=True, chunk_size=1024*1024, timeout=4, retries=5): "Download `url` to `dest` unless it exists and not `overwrite`" if os.path.exists(dest) and not overwrite: return s = requests.Session() s.mount('http://',requests.adapters.HTTPAdapter(max_retries=retries)) # additional line to identify as a firefox browser, see fastai/#2438 s.headers.update({'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:71.0) Gecko/20100101 Firefox/71.0'}) u = s.get(url, stream=True, timeout=timeout) try: file_size = int(u.headers["Content-Length"]) except: show_progress = False with open(dest, 'wb') as f: nbytes = 0 if show_progress: pbar = progress_bar(range(file_size), leave=False, parent=pbar) try: if show_progress: pbar.update(0) for chunk in u.iter_content(chunk_size=chunk_size): nbytes += len(chunk) if show_progress: pbar.update(nbytes) f.write(chunk) except requests.exceptions.ConnectionError as e: fname = url.split('/')[-1] data_dir = dest.parent print(f'\n Download of {url} has failed after {retries} retries\n' f' Fix the download manually:\n' f'$ mkdir -p {data_dir}\n' f'$ cd {data_dir}\n' f'$ wget -c {url}\n' f'$ tar xf {fname}\n' f' And re-run your code once the download is successful\n') # Cell def download_data(url, fname=None, c_key='archive', force_download=False, timeout=4): "Download `url` to `fname`." fname = Path(fname or URLs.path(url, c_key=c_key)) fname.parent.mkdir(parents=True, exist_ok=True) if not fname.exists() or force_download: download_url(url, fname, overwrite=force_download, timeout=timeout) return fname # Cell def _get_check(url): "internal function to get the hash of the file at `url`." checks = json.load(open(Path(__file__).parent/'checks.txt', 'r')) return checks.get(url, '') def _check_file(fname): "internal function to get the hash of the local file at `fname`." size = os.path.getsize(fname) with open(fname, "rb") as f: hash_nb = hashlib.md5(f.read(2**20)).hexdigest() return [size,hash_nb] # Cell def _add_check(url, fname): "Internal function to update the internal check file with `url` and check on `fname`." checks = json.load(open(Path(__file__).parent/'checks.txt', 'r')) checks[url] = _check_file(fname) json.dump(checks, open(Path(__file__).parent/'checks.txt', 'w'), indent=2) # Cell def file_extract(fname, dest=None): "Extract `fname` to `dest` using `tarfile` or `zipfile`." if dest is None: dest = Path(fname).parent fname = str(fname) if fname.endswith('gz'): tarfile.open(fname, 'r:gz').extractall(dest) elif fname.endswith('zip'): zipfile.ZipFile(fname ).extractall(dest) else: raise Exception(f'Unrecognized archive: {fname}') # Cell def _try_from_storage(dest, storage): "an internal function to create symbolic links for files from `storage` to `dest` if `storage` exists" if not storage.exists(): return os.makedirs(dest, exist_ok=True) for f in storage.glob('*'): os.symlink(f, dest/f.name, target_is_directory=f.is_dir()) # Cell def newest_folder(path): "Return newest folder on path" list_of_paths = path.glob('*') return max(list_of_paths, key=lambda p: p.stat().st_ctime) # Cell def rename_extracted(dest): "Rename file if different from dest" extracted = newest_folder(dest.parent) if not (extracted.name == dest.name): extracted.rename(dest) # Cell def untar_data(url, fname=None, dest=None, c_key='data', force_download=False, extract_func=file_extract, timeout=4): "Download `url` to `fname` if `dest` doesn't exist, and un-tgz or unzip to folder `dest`." default_dest = URLs.path(url, c_key=c_key).with_suffix('') dest = default_dest if dest is None else Path(dest)/default_dest.name fname = Path(fname or URLs.path(url)) if fname.exists() and _get_check(url) and _check_file(fname) != _get_check(url): print("A new version of this dataset is available, downloading...") force_download = True if force_download: if fname.exists(): os.remove(fname) if dest.exists(): shutil.rmtree(dest) if not dest.exists(): _try_from_storage(dest, URLs.path(url, c_key='storage').with_suffix('')) if not dest.exists(): fname = download_data(url, fname=fname, c_key=c_key, timeout=timeout) if _get_check(url) and _check_file(fname) != _get_check(url): print(f"File downloaded is broken. Remove {fname} and try again.") extract_func(fname, dest.parent) rename_extracted(dest) return dest
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/data/external.py
external.py
__all__ = ['show_batch', 'show_results', 'TfmdDL', 'DataLoaders', 'FilteredBase', 'TfmdLists', 'decode_at', 'show_at', 'Datasets', 'test_set'] # Cell from ..torch_basics import * from .load import * # Cell @typedispatch def show_batch(x, y, samples, ctxs=None, max_n=9, **kwargs): if ctxs is None: ctxs = Inf.nones if hasattr(samples[0], 'show'): ctxs = [s.show(ctx=c, **kwargs) for s,c,_ in zip(samples,ctxs,range(max_n))] else: for i in range_of(samples[0]): ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs,range(max_n))] return ctxs # Cell @typedispatch def show_results(x, y, samples, outs, ctxs=None, max_n=9, **kwargs): if ctxs is None: ctxs = Inf.nones for i in range(len(samples[0])): ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs,range(max_n))] for i in range(len(outs[0])): ctxs = [b.show(ctx=c, **kwargs) for b,c,_ in zip(outs.itemgot(i),ctxs,range(max_n))] return ctxs # Cell #nbdev_comment _all_ = ["show_batch", "show_results"] # Cell _batch_tfms = ('after_item','before_batch','after_batch') # Cell @delegates() class TfmdDL(DataLoader): "Transformed `DataLoader`" def __init__(self, dataset, bs=64, shuffle=False, num_workers=None, verbose=False, do_setup=True, **kwargs): if num_workers is None: num_workers = min(16, defaults.cpus) for nm in _batch_tfms: kwargs[nm] = Pipeline(kwargs.get(nm,None)) super().__init__(dataset, bs=bs, shuffle=shuffle, num_workers=num_workers, **kwargs) if do_setup: for nm in _batch_tfms: pv(f"Setting up {nm}: {kwargs[nm]}", verbose) kwargs[nm].setup(self) def _one_pass(self): b = self.do_batch([self.do_item(0)]) if self.device is not None: b = to_device(b, self.device) its = self.after_batch(b) self._n_inp = 1 if not isinstance(its, (list,tuple)) or len(its)==1 else len(its)-1 self._types = explode_types(its) def _retain_dl(self,b): if not getattr(self, '_types', None): self._one_pass() return retain_types(b, typs=self._types) @delegates(DataLoader.new) def new(self, dataset=None, cls=None, **kwargs): res = super().new(dataset, cls, do_setup=False, **kwargs) if not hasattr(self, '_n_inp') or not hasattr(self, '_types'): try: self._one_pass() res._n_inp,res._types = self._n_inp,self._types except: print("Could not do one pass in your dataloader, there is something wrong in it") else: res._n_inp,res._types = self._n_inp,self._types return res def before_iter(self): super().before_iter() split_idx = getattr(self.dataset, 'split_idx', None) for nm in _batch_tfms: f = getattr(self,nm) if isinstance(f,Pipeline): f.split_idx=split_idx def decode(self, b): return to_cpu(self.after_batch.decode(self._retain_dl(b))) def decode_batch(self, b, max_n=9, full=True): return self._decode_batch(self.decode(b), max_n, full) def _decode_batch(self, b, max_n=9, full=True): f = self.after_item.decode f1 = self.before_batch.decode f = compose(f1, f, partial(getattr(self.dataset,'decode',noop), full = full)) return L(batch_to_samples(b, max_n=max_n)).map(f) def _pre_show_batch(self, b, max_n=9): "Decode `b` to be ready for `show_batch`" b = self.decode(b) if hasattr(b, 'show'): return b,None,None its = self._decode_batch(b, max_n, full=False) if not is_listy(b): b,its = [b],L((o,) for o in its) return detuplify(b[:self.n_inp]),detuplify(b[self.n_inp:]),its def show_batch(self, b=None, max_n=9, ctxs=None, show=True, unique=False, **kwargs): if unique: old_get_idxs = self.get_idxs self.get_idxs = lambda: Inf.zeros if b is None: b = self.one_batch() if not show: return self._pre_show_batch(b, max_n=max_n) show_batch(*self._pre_show_batch(b, max_n=max_n), ctxs=ctxs, max_n=max_n, **kwargs) if unique: self.get_idxs = old_get_idxs def show_results(self, b, out, max_n=9, ctxs=None, show=True, **kwargs): x,y,its = self.show_batch(b, max_n=max_n, show=False) b_out = type(b)(b[:self.n_inp] + (tuple(out) if is_listy(out) else (out,))) x1,y1,outs = self.show_batch(b_out, max_n=max_n, show=False) res = (x,x1,None,None) if its is None else (x, y, its, outs.itemgot(slice(self.n_inp,None))) if not show: return res show_results(*res, ctxs=ctxs, max_n=max_n, **kwargs) @property def n_inp(self): if hasattr(self.dataset, 'n_inp'): return self.dataset.n_inp if not hasattr(self, '_n_inp'): self._one_pass() return self._n_inp def to(self, device): self.device = device for tfm in self.after_batch.fs: for a in L(getattr(tfm, 'parameters', None)): setattr(tfm, a, getattr(tfm, a).to(device)) return self # Cell add_docs(TfmdDL, decode="Decode `b` using `tfms`", decode_batch="Decode `b` entirely", new="Create a new version of self with a few changed attributes", show_batch="Show `b` (defaults to `one_batch`), a list of lists of pipeline outputs (i.e. output of a `DataLoader`)", show_results="Show each item of `b` and `out`", before_iter="override", to="Put self and its transforms state on `device`") # Cell @docs class DataLoaders(GetAttr): "Basic wrapper around several `DataLoader`s." _default='train' def __init__(self, *loaders, path='.', device=None): self.loaders,self.path = list(loaders),Path(path) if device is not None or hasattr(loaders[0],'to'): self.device = device def __getitem__(self, i): return self.loaders[i] def new_empty(self): loaders = [dl.new(dl.dataset.new_empty()) for dl in self.loaders] return type(self)(*loaders, path=self.path, device=self.device) def _set(i, self, v): self.loaders[i] = v train ,valid = add_props(lambda i,x: x[i], _set) train_ds,valid_ds = add_props(lambda i,x: x[i].dataset) @property def device(self): return self._device @device.setter def device(self, d): for dl in self.loaders: dl.to(d) self._device = d def to(self, device): self.device = device return self def cuda(self): return self.to(device=default_device()) def cpu(self): return self.to(device=torch.device('cpu')) @classmethod def from_dsets(cls, *ds, path='.', bs=64, device=None, dl_type=TfmdDL, **kwargs): default = (True,) + (False,) * (len(ds)-1) defaults = {'shuffle': default, 'drop_last': default} for nm in _batch_tfms: if nm in kwargs: kwargs[nm] = Pipeline(kwargs[nm]) kwargs = merge(defaults, {k: tuplify(v, match=ds) for k,v in kwargs.items()}) kwargs = [{k: v[i] for k,v in kwargs.items()} for i in range_of(ds)] return cls(*[dl_type(d, bs=bs, **k) for d,k in zip(ds, kwargs)], path=path, device=device) @classmethod def from_dblock(cls, dblock, source, path='.', bs=64, val_bs=None, shuffle_train=True, device=None, **kwargs): return dblock.dataloaders(source, path=path, bs=bs, val_bs=val_bs, shuffle_train=shuffle_train, device=device, **kwargs) _docs=dict(__getitem__="Retrieve `DataLoader` at `i` (`0` is training, `1` is validation)", train="Training `DataLoader`", valid="Validation `DataLoader`", train_ds="Training `Dataset`", valid_ds="Validation `Dataset`", to="Use `device`", cuda="Use the gpu if available", cpu="Use the cpu", new_empty="Create a new empty version of `self` with the same transforms", from_dblock="Create a dataloaders from a given `dblock`") # Cell class FilteredBase: "Base class for lists with subsets" _dl_type,_dbunch_type = TfmdDL,DataLoaders def __init__(self, *args, dl_type=None, **kwargs): if dl_type is not None: self._dl_type = dl_type self.dataloaders = delegates(self._dl_type.__init__)(self.dataloaders) super().__init__(*args, **kwargs) @property def n_subsets(self): return len(self.splits) def _new(self, items, **kwargs): return super()._new(items, splits=self.splits, **kwargs) def subset(self): raise NotImplemented def dataloaders(self, bs=64, val_bs=None, shuffle_train=True, n=None, path='.', dl_type=None, dl_kwargs=None, device=None, **kwargs): if device is None: device=default_device() if dl_kwargs is None: dl_kwargs = [{}] * self.n_subsets if dl_type is None: dl_type = self._dl_type drop_last = kwargs.pop('drop_last', shuffle_train) dl = dl_type(self.subset(0), bs=bs, shuffle=shuffle_train, drop_last=drop_last, n=n, device=device, **merge(kwargs, dl_kwargs[0])) dls = [dl] + [dl.new(self.subset(i), bs=(bs if val_bs is None else val_bs), shuffle=False, drop_last=False, n=None, **dl_kwargs[i]) for i in range(1, self.n_subsets)] return self._dbunch_type(*dls, path=path, device=device) FilteredBase.train,FilteredBase.valid = add_props(lambda i,x: x.subset(i)) # Cell class TfmdLists(FilteredBase, L, GetAttr): "A `Pipeline` of `tfms` applied to a collection of `items`" _default='tfms' def __init__(self, items, tfms, use_list=None, do_setup=True, split_idx=None, train_setup=True, splits=None, types=None, verbose=False, dl_type=None): super().__init__(items, use_list=use_list) if dl_type is not None: self._dl_type = dl_type self.splits = L([slice(None),[]] if splits is None else splits).map(mask2idxs) if isinstance(tfms,TfmdLists): tfms = tfms.tfms if isinstance(tfms,Pipeline): do_setup=False self.tfms = Pipeline(tfms, split_idx=split_idx) store_attr('types,split_idx') if do_setup: pv(f"Setting up {self.tfms}", verbose) self.setup(train_setup=train_setup) def _new(self, items, split_idx=None, **kwargs): split_idx = ifnone(split_idx,self.split_idx) return super()._new(items, tfms=self.tfms, do_setup=False, types=self.types, split_idx=split_idx, **kwargs) def subset(self, i): return self._new(self._get(self.splits[i]), split_idx=i) def _after_item(self, o): return self.tfms(o) def __repr__(self): return f"{self.__class__.__name__}: {self.items}\ntfms - {self.tfms.fs}" def __iter__(self): return (self[i] for i in range(len(self))) def show(self, o, **kwargs): return self.tfms.show(o, **kwargs) def decode(self, o, **kwargs): return self.tfms.decode(o, **kwargs) def __call__(self, o, **kwargs): return self.tfms.__call__(o, **kwargs) def overlapping_splits(self): return L(Counter(self.splits.concat()).values()).filter(gt(1)) def new_empty(self): return self._new([]) def setup(self, train_setup=True): self.tfms.setup(self, train_setup) if len(self) != 0: x = super().__getitem__(0) if self.splits is None else super().__getitem__(self.splits[0])[0] self.types = [] for f in self.tfms.fs: self.types.append(getattr(f, 'input_types', type(x))) x = f(x) self.types.append(type(x)) types = L(t if is_listy(t) else [t] for t in self.types).concat().unique() self.pretty_types = '\n'.join([f' - {t}' for t in types]) def infer_idx(self, x): # TODO: check if we really need this, or can simplify idx = 0 for t in self.types: if isinstance(x, t): break idx += 1 types = L(t if is_listy(t) else [t] for t in self.types).concat().unique() pretty_types = '\n'.join([f' - {t}' for t in types]) assert idx < len(self.types), f"Expected an input of type in \n{pretty_types}\n but got {type(x)}" return idx def infer(self, x): return compose_tfms(x, tfms=self.tfms.fs[self.infer_idx(x):], split_idx=self.split_idx) def __getitem__(self, idx): res = super().__getitem__(idx) if self._after_item is None: return res return self._after_item(res) if is_indexer(idx) else res.map(self._after_item) # Cell add_docs(TfmdLists, setup="Transform setup with self", decode="From `Pipeline`", show="From `Pipeline`", overlapping_splits="All splits that are in more than one split", subset="New `TfmdLists` with same tfms that only includes items in `i`th split", infer_idx="Finds the index where `self.tfms` can be applied to `x`, depending on the type of `x`", infer="Apply `self.tfms` to `x` starting at the right tfm depending on the type of `x`", new_empty="A new version of `self` but with no items") # Cell def decode_at(o, idx): "Decoded item at `idx`" return o.decode(o[idx]) # Cell def show_at(o, idx, **kwargs): "Show item at `idx`", return o.show(o[idx], **kwargs) # Cell @docs @delegates(TfmdLists) class Datasets(FilteredBase): "A dataset that creates a tuple from each `tfms`, passed through `item_tfms`" def __init__(self, items=None, tfms=None, tls=None, n_inp=None, dl_type=None, **kwargs): super().__init__(dl_type=dl_type) self.tls = L(tls if tls else [TfmdLists(items, t, **kwargs) for t in L(ifnone(tfms,[None]))]) self.n_inp = ifnone(n_inp, max(1, len(self.tls)-1)) def __getitem__(self, it): res = tuple([tl[it] for tl in self.tls]) return res if is_indexer(it) else list(zip(*res)) def __getattr__(self,k): return gather_attrs(self, k, 'tls') def __dir__(self): return super().__dir__() + gather_attr_names(self, 'tls') def __len__(self): return len(self.tls[0]) def __iter__(self): return (self[i] for i in range(len(self))) def __repr__(self): return coll_repr(self) def decode(self, o, full=True): return tuple(tl.decode(o_, full=full) for o_,tl in zip(o,tuplify(self.tls, match=o))) def subset(self, i): return type(self)(tls=L(tl.subset(i) for tl in self.tls), n_inp=self.n_inp) def _new(self, items, *args, **kwargs): return super()._new(items, tfms=self.tfms, do_setup=False, **kwargs) def overlapping_splits(self): return self.tls[0].overlapping_splits() def new_empty(self): return type(self)(tls=[tl.new_empty() for tl in self.tls], n_inp=self.n_inp) @property def splits(self): return self.tls[0].splits @property def split_idx(self): return self.tls[0].tfms.split_idx @property def items(self): return self.tls[0].items @items.setter def items(self, v): for tl in self.tls: tl.items = v def show(self, o, ctx=None, **kwargs): for o_,tl in zip(o,self.tls): ctx = tl.show(o_, ctx=ctx, **kwargs) return ctx @contextmanager def set_split_idx(self, i): old_split_idx = self.split_idx for tl in self.tls: tl.tfms.split_idx = i try: yield self finally: for tl in self.tls: tl.tfms.split_idx = old_split_idx _docs=dict( decode="Compose `decode` of all `tuple_tfms` then all `tfms` on `i`", show="Show item `o` in `ctx`", dataloaders="Get a `DataLoaders`", overlapping_splits="All splits that are in more than one split", subset="New `Datasets` that only includes subset `i`", new_empty="Create a new empty version of the `self`, keeping only the transforms", set_split_idx="Contextmanager to use the same `Datasets` with another `split_idx`" ) # Cell def test_set(dsets, test_items, rm_tfms=None, with_labels=False): "Create a test set from `test_items` using validation transforms of `dsets`" if isinstance(dsets, Datasets): tls = dsets.tls if with_labels else dsets.tls[:dsets.n_inp] test_tls = [tl._new(test_items, split_idx=1) for tl in tls] if rm_tfms is None: rm_tfms = [tl.infer_idx(get_first(test_items)) for tl in test_tls] else: rm_tfms = tuplify(rm_tfms, match=test_tls) for i,j in enumerate(rm_tfms): test_tls[i].tfms.fs = test_tls[i].tfms.fs[j:] return Datasets(tls=test_tls) elif isinstance(dsets, TfmdLists): test_tl = dsets._new(test_items, split_idx=1) if rm_tfms is None: rm_tfms = dsets.infer_idx(get_first(test_items)) test_tl.tfms.fs = test_tl.tfms.fs[rm_tfms:] return test_tl else: raise Exception(f"This method requires using the fastai library to assemble your data. Expected a `Datasets` or a `TfmdLists` but got {dsets.__class__.__name__}") # Cell @patch @delegates(TfmdDL.__init__) def test_dl(self:DataLoaders, test_items, rm_type_tfms=None, with_labels=False, **kwargs): "Create a test dataloader from `test_items` using validation transforms of `dls`" test_ds = test_set(self.valid_ds, test_items, rm_tfms=rm_type_tfms, with_labels=with_labels ) if isinstance(self.valid_ds, (Datasets, TfmdLists)) else test_items return self.valid.new(test_ds, **kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/data/core.py
core.py
__all__ = ['get_files', 'FileGetter', 'image_extensions', 'get_image_files', 'ImageGetter', 'get_text_files', 'ItemGetter', 'AttrGetter', 'RandomSplitter', 'TrainTestSplitter', 'IndexSplitter', 'GrandparentSplitter', 'FuncSplitter', 'MaskSplitter', 'FileSplitter', 'ColSplitter', 'RandomSubsetSplitter', 'parent_label', 'RegexLabeller', 'ColReader', 'CategoryMap', 'Categorize', 'Category', 'MultiCategorize', 'MultiCategory', 'OneHotEncode', 'EncodedMultiCategorize', 'RegressionSetup', 'get_c', 'ToTensor', 'IntToFloatTensor', 'broadcast_vec', 'Normalize'] # Cell from ..torch_basics import * from .core import * from .load import * from .external import * from sklearn.model_selection import train_test_split # Cell def _get_files(p, fs, extensions=None): p = Path(p) res = [p/f for f in fs if not f.startswith('.') and ((not extensions) or f'.{f.split(".")[-1].lower()}' in extensions)] return res # Cell def get_files(path, extensions=None, recurse=True, folders=None, followlinks=True): "Get all the files in `path` with optional `extensions`, optionally with `recurse`, only in `folders`, if specified." path = Path(path) folders=L(folders) extensions = setify(extensions) extensions = {e.lower() for e in extensions} if recurse: res = [] for i,(p,d,f) in enumerate(os.walk(path, followlinks=followlinks)): # returns (dirpath, dirnames, filenames) if len(folders) !=0 and i==0: d[:] = [o for o in d if o in folders] else: d[:] = [o for o in d if not o.startswith('.')] if len(folders) !=0 and i==0 and '.' not in folders: continue res += _get_files(p, f, extensions) else: f = [o.name for o in os.scandir(path) if o.is_file()] res = _get_files(path, f, extensions) return L(res) # Cell def FileGetter(suf='', extensions=None, recurse=True, folders=None): "Create `get_files` partial function that searches path suffix `suf`, only in `folders`, if specified, and passes along args" def _inner(o, extensions=extensions, recurse=recurse, folders=folders): return get_files(o/suf, extensions, recurse, folders) return _inner # Cell image_extensions = set(k for k,v in mimetypes.types_map.items() if v.startswith('image/')) # Cell def get_image_files(path, recurse=True, folders=None): "Get image files in `path` recursively, only in `folders`, if specified." return get_files(path, extensions=image_extensions, recurse=recurse, folders=folders) # Cell def ImageGetter(suf='', recurse=True, folders=None): "Create `get_image_files` partial that searches suffix `suf` and passes along `kwargs`, only in `folders`, if specified" def _inner(o, recurse=recurse, folders=folders): return get_image_files(o/suf, recurse, folders) return _inner # Cell def get_text_files(path, recurse=True, folders=None): "Get text files in `path` recursively, only in `folders`, if specified." return get_files(path, extensions=['.txt'], recurse=recurse, folders=folders) # Cell class ItemGetter(ItemTransform): "Creates a proper transform that applies `itemgetter(i)` (even on a tuple)" _retain = False def __init__(self, i): self.i = i def encodes(self, x): return x[self.i] # Cell class AttrGetter(ItemTransform): "Creates a proper transform that applies `attrgetter(nm)` (even on a tuple)" _retain = False def __init__(self, nm, default=None): store_attr() def encodes(self, x): return getattr(x, self.nm, self.default) # Cell def RandomSplitter(valid_pct=0.2, seed=None): "Create function that splits `items` between train/val with `valid_pct` randomly." def _inner(o): if seed is not None: torch.manual_seed(seed) rand_idx = L(list(torch.randperm(len(o)).numpy())) cut = int(valid_pct * len(o)) return rand_idx[cut:],rand_idx[:cut] return _inner # Cell def TrainTestSplitter(test_size=0.2, random_state=None, stratify=None, train_size=None, shuffle=True): "Split `items` into random train and test subsets using sklearn train_test_split utility." def _inner(o, **kwargs): train,valid = train_test_split(range_of(o), test_size=test_size, random_state=random_state, stratify=stratify, train_size=train_size, shuffle=shuffle) return L(train), L(valid) return _inner # Cell def IndexSplitter(valid_idx): "Split `items` so that `val_idx` are in the validation set and the others in the training set" def _inner(o): train_idx = np.setdiff1d(np.array(range_of(o)), np.array(valid_idx)) return L(train_idx, use_list=True), L(valid_idx, use_list=True) return _inner # Cell def _grandparent_idxs(items, name): def _inner(items, name): return mask2idxs(Path(o).parent.parent.name == name for o in items) return [i for n in L(name) for i in _inner(items,n)] # Cell def GrandparentSplitter(train_name='train', valid_name='valid'): "Split `items` from the grand parent folder names (`train_name` and `valid_name`)." def _inner(o): return _grandparent_idxs(o, train_name),_grandparent_idxs(o, valid_name) return _inner # Cell def FuncSplitter(func): "Split `items` by result of `func` (`True` for validation, `False` for training set)." def _inner(o): val_idx = mask2idxs(func(o_) for o_ in o) return IndexSplitter(val_idx)(o) return _inner # Cell def MaskSplitter(mask): "Split `items` depending on the value of `mask`." def _inner(o): return IndexSplitter(mask2idxs(mask))(o) return _inner # Cell def FileSplitter(fname): "Split `items` by providing file `fname` (contains names of valid items separated by newline)." valid = Path(fname).read_text().split('\n') def _func(x): return x.name in valid def _inner(o): return FuncSplitter(_func)(o) return _inner # Cell def ColSplitter(col='is_valid'): "Split `items` (supposed to be a dataframe) by value in `col`" def _inner(o): assert isinstance(o, pd.DataFrame), "ColSplitter only works when your items are a pandas DataFrame" valid_idx = (o.iloc[:,col] if isinstance(col, int) else o[col]).values.astype('bool') return IndexSplitter(mask2idxs(valid_idx))(o) return _inner # Cell def RandomSubsetSplitter(train_sz, valid_sz, seed=None): "Take randoms subsets of `splits` with `train_sz` and `valid_sz`" assert 0 < train_sz < 1 assert 0 < valid_sz < 1 assert train_sz + valid_sz <= 1. def _inner(o): if seed is not None: torch.manual_seed(seed) train_len,valid_len = int(len(o)*train_sz),int(len(o)*valid_sz) idxs = L(list(torch.randperm(len(o)).numpy())) return idxs[:train_len],idxs[train_len:train_len+valid_len] return _inner # Cell def parent_label(o): "Label `item` with the parent folder name." return Path(o).parent.name # Cell class RegexLabeller(): "Label `item` with regex `pat`." def __init__(self, pat, match=False): self.pat = re.compile(pat) self.matcher = self.pat.match if match else self.pat.search def __call__(self, o): res = self.matcher(str(o)) assert res,f'Failed to find "{self.pat}" in "{o}"' return res.group(1) # Cell class ColReader(DisplayedTransform): "Read `cols` in `row` with potential `pref` and `suff`" def __init__(self, cols, pref='', suff='', label_delim=None): store_attr() self.pref = str(pref) + os.path.sep if isinstance(pref, Path) else pref self.cols = L(cols) def _do_one(self, r, c): o = r[c] if isinstance(c, int) else r[c] if c=='name' else getattr(r, c) if len(self.pref)==0 and len(self.suff)==0 and self.label_delim is None: return o if self.label_delim is None: return f'{self.pref}{o}{self.suff}' else: return o.split(self.label_delim) if len(o)>0 else [] def __call__(self, o, **kwargs): if len(self.cols) == 1: return self._do_one(o, self.cols[0]) return L(self._do_one(o, c) for c in self.cols) # Cell class CategoryMap(CollBase): "Collection of categories with the reverse mapping in `o2i`" def __init__(self, col, sort=True, add_na=False, strict=False): if is_categorical_dtype(col): items = L(col.cat.categories, use_list=True) #Remove non-used categories while keeping order if strict: items = L(o for o in items if o in col.unique()) else: if not hasattr(col,'unique'): col = L(col, use_list=True) # `o==o` is the generalized definition of non-NaN used by Pandas items = L(o for o in col.unique() if o==o) if sort: items = items.sorted() self.items = '#na#' + items if add_na else items self.o2i = defaultdict(int, self.items.val2idx()) if add_na else dict(self.items.val2idx()) def map_objs(self,objs): "Map `objs` to IDs" return L(self.o2i[o] for o in objs) def map_ids(self,ids): "Map `ids` to objects in vocab" return L(self.items[o] for o in ids) def __eq__(self,b): return all_equal(b,self) # Cell class Categorize(DisplayedTransform): "Reversible transform of category string to `vocab` id" loss_func,order=CrossEntropyLossFlat(),1 def __init__(self, vocab=None, sort=True, add_na=False): if vocab is not None: vocab = CategoryMap(vocab, sort=sort, add_na=add_na) store_attr() def setups(self, dsets): if self.vocab is None and dsets is not None: self.vocab = CategoryMap(dsets, sort=self.sort, add_na=self.add_na) self.c = len(self.vocab) def encodes(self, o): try: return TensorCategory(self.vocab.o2i[o]) except KeyError as e: raise KeyError(f"Label '{o}' was not included in the training dataset") from e def decodes(self, o): return Category (self.vocab [o]) # Cell class Category(str, ShowTitle): _show_args = {'label': 'category'} # Cell class MultiCategorize(Categorize): "Reversible transform of multi-category strings to `vocab` id" loss_func,order=BCEWithLogitsLossFlat(),1 def __init__(self, vocab=None, add_na=False): super().__init__(vocab=vocab,add_na=add_na,sort=vocab==None) def setups(self, dsets): if not dsets: return if self.vocab is None: vals = set() for b in dsets: vals = vals.union(set(b)) self.vocab = CategoryMap(list(vals), add_na=self.add_na) def encodes(self, o): if not all(elem in self.vocab.o2i.keys() for elem in o): diff = [elem for elem in o if elem not in self.vocab.o2i.keys()] diff_str = "', '".join(diff) raise KeyError(f"Labels '{diff_str}' were not included in the training dataset") return TensorMultiCategory([self.vocab.o2i[o_] for o_ in o]) def decodes(self, o): return MultiCategory ([self.vocab [o_] for o_ in o]) # Cell class MultiCategory(L): def show(self, ctx=None, sep=';', color='black', **kwargs): return show_title(sep.join(self.map(str)), ctx=ctx, color=color, **kwargs) # Cell class OneHotEncode(DisplayedTransform): "One-hot encodes targets" order=2 def __init__(self, c=None): store_attr() def setups(self, dsets): if self.c is None: self.c = len(L(getattr(dsets, 'vocab', None))) if not self.c: warn("Couldn't infer the number of classes, please pass a value for `c` at init") def encodes(self, o): return TensorMultiCategory(one_hot(o, self.c).float()) def decodes(self, o): return one_hot_decode(o, None) # Cell class EncodedMultiCategorize(Categorize): "Transform of one-hot encoded multi-category that decodes with `vocab`" loss_func,order=BCEWithLogitsLossFlat(),1 def __init__(self, vocab): super().__init__(vocab, sort=vocab==None) self.c = len(vocab) def encodes(self, o): return TensorMultiCategory(tensor(o).float()) def decodes(self, o): return MultiCategory (one_hot_decode(o, self.vocab)) # Cell class RegressionSetup(DisplayedTransform): "Transform that floatifies targets" loss_func=MSELossFlat() def __init__(self, c=None): store_attr() def encodes(self, o): return tensor(o).float() def decodes(self, o): return TitledFloat(o) if o.ndim==0 else TitledTuple(o_.item() for o_ in o) def setups(self, dsets): if self.c is not None: return try: self.c = len(dsets[0]) if hasattr(dsets[0], '__len__') else 1 except: self.c = 0 # Cell def get_c(dls): if getattr(dls, 'c', False): return dls.c if getattr(getattr(dls.train, 'after_item', None), 'c', False): return dls.train.after_item.c if getattr(getattr(dls.train, 'after_batch', None), 'c', False): return dls.train.after_batch.c vocab = getattr(dls, 'vocab', []) if len(vocab) > 0 and is_listy(vocab[-1]): vocab = vocab[-1] return len(vocab) # Cell class ToTensor(Transform): "Convert item to appropriate tensor class" order = 5 # Cell class IntToFloatTensor(DisplayedTransform): "Transform image to float tensor, optionally dividing by 255 (e.g. for images)." order = 10 #Need to run after PIL transforms on the GPU def __init__(self, div=255., div_mask=1): store_attr() def encodes(self, o:TensorImage): return o.float().div_(self.div) def encodes(self, o:TensorMask ): return o.long() // self.div_mask def decodes(self, o:TensorImage): return ((o.clamp(0., 1.) * self.div).long()) if self.div else o # Cell def broadcast_vec(dim, ndim, *t, cuda=True): "Make a vector broadcastable over `dim` (out of `ndim` total) by prepending and appending unit axes" v = [1]*ndim v[dim] = -1 f = to_device if cuda else noop return [f(tensor(o).view(*v)) for o in t] # Cell @docs class Normalize(DisplayedTransform): "Normalize/denorm batch of `TensorImage`" parameters,order = L('mean', 'std'),99 def __init__(self, mean=None, std=None, axes=(0,2,3)): store_attr() @classmethod def from_stats(cls, mean, std, dim=1, ndim=4, cuda=True): return cls(*broadcast_vec(dim, ndim, mean, std, cuda=cuda)) def setups(self, dl:DataLoader): if self.mean is None or self.std is None: x,*_ = dl.one_batch() self.mean,self.std = x.mean(self.axes, keepdim=True),x.std(self.axes, keepdim=True)+1e-7 def encodes(self, x:TensorImage): return (x-self.mean) / self.std def decodes(self, x:TensorImage): f = to_cpu if x.device.type=='cpu' else noop return (x*f(self.std) + f(self.mean)) _docs=dict(encodes="Normalize batch", decodes="Denormalize batch")
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/data/transforms.py
transforms.py
__all__ = ['TransformBlock', 'CategoryBlock', 'MultiCategoryBlock', 'RegressionBlock', 'DataBlock'] # Cell from ..torch_basics import * from .core import * from .load import * from .external import * from .transforms import * # Cell class TransformBlock(): "A basic wrapper that links defaults transforms for the data block API" def __init__(self, type_tfms=None, item_tfms=None, batch_tfms=None, dl_type=None, dls_kwargs=None): self.type_tfms = L(type_tfms) self.item_tfms = ToTensor + L(item_tfms) self.batch_tfms = L(batch_tfms) self.dl_type,self.dls_kwargs = dl_type,({} if dls_kwargs is None else dls_kwargs) # Cell def CategoryBlock(vocab=None, sort=True, add_na=False): "`TransformBlock` for single-label categorical targets" return TransformBlock(type_tfms=Categorize(vocab=vocab, sort=sort, add_na=add_na)) # Cell def MultiCategoryBlock(encoded=False, vocab=None, add_na=False): "`TransformBlock` for multi-label categorical targets" tfm = EncodedMultiCategorize(vocab=vocab) if encoded else [MultiCategorize(vocab=vocab, add_na=add_na), OneHotEncode] return TransformBlock(type_tfms=tfm) # Cell def RegressionBlock(n_out=None): "`TransformBlock` for float targets" return TransformBlock(type_tfms=RegressionSetup(c=n_out)) # Cell from inspect import isfunction,ismethod # Cell def _merge_grouper(o): if isinstance(o, LambdaType): return id(o) elif isinstance(o, type): return o elif (isfunction(o) or ismethod(o)): return o.__qualname__ return o.__class__ # Cell def _merge_tfms(*tfms): "Group the `tfms` in a single list, removing duplicates (from the same class) and instantiating" g = groupby(concat(*tfms), _merge_grouper) return L(v[-1] for k,v in g.items()).map(instantiate) def _zip(x): return L(x).zip() # Cell @docs @funcs_kwargs class DataBlock(): "Generic container to quickly build `Datasets` and `DataLoaders`" get_x=get_items=splitter=get_y = None blocks,dl_type = (TransformBlock,TransformBlock),TfmdDL _methods = 'get_items splitter get_y get_x'.split() _msg = "If you wanted to compose several transforms in your getter don't forget to wrap them in a `Pipeline`." def __init__(self, blocks=None, dl_type=None, getters=None, n_inp=None, item_tfms=None, batch_tfms=None, **kwargs): blocks = L(self.blocks if blocks is None else blocks) blocks = L(b() if callable(b) else b for b in blocks) self.type_tfms = blocks.attrgot('type_tfms', L()) self.default_item_tfms = _merge_tfms(*blocks.attrgot('item_tfms', L())) self.default_batch_tfms = _merge_tfms(*blocks.attrgot('batch_tfms', L())) for b in blocks: if getattr(b, 'dl_type', None) is not None: self.dl_type = b.dl_type if dl_type is not None: self.dl_type = dl_type self.dataloaders = delegates(self.dl_type.__init__)(self.dataloaders) self.dls_kwargs = merge(*blocks.attrgot('dls_kwargs', {})) self.n_inp = ifnone(n_inp, max(1, len(blocks)-1)) self.getters = ifnone(getters, [noop]*len(self.type_tfms)) if self.get_x: if len(L(self.get_x)) != self.n_inp: raise ValueError(f'get_x contains {len(L(self.get_x))} functions, but must contain {self.n_inp} (one for each input)\n{self._msg}') self.getters[:self.n_inp] = L(self.get_x) if self.get_y: n_targs = len(self.getters) - self.n_inp if len(L(self.get_y)) != n_targs: raise ValueError(f'get_y contains {len(L(self.get_y))} functions, but must contain {n_targs} (one for each target)\n{self._msg}') self.getters[self.n_inp:] = L(self.get_y) if kwargs: raise TypeError(f'invalid keyword arguments: {", ".join(kwargs.keys())}') self.new(item_tfms, batch_tfms) def _combine_type_tfms(self): return L([self.getters, self.type_tfms]).map_zip( lambda g,tt: (g.fs if isinstance(g, Pipeline) else L(g)) + tt) def new(self, item_tfms=None, batch_tfms=None): self.item_tfms = _merge_tfms(self.default_item_tfms, item_tfms) self.batch_tfms = _merge_tfms(self.default_batch_tfms, batch_tfms) return self @classmethod def from_columns(cls, blocks=None, getters=None, get_items=None, **kwargs): if getters is None: getters = L(ItemGetter(i) for i in range(2 if blocks is None else len(L(blocks)))) get_items = _zip if get_items is None else compose(get_items, _zip) return cls(blocks=blocks, getters=getters, get_items=get_items, **kwargs) def datasets(self, source, verbose=False): self.source = source ; pv(f"Collecting items from {source}", verbose) items = (self.get_items or noop)(source) ; pv(f"Found {len(items)} items", verbose) splits = (self.splitter or RandomSplitter())(items) pv(f"{len(splits)} datasets of sizes {','.join([str(len(s)) for s in splits])}", verbose) return Datasets(items, tfms=self._combine_type_tfms(), splits=splits, dl_type=self.dl_type, n_inp=self.n_inp, verbose=verbose) def dataloaders(self, source, path='.', verbose=False, **kwargs): dsets = self.datasets(source, verbose=verbose) kwargs = {**self.dls_kwargs, **kwargs, 'verbose': verbose} return dsets.dataloaders(path=path, after_item=self.item_tfms, after_batch=self.batch_tfms, **kwargs) _docs = dict(new="Create a new `DataBlock` with other `item_tfms` and `batch_tfms`", datasets="Create a `Datasets` object from `source`", dataloaders="Create a `DataLoaders` object from `source`") # Cell def _short_repr(x): if isinstance(x, tuple): return f'({", ".join([_short_repr(y) for y in x])})' if isinstance(x, list): return f'[{", ".join([_short_repr(y) for y in x])}]' if not isinstance(x, Tensor): return str(x) if x.numel() <= 20 and x.ndim <=1: return str(x) return f'{x.__class__.__name__} of size {"x".join([str(d) for d in x.shape])}' # Cell def _apply_pipeline(p, x): print(f" {p}\n starting from\n {_short_repr(x)}") for f in p.fs: name = f.name try: x = f(x) if name != "noop": print(f" applying {name} gives\n {_short_repr(x)}") except Exception as e: print(f" applying {name} failed.") raise e return x # Cell from .load import _collate_types def _find_fail_collate(s): s = L(*s) for x in s[0]: if not isinstance(x, _collate_types): return f"{type(x).__name__} is not collatable" for i in range_of(s[0]): try: _ = default_collate(s.itemgot(i)) except: shapes = [getattr(o[i], 'shape', None) for o in s] return f"Could not collate the {i}-th members of your tuples because got the following shapes\n{','.join([str(s) for s in shapes])}" # Cell @patch def summary(self: DataBlock, source, bs=4, show_batch=False, **kwargs): "Steps through the transform pipeline for one batch, and optionally calls `show_batch(**kwargs)` on the transient `Dataloaders`." print(f"Setting-up type transforms pipelines") dsets = self.datasets(source, verbose=True) print("\nBuilding one sample") for tl in dsets.train.tls: _apply_pipeline(tl.tfms, get_first(dsets.train.items)) print(f"\nFinal sample: {dsets.train[0]}\n\n") dls = self.dataloaders(source, bs=bs, verbose=True) print("\nBuilding one batch") if len([f for f in dls.train.after_item.fs if f.name != 'noop'])!=0: print("Applying item_tfms to the first sample:") s = [_apply_pipeline(dls.train.after_item, dsets.train[0])] print(f"\nAdding the next {bs-1} samples") s += [dls.train.after_item(dsets.train[i]) for i in range(1, bs)] else: print("No item_tfms to apply") s = [dls.train.after_item(dsets.train[i]) for i in range(bs)] if len([f for f in dls.train.before_batch.fs if f.name != 'noop'])!=0: print("\nApplying before_batch to the list of samples") s = _apply_pipeline(dls.train.before_batch, s) else: print("\nNo before_batch transform to apply") print("\nCollating items in a batch") try: b = dls.train.create_batch(s) b = retain_types(b, s[0] if is_listy(s) else s) except Exception as e: print("Error! It's not possible to collate your items in a batch") why = _find_fail_collate(s) print("Make sure all parts of your samples are tensors of the same size" if why is None else why) raise e if len([f for f in dls.train.after_batch.fs if f.name != 'noop'])!=0: print("\nApplying batch_tfms to the batch built") b = to_device(b, dls.device) b = _apply_pipeline(dls.train.after_batch, b) else: print("\nNo batch_tfms to apply") if show_batch: dls.show_batch(**kwargs)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/data/block.py
block.py
__all__ = ['fa_collate', 'fa_convert', 'SkipItemException', 'DataLoader'] # Cell from ..torch_basics import * from torch.utils.data.dataloader import _MultiProcessingDataLoaderIter,_SingleProcessDataLoaderIter,_DatasetKind _loaders = (_MultiProcessingDataLoaderIter,_SingleProcessDataLoaderIter) # Cell def _wif(worker_id): set_num_threads(1) info = get_worker_info() ds = info.dataset.d ds.num_workers,ds.offs = info.num_workers,info.id set_seed(info.seed) ds.wif() class _FakeLoader: _IterableDataset_len_called,_auto_collation,collate_fn,drop_last = None,False,noops,False _index_sampler,generator,prefetch_factor = Inf.count,None,2 dataset_kind = _dataset_kind = _DatasetKind.Iterable def __init__(self, d, pin_memory, num_workers, timeout, persistent_workers): self.dataset,self.default,self.worker_init_fn = self,d,_wif store_attr('d,pin_memory,num_workers,timeout,persistent_workers') def __iter__(self): return iter(self.d.create_batches(self.d.sample())) @property def multiprocessing_context(self): return (None,multiprocessing)[self.num_workers>0] @contextmanager def no_multiproc(self): old_num_workers = self.num_workers try: self.num_workers = 0 yield self.d finally: self.num_workers = old_num_workers _collate_types = (ndarray, Tensor, typing.Mapping, str) # Cell def fa_collate(t): "A replacement for PyTorch `default_collate` which maintains types and handles `Sequence`s" b = t[0] return (default_collate(t) if isinstance(b, _collate_types) else type(t[0])([fa_collate(s) for s in zip(*t)]) if isinstance(b, Sequence) else default_collate(t)) # Cell def fa_convert(t): "A replacement for PyTorch `default_convert` which maintains types and handles `Sequence`s" return (default_convert(t) if isinstance(t, _collate_types) else type(t)([fa_convert(s) for s in t]) if isinstance(t, Sequence) else default_convert(t)) # Cell class SkipItemException(Exception): "Raised to notify `DataLoader` to skip an item" pass # Cell @funcs_kwargs class DataLoader(GetAttr): _noop_methods = 'wif before_iter after_item before_batch after_batch after_iter'.split() for o in _noop_methods: exec(f"def {o}(self, x=None, *args, **kwargs): return x") _methods = _noop_methods + 'create_batches create_item create_batch retain \ get_idxs sample shuffle_fn do_batch create_batch'.split() _default = 'dataset' def __init__(self, dataset=None, bs=None, num_workers=0, pin_memory=False, timeout=0, batch_size=None, shuffle=False, drop_last=False, indexed=None, n=None, device=None, persistent_workers=False, **kwargs): if batch_size is not None: bs = batch_size # PyTorch compatibility assert not (bs is None and drop_last) if indexed is None: indexed = dataset is not None and hasattr(dataset,'__getitem__') if n is None: try: n = len(dataset) except TypeError: pass store_attr('dataset,bs,shuffle,drop_last,indexed,n,pin_memory,timeout,device') self.rng,self.num_workers,self.offs = random.Random(random.randint(0,2**32-1)),1,0 self.fake_l = _FakeLoader(self, pin_memory, num_workers, timeout, persistent_workers=persistent_workers) def __len__(self): if self.n is None: raise TypeError if self.bs is None: return self.n return self.n//self.bs + (0 if self.drop_last or self.n%self.bs==0 else 1) def get_idxs(self): idxs = Inf.count if self.indexed else Inf.nones if self.n is not None: idxs = list(itertools.islice(idxs, self.n)) if self.shuffle: idxs = self.shuffle_fn(idxs) return idxs def sample(self): return (b for i,b in enumerate(self.__idxs) if i//(self.bs or 1)%self.num_workers==self.offs) def __iter__(self): self.randomize() self.before_iter() self.__idxs=self.get_idxs() # called in context of main process (not workers/subprocesses) for b in _loaders[self.fake_l.num_workers==0](self.fake_l): if self.device is not None: b = to_device(b, self.device) yield self.after_batch(b) self.after_iter() if hasattr(self, 'it'): del(self.it) def create_batches(self, samps): self.it = iter(self.dataset) if self.dataset is not None else None res = filter(lambda o:o is not None, map(self.do_item, samps)) yield from map(self.do_batch, self.chunkify(res)) def new(self, dataset=None, cls=None, **kwargs): if dataset is None: dataset = self.dataset if cls is None: cls = type(self) cur_kwargs = dict(dataset=dataset, num_workers=self.fake_l.num_workers, pin_memory=self.pin_memory, timeout=self.timeout, bs=self.bs, shuffle=self.shuffle, drop_last=self.drop_last, indexed=self.indexed, device=self.device) for n in self._methods: o = getattr(self, n) if not isinstance(o, MethodType): cur_kwargs[n] = o return cls(**merge(cur_kwargs, kwargs)) @property def prebatched(self): return self.bs is None def do_item(self, s): try: return self.after_item(self.create_item(s)) except SkipItemException: return None def chunkify(self, b): return b if self.prebatched else chunked(b, self.bs, self.drop_last) def shuffle_fn(self, idxs): return self.rng.sample(idxs, len(idxs)) def randomize(self): self.rng = random.Random(self.rng.randint(0,2**32-1)) def retain(self, res, b): return retain_types(res, b[0] if is_listy(b) else b) def create_item(self, s): return next(self.it) if s is None else self.dataset[s] def create_batch(self, b): return (fa_collate,fa_convert)[self.prebatched](b) def do_batch(self, b): return self.retain(self.create_batch(self.before_batch(b)), b) def to(self, device): self.device = device def one_batch(self): if self.n is not None and len(self)==0: raise ValueError(f'This DataLoader does not contain any batches') with self.fake_l.no_multiproc(): res = first(self) if hasattr(self, 'it'): delattr(self, 'it') return res # Cell add_docs(DataLoader, "API compatible with PyTorch DataLoader, with a lot more callbacks and flexibility", get_idxs = "Return a list of indices to reference the dataset. Calls `shuffle_fn` internally if `shuffle=True`.", sample = "Same as `get_idxs` but returns a generator of indices to reference the dataset.", create_batches = "Takes output of `sample` as input, and returns batches of data. Does not apply `after_batch`.", new = "Create a new `DataLoader` with given arguments keeping remaining arguments same as original `DataLoader`.", prebatched = "Check if `bs` is None.", do_item = "Combines `after_item` and `create_item` to get an item from dataset by providing index as input.", chunkify = "Used by `create_batches` to turn generator of items (`b`) into batches.", shuffle_fn = "Returns a random permutation of `idxs`.", randomize = "Set's `DataLoader` random number generator state.", retain = "Cast each item of `res` to type of matching item in `b` if its a superclass.", create_item = "Subset of the dataset containing the index values of sample if exists, else next iterator.", create_batch = "Collate a list of items into a batch.", do_batch = "Combines `create_batch` and `before_batch` to get a batch of items. Input is a list of items to collate.", to = "Sets `self.device=device`.", one_batch = "Return one batch from `DataLoader`.", wif = "See pytorch `worker_init_fn` for details.", before_iter = "Called before `DataLoader` starts to read/iterate over the dataset.", after_item = "Takes output of `create_item` as input and applies this function on it.", before_batch = "It is called before collating a list of items into a batch. Input is a list of items.", after_batch = "After collating mini-batch of items, the mini-batch is passed through this function.", after_iter = "Called after `DataLoader` has fully read/iterated over the dataset.")
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/data/load.py
load.py
__all__ = ['make_date', 'add_datepart', 'add_elapsed_times', 'cont_cat_split', 'df_shrink_dtypes', 'df_shrink', 'Tabular', 'TabularPandas', 'TabularProc', 'Categorify', 'FillStrategy', 'FillMissing', 'ReadTabBatch', 'TabDataLoader'] # Cell from ..torch_basics import * from ..data.all import * # Cell pd.set_option('mode.chained_assignment','raise') # Cell def make_date(df, date_field): "Make sure `df[date_field]` is of the right date type." field_dtype = df[date_field].dtype if isinstance(field_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype): field_dtype = np.datetime64 if not np.issubdtype(field_dtype, np.datetime64): df[date_field] = pd.to_datetime(df[date_field], infer_datetime_format=True) # Cell def add_datepart(df, field_name, prefix=None, drop=True, time=False): "Helper function that adds columns relevant to a date in the column `field_name` of `df`." make_date(df, field_name) field = df[field_name] prefix = ifnone(prefix, re.sub('[Dd]ate$', '', field_name)) attr = ['Year', 'Month', 'Day', 'Dayofweek', 'Dayofyear', 'Is_month_end', 'Is_month_start', 'Is_quarter_end', 'Is_quarter_start', 'Is_year_end', 'Is_year_start'] if time: attr = attr + ['Hour', 'Minute', 'Second'] for n in attr: df[prefix + n] = getattr(field.dt, n.lower()) # Pandas removed `dt.week` in v1.1.10 week = field.dt.isocalendar().week if hasattr(field.dt, 'isocalendar') else field.dt.week df.insert(3, prefix+'Week', week) mask = ~field.isna() df[prefix + 'Elapsed'] = np.where(mask,field.values.astype(np.int64) // 10 ** 9,None) if drop: df.drop(field_name, axis=1, inplace=True) return df # Cell def _get_elapsed(df,field_names, date_field, base_field, prefix): for f in field_names: day1 = np.timedelta64(1, 'D') last_date,last_base,res = np.datetime64(),None,[] for b,v,d in zip(df[base_field].values, df[f].values, df[date_field].values): if last_base is None or b != last_base: last_date,last_base = np.datetime64(),b if v: last_date = d res.append(((d-last_date).astype('timedelta64[D]') / day1)) df[prefix + f] = res return df # Cell def add_elapsed_times(df, field_names, date_field, base_field): "Add in `df` for each event in `field_names` the elapsed time according to `date_field` grouped by `base_field`" field_names = list(L(field_names)) #Make sure date_field is a date and base_field a bool df[field_names] = df[field_names].astype('bool') make_date(df, date_field) work_df = df[field_names + [date_field, base_field]] work_df = work_df.sort_values([base_field, date_field]) work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'After') work_df = work_df.sort_values([base_field, date_field], ascending=[True, False]) work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'Before') for a in ['After' + f for f in field_names] + ['Before' + f for f in field_names]: work_df[a] = work_df[a].fillna(0).astype(int) for a,s in zip([True, False], ['_bw', '_fw']): work_df = work_df.set_index(date_field) tmp = (work_df[[base_field] + field_names].sort_index(ascending=a) .groupby(base_field).rolling(7, min_periods=1).sum()) tmp.drop(base_field,1,inplace=True) tmp.reset_index(inplace=True) work_df.reset_index(inplace=True) work_df = work_df.merge(tmp, 'left', [date_field, base_field], suffixes=['', s]) work_df.drop(field_names,1,inplace=True) return df.merge(work_df, 'left', [date_field, base_field]) # Cell def cont_cat_split(df, max_card=20, dep_var=None): "Helper function that returns column names of cont and cat variables from given `df`." cont_names, cat_names = [], [] for label in df: if label in L(dep_var): continue if (np.issubdtype(df[label].dtype, np.integer) and df[label].unique().shape[0] > max_card or np.issubdtype(df[label].dtype, np.floating)): cont_names.append(label) else: cat_names.append(label) return cont_names, cat_names # Cell def df_shrink_dtypes(df, skip=[], obj2cat=True, int2uint=False): "Return any possible smaller data types for DataFrame columns. Allows `object`->`category`, `int`->`uint`, and exclusion." # 1: Build column filter and typemap excl_types, skip = {'category','datetime64[ns]','bool'}, set(skip) typemap = {'int' : [(np.dtype(x), np.iinfo(x).min, np.iinfo(x).max) for x in (np.int8, np.int16, np.int32, np.int64)], 'uint' : [(np.dtype(x), np.iinfo(x).min, np.iinfo(x).max) for x in (np.uint8, np.uint16, np.uint32, np.uint64)], 'float' : [(np.dtype(x), np.finfo(x).min, np.finfo(x).max) for x in (np.float32, np.float64, np.longdouble)] } if obj2cat: typemap['object'] = 'category' # User wants to categorify dtype('Object'), which may not always save space else: excl_types.add('object') new_dtypes = {} exclude = lambda dt: dt[1].name not in excl_types and dt[0] not in skip for c, old_t in filter(exclude, df.dtypes.items()): t = next((v for k,v in typemap.items() if old_t.name.startswith(k)), None) if isinstance(t, list): # Find the smallest type that fits if int2uint and t==typemap['int'] and df[c].min() >= 0: t=typemap['uint'] new_t = next((r[0] for r in t if r[1]<=df[c].min() and r[2]>=df[c].max()), None) if new_t and new_t == old_t: new_t = None else: new_t = t if isinstance(t, str) else None if new_t: new_dtypes[c] = new_t return new_dtypes # Cell def df_shrink(df, skip=[], obj2cat=True, int2uint=False): "Reduce DataFrame memory usage, by casting to smaller types returned by `df_shrink_dtypes()`." dt = df_shrink_dtypes(df, skip, obj2cat=obj2cat, int2uint=int2uint) return df.astype(dt) # Cell class _TabIloc: "Get/set rows by iloc and cols by name" def __init__(self,to): self.to = to def __getitem__(self, idxs): df = self.to.items if isinstance(idxs,tuple): rows,cols = idxs cols = df.columns.isin(cols) if is_listy(cols) else df.columns.get_loc(cols) else: rows,cols = idxs,slice(None) return self.to.new(df.iloc[rows, cols]) # Cell class Tabular(CollBase, GetAttr, FilteredBase): "A `DataFrame` wrapper that knows which cols are cont/cat/y, and returns rows in `__getitem__`" _default,with_cont='procs',True def __init__(self, df, procs=None, cat_names=None, cont_names=None, y_names=None, y_block=None, splits=None, do_setup=True, device=None, inplace=False, reduce_memory=True): if inplace and splits is not None and pd.options.mode.chained_assignment is not None: warn("Using inplace with splits will trigger a pandas error. Set `pd.options.mode.chained_assignment=None` to avoid it.") if not inplace: df = df.copy() if reduce_memory: df = df_shrink(df) if splits is not None: df = df.iloc[sum(splits, [])] self.dataloaders = delegates(self._dl_type.__init__)(self.dataloaders) super().__init__(df) self.y_names,self.device = L(y_names),device if y_block is None and self.y_names: # Make ys categorical if they're not numeric ys = df[self.y_names] if len(ys.select_dtypes(include='number').columns)!=len(ys.columns): y_block = CategoryBlock() else: y_block = RegressionBlock() if y_block is not None and do_setup: if callable(y_block): y_block = y_block() procs = L(procs) + y_block.type_tfms self.cat_names,self.cont_names,self.procs = L(cat_names),L(cont_names),Pipeline(procs) self.split = len(df) if splits is None else len(splits[0]) if do_setup: self.setup() def new(self, df): return type(self)(df, do_setup=False, reduce_memory=False, y_block=TransformBlock(), **attrdict(self, 'procs','cat_names','cont_names','y_names', 'device')) def subset(self, i): return self.new(self.items[slice(0,self.split) if i==0 else slice(self.split,len(self))]) def copy(self): self.items = self.items.copy(); return self def decode(self): return self.procs.decode(self) def decode_row(self, row): return self.new(pd.DataFrame(row).T).decode().items.iloc[0] def show(self, max_n=10, **kwargs): display_df(self.new(self.all_cols[:max_n]).decode().items) def setup(self): self.procs.setup(self) def process(self): self.procs(self) def loc(self): return self.items.loc def iloc(self): return _TabIloc(self) def targ(self): return self.items[self.y_names] def x_names (self): return self.cat_names + self.cont_names def n_subsets(self): return 2 def y(self): return self[self.y_names[0]] def new_empty(self): return self.new(pd.DataFrame({}, columns=self.items.columns)) def to_device(self, d=None): self.device = d return self def all_col_names (self): ys = [n for n in self.y_names if n in self.items.columns] return self.x_names + self.y_names if len(ys) == len(self.y_names) else self.x_names properties(Tabular,'loc','iloc','targ','all_col_names','n_subsets','x_names','y') # Cell class TabularPandas(Tabular): "A `Tabular` object with transforms" def transform(self, cols, f, all_col=True): if not all_col: cols = [c for c in cols if c in self.items.columns] if len(cols) > 0: self[cols] = self[cols].transform(f) # Cell def _add_prop(cls, nm): @property def f(o): return o[list(getattr(o,nm+'_names'))] @f.setter def fset(o, v): o[getattr(o,nm+'_names')] = v setattr(cls, nm+'s', f) setattr(cls, nm+'s', fset) _add_prop(Tabular, 'cat') _add_prop(Tabular, 'cont') _add_prop(Tabular, 'y') _add_prop(Tabular, 'x') _add_prop(Tabular, 'all_col') # Cell class TabularProc(InplaceTransform): "Base class to write a non-lazy tabular processor for dataframes" def setup(self, items=None, train_setup=False): #TODO: properly deal with train_setup super().setup(getattr(items,'train',items), train_setup=False) # Procs are called as soon as data is available return self(items.items if isinstance(items,Datasets) else items) @property def name(self): return f"{super().name} -- {getattr(self,'__stored_args__',{})}" # Cell def _apply_cats (voc, add, c): if not is_categorical_dtype(c): return pd.Categorical(c, categories=voc[c.name][add:]).codes+add return c.cat.codes+add #if is_categorical_dtype(c) else c.map(voc[c.name].o2i) def _decode_cats(voc, c): return c.map(dict(enumerate(voc[c.name].items))) # Cell class Categorify(TabularProc): "Transform the categorical variables to something similar to `pd.Categorical`" order = 1 def setups(self, to): store_attr(classes={n:CategoryMap(to.iloc[:,n].items, add_na=(n in to.cat_names)) for n in to.cat_names}, but='to') def encodes(self, to): to.transform(to.cat_names, partial(_apply_cats, self.classes, 1)) def decodes(self, to): to.transform(to.cat_names, partial(_decode_cats, self.classes)) def __getitem__(self,k): return self.classes[k] # Internal Cell @Categorize def setups(self, to:Tabular): if len(to.y_names) > 0: if self.vocab is None: self.vocab = CategoryMap(getattr(to, 'train', to).iloc[:,to.y_names[0]].items, strict=True) else: self.vocab = CategoryMap(self.vocab, sort=False, add_na=self.add_na) self.c = len(self.vocab) return self(to) @Categorize def encodes(self, to:Tabular): to.transform(to.y_names, partial(_apply_cats, {n: self.vocab for n in to.y_names}, 0), all_col=False) return to @Categorize def decodes(self, to:Tabular): to.transform(to.y_names, partial(_decode_cats, {n: self.vocab for n in to.y_names}), all_col=False) return to # Internal Cell @Normalize def setups(self, to:Tabular): store_attr(but='to', means=dict(getattr(to, 'train', to).conts.mean()), stds=dict(getattr(to, 'train', to).conts.std(ddof=0)+1e-7)) return self(to) @Normalize def encodes(self, to:Tabular): to.conts = (to.conts-self.means) / self.stds return to @Normalize def decodes(self, to:Tabular): to.conts = (to.conts*self.stds ) + self.means return to # Cell class FillStrategy: "Namespace containing the various filling strategies." def median (c,fill): return c.median() def constant(c,fill): return fill def mode (c,fill): return c.dropna().value_counts().idxmax() # Cell class FillMissing(TabularProc): "Fill the missing values in continuous columns." def __init__(self, fill_strategy=FillStrategy.median, add_col=True, fill_vals=None): if fill_vals is None: fill_vals = defaultdict(int) store_attr() def setups(self, dsets): missing = pd.isnull(dsets.conts).any() store_attr(but='to', na_dict={n:self.fill_strategy(dsets[n], self.fill_vals[n]) for n in missing[missing].keys()}) self.fill_strategy = self.fill_strategy.__name__ def encodes(self, to): missing = pd.isnull(to.conts) for n in missing.any()[missing.any()].keys(): assert n in self.na_dict, f"nan values in `{n}` but not in setup training set" for n in self.na_dict.keys(): to[n].fillna(self.na_dict[n], inplace=True) if self.add_col: to.loc[:,n+'_na'] = missing[n] if n+'_na' not in to.cat_names: to.cat_names.append(n+'_na') # Cell def _maybe_expand(o): return o[:,None] if o.ndim==1 else o # Cell class ReadTabBatch(ItemTransform): "Transform `TabularPandas` values into a `Tensor` with the ability to decode" def __init__(self, to): self.to = to.new_empty() def encodes(self, to): if not to.with_cont: res = (tensor(to.cats).long(),) else: res = (tensor(to.cats).long(),tensor(to.conts).float()) ys = [n for n in to.y_names if n in to.items.columns] if len(ys) == len(to.y_names): res = res + (tensor(to.targ),) if to.device is not None: res = to_device(res, to.device) return res def decodes(self, o): o = [_maybe_expand(o_) for o_ in to_np(o) if o_.size != 0] vals = np.concatenate(o, axis=1) try: df = pd.DataFrame(vals, columns=self.to.all_col_names) except: df = pd.DataFrame(vals, columns=self.to.x_names) to = self.to.new(df) return to # Cell @typedispatch def show_batch(x: Tabular, y, its, max_n=10, ctxs=None): x.show() # Cell @delegates() class TabDataLoader(TfmdDL): "A transformed `DataLoader` for Tabular data" do_item = noops def __init__(self, dataset, bs=16, shuffle=False, after_batch=None, num_workers=0, **kwargs): if after_batch is None: after_batch = L(TransformBlock().batch_tfms)+ReadTabBatch(dataset) super().__init__(dataset, bs=bs, shuffle=shuffle, after_batch=after_batch, num_workers=num_workers, **kwargs) def create_batch(self, b): return self.dataset.iloc[b] TabularPandas._dl_type = TabDataLoader # Internal Cell @EncodedMultiCategorize def setups(self, to:Tabular): self.c = len(self.vocab) return self(to) @EncodedMultiCategorize def encodes(self, to:Tabular): return to @EncodedMultiCategorize def decodes(self, to:Tabular): to.transform(to.y_names, lambda c: c==1) return to # Internal Cell @RegressionSetup def setups(self, to:Tabular): if self.c is not None: return self.c = len(to.y_names) return to @RegressionSetup def encodes(self, to:Tabular): return to @RegressionSetup def decodes(self, to:Tabular): return to
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/tabular/core.py
core.py
__all__ = ['emb_sz_rule', 'get_emb_sz', 'TabularModel', 'tabular_config'] # Cell from ..torch_basics import * from .core import * # Cell def emb_sz_rule(n_cat): "Rule of thumb to pick embedding size corresponding to `n_cat`" return min(600, round(1.6 * n_cat**0.56)) # Cell def _one_emb_sz(classes, n, sz_dict=None): "Pick an embedding size for `n` depending on `classes` if not given in `sz_dict`." sz_dict = ifnone(sz_dict, {}) n_cat = len(classes[n]) sz = sz_dict.get(n, int(emb_sz_rule(n_cat))) # rule of thumb return n_cat,sz # Cell def get_emb_sz(to, sz_dict=None): "Get default embedding size from `TabularPreprocessor` `proc` or the ones in `sz_dict`" return [_one_emb_sz(to.classes, n, sz_dict) for n in to.cat_names] # Cell class TabularModel(Module): "Basic model for tabular data." def __init__(self, emb_szs, n_cont, out_sz, layers, ps=None, embed_p=0., y_range=None, use_bn=True, bn_final=False, bn_cont=True, act_cls=nn.ReLU(inplace=True)): ps = ifnone(ps, [0]*len(layers)) if not is_listy(ps): ps = [ps]*len(layers) self.embeds = nn.ModuleList([Embedding(ni, nf) for ni,nf in emb_szs]) self.emb_drop = nn.Dropout(embed_p) self.bn_cont = nn.BatchNorm1d(n_cont) if bn_cont else None n_emb = sum(e.embedding_dim for e in self.embeds) self.n_emb,self.n_cont = n_emb,n_cont sizes = [n_emb + n_cont] + layers + [out_sz] actns = [act_cls for _ in range(len(sizes)-2)] + [None] _layers = [LinBnDrop(sizes[i], sizes[i+1], bn=use_bn and (i!=len(actns)-1 or bn_final), p=p, act=a) for i,(p,a) in enumerate(zip(ps+[0.],actns))] if y_range is not None: _layers.append(SigmoidRange(*y_range)) self.layers = nn.Sequential(*_layers) def forward(self, x_cat, x_cont=None): if self.n_emb != 0: x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)] x = torch.cat(x, 1) x = self.emb_drop(x) if self.n_cont != 0: if self.bn_cont is not None: x_cont = self.bn_cont(x_cont) x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else x_cont return self.layers(x) # Cell @delegates(TabularModel.__init__) def tabular_config(**kwargs): "Convenience function to easily create a config for `TabularModel`" return kwargs
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/tabular/model.py
model.py
__all__ = ['reverse_text', 'make_vocab', 'TensorText', 'LMTensorText', 'Numericalize', 'LMDataLoader', 'Pad_Input', 'pad_input', 'pad_chunk', 'pad_input_chunk', 'Pad_Chunk', 'SortedDL', 'TextBlock', 'TextDataLoaders'] # Cell from ..torch_basics import * from ..data.all import * from .core import * # Cell def reverse_text(x): return x.flip(0) # Cell def make_vocab(count, min_freq=3, max_vocab=60000, special_toks=None): "Create a vocab of `max_vocab` size from `Counter` `count` with items present more than `min_freq`" vocab = [o for o,c in count.most_common(max_vocab) if c >= min_freq] special_toks = ifnone(special_toks, defaults.text_spec_tok) for o in reversed(special_toks): #Make sure all special tokens are in the vocab if o in vocab: vocab.remove(o) vocab.insert(0, o) vocab = vocab[:max_vocab] return vocab + [f'xxfake' for i in range(0, 8-len(vocab)%8)] # Cell class TensorText(TensorBase): pass class LMTensorText(TensorText): pass TensorText.__doc__ = "Semantic type for a tensor representing text" LMTensorText.__doc__ = "Semantic type for a tensor representing text in language modeling" # Cell class Numericalize(Transform): "Reversible transform of tokenized texts to numericalized ids" def __init__(self, vocab=None, min_freq=3, max_vocab=60000, special_toks=None): store_attr('vocab,min_freq,max_vocab,special_toks') self.o2i = None if vocab is None else defaultdict(int, {v:k for k,v in enumerate(vocab)}) def setups(self, dsets): if dsets is None: return if self.vocab is None: count = dsets.counter if getattr(dsets, 'counter', None) is not None else Counter(p for o in dsets for p in o) if self.special_toks is None and hasattr(dsets, 'special_toks'): self.special_toks = dsets.special_toks self.vocab = make_vocab(count, min_freq=self.min_freq, max_vocab=self.max_vocab, special_toks=self.special_toks) self.o2i = defaultdict(int, {v:k for k,v in enumerate(self.vocab) if v != 'xxfake'}) def encodes(self, o): return TensorText(tensor([self.o2i [o_] for o_ in o])) def decodes(self, o): return L(self.vocab[o_] for o_ in o) # Cell def _maybe_first(o): return o[0] if isinstance(o, tuple) else o # Cell def _get_tokenizer(ds): tok = getattr(ds, 'tokenizer', None) if isinstance(tok, Tokenizer): return tok if isinstance(tok, (list,L)): for t in tok: if isinstance(t, Tokenizer): return t # Cell def _get_lengths(ds): tok = _get_tokenizer(ds) if tok is None: return return tok.get_lengths(ds.items) # Cell #TODO: add backward @delegates() class LMDataLoader(TfmdDL): "A `DataLoader` suitable for language modeling" def __init__(self, dataset, lens=None, cache=2, bs=64, seq_len=72, num_workers=0, **kwargs): self.items = ReindexCollection(dataset, cache=cache, tfm=_maybe_first) self.seq_len = seq_len if lens is None: lens = _get_lengths(dataset) if lens is None: lens = [len(o) for o in self.items] self.lens = ReindexCollection(lens, idxs=self.items.idxs) # The "-1" is to allow for final label, we throw away the end that's less than bs corpus = round_multiple(sum(lens)-1, bs, round_down=True) self.bl = corpus//bs #bl stands for batch length self.n_batches = self.bl//(seq_len) + int(self.bl%seq_len!=0) self.last_len = self.bl - (self.n_batches-1)*seq_len self.make_chunks() super().__init__(dataset=dataset, bs=bs, num_workers=num_workers, **kwargs) self.n = self.n_batches*bs def make_chunks(self): self.chunks = Chunks(self.items, self.lens) def shuffle_fn(self,idxs): self.items.shuffle() self.make_chunks() return idxs def create_item(self, seq): if seq>=self.n: raise IndexError sl = self.last_len if seq//self.bs==self.n_batches-1 else self.seq_len st = (seq%self.bs)*self.bl + (seq//self.bs)*self.seq_len txt = self.chunks[st : st+sl+1] return LMTensorText(txt[:-1]),txt[1:] @delegates(TfmdDL.new) def new(self, dataset=None, seq_len=None, **kwargs): lens = self.lens.coll if dataset is None else None seq_len = self.seq_len if seq_len is None else seq_len return super().new(dataset=dataset, lens=lens, seq_len=seq_len, **kwargs) # Cell @typedispatch def show_batch(x: TensorText, y, samples, ctxs=None, max_n=10, trunc_at=150, **kwargs): if ctxs is None: ctxs = get_empty_df(min(len(samples), max_n)) if trunc_at is not None: samples = L((s[0].truncate(trunc_at),*s[1:]) for s in samples) ctxs = show_batch[object](x, y, samples, max_n=max_n, ctxs=ctxs, **kwargs) display_df(pd.DataFrame(ctxs)) return ctxs # Cell @typedispatch def show_batch(x: LMTensorText, y, samples, ctxs=None, max_n=10, trunc_at=150, **kwargs): samples = L((s[0].truncate(trunc_at), s[1].truncate(trunc_at)) for s in samples) return show_batch[TensorText](x, None, samples, ctxs=ctxs, max_n=max_n, trunc_at=None, **kwargs) # Cell class Pad_Input(ItemTransform): def encodes(self,samples, pad_idx=1, pad_fields=0, pad_first=False, backwards=False): "Function that collect `samples` and adds padding" self.pad_idx = pad_idx pad_fields = L(pad_fields) max_len_l = pad_fields.map(lambda f: max([len(s[f]) for s in samples])) if backwards: pad_first = not pad_first def _f(field_idx, x): if field_idx not in pad_fields: return x idx = pad_fields.items.index(field_idx) #TODO: remove items if L.index is fixed sl = slice(-len(x), sys.maxsize) if pad_first else slice(0, len(x)) pad = x.new_zeros(max_len_l[idx]-x.shape[0])+pad_idx x1 = torch.cat([pad, x] if pad_first else [x, pad]) if backwards: x1 = x1.flip(0) return retain_type(x1, x) return [tuple(map(lambda idxx: _f(*idxx), enumerate(s))) for s in samples] def decodes(self, o:TensorText): pad_idx = self.pad_idx if hasattr(self,'pad_idx') else 1 return o[o != pad_idx] pad_input=Pad_Input() # Cell def pad_chunk(x,pad_idx=1, pad_first=True, seq_len=72, pad_len=10): "Pad `x` by adding padding by chunks of size `seq_len`" l = pad_len - x.shape[0] pad_chunk = x.new_zeros((l//seq_len) * seq_len) + pad_idx pad_res = x.new_zeros(l % seq_len) + pad_idx x1 = torch.cat([pad_chunk, x, pad_res]) if pad_first else torch.cat([x, pad_chunk, pad_res]) return retain_type(x1, x) # Cell @delegates(pad_chunk) def pad_input_chunk(samples, n_inp=1,**kwargs): "Pad `samples` by adding padding by chunks of size `seq_len`" max_len = max([len(s[n]) for s in samples for n in range(n_inp)]) padeds = [[pad_chunk(s[n],pad_len=max_len,**kwargs) for n in range(n_inp) ] for s in samples] return [(*p, *s[n_inp:]) for p,s in zip(padeds,samples)] # Cell class Pad_Chunk(DisplayedTransform): "Pad `samples` by adding padding by chunks of size `seq_len`" def __init__(self, pad_idx=1, pad_first=True, seq_len=72,decode=True,**kwargs): store_attr('pad_idx, pad_first, seq_len,seq_len') super().__init__(**kwargs) def before_call(self, b): "Set `self.max_len` before encodes" self.max_len = max([x.shape[0] for xs in b for x in xs if isinstance(x,TensorText)]) def __call__(self, b, **kwargs): self.before_call(b) return super().__call__(tuple(b), **kwargs) def encodes(self, x:TensorText): return pad_chunk(x,pad_idx=self.pad_idx, pad_first=self.pad_first, seq_len=self.seq_len, pad_len=self.max_len) def decodes(self, o:TensorText): return o[o != self.pad_idx] if self.decode else o # Cell def _default_sort(x): return len(x[0]) @delegates(TfmdDL) class SortedDL(TfmdDL): "A `DataLoader` that goes throught the item in the order given by `sort_func`" def __init__(self, dataset, sort_func=None, res=None, **kwargs): super().__init__(dataset, **kwargs) self.sort_func = _default_sort if sort_func is None else sort_func if res is None and self.sort_func == _default_sort: res = _get_lengths(dataset) self.res = [self.sort_func(self.do_item(i)) for i in range_of(self.dataset)] if res is None else res if len(self.res) > 0: self.idx_max = np.argmax(self.res) def get_idxs(self): idxs = super().get_idxs() if self.shuffle: return idxs return sorted(idxs, key=lambda i: self.res[i], reverse=True) def shuffle_fn(self,idxs): idxs = np.random.permutation(len(self.dataset)) idx_max = np.where(idxs==self.idx_max)[0][0] idxs[0],idxs[idx_max] = idxs[idx_max],idxs[0] sz = self.bs*50 chunks = [idxs[i:i+sz] for i in range(0, len(idxs), sz)] chunks = [sorted(s, key=lambda i: self.res[i], reverse=True) for s in chunks] sort_idx = np.concatenate(chunks) sz = self.bs batches = [sort_idx[i:i+sz] for i in range(0, len(sort_idx), sz)] sort_idx = np.concatenate(np.random.permutation(batches[1:-1])) if len(batches) > 2 else np.array([],dtype=np.int) sort_idx = np.concatenate((batches[0], sort_idx) if len(batches)==1 else (batches[0], sort_idx, batches[-1])) return iter(sort_idx) @delegates(TfmdDL.new) def new(self, dataset=None, **kwargs): if 'val_res' in kwargs and kwargs['val_res'] is not None: res = kwargs['val_res'] else: res = self.res if dataset is None else None return super().new(dataset=dataset, res=res, **kwargs) # Cell class TextBlock(TransformBlock): "A `TransformBlock` for texts" @delegates(Numericalize.__init__) def __init__(self, tok_tfm, vocab=None, is_lm=False, seq_len=72, backwards=False, **kwargs): type_tfms = [tok_tfm, Numericalize(vocab, **kwargs)] if backwards: type_tfms += [reverse_text] return super().__init__(type_tfms=type_tfms, dl_type=LMDataLoader if is_lm else SortedDL, dls_kwargs={'seq_len': seq_len} if is_lm else {'before_batch': Pad_Chunk(seq_len=seq_len)}) @classmethod @delegates(Tokenizer.from_df, keep=True) def from_df(cls, text_cols, vocab=None, is_lm=False, seq_len=72, backwards=False, min_freq=3, max_vocab=60000, **kwargs): "Build a `TextBlock` from a dataframe using `text_cols`" return cls(Tokenizer.from_df(text_cols, **kwargs), vocab=vocab, is_lm=is_lm, seq_len=seq_len, backwards=backwards, min_freq=min_freq, max_vocab=max_vocab) @classmethod @delegates(Tokenizer.from_folder, keep=True) def from_folder(cls, path, vocab=None, is_lm=False, seq_len=72, backwards=False, min_freq=3, max_vocab=60000, **kwargs): "Build a `TextBlock` from a `path`" return cls(Tokenizer.from_folder(path, **kwargs), vocab=vocab, is_lm=is_lm, seq_len=seq_len, backwards=backwards, min_freq=min_freq, max_vocab=max_vocab) # Cell class TextDataLoaders(DataLoaders): "Basic wrapper around several `DataLoader`s with factory methods for NLP problems" @classmethod @delegates(DataLoaders.from_dblock) def from_folder(cls, path, train='train', valid='valid', valid_pct=None, seed=None, vocab=None, text_vocab=None, is_lm=False, tok_tfm=None, seq_len=72, backwards=False, **kwargs): "Create from imagenet style dataset in `path` with `train` and `valid` subfolders (or provide `valid_pct`)" splitter = GrandparentSplitter(train_name=train, valid_name=valid) if valid_pct is None else RandomSplitter(valid_pct, seed=seed) blocks = [TextBlock.from_folder(path, text_vocab, is_lm, seq_len, backwards) if tok_tfm is None else TextBlock(tok_tfm, text_vocab, is_lm, seq_len, backwards)] if not is_lm: blocks.append(CategoryBlock(vocab=vocab)) get_items = partial(get_text_files, folders=[train,valid]) if valid_pct is None else get_text_files dblock = DataBlock(blocks=blocks, get_items=get_items, splitter=splitter, get_y=None if is_lm else parent_label) return cls.from_dblock(dblock, path, path=path, seq_len=seq_len, **kwargs) @classmethod @delegates(DataLoaders.from_dblock) def from_df(cls, df, path='.', valid_pct=0.2, seed=None, text_col=0, label_col=1, label_delim=None, y_block=None, text_vocab=None, is_lm=False, valid_col=None, tok_tfm=None, seq_len=72, backwards=False, **kwargs): "Create from `df` in `path` with `valid_pct`" blocks = [TextBlock.from_df(text_col, text_vocab, is_lm, seq_len, backwards) if tok_tfm is None else TextBlock(tok_tfm, text_vocab, is_lm, seq_len, backwards)] if y_block is None and not is_lm: blocks.append(MultiCategoryBlock if is_listy(label_col) and len(label_col) > 1 else CategoryBlock) if y_block is not None and not is_lm: blocks += (y_block if is_listy(y_block) else [y_block]) splitter = RandomSplitter(valid_pct, seed=seed) if valid_col is None else ColSplitter(valid_col) dblock = DataBlock(blocks=blocks, get_x=ColReader("text"), get_y=None if is_lm else ColReader(label_col, label_delim=label_delim), splitter=splitter) return cls.from_dblock(dblock, df, path=path, seq_len=seq_len, **kwargs) @classmethod def from_csv(cls, path, csv_fname='labels.csv', header='infer', delimiter=None, **kwargs): "Create from `csv` file in `path/csv_fname`" df = pd.read_csv(Path(path)/csv_fname, header=header, delimiter=delimiter) return cls.from_df(df, path=path, **kwargs) TextDataLoaders.from_csv = delegates(to=TextDataLoaders.from_df)(TextDataLoaders.from_csv)
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/text/data.py
data.py
__all__ = ['match_embeds', 'load_ignore_keys', 'clean_raw_keys', 'load_model_text', 'TextLearner', 'decode_spec_tokens', 'LMLearner', 'language_model_learner', 'text_classifier_learner'] # Cell from ..basics import * from .core import * from .data import * from .models.core import * from .models.awdlstm import * from ..callback.rnn import * from ..callback.progress import * # Cell def match_embeds(old_wgts, old_vocab, new_vocab): "Convert the embedding in `old_wgts` to go from `old_vocab` to `new_vocab`." bias, wgts = old_wgts.get('1.decoder.bias', None), old_wgts['0.encoder.weight'] wgts_m = wgts.mean(0) new_wgts = wgts.new_zeros((len(new_vocab),wgts.size(1))) if bias is not None: bias_m = bias.mean(0) new_bias = bias.new_zeros((len(new_vocab),)) old_o2i = old_vocab.o2i if hasattr(old_vocab, 'o2i') else {w:i for i,w in enumerate(old_vocab)} for i,w in enumerate(new_vocab): idx = old_o2i.get(w, -1) new_wgts[i] = wgts[idx] if idx>=0 else wgts_m if bias is not None: new_bias[i] = bias[idx] if idx>=0 else bias_m old_wgts['0.encoder.weight'] = new_wgts if '0.encoder_dp.emb.weight' in old_wgts: old_wgts['0.encoder_dp.emb.weight'] = new_wgts.clone() old_wgts['1.decoder.weight'] = new_wgts.clone() if bias is not None: old_wgts['1.decoder.bias'] = new_bias return old_wgts # Cell def _get_text_vocab(dls): vocab = dls.vocab if isinstance(vocab, L): vocab = vocab[0] return vocab # Cell def load_ignore_keys(model, wgts): "Load `wgts` in `model` ignoring the names of the keys, just taking parameters in order" sd = model.state_dict() for k1,k2 in zip(sd.keys(), wgts.keys()): sd[k1].data = wgts[k2].data.clone() return model.load_state_dict(sd) # Cell def _rm_module(n): t = n.split('.') for i in range(len(t)-1, -1, -1): if t[i] == 'module': t.pop(i) break return '.'.join(t) # Cell #For previous versions compatibility, remove for release def clean_raw_keys(wgts): keys = list(wgts.keys()) for k in keys: t = k.split('.module') if f'{_rm_module(k)}_raw' in keys: del wgts[k] return wgts # Cell #For previous versions compatibility, remove for release def load_model_text(file, model, opt, with_opt=None, device=None, strict=True): "Load `model` from `file` along with `opt` (if available, and if `with_opt`)" distrib_barrier() if isinstance(device, int): device = torch.device('cuda', device) elif device is None: device = 'cpu' state = torch.load(file, map_location=device) hasopt = set(state)=={'model', 'opt'} model_state = state['model'] if hasopt else state get_model(model).load_state_dict(clean_raw_keys(model_state), strict=strict) if hasopt and ifnone(with_opt,True): try: opt.load_state_dict(state['opt']) except: if with_opt: warn("Could not load the optimizer state.") elif with_opt: warn("Saved filed doesn't contain an optimizer state.") # Cell @delegates(Learner.__init__) class TextLearner(Learner): "Basic class for a `Learner` in NLP." def __init__(self, dls, model, alpha=2., beta=1., moms=(0.8,0.7,0.8), **kwargs): super().__init__(dls, model, moms=moms, **kwargs) self.add_cbs(rnn_cbs()) def save_encoder(self, file): "Save the encoder to `file` in the model directory" if rank_distrib(): return # don't save if child proc encoder = get_model(self.model)[0] if hasattr(encoder, 'module'): encoder = encoder.module torch.save(encoder.state_dict(), join_path_file(file, self.path/self.model_dir, ext='.pth')) def load_encoder(self, file, device=None): "Load the encoder `file` from the model directory, optionally ensuring it's on `device`" encoder = get_model(self.model)[0] if device is None: device = self.dls.device if hasattr(encoder, 'module'): encoder = encoder.module distrib_barrier() wgts = torch.load(join_path_file(file,self.path/self.model_dir, ext='.pth'), map_location=device) encoder.load_state_dict(clean_raw_keys(wgts)) self.freeze() return self def load_pretrained(self, wgts_fname, vocab_fname, model=None): "Load a pretrained model and adapt it to the data vocabulary." old_vocab = load_pickle(vocab_fname) new_vocab = _get_text_vocab(self.dls) distrib_barrier() wgts = torch.load(wgts_fname, map_location = lambda storage,loc: storage) if 'model' in wgts: wgts = wgts['model'] #Just in case the pretrained model was saved with an optimizer wgts = match_embeds(wgts, old_vocab, new_vocab) load_ignore_keys(self.model if model is None else model, clean_raw_keys(wgts)) self.freeze() return self #For previous versions compatibility. Remove at release @delegates(load_model_text) def load(self, file, with_opt=None, device=None, **kwargs): if device is None: device = self.dls.device if self.opt is None: self.create_opt() file = join_path_file(file, self.path/self.model_dir, ext='.pth') load_model_text(file, self.model, self.opt, device=device, **kwargs) return self # Cell def decode_spec_tokens(tokens): "Decode the special tokens in `tokens`" new_toks,rule,arg = [],None,None for t in tokens: if t in [TK_MAJ, TK_UP, TK_REP, TK_WREP]: rule = t elif rule is None: new_toks.append(t) elif rule == TK_MAJ: new_toks.append(t[:1].upper() + t[1:].lower()) rule = None elif rule == TK_UP: new_toks.append(t.upper()) rule = None elif arg is None: try: arg = int(t) except: rule = None else: if rule == TK_REP: new_toks.append(t * arg) else: new_toks += [t] * arg return new_toks # Cell class LMLearner(TextLearner): "Add functionality to `TextLearner` when dealing with a language model" def predict(self, text, n_words=1, no_unk=True, temperature=1., min_p=None, no_bar=False, decoder=decode_spec_tokens, only_last_word=False): "Return `text` and the `n_words` that come after" self.model.reset() idxs = idxs_all = self.dls.test_dl([text]).items[0].to(self.dls.device) if no_unk: unk_idx = self.dls.vocab.index(UNK) for _ in (range(n_words) if no_bar else progress_bar(range(n_words), leave=False)): with self.no_bar(): preds,_ = self.get_preds(dl=[(idxs[None],)]) res = preds[0][-1] if no_unk: res[unk_idx] = 0. if min_p is not None: if (res >= min_p).float().sum() == 0: warn(f"There is no item with probability >= {min_p}, try a lower value.") else: res[res < min_p] = 0. if temperature != 1.: res.pow_(1 / temperature) idx = torch.multinomial(res, 1).item() idxs = idxs_all = torch.cat([idxs_all, idxs.new([idx])]) if only_last_word: idxs = idxs[-1][None] num = self.dls.train_ds.numericalize tokens = [num.vocab[i] for i in idxs_all if num.vocab[i] not in [BOS, PAD]] sep = self.dls.train_ds.tokenizer.sep return sep.join(decoder(tokens)) @delegates(Learner.get_preds) def get_preds(self, concat_dim=1, **kwargs): return super().get_preds(concat_dim=1, **kwargs) # Cell from .models.core import _model_meta # Cell def _get_text_vocab(dls): vocab = dls.vocab if isinstance(vocab, L): vocab = vocab[0] return vocab # Cell @delegates(Learner.__init__) def language_model_learner(dls, arch, config=None, drop_mult=1., backwards=False, pretrained=True, pretrained_fnames=None, **kwargs): "Create a `Learner` with a language model from `dls` and `arch`." vocab = _get_text_vocab(dls) model = get_language_model(arch, len(vocab), config=config, drop_mult=drop_mult) meta = _model_meta[arch] learn = LMLearner(dls, model, loss_func=CrossEntropyLossFlat(), splitter=meta['split_lm'], **kwargs) url = 'url_bwd' if backwards else 'url' if pretrained or pretrained_fnames: if pretrained_fnames is not None: fnames = [learn.path/learn.model_dir/f'{fn}.{ext}' for fn,ext in zip(pretrained_fnames, ['pth', 'pkl'])] else: if url not in meta: warn("There are no pretrained weights for that architecture yet!") return learn model_path = untar_data(meta[url] , c_key='model') try: fnames = [list(model_path.glob(f'*.{ext}'))[0] for ext in ['pth', 'pkl']] except IndexError: print(f'The model in {model_path} is incomplete, download again'); raise learn = learn.load_pretrained(*fnames) return learn # Cell @delegates(Learner.__init__) def text_classifier_learner(dls, arch, seq_len=72, config=None, backwards=False, pretrained=True, drop_mult=0.5, n_out=None, lin_ftrs=None, ps=None, max_len=72*20, y_range=None, **kwargs): "Create a `Learner` with a text classifier from `dls` and `arch`." vocab = _get_text_vocab(dls) if n_out is None: n_out = get_c(dls) assert n_out, "`n_out` is not defined, and could not be inferred from data, set `dls.c` or pass `n_out`" model = get_text_classifier(arch, len(vocab), n_out, seq_len=seq_len, config=config, y_range=y_range, drop_mult=drop_mult, lin_ftrs=lin_ftrs, ps=ps, max_len=max_len) meta = _model_meta[arch] learn = TextLearner(dls, model, splitter=meta['split_clas'], **kwargs) url = 'url_bwd' if backwards else 'url' if pretrained: if url not in meta: warn("There are no pretrained weights for that architecture yet!") return learn model_path = untar_data(meta[url], c_key='model') try: fnames = [list(model_path.glob(f'*.{ext}'))[0] for ext in ['pth', 'pkl']] except IndexError: print(f'The model in {model_path} is incomplete, download again'); raise learn = learn.load_pretrained(*fnames, model=learn.model[0]) learn.freeze() return learn # Cell @typedispatch def show_results(x: LMTensorText, y, samples, outs, ctxs=None, max_n=10, **kwargs): if ctxs is None: ctxs = get_empty_df(min(len(samples), max_n)) for i,l in enumerate(['input', 'target']): ctxs = [b.show(ctx=c, label=l, **kwargs) for b,c,_ in zip(samples.itemgot(i),ctxs,range(max_n))] ctxs = [b.show(ctx=c, label='pred', **kwargs) for b,c,_ in zip(outs.itemgot(0),ctxs,range(max_n))] display_df(pd.DataFrame(ctxs)) return ctxs # Cell @typedispatch def show_results(x: TensorText, y, samples, outs, ctxs=None, max_n=10, trunc_at=150, **kwargs): if ctxs is None: ctxs = get_empty_df(min(len(samples), max_n)) samples = L((s[0].truncate(trunc_at),*s[1:]) for s in samples) ctxs = show_results[object](x, y, samples, outs, ctxs=ctxs, max_n=max_n, **kwargs) display_df(pd.DataFrame(ctxs)) return ctxs # Cell @typedispatch def plot_top_losses(x: TensorText, y:TensorCategory, samples, outs, raws, losses, trunc_at=150, **kwargs): rows = get_empty_df(len(samples)) samples = L((s[0].truncate(trunc_at),*s[1:]) for s in samples) for i,l in enumerate(['input', 'target']): rows = [b.show(ctx=c, label=l, **kwargs) for b,c in zip(samples.itemgot(i),rows)] outs = L(o + (TitledFloat(r.max().item()), TitledFloat(l.item())) for o,r,l in zip(outs, raws, losses)) for i,l in enumerate(['predicted', 'probability', 'loss']): rows = [b.show(ctx=c, label=l, **kwargs) for b,c in zip(outs.itemgot(i),rows)] display_df(pd.DataFrame(rows))
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/text/learner.py
learner.py
__all__ = ['UNK', 'PAD', 'BOS', 'EOS', 'FLD', 'TK_REP', 'TK_WREP', 'TK_UP', 'TK_MAJ', 'spec_add_spaces', 'rm_useless_spaces', 'replace_rep', 'replace_wrep', 'fix_html', 'replace_all_caps', 'replace_maj', 'lowercase', 'replace_space', 'BaseTokenizer', 'SpacyTokenizer', 'WordTokenizer', 'TokenizeWithRules', 'tokenize1', 'parallel_tokenize', 'fn_counter_pkl', 'fn_lengths_pkl', 'tokenize_folder', 'tokenize_files', 'tokenize_texts', 'tokenize_df', 'tokenize_csv', 'load_tokenized_csv', 'Tokenizer', 'eu_langs', 'SentencePieceTokenizer', 'SubwordTokenizer'] # Cell from ..torch_basics import * from ..data.all import * # Cell import spacy,html from spacy.symbols import ORTH # Cell #special tokens UNK, PAD, BOS, EOS, FLD, TK_REP, TK_WREP, TK_UP, TK_MAJ = "xxunk xxpad xxbos xxeos xxfld xxrep xxwrep xxup xxmaj".split() # Cell #nbdev_comment _all_ = ["UNK", "PAD", "BOS", "EOS", "FLD", "TK_REP", "TK_WREP", "TK_UP", "TK_MAJ"] # Cell _re_spec = re.compile(r'([/#\\])') def spec_add_spaces(t): "Add spaces around / and #" return _re_spec.sub(r' \1 ', t) # Cell _re_space = re.compile(' {2,}') def rm_useless_spaces(t): "Remove multiple spaces" return _re_space.sub(' ', t) # Cell _re_rep = re.compile(r'(\S)(\1{2,})') def replace_rep(t): "Replace repetitions at the character level: cccc -- TK_REP 4 c" def _replace_rep(m): c,cc = m.groups() return f' {TK_REP} {len(cc)+1} {c} ' return _re_rep.sub(_replace_rep, t) # Cell _re_wrep = re.compile(r'(?:\s|^)(\w+)\s+((?:\1\s+)+)\1(\s|\W|$)') # Cell def replace_wrep(t): "Replace word repetitions: word word word word -- TK_WREP 4 word" def _replace_wrep(m): c,cc,e = m.groups() return f' {TK_WREP} {len(cc.split())+2} {c} {e}' return _re_wrep.sub(_replace_wrep, t) # Cell def fix_html(x): "Various messy things we've seen in documents" x = x.replace('#39;', "'").replace('amp;', '&').replace('#146;', "'").replace('nbsp;', ' ').replace( '#36;', '$').replace('\\n', "\n").replace('quot;', "'").replace('<br />', "\n").replace( '\\"', '"').replace('<unk>',UNK).replace(' @.@ ','.').replace(' @-@ ','-').replace('...',' …') return html.unescape(x) # Cell _re_all_caps = re.compile(r'(\s|^)([A-Z]+[^a-z\s]*)(?=(\s|$))') # Cell def replace_all_caps(t): "Replace tokens in ALL CAPS by their lower version and add `TK_UP` before." def _replace_all_caps(m): tok = f'{TK_UP} ' if len(m.groups()[1]) > 1 else '' return f"{m.groups()[0]}{tok}{m.groups()[1].lower()}" return _re_all_caps.sub(_replace_all_caps, t) # Cell _re_maj = re.compile(r'(\s|^)([A-Z][^A-Z\s]*)(?=(\s|$))') # Cell def replace_maj(t): "Replace tokens in Sentence Case by their lower version and add `TK_MAJ` before." def _replace_maj(m): tok = f'{TK_MAJ} ' if len(m.groups()[1]) > 1 else '' return f"{m.groups()[0]}{tok}{m.groups()[1].lower()}" return _re_maj.sub(_replace_maj, t) # Cell def lowercase(t, add_bos=True, add_eos=False): "Converts `t` to lowercase" return (f'{BOS} ' if add_bos else '') + t.lower().strip() + (f' {EOS}' if add_eos else '') # Cell def replace_space(t): "Replace embedded spaces in a token with unicode line char to allow for split/join" return t.replace(' ', '▁') # Cell defaults.text_spec_tok = [UNK, PAD, BOS, EOS, FLD, TK_REP, TK_WREP, TK_UP, TK_MAJ] defaults.text_proc_rules = [fix_html, replace_rep, replace_wrep, spec_add_spaces, rm_useless_spaces, replace_all_caps, replace_maj, lowercase] defaults.text_postproc_rules = [replace_space] # Cell class BaseTokenizer(): "Basic tokenizer that just splits on spaces" def __init__(self, split_char=' ', **kwargs): self.split_char=split_char def __call__(self, items): return (t.split(self.split_char) for t in items) # Cell class SpacyTokenizer(): "Spacy tokenizer for `lang`" def __init__(self, lang='en', special_toks=None, buf_sz=5000): self.special_toks = ifnone(special_toks, defaults.text_spec_tok) nlp = spacy.blank(lang, disable=["parser", "tagger", "ner"]) for w in self.special_toks: nlp.tokenizer.add_special_case(w, [{ORTH: w}]) self.pipe,self.buf_sz = nlp.pipe,buf_sz def __call__(self, items): return (L(doc).attrgot('text') for doc in self.pipe(map(str,items), batch_size=self.buf_sz)) # Cell WordTokenizer = SpacyTokenizer # Cell class TokenizeWithRules: "A wrapper around `tok` which applies `rules`, then tokenizes, then applies `post_rules`" def __init__(self, tok, rules=None, post_rules=None): self.rules = L(ifnone(rules, defaults.text_proc_rules)) self.post_f = compose(*L(ifnone(post_rules, defaults.text_postproc_rules))) self.tok = tok def __call__(self, batch): return (L(o).map(self.post_f) for o in self.tok(maps(*self.rules, batch))) # Cell @delegates(TokenizeWithRules) def tokenize1(text, tok, **kwargs): "Call `TokenizeWithRules` with a single text" return first(TokenizeWithRules(tok=tok, **kwargs)([text])) # Cell def parallel_tokenize(items, tok=None, rules=None, n_workers=defaults.cpus, **kwargs): "Calls optional `setup` on `tok` before launching `TokenizeWithRules` using `parallel_gen" if tok is None: tok = WordTokenizer() if hasattr(tok, 'setup'): tok.setup(items, rules) return parallel_gen(TokenizeWithRules, items, tok=tok, rules=rules, n_workers=n_workers, **kwargs) # Cell fn_counter_pkl = 'counter.pkl' fn_lengths_pkl = 'lengths.pkl' # Cell def _tokenize_files(func, files, path, output_dir=None, output_names=None, n_workers=defaults.cpus, rules=None, tok=None, encoding='utf8', skip_if_exists=False): "Tokenize text `files` in parallel using `n_workers`" if tok is None: tok = WordTokenizer() output_dir = Path(ifnone(output_dir, path.parent/f'{path.name}_tok')) if skip_if_exists and output_dir.exists(): return output_dir output_dir.mkdir(exist_ok=True) if output_names is None: output_names = L(output_dir/f.relative_to(path) for f in files) rules = partial(Path.read_text, encoding=encoding) + L(ifnone(rules, defaults.text_proc_rules.copy())) lengths,counter = {},Counter() for i,tok in parallel_tokenize(files, tok, rules, n_workers=n_workers): out = func(i,output_dir) out.mk_write(' '.join(tok)) lengths[str(files[i].relative_to(path))] = len(tok) counter.update(tok) save_pickle(output_dir/fn_lengths_pkl, lengths) save_pickle(output_dir/fn_counter_pkl, counter) return output_dir # Cell @delegates(_tokenize_files) def tokenize_folder(path, extensions=None, folders=None, output_dir=None, skip_if_exists=True, **kwargs): "Tokenize text files in `path` in parallel using `n_workers`" path,extensions = Path(path),ifnone(extensions, ['.txt']) files = get_files(path, extensions=extensions, recurse=True, folders=folders) def _f(i,output_dir): return output_dir/files[i].relative_to(path) return _tokenize_files(_f, files, path, skip_if_exists=skip_if_exists, **kwargs) # Cell @delegates(_tokenize_files) def tokenize_files(files, path, output_dir, output_names=None, **kwargs): "Tokenize text `files` in parallel using `n_workers`" if output_names is None: output_names = L(output_dir/f.relative_to(path) for f in files) def _f(i,output_dir): return output_dir/output_names[i] return _tokenize_files(_f, files, path, output_dir=output_dir, **kwargs) # Cell def _join_texts(df, mark_fields=False): "Join texts in row `idx` of `df`, marking each field with `FLD` if `mark_fields=True`" text_col = (f'{FLD} {1} ' if mark_fields else '' ) + df.iloc[:,0].astype(str) for i in range(1,len(df.columns)): text_col += (f' {FLD} {i+1} ' if mark_fields else ' ') + df.iloc[:,i].astype(str) return text_col.values # Cell def tokenize_texts(texts, n_workers=defaults.cpus, rules=None, tok=None): "Tokenize `texts` in parallel using `n_workers`" rules = L(ifnone(rules, defaults.text_proc_rules.copy())) outputs = L(parallel_tokenize(texts, tok=tok, rules=rules, n_workers=n_workers) ).sorted().itemgot(1) return outputs # Cell def tokenize_df(df, text_cols, n_workers=defaults.cpus, rules=None, mark_fields=None, tok=None, tok_text_col="text"): "Tokenize texts in `df[text_cols]` in parallel using `n_workers` and stores them in `df[tok_text_col]`" text_cols = [df.columns[c] if isinstance(c, int) else c for c in L(text_cols)] #mark_fields defaults to False if there is one column of texts, True if there are multiple if mark_fields is None: mark_fields = len(text_cols)>1 rules = L(ifnone(rules, defaults.text_proc_rules.copy())) texts = _join_texts(df[text_cols], mark_fields=mark_fields) outputs = L(parallel_tokenize(texts, tok, rules, n_workers=n_workers) ).sorted().itemgot(1) other_cols = df.columns[~df.columns.isin(text_cols)] res = df[other_cols].copy() res[tok_text_col] = outputs res[f'{tok_text_col}_length'] = [len(o) for o in outputs] return res,Counter(outputs.concat()) # Cell def tokenize_csv(fname, text_cols, outname=None, n_workers=4, rules=None, mark_fields=None, tok=None, header='infer', chunksize=50000): "Tokenize texts in the `text_cols` of the csv `fname` in parallel using `n_workers`" df = pd.read_csv(fname, header=header, chunksize=chunksize) outname = Path(ifnone(outname, fname.parent/f'{fname.stem}_tok.csv')) cnt = Counter() for i,dfp in enumerate(df): out,c = tokenize_df(dfp, text_cols, n_workers=n_workers, rules=rules, mark_fields=mark_fields, tok=tok) out.text = out.text.str.join(' ') out.to_csv(outname, header=(None,header)[i==0], index=False, mode=('a','w')[i==0]) cnt.update(c) save_pickle(outname.with_suffix('.pkl'), cnt) # Cell def load_tokenized_csv(fname): "Utility function to quickly load a tokenized csv ans the corresponding counter" fname = Path(fname) out = pd.read_csv(fname) for txt_col in out.columns[1:-1]: out[txt_col] = tuple(out[txt_col].str.split(' ')) return out,load_pickle(fname.with_suffix('.pkl')) # Cell class Tokenizer(Transform): "Provides a consistent `Transform` interface to tokenizers operating on `DataFrame`s and folders" input_types = (str, list, L, tuple, Path) def __init__(self, tok, rules=None, counter=None, lengths=None, mode=None, sep=' '): if isinstance(tok,type): tok=tok() store_attr('tok,counter,lengths,mode,sep') self.rules = defaults.text_proc_rules if rules is None else rules @classmethod @delegates(tokenize_df, keep=True) def from_df(cls, text_cols, tok=None, rules=None, sep=' ', **kwargs): if tok is None: tok = WordTokenizer() res = cls(tok, rules=rules, mode='df') res.kwargs,res.train_setup = merge({'tok': tok}, kwargs),False res.text_cols,res.sep = text_cols,sep return res @classmethod @delegates(tokenize_folder, keep=True) def from_folder(cls, path, tok=None, rules=None, **kwargs): path = Path(path) if tok is None: tok = WordTokenizer() output_dir = tokenize_folder(path, tok=tok, rules=rules, **kwargs) res = cls(tok, counter=load_pickle(output_dir/fn_counter_pkl), lengths=load_pickle(output_dir/fn_lengths_pkl), rules=rules, mode='folder') res.path,res.output_dir = path,output_dir return res def setups(self, dsets): if not self.mode == 'df' or not isinstance(dsets.items, pd.DataFrame): return dsets.items,count = tokenize_df(dsets.items, self.text_cols, rules=self.rules, **self.kwargs) if self.counter is None: self.counter = count return dsets def encodes(self, o:Path): if self.mode=='folder' and str(o).startswith(str(self.path)): tok = self.output_dir/o.relative_to(self.path) return L(tok.read_text().split(' ')) else: return self._tokenize1(o.read_text()) def encodes(self, o:str): return self._tokenize1(o) def _tokenize1(self, o): return first(self.tok([compose(*self.rules)(o)])) def get_lengths(self, items): if self.lengths is None: return None if self.mode == 'df': if isinstance(items, pd.DataFrame) and 'text_lengths' in items.columns: return items['text_length'].values if self.mode == 'folder': try: res = [self.lengths[str(Path(i).relative_to(self.path))] for i in items] if len(res) == len(items): return res except: return None def decodes(self, o): return TitledStr(self.sep.join(o)) # Cell eu_langs = ["bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr", "hu", "it","lt","lv","mt","nl","pl","pt","ro","sk","sl","sv"] # all European langs # Cell class SentencePieceTokenizer():#TODO: pass the special tokens symbol to sp "SentencePiece tokenizer for `lang`" def __init__(self, lang='en', special_toks=None, sp_model=None, vocab_sz=None, max_vocab_sz=30000, model_type='unigram', char_coverage=None, cache_dir='tmp'): try: from sentencepiece import SentencePieceTrainer,SentencePieceProcessor except ImportError: raise Exception('sentencepiece module is missing: run `pip install sentencepiece!=0.1.90,!=0.1.91`') self.sp_model,self.cache_dir = sp_model,Path(cache_dir) self.vocab_sz,self.max_vocab_sz,self.model_type = vocab_sz,max_vocab_sz,model_type self.char_coverage = ifnone(char_coverage, 0.99999 if lang in eu_langs else 0.9998) self.special_toks = ifnone(special_toks, defaults.text_spec_tok) if sp_model is None: self.tok = None else: self.tok = SentencePieceProcessor() self.tok.Load(str(sp_model)) os.makedirs(self.cache_dir, exist_ok=True) def _get_vocab_sz(self, raw_text_path): cnt = Counter() with open(raw_text_path, 'r') as f: for line in f.readlines(): cnt.update(line.split()) if len(cnt)//4 > self.max_vocab_sz: return self.max_vocab_sz res = len(cnt)//4 while res%8 != 0: res+=1 return max(res,29) def train(self, raw_text_path): "Train a sentencepiece tokenizer on `texts` and save it in `path/tmp_dir`" from sentencepiece import SentencePieceTrainer vocab_sz = self._get_vocab_sz(raw_text_path) if self.vocab_sz is None else self.vocab_sz spec_tokens = ['\u2581'+s for s in self.special_toks] SentencePieceTrainer.Train(" ".join([ f"--input={raw_text_path} --vocab_size={vocab_sz} --model_prefix={self.cache_dir/'spm'}", f"--character_coverage={self.char_coverage} --model_type={self.model_type}", f"--unk_id={len(spec_tokens)} --pad_id=-1 --bos_id=-1 --eos_id=-1 --minloglevel=2", f"--user_defined_symbols={','.join(spec_tokens)} --hard_vocab_limit=false"])) raw_text_path.unlink() return self.cache_dir/'spm.model' def setup(self, items, rules=None): from sentencepiece import SentencePieceProcessor if rules is None: rules = [] if self.tok is not None: return {'sp_model': self.sp_model} raw_text_path = self.cache_dir/'texts.out' with open(raw_text_path, 'w') as f: for t in progress_bar(maps(*rules, items), total=len(items), leave=False): f.write(f'{t}\n') sp_model = self.train(raw_text_path) self.tok = SentencePieceProcessor() self.tok.Load(str(sp_model)) return {'sp_model': sp_model} def __call__(self, items): if self.tok is None: self.setup(items) for t in items: yield self.tok.EncodeAsPieces(t) # Cell SubwordTokenizer = SentencePieceTokenizer
zwyfastai
/zwyfastai-2.0.21.tar.gz/zwyfastai-2.0.21/src/fastai/text/core.py
core.py