code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import pyaudio import struct import math INITIAL_TAP_THRESHOLD = 0.1 # 0.01 to 1.5 FORMAT = pyaudio.paInt16 SHORT_NORMALIZE = (1.0/32768.0) CHANNELS = 2 RATE = 44100 INPUT_BLOCK_TIME = 0.05 INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME) OVERSENSITIVE = 15.0/INPUT_BLOCK_TIME UNDERSENSITIVE = 120.0/INPUT_BLOCK_TIME MAX_TAP_BLOCKS = 0.15/INPUT_BLOCK_TIME def get_rms( block ): count = len(block)/2 format = "%dh"%(count) shorts = struct.unpack( format, block ) sum_squares = 0.0 for sample in shorts: n = sample * SHORT_NORMALIZE sum_squares += n*n return math.sqrt( sum_squares / count ) class TapTester(object): def __init__(self): self.pa = pyaudio.PyAudio() self.stream = self.open_mic_stream() self.tap_threshold = INITIAL_TAP_THRESHOLD self.noisycount = MAX_TAP_BLOCKS+1 self.quietcount = 0 self.errorcount = 0 def stop(self): self.stream.close() def find_input_device(self): device_index = None for i in range( self.pa.get_device_count() ): devinfo = self.pa.get_device_info_by_index(i) # print( "Device %d: %s"%(i,devinfo["name"]) ) for keyword in ["mic","input"]: if keyword in devinfo["name"].lower(): # print( "Found an input: device %d - %s"%(i,devinfo["name"]) ) device_index = i return device_index if device_index == None: print( "No preferred input found; using default input device." ) return device_index def open_mic_stream( self ): device_index = self.find_input_device() stream = self.pa.open( format = FORMAT, channels = CHANNELS, rate = RATE, input = True, input_device_index = device_index, frames_per_buffer = INPUT_FRAMES_PER_BLOCK) return stream def listen(self): try: block = self.stream.read(INPUT_FRAMES_PER_BLOCK) except IOError as e: self.errorcount += 1 print( "(%d) Error recording: %s"%(self.errorcount,e) ) self.noisycount = 1 return amplitude = get_rms( block ) if amplitude > self.tap_threshold: self.quietcount = 0 self.noisycount += 1 if self.noisycount > OVERSENSITIVE: self.tap_threshold *= 1.1 else: if 1 <= self.noisycount <= MAX_TAP_BLOCKS: return "True-Mic" self.noisycount = 0 self.quietcount += 1 if self.quietcount > UNDERSENSITIVE: self.tap_threshold *= 2 def Tester(): tt = TapTester() while True: kk = tt.listen() if "True-Mic" == kk: print("") print("> Clap Detected: Starting The Jarvis.") print("") return "True-Mic"
AI-Jarvis
/AI_Jarvis-0.0.3-py3-none-any.whl/AI_Jarvis/Clap.py
Clap.py
![DXC](https://raw.githubusercontent.com/npulagam/AI-Starter/master/DXC_Logo.png) <img src="https://raw.githubusercontent.com/npulagam/AI-Starter/master/Industrialized_AI_Animation.gif" height="500" width="900" ></img> # DXC Industrialized AI Starter DXC Industrialized AI Starter makes it easy for you to deploy your AI algorithms (Industrialize). If you are a data scientist, working on an algorithm that you would like to deploy across the enterprise, DXC's Industrialized AI starter makes it easier for you to: - Access, clean, and explore raw data - Build data pipelines - Run AI experiments - Publish microservices ## Installation In order to install and use the DXC AI Starter library, please use the below code snippet: ```python 1. pip install DXC-Industrialized-AI-Starter 2. from dxc import ai ``` ## Getting Started ### Access, Clean, and Explore Raw Data Use the library to access, clean, and explore your raw data. ``` python #Access raw data df = ai.read_data_frame_from_remote_json(json_url) df = ai.read_data_frame_from_remote_csv(csv_url) df = ai.read_data_frame_from_local_json() df = ai.read_data_frame_from_local_csv() df = ai.read_data_frame_from_local_excel_file() #Clean data: Imputes missing data, removes empty rows and columns, anonymizes text. raw_data = ai.clean_dataframe(df) #Explore complete data as a HTML interactive report report = ai.explore_complete_data(df) report.to_notebook_iframe() #Explore raw data: ai.visualize_missing_data(raw_data) #visualizes relationships between all features in data. ai.explore_features(raw_data) #creates a visual display of missing data. ai.plot_distributions(raw_data) #creates a distribution graph for each column. ``` [Click here](https://dxc-technology.github.io/DXC-Industrialized-AI-Starter/access_clean/) for details about Acess,clean,explore raw data. ### Build Data Pipelines Pipelines are a standard way to process your data towards modeling and interpreting. By default, the DXC AI Starter library uses the free tier of [MongoDB Atlas](https://account.mongodb.com/account/register) to store raw data and execute pipelines. In order to get started, you need to first have an <a href= "https://account.mongodb.com/account/register" target="_blank">MongoDB</a> account which you can signup for free and create a database "connection_string" and specify those details in the data_layer below. The following code connects to MongoDB and stores raw data for processing. ```python #Insert data into MongoDB: data_layer = { "connection_string": "<your connection_string>", "collection_name": "<your collection_name>", "database_name": "<your database_name>", "data_source":"<Source of your datset>", "cleaner":"<whether applied cleaner yes/no >" } wrt_raw_data = ai.write_raw_data(data_layer, raw_data, date_fields = []) ``` Once raw data is stored, you can run pipelines to transform the data. This code instructs the data store on how to refine the output of raw data into something that can be used to train a machine-learning model. Please refer to the syntax of [MongDB pipelines](https://docs.mongodb.com/manual/core/aggregation-pipeline/) for the details of how to write a pipeline. Below is an example of creating and executing a pipeline. ```python pipeline = [ { '$group':{ '_id': { "funding_source":"$funding_source", "request_type":"$request_type", "department_name":"$department_name", "replacement_body_style":"$replacement_body_style", "equipment_class":"$equipment_class", "replacement_make":"$replacement_make", "replacement_model":"$replacement_model", "procurement_plan":"$procurement_plan" }, "avg_est_unit_cost":{"$avg":"$est_unit_cost"}, "avg_est_unit_cost_error":{"$avg":{ "$subtract": [ "$est_unit_cost", "$actual_unit_cost" ] }} } } ] df = ai.access_data_from_pipeline(wrt_raw_data, pipeline) #refined data will be stored in pandas dataframe. ``` <a href= "https://dxc-technology.github.io/DXC-Industrialized-AI-Starter/data_pipeline/" target="_blank">Click here</a> for details about building data pipeline. ### Run AI Experiments Use the DXC AI Starter to build and test algorithms. This code executes an experiment by running run_experiment() on an experiment design. ```python experiment_design = { #model options include ['tpot_regression()', 'tpot_classification()', 'timeseries'] "model": ai.tpot_regression(), "labels": df.avg_est_unit_cost_error, "data": df, #Tell the model which column is 'output' #Also note columns that aren't purely numerical #Examples include ['nlp', 'date', 'categorical', 'ignore'] "meta_data": { "avg_est_unit_cost_error": "output", "_id.funding_source": "categorical", "_id.department_name": "categorical", "_id.replacement_body_style": "categorical", "_id.replacement_make": "categorical", "_id.replacement_model": "categorical", "_id.procurement_plan": "categorical" } } trained_model = ai.run_experiment(experiment_design, verbose = False, max_time_mins = 5, max_eval_time_mins = 0.04, config_dict = None, warm_start = False, export_pipeline = True, scoring = None) ``` [Click here](https://dxc-technology.github.io/DXC-Industrialized-AI-Starter/experiment/) for details about run AI experiments. ### Publish Microservice The DXC AI Starter library makes it easy to publish your models as working microservices. By default, the DXC AI Starter library uses free tier of [Algorithmia](https://algorithmia.com/signup) to publish models as microservices. You must create an [Algorithmia](https://algorithmia.com/signup) account to use. Below is the example for publishing a microservice. ```python #trained_model is the output of run_experiment() function microservice_design = { "microservice_name": "<Name of your microservice>", "microservice_description": "<Brief description about your microservice>", "execution_environment_username": "<Algorithmia username>", "api_key": "<your api_key>", "api_namespace": "<your api namespace>", "model_path":"<your model_path>" } #publish the micro service and display the url of the api api_url = ai.publish_microservice(microservice_design, trained_model) print("api url: " + api_url) ``` [Click here](https://dxc-technology.github.io/DXC-Industrialized-AI-Starter/publish_microservice/) for details about publishing microservice. ## Docs For detailed and complete documentation, please <a href="https://dxc-technology.github.io/DXC-Industrialized-AI-Starter/" target="_blank">click here</a> ### Example notebooks <a href="https://nbviewer.jupyter.org/github/dxc-technology/DXC-Industrialized-AI-Starter/tree/c58754247060262ac0949396e48f71861cb79d4e/Examples/" target="_blank">Here</a> are example notebooks for individual models. These sample notebooks help to understand on how to use each function, what parameters are expected for each function and what will be the output of each function in a model. ### Contributing Guide To know more about the contribution and guidelines please <a href="https://github.com/dxc-technology/DXC-Industrialized-AI-Starter/blob/master/CONTRIBUTING.md" target="_blank">click here</a> ### Reporting Issues If you find any issues, feel free to report them <a href="https://github.com/dxc-technology/DXC-Industrialized-AI-Starter/issues" target="_blank">here</a> with clear description of your issue. You can use the existing templates for creating issues.
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/README.md
README.md
from .AI_guild.AI_guild import guild_member_should_apply_for_badge from .AI_guild.AI_guild import apply_for_an_ai_badge from .AI_guild.AI_guild import AI_Guild_Role from .AI_guild.AI_guild import AI_Badge from .read_data.read_json import flatten_json_into_dataframe from .read_data.read_json import get_file_path_json from .read_data.read_json import read_data_frame_from_remote_json from .read_data.read_json import read_data_frame_from_local_json from .read_data.read_json import read_data_frame_from_local_json from .read_data.read_excel import get_file_path_excel from .read_data.read_excel import read_data_frame_from_local_excel_file from .read_data.read_csv import get_file_path_csv from .read_data.read_csv import read_data_frame_from_local_csv from .read_data.read_csv import read_data_frame_from_remote_csv from .read_data.read_json import read_data_frame_from_remote_json from .clean_data.clean_data import clean_dataframe from .visualization.visualization import explore_features from .visualization.visualization import visualize_missing_data from .visualization.visualization import plot_distributions from .visualization.visualization import explore_complete_data from .pipeline.pipeline import convert_dates_from_arrow_to_string from .pipeline.pipeline import write_raw_data from .pipeline.pipeline import access_data_from_pipeline from .pipeline.pipeline import store_data_from_pipeline from .run_model.run_model import get_data_from_pipeline from .run_model.run_model import run_experiment from .run_model.run_model import model from .run_model.run_model import prediction from .run_model.run_model import regression from .run_model.run_model import classification from .run_model.run_model import tpot_regression from .run_model.run_model import tpot_classification from .run_model.interpret_model import Global_Model_Explanation from .run_model.interpret_model import Explanation_Dashboard # from .run_model.clustering import Clustering # from .sentiment_analysis.sentiment_analysis import texts_from_df # from .sentiment_analysis.sentiment_analysis import get_model_learner # from .sentiment_analysis.sentiment_analysis import get_predictor # from .unsupervised_sentiment_analysis.kmeans_sentiment_analysis import get_text_clean # from .unsupervised_sentiment_analysis.kmeans_sentiment_analysis import kmeans_sentiment_analyzer # from .unsupervised_sentiment_analysis.kmeans_sentiment_analysis import kmeans_sentiment_predictor from .publish_microservice.publish_microservice import publish_microservice # from .deep_learning.image_classifier import create_training_data # from .deep_learning.image_classifier import seggregate_data # from .deep_learning.image_classifier import split_normalize_data # from .deep_learning.image_classifier import image_classifier from .logging.pipeline_logging import pipeline_log from .logging.experiment_design_logging import experiment_design_log from .logging.microservice_logging import microservice_design_log from .datasets._base import load_data # from .datasets._base import load_data_details # from .datasets._base import get_data
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/__init__.py
__init__.py
from pymongo import MongoClient #MongoDB import pandas as pd import json from dxc.ai.global_variables import globals_file from dxc.ai.logging import pipeline_logging def convert_dates_from_arrow_to_string(df, arrow_date_fields): for field in arrow_date_fields: df[field] = df[field].apply(format) return(df) #inserting data into mongo DB def insert_collection(data_layer, collection_name, df): client = MongoClient(data_layer["connection_string"]) #connect to the data layer collections = client[data_layer["database_name"]].list_collection_names() db = client[data_layer["database_name"]][collection_name] #delete the collection if it exists if collection_name not in collections: db.insert_many(df.to_dict('records')) else: db.drop() db.insert_many(df.to_dict('records')) return db def write_raw_data(data_layer, raw_data, arrow_date_fields = []): ##make the column names lower case and remove spaces if globals_file.clean_data_used == True: raw_data = raw_data.clean_names() globals_file.wrt_raw_data_used = True globals_file.clean_data_used = False ##convert your raw data into writable data by converting Arrow dates to strings writable_raw_data = convert_dates_from_arrow_to_string(raw_data, arrow_date_fields) #inserting data into MongoDB collection db = insert_collection(data_layer, data_layer["collection_name"], writable_raw_data) return db #Handle case-sensitive for column names in pipeline def col_header_conv_1(pipe): for key,value in pipe.items(): if type(value) is dict: col_header_conv_1(value) elif type(value) is list: for each in value: if type(each) is dict: col_header_conv_1(each) else: if isinstance(each, str): j = value.index(each) value[j] = '_'.join(each.split()).lower() else: if isinstance(value, str): pipe[key] = '_'.join(value.split()).lower() return pipe def col_header_conv(pipe): for i in range(len(pipe)): single_pipe = pipe[i] new_value = col_header_conv_1(single_pipe) pipe[i] = new_value return pipe def access_data_from_pipeline(db, pipe): pipeline_logging.pipeline_log(pipe) if globals_file.wrt_raw_data_used == True or globals_file.clean_data_used == True: pipe = col_header_conv(pipe) globals_file.wrt_raw_data_used = False globals_file.clean_data_used = False data = db.aggregate(pipeline=pipe) data = list(data) df = pd.json_normalize(data) globals_file.run_experiment_warm_start = False return df def store_data_from_pipeline(data_layer, df): db = insert_collection(data_layer, data_layer["collection_name"] + '_aggregate', df) print('Created data piple line has stored in MongoDB in "%s" collection under "%s" datbase' %(data_layer["collection_name"] + '_aggregate',data_layer["database_name"] ))
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/pipeline/pipeline.py
pipeline.py
# training_data =[] # #This function separates both features & labels from training data # def seggregate_data(training_data): # X = [] # Y = [] # for features, lables in training_data: # X.append(features) # Y.append(lables) # X = np.array(X) # Y = np.array(Y) # return X,Y # #This function reads each folder and each image and converts into array # #This function internally calls seggregate_data to separate features & labels # def create_training_data(CATEGORIES,DATADIR, IMG_SIZE = 100): # for category in CATEGORIES: # class_num = CATEGORIES.index(category) # path = os.path.join(DATADIR,category) # for img in os.listdir(path): # try: # img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE) # new_array = cv2.resize(img_array,(IMG_SIZE,IMG_SIZE)) # training_data.append([new_array,class_num]) # except Exception as e: # pass # random.shuffle(training_data) # features,labels = seggregate_data(training_data) # return features,labels # #This function splits the data into test and train # #This function normalizes the features values in both train and test # #This function converts label values to binary matrix # def split_normalize_data(X, Y, category_count, TEST_SIZE = 0.20,IMG_SIZE=100 ): # x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = TEST_SIZE) # x_train = x_train.reshape(x_train.shape[0], IMG_SIZE, IMG_SIZE, 1) # x_test = x_test.reshape(x_test.shape[0], IMG_SIZE, IMG_SIZE, 1) # x_train = x_train.astype('float32') # x_test = x_test.astype('float32') # x_train/=255 # x_test/=255 # y_train = tf.keras.utils.to_categorical(y_train, category_count) # y_test = tf.keras.utils.to_categorical(y_test, category_count) # return x_train, x_test, y_train, y_test # #This function creates a model compiling input, Hidden and output layers # def image_classifier(category_count, IMG_SIZE = 100): # model = tf.keras.models.Sequential() # model.add(tf.keras.layers.Conv2D(32,(3,3),input_shape=(IMG_SIZE,IMG_SIZE,1))) # model.add(tf.keras.layers.Dense(32,activation=tf.nn.relu)) # model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2))) # model.add(tf.keras.layers.Conv2D(64, (3,3))) # model.add(tf.keras.layers.Dense(64,activation=tf.nn.relu)) # model.add(tf.keras.layers.MaxPooling2D(pool_size=(2,2))) # model.add(tf.keras.layers.Flatten()) # model.add(tf.keras.layers.Dropout(0.2)) # model.add(tf.keras.layers.Dense(category_count,activation=tf.nn.softmax)) # model.compile(optimizer='adam', # loss='categorical_crossentropy', # metrics=['accuracy']) # return model
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/deep_learning/image_classifier.py
image_classifier.py
import Algorithmia from Algorithmia.errors import AlgorithmException import shutil #serializing models import urllib.parse #input data from git import Git, Repo, remote import os import pickle from IPython.display import YouTubeVideo from IPython.core.magic import register_line_cell_magic import urllib.request, json from dxc.ai.global_variables import globals_file from dxc.ai.logging import microservice_logging def publish_microservice(microservice_design, trained_model, verbose = False): #Capture microservice_design in log microservice_logging.microservice_design_log(microservice_design) # create a connection to algorithmia client=Algorithmia.client(microservice_design["api_key"]) api = client.algo(microservice_design["execution_environment_username"] + "/" + microservice_design["microservice_name"]) ##Defining the environment for Algorithmia try: if microservice_design["environment"].lower() == 'default': run_environment = "python38" else: run_environment = microservice_design["environment"] except: run_environment = "python38" # create the algorithm if it doesn't exist try: api.create( details = { "summary": microservice_design["microservice_description"], "label": microservice_design["microservice_name"], "tagline": microservice_design["microservice_description"] }, settings = { "source_visibility": "closed", "package_set": run_environment, "license": "apl", "network_access": "full", "pipeline_enabled": True } ) except Exception as error: print(error) # create data collection if it doesn't exist if not client.dir(microservice_design["model_path"]).exists(): client.dir(microservice_design["model_path"]).create() # define a local work directory local_dir = microservice_design["microservice_name"] # delete local directory if it already exists if os.path.exists(local_dir): shutil.rmtree(local_dir) # create local work directory os.makedirs(local_dir) # serialize the model locally local_model = "{}/{}".format(local_dir, "mdl") # open a file in a specified location file = open(local_model, 'wb') # dump information to that file pickle.dump(trained_model, file) # close the file file.close() # upload our model file to our data collection api_model = "{}/{}".format(microservice_design["model_path"], microservice_design["microservice_name"]) client.file(api_model).putFile(local_model) if globals_file.run_experiment_encoder_used: encode_model = 'encode_file.pkl' encode_output = open(encode_model, 'wb') pickle.dump(globals_file.run_experiment_encoder, encode_output) encode_output.close() encode_folder = microservice_design["microservice_name"] + '_encoder' encode_path = "{}/{}".format(microservice_design["model_path"], encode_folder) client.file(encode_path).putFile(encode_model) if globals_file.run_experiment_target_encoder_used: target_encode_model = 'target_encode_file.pkl' target_encode_output = open(target_encode_model, 'wb') pickle.dump(globals_file.run_experiment_target_encoder, target_encode_output) target_encode_output.close() target_encode_folder = microservice_design["microservice_name"] + '_target_encoder' target_encode_path = "{}/{}".format(microservice_design["model_path"], target_encode_folder) client.file(target_encode_path).putFile(target_encode_model) # encode API key, so we can use it in the git URL encoded_api_key = urllib.parse.quote_plus(microservice_design["api_key"]) algo_repo = "https://{}:{}@git.algorithmia.com/git/{}/{}.git".format( microservice_design["execution_environment_username"], encoded_api_key, microservice_design["execution_environment_username"], microservice_design["microservice_name"] ) class Progress(remote.RemoteProgress): if verbose == False: def line_dropped(self, line): pass def update(self, *args): pass else: def line_dropped(self, line): print(line) def update(self, *args): print(self._cur_line) p = Progress() try: Repo.clone_from(algo_repo, "{}/{}".format(local_dir, microservice_design["microservice_name"]), progress=p) cloned_repo = Repo("{}/{}".format(local_dir, microservice_design["microservice_name"])) except Exception as error: print("here") print(error) api_script_path = "{}/{}/src/{}.py".format(local_dir, microservice_design["microservice_name"], microservice_design["microservice_name"]) dependency_file_path = "{}/{}/{}".format(local_dir, microservice_design["microservice_name"], "requirements.txt") # defines the source for the microservice results = "{'results':prediction}" file_path = "'" + api_model + "'" if globals_file.run_experiment_encoder_used: encodefile_path = "'" + encode_path + "'" if globals_file.run_experiment_target_encoder_used: target_encodefile_path = "'" + target_encode_path + "'" ##Don't change the structure of below docstring ##this is the source code needed for the microservice src_code_content = """import Algorithmia from Algorithmia import ADK import pandas as pd import pickle import json import numpy as np # create an Algorithmia client client = Algorithmia.client() def load_model(): # Get file by name # Open file and load model \tfile_path = {file_path} \tmodel_path = client.file(file_path).getFile().name # Open file and load model \twith open(model_path, 'rb') as f: \t\tmodel = pickle.load(f) \t\treturn model trained_model = load_model() def default(obj): if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() raise TypeError('Unknown type:', type(obj)) def apply(input): \tprediction = trained_model.predict(pd.DataFrame(input,index = [0])) \tprediction = json.dumps(prediction, default=default) \treturn {results} algorithm = ADK(apply) algorithm.init("Algorithmia")""" ## source code for customized model src_code_generalized = """import Algorithmia from Algorithmia import ADK import pandas as pd import pickle import json import numpy as np # create an Algorithmia client client = Algorithmia.client() def load_model(): # Get file by name # Open file and load model \tfile_path = {file_path} \tmodel_path = client.file(file_path).getFile().name # Open file and load model \twith open(model_path, 'rb') as f: \t\tmodel = pickle.load(f) \t\treturn model trained_model = load_model() def default(obj): if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() raise TypeError('Unknown type:', type(obj)) def apply(input): \tprediction = trained_model.predict(pd.DataFrame(input, index = [0])) \tprediction = json.dumps(prediction, default=default) \treturn {results} algorithm = ADK(apply) algorithm.init("Algorithmia")""" ## source code for generalized tpot model src_code_generalized_encode = """import Algorithmia from Algorithmia import ADK import pandas as pd import pickle import json import numpy as np import feature_engine # create an Algorithmia client client = Algorithmia.client() def load_model(): # Get file by name # Open file and load model \tfile_path = {file_path} \tmodel_path = client.file(file_path).getFile().name # Open file and load model \twith open(model_path, 'rb') as f: \t\tmodel = pickle.load(f) \t\treturn model trained_model = load_model() def load_encode(): # Get file by name # Open file and load encoder \tencodefile_path = {encodefile_path} \tencode_path = client.file(encodefile_path).getFile().name # Open file and load encoder \twith open(encode_path, 'rb') as f: \t\tencoder = pickle.load(f) \t\treturn encoder encode = load_encode() def default(obj): if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() raise TypeError('Unknown type:', type(obj)) def apply(input): \tinput = pd.DataFrame([input]) \ttry: \t\tinput = encode.transform(input) \texcept: \t\tpass \tprediction = trained_model.predict(input) \tprediction = json.dumps(prediction[0], default=default) \treturn {results} algorithm = ADK(apply) algorithm.init("Algorithmia")""" ## source code for generalized tpot model src_code_generalized_target_encode = """import Algorithmia from Algorithmia import ADK import pandas as pd import pickle import json import numpy as np import feature_engine # create an Algorithmia client client = Algorithmia.client() def load_model(): # Get file by name # Open file and load model \tfile_path = {file_path} \tmodel_path = client.file(file_path).getFile().name # Open file and load model \twith open(model_path, 'rb') as f: \t\tmodel = pickle.load(f) \t\treturn model trained_model = load_model() def load_target_encode(): # Get file by name # Open file and load target encoder \ttarget_encodefile_path = {target_encodefile_path} \ttarget_encode_path = client.file(target_encodefile_path).getFile().name # Open file and load target encoder \twith open(target_encode_path, 'rb') as f: \t\ttarget_encoder = pickle.load(f) \t\treturn target_encoder target_encode = load_target_encode() def default(obj): if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() raise TypeError('Unknown type:', type(obj)) def apply(input): \tinput = pd.DataFrame([input]) \ttry: \t\tinput = encode.transform(input) \texcept: \t\tpass \tprediction = trained_model.predict(input) \ttry: \t\tprediction = target_encode.inverse_transform(prediction) \t\tprediction = prediction[0] \texcept: \t\tprediction = json.dumps(prediction[0], default=default) \treturn {results} algorithm = ADK(apply) algorithm.init("Algorithmia")""" ## source code for generalized tpot model src_code_generalized_both_encode = """import Algorithmia from Algorithmia import ADK import pandas as pd import pickle import json import numpy as np import feature_engine # create an Algorithmia client client = Algorithmia.client() def load_model(): # Get file by name # Open file and load model \tfile_path = {file_path} \tmodel_path = client.file(file_path).getFile().name # Open file and load model \twith open(model_path, 'rb') as f: \t\tmodel = pickle.load(f) \t\treturn model trained_model = load_model() def load_encode(): # Get file by name # Open file and load encoder \tencodefile_path = {encodefile_path} \tencode_path = client.file(encodefile_path).getFile().name # Open file and load encoder \twith open(encode_path, 'rb') as f: \t\tencoder = pickle.load(f) \t\treturn encoder encode = load_encode() def load_target_encode(): # Get file by name # Open file and load target encoder \ttarget_encodefile_path = {target_encodefile_path} \ttarget_encode_path = client.file(target_encodefile_path).getFile().name # Open file and load target encoder \twith open(target_encode_path, 'rb') as f: \t\ttarget_encoder = pickle.load(f) \t\treturn target_encoder target_encode = load_target_encode() def default(obj): if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() raise TypeError('Unknown type:', type(obj)) def apply(input): \tinput = pd.DataFrame([input]) \ttry: \t\tinput = encode.transform(input) \texcept: \t\tpass \tprediction = trained_model.predict(input) \ttry: \t\tprediction = target_encode.inverse_transform(prediction) \t\tprediction = prediction[0] \texcept: \t\tprediction = json.dumps(prediction[0], default=default) \treturn {results} algorithm = ADK(apply) algorithm.init("Algorithmia")""" if globals_file.run_experiment_used: src_code_content = src_code_generalized if globals_file.run_experiment_encoder_used and not globals_file.run_experiment_target_encoder_used: src_code_content = src_code_generalized_encode if globals_file.run_experiment_target_encoder_used and not globals_file.run_experiment_encoder_used: src_code_content = src_code_generalized_target_encode if globals_file.run_experiment_encoder_used and globals_file.run_experiment_target_encoder_used: src_code_content = src_code_generalized_both_encode splitted=src_code_content.split('\n') ##writes the source into the local, cloned GitHub repository with open(api_script_path, "w") as f: for line in splitted: if line.strip()=="file_path = {file_path}": line="\tfile_path = {}".format(file_path) if line.strip()=="encodefile_path = {encodefile_path}": line="\tencodefile_path = {}".format(encodefile_path) if line.strip()=="target_encodefile_path = {target_encodefile_path}": line="\ttarget_encodefile_path = {}".format(target_encodefile_path) if line.strip()=="return {results}": line="\treturn {}".format(results) f.write(line + '\n') ##Don't change the structure of below docstring ##this is the requirements needed for microservice requirements_file_content="""algorithmia pandas numpy feature-engine""" post_split=requirements_file_content.split('\n') #writes the requirements file into the local, cloned GitHub repository. with open(dependency_file_path, "w") as f: for line in post_split: line = line.lstrip() f.write(line + '\n') # Publish the microservice files = ["src/{}.py".format(microservice_design["microservice_name"]), "requirements.txt"] cloned_repo.index.add(files) cloned_repo.index.commit("Add algorithm files") origin = cloned_repo.remote(name='origin') p = Progress() origin.push(progress=p) # publish/deploy our algorithm #client.algo(microservice_design["api_namespace"]).publish() # api.publish( # settings = { # "algorithm_callability": "private" # }, # version_info = { # "release_notes": "Publishing Microservice", # "version_type": "revision" # }, # details = { # "label": microservice_design["microservice_name"] # } # ) api.publish( details = { "label": microservice_design["microservice_name"] } ) # code generates the api endpoint for the newly published microservice latest_version = client.algo(microservice_design["api_namespace"]).info().version_info.semantic_version api_url = "https://api.algorithmia.com/v1/algo/{}/{}".format(microservice_design["api_namespace"], latest_version) return api_url
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/publish_microservice/publish_microservice.py
publish_microservice.py
import json import requests from enum import Enum class AI_Guild_Role(Enum): PROJECT_MANAGER = 1, DATA_SCIENTIST = 2, DATA_ENGINEER = 3, ALL = 4 class AI_Badge(Enum): CREATE_DATA_STORIES = 1 RUN_AGILE_TRANSFORMATION = 2 BUILD_DATA_PIPELINES = 3 RUN_AI_EXPERIMENT = 4 BUILD_UTILITY_AI_SERVICES = 5 PERFORM_AI_FORENSICS = 6 TEST = 7 def guild_member_should_apply_for_badge(guild_member_roles, ai_badge): guild_role_badges = { AI_Guild_Role.PROJECT_MANAGER : [AI_Badge.CREATE_DATA_STORIES, AI_Badge.RUN_AGILE_TRANSFORMATION], AI_Guild_Role.DATA_SCIENTIST : [AI_Badge.RUN_AI_EXPERIMENT, AI_Badge.PERFORM_AI_FORENSICS], AI_Guild_Role.DATA_ENGINEER : [AI_Badge.BUILD_DATA_PIPELINES, AI_Badge.BUILD_UTILITY_AI_SERVICES], AI_Guild_Role.ALL: [AI_Badge.CREATE_DATA_STORIES, AI_Badge.RUN_AGILE_TRANSFORMATION, AI_Badge.BUILD_DATA_PIPELINES, AI_Badge.RUN_AI_EXPERIMENT, AI_Badge.BUILD_UTILITY_AI_SERVICES, AI_Badge.PERFORM_AI_FORENSICS] } ai_badge_id = { AI_Badge.CREATE_DATA_STORIES: "dd05bbdf-ad5b-469d-ab2c-4dd218fd68fe", AI_Badge.RUN_AGILE_TRANSFORMATION: "8ec48861-c355-4e44-b98f-0a80cf1440a8", AI_Badge.BUILD_DATA_PIPELINES: "2cffc101-8fc3-4680-a8cd-29ec58483832", AI_Badge.RUN_AI_EXPERIMENT: "ddeb2020-1db5-48c6-8b2c-ea2e50f050d7", AI_Badge.BUILD_UTILITY_AI_SERVICES: "6e8b661f-31bc-46f7-89e4-194e7e6ebb21", AI_Badge.PERFORM_AI_FORENSICS: "ec96e016-9e33-4b4e-a6bd-43491e811179", AI_Badge.TEST: "b828e318-8501-434e-9f55-ccdb7000ee09" } #start by assuming we should not apply for the badge apply_for_badge = False for role in guild_member_roles: #apply for the badge if a matching role is found if ai_badge in guild_role_badges[role]: apply_for_badge = True return apply_for_badge def apply_for_an_ai_badge(ai_guild_profile, ai_badge): guild_role_badges = { AI_Guild_Role.PROJECT_MANAGER : [AI_Badge.CREATE_DATA_STORIES, AI_Badge.RUN_AGILE_TRANSFORMATION], AI_Guild_Role.DATA_SCIENTIST : [AI_Badge.RUN_AI_EXPERIMENT, AI_Badge.PERFORM_AI_FORENSICS], AI_Guild_Role.DATA_ENGINEER : [AI_Badge.BUILD_DATA_PIPELINES, AI_Badge.BUILD_UTILITY_AI_SERVICES], AI_Guild_Role.ALL: [AI_Badge.CREATE_DATA_STORIES, AI_Badge.RUN_AGILE_TRANSFORMATION, AI_Badge.BUILD_DATA_PIPELINES, AI_Badge.RUN_AI_EXPERIMENT, AI_Badge.BUILD_UTILITY_AI_SERVICES, AI_Badge.PERFORM_AI_FORENSICS] } ai_badge_id = { AI_Badge.CREATE_DATA_STORIES: "dd05bbdf-ad5b-469d-ab2c-4dd218fd68fe", AI_Badge.RUN_AGILE_TRANSFORMATION: "8ec48861-c355-4e44-b98f-0a80cf1440a8", AI_Badge.BUILD_DATA_PIPELINES: "2cffc101-8fc3-4680-a8cd-29ec58483832", AI_Badge.RUN_AI_EXPERIMENT: "ddeb2020-1db5-48c6-8b2c-ea2e50f050d7", AI_Badge.BUILD_UTILITY_AI_SERVICES: "6e8b661f-31bc-46f7-89e4-194e7e6ebb21", AI_Badge.PERFORM_AI_FORENSICS: "ec96e016-9e33-4b4e-a6bd-43491e811179", AI_Badge.TEST: "b828e318-8501-434e-9f55-ccdb7000ee09" } # Construct apiEndponit string apiPath = f'badges/{ai_badge_id[ai_badge]}/assertions' apiEndpoint = f'{ai_guild_profile["badge_platform_apiHost"]}{ai_guild_profile["badge_platform_apiBasePath"]}{apiPath}' headers = { 'Content-Type': 'application/json', 'X-Api-Key': ai_guild_profile["badge_platform_apiKey"] } #for each member in the guild: num_guild_members = len(ai_guild_profile['guild_members']) for i in range(1,num_guild_members + 1): #apply for the badge if applicable if guild_member_should_apply_for_badge(ai_guild_profile['guild_members'][i]['roles'], ai_badge): payload = { 'email': ai_guild_profile['guild_members'][i]['badge_applicant_email'], 'evidence': ai_guild_profile["badge_evidence"] } response = requests.post( apiEndpoint, headers=headers, json=payload ) print(response) print(json.dumps(response.json(), indent=4))
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/AI_guild/AI_guild.py
AI_guild.py
import pandas as pd import janitor #data cleaning from ftfy import fix_text #data cleaning import nltk #data cleaning nltk.download('punkt') #data cleaning import scrubadub #data cleaning import arrow #normalizing dates import numpy as np from sklearn.base import TransformerMixin from dxc.ai.global_variables import globals_file class DataFrameImputer(TransformerMixin): def __init__(self): """Impute missing values. Columns of dtype object are imputed with the most frequent value in column. Columns of other types are imputed with mean of column. """ def fit(self, X, y=None): self.fill = pd.Series([X[c].value_counts().index[0] if X[c].dtype == np.dtype('O') else X[c].mean() for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.fill) #CLEANING FILE def clean_dataframe(df, impute = False, text_fields = [], date_fields = [], numeric_fields = [], categorical_fields = []): clean_df = ( df #make the column names lower case and remove spaces .clean_names() #remove empty columns .remove_empty() #remove empty rows and columns .dropna(how='all') ) #remove harmful characters. remove personal identifiers. make lowercase for field in text_fields: field = '_'.join(field.split()).lower() clean_df[field] = clean_df[field].fillna(' ').apply(fix_text) clean_df[field] = clean_df[field].apply(scrubadub.clean, replace_with='identifier') clean_df[field] = clean_df[field].str.lower() #impute missing values if impute: clean_df = DataFrameImputer().fit_transform(clean_df) #standardize the format of all date fields for field in date_fields: field = '_'.join(field.split()).lower() clean_df[field] = clean_df[field].apply(arrow.get) #make sure all numeric fields have the proper data type for field in numeric_fields: field = '_'.join(field.split()).lower() clean_df[field] = pd.to_numeric(clean_df[field]) #make sure all categorical variables have the proper data type for field in categorical_fields: field = '_'.join(field.split()).lower() clean_df[field] = clean_df[field].astype('category') clean_df=clean_df.clean_names() globals_file.clean_data_used = True return(clean_df)
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/clean_data/clean_data.py
clean_data.py
from yellowbrick.features import Rank2D #exploring raw data import matplotlib.pyplot as plt import missingno as msno #gauge dataset completeness import seaborn as sns #data exploration, distribution plotting import pandas as pd from datacleaner import autoclean import math from pandas.api.types import is_numeric_dtype from pandas_profiling import ProfileReport #VISUALIZATION #display the correlations in pairwise comparisons of all features def explore_features(df): df_copy = df.copy() #for some reason, the visualize doesn't accept categorical #variables. those have to be converted to strings for (col,data) in df_copy.iteritems(): if df_copy[col].dtype.name == "category": df_copy[col] = df_copy[col].astype(str) numeric_df = autoclean(df_copy) visualizer = Rank2D(algorithm="pearson") visualizer.fit_transform(numeric_df) visualizer.poof() #display a visual representation of missing fields in the given data def visualize_missing_data(df): msno.matrix(df, figsize=(15,8)) def explore_complete_data(df, title='Complete Data Report'): profile = ProfileReport(df, title, html={'style':{'full_width':False}}) return profile #plot the distribution of values of each field in the given data def plot_distributions(df): #set plot style sns.set(style="darkgrid") features = len(df.columns) #determine the number of columns in the plot grid and the width and height of each plot grid_cols = 3 plot_width = 5 plot_height = 3 #determine the width of the plot grid and number of rows grid_width = plot_width * grid_cols num_rows = math.ceil(features/grid_cols) #determine the width of the plot grid grid_height = plot_height * num_rows #lay out the plot grid fig1 = plt.figure(constrained_layout=True, figsize = (grid_width,grid_height)) gs = fig1.add_gridspec(ncols = grid_cols, nrows = num_rows) #step through the dataframe and add plots for each feature current_column = 0 current_row = 0 for col in df.columns: #set up a plot f1_ax1 = fig1.add_subplot(gs[current_row, current_column]) f1_ax1.set_title(col) #create a plot for numeric values if is_numeric_dtype(df[col]): sns.histplot(df[col], ax = f1_ax1, kde = True).set_xlabel('') #creare a plot for categorical values if df[col].dtype.name == "category": sns.countplot(df[col], ax = f1_ax1, order = df[col].value_counts().index).set_xlabel('') #move to the next column current_column +=1 #determine if it is time to start a new row if current_column == grid_cols: current_column = 0 current_row +=1
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/visualization/visualization.py
visualization.py
# from statsmodels.tsa.stattools import adfuller # from statsmodels.tsa.seasonal import seasonal_decompose # from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # from sklearn.metrics import mean_squared_error # from statsmodels.tsa.ar_model import AR # from statsmodels.tsa.arima_model import ARMA, ARIMA # from statsmodels.tsa.holtwinters import SimpleExpSmoothing, Holt, ExponentialSmoothing # import pyaf.ForecastEngine as autof # from pmdarima.arima import auto_arima # from pmdarima.model_selection import train_test_split # import warnings # warnings.filterwarnings('ignore', 'statsmodels.tsa.ar_model.AR', FutureWarning) # #Dickey-Fuller Test for stationary check # def adf_test(timeseries): # #Perform Dickey-Fuller test: # print('Results of Augmented Dickey-Fuller(ADF) Statistical Test:') # dftest = adfuller(timeseries, autolag='AIC') # dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) # for key,value in dftest[4].items(): # dfoutput['Critical Value (%s)'%key] = value # print(dfoutput) # #autoRegressiveModel # def autoRegressiveModel(df, no_predictions = 7, debug = False , visualize = False): # data = df.values # # Splitting data into train and test set. # train, test = data[1:len(data)-no_predictions], data[len(data)-no_predictions:] # # train autoregression # model = AR(train) # model_fit = model.fit() # if(debug): # print(model_fit.summary()) # # make predictions # predictions = model_fit.predict(start=len(train), end=len(train)+len(test)-1+no_predictions, dynamic=False) # if(visualize): # plt.plot(test , color = "blue" , label = "testing data") # plt.plot(predictions, color='red' , label = "prediction") # plt.legend(loc='best') # plt.show() # error = np.sqrt(mean_squared_error(test, predictions[:no_predictions])) # return (predictions[-no_predictions:] , error, model_fit) # def simpleExponentialSmoothing(df, no_predictions=7, debug = False , visualize = False): # train_data, test_data = df[1:int(len(df)-no_predictions)], df[int(len(df)-no_predictions):] # fit1 = SimpleExpSmoothing(np.asarray(train_data)).fit(smoothing_level=0.85 , optimized=False) # if(debug): # print(fit1.summary()) # predictions = fit1.forecast(no_predictions*2) # if(visualize): # plt.plot(list(test_data), color = 'blue', label='testing data') # plt.plot(list(predictions), color = 'red',label='prediction') # plt.legend(loc='upper left', fontsize=8) # plt.show() # error = np.sqrt(mean_squared_error(test_data, predictions[:no_predictions])) # return (predictions[-no_predictions:] , error, fit1) # def doubleSmoothing(df, no_predictions=7, debug = False , visualize = False): # train_data, test_data = df[1:int(len(df)-no_predictions)], df[int(len(df)-no_predictions):] # model = ExponentialSmoothing(np.asarray(train_data), trend='add', seasonal=None) # fit1 = model.fit() # if(debug): # print(fit1.summary()) # predictions = fit1.forecast(no_predictions*2) # if(visualize): # plt.plot(list(test_data), color = 'blue', label='testing data') # plt.plot(list(predictions), color = 'red',label='prediction') # plt.legend(loc='upper left', fontsize=8) # plt.show() # error = np.sqrt(mean_squared_error(test_data, predictions[:no_predictions])) # return (predictions[-no_predictions:] , error, fit1) # def autoRegressiveMovingAverageModel(df, order=(1,0), no_predictions=7, debug=False , visualize=False): # data = df.values # train, test = data[1:len(data)-no_predictions], data[len(data)-no_predictions:] # model = ARMA(train, order = order) # model_fit = model.fit() # if(debug): # print(model_fit.summary()) # predictions = model_fit.predict(start=len(train), end=len(train)+len(test)-1+no_predictions, dynamic=False) # if(visualize): # plt.plot(test , color = "blue" , label = "testing data") # plt.plot(predictions, color='red' , label = "prediction") # plt.legend(loc='best') # plt.show() # error = np.sqrt(mean_squared_error(test, predictions[:no_predictions])) # return (predictions[-no_predictions:] , error, model_fit) # def getBestForcastingModel(df, no_predictions=7, debug=False, visualize = False): # modelResults = {} # modelResults["autoRegressiveModel"] = autoRegressiveModel(df, no_predictions)[1] # modelResults["simpleExponentialSmoothing"] = simpleExponentialSmoothing(df, no_predictions)[1] # modelResults["doubleSmoothing"] = doubleSmoothing(df, no_predictions)[1] # modelResults["autoRegressiveMovingAverageModel"] = autoRegressiveMovingAverageModel(df, order=(1,0), no_predictions=no_predictions)[1] # bestModel = min(modelResults.items(), key=operator.itemgetter(1))[0] # print(bestModel) # print(adf_test(df)) # if bestModel == 'autoRegressiveModel': # results, error, model = autoRegressiveModel(df, no_predictions, debug, visualize) # print('RMSE:', error) # return model # elif bestModel == 'simpleExponentialSmoothing': # results, error, model = simpleExponentialSmoothing(df, no_predictions, debug, visualize) # print('RMSE:', error) # return model # elif bestModel == 'doubleSmoothing': # results, error, model = doubleSmoothing(df, no_predictions, debug, visualize) # print('RMSE:', error) # return model # elif bestModel == 'autoRegressiveMovingAverageModel': # results, error, model = autoRegressiveMovingAverageModel(df, order=(1,0), no_predictions=no_predictions, debug=debug, visualize=visualize) # print('RMSE:', error) # return model
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/run_model/TimeSeriesModels.py
TimeSeriesModels.py
import pandas as pd from tpot import TPOTRegressor from tpot import TPOTClassifier from sklearn.model_selection import train_test_split from feature_engine import encoding as ce from .interpret_model import Global_Model_Explanation from .interpret_model import Explanation_Dashboard from sklearn import preprocessing import warnings import os import numpy as np from dxc.ai.global_variables import globals_file from sklearn.metrics import SCORERS ###encode and return the categorical data def categorical_encoding(data,target): data_1 = data.dropna() objFeatures = data_1.select_dtypes(include="object").columns objlen = len(list(objFeatures)) if objlen == 0: return data_1.drop([target], axis = 1), data_1[target] else: if data_1[target].dtype == 'object': le = preprocessing.LabelEncoder() try: data_1[target] = le.fit_transform(data_1[target].astype(str)) except: data_1[target] = data_1[target].astype('category') data_1[target] = le.fit_transform(data_1[target].astype(str)) globals_file.run_experiment_target_encoder = le globals_file.run_experiment_target_encoder_used = True objFeatures_1 = data_1.select_dtypes(include="object").columns objlen_1 = len(list(objFeatures_1)) if objlen_1 == 0: return data_1.drop([target], axis = 1), data_1[target] else: data_2 = data_1.drop([target], axis = 1) encoder = ce.OrdinalEncoder(encoding_method='ordered') encoder.fit(data_2, data_1[target]) data_3 = encoder.transform(data_2) globals_file.run_experiment_encoder = encoder globals_file.run_experiment_encoder_used = True return data_3, data_1[target] ##Define Tpot regressor def regressor(verbosity, max_time_mins , max_eval_time_mins, config_dict, warm_start, scoring): if verbosity == True: model_def = TPOTRegressor(verbosity=2, max_time_mins=max_time_mins, max_eval_time_mins= max_eval_time_mins, config_dict = config_dict, warm_start = warm_start, scoring= scoring, template = 'Regressor') else: model_def = TPOTRegressor(verbosity=0, max_time_mins=max_time_mins, max_eval_time_mins= max_eval_time_mins, config_dict = config_dict, warm_start = warm_start, scoring= scoring, template = 'Regressor') return model_def ##Define Tpot classifier def classifier(verbosity, max_time_mins, max_eval_time_mins, config_dict, warm_start, scoring): if verbosity == True: model_def = TPOTClassifier(verbosity=2, max_time_mins=max_time_mins, max_eval_time_mins= max_eval_time_mins, config_dict = config_dict, warm_start = warm_start, scoring = scoring, template = 'Classifier') else: model_def = TPOTClassifier(verbosity=0, max_time_mins=max_time_mins, max_eval_time_mins= max_eval_time_mins, config_dict = config_dict, warm_start = warm_start, scoring = scoring, template = 'Classifier') return model_def ###Train the model def train_model(data, target, model_def, model_type, interpret = False, warm_start = False, export_pipeline = True): if warm_start == False: globals_file.run_experiment_encoder = None globals_file.run_experiment_target_encoder = None globals_file.run_experiment_target_encoder_used = False globals_file.run_experiment_encoder_used = False globals_file.run_experiment_warm_start = False data_transformed, label_data = categorical_encoding(data,target) try: x_train, x_test, y_train, y_test = train_test_split(data_transformed, label_data, test_size=0.2, random_state=0, stratify = label_data) except: x_train, x_test, y_train, y_test = train_test_split(data_transformed, label_data, test_size=0.2, random_state=0) ##Save the data for first time execution with warm start. if warm_start == True and globals_file.run_experiment_warm_start == False: globals_file.run_experiment_encoder = None globals_file.run_experiment_target_encoder = None globals_file.run_experiment_target_encoder_used = False globals_file.run_experiment_encoder_used = False data_transformed, label_data = categorical_encoding(data,target) try: x_train, x_test, y_train, y_test = train_test_split(data_transformed, label_data, test_size=0.2, random_state=0, stratify = label_data) except: x_train, x_test, y_train, y_test = train_test_split(data_transformed, label_data, test_size=0.2, random_state=0) globals_file.run_experiment_warm_start = True globals_file.run_experiment_x_train = x_train globals_file.run_experiment_x_test = x_test globals_file.run_experiment_y_train = y_train globals_file.run_experiment_y_test = y_test globals_file.run_experiment_datatransformed = data_transformed globals_file.run_experiment_labeldata = label_data ##Return the data from second time execution with warm start if warm_start == True and globals_file.run_experiment_warm_start == True: x_train = globals_file.run_experiment_x_train x_test = globals_file.run_experiment_x_test y_train = globals_file.run_experiment_y_train y_test = globals_file.run_experiment_y_test data_transformed = globals_file.run_experiment_datatransformed label_data = globals_file.run_experiment_labeldata model = model_def.fit(x_train, y_train) globals_file.run_experiment_model = model best_pipeline = model.fitted_pipeline_ if model_type == 'TPOTRegressor': print() # r2 score score_r2 = SCORERS['r2'](best_pipeline, x_test, y_test) print("r2 Score:", score_r2) print() # neg_mean_squared_error score_nmse = SCORERS['neg_mean_squared_error'](best_pipeline, x_test, y_test) print('Negative mean square error:', score_nmse) print() # neg_root_mean_squared_error score_nrmse = SCORERS['neg_root_mean_squared_error'](best_pipeline, x_test, y_test) print('Negative root mean square error:', score_nrmse) print() # explained variance score_var = SCORERS['explained_variance'](best_pipeline, x_test, y_test) print('explained_variance:', score_var) print() # negative mean absolute error score_nmae = SCORERS['neg_mean_absolute_error'](best_pipeline, x_test, y_test) print('Negative_mean_absolute_error:', score_nmae) print() # Negative median absolute error score_nmdae = SCORERS['neg_median_absolute_error'](best_pipeline, x_test, y_test) print('Negative_median_absolute_error:', score_nmdae) print() if model_type == 'TPOTClassifier': print() # Accuracy score_acc = SCORERS['accuracy'](best_pipeline, x_test, y_test) print("Accuracy:", score_acc) print() #ROC_AUC_OVR try: score_roc_ovr = SCORERS['roc_auc_ovr'](best_pipeline, x_test, y_test) print("ROC_AUC_OVR:", score_roc_ovr) print() except: pass #ROC_AUC_OVO try: score_roc_ovo = SCORERS['roc_auc_ovo'](best_pipeline, x_test, y_test) print("ROC_AUC_OVO:", score_roc_ovo) print() except: pass # Recall score_rec_macro = SCORERS['recall_macro'](best_pipeline, x_test, y_test) print("Recall:", score_rec_macro) print() # Precision score_pre_macro = SCORERS['precision_macro'](best_pipeline, x_test, y_test) print("Precision:", score_pre_macro) print() #F1 score_f1_macro = SCORERS['f1_macro'](best_pipeline, x_test, y_test) print("F1 Score:", score_f1_macro) print() ##Save the pipeline and data if export_pipeline == True: currentDirectory = os.getcwd() currentDirectory = currentDirectory + '\data_file.csv' data_file_combine = data_transformed data_file_combine['target'] = label_data data_file_combine.to_csv(currentDirectory, index = False, header=True, encoding='utf-8') model.export('best_pipeline.py', currentDirectory) ##Generate interpret interactive charts if interpret == True: global_explanation = Global_Model_Explanation(model.fitted_pipeline_,x_train,x_test,feature_names = None,classes = None, explantion_data = None) Explanation_Dashboard(global_explanation, model.fitted_pipeline_, x_train, x_test, explantion_data = None) return model.fitted_pipeline_
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/run_model/model_pipeline.py
model_pipeline.py
import arrow #normalizing dates import numpy as np from sklearn.base import TransformerMixin #impute missing data #from auto_ml import Predictor #ML models from sklearn.model_selection import train_test_split import os import pickle from contextlib import redirect_stdout import warnings import io from dxc.ai.global_variables import globals_file # from .TimeSeriesModels import getBestForcastingModel from dxc.ai.logging import experiment_design_logging from .model_pipeline import regressor from .model_pipeline import train_model from .model_pipeline import classifier from pymongo import MongoClient #MongoDB import pandas as pd #Getting data from MongoDB def get_data_from_pipeline(data_layer): #connect to MongoDB client = MongoClient(data_layer["connection_string"]) db = client[data_layer["database_name"]][data_layer["collection_name"] + '_aggregate'] #getting aggregated pipeline data df = pd.json_normalize(list(db.find({},{'_id':0}))) return df # define the general class of models class model: __model = [] def build(self): raise NotImplementedError() def train_and_score(self, data): raise NotImplementedError() def interpret(self): raise NotImplementedError() def python_object(): raise NotImplementedError() # @staticmethod # def meta_data_key(meta_data, value): # key_list = list(meta_data.keys()) # val_list = list(meta_data.values()) # return key_list[val_list.index(value)] #define the model lifecycle # define a prediction model class prediction(model): @property def estimator(self): raise NotImplementedError() def build(self, target_label, verbose, max_time_mins, max_eval_time_mins, config_dict, warm_start, scoring): if self.estimator == 'TPOTRegressor': if globals_file.run_experiment_warm_start == False or warm_start == False: self.__model = regressor(verbose, max_time_mins, max_eval_time_mins, config_dict, warm_start, scoring) else: self.__model = globals_file.run_experiment_model elif self.estimator == 'TPOTClassifier': if globals_file.run_experiment_warm_start == False or warm_start == False: self.__model = classifier(verbose, max_time_mins, max_eval_time_mins, config_dict, warm_start, scoring) else: self.__model = globals_file.run_experiment_model else: pass #self.__model = Predictor(type_of_estimator=self.estimator, column_descriptions=meta_data) self.__label = target_label def train_and_score(self, data, labels, verbose, interpret, warm_start, export_pipeline): ##Train and score if self.estimator == 'TPOTRegressor' or self.estimator == 'TPOTClassifier': self.__model = train_model(data, self.__label, self.__model, self.estimator, interpret, warm_start, export_pipeline) else: pass # create training and test data #training_data, test_data = train_test_split(data, test_size=0.2) # train the model #if verbose == False: # warnings.filterwarnings('ignore') # text_trap = io.StringIO() # with redirect_stdout(text_trap): # self.__model.train(training_data, verbose=False, ml_for_analytics= False) #else: # warnings.filterwarnings('ignore') # self.__model.train(training_data, verbose=True, ml_for_analytics=False) # score the model #if verbose == False: # self.__model.score(test_data, test_data[self.__label], verbose=0) #else: # self.__model.score(test_data, test_data[self.__label], verbose=1) def interpret(self): pass def python_object(self): return self.__model # define a regressor model class regression(prediction): @property def estimator(self): return("regressor") # define a classification model class classification(prediction): @property def estimator(self): return("classifier") # define a tpot classification model class tpot_classification(prediction): @property def estimator(self): return("TPOTClassifier") # define a Tpot regressor model class tpot_regression(prediction): @property def estimator(self): return("TPOTRegressor") def run_experiment(design, verbose = False, interpret = False, max_time_mins = 5, max_eval_time_mins = 0.04 , config_dict = None, warm_start = False, export_pipeline = True, scoring = None): experiment_design_logging.experiment_design_log(design) # if design["model"] == 'timeseries': # trained_model = getBestForcastingModel(design['labels'], no_predictions=7, debug=verbose, visualize = False) # return trained_model globals_file.run_experiment_used = True design["model"].build(design["labels"].name, verbose, max_time_mins, max_eval_time_mins, config_dict,warm_start, scoring) design["model"].train_and_score(design["data"], design["labels"], verbose, interpret, warm_start, export_pipeline) design["model"].interpret() return design["model"].python_object()
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/run_model/run_model.py
run_model.py
# def remove_stop_words(data): # words = word_tokenize(str(data)) # new_text = "" # for w in words: # if w not in stopwords.words('english'): # new_text = new_text + " " + w # return new_text # def remove_emails(x): # return re.sub(r'([a-z0-9+._-]+@[a-z0-9+._-]+\.[a-z0-9+_-]+)',"", x) # def remove_urls(x): # return re.sub(r'(http|https|ftp|ssh)://([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:/~+#-]*[\w@?^=%&/~+#-])?', '' , x) # def remove_html_tags(x): # return BeautifulSoup(x, 'lxml').get_text().strip() # def remove_rt(x): # return re.sub(r'\brt\b', '', x).strip() # def remove_accented_chars(x): # x = unicodedata.normalize('NFKD', x).encode('ascii', 'ignore').decode('utf-8', 'ignore') # return x # def remove_special_chars(x): # x = re.sub(r'[^\w ]+', "", x) # x = ' '.join(x.split()) # return x # def get_text_clean(x): # x = str(x).lower().replace('\\', '').replace('_', ' ') # x = remove_emails(x) # x = remove_urls(x) # x = remove_html_tags(x) # x = remove_rt(x) # x = remove_accented_chars(x) # x = remove_special_chars(x) # x = re.sub("(.)\\1{2,}", "\\1", x) # x = remove_stop_words(x) # return x # def kmeans_sentiment_analyzer(df_TB): # #tokenize the reviews from dataframe # all_words = [nltk.word_tokenize(sent) for sent in df_TB[df_TB.columns[0]]] # #generate vectors for tokenized words # word2vec = Word2Vec(all_words, min_count=2) # vocabulary = word2vec.wv.vocab # #User will be allowed to pass parameters in further enhancement # model = KMeans(n_clusters=2, max_iter=1000, random_state=True, n_init=50).fit(X=word2vec.wv.vectors.astype('double')) # #Logic need to be enhanced further to generalize the cluster indication # positive_cluster_index = 0 # words = pd.DataFrame(word2vec.wv.vocab.keys()) # words.columns = ['words'] # words['vectors'] = words.words.apply(lambda x: word2vec[f'{x}']) # words['cluster'] = words.vectors.apply(lambda x: model.predict([np.array(x)])) # words.cluster = words.cluster.apply(lambda x: x[0]) # words['cluster_value'] = [1 if i==positive_cluster_index else -1 for i in words.cluster] # words['closeness_score'] = words.apply(lambda x: 1/(model.transform([x.vectors]).min()), axis=1) # words['sentiment_coeff'] = words.closeness_score * words.cluster_value # words[['words', 'sentiment_coeff']].to_csv('sentiment_dictionary.csv', index=False) # print('words processed and coefficients stored in sentiment_dictionary.csv') # def create_tfidf_dictionary(x, transformed_file, features): # vector_coo = transformed_file[x.name].tocoo() # vector_coo.col = features.iloc[vector_coo.col].values # dict_from_coo = dict(zip(vector_coo.col, vector_coo.data)) # return dict_from_coo # def replace_tfidf_words(x, transformed_file, features): # dictionary = create_tfidf_dictionary(x, transformed_file, features) # return list(map(lambda y:dictionary[f'{y}'], x.Reviews.split())) # def replace_sentiment_words(word, sentiment_dict): # try: # out = sentiment_dict[word] # except KeyError: # out = 0 # return out # def kmeans_sentiment_predictor(df_predict): # sentiment_map = pd.read_csv('sentiment_dictionary.csv') # sentiment_dict = dict(zip(sentiment_map.words.values, sentiment_map.sentiment_coeff.values)) # file_weighting = df_predict.copy() # file_weighting.columns = ['Reviews', 'Sentiment'] # tfidf = TfidfVectorizer(tokenizer=lambda y: y.split(), norm=None) # tfidf.fit(file_weighting.Reviews) # features = pd.Series(tfidf.get_feature_names()) # transformed = tfidf.transform(file_weighting.Reviews) # replaced_tfidf_scores = file_weighting.apply(lambda x: replace_tfidf_words(x, transformed, features), axis=1) # replaced_closeness_scores = file_weighting.Reviews.apply(lambda x: list(map(lambda y: replace_sentiment_words(y, # sentiment_dict), x.split()))) # new_df = pd.DataFrame(data=[replaced_closeness_scores, replaced_tfidf_scores, # file_weighting.Reviews,file_weighting.Sentiment]).T # new_df.columns = ['sentiment_coeff', 'tfidf_scores', 'sentence', 'sentiment'] # new_df['sentiment_rate'] = new_df.apply(lambda x: np.array(x.loc['sentiment_coeff']) @ # np.array(x.loc['tfidf_scores']), axis=1) # new_df['prediction'] = (new_df.sentiment_rate>0).astype('int8') # new_df['sentiment'] = [1 if i==1 else 0 for i in new_df.sentiment] # return new_df[['sentence','prediction']]
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/ai/unsupervised_sentiment_analysis/kmeans_sentiment_analysis.py
kmeans_sentiment_analysis.py
from .define_model_components import define_critic_layers from .define_model_components import define_layers from .define_model_components import define_memory from .define_model_components import define_policy from .define_model_components import define_random_process import numpy as np import gym from gym import spaces import tensorflow as tf from tensorflow.keras import layers import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Activation, Flatten, Input, Concatenate from tensorflow.keras.optimizers import Adam import rl from rl.agents.dqn import DQNAgent from rl.agents import DDPGAgent from rl.agents import SARSAAgent from rl.policy import BoltzmannQPolicy from rl.memory import SequentialMemory from rl.random import OrnsteinUhlenbeckProcess def rl_helper(env, model_name, saved_model_name="model", steps=50000, test_steps=5, visualize=False, hidden_layers=3, critic_hidden_layers=3): if (model_name == "DDPG"): tf.compat.v1.enable_eager_execution() tf_keras_ddpg(env, saved_model_name, steps) else: tf.compat.v1.disable_eager_execution() keras_rl(env, model_name, saved_model_name, steps, test_steps, visualize, hidden_layers, critic_hidden_layers) def keras_rl(env, model_name, saved_model_name="model", steps=50000, test_steps=5, visualize=False, hidden_layers=3, critic_hidden_layers=3): nb_actions = 0 if (model_name == "DQN" or model_name == "SARSA"): nb_actions = env.action_space.n elif (model_name == "DDPG"): nb_actions = env.action_space.shape[0] model_structure = define_layers( env, nb_actions, num_of_hidden_layers=hidden_layers) memory = define_memory() policy = define_policy(model_name) if (model_name == "DQN"): model = DQNAgent(model=model_structure, nb_actions=nb_actions, memory=memory, nb_steps_warmup=100, enable_double_dqn=True, dueling_type='avg', target_model_update=1e-2) elif (model_name == "SARSA"): model = SARSAAgent( model=model_structure, nb_actions=nb_actions, nb_steps_warmup=10, policy=policy) elif (model_name == "DDPG"): action_input, critic_layers = define_critic_layers( env, num_of_hidden_layers=critic_hidden_layers) random_process = define_random_process(nb_actions) model = DDPGAgent(nb_actions=nb_actions, actor=model_structure, critic=critic_layers, critic_action_input=action_input, memory=memory, nb_steps_warmup_critic=100, nb_steps_warmup_actor=100, random_process=random_process, gamma=.99, target_model_update=1e-3) model.compile(Adam(lr=1e-3), metrics=['mae']) model.fit(env, nb_steps=steps, visualize=False, verbose=2) model.save_weights('{}.h5f'.format(model_name), overwrite=True) model.test(env, nb_episodes=test_steps, visualize=visualize) def tf_keras_ddpg(env, saved_model_name, steps=50000): num_states = env.observation_space.shape[0] print("Size of State Space -> {}".format(num_states)) num_actions = env.action_space.shape[0] print("Size of Action Space -> {}".format(num_actions)) upper_bound = env.action_space.high[0] lower_bound = env.action_space.low[0] print("Max Value of Action -> {}".format(upper_bound)) print("Min Value of Action -> {}".format(lower_bound)) def get_actor(): # Initialize weights between -3e-3 and 3-e3 last_init = tf.random_uniform_initializer(minval=-0.003, maxval=0.003) inputs = layers.Input(shape=(num_states,)) out = layers.Dense(256, activation="relu")(inputs) out = layers.Dense(256, activation="relu")(out) outputs = layers.Dense(1, activation="tanh", kernel_initializer=last_init)(out) # Our upper bound is 2.0 for Pendulum. outputs = outputs * upper_bound model = tf.keras.Model(inputs, outputs) return model def get_critic(): # State as input state_input = layers.Input(shape=(num_states)) state_out = layers.Dense(16, activation="relu")(state_input) state_out = layers.Dense(32, activation="relu")(state_out) # Action as input action_input = layers.Input(shape=(num_actions)) action_out = layers.Dense(32, activation="relu")(action_input) # Both are passed through seperate layer before concatenating concat = layers.Concatenate()([state_out, action_out]) out = layers.Dense(256, activation="relu")(concat) out = layers.Dense(256, activation="relu")(out) outputs = layers.Dense(1)(out) # Outputs single value for give state-action model = tf.keras.Model([state_input, action_input], outputs) return model def policy(state, noise_object): sampled_actions = tf.squeeze(actor_model(state)) noise = noise_object() # Adding noise to action sampled_actions = sampled_actions.numpy() + noise # We make sure action is within bounds legal_action = np.clip(sampled_actions, lower_bound, upper_bound) return [np.squeeze(legal_action)] class OUActionNoise: def __init__(self, mean, std_deviation, theta=0.15, dt=1e-2, x_initial=None): self.theta = theta self.mean = mean self.std_dev = std_deviation self.dt = dt self.x_initial = x_initial self.reset() def __call__(self): # Formula taken from https://www.wikipedia.org/wiki/Ornstein-Uhlenbeck_process. x = ( self.x_prev + self.theta * (self.mean - self.x_prev) * self.dt + self.std_dev * np.sqrt(self.dt) * np.random.normal(size=self.mean.shape) ) # Store x into x_prev # Makes next noise dependent on current one self.x_prev = x return x def reset(self): if self.x_initial is not None: self.x_prev = self.x_initial else: self.x_prev = np.zeros_like(self.mean) class Buffer: def __init__(self, buffer_capacity=100000, batch_size=64): # Number of "experiences" to store at max self.buffer_capacity = buffer_capacity # Num of tuples to train on. self.batch_size = batch_size # Its tells us num of times record() was called. self.buffer_counter = 0 # Instead of list of tuples as the exp.replay concept go # We use different np.arrays for each tuple element self.state_buffer = np.zeros((self.buffer_capacity, num_states)) self.action_buffer = np.zeros((self.buffer_capacity, num_actions)) self.reward_buffer = np.zeros((self.buffer_capacity, 1)) self.next_state_buffer = np.zeros((self.buffer_capacity, num_states)) # Takes (s,a,r,s') obervation tuple as input def record(self, obs_tuple): # Set index to zero if buffer_capacity is exceeded, # replacing old records index = self.buffer_counter % self.buffer_capacity self.state_buffer[index] = obs_tuple[0] self.action_buffer[index] = obs_tuple[1] self.reward_buffer[index] = obs_tuple[2] self.next_state_buffer[index] = obs_tuple[3] self.buffer_counter += 1 # Eager execution is turned on by default in TensorFlow 2. Decorating with tf.function allows # TensorFlow to build a static graph out of the logic and computations in our function. # This provides a large speed up for blocks of code that contain many small TensorFlow operations such as this one. @tf.function def update( self, state_batch, action_batch, reward_batch, next_state_batch, ): # Training and updating Actor & Critic networks. # See Pseudo Code. with tf.GradientTape() as tape: target_actions = target_actor(next_state_batch, training=True) y = reward_batch + gamma * target_critic( [next_state_batch, target_actions], training=True ) critic_value = critic_model([state_batch, action_batch], training=True) critic_loss = tf.math.reduce_mean(tf.math.square(y - critic_value)) critic_grad = tape.gradient(critic_loss, critic_model.trainable_variables) critic_optimizer.apply_gradients( zip(critic_grad, critic_model.trainable_variables) ) with tf.GradientTape() as tape: actions = actor_model(state_batch, training=True) critic_value = critic_model([state_batch, actions], training=True) # Used `-value` as we want to maximize the value given # by the critic for our actions actor_loss = -tf.math.reduce_mean(critic_value) actor_grad = tape.gradient(actor_loss, actor_model.trainable_variables) actor_optimizer.apply_gradients( zip(actor_grad, actor_model.trainable_variables) ) # We compute the loss and update parameters def learn(self): # Get sampling range record_range = min(self.buffer_counter, self.buffer_capacity) # Randomly sample indices batch_indices = np.random.choice(record_range, self.batch_size) # Convert to tensors state_batch = tf.convert_to_tensor(self.state_buffer[batch_indices]) action_batch = tf.convert_to_tensor(self.action_buffer[batch_indices]) reward_batch = tf.convert_to_tensor(self.reward_buffer[batch_indices]) reward_batch = tf.cast(reward_batch, dtype=tf.float32) next_state_batch = tf.convert_to_tensor(self.next_state_buffer[batch_indices]) self.update(state_batch, action_batch, reward_batch, next_state_batch) # This update target parameters slowly # Based on rate `tau`, which is much less than one. @tf.function def update_target(target_weights, weights, tau): for (a, b) in zip(target_weights, weights): a.assign(b * tau + a * (1 - tau)) std_dev = 0.2 ou_noise = OUActionNoise(mean=np.zeros(1), std_deviation=float(std_dev) * np.ones(1)) actor_model = get_actor() critic_model = get_critic() target_actor = get_actor() target_critic = get_critic() # Making the weights equal initially target_actor.set_weights(actor_model.get_weights()) target_critic.set_weights(critic_model.get_weights()) # Learning rate for actor-critic models critic_lr = 0.002 actor_lr = 0.001 critic_optimizer = tf.keras.optimizers.Adam(critic_lr) actor_optimizer = tf.keras.optimizers.Adam(actor_lr) total_episodes = steps # Discount factor for future rewards gamma = 0.99 # Used to update target networks tau = 0.005 buffer = Buffer(50000, 64) # To store reward history of each episode ep_reward_list = [] # To store average reward history of last few episodes avg_reward_list = [] # Takes about 4 min to train for ep in range(total_episodes): prev_state = env.reset() episodic_reward = 0 while True: # Uncomment this to see the Actor in action # But not in a python notebook. # env.render() tf_prev_state = tf.expand_dims(tf.convert_to_tensor(prev_state), 0) action = policy(tf_prev_state, ou_noise) # Recieve state and reward from environment. state, reward, done, info = env.step(action) buffer.record((prev_state, action, reward, state)) episodic_reward += reward buffer.learn() update_target(target_actor.variables, actor_model.variables, tau) update_target(target_critic.variables, critic_model.variables, tau) # End this episode when `done` is True if done: break prev_state = state ep_reward_list.append(episodic_reward) # Mean of last 40 episodes avg_reward = np.mean(ep_reward_list[-40:]) print("Episode * {} * Avg Reward is ==> {}".format(ep, avg_reward)) avg_reward_list.append(avg_reward) # Plotting graph # Episodes versus Avg. Rewards plt.plot(avg_reward_list) plt.xlabel("Episode") plt.ylabel("Avg. Epsiodic Reward") plt.show() # Save the weights actor_model.save_weights("{}_actor.h5".format(saved_model_name)) critic_model.save_weights("{}_critic.h5".format(saved_model_name)) target_actor.save_weights("{}_target_actor.h5".format(saved_model_name)) target_critic.save_weights("{}_target_critic.h5".format(saved_model_name))
AI-Starter
/AI-Starter-3.0.7.tar.gz/AI-Starter-3.0.7/dxc/rl/rl_helper_function/helper_function.py
helper_function.py
import html2text import os import openai import tiktoken from dotenv import load_dotenv # Load environment variables load_dotenv() # Set OpenAI API key openai.api_key = os.getenv("OPENAI_API_KEY") def get_number_of_tokens(text,model="gpt-3.5-turbo"): encoding = tiktoken.encoding_for_model(model) return len(encoding.encode(text)) def split_text_logically(A: str): """Split the text logically by sections, not by characters. If there is only one section uses subsections and so on. It works on markdown text. and it can be used progressively to split the text in smaller and smaller pieces as needed.""" half_len = len(A) // 2 for char in ['\n# ','\n## ','\n### ','\n#### ','\n##### ','\n###### ', '.\n', '\n', '.', ', ', ' ']: index_left = A.rfind(char, 10, half_len+10) index_right = A.find(char, half_len-10, len(A)-10) if index_left == -1: if index_right == -1: continue else: split_indices=index_right break else: if index_right == -1: split_indices=index_left break else: distance_left=half_len-index_left distance_right=index_right-half_len if distance_left<distance_right: split_indices=index_left break else: split_indices=index_right break part_a=A[:split_indices] part_b=A[split_indices:] return part_a, part_b def _recursive_merge_summarises_new(summary_1: str, summary_2: str): result="\n# \n"+summary_1+"\n# \n"+summary_2 return result def _recursive_summarize_text(text: str, filter: str = None, summary_length: int = 500,model="gpt-3.5-turbo",max_number_tokens=4096): if filter: prompt_content = f"""I need you to summarise some text which is part of a bigger document. You should summarise the text by filtering out what does not follows this guidelines: {filter}. The content is here: {text} Now create a summary. The result should not be longer than {summary_length} words. Don't speak about the text, say directly what the text says. Also do not add conclusions or morals to the summary. Stick to the facts. Don't repeat yourself""" else: prompt_content = f"""I need you to summarise some text which is part of a bigger document. The content is here: {text} Now create a summary. The result should not be longer than {summary_length} words. Don't speak about the text, say directly what the text says. Also do not add conclusions or morals to the summary. Stick to the facts. Don't repeat yourself""" n_tokens=get_number_of_tokens(prompt_content,model=model) if n_tokens>max_number_tokens: text_1,text_2=split_text_logically(text) summary_1=_recursive_summarize_text(text_1, filter, summary_length=summary_length,model=model) summary_2=_recursive_summarize_text(text_2, filter, summary_length=summary_length,model=model) summary=_recursive_merge_summarises_new(summary_1, summary_2) return summary try: response = openai.ChatCompletion.create( model=model, messages=[ { "role": "user", "content": prompt_content}] ) except Exception as e: print (e) input("Press any key to continue") return _recursive_summarize_text(text, filter, summary_length,model=model) finish_reason=response.choices[0].finish_reason if finish_reason == "length": text_1,text_2=split_text_logically(text) summary_1=_recursive_summarize_text(text_1, filter, summary_length=summary_length,model=model) summary_2=_recursive_summarize_text(text_2, filter, summary_length=summary_length,model=model) summary=_recursive_merge_summarises_new(summary_1, summary_2) return summary summary = response.choices[0].message.content return summary def html_to_markdown(html_content,ignore_links=True): html_converter = html2text.HTML2Text() html_converter.ignore_links = ignore_links html_converter.ignore_images = True markdown_text = html_converter.handle(html_content) return markdown_text def summarize_text(text:str, filter:str=None, summary_length:int=500,model="gpt-3.5-turbo",max_number_tokens=4096): markdown_content = html_to_markdown(text) summary=_recursive_summarize_text(markdown_content, filter, summary_length,model=model,max_number_tokens=max_number_tokens) while (len(summary.split())>summary_length*1.5): summary=_recursive_summarize_text(summary, filter,summary_length,model=model) return summary
AI-Summarizer
/AI_Summarizer-1.0.4-py3-none-any.whl/ai_summarizer/main.py
main.py
import pandas as pd import sys import qdarkstyle import sqlalchemy import textwrap from PySide2.QtCore import (QAbstractTableModel, QModelIndex, Slot, QPersistentModelIndex, Qt) from PySide2.QtWidgets import (QDesktopWidget, QAction, QApplication, QHBoxLayout, QHeaderView, QMainWindow, QSizePolicy, QTableView, QWidget, QCheckBox, QTableWidgetItem) from PySide2.QtGui import QFont sys.path.append('../') from configs.config import filenames final_orders = filenames.final_orders def read_sql_server(): engine = sqlalchemy.create_engine( "mssql+pyodbc://altius:[email protected]/DemoDatasets?driver=SQL+Server") query = textwrap.dedent(''' SELECT * FROM orders''') df = pd.read_sql_query(query, engine) order = df["OrderID"] itemid = df["ItemID"] table = df["TableNo"] item = df["Item"] quantity = df["Quantity"] number = df["Number"] time = df["Time"] return order, itemid,table, item, quantity, number, time # def read_data(fname): # df = pd.read_csv(fname) # table = df["Table"] # order = df["Order"] # time = df["Time"] # return table, order, time class MainWindow(QMainWindow): def __init__(self, widget): super().__init__() #QMainWindow.__init__(self) self.setWindowTitle("AI Waiter Orders") # Menu self.menu = self.menuBar() self.file_menu = self.menu.addMenu("File") # Exit QAction exit_action = QAction("Exit", self) exit_action.setShortcut("Ctrl+Q") exit_action.triggered.connect(self.close) self.file_menu.addAction(exit_action) # Status Bar self.status = self.statusBar() self.status.showMessage("Orders") # Window dimensions # geometry = QDesktopWidget().availableGeometry(self) # self.setFixedSize(geometry.width() * 1, geometry.height() * 1) self.setGeometry(0, 0, 1550, 800) self.setCentralWidget(widget) self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) #Font self.setFont(QFont('SansSerif', 14)) # @Slot() # def exit_app(self, checked): # sys.exit() class CustomTableModel(QAbstractTableModel): def __init__(self, data=None): QAbstractTableModel.__init__(self) self.load_data(data) self.checks = {} def checkState(self, index): if index in self.checks.keys(): return self.checks[index] else: return Qt.Unchecked def load_data(self, data): self.input_order = data[0].values self.input_itemid = data[1].values self.input_table = data[2].values self.input_item = data[3].values self.input_quantity = data[4].values self.input_number = data[5].values self.input_time = data[6].values self.column_count = 8 self.row_count = len(self.input_order) def rowCount(self, parent=QModelIndex()): return self.row_count def columnCount(self, parent=QModelIndex()): return self.column_count def headerData(self, section, orientation, role): if role != Qt.DisplayRole: return None if orientation == Qt.Horizontal: return ("Served", "OrderID", "ItemID", "TableNo", "Item", "Quantity", "Number", "Time")[section] else: return "{}".format(section) def data(self, index, role = Qt.DisplayRole): column = index.column() row = index.row() if role == Qt.DisplayRole or role == Qt.EditRole: if column == 1: raw_date = self.input_order[row] date = "{}".format(raw_date) return date elif column == 2: return "{}".format(self.input_itemid[row]) elif column == 3: return "{}".format(self.input_table[row]) elif column == 4: return "{}".format(self.input_item[row]) elif column == 5: return "{}".format(self.input_quantity[row]) elif column == 6: return "{}".format(self.input_number[row]) elif column == 7: return "{}".format(self.input_time[row]) else: return QCheckBox('') elif role == Qt.CheckStateRole and column == 0: return self.checkState(QPersistentModelIndex(index)) elif role == Qt.TextAlignmentRole: return Qt.AlignCenter return None def setData(self, index, value, role=Qt.EditRole): if not index.isValid(): return False if role == Qt.CheckStateRole: self.checks[QPersistentModelIndex(index)] = value return True return False def flags(self, index): fl = QAbstractTableModel.flags(self, index) if index.column() == 0: fl |= Qt.ItemIsEditable | Qt.ItemIsUserCheckable return fl class Widget(QWidget): def __init__(self, data): super().__init__() #QWidget.__init__(self) # Getting the Model self.model = CustomTableModel(data) # Creating a QTableView self.table_view = QTableView() self.table_view.setModel(self.model) # QTableView Headers self.horizontal_header = self.table_view.horizontalHeader() self.vertical_header = self.table_view.verticalHeader() self.horizontal_header.setSectionResizeMode(0,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(1,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(2,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(3,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(4,QHeaderView.Stretch) self.horizontal_header.setSectionResizeMode(5,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(6,QHeaderView.ResizeToContents) self.horizontal_header.setSectionResizeMode(7,QHeaderView.ResizeToContents) self.vertical_header.setSectionResizeMode(QHeaderView.Interactive) self.horizontal_header.setStyleSheet("QHeaderView { font-size: 18pt; font: bold 24px;}") # QWidget Layout self.main_layout = QHBoxLayout() size = QSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred) self.main_layout.setContentsMargins(0,0,0,0) #Align Checkbox self.main_layout.setContentsMargins(0,0,0,0) ## Left layout size.setHorizontalStretch(1) self.table_view.setSizePolicy(size) self.main_layout.addWidget(self.table_view) # Set the layout to the QWidget self.setLayout(self.main_layout) def main(final_orders): data = read_sql_server() #app2 = QApplication() widget = Widget(data) window2 = MainWindow(widget) #app.setStyleSheet(qdarkstyle.load_stylesheet_pyside2()) #window2.show() #sys.exit(app2.exec_()) return window2 if __name__ == "__main__": data = read_sql_server() # Qt Application app = QApplication() # QWidget widget = Widget(data) # QMainWindow using QWidget as central widget window = MainWindow(widget) # setup stylesheet app.setStyleSheet(qdarkstyle.load_stylesheet_pyside2()) window.show() sys.exit(app.exec_())
AI-waiter
/AI_waiter-1.0.3.tar.gz/AI_waiter-1.0.3/src/gui/display_window2.py
display_window2.py
import pandas as pd import re from nltk.corpus import stopwords from nltk import word_tokenize from nltk.stem import WordNetLemmatizer, LancasterStemmer """ TODO: return most likely specific quantity to make sure that the term with the highest number of tokens is returned. clean speech text, so that e.g. fritz-kola -> fritz kola """ def clean_text(text): text = str(text).lower() #lowercase text = re.sub('\'s', 's', text) text = re.sub('\’s', 's', text) text = re.sub('\W', ' ', text) #remove punctuation text = re.sub('\d+','', text) #remove digits text = re.sub('\s+', ' ', text) #remove whitespace text = text.strip(' ') return text def remove_stopwords(text): stop_words = stopwords.words('english') # add words to stopwords add_words = ['de', 'la', 'order', 'could'] stop_words += add_words word_tokens = word_tokenize(text) filtered = [w for w in word_tokens if not w in stop_words] return ' '.join([w for w in filtered]) def lemmatize_text(text): # Lemmatizing lemmatizer = WordNetLemmatizer() lemmatized_output = ' '.join([lemmatizer.lemmatize(w) for w in text.split()]) #Stemming #stemmer = LancasterStemmer() #stemmed_words = [stemmer.stem(word) for word in text] #text = " ".join(stemmed_words) return lemmatized_output def get_quantities(menu): """ separate items in quantity columns into a list """ new_quant = [] for q in menu['Quantities']: try: new_quant.append(q.split(', ')) except: new_quant.append([]) menu['Quantities'] = new_quant return menu def main(menu_file): """ menu file is a csv file containing the menu items """ data = pd.read_csv(menu_file, encoding = 'utf-8') data.rename(columns={data.columns[1]: "Specific term"}, inplace=True) data["Further details"] = data["Further details"].apply(clean_text) data = get_quantities(data) data['Quantities'] = data['Quantities'].apply(clean_text) data["General term"] = data["General term"].apply(clean_text) data["Specific term"] = data["Specific term"].apply(clean_text) data["description_tokens"] = data["Further details"].apply(word_tokenize) #data["quantities_tokens"] = data["Quantities"].apply(word_tokenize) data["general_tokens"] = data["General term"].apply(word_tokenize) data["specific_tokens"] = data["Specific term"].apply(word_tokenize) data["all_tokens"] = data["specific_tokens"] + data["general_tokens"] + data["description_tokens"] data.to_csv('menu_data.csv') return data if __name__ == "__main__": menu_file = ('../menus/menu.csv') tokenized_data = main(menu_file) print(tokenized_data.head())
AI-waiter
/AI_waiter-1.0.3.tar.gz/AI_waiter-1.0.3/src/convert_text/get_menu_items.py
get_menu_items.py
from nltk import word_tokenize from statistics import mode import sys sys.path.append('../../') from src.convert_text.get_menu_items import lemmatize_text, clean_text, remove_stopwords from src.configs.config import filenames import textwrap import json import ast from collections import Counter import pandas as pd import random import nltk import sqlalchemy import random from datetime import datetime import urllib3, time import requests import json from random import randint #from word2number import w2n import sqlalchemy def clean_speech(text): """ Cleans the speech to text conversione Args: text : string of text converted from speech Returns: new_text : list of strings """ new_text = clean_text(text) return lemmatize_text(new_text) def search_for_general_item(text, menu): """ search the cleaned text for an item on the menu Args: text : speech converted into text menu : menu data from csv file Return: item_idx (int): possible indices of menu item x : corresponding menu item """ # is the general term in the order? general_terms = menu['General term'].unique() possible_items = [] for w in text: possible_items = possible_items + [x for x in general_terms if w in x] # count most frequently occuring item if possible_items != []: try: item = mode(possible_items) except: print("more than one possible item") else: item = [] return item def search_for_specific_item(text, menu): """ matches the indices for the general item to a specific item Args: text : speech converted to text menu : menu dataframe idx : list of possible general items TODO: need to improve so it matches up exact word for word """ specific_items = menu['Specific term'].apply(lambda x: remove_stopwords(x)) print(specific_items) possible_items = [] print('text = ',text) for w in text: possible_items += [x for x in specific_items if w in x] if possible_items == []: print('no match to specific item found') return [] else: try: return mode(possible_items) except: print("More than one possible item") print(possible_items) return [] def match_item_to_order(text, menu): """ instead of seraching for an item in the text, search through all the items to see if they appear in the text """ # clean specific items menu['Specific term'] = menu['Specific term'].apply(lambda x: remove_stopwords(x)) text = word_tokenize(remove_stopwords(' '.join(text))) possible_items = [] count_terms = [] for term in menu['Specific term']: count = 0 for token in word_tokenize(term): if any(token == w for w in text): count +=1 if count != 0: possible_items.append(term) count_terms.append(count) if possible_items == []: return [] else: try: return mode(possible_items) except: print('count_terms = ',count_terms) print('possible_items = ', possible_items) idx = count_terms.index(max(count_terms)) for i in range(len(count_terms)): if i != idx: if count_terms[i] == max(count_terms): return 'not sure' return possible_items[idx] def search_for_quantity(text,menu, item_index): # TODO : find numeric values quantity_list = menu['Quantities'].loc[item_index] quantity = ([w for w in text if w in quantity_list]) return quantity def search_for_number(text): pos = nltk.pos_tag(text) for i in range(len(pos)): word, pos_tag = pos[i] if pos_tag == 'CD': return word else: return 'one' def get_alternative_text(audio, recognizer): alt_dict = recognizer.recognize_google(audio, show_all = True) alternatives = alt_dict['alternative'] transcript = [] for i in alternatives: transcript.append(i['transcript']) return transcript def final_order(order_data, timestamp): """ determine final order, as most likely translation """ max_items = max(order_data['sentence_id']) order_itemid = [] order_table = [] order_items = [] order_quantity = [] order_timestamp = [] order_number = [] # iterate through item orders for i in range(max_items + 1): # find item item_list = order_data[order_data['sentence_id'] == i]['item'].values # if all items are the same, choice is obvious if all(x == item_list[0] for x in item_list): item = item_list[0] else: # TODO : find most commonly occuring item try: item = mode(item_list) if item == 'not sure': item = mode(item_list[item_list != 'not sure']) except: item = item_list[0] # find quantity quantity_list = order_data[order_data['sentence_id'] == i]['quantity'].values try: quantity_list = [q[0] for q in quantity_list] if all(x == quantity_list[0] for x in quantity_list): quantity = quantity_list[0] else: try: quantity = mode(quantity_list) except: quantity = quantity_list[0] except: quantity = 'missing quantity' # find number number_list = order_data[order_data['sentence_id'] == i]['number'].values try: if all(x == number_list[0] for x in number_list): number = number_list[0] else: number = float('NaN') except: number = float('NaN') order_itemid.append(random.randint(1000,2000)) order_items.append(item) order_quantity.append(quantity) order_timestamp.append(timestamp) order_table.append(0) order_number.append(number) # TODO : what if not all items/quantites are the same? How to pick most likely order #Counts how many times the script has ran to give a unique item ID def get_var_value(filename="varstore.dat"): with open(filename, "a+") as f: f.seek(0) val = int(f.read() or 0) + 1 f.seek(0) f.truncate() f.write(str(val)) return val your_counter = get_var_value() final_order_dict = {'OrderID': your_counter ,'TableNo': random.randint(1,25) ,'ItemID': order_itemid ,'Item': order_items ,'Quantity': order_quantity ,'Number': order_number ,'Time': order_timestamp} final_order_data = pd.DataFrame(final_order_dict) print(final_order_data) return final_order_data def main(audio, timestamp, recognizer, menu): """ Args: audio : output from SpeechConvert() recognizer : speech recognition class menu : dataframe containing menu information returns command """ # get text and clean - look for alternatives speech_list = get_alternative_text(audio, recognizer) #speech_text = 'could i get a large glass of pinot grigio and a small glass of sauvignon blanc' order_list = [] sentence_list = [] item_list = [] order_id = [] sentence_id = [] quantity_list = [] number_list = [] for i, speech_text in enumerate(speech_list): # split order into sentences with the word 'and' print('whole order = ',speech_text) print("") order = [] speech = speech_text.split('and') for j, sentence in enumerate(speech): print('sentence =', sentence) new_text = clean_speech(sentence) new_text = remove_stopwords(new_text) if len(new_text) == 1: print("only one word found") sys.exit() new_text = word_tokenize(new_text) # try and find specific item item_name = match_item_to_order(new_text, menu) # if specific item found, search for quantity if item_name != []: try: item_index = menu.loc[menu['Specific term'] == item_name].index[0] # if multiple items quantity = search_for_quantity(new_text, menu, item_index) except: quantity = 'item not clear' else: # if specific item not found perhaps ordering a general item? general_item = search_for_general_item(new_text, menu) number = search_for_number(new_text) print('Item: ', item_name, '. Quantity: ', quantity) print("") order.append([item_name, quantity]) order_list.append(speech_text) sentence_list.append(sentence) item_list.append(item_name) sentence_id.append(j) order_id.append(i) quantity_list.append(quantity) number_list.append(number) print("--------------------") if order != []: exit # save order to file save_dir = filenames.order_dir filename = 'full_order.csv' dct = {'translation_id' : order_id ,'sentence_id' : sentence_id ,'order' : order_list ,'sentence' : sentence_list ,'item' : item_list ,'quantity': quantity_list ,'number' : number_list} full_order_data = pd.DataFrame(dct) full_order_data.to_csv(save_dir + filename) order = final_order(full_order_data, timestamp) order.to_csv(save_dir + 'final_order.csv', index = False) ########################### #Save order to SQL table engine = sqlalchemy.create_engine( "mssql+pyodbc://altius:[email protected]/DemoDatasets?driver=SQL+Server") order.to_sql(name='orders', con=engine, if_exists='append', index=False) print('order saved') return None
AI-waiter
/AI_waiter-1.0.3.tar.gz/AI_waiter-1.0.3/src/convert_text/text_to_command.py
text_to_command.py
import tkinter import tkinter as tk import tkinter.messagebox import pyaudio import wave import os import sys sys.path.append('../../') from datetime import datetime import keyboard class RecAUD_space: """ Record audio interface. Options to start, stop and cancel recording It saves to file automatically when you stop recording. Operates by using the keyboard as opposed to pressing buttons """ def __init__(self, file_name, chunk=3024, frmat=pyaudio.paInt16, channels=2, rate=44100, py=pyaudio.PyAudio()): # Start Tkinter and set Title # set to hit space to record and stop record # esc to cancel? # output table number, order, time ordered # slide on what it's doing with confidence scores etc. self.main = tkinter.Tk() self.collections = [] self.main.geometry('300x150') # size of buttons self.main.title('Record') # title of interface self.CHUNK = chunk self.FORMAT = frmat self.CHANNELS = channels self.RATE = rate self.p = py self.frames = [] self.st = 1 # start counter self.stream = self.p.open(format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.CHUNK) current_time = str(datetime.now()) current_time = "_".join(current_time.split()).replace(":","-") self.current_time = current_time[:-7] self.file_name = file_name self.labelframe = tkinter.LabelFrame(self.main, text = "Could I take your order?") self.labelframe.unbind("<space>") self.labelframe.bind("<space>", self.start_record) #self.labelframe.bind("<space>", self.stop) self.labelframe.bind("<Escape>", self.cancel_record) self.labelframe.pack(fill=tk.BOTH, expand = "yes") self.label = tkinter.Label(self.labelframe , text = "Press space bar to record, and again to stop.\n Press ESC to cancel.") self.label.pack() self.labelframe.focus_set() # Set Frames self.labelframe.mainloop() def start_record(self, event): """ Start recording audio command """ self.st = 1 self.frames = [] stream = self.p.open(format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.CHUNK) #print("recording your order") while self.st == 1: data = stream.read(self.CHUNK) print("recording your order") self.frames.append(data) self.main.update() if keyboard.is_pressed('space'): #self.labelframe.unbind("<space>") self.st = 0 stream.close() wf = wave.open(self.file_name, 'wb') wf.setnchannels(self.CHANNELS) wf.setsampwidth(self.p.get_sample_size(self.FORMAT)) wf.setframerate(self.RATE) wf.writeframes(b''.join(self.frames)) wf.close() print('Written to file' , self.file_name, 'at time:' + self.current_time) self.main.destroy() # stream.close() # wf = wave.open(self.file_name, 'wb') # wf.setnchannels(self.CHANNELS) # wf.setsampwidth(self.p.get_sample_size(self.FORMAT)) # wf.setframerate(self.RATE) # wf.writeframes(b''.join(self.frames)) # wf.close() # print('Written to file' , self.file_name, 'at time:' + self.current_time) # self.main.destroy() return None def stop(self, event): """ Stop recording audio command sets counter to 0 """ self.st = 0 return None def cancel_record(self, event): """ Cancels recording without saving Stops execution """ sys.exit("Cancelled Recording") return None class RecAUD: """ Record audio interface. Options to start, stop and cancel recording It saves to file automatically when you stop recording. """ def __init__(self, file_name, chunk=3024, frmat=pyaudio.paInt16, channels=2, rate=44100, py=pyaudio.PyAudio()): # Start Tkinter and set Title # set to hit space to record and stop record # esc to cancel? # output table number, order, time ordered # slide on what it's doing with confidence scores etc. # set to black # output time # save to csv self.main = tkinter.Tk() self.collections = [] self.main.geometry('300x150') # size of buttons self.main.title('Record') # title of interface self.CHUNK = chunk self.FORMAT = frmat self.CHANNELS = channels self.RATE = rate self.p = py self.frames = [] self.st = 1 # start counter self.stream = self.p.open(format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.CHUNK) current_time = str(datetime.now()) current_time = "_".join(current_time.split()).replace(":","-") self.current_time = current_time[:-7] self.file_name = file_name # Set Frames self.buttons = tkinter.Frame(self.main, padx=20, pady=20) # Pack Frame self.buttons.pack(fill=tk.BOTH) # Start, Stop and Cancel buttons self.strt_rec = tkinter.Button(self.buttons, width=10, padx=10, pady=5, text='Start Recording', command=lambda: self.start_record()) self.strt_rec.grid(row=0, column=0, padx=5, pady=5) self.stop_rec = tkinter.Button(self.buttons, width=10, padx=10, pady=5, text='Stop Recording', command=lambda: self.stop()) self.stop_rec.grid(row=0, column=1, columnspan=1, padx=5, pady=5) self.cancel_rec = tkinter.Button(self.buttons, width=20, padx=0, pady=5, text='Cancel', command=lambda: self.cancel_record()) self.cancel_rec.grid(row=1, column=0, columnspan=2, padx=50, pady=5) tkinter.mainloop() def start_record(self): """ Start recording audio command """ self.st = 1 self.frames = [] stream = self.p.open(format=self.FORMAT, channels=self.CHANNELS, rate=self.RATE, input=True, frames_per_buffer=self.CHUNK) while self.st == 1: data = stream.read(self.CHUNK) self.frames.append(data) print("* recording") self.main.update() stream.close() wf = wave.open(self.file_name, 'wb') wf.setnchannels(self.CHANNELS) wf.setsampwidth(self.p.get_sample_size(self.FORMAT)) wf.setframerate(self.RATE) wf.writeframes(b''.join(self.frames)) wf.close() print('Written to file' , self.file_name, 'at time:' + self.current_time) self.main.destroy() return None def stop(self): """ Stop recording audio command sets counter to 0 """ self.st = 0 return None def cancel_record(self): """ Cancels recording without saving Stops execution """ sys.exit("Cancelled Recording") return None if __name__ == "__main__": # Create an object of the ProgramGUI class to begin the program. guiAUD = RecAUD_space('audio.wav')
AI-waiter
/AI_waiter-1.0.3.tar.gz/AI_waiter-1.0.3/src/convert_speech/record_audio.py
record_audio.py
import qdarkstyle import sys from PySide2 import QtWidgets as qtw from PySide2 import QtGui as qtg from PySide2 import QtCore as qtc from PySide2 import QtMultimedia as qtmm sys.path.append('../../') from src.configs.config import filenames from datetime import datetime import time audiofile2 = filenames.audio_file2 class MainWindow(qtw.QMainWindow): closed = qtc.Signal() def __init__(self): """ MainWindow constructor: Code in this method should define window properties, create backend resources, etc. """ super().__init__() self.setWindowTitle("Record Order") #Create Window layout with a sound widget soundboard = qtw.QWidget() soundboard.setLayout(qtw.QGridLayout()) self.setCentralWidget(soundboard) sw = SoundWidget() soundboard.layout().addWidget(sw) # Status Bar self.status = self.statusBar() self.status.showMessage("AI Waiter") #Window Dimensions self.setSizePolicy(qtw.QSizePolicy.Expanding, qtw.QSizePolicy.MinimumExpanding) # Code ends here #self.show() # @qtc.Slot() # def exit_app(self, checked): # sys.exit() sw.sendorder_button.clicked.connect(self.close) def closeEvent(self, event): self.closed.emit() super().closeEvent(event) class PlayButton(qtw.QPushButton): play_stylesheet = 'color: white;' stop_stylesheet = 'background-color: darkred; color: white;' def __init__(self): super().__init__('Play') self.setStyleSheet(self.play_stylesheet) def on_state_changed(self, state): if state == qtmm.QMediaPlayer.PlayingState: self.setStyleSheet(self.stop_stylesheet) self.setText('Stop') else: self.setStyleSheet(self.play_stylesheet) self.setText('Play') class RecordButton(qtw.QPushButton): record_stylesheet = 'background-color: green; color: white;' stop_stylesheet = 'background-color: darkred; color: white;' def __init__(self): super().__init__('Record') self.setFont(qtg.QFont('Sans', 14, qtg.QFont.Bold)) self.setStyleSheet(self.record_stylesheet) self.setSizePolicy(qtw.QSizePolicy.Expanding, qtw.QSizePolicy.Expanding) def on_state_changed(self, state): if state == qtmm.QAudioRecorder.RecordingState: self.setStyleSheet(self.stop_stylesheet) self.setText('Stop') else: self.setStyleSheet(self.record_stylesheet) self.setText('Record') class SendOrderButton(qtw.QPushButton): button_stylesheet = 'background-color: blue; color: white;' def __init__(self): super().__init__('Send Order') self.setFont(qtg.QFont('Sans', 14, qtg.QFont.Bold)) self.setSizePolicy(qtw.QSizePolicy.Expanding, qtw.QSizePolicy.Expanding) self.setStyleSheet(self.button_stylesheet) #self.clicked.connect(self.close) def press_button(self): if self.isEnabled(): self.setEnabled(False) self.setText('Send Order') else: self.setEnabled(True) self.setText('Sent') class SoundWidget(qtw.QWidget): def __init__(self): super().__init__() self.setLayout(qtw.QGridLayout()) # Title self.label = qtw.QLabel("May I take your order?") self.label.setFont(qtg.QFont('Sans', 18, qtg.QFont.Bold)) self.layout().addWidget(self.label, 0, 0, 1, 2) # Playback Subtitle self.label = qtw.QLabel("No Recording yet") self.layout().addWidget(self.label, 1, 0, 1, 2) #Play Button self.play_button = PlayButton() self.layout().addWidget(self.play_button, 3, 1, 1, 1) self.player = qtmm.QMediaPlayer() self.play_button.clicked.connect(self.on_playbutton) self.player.stateChanged.connect(self.play_button.on_state_changed) # Loading files Button self.file_button = qtw.QPushButton('Load File', clicked=self.get_file) self.layout().addWidget(self.file_button, 3, 0, 1, 1) # Slider self.position = qtw.QSlider(minimum=0, orientation=qtc.Qt.Horizontal) self.layout().addWidget(self.position, 2, 0, 1, 2) self.player.positionChanged.connect(self.position.setSliderPosition) self.player.durationChanged.connect(self.position.setMaximum) self.position.sliderMoved.connect(self.player.setPosition) # Volume # self.volume = qtw.QSlider(minimum=0,maximum=100,sliderPosition=10, # orientation=qtc.Qt.Horizontal, # #sliderMoved=self.player.setVolume # ) # self.layout().addWidget(self.volume, 2, 0) # Recording self.recorder = qtmm.QAudioRecorder() # supported audio inputs print(self.recorder.audioInputs()) self.recorder.setAudioInput('default:') #Overriding sound recording settings settings = qtmm.QAudioEncoderSettings() settings.setCodec('audio/pcm') settings.setSampleRate(44100) settings.setQuality(qtmm.QMultimedia.HighQuality) self.recorder.setEncodingSettings(settings) self.recorder.setContainerFormat('audio/x-wav') self.recorder.setOutputLocation(qtc.QUrl.fromLocalFile(audiofile2)) #Record Button self.record_button = RecordButton() self.layout().addWidget(self.record_button, 4, 0, 1, 2) self.recorder.stateChanged.connect(self.record_button.on_state_changed) self.record_button.clicked.connect(self.on_recordbutton) self.shortcut = qtw.QShortcut(qtg.QKeySequence("Space"), self) self.shortcut.activated.connect(self.on_recordbutton) #Send Order Button self.sendorder_button = SendOrderButton() self.sendorder_button.setShortcut(qtg.QKeySequence('Tab')) self.layout().addWidget(self.sendorder_button, 5, 0, 1, 2) #self.sendorder_button.clicked.connect(qtc.QCoreApplication.instance().quit) #self.sendorder_button.clicked.connect(qtc.QCoreApplication.exit(0)) def on_playbutton(self): if self.player.state() == qtmm.QMediaPlayer.PlayingState: self.player.stop() else: self.player.play() def set_file(self, url): self.label.setText(url.fileName()) if url.scheme() == '': url.setScheme('file') content = qtmm.QMediaContent(url) self.player.setMedia(content) def get_file(self): fn, _ = qtw.QFileDialog.getOpenFileUrl( self, "Select File", qtc.QDir.homePath(), "Audio files (*.wav *.flac *.mp3 *.ogg *.aiff);; All files (*)" ) if fn: self.set_file(fn) def on_recordbutton(self): if self.recorder.state() == qtmm.QMediaRecorder.RecordingState: self.recorder.stop() url = self.recorder.actualLocation() self.set_file(url) else: self.recorder.record() def main(): #app = qtw.QApplication(sys.argv) window = MainWindow() timestamp = time.strftime('%H:%M:%S') #app.setStyleSheet(qdarkstyle.load_stylesheet_pyside2()) #window.show() #app.exec_() return window, timestamp if __name__ == '__main__': import sys app = qtw.QApplication(sys.argv) window = MainWindow() app.setStyleSheet(qdarkstyle.load_stylesheet_pyside2()) window.show() sys.exit(app.exec_())
AI-waiter
/AI_waiter-1.0.3.tar.gz/AI_waiter-1.0.3/src/convert_speech/record_audio2.py
record_audio2.py
import os as _os import shlex as _shlex import contextlib as _contextlib import sys as _sys import operator as _operator import itertools as _itertools import warnings as _warnings import pkg_resources import setuptools.command.test as orig from setuptools import Distribution @_contextlib.contextmanager def _save_argv(repl=None): saved = _sys.argv[:] if repl is not None: _sys.argv[:] = repl try: yield saved finally: _sys.argv[:] = saved class CustomizedDist(Distribution): allow_hosts = None index_url = None def fetch_build_egg(self, req): """Specialized version of Distribution.fetch_build_egg that respects respects allow_hosts and index_url.""" from setuptools.command.easy_install import easy_install dist = Distribution({'script_args': ['easy_install']}) dist.parse_config_files() opts = dist.get_option_dict('easy_install') keep = ( 'find_links', 'site_dirs', 'index_url', 'optimize', 'site_dirs', 'allow_hosts', ) for key in list(opts): if key not in keep: del opts[key] # don't use any other settings if self.dependency_links: links = self.dependency_links[:] if 'find_links' in opts: links = opts['find_links'][1].split() + links opts['find_links'] = ('setup', links) if self.allow_hosts: opts['allow_hosts'] = ('test', self.allow_hosts) if self.index_url: opts['index_url'] = ('test', self.index_url) install_dir_func = getattr(self, 'get_egg_cache_dir', _os.getcwd) install_dir = install_dir_func() cmd = easy_install( dist, args=["x"], install_dir=install_dir, exclude_scripts=True, always_copy=False, build_directory=None, editable=False, upgrade=False, multi_version=True, no_report=True, user=False, ) cmd.ensure_finalized() return cmd.easy_install(req) class PyTest(orig.test): """ >>> import setuptools >>> dist = setuptools.Distribution() >>> cmd = PyTest(dist) """ user_options = [ ('extras', None, "Install (all) setuptools extras when running tests"), ( 'index-url=', None, "Specify an index url from which to retrieve dependencies", ), ( 'allow-hosts=', None, "Whitelist of comma-separated hosts to allow " "when retrieving dependencies", ), ( 'addopts=', None, "Additional options to be passed verbatim to the pytest runner", ), ] def initialize_options(self): self.extras = False self.index_url = None self.allow_hosts = None self.addopts = [] self.ensure_setuptools_version() @staticmethod def ensure_setuptools_version(): """ Due to the fact that pytest-runner is often required (via setup-requires directive) by toolchains that never invoke it (i.e. they're only installing the package, not testing it), instead of declaring the dependency in the package metadata, assert the requirement at run time. """ pkg_resources.require('setuptools>=27.3') def finalize_options(self): if self.addopts: self.addopts = _shlex.split(self.addopts) @staticmethod def marker_passes(marker): """ Given an environment marker, return True if the marker is valid and matches this environment. """ return ( not marker or not pkg_resources.invalid_marker(marker) and pkg_resources.evaluate_marker(marker) ) def install_dists(self, dist): """ Extend install_dists to include extras support """ return _itertools.chain( orig.test.install_dists(dist), self.install_extra_dists(dist) ) def install_extra_dists(self, dist): """ Install extras that are indicated by markers or install all extras if '--extras' is indicated. """ extras_require = dist.extras_require or {} spec_extras = ( (spec.partition(':'), reqs) for spec, reqs in extras_require.items() ) matching_extras = ( reqs for (name, sep, marker), reqs in spec_extras # include unnamed extras or all if self.extras indicated if (not name or self.extras) # never include extras that fail to pass marker eval and self.marker_passes(marker) ) results = list(map(dist.fetch_build_eggs, matching_extras)) return _itertools.chain.from_iterable(results) @staticmethod def _warn_old_setuptools(): msg = ( "pytest-runner will stop working on this version of setuptools; " "please upgrade to setuptools 30.4 or later or pin to " "pytest-runner < 5." ) ver_str = pkg_resources.get_distribution('setuptools').version ver = pkg_resources.parse_version(ver_str) if ver < pkg_resources.parse_version('30.4'): _warnings.warn(msg) def run(self): """ Override run to ensure requirements are available in this session (but don't install them anywhere). """ self._warn_old_setuptools() dist = CustomizedDist() for attr in 'allow_hosts index_url'.split(): setattr(dist, attr, getattr(self, attr)) for attr in ( 'dependency_links install_requires tests_require extras_require ' ).split(): setattr(dist, attr, getattr(self.distribution, attr)) installed_dists = self.install_dists(dist) if self.dry_run: self.announce('skipping tests (dry run)') return paths = map(_operator.attrgetter('location'), installed_dists) with self.paths_on_pythonpath(paths): with self.project_on_sys_path(): return self.run_tests() @property def _argv(self): return ['pytest'] + self.addopts def run_tests(self): """ Invoke pytest, replacing argv. Return result code. """ with _save_argv(_sys.argv[:1] + self.addopts): result_code = __import__('pytest').main() if result_code: raise SystemExit(result_code)
AI4SS
/AI4SS-0.0.1.tar.gz/AI4SS-0.0.1/.eggs/pytest_runner-6.0.0-py3.8.egg/ptr/__init__.py
__init__.py
# AI4Water [![Build Status](https://github.com/AtrCheema/AI4Water/workflows/tf/badge.svg)](https://github.com/AtrCheema/AI4Water/actions) [![Documentation Status](https://readthedocs.org/projects/ai4water/badge/?version=latest)](https://ai4water.readthedocs.io/en/latest/?badge=latest) [![DOI](https://zenodo.org/badge/DOI/10.5194/gmd-2021-139.svg)](https://doi.org/10.5194/gmd-15-3021-2022) [![Downloads](https://pepy.tech/badge/ai4water)](https://pepy.tech/project/ai4water) [![PyPI version](https://badge.fury.io/py/AI4Water.svg)](https://badge.fury.io/py/AI4Water) ![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/AtrCheema/AI4Water) ![GitHub last commit (branch)](https://img.shields.io/github/last-commit/AtrCheema/AI4Water/master) A uniform and simplified framework for rapid experimentation with deep leaning and machine learning based models for time series and tabular data. To put into Andrej Karapathy's [words](https://twitter.com/karpathy/status/1350503355299205120) `Because deep learning is so empirical, success in it is to a large extent proportional to raw experimental throughput, the ability to babysit a large number of experiments at once, staring at plots and tweaking/re-launching what works. This is necessary, but not sufficient.` The specific purposes of the repository are - compliment the functionality of `keras`/`pytorch`/`sklearn` by making pre and post-processing easier for time-series prediction/classification problems (also holds true for any tabular data). - save, load/reload or build models from readable json file. This repository provides a framework to build layered models using python dictionary and with several helper tools which fasten the process of modeling time-series forecasting. - provide a uniform interface for optimizing hyper-parameters for [skopt](https://scikit-optimize.github.io/stable/index.html); [sklearn](https://scikit-learn.org/stable/modules/classes.html#hyper-parameter-optimizers) based [grid](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html) and [random](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html); [hyperopt](http://hyperopt.github.io/hyperopt/) based [tpe](https://papers.nips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf), [atpe](https://www.electricbrain.io/blog/learning-to-optimize) or [optuna](https://optuna.readthedocs.io/en/stable/) based [tpe](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html), [cmaes](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.CmaEsSampler.html) etc. See [example](https://github.com/AtrCheema/AI4Water/blob/master/examples/hyper_para_opt.ipynb) using its application. - cut short the time to write boilerplate code in developing machine learning based models. - It should be possible to overwrite/customize any of the functionality of the AI4Water's `Model` by subclassing the `Model`. So at the highest level you just need to initiate the `Model`, and then need `fit`, `predict` and `view_model` methods of `Model` class, but you can go as low as you could go with tensorflow/keras. - All the above functionalities should be available without complicating keras implementation. ## Installation An easy way to install ai4water is using pip pip install ai4water You can also use GitHub link python -m pip install git+https://github.com/AtrCheema/AI4Water.git or using setup file, go to folder where repo is downloaded python setup.py install The latest code however (possibly with fewer bugs and more features) can be installed from `dev` branch instead python -m pip install git+https://github.com/AtrCheema/AI4Water.git@dev To install the latest branch (`dev`) with all requirements use the following command python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git@dev" ### installation options `all` keyword will install all the dependencies. You can choose the dependencies of particular sub-module by using the specific keyword. Following keywords are available - `hpo` if you want hyperparameter optimization - `post_process` if you want postprocessing - `exp` for experiments sub-module ## Sub-modules AI4Water consists of several submodules, each of wich responsible for a specific tasks. The modules are also liked with each other. For understanding sub-module structure of ai4water, [see this article](https://ai4water.readthedocs.io/en/dev/understanding.html) <p float="left"> <img src="/docs/source/imgs/architecture.png" width="800" height="700"/> </p> ## How to use Build a `Model` by providing all the arguments to initiate it. ```python from ai4water import Model from ai4water.models import MLP from ai4water.datasets import mg_photodegradation data, *_ = mg_photodegradation(encoding="le") model = Model( # define the model/algorithm model=MLP(units=24, activation="relu", dropout=0.2), # columns in data file to be used as input input_features=data.columns.tolist()[0:-1], # columns in csv file to be used as output output_features=data.columns.tolist()[-1:], lr=0.001, # learning rate batch_size=8, # batch size epochs=500, # number of epochs to train the neural network patience=50, # used for early stopping ) ``` Train the model by calling the `fit()` method ```python history = model.fit(data=data) ``` <p float="left"> <img src="/docs/source/imgs/mlp_loss.png" width="500" /> </p> After training, we can make predictions from it on test/training data ```python prediction = model.predict_on_test_data(data=data) ``` <p float="left"> <img src="/docs/source/imgs/mlp_reg.png" width="400" /> <img src="/docs/source/imgs/mlp_residue.png" width="400" /> </p> <p float="left"> <img src="/docs/source/imgs/mlp_line.png" width="400" /> <img src="/docs/source/imgs/mlp_edf.png" width="400" /> </p> The model object returned from initiating AI4Water's `Model` is same as that of Keras' `Model` We can verify it by checking its type ```python import tensorflow as tf isinstance(model, tf.keras.Model) # True ``` ## Using your own pre-processed data You can use your own pre-processed data without using any of pre-processing tools of AI4Water. You will need to provide input output paris to `data` argument to `fit` and/or `predict` methods. ```python import numpy as np from ai4water import Model # import any of the above model from ai4water.models import LSTM batch_size = 16 lookback = 15 inputs = ['dummy1', 'dummy2', 'dummy3', 'dummy4', 'dummy5'] # just dummy names for plotting and saving results. outputs=['DummyTarget'] model = Model( model = LSTM(units=64), batch_size=batch_size, ts_args={'lookback':lookback}, input_features=inputs, output_features=outputs, lr=0.001 ) x = np.random.random((batch_size*10, lookback, len(inputs))) y = np.random.random((batch_size*10, len(outputs))) model.fit(x=x,y=y) ``` ## using for `scikit-learn`/`xgboost`/`lgbm`/`catboost` based models The repository can also be used for machine learning based models such as scikit-learn/xgboost based models for both classification and regression problems by making use of `model` keyword arguments in `Model` function. However, integration of ML based models is not complete yet. ```python from ai4water import Model from ai4water.datasets import busan_beach data = busan_beach() # path for data file model = Model( # columns in data to be used as input input_features=['tide_cm', 'wat_temp_c', 'sal_psu', 'rel_hum', 'pcp_mm'], output_features = ['tetx_coppml'], # columns in data file to be used as input seed=1872, val_fraction=0.0, split_random=True, # any regressor from https://scikit-learn.org/stable/modules/classes.html model={"RandomForestRegressor": {}}, # set any of regressor's parameters. e.g. for RandomForestRegressor above used, # some of the paramters are https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor ) history = model.fit(data=data) model.predict_on_test_data(data=data) ``` # Hyperparameter optimization For hyperparameter optimization, replace the actual values of hyperparameters with the space. ```python from ai4water.functional import Model from ai4water.datasets import MtropicsLaos from ai4water.hyperopt import Real, Integer data = MtropicsLaos().make_regression(lookback_steps=1) model = Model( model = {"RandomForestRegressor": { "n_estimators": Integer(low=5, high=30, name='n_estimators', num_samples=10), "max_leaf_nodes": Integer(low=2, high=30, prior='log', name='max_leaf_nodes', num_samples=10), "min_weight_fraction_leaf": Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=10), "max_depth": Integer(low=2, high=10, name='max_depth', num_samples=10), "min_samples_split": Integer(low=2, high=10, name='min_samples_split', num_samples=10), "min_samples_leaf": Integer(low=1, high=5, name='min_samples_leaf', num_samples=10), }}, input_features=data.columns.tolist()[0:-1], output_features=data.columns.tolist()[-1:], cross_validator = {"KFold": {"n_splits": 5}}, x_transformation="zscore", y_transformation="log", ) # First check the performance on test data with default parameters model.fit_on_all_training_data(data=data) print(model.evaluate_on_test_data(data=data, metrics=["r2_score", "r2"])) # optimize the hyperparameters optimizer = model.optimize_hyperparameters( algorithm = "bayes", # you can choose between `random`, `grid` or `tpe` data=data, num_iterations=60, ) # Now check the performance on test data with default parameters print(model.evaluate_on_test_data(data=data, metrics=["r2_score", "r2"])) ``` Running the above code will optimize the hyperparameters and generate following figures <p float="left"> <img src="/docs/source/imgs/hpo_ml_convergence.png" width="400" /> <img src="/docs/source/imgs/hpo_fanova_importance_hist.png" width="400" /> </p> <p float="left"> <img src="/docs/source/imgs/hpo_objective.png" width="500" /> <img src="/docs/source/imgs/hpo_evaluations.png" width="500" /> </p> <p float="left"> <img src="/docs/source/imgs/hpo_parallel_coordinates.png" width="500" /> </p> # Experiments The experiments module is for comparison of multiple models on a single data or for comparison of one model under different conditions. ```python from ai4water.datasets import busan_beach from ai4water.experiments import MLRegressionExperiments data = busan_beach() comparisons = MLRegressionExperiments( input_features=data.columns.tolist()[0:-1], output_features=data.columns.tolist()[-1:], split_random=True ) # train all the available machine learning models comparisons.fit(data=data) # Compare R2 of models best_models = comparisons.compare_errors( 'r2', data=data, cutoff_type='greater', cutoff_val=0.1, figsize=(8, 9), colors=['salmon', 'cadetblue'] ) # Compare model performance using Taylor diagram _ = comparisons.taylor_plot( data=data, figsize=(5, 9), exclude=["DummyRegressor", "XGBRFRegressor", "SGDRegressor", "KernelRidge", "PoissonRegressor"], leg_kws={'facecolor': 'white', 'edgecolor': 'black','bbox_to_anchor':(2.0, 0.9), 'fontsize': 10, 'labelspacing': 1.0, 'ncol': 2 }, ) ``` <p float="left"> <img src="/docs/source/imgs/exp_r2.png" width="500" /> <img src="/docs/source/imgs/exp_taylor.png" width="500" /> </p> For more comprehensive and detailed examples see [![Documentation Status](https://readthedocs.org/projects/ai4water-examples/badge/?version=latest)](https://ai4water.readthedocs.io/projects/Examples/en/latest/?badge=latest) ## Disclaimer The library is still under development. Fundamental changes are expected without prior notice or without regard of backward compatability. #### Related [sktime: A Unified Interface for Machine Learning with Time Series](https://github.com/alan-turing-institute/sktime) [Seglearn: A Python Package for Learning Sequences and Time Series](https://github.com/dmbee/seglearn) [Pastas: Open Source Software for the Analysis of Groundwater Time Series](https://github.com/pastas/pastas) [Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh -- A Python package)](https://github.com/blue-yonder/tsfresh) [MLAir](https://gmd.copernicus.org/preprints/gmd-2020-332/) [pyts: A Python Package for Time Series Classification](https://github.com/johannfaouzi/pyts) [Tslearn, A Machine Learning Toolkit for Time Series Data](https://github.com/tslearn-team/tslearn) [TSFEL: Time Series Feature Extraction Library](https://doi.org/10.1016/j.softx.2020.100456) [catch22](https://github.com/chlubba/catch22) [vest](https://github.com/vcerqueira/vest-python) [pyunicorn (Unified Complex Network and RecurreNce analysis toolbox](https://github.com/pik-copan/pyunicorn) [TSFuse Python package for automatically constructing features from multi-view time series data](https://github.com/arnedb/tsfuse) [Catalyst](https://github.com/catalyst-team/catalyst) [tsai - A state-of-the-art deep learning library for time series and sequential data](https://github.com/timeseriesAI/tsai)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/README.md
README.md
utility functions ***************** Some utility functions prepare_data ============ .. automodule:: ai4water.utils.utils :members: prepare_data get_attributes ============== .. automodule:: ai4water.backend :members: get_attributes murphy_diagram ============== .. automodule:: ai4water.utils.visualizations :members: murphy_diagram fdc_plot ============== .. automodule:: ai4water.utils.visualizations :members: fdc_plot edf_plot ======== .. automodule:: ai4water.utils.visualizations :members: edf_plot jsonize ======= .. automodule:: ai4water.utils.utils :members: jsonize TrainTestSplit =============== .. automodule:: ai4water.utils.utils :members: TrainTestSplit
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/utils.rst
utils.rst
Experiments *********** The purpose of this module is to compare more than one models. Furthermore, this module can also optimize the hyper-parameters of these models and compare them. The Experiments class provides the basic building block for conducting experiments. The MLRegressionExperiments and MLClassificationExperiments compare several classical machine learning regression and classification models respectively. The DLRegressionExperiments class compares some common basic deep learning algorithms for a given data. Experiments =========== .. autoclass:: ai4water.experiments.Experiments :members: :show-inheritance: .. automethod:: __init__ RegressionExperiments ===================== .. autoclass:: ai4water.experiments.MLRegressionExperiments :members: :show-inheritance: .. automethod:: __init__ .. autoclass:: ai4water.experiments.DLRegressionExperiments :members: :show-inheritance: .. automethod:: __init__ ClassificationExperiments ========================= .. autoclass:: ai4water.experiments.MLClassificationExperiments :members: :show-inheritance: .. automethod:: __init__ DLRegressionExperiments ========================= .. autoclass:: ai4water.experiments.DLRegressionExperiments :members: :show-inheritance: .. automethod:: __init__, input_shape, model_MLP, model_LSTM, model_CNN, model_CNNLSTM, model_LSTMAutoEncoder, model_TCN, model_TemporalFusionTransformer, DLClassificationExperiments ============================ .. autoclass:: ai4water.experiments.DLClassificationExperiments :members: :show-inheritance:
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/experiments.rst
experiments.rst
Model ****** BaseModel ========= The core of `AI4Water` is the `Model` class which builds and trains the machine learning model. This class interacts with pre-processing and post-processing modules. The `Model` class uses a python dictionary to build layers of neural networks. To build Tensorflow based models using python dictionary see the guide for :doc:`declarative_def_tf`. To build pytorch based NN models using python dictionary see the guide for :doc:`declarative_def_torch` . .. autoclass:: ai4water._main.BaseModel :members: __init__, training_data, validation_data, test_data, all_data, fit, fit_on_all_training_data, evaluate, evaluate_on_training_data, evaluate_on_validation_data, evaluate_on_test_data, evaluate_on_all_data, predict, predict_on_training_data, predict_on_validation_data, predict_on_test_data, predict_on_all_data, predict_proba, predict_log_proba, interpret, view, eda, score, from_config, from_config_file, update_weights, activations, cross_val_score, explain, explain_example, shap_values, prediction_analysis, partial_dependence_plot, optimize_transformations, optimize_hyperparameters, permutation_importance, sensitivity_analysis, seed_everything Model subclassing ====================== Model subclassing is different from functional API in the way the model (neural network) is constructed. To understand the difference between model-subclassing API and functional API see :ref:`sub_vs_func` .. automodule:: ai4water.main.Model :members: __init__, initialize_layers, build_from_config, forward, fit_pytorch, Model for functional API ============================ .. autoclass:: ai4water.functional.Model :members: __init__, add_layers, compile, build, Pytorch Learner =============== This module can be used to train models which are built outside `AI4Water`'s model class. Thus, this module does not do any pre-processing, model building and post-processing of results. This module is inspired from fastai's Learner_ and keras's Model_ class. .. autoclass:: ai4water.models._torch.Learner :undoc-members: :show-inheritance: :members: __init__, fit, evaluate, predict, update_metrics, update_weights, plot_model, .. _Learner: https://docs.fast.ai/learner.html#Learner .. _Model: https://www.tensorflow.org/api_docs/python/tf/keras/Model
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/model.rst
model.rst
.. _dec_def_tf: declarative model definition for tensorflow ******************************************* We can construct a normal layered model using keras layers by placing the layers in a dictionary. The keys in the dictionary must be a keras layer and optionally can have an identifier separated by an underscore `_` in order to differentiate it from other similar layers in the model. For example `Dense_0` and `Dense_1` are two Dense_ layers. The input/initializing arguments in the layer must be enclosed in a dictionary within the layer. To find out what input/initializing arguments can be used, check documentation of corresponding layer in Tensorflow_ docs. It should be noted that the layer name is case-sensitive. Therefore, Dense layer cannot be DENSE. multi-layer perceptron ====================== .. code-block:: python >>> from ai4water import Model >>> from ai4water.datasets import arg_beach >>> import pandas as pd ... >>> layers = {"Dense_0": {'units': 64, 'activation': 'relu'}, ... "Dropout_0": 0.3, # 0.3 here refers to 'rate' keyword argument in Dropout layer in Tensorflow API ... "Dense_1": {'units': 32, 'activation': 'relu'}, ... "Dropout_1": 0.3, ... "Dense_2": {'units': 16, 'activation': 'relu'}, ... "Dense_3": 1 # 1 refers to 'units' keyword argument in Dense layer in Tensorflow ... } ... >>> df = arg_beach() ... >>> model = Model( ... input_features=df.columns.tolist()[0:-1], ... output_features=df.columns.tolist()[-1:], ... model={'layers':layers}, ... ) .. image:: imgs/mlp.png :align: center :height: 500 LSTM based model ================= In following case a Dense_ layer with one `units` is added automatically at the end of second `LSTM` layer. .. code-block:: python >>> import pandas as pd ... >>> from ai4water import Model >>> from ai4water.datasets import arg_beach ... >>> layers = {"LSTM_0": {'units': 64, 'return_sequences': True}, ... "LSTM_1": 32, ... "Dense": 1 ... } ... >>> df = arg_beach ... >>> model = Model(ts_args={"lookback": 12} ... input_features=df.columns.tolist()[0:-1], ... output_features=df.columns.tolist()[-1:], ... model={'layers':layers}) .. image:: imgs/lstm.png :align: center :height: 500 1d CNN based model ==================== If a layer does not receive any input arguments for its initialization, still an empty dictionary must be provided. Activation functions can also be used as a separate layer. .. code-block:: python >>> layers = {"Conv1D_9": {'filters': 64, 'kernel_size': 2}, ... "Dropout": 0.3, ... "Conv1D_1": {'filters': 32, 'kernel_size': 2}, ... "MaxPool1D": 2, ... 'Flatten': {}, # This layer does not receive any input arguments ... 'LeakyReLU': {}, # activation function can also be used as a separate layer ... "Dense": 1 ... } .. image:: imgs/cnn.png :align: center :height: 600 LSTM -> CNN based model ======================== .. code-block:: python >>> layers = {"LSTM": {'units': 64, 'return_sequences': True}, ... "Conv1D_0": {'filters': 64, 'kernel_size': 2}, ... "Dropout": 0.3, ... "Conv1D_1": {'filters': 32, 'kernel_size': 2}, ... "MaxPool1D": 2, ... 'Flatten': {}, ... 'LeakyReLU': {}, ... "Dense": 1 ... } .. image:: imgs/lstm_cnn.png :align: center :height: 700 ConvLSTM based model ===================== AI4Water will infer input shape for general cases however it is better to explicitly define the Input_ layer when the input is > 3d or the number of inputs are more than one. .. code-block:: python >>> layers = {'Input': {'shape': (3, 1, 4, 8)}, ... 'ConvLSTM2D': {'filters': 64, 'kernel_size': (1, 3), 'activation': 'relu'}, ... 'Flatten': {}, ... 'RepeatVector': 1, ... 'LSTM': {'units': 128, 'activation': 'relu', 'dropout': 0.3, 'recurrent_dropout': 0.4 }, ... 'Dense': 1 ... } .. image:: imgs/convlstm.png :align: center :height: 500 CNN -> LSTM ========================== If a layer is to be enclosed in `TimeDistributed` layer, just add the layer followed by `TimeDistributed` as shown below. In following, 3 `Conv1D` layers are enclosed in `TimeDistributed` layer. Similarly `Flatten` and `MaxPool1D` are also wrapped in `TimeDistributed` layer. .. code-block:: python >>> sub_sequences = 3 >>> lookback = 15 >>> time_steps = lookback // sub_sequences >>> layers = { ... "Input": {'config': {'shape': (None, time_steps, 10)}}, ... "TimeDistributed_0": {}, ... 'Conv1D_0': {'filters': 64, 'kernel_size': 2}, ... 'LeakyReLU_0': {}, ... "TimeDistributed_1":{}, ... 'Conv1D_1': {'filters': 32, 'kernel_size': 2}, ... 'ELU_1': {}, ... "TimeDistributed_2": {}, ... 'Conv1D_2': {'filters': 16, 'kernel_size': 2}, ... 'tanh_2': {}, ... "TimeDistributed_3": {}, ... "MaxPool1D": {'pool_size': 2}, ... "TimeDistributed_4": {}, ... 'Flatten': {}, ... 'LSTM_0': {'units': 64, 'activation': 'relu', 'dropout': 0.4, 'recurrent_dropout': 0.5, ... 'return_sequences': True, 'name': 'lstm_0'}, ... 'relu_1': {}, ... 'LSTM_1': {'units': 32, 'activation': 'relu', 'dropout': 0.4, ... 'recurrent_dropout': 0.5, 'name': 'lstm_1'}, ... 'sigmoid_2': {}, ... 'Dense': 1 >>> } .. image:: imgs/cnn_lstm.png :height: 1200 LSTM based auto-encoder ======================== .. code-block:: python >>> layers = { ... 'LSTM_0': {'units': 100, 'dropout': 0.3, 'recurrent_dropout': 0.4}, ... "LeakyReLU_0": {}, ... 'RepeatVector': 11, ... 'LSTM_1': {'units': 100, 'dropout': 0.3, 'recurrent_dropout': 0.4}, ... "relu_1": {}, ... 'Dense': 1 >>> } .. image:: imgs/lstm_autoenc.png :align: center :height: 500 TCN layer ========= You can use third party layers such as `tcn`_ which is currently not supported by Tensorflow. Provided you have installed `tcn`, the layer along with its arguments can be used as following .. code-block:: python >>> layers = {"TCN": {'nb_filters': 64, ... 'kernel_size': 2, ... 'nb_stacks': 1, ... 'dilations': [1, 2, 4, 8, 16, 32], ... 'padding': 'causal', ... 'use_skip_connections': True, ... 'return_sequences': False, ... 'dropout_rate': 0.0}, ... 'Dense': 1 >>> } .. image:: imgs/tcn.png :align: center :height: 400 Multiple Inputs =============== In order to build more complex models, where a layer takes more than one inputs, you can specify the `inputs` key for the layer and specify which inputs the layer uses. The `value` of the `inputs` dictionary must be a `list` in this case whose members must be the names of the layers which must have been defined earlier. The input/initializing arguments in the layer must be enclosed in a `config` dictionary within the layer in such cases. .. code-block:: python >>> from ai4water import Model >>> class MyModel(Model): ... >>> def training_data(self, **kwargs) -> (list, list): ... """ write code which returns x and y where x consists of [(samples, 5, 10), (samples, 10)] and y consists of ... list [(samples, 1)] ... """ >>> return ... >>> def test_data(self, **kwargs): >>> return >>> layers = {"Input_0": {"shape": (5, 10), "name": "cont_inputs"}, ... "LSTM_0": {"config": { "units": 62, "activation": "leakyrelu", "dropout": 0.4, ... "recurrent_dropout": 0.4, "return_sequences": False, "name": "lstm_0"}, ... "inputs": "cont_inputs"}, ... "Input_1": {"shape": 10, "name": "disc_inputs"}, ... "Dense_0": {"config": {"units": 64,"activation": "leakyrelu", "name": "Dense_0"}, ... "inputs": "disc_inputs"}, ... "Flatten_0": {"config": {"name": "flatten_0" }, ... "inputs": "Dense_0"}, ... ... "Concatenate": {"config": {"name": "Concat" }, ... "inputs": ["lstm_0", "flatten_0"]}, ... ... "Dense_1": {"units": 16, "activation": "leakyrelu", "name": "Dense_1"}, ... "Dropout": 0.4, ... "Dense_2": 1 >>> } As the above model takes two inputs, we will have to overwrite `training_data`, `validation_data` and `test_data` methods in our own class which should inherit from `Model` class .. image:: imgs/lstm_dense.png Multiple Output Layers ======================= In some cases a layer returns more than one output and we want to use each of those outputs in a separate layer. Such models can be built by specifying the outputs from a layer using `outputs` key. The `value` of the `outputs` key can a string or a list of strings specifying the names of of outputs, the layer is returning. We can use these names as inputs to any other layer later in the model. .. code-block:: python >>> layers = { ... "LSTM": {'config': {'units': 64, 'return_sequences': True, 'return_state': True}, ... 'outputs': ['junk', 'h_state', 'c_state']}, ... "Dense_0": {'config': {'units': 1, 'name': 'MyDense'}, ... 'inputs': 'h_state'}, ... "Conv1D_1": {'config': {'filters': 64, 'kernel_size': 3, 'name': 'myconv'}, ... 'inputs': 'junk'}, ... "MaxPool1D": {'config': {'name': 'MyMaxPool'}, ... 'inputs': 'myconv'}, ... "Flatten": {'config': {'name': 'MyFlatten'}, ... 'inputs': 'MyMaxPool'}, ... "Concatenate": {'config': {'name': 'MyConcat'}, ... 'inputs': ['MyDense', 'MyFlatten']}, ... ... "Dense": 1 >>> } .. image:: imgs/multi_output_layer.png Additional call args ========================== We might be tempted to provide additional call arguments to a layer. For example, in tensorflow's LSTM_ layer, we can provide `initial state` of an LSTM. Suppose we want to use hidden and cell state of one LSTM as initial state for next LSTM. In such cases we can make use of `call_args` as `key`. The value of `call_args` must a dictionary. In this way we can provide `keyword` arguments while calling a layer. .. code-block:: python >>> layers ={ ... "Input": {'config': {'shape': (15, 8), 'name': "MyInputs"}}, ... "LSTM": {'config': {'units': 64, 'return_sequences': True, 'return_state': True, 'name': 'MyLSTM1'}, ... 'inputs': 'MyInputs', ... 'outputs': ['junk', 'h_state', 'c_state']}, ... "Dense_0": {'config': {'units': 1, 'name': 'MyDense'}, ... 'inputs': 'h_state'}, ... "Conv1D_1": {'config': {'filters': 64, 'kernel_size': 3, 'name': 'myconv'}, ... 'inputs': 'junk'}, ... "MaxPool1D": {'config': {'name': 'MyMaxPool'}, ... 'inputs': 'myconv'}, ... "Flatten": {'config': {'name': 'MyFlatten'}, ... 'inputs': 'MyMaxPool'}, ... ... "LSTM_3": {"config": {'units': 64, 'name': 'MyLSTM2'}, ... 'inputs': 'MyInputs', ... 'call_args': {'initial_state': ['h_state', 'c_state']}}, ... "Concatenate": {'config': {'name': 'MyConcat'}, ... 'inputs': ['MyDense', 'MyFlatten', 'MyLSTM2']}, ... "Dense": 1 >>> } .. image:: imgs/add_call_args.png It must be noted that the keys `inputs`, `outputs`, and `call_args` are optional while `config` is mandatory. lambda layers ========================== You can also add `lambda`_ layers by placing the lambda layer definition in the `config` as following: .. code-block:: python >>> import tensorflow as tf >>> from ai4water import Model >>> import pandas as pd >>> layers = { ... "LSTM_0": {"config": {"units": 32, "return_sequences": True}}, ... "lambda": {"config": tf.keras.layers.Lambda(lambda x: x[:, -1, :])}, ... "Dense": {"config": {"units": 1}} >>> } ... # The model can be seamlessly loaded from the saved json file using >>> config_path = "path like" >>> model = Model.from_config(config_path=config_path) .. image:: imgs/lambda.png Custom Layers ============== You can also use your own custom layers which inherit from tensorflow.keras.layers.Layer. All you need to do is to register your layer in ai4water.tf_attributes.LAYERS as shown in the example below .. code-block:: python >>> import numpy as np >>> from tensorflow.keras.layers import Dense >>> # Define a custom Dense layer >>> class MyDense(Dense): pass >>> # register your custom layer >>> import ai4water.tf_attributes as attributes >>> attributes.LAYERS['CustomDense'] = MyDense # import Model from ai4water >>> from ai4water import Model # build Model using your custom layer >>> layers = {"Input": {"shape": (10,)}, "CustomDense": 1} >>> model = Model(model={"layers": layers}) >>> inp = np.random.random((100, 10)) >>> y = np.random.random(100) >>> h = model.fit(x=inp, y=y, epochs=1) For more examples see `examples`. Activation layers ================== Following activation layers can be used. =============== ================ Activation Name in ai4water =============== ================ relu relu LeakyReLU LeakyReLU PReLU PReLU ThresholdedReLU ThresholdedReLU ELU ELU tanh tanh relu relu selu selu sigmoid sigmoid hardsigmoid hardsigmoid crelu crelu relu6 relu6 softmax softmax softplus softplus softsign softsign swish swish =============== ================ .. _Dense: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense .. _Tensorflow: https://www.tensorflow.org/api_docs/python/tf/keras/layers .. _Input: https://www.tensorflow.org/api_docs/python/tf/keras/Input .. _tcn: https://github.com/philipperemy/keras-tcn .. _lambda: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Lambda .. _LSTM: https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM#call_arguments_2
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/declarative_def_tf.rst
declarative_def_tf.rst
.. ai4water documentation Welcome to ai4water's documentation! ==================================== .. image:: imgs/monogram.png .. toctree:: :maxdepth: 2 installation quick_start understanding .. toctree:: :maxdepth: 2 :caption: Modules model models datasets preprocessing postprocessing eda hpo experiments evapotranspiration utils auto_examples/index paper ===== AI4Water v1.0: An open source python package for modeling hydrological time series using data-driven methods https://doi.org/10.5194/gmd-15-3021-2022 If you use ai4water in your research, consider citing it using following BibTeX entry :: @article{atr2022GMD, title={AI4Water v1.0: An open source python package for modeling hydrological time series using data-driven methods}, author={Abbas, Ather and Boithias, Laurie and Pachepsky, Yakov and Kim, Kyunghyun and Chun, Jong Ahn and Cho, Kyung Hwa}, journal={Geoscientific Model Development}, VOLUME = {15}, YEAR = {2022}, NUMBER = {7}, PAGES = {3021--3039}, URL = {https://gmd.copernicus.org/articles/15/3021/2022/}, DOI = {10.5194/gmd-15-3021-2022} publisher={Copernicus} } Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/index.rst
index.rst
preprocessing ************* .. toctree:: :maxdepth: 2 preprocessing/dataset preprocessing/imputation preprocessing/featurization preprocessing/make_hrus preprocessing/transformation The preprocessing sub-module contains classes which handles preparation of input data. The fundamental class is the `DataSet` class which prepares data from a single data source. If you hvae multiple data sources then you can either use `DataSetUnion` or `DataSetPipeline` class. The DataSet can take a data in a variety of commonly found formats such as csv, xlsx and prepares the data so that it can be fed to `Model` for training. This class works with modules in conjunction with `Imputation` class. It should be noted that transformations applied in ai4water are part of **Model**. This means transformations are applied, everytime a call to the model is made using `fit`, `predict`, `evaluate`, `score` or `predict_prob` methods.
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/preprocessing.rst
preprocessing.rst
Installation ************* using pip ========= The most easy way to install ai4water is using ``pip`` :: pip install ai4water However, if you are interested in using only specific module of ai4water, you can choose to install dependencies related to that module only. For example to use only machine learning based models use can use ``ml`` option as Following :: pip install ai4water[ml] For list of all options see :ref:`installation_options`. using github link ================= You can also use github link to install ai4water. :: python -m pip install git+https://github.com/AtrCheema/AI4Water.git The latest code however (possibly with less bugs and more features) can be installed from ``dev`` branch instead :: python -m pip install git+https://github.com/AtrCheema/AI4Water.git@dev To install the latest branch (`dev`) with all requirements use ``all`` keyword :: python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git@dev" using setup.py file =================== go to folder where repository is downloaded :: python setup.py install .. _installation_options: installation options ===================== The ``all`` option will install all the dependencies. You can choose the dependencies of particular sub-module by using the specific keyword. Following keywords are available - ``hpo`` if you want hyperparameter optimization - ``post_process`` if you want postprocessing - ``exp`` for experiments sub-module - ``eda`` for exploratory data analysis sub-module - ``ml`` for classical machine learning models - ``tf`` for using tensorflow - ``torch`` for using pytorch
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/installation.rst
installation.rst
postprocessing ************** This consists of modules which handles the output of `Model` after the model has been trained i.e. after `.fit` method has been called on it. Please note that the `SeqMetrics` sub-module has been deprecated. Please use `SeqMetrics <https://seqmetrics.readthedocs.io/en/latest/>`_ library instead. .. toctree:: :maxdepth: 2 postprocessing/explain postprocessing/interpret postprocessing/seqmetrics postprocessing/visualize ProcessPredictions ================== .. autoclass:: ai4water.postprocessing.ProcessPredictions :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. automethod:: __call__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/postprocessing.rst
postprocessing.rst
.. _quick_start: quick start *********** Build a `Model` by providing all the arguments to initiate it. For building deep learning models, we can use higher level functions such as :py:class:`ai4water.models.LSTM`. .. code-block:: python >>> from ai4water import Model >>> from ai4water.models import LSTM >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model( ... model = LSTM(64), ... input_features=['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm'], # columns in csv file to be used as input ... output_features = ['tetx_coppml'], # columns in csv file to be used as output ... ts_args={'lookback': 12} # how much historical data we want to feed to model >>> ) Train the model by calling the `fit()` method .. code-block:: python >>> history = model.fit(data=data) Make predictions from it .. code-block:: python >>> predicted = model.predict() The model object returned from initiating AI4Water's `Model` is same as that of Keras' `Model` We can verify it by checking its type .. code-block:: python >>> import tensorflow as tf >>> isinstance(model, tf.keras.Model) # True Defining layers of neural networks ================================== Above we had used LSTM model. Other available deep learning models are MLP (:py:class:`ai4water.models.MLP`), CNN (:py:class:`ai4water.models.CNN`) CNNLSTM (:py:class:`ai4water.models.CNNLSTM`), TCN (:py:class:`ai4water.models.TCN`) and TFT (:py:class:`ai4water.models.TFT`). On the other hand if we wish to define the layers of neural networks ourselves, we can also do so using :ref:`dec_def_tf` .. code-block:: python >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model( ... model = {'layers': {"LSTM": 64, ... 'Dense': 1}}, ... input_features=['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm'], ... output_features = ['tetx_coppml'], ... ts_args={'lookback': 12} >>> ) Using your own pre-processed data ================================= You can use your own pre-processed data without using any of pre-processing tools of AI4Water. You will need to provide input output paris to `data` argument to `fit` and/or `predict` methods. .. code-block:: python >>> import numpy as np >>> from ai4water import Model # import any of the above model ... >>> batch_size = 16 >>> lookback = 15 >>> inputs = ['dummy1', 'dummy2', 'dummy3', 'dummy4', 'dummy5'] # just dummy names for plotting and saving results. >>> outputs=['DummyTarget'] ... >>> model = Model( ... model = {'layers': {"LSTM": 64, ... 'Dense': 1}}, ... batch_size=batch_size, ... ts_args={'lookback':lookback}, ... input_features=inputs, ... output_features=outputs, ... lr=0.001 ... ) >>> x = np.random.random((batch_size*10, lookback, len(inputs))) >>> y = np.random.random((batch_size*10, len(outputs))) ... >>> history = model.fit(x=x,y=y) using `scikit-learn`/`xgboost`/`lgbm`/`catboost` based models ================================================================= The repository can also be used for machine learning based models such as scikit-learn/xgboost based models for both classification and regression problems by making use of `model` keyword arguments in `Model` function. However, integration of ML based models is not complete yet. .. code-block:: python >>> from ai4water import Model >>> from ai4water.datasets import busan_beach ... >>> data = busan_beach() # path for data file ... >>> model = Model( ... input_features=['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm'], # columns in csv file to be used as input ... output_features = ['tetx_coppml'], ... val_fraction=0.0, ... # any regressor from https://scikit-learn.org/stable/modules/classes.html ... model={"RandomForestRegressor": {"n_estimators":1000}}, # set any of regressor's parameters. e.g. for RandomForestRegressor above used, ... # some of the parameters are https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor ... ) ... >>> history = model.fit(data=data) ... >>> preds = model.predict() Using your own (custom) model ============================= If you don't want to use sklearn/xgboost/catboost/lgbm's Models and you have your own model. You can use this model seamlessly as far as this model has .fit, .evaluate and .predict methods. .. code-block:: python >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from sklearn.ensemble import RandomForestRegressor >>> class MyRF(RandomForestRegressor): >>> pass # your own customized random forest model >>> data = busan_beach() >>> model = Model(model=MyRF, mode="regression") >>> model.fit(data=data) you can initialize your Model with arguments as well >>> model = Model(model={MyRF: {"n_estimators": 10}}, >>> mode="regression") >>> model.fit(data=data) Hyperparameter optimization =========================== For hyperparameter optimization, replace the actual values of hyperparameters with the space. .. code-block:: python >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.hyperopt import Integer, Real >>> data = busan_beach() >>> model = Model( ... model = {'layers': {"LSTM": Integer(low=30, high=100,name="units"), ... 'Dense': 1}}, ... input_features=['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm'], # columns in csv file to be used as input ... output_features = ['tetx_coppml'], # columns in csv file to be used as output ... ts_args={'lookback': Integer(low=5, high=15, name="lookback")}, ... lr=Real(low=0.00001, high=0.001, name="lr") >>> ) >>> model.optimize_hyperparameters(data=data, ... algorithm="bayes", # choose between 'random', 'grid' or 'atpe' ... num_iterations=30 ... ) Experiments =========== The experiments module can be used to compare a large range of regression and classification algorithms. For example, to compare performance of regression algorithms on your data .. code-block:: python >>> from ai4water.datasets import busan_beach >>> from ai4water.experiments import MLRegressionExperiments # first compare the performance of all available models without optimizing their parameters >>> data = busan_beach() # read data file, in this case load the default data >>> inputs = list(data.columns)[0:-1] # define input and output columns in data >>> outputs = list(data.columns)[-1] >>> comparisons = MLRegressionExperiments( >>> input_features=inputs, output_features=outputs) >>> comparisons.fit(data=data,run_type="dry_run") >>> comparisons.compare_errors('r2')
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/quick_start.rst
quick_start.rst
declarative model definition for pytorch **************************************** This page describes how to build Neural Networks for pytorch using python dictionary in `ai4water`. The user can use any layer provided by pytorch such as `Linear` or `LSTM`. Similarly the user can use any input argument allowed by the particular layer e.g. `bidirectional` for LSTM_ and `out_features` for Linear_. All the examples presented here are similar which were shown for tensorflow's case :doc:`declarative_def_tf` multi-layer perceptron ====================== .. code-block:: python from ai4water.datasets import arg_beach from ai4water import Model data=arg_beach() layers = { "Linear_0": {"in_features": 13, "out_features": 64}, "ReLU_0": {}, "Dropout_0": 0.3, "Linear_1": {"in_features": 64, "out_features": 32}, "ReLU_1": {}, "Dropout_1": 0.3, "Linear_2": {"in_features": 32, "out_features": 16}, "Linear_3": {"in_features": 16, "out_features": 1}, } model = Model( model={'layers': layers}, input_features=data.columns.tolist()[0:-1], output_features=data.columns.tolist()[-1:], ) If we want to do slicing of the outputs of one layer, we can use python's `lambda` function. In fact any `callable` object can be provided LSTM based model ================= .. code-block:: python layers ={ 'LSTM_0': {"config": {'input_size': 13, 'hidden_size': 64, "batch_first": True}, "outputs": ['lstm0_output', 'states_0']}, # LSTM in pytorch returns two values see docs 'LSTM_1': {"config": {'input_size': 64, 'hidden_size': 32, "batch_first": True, "dropout": 0.3}, "outputs": ["lstm1_output", 'states_1'], "inputs": "lstm0_output"}, 'slice': {"config": lambda x: x[:, -1, :], # we want to get the output from last lookback step. "inputs": "lstm1_output"}, "Linear": {"in_features": 32, "out_features": 1}, } .. _LSTM: https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html .. _Linear: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/declarative_def_torch.rst
declarative_def_torch.rst
HyperParameter Optimization *************************** This module is for optimization of hyper-parameters. The `HyperOpt` class performs optimization by minimizing the objective which is defined by a user defined objective function. The space of hyperparameters can be defined by using `Categorical`, `Integer` and `Real` classes. For tutorial on using this class, see `tutorials`_ Categorical =========== .. autoclass:: ai4water.hyperopt.Categorical :members: .. automethod:: __init__ Real ==== .. autoclass:: ai4water.hyperopt.Real :members: .. automethod:: __init__ Integer ======= .. autoclass:: ai4water.hyperopt.Integer :members: .. automethod:: __init__ HyperOpt ========= .. autoclass:: ai4water.hyperopt.HyperOpt :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. automethod:: __getattr__ .. _tutorials: https://ai4water.readthedocs.io/projects/Examples/en/dev/_notebooks/main.html fANOVA ======= .. autoclass:: ai4water.hyperopt.fANOVA :members: .. automethod:: __init__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/hpo.rst
hpo.rst
explain ******* ShapExplainer ============= .. autoclass:: ai4water.postprocessing.explain.ShapExplainer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ LimeMLExplainer =============== .. autoclass:: ai4water.postprocessing.explain.LimeExplainer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ PermutationImportance ===================== .. autoclass:: ai4water.postprocessing.explain.PermutationImportance :members: :undoc-members: :show-inheritance: .. automethod:: __init__ PartialDependencePlot ===================== .. autoclass:: ai4water.postprocessing.explain.PartialDependencePlot :members: :undoc-members: :show-inheritance: .. automethod:: __init__ explain_model ============= .. automodule:: ai4water.postprocessing.explain.explain_model :show-inheritance: explain_model_with_lime ========================== .. automodule:: ai4water.postprocessing.explain.explain_model_with_lime :show-inheritance: explain_model_with_shap ======================= .. automodule:: ai4water.postprocessing.explain.explain_model_with_shap :show-inheritance:
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/postprocessing/explain.rst
explain.rst
Performance Metrics ******************* Please note that the `SeqMetrics` sub-module has been deprecated. Please use `SeqMetrics <https://seqmetrics.readthedocs.io/en/latest/>`_ library instead. SeqMetrics ========= .. autoclass:: ai4water.postprocessing.SeqMetrics.Metrics :members: :undoc-members: :show-inheritance: .. automethod:: __init__ RegressionMetrics ================== .. autoclass:: ai4water.postprocessing.SeqMetrics.RegressionMetrics :members: :undoc-members: :show-inheritance: .. automethod:: __init__ ClassificationMetrics ===================== .. autoclass:: ai4water.postprocessing.SeqMetrics.ClassificationMetrics :members: :undoc-members: :show-inheritance: .. automethod:: __init__ Utils ======== .. autoclass:: ai4water.postprocessing.SeqMetrics.utils.plot_metrics :members: :undoc-members: :show-inheritance: .. automethod:: __init__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/postprocessing/seqmetrics.rst
seqmetrics.rst
models ******* DualAttentionModel ================== .. autoclass:: ai4water.tf_models.DualAttentionModel :members: :undoc-members: :show-inheritance: .. automethod:: __init__ TemporalFusionTransformer ========================= .. autoclass:: ai4water.models.tensorflow.TemporalFusionTransformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ NBeats ====== .. autoclass:: ai4water.models.tensorflow.NBeats :members: :undoc-members: :show-inheritance: .. automethod:: __init__ HARHNModel ========== .. autoclass:: ai4water.pytorch_models.HARHNModel :members: :undoc-members: :show-inheritance: .. automethod:: __init__ IMVModel ======== .. autoclass:: ai4water.pytorch_models.IMVModel :members: :undoc-members: :show-inheritance: .. automethod:: __init__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/models/models.rst
models.rst
Tensorflow Layers ***************** MCLSTM ======== .. autoclass:: ai4water.models._tensorflow.MCLSTM :members: :undoc-members: :show-inheritance: .. automethod:: __init__ Conditionalize ============== .. autoclass:: ai4water.models._tensorflow.Conditionalize :members: :undoc-members: :show-inheritance: .. automethod:: __init__ EALSTM ======== .. autoclass:: ai4water.models._tensorflow.EALSTM :members: :undoc-members: :show-inheritance: .. automethod:: __init__ TransformerBlocks ================== .. autoclass:: ai4water.models._tensorflow.TransformerBlocks :members: :undoc-members: :show-inheritance: .. automethod:: __init__ Transformer ================== .. autoclass:: ai4water.models._tensorflow.Transformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ TabTransformer ================== .. autoclass:: ai4water.models._tensorflow.private_layers.TabTransformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ FTTransformer ================== .. autoclass:: ai4water.models._tensorflow.private_layers.FTTransformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/models/layers.rst
layers.rst
Data Transformations ******************** Transformations ================== .. autoclass:: ai4water.preprocessing.transformations.Transformation :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. autoclass:: ai4water.preprocessing.transformations.Transformations :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. autoclass:: ai4water.preprocessing.transformations.ScalerWithConfig :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. autoclass:: ai4water.preprocessing.transformations.PowerTransformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__ .. autoclass:: ai4water.preprocessing.transformations.FunctionTransformer :members: :undoc-members: :show-inheritance: .. automethod:: __init__
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/docs/source/preprocessing/transformation.rst
transformation.rst
<a href="https://colab.research.google.com/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_loss_function.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> This notebook shows how to customize loss function when using AI4Water's `Model` class. AI4Water's Model class has a method named `loss`. Therefore, if the user wishes to modify loss function for neural networks based models, the user has to overwrite this method of Model class. In this problem, instead of predicted actual observation, we predict quantiles The loss value function is customized. We use pinball loss. https://www.lokad.com/pinball-loss-function-definition Inspired from https://www.kaggle.com/ulrich07/quantile-regression-with-keras ``` try: import ai4water except (ImportError, ModuleNotFoundError): !python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git" import tensorflow as tf from tensorflow import keras tf.__version__ import numpy as np import pandas as pd np.__version__ from ai4water import Model class QuantileModel(Model): def training_data(self, *args, **kwargs): x,y = super().training_data(*args, **kwargs) return x, y.reshape(-1,1,1) def validation_data(self, *args, **kwargs): x,y = super().training_data(*args, **kwargs) return x, y.reshape(-1,1,1) def test_data(self, *args, **kwargs): x,y = super().training_data(*args, **kwargs) return x, y.reshape(-1,1,1) def loss(self): return qloss def qloss(y_true, y_pred): # Pinball loss for multiple quantiles qs = quantiles q = tf.constant(np.array([qs]), dtype=tf.float32) e = y_true - y_pred v = tf.maximum(q * e, (q - 1) * e) return keras.backend.mean(v) # Define a dummy dataset consisting of 6 time-series. rows = 2000 cols = 6 data = np.arange(int(rows*cols)).reshape(-1, rows).transpose() data = pd.DataFrame(data, columns=['input_' + str(i) for i in range(cols)], index=pd.date_range('20110101', periods=len(data), freq='H'), dtype=float) # Define Model layers = {'Dense_0': {'config': {'units': 64, 'activation': 'relu'}}, 'Dropout_0': {'config': {'rate': 0.3}}, 'Dense_1': {'config': {'units': 32, 'activation': 'relu'}}, 'Dropout_1': {'config': {'rate': 0.3}}, 'Dense_2': {'config': {'units': 16, 'activation': 'relu'}}, 'Dense_3': {'config': {'units': 9}}, 'Reshape': {"target_shape": (9, 1)} } # Define Quantiles quantiles = [0.005, 0.025, 0.165, 0.250, 0.500, 0.750, 0.835, 0.975, 0.995] # Initiate Model model = QuantileModel( input_features=['input_' + str(i) for i in range(cols - 1)], output_features=['input_' + str(cols - 1)], #lookback=1, model={'layers': layers}, epochs=10, quantiles=quantiles) # Train the model on first 0.6 % of data, while 0.2% of data will be used for validation h = model.fit(data=data) ``` We can verify that the model is using the `qloss` function as objective function ``` model.loss.__name__ true_y, pred_y = model.predict(return_true=True) true_y.shape pred_y.shape ```
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/customizing_loss_function.ipynb
customizing_loss_function.ipynb
<a href="https://colab.research.google.com/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_train_step.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> This file shows a minimal example how to customize `train_step` using the Model class of AI4water ``` try: import ai4water except (ImportError, ModuleNotFoundError): !python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git" import tensorflow as tf tf.__version__ from ai4water import Model from ai4water.datasets import busan_beach class CustomModel(Model): def train_step(self, data): print('custom train_step') # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update metrics (includes the metric that tracks the loss) self.compiled_metrics.update_state(y, y_pred) # Return a dict mapping metric names to current value return {m.name: m.result() for m in self.metrics} model = CustomModel( model={"layers": { "Input": {"shape": (13,)}, "Dense_1": 64, "Dropout_1": 0.2, "Dense_2": 32, "Dropout_2": 0.2, "Dense_3": 16, "Dropout_3": 0.2, "Dense_4": 8, "Dense_5": 1, } }, #lookback=1, lr=8.95e-5 ) h = history = model.fit(data=busan_beach()) ```
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/customizing_train_step.ipynb
customizing_train_step.ipynb
import os import site # so that dl4seq directory is in path site.addsitedir(os.path.dirname(os.path.dirname(__file__)) ) import numpy as np import pandas as pd import matplotlib.pyplot as plt from ai4water.et import HargreavesSamani, ETBase, Penman, PriestleyTaylor from ai4water.datasets import CAMELS_AUS from easy_mpl import process_axis units = {'tmin': 'Centigrade', 'tmax': 'Centigrade', 'rh_min': 'percent', 'rh_max': 'percent', 'solar_rad': 'MegaJourPerMeterSquare'} constants = dict() constants['cts'] = 0.0055 constants['pen_ap'] = 2.4 constants['pan_ap'] = 2.4 constants['turc_k'] = 0.013 constants['wind_f'] = 'pen48' constants['albedo'] = 0.23 constants['a_s'] = 0.23 constants['b_s'] = 0.5 constants['abtew_k'] = 0.52 constants['ct'] = 0.025 constants['tx'] = 3 constants['pan_coeff'] = 0.71 constants['pan_over_est'] = False constants['pan_est'] = 'pot_et' constants['CH'] = 0.12 constants['Ca'] = 0.001013 constants['surf_res'] = 70 constants['alphaPT'] = 1.28 constants['lat_rad'] = -37.293684 constants['lat_dec_deg'] = 63.506144 constants['altitude'] = 249 constants['alphaA'] = 0.14 constants['alpha_pt'] = 1.26 dataset = CAMELS_AUS(path=r"D:\mytools\AI4Water\AI4Water\utils\datasets\data\CAMELS\CAMELS_AUS") inputs = ['mslp_SILO', 'radiation_SILO', 'rh_tmax_SILO', 'tmin_SILO', 'tmax_SILO', 'rh_tmin_SILO', 'vp_deficit_SILO', 'vp_SILO', 'et_morton_point_SILO' ] data = dataset.fetch(['224206'], dynamic_attributes=inputs, categories=None, st='19700101', en='20141231') data = data['224206'] data = data.rename(columns={ 'tmin_SILO': 'tmin', 'tmax_SILO': 'tmax', 'radiation_SILO': 'sol_rad', 'vapor_pressure': 'vp_SILO', 'rh_tmin_SILO': 'rh_min', 'rh_tmax_SILO': 'rh_max', 'vp_deficit_SILO': 'vp_def' }) data1 = data[['tmin', 'tmax', 'sol_rad', 'rh_min', 'rh_max']] eto_model = HargreavesSamani(data1, units=units, constants=constants, verbosity=2) et_hs = eto_model() eto_model = ETBase(data1, units=units, constants=constants, verbosity=2) et_jh = eto_model() eto_model = Penman(data1, units=units, constants=constants, verbosity=2) et_penman = eto_model() et_penman = np.where(et_penman<0.0, np.nan, et_penman) eto_model = PriestleyTaylor(data1, units=units, constants=constants, verbosity=2) et_pt = eto_model() plt.close('all') fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex='all') process_axis(ax1,data['et_morton_point_SILO'], color= np.array([0.63797563, 0.05503074, 0.07078517]), label='Morton', ms=0.5, ylabel='ETP (mm)', legend_kws={"markerscale":4, "loc":"upper right"}) process_axis(ax2, pd.Series(et_hs, data.index), ms=0.5, color=np.array([0.70670405, 0.71039014, 0.54375619]), label='Hargreaves and Samani', ylabel='ETP (mm)', legend_kws={"markerscale":4, "loc":"upper right"}) process_axis(ax3, et_jh, ms=0.5, color=np.array([0.27822191, 0.7608274, 0.89536561]), label='Jensen and Haise', ylabel='ETP (mm)', legend_kws={"markerscale":4, "loc":"upper right"}) process_axis(ax4, pd.Series(et_penman, index=data.index), ms=0.5, color=np.array([0.39865179, 0.61455622, 0.57515074]), label='Penman', ylabel='ETP (mm)', legend_kws={"markerscale":4, "loc":"upper right"}) plt.show()
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/daily_et_methods.py
daily_et_methods.py
[compare machine learning algos](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/compare_ml.ipynb) [interpretable_dl](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/interpretability.ipynb) [hru discretization laos](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/hru_discretization_laos.ipynb) [hru discretization](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/hru_discretization.ipynb) [ecoli modeling with transformations](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/ecoli_modeling_with_transformations.ipynb) [reading input data from different file types](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/input_data_file_types.ipynb) [Model Explaination using LIME](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/lime_explainations.ipynb) [Model Explaination using SHAP](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/shap_explainations.ipynb) [Visualizing model](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/visualize.ipynb) [customizing loss function](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_loss_function.ipynb) [customizing train step](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_train_step.ipynb) [customizing training step in functional api](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_train_step_with_functional_api.ipynb) [customizing training loop](https://nbviewer.jupyter.org/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_training_loop.ipynb)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/readme.md
readme.md
<a href="https://colab.research.google.com/github/AtrCheema/AI4Water/blob/dev/examples/paper/input_data_file_types.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> This notebook shows how AI4Water can read data f rom different file formats. If the data is arranged properly in a tabular format, then AI4Water can read data from one of the following file formats: | file extension | file type | |----------------|-----------| | .csv | comma separated file | | .xlsx | microsoft excel | | .parquet | parquet| | .feather | feather| | .nc | netcdf5| | .mat | matlab file| | .npz | numpy compressed file| We will first save the data in the above mentioned file formats and then show how AI4Water can read data from those files. ``` try: import ai4water except (ImportError, ModuleNotFoundError): !python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git" import os import scipy import numpy as np from ai4water import Model from ai4water.datasets import MtropicsLaos laos = MtropicsLaos() data = laos.make_regression() type(data) data.shape data.head() data.tail() ``` First use the above DataFrame as input to Model ``` model = Model(model="RandomForestRegressor") model.fit(data=data) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` Now saving the data into different file formats ``` csv_fname = os.path.join(os.getcwd(), "data.csv") data.to_csv(csv_fname) xlsx_fname = os.path.join(os.getcwd(), "data.xlsx") data.to_excel(xlsx_fname, engine="xlsxwriter") parq_fname = os.path.join(os.getcwd(), "data.parquet") data.to_parquet(parq_fname) feather_fname = os.path.join(os.getcwd(), "data.feather") data.reset_index().to_feather(feather_fname) nc_fname = os.path.join(os.getcwd(), "data.nc") xds = data.to_xarray() xds.to_netcdf(nc_fname) npz_fname = os.path.join(os.getcwd(), "data.npz") np.savez(npz_fname, data.values) mat_fname = os.path.join(os.getcwd(), "data.mat") scipy.io.savemat(mat_fname, {'data': data.values}) ``` # csv file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=csv_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # xlsx file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=xlsx_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # parquet file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=parq_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # feather file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=feather_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # netcdf file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=nc_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # npz file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) model.fit(data=npz_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) ``` # mat file ``` model = Model(model="RandomForestRegressor", input_features=['temp', 'rel_hum', 'wind_speed', 'sol_rad', 'water_level', 'pcp', 'susp_pm'], output_features=['Ecoli_mpn100']) ``` the model can be trained and used for prediction and internally the Model class will take care of feeding the right data to the machine learning model. ``` model.fit(data=mat_fname) train_x, train_y = model.training_data() print(train_x.shape, train_y.shape) val_x, val_y = model.validation_data() print(val_x.shape, val_y.shape) test_x, test_y = model.test_data() print(test_x.shape, test_y.shape) model.predict(data='training') model.predict() ```
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/input_data_file_types.ipynb
input_data_file_types.ipynb
<a href="https://colab.research.google.com/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_training_loop.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> This file describes the minimal example of customizing the whole training function `fit` using AI4Water's `Model` class. ``` try: import AI4Water except ImportError: !python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git" import tensorflow as tf tf.__version__ from ai4water import Model from ai4water.datasets import busan_beach # TODO put code in @tf.function # TODO write validation code class CustomModel(Model): def fit(self, x=None, y=None, data='training', callbacks=None, **kwargs): self.is_training = True # Instantiate an optimizer. optimizer = self.get_optimizer() # Instantiate a loss function. if self.api == 'functional': loss_fn = self.loss() _model = self._model else: loss_fn = self.loss _model = self # Prepare the training dataset. batch_size = self.config['batch_size'] train_x, train_label = self.training_data(x=x,y=y,data=data) train_dataset = tf.data.Dataset.from_tensor_slices((train_x, train_label)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) for epoch in range(self.config['epochs']): print("\nStart of epoch %d" % (epoch,)) # Iterate over the batches of the dataset. for step, (x_batch_train, full_outputs) in enumerate(train_dataset): # Open a GradientTape to record the operations run # during the forward pass, which enables autodifferentiation. with tf.GradientTape() as tape: # Run the forward pass of the layer. # The operations that the layer applies # to its inputs are going to be recorded # on the GradientTape. mask = tf.greater(tf.reshape(full_outputs, (-1,)), 0.0) # (batch_size,) y_obj = full_outputs[mask] # (vals_present, 1) if y_obj.shape[0] < 1: # no observations present for this batch so skip this continue logits = _model(x_batch_train, training=True) # Logits for this minibatch logits_obj = logits[mask] # Compute the loss value for this minibatch. loss_value = tf.keras.backend.mean(loss_fn(y_obj, logits_obj)) # Use the gradient tape to automatically retrieve # the gradients of the trainable variables with respect to the loss. grads = tape.gradient(loss_value, _model.trainable_weights) # grads = [tf.clip_by_norm(g, 1.0) for g in grads] grads = [tf.clip_by_value(g, -1.0, 1.0) for g in grads] # Run one step of gradient descent by updating # the value of the variables to minimize the loss. optimizer.apply_gradients(zip(grads, _model.trainable_weights)) # Log every 200 batches. if step % 20 == 0: print(f"Training loss at batch {step} is {loss_value} after seeing {(step + 1) * 64} examples") return loss_value layers = {"LSTM_0": {'units': 64, 'return_sequences': True}, "LSTM_1": 32, "Dropout": 0.3, "Dense": 1 } beach_data = busan_beach() input_features = beach_data.columns.tolist()[0:-1] output_features = beach_data.columns.tolist()[-1:] model = CustomModel(model={'layers': layers}, batch_size=12, ts_args={'lookback':15}, lr=8.95e-5, allow_nan_labels=2, epochs=10, input_features=input_features, output_features=output_features, train_data='random' ) history = model.fit(data=beach_data, callbacks={'tensorboard': True}) test_pred = model.predict() train_pred = model.predict(data='training') ```
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/customizing_training_loop.ipynb
customizing_training_loop.ipynb
<a href="https://colab.research.google.com/github/AtrCheema/AI4Water/blob/dev/examples/paper/customizing_train_step_with_functional_api.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> This file shows a minimal example how to customize 'train_step' using the functional api of AI4water ``` try: import ai4water except (ImportError, ModuleNotFoundError): !python -m pip install "AI4Water[all] @ git+https://github.com/AtrCheema/AI4Water.git" import tensorflow as tf tf.__version__ assert int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) >= 230, f"""This example is only tested with tensorflow versions above 2.3.0. Your version is {tf.__version__}""" from ai4water.functional import Model from ai4water.datasets import busan_beach class CustomModel(tf.keras.models.Model): def train_step(self, data): print('custom train_step') # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass # Compute the loss value # (the loss function is configured in `compile()`) loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Update metrics (includes the metric that tracks the loss) self.compiled_metrics.update_state(y, y_pred) # Return a dict mapping metric names to current value return {m.name: m.result() for m in self.metrics} # Define Model layers = {'Dense_0': {'config': {'units': 64, 'activation': 'relu'}}, 'Dropout_0': {'config': {'rate': 0.3}}, 'Dense_1': {'config': {'units': 32, 'activation': 'relu'}}, 'Dropout_1': {'config': {'rate': 0.3}}, 'Dense_2': {'config': {'units': 16, 'activation': 'relu'}}, 'Dense_3': {'config': {'units': 9}}, 'Reshape': {"target_shape": (9, 1)} } beach_data = busan_beach() input_features = beach_data.columns.tolist()[0:-1] output_features = beach_data.columns.tolist()[-1:] model = Model( model={"layers": {"Dense": 8, "Dense_1": 1}}, batch_size=32, #lookback=1, lr=8.95e-5, epochs=2, KModel=CustomModel, input_features=input_features, output_features=output_features, train_data='random', ) history = model.fit(data=beach_data) # since the statement 'custom train_step' is printed, we have verified that tensorflow # used our own customized train_step during training. ```
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/examples/paper/customizing_train_step_with_functional_api.ipynb
customizing_train_step_with_functional_api.ipynb
from .backend import np, tf, keras from ._main import BaseModel from ai4water.tf_attributes import ACTIVATION_LAYERS, LAYERS, tcn, MULTI_INPUT_LAYERS from .nn_tools import get_add_call_args, get_call_args class Model(BaseModel): """ Model class with Functional API and inherits from `BaseModel`. For ML/non-Neural Network based models, there is no difference in functional or sub-clsasing api. For DL/NN-based models, this class implements functional api and differs from subclassing api in internal implementation of NN. This class is usefull, if you want to use the functional API of keras to build your own NN structure. In such as case you can construct your NN structure by overwriting `add_layers`. Another advantage of this class is that sometimes, model_subclsasing is not possible for example due to some bugs in tensorflow. In such a case this class can be used. Otherwise all the features of ai4water are available in this class as well. Example: >>>from ai4water.functional import Model """ def __init__(self, *args, **kwargs): """ Initializes and builds the NN/ML model. """ self._go_up = True super().__init__(*args, **kwargs) def_KModel = None if keras is not None: def_KModel = keras.models.Model self.KModel = kwargs.get('KModel', def_KModel) self.build() @property def api(self): return 'functional' @property def KModel(self): """sets k_model. In case when we want to customize the model such as for implementing custom `train_step`, we can provide the customized model as input the this Model class """ return self._k_model @KModel.setter def KModel(self, x): self._k_model = x @property def weights(self): """Returns names of weights in model.""" _ws = [] for w in self._model.weights: _ws.append(w.name) return _ws @property def layers(self): if self.category == "ML": raise NotImplementedError return self._model.layers @property def inputs(self): if self.category == "ML": raise NotImplementedError return self._model.inputs @property def outputs(self): if self.category == "ML": raise NotImplementedError return self._model.outputs @property def output_shape(self)->tuple: if self.category == "ML": raise NotImplementedError return self._model.output_shape @property def trainable_weights(self): if self.category == "ML": raise NotImplementedError return self._model.trainable_weights @property def layer_names(self): _all_layers = [] if self.category == "ML": return None for layer in self._model.layers: _all_layers.append(layer.name) return _all_layers @property def num_input_layers(self) -> int: if self.category != "DL": return np.inf else: return len(self._model.inputs) @property def input_layer_names(self) -> list: return [lyr.name.split(':')[0] for lyr in self._model.inputs] @property def layers_out_shapes(self) -> dict: """ returns shapes of outputs from all layers in model as dictionary""" shapes = {} for lyr in self._model.layers: shapes[lyr.name] = lyr.output_shape return shapes @property def layers_in_shapes(self) -> dict: """ returns the shapes of inputs to all layers""" shapes = {} for lyr in self._model.layers: shapes[lyr.name] = lyr.input_shape return shapes @property def fit_fn(self): return self._model.fit @property def evaluate_fn(self): return self._model.evaluate @property def predict_fn(self): return self._model.predict def count_params(self): if self.category == "ML": raise NotImplementedError return self._model.count_params() def _get_dummy_input_shape(self): shape = () if self.config['backend'] == 'tensorflow' and self.category == "DL": if isinstance(self.model_.inputs, list): if len(self.model_.inputs) == 1: shape = self.model_.inputs[0].shape else: shape = [inp.shape for inp in self.model_.inputs] return shape def first_layer_shape(self): """ instead of tuple, returning a list so that it can be moified if needed""" if self.num_input_layers > 1: shapes = {} for lyr in self._model.inputs: shapes[lyr.name] = lyr.shape return shapes shape = [] for idx, d in enumerate(self._model.layers[0].input.shape): if int(tf.__version__[0]) == 1: if isinstance(d, tf.Dimension): # for tf 1.x d = d.value if idx == 0: # the first dimension must remain undefined so that the user may define batch_size d = -1 shape.append(d) return shape def add_layers(self, layers_config: dict, inputs=None): """ Builds the NN from dictionary. Arguments: layers_config : wholse keys can be one of the following: `config`: `dict`/lambda, Every layer must contain initializing arguments as `config` dictionary. The `config` dictionary for every layer can contain `name` key and its value must be `str` type. If `name` key is not provided in the config, the provided layer name will be used as its name e.g in following case layers = {'LSTM': {'config': {'units': 16}}} the name of `LSTM` layer will be `LSTM` while in follwoing case layers = {'LSTM': {'config': {'units': 16, 'name': 'MyLSTM'}}} the name of the lstm will be `MyLSTM`. `inputs`: str/list, The calling arguments for the list. If `inputs` key is missing for a layer, it will be supposed that either this is an Input layer or it uses previous outputs as inputs. `outputs`: str/list We can specifity the outputs from a layer by using the `outputs` key. The value to `outputs` must be a string or list of strings specifying the name of outputs from current layer which can be used later in the mdoel. `call_args`: str/list We can also specify additional call arguments by `call_args` key. The value to `call_args` must be a string or a list of strings. inputs : if None, it will be supposed the the `Input` layer either exists in `layers_config` or an Input layer will be created within this method before adding any other layer. If not None, then it must be in `Input` layer and the remaining NN architecture will be built as defined in `layers_config`. This can be handy when we want to use this method several times to build a complex or parallel NN structure. avoid `Input` in layer names. Returns: inputs : outputs : """ lyr_cache = {} wrp_layer = None # indicator for wrapper layers first_layer = True idx = 0 for lyr, lyr_args in layers_config.items(): idx += 0 if callable(lyr) and hasattr(lyr, '__call__'): LAYERS[lyr.__name__] = lyr self.config['model']['layers'] = update_layers_config(layers_config, lyr) lyr = lyr.__name__ lyr_config, lyr_inputs, named_outs, call_args = self.deconstruct_lyr_args(lyr, lyr_args) if callable(lyr) and not hasattr(lyr, '__call__'): lyr = "lambda" lyr_name, args, lyr_config, activation = self.check_lyr_config(lyr, lyr_config) # may be user has defined layers without input layer, in this case add Input layer as first layer if first_layer: if inputs is not None: # This method was called by providing it inputs. assert isinstance(inputs, tf.Tensor) lyr_cache["Input"] = inputs # since inputs have been defined, all the layers that will be added will be next to first layer first_layer = False layer_outputs = inputs assign_dummy_name(layer_outputs, 'input') elif lyr_name != "Input": if 'input_shape' in lyr_config: # input_shape is given in the first layer so make input layer layer_outputs = LAYERS["Input"](shape=lyr_config['input_shape']) assign_dummy_name(layer_outputs, 'input') else: # for simple dense layer based models, lookback will not be used def_shape = (self.num_ins,) if self.lookback == 1 else (self.lookback, self.num_ins) layer_outputs = LAYERS["Input"](shape=def_shape) # first layer is built so next iterations will not be for first layer first_layer = False # put the first layer in memory to be used for model compilation lyr_cache["Input"] = layer_outputs # add th layer which the user had specified as first layer assign_dummy_name(layer_outputs, 'input') if lyr_inputs is None: # The inputs to the layer have not been specified, so either it is an Input layer # or it uses the previous outputs as inputs if lyr_name == "Input": # it is an Input layer, hence should not be called layer_outputs = LAYERS[lyr_name](*args, **lyr_config) assign_dummy_name(layer_outputs, 'input') else: # it is executable and uses previous outputs as inputs if lyr_name in ACTIVATION_LAYERS: layer_outputs = ACTIVATION_LAYERS[lyr_name](name=lyr_config['name'])(layer_outputs) elif lyr_name in ['TimeDistributed', 'Bidirectional']: wrp_layer = LAYERS[lyr_name] lyr_cache[lyr_name] = wrp_layer continue elif "LAMBDA" in lyr_name.upper(): # lyr_config is serialized lambda layer, which needs to be deserialized # by default the lambda layer takes the previous output as input # however when `call_args` are provided, they overwrite the layer_outputs if call_args is not None: # todo, add example in docs layer_outputs = get_add_call_args(call_args, lyr_cache, lyr_config['name']) layer_outputs = tf.keras.layers.deserialize(lyr_config)(layer_outputs) # layers_config['lambda']['config'] still contails lambda, so we need to replace the python # object (lambda) with the serialized version (lyr_config) so that it can be saved as json file. layers_config[lyr]['config'] = lyr_config else: if wrp_layer is not None: layer_outputs = wrp_layer(LAYERS[lyr_name](*args, **lyr_config))(layer_outputs) wrp_layer = None else: add_args = get_add_call_args(call_args, lyr_cache, lyr_config['name']) layer_initialized = LAYERS[lyr_name](*args, **lyr_config) layer_outputs = layer_initialized(layer_outputs, **add_args) self.get_and_set_attrs(layer_initialized) else: # The inputs to this layer have been specified so they must exist in lyr_cache. # it is an executable if lyr_name in ACTIVATION_LAYERS: call_args, add_args = get_call_args(lyr_inputs, lyr_cache, call_args, lyr_config['name']) layer_outputs = ACTIVATION_LAYERS[lyr_name](name=lyr_config['name'])(call_args, **add_args) elif lyr_name in ['TimeDistributed', 'Bidirectional']: wrp_layer = LAYERS[lyr_name] lyr_cache[lyr_name] = wrp_layer continue elif "LAMBDA" in lyr_name.upper(): call_args, add_args = get_call_args(lyr_inputs, lyr_cache, call_args, lyr_config['name']) layer_outputs = tf.keras.layers.deserialize(lyr_config)(call_args) layers_config[lyr]['config'] = lyr_config else: if wrp_layer is not None: call_args, add_args = get_call_args(lyr_inputs, lyr_cache, call_args, lyr_config['name']) layer_outputs = wrp_layer(LAYERS[lyr_name](*args, **lyr_config))(call_args, **add_args) wrp_layer = None else: call_args, add_args = get_call_args(lyr_inputs, lyr_cache, call_args, lyr_config['name']) layer_initialized = LAYERS[lyr_name](*args, **lyr_config) # for multi-input layers inputs should be ([a,b,c]) instaed of (a,b,c) if isinstance(lyr_inputs, list) and lyr_name in MULTI_INPUT_LAYERS: layer_outputs = layer_initialized(*call_args, **add_args) else: layer_outputs = layer_initialized(call_args, **add_args) self.get_and_set_attrs(layer_initialized) if activation is not None: # put the string back to dictionary to be saved in config file lyr_config['activation'] = activation if named_outs is not None: if isinstance(named_outs, (list, tuple)) or named_outs.__class__.__name__ in ["ListWrapper"]: # this layer is returning more than one output assert len(named_outs) == len(layer_outputs), "Layer {} is expected to return {} " \ "outputs but it actually returns " \ "{}".format(lyr_name, named_outs, layer_outputs) for idx, out_name in enumerate(named_outs): self.update_cache(lyr_cache, out_name, layer_outputs[idx]) else: # this layer returns just one output, TODO, this might be re self.update_cache(lyr_cache, named_outs, layer_outputs) self.update_cache(lyr_cache, lyr_config['name'], layer_outputs) first_layer = False self.jsonize_lyr_config(lyr_config) inputs = [] for k, v in lyr_cache.items(): # since the model is not build yet and we have access to only output tensors of each list, this is probably # the only way to know that how many `Input` layers were encountered during the run of this method. Each # tensor (except TimeDistributed) has .op.inputs attribute, # which is empty if a tensor represents output of Input layer. if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 240: if k != "TimeDistributed" and hasattr(v, 'op'): if hasattr(v.op, 'inputs'): _ins = v.op.inputs if len(_ins) == 0: inputs.append(v) # not sure if this is the proper way of checking if a layer receives an input or not! else: if hasattr(v, '__dummy_name'): inputs.append(v) # for case when {Input -> Dense, Input_1}, this method wrongly makes Input_1 as output so in such case use # {Input_1, Input -> Dense }, thus it makes Dense as output and first 2 as inputs, so throwing warning if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 240: if len(layer_outputs.op.inputs) < 1: print("Warning: the output is of Input tensor class type") else: if 'op' not in dir(layer_outputs): # layer_outputs does not have `op`, which means it has no incoming node print("Warning: the output is of Input tensor class type") return inputs, layer_outputs def compile(self, model_inputs, outputs, **compile_args): k_model = self.KModel(inputs=model_inputs, outputs=outputs) k_model.compile(loss=self.loss(), optimizer=self.get_optimizer(), metrics=self.get_metrics(), **compile_args) if self.verbosity > 0: k_model.summary() if self.verbosity >= 0: self.plot_model(k_model) return k_model def build(self, input_shape=None): self.print_info() if self.category == "DL": if self.config.get('model', None) is None: lyrs = None else: lyrs = self.config['model']['layers'] inputs, predictions = self.add_layers(lyrs) self._model = self.compile(inputs, predictions) self.info['model_parameters'] = int(self._model.count_params()) if self._model is not None else None if self.verbosity > 0 and self.config['model'] is not None: if 'tcn' in self.config['model']['layers']: if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) >= 250: # tf >= 2.5 does not have _layers and tcn uses _layers setattr(self._model, '_layers', self._model.layers) tcn.tcn_full_summary(self._model, expand_residual_blocks=True) else: self.build_ml_model() if not getattr(self, 'from_check_point', False) and self.verbosity>=0: # fit may fail so better to save config before as well. This will be overwritten once the fit is complete self.save_config() self.update_info() return def loss_name(self): if isinstance(self._model.loss, str): return self._model.loss elif hasattr(self._model.loss, 'name'): return self._model.loss.name else: return self._model.loss.__name__ def update_layers_config(layers_config, lyr): new_config = {} for k, v in layers_config.items(): if k == lyr: new_config[lyr.__name__] = v else: new_config[k] = v return new_config def assign_dummy_name(tensor, dummy_name): if isinstance(tensor, list): for t in tensor: setattr(t, '__dummy_name', dummy_name) else: setattr(tensor, '__dummy_name', dummy_name)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/functional.py
functional.py
import math import json import time import warnings from types import MethodType from pickle import PicklingError from typing import Union, Callable, Tuple, List from SeqMetrics import RegressionMetrics, ClassificationMetrics from .nn_tools import NN from .utils.utils import mad from .utils.utils import make_model from .utils.utils import AttribtueSetter from .utils.utils import get_values from .utils.utils import DataNotFound from .utils.utils import maybe_create_path, dict_to_file, dateandtime_now from .utils.utils import find_best_weight, reset_seed, update_model_config, METRIC_TYPES from .utils.utils import maybe_three_outputs, get_version_info from .postprocessing.utils import LossCurve from .postprocessing import ProcessPredictions from .postprocessing import feature_interaction from .postprocessing import prediction_distribution_plot from .preprocessing import DataSet from .preprocessing.dataset._main import _DataSet from .preprocessing.transformations import Transformations from .models._tensorflow.custom_training import train_step, test_step import ai4water.backend as K from .backend import sklearn_models from ai4water.backend import wandb, WandbCallback from ai4water.backend import np, pd, plt, os, random from .backend import tf, keras, torch, catboost_models, xgboost_models, lightgbm_models if K.BACKEND == 'tensorflow' and tf is not None: from ai4water.tf_attributes import LOSSES, OPTIMIZERS elif K.BACKEND == 'pytorch' and torch is not None: from ai4water.models._torch import LOSSES, OPTIMIZERS class BaseModel(NN): """ Model class that implements logic of AI4Water. """ def __init__( self, model: Union[dict, str, Callable] = None, x_transformation: Union[str, dict, list] = None, y_transformation:Union[str, dict, list] = None, lr: float = 0.001, optimizer='Adam', loss: Union[str, Callable] = 'mse', quantiles=None, epochs: int = 14, min_val_loss: float = 0.0001, patience: int = 100, save_model: bool = True, monitor: Union[str, list] = None, val_metric: str = None, cross_validator: dict = None, wandb_config: dict = None, seed: int = 313, prefix: str = None, path: str = None, verbosity: int = 1, accept_additional_args: bool = False, **kwargs ): """ The Model class can take a large number of possible arguments depending upon the machine learning model/algorithm used. Not all the arguments are applicable in each case. The user must define only the relevant/applicable parameters and leave the others as it is. Parameters ---------- model : a dictionary defining machine learning model. If you are building a non-neural network model then this dictionary must consist of name of name of model as key and the keyword arguments to that model as dictionary. For example to build a decision forest based model >>> model = {'DecisionTreeRegressor': {"max_depth": 3, ... "criterion": "mae"}} The key 'DecisionTreeRegressor' should exactly match the name of the model from one of following libraries - `sklearn`_ - `xgboost`_ - `catboost`_ - `lightgbm`_ The value {"max_depth": 3, "criterion": "mae"} is another dictionary which can be any keyword argument which the `model` (DecisionTreeRegressor in this case) accepts. The user must refer to the documentation of the underlying library (scikit-learn for DecisionTreeRegressor) to find out complete keyword arguments applicable for a particular model. See `examples <https://ai4water.readthedocs.io/en/latest/auto_examples/dec_model_def_ml.html>`_ to learn how to build machine learning models If You are building a Deep Learning model using tensorflow, then the key must be 'layers' and the value must itself be a dictionary defining layers of neural networks. For example we can build an MLP as following >>> model = {'layers': { ... "Dense_0": {'units': 64, 'activation': 'relu'}, ... "Flatten": {}, ... "Dense_3": {'units': 1} >>> }} The MLP in this case consists of dense, and flatten layers. The user can define any keyword arguments which is accepted by that layer in TensorFlow. For example the `Dense` layer in TensorFlow can accept `units` and `activation` keyword argument among others. For details on how to buld neural networks using such layered API `see examples <https://ai4water.readthedocs.io/en/dev/declarative_def_tf.html>`_ x_transformation: type of transformation to be applied on x/input data. The transformation can be any transformation name from :py:class:`ai4water.preprocessing.transformations.Transformation` . The user can specify more than one transformation. Moreover, the user can also determine which transformation to be applied on which input feature. Default is 'minmax'. To apply a single transformation on all the data >>> x_transformation = 'minmax' To apply different transformations on different input and output features >>> x_transformation = [{'method': 'minmax', 'features': ['input1', 'input2']}, ... {'method': 'zscore', 'features': ['input3', 'input4']} ... ] Here `input1`, `input2`, `input3` and `input4` are the columns in the `data`. For more info see :py:class:`ai4water.preprocessing.Transformations` and :py:class:`ai4water.preprocessing.Transformation` classes. y_transformation: type of transformation to be applied on y/label/output data. lr :, default 0.001. learning rate, optimizer : str/keras.optimizers like the optimizer to be used for neural network training. Default is 'Adam' loss : str/callable Default is `mse`. the cost/loss function to be used for training neural networks. quantiles : list Default is None quantiles to be used when the problem is quantile regression. epochs : int Default is 14 number of epochs to be used. min_val_loss : float Default is 0.0001. minimum value of validatin loss/error to be used for early stopping. patience : int number of epochs to wait before early stopping. Set this value to None if you don't want to use EarlyStopping. save_model : bool whether to save the model or not. For neural networks, the model will be saved only an improvement in training/validation loss is observed. Otherwise model is not saved. monitor : str/list metrics to be monitored. e.g. ['nse', 'pbias'] val_metric : str performance metric to be used for validation/cross_validation. This metric will be used for hyper-parameter optimizationa and experiment comparison. If not defined then r2_score_ will be used for regression and accuracy_ will be used for classification. cross_validator : dict selects the type of cross validation to be applied. It can be any cross validator from sklear.model_selection. Default is None, which means validation will be done using `validation_data`. To use kfold cross validation, >>> cross_validator = {'KFold': {'n_splits': 5}} batches : str either `2d` or 3d`. wandb_config : dict Only valid if wandb package is installed. Default value is None, which means, wandb will not be utilized. For simplest case, pass a dictionary with at least two keys namely `project` and `entity`. Otherwise use a dictionary of all the arugments for wandb.init, wandb.log and WandbCallback. For `training_data` and `validation_data` in `WandbCallback`, pass `True` instead of providing a tuple as shown below >>> wandb_config = {'entity': 'entity_name', 'project': 'project_name', ... 'training_data':True, 'validation_data': True} seed int: random seed for reproducibility. This can be set to None. The seed is set to `os`, `tf`, `torch` and `random` modules simultaneously. Please note that this seed is not set for numpy because that will result in constant sampling during hyperparameter optimization. If you want to seed everything, then use following function >>> model.seed_everything() prefix : str prefix to be used for the folder in which the results are saved. default is None, which means within ./results/model_path path : str/path like if not given, new model_path path will not be created. verbosity : int default is 1 determines the amount of information being printed. 0 means no print information. Can be between 0 and 3. Setting this value to 0 will also reqult in not showing some plots such as loss curve or regression plot. These plots will only be saved in self.path. accept_additional_args : bool Default is False If you want to pass any additional argument, then this argument must be set to True, otherwise an error will be raise. **kwargs: keyword arguments for :py:meth:`ai4water.preprocessing.DataSet.__init__` Note ----- The transformations applied on `x` and `y` data using `x_transformation` and `y_transformations` are part of **model**. See `transformation`_ Examples ------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> df = busan_beach() >>> ann = Model(input_features=df.columns.tolist()[0:-1], ... batch_size=16, ... output_features=df.columns.tolist()[-1:], ... model={'layers': {'Dense': 64, 'Dense': 1}}, ... ) >>> history = ann.fit(data=df) >>> y = ann.predict() .. _sklearn: https://scikit-learn.org/stable/modules/classes.html .. _xgboost: https://xgboost.readthedocs.io/en/stable/python/index.html .. _catboost: https://catboost.ai/en/docs/concepts/python-quickstart .. _lightgbm: https://lightgbm.readthedocs.io/en/latest/ .. _transformation: https://stats.stackexchange.com/q/555839/314919 .. _RegressionMetrics: https://seqmetrics.readthedocs.io/en/latest/rgr.html#regressionmetrics .. _r2_score: https://seqmetrics.readthedocs.io/en/latest/rgr.html#SeqMetrics.RegressionMetrics.r2_score .. _accuracy: https://seqmetrics.readthedocs.io/en/latest/cls.html#SeqMetrics.ClassificationMetrics.accuracy """ if self._go_up: maker = make_model( model=model, x_transformation=x_transformation, y_transformation=y_transformation, prefix=prefix, path=path, verbosity=verbosity, lr=lr, optimizer=optimizer, loss=loss, quantiles=quantiles, epochs=epochs, min_val_loss=min_val_loss, patience=patience, save_model=save_model, monitor=monitor, val_metric=val_metric, cross_validator=cross_validator, accept_additional_args=accept_additional_args, seed=seed, wandb_config=wandb_config, **kwargs ) reset_seed(maker.config['seed'], os=os, random=random, tf=tf, torch=torch) if tf is not None: # graph should be cleared everytime we build new `Model` otherwise, # if two `Models` are prepared in same # file, they may share same graph. tf.keras.backend.clear_session() self.data_config = maker.data_config self.opt_paras = maker.opt_paras self._original_model_config = maker.orig_model NN.__init__(self, config=maker.config) self.path = None if verbosity >= 0: self.path = maybe_create_path(path=path, prefix=prefix) self.config['path'] = self.path self.verbosity = verbosity self.category = self.config['category'] self.mode = self.config.get('mode', None) self.info = {} @property def is_custom_model(self): return self.config['is_custom_model_'] @property def model_name(self)->str: if self.config.get('model_name_', None): return self.config['model_name_'] model_def = self.config['model'] if isinstance(model_def, str): return model_def elif isinstance(model_def, dict): return list(model_def.keys())[0] @property def mode(self): return self._mode @mode.setter def mode(self, _mode=None): from .experiments.utils import regression_models, classification_models if _mode: pass elif self.config['mode']: _mode = self.config['mode'] elif self.is_custom_model: if self.config['loss'] in ['sparse_categorical_crossentropy', 'categorical_crossentropy', 'binary_crossentropy']: _mode = "classification" else: _mode = None elif self.model_name is not None: if self.model_name in classification_models(): _mode = "classification" elif self.model_name in regression_models(): _mode = "regression" elif 'class' in self.model_name.lower(): _mode = "classification" elif "regr" in self.model_name.lower(): _mode = "regression" elif self.config['loss'] in ['sparse_categorical_crossentropy', 'categorical_crossentropy', 'binary_crossentropy']: _mode = "classification" elif self.model_name == "layers": # todo _mode = "regression" else: raise NotImplementedError(f" Can't determine mode for {self.model_name}") elif self.config['loss'] in ['sparse_categorical_crossentropy', 'categorical_crossentropy', 'binary_crossentropy']: _mode = "classification" elif self.model_name == "layers": # todo _mode = "regression" else: # when model_name is None, mode should also be None. _mode = None # so that next time don't have to go through all these ifelse statements self.config['mode'] = _mode self.data_config['mode'] = _mode self._mode = _mode @property def _estimator_type(self): if self.mode == "regression": return "regressor" return "classifier" @property def input_features(self): if hasattr(self, 'dh_'): return self.dh_.input_features return self.config['input_features'] @property def num_ins(self): # raises error if input_features are not defined return len(self.input_features) @property def output_features(self): if hasattr(self, 'dh_'): return self.dh_.output_features return self.config['output_features'] @property def num_outs(self): return len(self.output_features) @property def forecast_len(self): if hasattr(self, 'dh_'): if isinstance(self.dh_, DataSet): return self.dh_.ts_args['forecast_len'] else: return {k: v['forecast_len'] for k, v in self.dh_.ts_args.items()} return self.config['ts_args']['forecast_len'] @property def val_metric(self): if self.mode=='regression': return self.config['val_metric'] or 'r2_score' return self.config['val_metric'] or 'accuracy' @property def forecast_step(self): if hasattr(self, 'dh_'): return self.dh_.ts_args['forecast_step'] return self.config['ts_args']['forecast_step'] def _get_dummy_input_shape(self): raise NotImplementedError def build(self, *args, **kwargs): raise NotImplementedError @property def quantiles(self): return self.config['quantiles'] @property def act_path(self): return os.path.join(self.path, 'activations') @property def w_path(self): return os.path.join(self.path, 'weights') @property def data_path(self): return os.path.join(self.path, 'data') def loss_name(self): raise NotImplementedError @property def teacher_forcing(self): # returns None if undefined if hasattr(self, 'dh_'): return self.dh_.teacher_forcing return self.config['teacher_forcing'] def nn_layers(self): if hasattr(self, 'layers'): return self.layers elif hasattr(self._model, 'layers'): return self._model.layers else: return None @property def ai4w_outputs(self): """alias for keras.MOdel.outputs!""" if hasattr(self, 'outputs'): return self.outputs elif hasattr(self._model, 'outputs'): return self._model.outputs else: return None def seed_everything(self, seed = None)->None: """resets seeds of numpy, os, random, tensorflow, torch. If any of these module is not available, the seed for that module is not set.""" if seed is None: seed = seed or self.config['seed'] or 313 reset_seed(seed=seed, os=os, np=np, tf=tf, torch=torch, random=random) return def trainable_parameters(self) -> int: """Calculates trainable parameters in the model for more [see](https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325/9) """ if self.config['backend'] == 'pytorch': return sum(p.numel() for p in self.parameters() if p.requires_grad) else: if hasattr(self, 'count_params'): return int(self.count_params()) else: return int(self._model.count_params()) def loss(self): # overwrite this function for a customized loss function. # this function should return something which can be accepted as 'loss' by the keras Model. # It can be a string or callable. if callable(self.config['loss']): return self.config['loss'] if self.config['backend'] == 'pytorch': return LOSSES[self.config['loss']]() return LOSSES[self.config['loss']] @property def fit_fn(self): # this points to the Keras's fit method return NotImplementedError @property def evaluate_fn(self): # this points to the Keras's evaluate method return NotImplementedError @property def predict_fn(self, *args, **kwargs): return NotImplementedError @property def api(self): return NotImplementedError @property def input_layer_names(self): return NotImplementedError @property def num_input_layers(self): return NotImplementedError @property def layer_names(self): return NotImplementedError @property def dl_model(self): if self.api == "subclassing": return self else: return self._model def first_layer_shape(self): return NotImplementedError def get_callbacks(self, val_data=None, callbacks=None): if self.config['backend'] == 'pytorch': return self.cbs_for_pytorch(val_data, callbacks) else: return self.cbs_for_tf(val_data, callbacks) def cbs_for_pytorch(self, *args, **kwargs): """Callbacks for pytorch training.""" return [] def cbs_for_tf(self, val_data=None, callbacks=None): if callbacks is None: callbacks = {} # container to hold all callbacks _callbacks = list() _monitor = 'val_loss' if val_data is not None else 'loss' fname = "{val_loss:.5f}.hdf5" if val_data is not None else "{loss:.5f}.hdf5" if self.config['save_model'] and self.verbosity>=0: _callbacks.append(keras.callbacks.ModelCheckpoint( filepath=self.w_path + f"{os.sep}weights_" + "{epoch:03d}_" + fname, save_weights_only=True, monitor=_monitor, mode='min', save_best_only=True)) if self.config['patience']: _callbacks.append(keras.callbacks.EarlyStopping( monitor=_monitor, min_delta=self.config['min_val_loss'], patience=self.config['patience'], verbose=0, mode='auto' )) if 'tensorboard' in callbacks: tb_kwargs = callbacks['tensorboard'] if 'log_dir' not in tb_kwargs: tb_kwargs['log_dir'] = self.path _callbacks.append(keras.callbacks.TensorBoard(**tb_kwargs)) callbacks.pop('tensorboard') if isinstance(callbacks, dict): for val in callbacks.values(): _callbacks.append(val) else: # if any callback provided by user is similar to what we already prepared, take the one # provided by the user assert isinstance(callbacks, list) cbs_provided = [cb.__class__.__name__ for cb in callbacks] for cb in _callbacks: if not cb.__class__.__name__ in cbs_provided: callbacks.append(cb) _callbacks = callbacks return _callbacks def get_val_data(self, validation_data=None): """Finds out if there is validation_data""" user_defined = True if validation_data is None: # when validation data is not given in kwargs and validation_data method is overwritten try: validation_data = self.validation_data() user_defined = False # when x,y is user defined then validation_data() can give this error except DataNotFound: validation_data = None if isinstance(validation_data, tuple): x, y = validation_data if x is None and y is None: return None elif hasattr(x, '__len__') and len(x)==0: return None else: # x,y is numpy array if not user_defined and self.is_binary_: if y.shape[1] > self.output_shape[1]: y = np.argmax(y, 1).reshape(-1,1) x = self._transform_x(x) y = self._transform_y(y) validation_data = x,y elif validation_data is not None: if self.config['backend'] == "tensorflow": if isinstance(validation_data, tf.data.Dataset): pass elif validation_data.__class__.__name__ in ['TorchDataset', 'BatchDataset']: pass else: raise ValueError(f'Unrecognizable validattion data {validation_data.__class__.__name__}') return validation_data return validation_data def _call_fit_fn(self, x, **kwargs): """ Some preprocessing before calling actual fit If nans are present in y, then tf.keras.model.fit is called as it is otherwise it is called with custom train_step and test_step which avoids calculating loss at points containing nans.""" if kwargs.pop('nans_in_y_exist'): # todo, for model-subclassing? if not isinstance(x, tf.data.Dataset): # when x is tf.Dataset, we don't have y in kwargs y = kwargs['y'] assert np.isnan(y).sum() > 0 kwargs['y'] = np.nan_to_num(y) # In graph mode, masking of nans does not work self._model.train_step = MethodType(train_step, self._model) self._model.test_step = MethodType(test_step, self._model) return self.fit_fn(x, **kwargs) def _fit(self, inputs, outputs, validation_data=None, validation_steps=None, callbacks=None, **kwargs): nans_in_y_exist = False if isinstance(outputs, np.ndarray): if np.isnan(outputs).sum() > 0: nans_in_y_exist = True elif isinstance(outputs, list): for out_array in outputs: if np.isnan(out_array).sum() > 0: nans_in_y_exist = True elif isinstance(outputs, dict): for out_array in outputs.values(): if np.isnan(out_array).sum() > 0: nans_in_y_exist = True validation_data = self.get_val_data(validation_data) outputs = get_values(outputs) if isinstance(validation_data, tuple): # when val_outs is just a dictionary with 1 key/value pair, # we just extract values and consider it validation_data val_outs = validation_data[-1] val_outs = get_values(val_outs) validation_data = (validation_data[0], val_outs) if K.BACKEND == 'tensorflow': callbacks = self.get_wandb_cb( callbacks, train_data=(inputs, outputs), validation_data=validation_data, ) callbacks = self.get_callbacks(validation_data, callbacks=callbacks) st = time.time() # when data is given as generator (tf.data or torchDataset) then # we don't set batch size and don't given y argument to fit batch_size = self.config['batch_size'] y = outputs if K.BACKEND == "tensorflow": if isinstance(inputs, tf.data.Dataset): batch_size = None y = None elif inputs.__class__.__name__ in ["TorchDataset"]: batch_size = None y = None # natively prepared arguments _kwargs = { 'x':inputs, 'y':y, 'epochs':self.config['epochs'], 'batch_size':batch_size, 'validation_data':validation_data, 'callbacks':callbacks, 'shuffle':self.config['shuffle'], 'steps_per_epoch':self.config['steps_per_epoch'], 'verbose':max(self.verbosity, 0), 'nans_in_y_exist':nans_in_y_exist, 'validation_steps':validation_steps, } # arguments explicitly provided by user during .fit will take priority for k,v in kwargs.items(): if k in _kwargs: if k in self.config: # also update config self.config[k] = v _kwargs.pop(k) self._call_fit_fn( **_kwargs, **kwargs, ) self.info['training_time_in_minutes'] = round(float(time.time() - st) / 60.0, 2) return self.post_fit() def get_wandb_cb(self, callback, train_data, validation_data) -> dict: """Makes WandbCallback and add it in callback""" if callback is None: callback = {} self.use_wandb = False if wandb is not None: wandb_config: dict = self.config['wandb_config'] if wandb_config is not None: self.use_wandb = True for key in ['project', 'entity']: assert key in wandb_config, f"wandb_config must have {key} key in it" wandb.init(name=os.path.basename(self.path), project=wandb_config.pop('project'), notes=wandb_config.get('notes', f"{self.mode} with {self.config['backend']}"), tags=['ai4water', self.api, self.category, self.mode], entity=wandb_config.pop('entity')) monitor = self.config.get('monitor', 'val_loss') if 'monitor' in wandb_config: monitor = wandb_config.pop('monitor') add_train_data = False if 'training_data' in wandb_config: add_train_data = wandb_config.pop('training_data') add_val_data = False if 'validation_data' in wandb_config: add_val_data = wandb_config.pop('validation_data') assert callable(WandbCallback) callback['wandb_callback'] = WandbCallback(monitor=monitor, training_data=train_data if add_train_data else None, validation_data=validation_data if add_val_data else None, **wandb_config) return callback def post_fit_wandb(self): """does some stuff related to wandb at the end of training.""" if K.BACKEND == 'tensorflow' and self.use_wandb: getattr(wandb, 'finish')() return def post_fit(self): """Does some stuff after Keras model.fit has been called""" if K.BACKEND == 'pytorch': history = self.torch_learner.history elif hasattr(self, 'history'): history = self.history else: history = self._model.history if self.verbosity >= 0: self.save_config(history.history) # save all the losses or performance metrics df = pd.DataFrame.from_dict(history.history) df.to_csv(os.path.join(self.path, "losses.csv")) return history def build_ml_model(self): """Builds ml models Models that follow sklearn api such as xgboost, catboost, lightgbm and obviously sklearn. """ ml_models = {**sklearn_models, **xgboost_models, **catboost_models, **lightgbm_models} estimator = list(self.config['model'].keys())[0] kwargs = list(self.config['model'].values())[0] if estimator in ['HistGradientBoostingRegressor', 'SGDRegressor', 'MLPRegressor']: if self.config['val_fraction'] > 0.0: kwargs.update({'validation_fraction': self.config['val_fraction']}) elif self.config['train_fraction'] < 1.0: kwargs.update({'validation_fraction': 1.0 - self.config['train_fraction']}) # some algorithms allow detailed output during training, this is allowed when self.verbosity is > 1 if estimator in ['OneClassSVM']: kwargs.update({'verbose': True if self.verbosity > 1 else False}) if estimator in ["CatBoostRegressor", "CatBoostClassifier"]: # https://stackoverflow.com/a/52921608/5982232 if not any([arg in kwargs for arg in ['verbose', 'silent', 'logging_level']]): if self.verbosity == 0: kwargs['logging_level'] = 'Silent' elif self.verbosity == 1: kwargs['logging_level'] = 'Verbose' else: kwargs['logging_level'] = 'Info' if 'random_seed' not in kwargs: kwargs['random_seed'] = self.config['seed'] if estimator in ["XGBRegressor", "XGBClassifier"]: if 'random_state' not in kwargs: kwargs['random_state'] = self.config['seed'] # following sklearn based models accept random_state argument if estimator in [ "AdaBoostRegressor", "BaggingClassifier", "BaggingRegressor", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "ElasticNet", "ElasticNetCV", "GradientBoostingClassifier", "GradientBoostingRegressor", "GaussianProcessRegressor", "HistGradientBoostingClassifier", "HistGradientBoostingRegressor", "LogisticRegression", "Lars", "Lasso", "LassoCV", "LassoLars", "LinearSVR", "MLPClassifier", "MLPRegressor", "PassiveAggressiveClassifier", "PassiveAggressiveRegressor", "RandomForestClassifier", "RandomForestRegressor", "RANSACRegressor", "RidgeClassifier", "SGDClassifier", "SGDRegressor", "TheilSenRegressor", ]: if 'random_state' not in kwargs: kwargs['random_state'] = self.config['seed'] # in sklearn version >1.0 precompute automatically becomes to True # which can raise error if estimator in ["ElasticNetCV", "LassoCV"] and 'precompute' not in kwargs: kwargs['precompute'] = False self.residual_threshold_not_set_ = False if estimator == "RANSACRegressor" and 'residual_threshold' not in kwargs: self.residual_threshold_not_set_ = True if estimator in ["LGBMRegressor", 'LGBMClassifier']: if 'random_state' not in kwargs: kwargs['random_state'] = self.config['seed'] if kwargs.get('boosting_type', None) == "rf" and 'bagging_freq' not in kwargs: # https://github.com/microsoft/LightGBM/issues/1333 # todo, user must be notified kwargs['bagging_freq'] = 1 kwargs['bagging_fraction'] = 0.5 if self.is_custom_model: if hasattr(estimator, '__call__'): # initiate the custom model model = estimator(**kwargs) else: if len(kwargs)>0: raise ValueError("""Initiating args not allowed because you provided initiated class in dictionary""") model = estimator # custom model is already instantiated # initiate the estimator/model class elif estimator in ml_models: model = ml_models[estimator](**kwargs) else: from .backend import sklearn, lightgbm, catboost, xgboost version_info = get_version_info(sklearn=sklearn, lightgbm=lightgbm, catboost=catboost, xgboost=xgboost) if estimator in ['TweedieRegressor', 'PoissonRegressor', 'LGBMRegressor', 'LGBMClassifier', 'GammaRegressor']: sk_maj_ver = int(sklearn.__version__.split('.')[0]) sk_min_ver = int(sklearn.__version__.split('.')[1]) if sk_maj_ver < 1 and sk_min_ver < 23: raise ValueError( f"{estimator} is available with sklearn version >= 0.23 but you have {version_info['sklearn']}") raise ValueError(f"model '{estimator}' not found. {version_info}") self._model = model return def fit( self, x=None, y=None, data: Union[np.ndarray, pd.DataFrame, "DataSet", str] = 'training', callbacks: Union[list, dict] = None, **kwargs ): """ Trains the model with data. The data is either ``x`` or it is taken from ``data`` by feeding it to DataSet. Arguments: x: The input data consisting of input features. It can also be tf.Dataset or TorchDataset. y: Correct labels/observations/true data corresponding to 'x'. data : Raw data fromw which ``x``,``y`` pairs are prepared. This will be passed to :py:class:`ai4water.preprocessing.DataSet`. It can also be an instance if :py:class:`ai4water.preprocessing.DataSet` or :py:class:`ai4water.preprocessing.DataSetPipeline`. It can also be name of dataset from :py:attr:`ai4water.datasets.all_datasets` callbacks: Any callback compatible with keras. If you want to log the output to tensorboard, then just use `callbacks={'tensorboard':{}}` or to provide additional arguments >>> callbacks={'tensorboard': {'histogram_freq': 1}} kwargs : Any keyword argument for the `fit` method of the underlying library. if 'x' is present in kwargs, that will take precedent over `data`. Returns: A keras history object in case of deep learning model with tensorflow as backend or anything returned by `fit` method of underlying model. Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model="XGBRegressor") >>> model.fit(data=busan_beach()) using your own data for training >>> import numpy as np >>> new_inputs = np.random.random((100, 10)) >>> new_outputs = np.random.random(100) >>> model.fit(x=new_inputs, y=new_outputs) """ if x is not None: assert y is not None return self.call_fit(x=x, y=y, data=data, callbacks=callbacks, **kwargs) def call_fit(self, x=None, y=None, data='training', callbacks=None, **kwargs): visualizer = LossCurve(path=self.path, show=bool(self.verbosity), save=bool(self.verbosity)) self.is_training = True source = 'training' if isinstance(data, str) and data in ['validation', 'test']: source = data inputs, outputs, _, _, user_defined_x = self._fetch_data(source, x, y, data) if 'Dataset' in inputs.__class__.__name__: pass else: AttribtueSetter(self, outputs) num_examples = _find_num_examples(inputs) if num_examples: # for tf.data, we can't find num_examples self._maybe_reduce_nquantiles(num_examples) # apply preprocessing/feature engineering if required. inputs = self._fit_transform_x(inputs) outputs = self._fit_transform_y(outputs) outputs = self._verify_output_shape(outputs) self.info['training_start'] = dateandtime_now() if self.category == "DL": history = self._fit(inputs, outputs, callbacks=callbacks, **kwargs) if self.verbosity >= 0: visualizer.plot_loss(history.history) # for -ve verbosity, weights are not saved! # todo should raise warning self.load_best_weights() else: history = self.fit_ml_models(inputs, outputs, **kwargs) self.info['training_end'] = dateandtime_now() if self.verbosity >= 0: self.save_config() dict_to_file(os.path.join(self.path, 'info.json'), others=self.info) self.is_training = False return history def _verify_output_shape(self, outputs): """verifies that shape of target/true/labels is correct""" if isinstance(outputs, np.ndarray) and self.category == "DL": if isinstance(self.ai4w_outputs, list): assert len(self.ai4w_outputs) == 1 model_output_shape = tuple(self.ai4w_outputs[0].shape.as_list()[1:]) if getattr(self, 'quantiles', None) is not None: assert model_output_shape[0] == len(self.quantiles) * self.num_outs elif self.mode == 'classification': activation = self.layers[-1].get_config()['activation'] if self.is_binary_: if activation == "softmax": assert model_output_shape[0] == self.num_classes_, f"""inferred number of classes are {self.num_classes_} while model's output has {model_output_shape[0]} nodes """ else: if outputs.shape[1] > model_output_shape[0]: outputs = np.argmax(outputs, 1).reshape(-1, 1) assert model_output_shape[0] == outputs.shape[1] elif len(model_output_shape) != len(outputs.shape): assert model_output_shape == outputs.shape[1:], f""" ShapeMismatchError: Shape of model's output is {model_output_shape} while the prepared targets have shape {outputs.shape[1:]}.""" return outputs def load_best_weights(self) -> None: if self.config['backend'] != 'pytorch': # load the best weights so that the best weights can be used during model.predict calls best_weights = find_best_weight(os.path.join(self.path, 'weights')) if best_weights is None: warnings.warn("best weights could not be found and are not loaded", UserWarning) else: self.allow_weight_loading = True self.update_weights(os.path.join(self.w_path, best_weights)) return def fit_ml_models(self, inputs, outputs, **kwargs): # following arguments are strictly about nn so we don't need to save them in config file # so that it does not confuse the reader. for arg in ["composite", "optimizer", "lr", "epochs"]: if arg in self.config: self.config.pop(arg) if len(outputs) == outputs.size: outputs = outputs.reshape(-1, ) self._maybe_change_residual_threshold(outputs) history = self._model.fit(inputs, outputs, **kwargs) if self._model.__class__.__name__.startswith("XGB") and inputs.__class__.__name__ == "ndarray": # by default feature_names of booster as set to f0, f1,... self._model.get_booster().feature_names = self.input_features if self.verbosity >= 0: self._save_ml_model() return history def _save_ml_model(self): """Saves the non-NN/ML models in the disk.""" import joblib # some modules don't have joblibe in their requires fname = os.path.join(self.w_path, self.model_name) if "tpot" not in self.model_name: try: joblib.dump(self._model, fname) except PicklingError: print(f"could not pickle {self.model_name} model") return def cross_val_score( self, x=None, y=None, data: Union[pd.DataFrame, np.ndarray, str] = None, scoring: Union [str, list] = None, refit: bool = False, process_results:bool = False ) -> list: """computes cross validation score Parameters ---------- x : input data y : output corresponding to ``x``. data : raw unprepared data which will be given to :py:class:`ai4water.preprocessing.DataSet` to prepare x,y from it. scoring : performance metric to use for cross validation. If None, it will be taken from config['val_metric'] refit : bool, optional (default=False If True, the model will be trained on the whole training+validation data after calculating cross validation score. process_results : bool, optional whether to process results at each cv iteration or not Returns ------- list cross validation score for each of metric in scoring Example ------- >>> from ai4water.datasets import busan_beach >>> from ai4water import Model >>> model = Model(model="RandomForestRegressor", >>> cross_validator={"KFold": {"n_splits": 5}}) >>> model.cross_val_score(data=busan_beach()) Note ---- Currently not working for deep learning models. """ if self.mode == "classification": Metrics = ClassificationMetrics else: Metrics = RegressionMetrics if scoring is None: scoring = self.val_metric if not isinstance(scoring, list): scoring = [scoring] scores = [] if self.config['cross_validator'] is None: raise ValueError("Provide the `cross_validator` argument to the `Model` class upon initiation") cross_validator = list(self.config['cross_validator'].keys())[0] cross_validator_args = self.config['cross_validator'][cross_validator] if data is None: # prepared data is given from .utils.utils import TrainTestSplit splitter = TrainTestSplit(test_fraction=1.0 - self.config['train_fraction']) splits = getattr(splitter, cross_validator)(x, y, **cross_validator_args) else: # we need to prepare data first as x,y if callable(cross_validator): splits = cross_validator(**cross_validator_args) else: ds = DataSet(data=data, **self.data_config) splits = getattr(ds, f'{cross_validator}_splits')(**cross_validator_args) for fold, ((train_x, train_y), (test_x, test_y)) in enumerate(splits): verbosity = self.verbosity self.verbosity = 0 # make a new classifier/regressor at every fold self.build(self._get_dummy_input_shape()) self.verbosity = verbosity if self.category == "ML": self._maybe_change_residual_threshold(train_y) self.fit(x=train_x, y=train_y.reshape(-1, )) else: self.fit(x=train_x, y=train_y) # since we have access to true y, it is better to provide it # it will be used for processing of results pred = self.predict(x=test_x, y=test_y, process_results=process_results) metrics = Metrics(test_y.reshape(-1, 1), pred) val_scores = [] for score in scoring: val_scores.append(getattr(metrics, score)()) scores.append(val_scores) if self.verbosity > 0: print(f'fold: {fold} val_score: {val_scores}') if self.verbosity >= 0: # save all the scores as json in model path` cv_name = str(cross_validator) fname = os.path.join(self.path, f'{cv_name}_scores.json') with open(fname, 'w') as fp: json.dump(scores, fp, indent=True) ## set it as class attribute so that it can be used setattr(self, f'cross_val_scores', scores) if refit: self.fit_on_all_training_data(data=data) if self.verbosity >= 0: # Even if we do not run .fit(), then we should still have model saved in # the disk so that it can be used. self._save_ml_model() scores = np.array(scores) cv_scores_ = np.nanmean(scores, axis=0) max_val = max(cv_scores_) avg_val = np.nanmean(cv_scores_).item() if np.isinf(cv_scores_).any(): # if there is inf, we should not fill it with very large value (999999999) # but it should be max(so far experienced) value cv_scores_no_inf = cv_scores_.copy() cv_scores_no_inf[np.isinf(cv_scores_no_inf)] = np.nan cv_scores_no_inf[np.isnan(cv_scores_no_inf)] = np.nanmax(cv_scores_no_inf) max_val = max(cv_scores_no_inf) # check for both infinity and nans separately # because they come due to different reasons cv_scores = [] for cv_score, metric_name in zip(cv_scores_, scoring): # math.isinf(np.nan) will be false therefore # first check if cv_score is nan or not, if true, fill it with avg_val if math.isnan(cv_score): cv_score = fill_val(metric_name, default_min=avg_val) # then check if cv_score is infinity because elif math.isinf(cv_score): cv_score = fill_val(metric_name, default_min=max_val) cv_scores.append(cv_score) return cv_scores def fit_on_all_training_data(self, x=None, y=None, data=None, **kwargs): """ This function trains the model on training + validation data. Parameters ---------- x : x data which is supposed to be consisting of training and validation. If not given, then ``data`` must be given. y : label/target data corresponding to x data. data : raw data which will be passed to `py:meth:ai4water.preprocessing.DataSet` to get training and validation x,y pairs. The x data from training and validation is concatenated. Similarly, y data from training and validation is concatenated **kwargs any keyword arguments for ``fit`` method. """ if data is None: assert x is not None, f""" if data is not given, both x, y pairs must be given. The provided x,y pairs are of type {type(x)}, {type(y)} respectively.""" return self.fit(x=x, y=y, **kwargs) x_train, y_train = self.training_data(data=data) x_val, y_val = self.validation_data() if isinstance(x_train, list): x = [] for val in range(len(x_train)): if x_val is not None: _val = np.concatenate([x_train[val], x_val[val]]) x.append(_val) else: _val = x_train[val] y = y_train if hasattr(y_val, '__len__') and len(y_val) > 0: y = np.concatenate([y_train, y_val]) elif isinstance(x_train, np.ndarray): x, y = x_train, y_train # if not validation data is available then use only training data if x_val is not None: if hasattr(x_val, '__len__') and len(x_val)>0: x = np.concatenate([x_train, x_val]) y = np.concatenate([y_train, y_val]) else: raise NotImplementedError if 'Dataset' in x.__class__.__name__: pass else: AttribtueSetter(self, y) if self.is_binary_: if len(y) != y.size: # when sigmoid is used for binary # convert the output to 1d y = np.argmax(y, 1).reshape(-1, 1) return self.fit(x=x, y=y, **kwargs) def _maybe_change_residual_threshold(self, outputs) -> None: # https://stackoverflow.com/a/64396757/5982232 if self.residual_threshold_not_set_: old_value = self._model.residual_threshold or mad(outputs.reshape(-1, ).tolist()) if np.isnan(old_value) or old_value < 0.001: self._model.set_params(residual_threshold=0.001) if self.verbosity > 0: print(f"""changing residual_threshold from {old_value} to {self._model.residual_threshold}""") return def score(self, x=None, y=None, data='test', **kwargs): """since preprocessing is part of Model, so the trained model with sklearn as backend must also be able to apply preprocessing on inputs before calculating score from sklearn. Currently it just calls the `score` function of sklearn by first transforming x and y.""" if self.category == "ML" and hasattr(self, '_model'): x,y, _, _, _ = self._fetch_data(data, x=x,y=y, data=data) x = self._transform_x(x) y = self._transform_y(y) return self._model.score(x, y, **kwargs) raise NotImplementedError(f"can not calculate score") def predict_proba(self, x=None, data='test', **kwargs): """since preprocessing is part of Model, so the trained model with sklearn/xgboost/catboost/lgbm as backend must also be able to apply preprocessing on inputs before calling predict_proba from underlying library. Currently it just calls the `predict_proba` function of underlying library by first transforming x """ if self.category == "ML" and hasattr(self, '_model'): x, _, _, _, _ = self._fetch_data(data, x=x, data=data) x = self._transform_x(x) return self._model.predict_proba(x, **kwargs) raise NotImplementedError(f"can not calculate proba") def predict_log_proba(self, x=None, data='test', **kwargs): """since preprocessing is part of Model, so the trained model with sklearn/xgboost/catboost/lgbm as backend must also be able to apply preprocessing on inputs before calling predict_log_proba from underlying library. Currently it just calls the `log_proba` function of underlying library by first transforming x """ if self.category == "ML" and hasattr(self, '_model'): x, _, _, _, _ = self._fetch_data(data, x=x, data=data) x = self._transform_x(x) return self._model.predict_log_proba(x, **kwargs) raise NotImplementedError(f"can not calculate log_proba") def evaluate( self, x=None, y=None, data=None, metrics=None, **kwargs ): """ Evaluates the performance of the model on a given data. calls the ``evaluate`` method of underlying `model`. If the `evaluate` method is not available in underlying `model`, then `predict` is called. Arguments: x: inputs y: outputs/true data corresponding to `x` data: Raw unprepared data which will be fed to :py:class:`ai4water.preprocessing.DataSet` to prepare x and y. If ``x`` and ``y`` are given, this argument will have no meaning. metrics: the metrics to evaluate. It can a string indicating the metric to evaluate. It can also be a list of metrics to evaluate. Any metric name from RegressionMetrics_ or ClassificationMetrics_ can be given. It can also be name of group of metrics to evaluate. Following groups are available - ``minimal`` - ``all`` - ``hydro_metrics`` If this argument is given, the `evaluate` function of the underlying class is not called. Rather the model is evaluated manually for given metrics. Otherwise, if this argument is not given, then evaluate method of underlying model is called, if available. kwargs: any keyword argument for the `evaluate` method of the underlying model. Returns: If `metrics` is not given then this method returns whatever is returned by `evaluate` method of underlying model. Otherwise the model is evaluated for given metric or group of metrics and the result is returned Examples -------- >>> import numpy as np >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model=MLP(), ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) >>> model.fit(data=data) for evaluation on test data >>> model.evaluate(data=data) ... evaluate on any metric from SeqMetrics_ library >>> model.evaluate(data=data, metrics='pbias') ... ... # to evaluate on custom data, the user can provide its own x and y >>> new_inputs = np.random.random((10, 13)) >>> new_outputs = np.random.random((10, 1, 1)) >>> model.evaluate(new_inputs, new_outputs) backward compatability Since the ai4water's Model is supposed to behave same as Keras' Model the following expressions are equally valid. >>> model.evaluate(x, y=y) >>> model.evaluate(x=x, y=y) .. _SeqMetrics: https://seqmetrics.readthedocs.io/en/latest/index.html .. _RegressionMetrics: https://seqmetrics.readthedocs.io/en/latest/rgr.html#regressionmetrics .. _ClassificationMetrics: https://seqmetrics.readthedocs.io/en/latest/cls.html#classificationmetrics """ return self.call_evaluate(x=x, y=y, data=data, metrics=metrics, **kwargs) def evaluate_on_training_data(self, data, metrics=None, **kwargs): """evaluates the model on training data. Parameters ---------- data: Raw unprepared data which will be fed to :py:class:`ai4water.preprocessing.DataSet` to prepare x and y. If ``x`` and ``y`` are given, this argument will have no meaning. metrics: the metrics to evaluate. It can a string indicating the metric to evaluate. It can also be a list of metrics to evaluate. Any metric name from RegressionMetrics_ or ClassificationMetrics_ can be given. It can also be name of group of metrics to evaluate. Following groups are available - ``minimal`` - ``all`` - ``hydro_metrics`` If this argument is given, the `evaluate` function of the underlying class is not called. Rather the model is evaluated manually for given metrics. Otherwise, if this argument is not given, then evaluate method of underlying model is called, if available. kwargs: any keyword argument for the `evaluate` method of the underlying model. Returns ------- If `metrics` is not given then this method returns whatever is returned by `evaluate` method of underlying model. Otherwise the model is evaluated for given metric or group of metrics and the result is returned as float or dictionary Examples -------- >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model=MLP(), ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) >>> model.fit(data=data) ... # for evaluation on training data >>> model.evaluate_on_training_data(data=data) >>> model.evaluate(data=data, metrics='pbias') """ x, y = self.training_data(data=data) return self.call_evaluate(x=x, y=y, metrics=metrics, **kwargs) def evaluate_on_validation_data(self, data, metrics=None, **kwargs): """evaluates the model on validation data. Parameters ---------- data: Raw unprepared data which will be fed to :py:class:`ai4water.preprocessing.DataSet` to prepare x and y. If ``x`` and ``y`` are given, this argument will have no meaning. metrics: the metrics to evaluate. It can a string indicating the metric to evaluate. It can also be a list of metrics to evaluate. Any metric name from RegressionMetrics_ or ClassificationMetrics_ can be given. It can also be name of group of metrics to evaluate. Following groups are available - ``minimal`` - ``all`` - ``hydro_metrics`` If this argument is given, the `evaluate` function of the underlying class is not called. Rather the model is evaluated manually for given metrics. Otherwise, if this argument is not given, then evaluate method of underlying model is called, if available. kwargs: any keyword argument for the `evaluate` method of the underlying model. Returns ------- If `metrics` is not given then this method returns whatever is returned by `evaluate` method of underlying model. Otherwise the model is evaluated for given metric or group of metrics and the result is returned as float or dictionary Examples -------- >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model=MLP(), ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) >>> model.fit(data=data) ... # for evaluation on validation data >>> model.evaluate_on_validation_data(data=data) >>> model.evaluate_on_validation_data(data=data, metrics='pbias') """ x, y = self.validation_data(data=data) if not _find_num_examples(x): raise DataNotFound("Validation") return self.call_evaluate(x=x, y=y, metrics=metrics, **kwargs) def evaluate_on_test_data(self, data, metrics=None, **kwargs): """evaluates the model on test data. Parameters ---------- data: Raw unprepared data which will be fed to :py:class:`ai4water.preprocessing.DataSet` to prepare x and y. If ``x`` and ``y`` are given, this argument will have no meaning. metrics: the metrics to evaluate. It can a string indicating the metric to evaluate. It can also be a list of metrics to evaluate. Any metric name from RegressionMetrics_ or ClassificationMetrics_ can be given. It can also be name of group of metrics to evaluate. Following groups are available - ``minimal`` - ``all`` - ``hydro_metrics`` If this argument is given, the `evaluate` function of the underlying class is not called. Rather the model is evaluated manually for given metrics. Otherwise, if this argument is not given, then evaluate method of underlying model is called, if available. kwargs: any keyword argument for the `evaluate` method of the underlying model. Returns ------- If `metrics` is not given then this method returns whatever is returned by `evaluate` method of underlying model. Otherwise the model is evaluated for given metric or group of metrics and the result is returned as float or dictionary Examples -------- >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model=MLP(), ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) >>> model.fit(data=data) ... # for evaluation on test data >>> model.evaluate_on_test_data(data=data) >>> model.evaluate_on_test_data(data=data, metrics='pbias') """ x, y = self.test_data(data=data) if not _find_num_examples(x): raise DataNotFound("Test") return self.call_evaluate(x=x, y=y, metrics=metrics, **kwargs) def evaluate_on_all_data(self, data, metrics=None, **kwargs): """evaluates the model on all i.e. training+validation+test data. Examples -------- >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model=MLP(), ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) >>> model.fit(data=data) ... # for evaluation on all data >>> print(model.evaluate_on_all_data(data=data))) >>> print(model.evaluate_on_all_data(data=data, metrics='pbias')) """ x, y = self.all_data(data=data) return self.call_evaluate(x=x, y=y, metrics=metrics, **kwargs) def call_evaluate(self, x=None,y=None, data=None, metrics=None, **kwargs): if x is None and data is None: data = "test" source = 'test' if isinstance(data, str) and data in ['training', 'validation', 'test']: source = data warnings.warn(f""" argument {data} is deprecated and will be removed in future. Please use 'evaluate_on_{data}_data' method instead.""") x, y, _, _, user_defined = self._fetch_data(source, x, y, data) if user_defined: pass elif len(x) == 0 and source == "test": warnings.warn("No test data found. using validation data instead", UserWarning) data = "validation" source = data x, y, _, _, _ = self._fetch_data(source=source, data=data) if len(x) == 0: warnings.warn("No test and validation data found. using training data instead", UserWarning) data = "training" source = data x, y, _, _, _ = self._fetch_data(source=source, x=x, y=y, data=data) if not getattr(self, 'is_fitted', True): AttribtueSetter(self, y) # dont' make call to underlying evaluate function rather manually # evaluate the given metrics if metrics is not None: return self._manual_eval(x, y, metrics) # after this we call evaluate function of underlying model # therefore we must transform inputs and outptus x = self._transform_x(x) y = self._transform_y(y) if hasattr(self._model, 'evaluate'): return self._model.evaluate(x, y, **kwargs) return self.evaluate_fn(x, y, **kwargs) def evalute_ml_models(self, x, y, metrics=None): if metrics is None: metrics = self.val_metric return self._manual_eval(x, y, metrics) def _manual_eval(self, x, y, metrics): """manual evaluation""" t, p = self.predict(x=x, y=y, return_true=True, process_results=False) if self.mode == "regression": errs = RegressionMetrics(t, p) else: errs = ClassificationMetrics(t, p, multiclass=self.is_multiclass_) if isinstance(metrics, str): if metrics in ['minimal', 'all', 'hydro_metrics']: results = getattr(errs, f"calculate_{metrics}")() else: results = getattr(errs, metrics)() elif isinstance(metrics, list): results = {} for m in metrics: results[m] = getattr(errs, m)() elif callable(metrics): results = metrics(x, t) else: raise ValueError(f"unknown metrics type {metrics}") return results def predict( self, x=None, y=None, data: Union[str, pd.DataFrame, np.ndarray, DataSet] = 'test', process_results: bool = True, metrics: str = "minimal", return_true: bool = False, plots:Union[str, list] = None, **kwargs ): """ Makes prediction from the trained model. Arguments: x: The data on which to make prediction. if given, it will override `data`. It can also be tf.Dataset or TorchDataset y: Used for pos-processing etc. if given it will overrite `data` data: It can also be unprepared/raw data which will be given to :py:class:`ai4water.preprocessing.DataSet` to prepare x,y values. process_results: bool post processing of results metrics: str only valid if process_results is True. The metrics to calculate. Valid values are ``minimal``, ``all``, ``hydro_metrics`` return_true: bool whether to return the true values along with predicted values or not. Default is False, so that this method behaves sklearn type. plots : optional (default=None) The kind of of plots to draw. Only valid if post_process is True kwargs : any keyword argument for ``predict`` method. Returns: An numpy array of predicted values. If return_true is True then a tuple of arrays. The first is true and the second is predicted. If ``x`` is given but ``y`` is not given, then, first array which is returned is None. Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=busan_beach()) >>> pred = model.predict(data=busan_beach()) get true values >>> true, pred = model.predict(data=busan_beach(), return_true=True) postprocessing of results >>> pred = model.predict(data=busan_beach(), process_results=True) calculate all metrics during postprocessing >>> pred = model.predict(data=busan_beach(), process_results=True, metrics="all") using your own data >>> import numpy as np >>> new_input = np.random.random((10, 13)) >>> pred = model.predict(x = new_input) """ assert metrics in ("minimal", "all", "hydro_metrics") return self.call_predict( x=x, y=y, data=data, process_results=process_results, metrics=metrics, return_true=return_true, plots=plots, **kwargs) def predict_on_training_data( self, data, process_results=True, return_true=False, metrics="minimal", plots: Union[str, list] = None, **kwargs ): """makes prediction on training data. Parameters ---------- data : raw, unprepared data from which training data (x,y paris) will be generated. process_results : bool, optional whether to post-process the results or not return_true : bool, optional If true, the returned value will be tuple, first is true and second is predicted array metrics : str, optional the metrics to calculate during post-processing plots : optional (default=None) The kind of of plots to draw. Only valid if post_process is True Following plots are avialble. ``residual`` ``regression`` ``prediction`` ``errors`` ``fdc`` ``murphy`` ``edf`` **kwargs : any keyword argument for .predict method. """ x, y = self.training_data(data=data) return self.call_predict( x=x, y=y, process_results=process_results, return_true=return_true, metrics=metrics, plots=plots, prefix="training", **kwargs ) def predict_on_validation_data( self, data, process_results=True, return_true=False, metrics="minimal", plots: Union[str, list] = None, **kwargs ): """makes prediction on validation data. Parameters ---------- data : raw, unprepared data from which validation data (x,y paris) will be generated. process_results : bool, optional whether to post-process the results or not return_true : bool, optional If true, the returned value will be tuple, first is true and second is predicted array metrics : str, optional the metrics to calculate during post-processing plots : optional (default=None) The kind of of plots to draw. Only valid if post_process is True Following plots are avialble. ``residual`` ``regression`` ``prediction`` ``errors`` ``fdc`` ``murphy`` ``edf`` **kwargs : any keyword argument for .predict method. """ x, y = self.validation_data(data=data) if not _find_num_examples(x): raise DataNotFound("Validation") return self.call_predict( x=x, y=y, process_results=process_results, return_true=return_true, metrics=metrics, plots=plots, prefix="validation", **kwargs ) def predict_on_test_data( self, data, process_results=True, return_true=False, metrics="minimal", plots: Union[str, list] = None, **kwargs ): """makes prediction on test data. Parameters ---------- data : raw, unprepared data from which test data (x,y paris) will be generated. process_results : bool, optional whether to post-process the results or not return_true : bool, optional If true, the returned value will be tuple, first is true and second is predicted array metrics : str, optional the metrics to calculate during post-processing plots : optional (default=None) The kind of of plots to draw. Only valid if post_process is True Following plots are avialble. ``residual`` ``regression`` ``prediction`` ``errors`` ``fdc`` ``murphy`` ``edf`` **kwargs : any keyword argument for .predict method. """ if isinstance(data, _DataSet): x, y = data.test_data() else: x, y = self.test_data(data=data) if not _find_num_examples(x): raise DataNotFound(f"test") return self.call_predict( x=x, y=y, process_results=process_results, return_true=return_true, metrics=metrics, plots=plots, prefix="test", **kwargs ) def predict_on_all_data( self, data, process_results=True, return_true=False, metrics="minimal", plots: Union[str, list] = None, **kwargs ): """ It makes prediction on training+validation+test data. Parameters ---------- data : raw, unprepared data from which x,y paris will be generated. process_results : bool, optional whether to post-process the results or not return_true : bool, optional If true, the returned value will be tuple, first is true and second is predicted array metrics : str, optional the metrics to calculate during post-processing plots : optional (default=None) The kind of of plots to draw. Only valid if post_process is True Following plots are avialble. ``residual`` ``regression`` ``prediction`` ``errors`` ``fdc`` ``murphy`` ``edf`` **kwargs : any keyword argument for .predict method. """ x, y = self.all_data(data=data) return self.call_predict( x=x, y=y, process_results=process_results, return_true=return_true, metrics=metrics, plots=plots, prefix="all", **kwargs ) def call_predict( self, x=None, y=None, data=None, process_results=True, metrics="minimal", return_true: bool = False, plots=None, prefix=None, **kwargs ): source = 'test' if x is None and data is None: data = "test" if isinstance(data, str) and data in ['training', 'validation', 'test']: warnings.warn(f""" argument {data} is deprecated and will be removed in future. Please use 'predict_on_{data}_data' method instead.""") source = data inputs, true_outputs, _prefix, transformation_key, user_defined_data = self._fetch_data( source=source, x=x, y=y, data=data ) if user_defined_data: pass elif len(inputs) == 0 or (isinstance(inputs, list) and len(inputs[0]) == 0) and source == "test": warnings.warn("No test data found. using validation data instead", UserWarning) data = "validation" source = data inputs, true_outputs, _prefix, transformation_key, user_defined_data = self._fetch_data( source=source, x=x, y=y, data=data) # if we still have no data, then we use training data instead if len(inputs)==0 or (isinstance(inputs, list) and len(inputs[0]) == 0): warnings.warn(""" No test and validation data found. using training data instead""", UserWarning) data = "training" source = data inputs, true_outputs, _prefix, transformation_key, user_defined_data = self._fetch_data( source=source, x=x, y=y, data=data) if not getattr(self, 'is_fitted', True): # prediction without fitting AttribtueSetter(self, y) prefix = prefix or _prefix inputs = self._transform_x(inputs) if true_outputs is not None: true_outputs = self._transform_y(true_outputs) if self.category == 'DL': # some arguments specifically for DL models if 'verbose' not in kwargs: kwargs['verbose'] = self.verbosity if 'batch_size' in kwargs: # if given by user ... #self.config['batch_size'] = kwargs['batch_size'] # update config elif K.BACKEND == "tensorflow": if isinstance(inputs, tf.data.Dataset): ... else: # otherwise use from config kwargs['batch_size'] = self.config['batch_size'] predicted = self.predict_fn(x=inputs, **kwargs) else: if self._model.__class__.__name__.startswith("XGB") and isinstance(inputs, np.ndarray): # since we have changed feature_names of booster, kwargs['validate_features'] = False predicted = self.predict_ml_models(inputs, **kwargs) true_outputs, predicted = self._inverse_transform_y( true_outputs, predicted) if true_outputs is None: if return_true: return true_outputs, predicted return predicted if isinstance(true_outputs, dict): dt_index = np.arange(set([len(v) for v in true_outputs.values()]).pop()) else: dt_index = np.arange(len(true_outputs)) # dummy/default index when data is user defined if not user_defined_data: dt_index = self.dh_.indexes[transformation_key] #true_outputs, dt_index = self.dh_.deindexify(true_outputs, key=transformation_key) if isinstance(true_outputs, np.ndarray) and true_outputs.dtype.name == 'object': true_outputs = true_outputs.astype(predicted.dtype) if true_outputs is None: process_results = False if process_results: # initialize post-processes pp = ProcessPredictions( mode=self.mode, path=self.path, forecast_len=self.forecast_len, output_features=self.output_features, plots=plots, show=bool(self.verbosity), ) pp(true_outputs, predicted, metrics, prefix, dt_index, inputs, model=self) if return_true: return true_outputs, predicted return predicted def predict_ml_models(self, inputs, **kwargs): """So that it can be overwritten easily for ML models.""" return self.predict_fn(inputs, **kwargs) def plot_model(self, nn_model, show=False, figsize=None, **kwargs) -> None: if int(tf.__version__.split('.')[1]) > 14 and 'dpi' not in kwargs: kwargs['dpi'] = 300 if 'to_file' not in kwargs: kwargs['to_file'] = os.path.join(self.path, "model.png") try: keras.utils.plot_model( nn_model, show_shapes=True, **kwargs) drawn = True except (AssertionError, ImportError) as e: print(f"dot plot of model could not be plotted due to {e}") drawn = False if drawn and show: import matplotlib.image as mpimg from easy_mpl import imshow img = mpimg.imread(os.path.join(self.path, "model.png")) kwargs = {} if figsize: kwargs['figsize'] = figsize ax,_ = imshow(img, show=False, xticklabels=[], yticklabels=[], **kwargs) ax.axis('off') plt.tight_layout() plt.show() return def get_opt_args(self) -> dict: """get input arguments for an optimizer. It is being explicitly defined here so that it can be overwritten in sub-classes """ kwargs = {'lr': self.config['lr']} if self.config['backend'] == 'tensorflow' and int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) >= 250: kwargs['learning_rate'] = kwargs.pop('lr') if self.config['backend'] == 'pytorch': kwargs.update({'params': self.parameters()}) # parameters from pytorch model return kwargs def get_metrics(self) -> list: """Returns the performance metrics to be monitored.""" _metrics = self.config['monitor'] metrics = None if _metrics is not None: if not isinstance(_metrics, list): assert isinstance(_metrics, str) _metrics = [_metrics] from ai4water.utils.tf_losses import nse, kge, pbias, tf_r2 metrics_with_names = {'nse': nse, 'kge': kge, "r2": tf_r2, 'pbias': pbias} metrics = [] for m in _metrics: if m in metrics_with_names.keys(): metrics.append(metrics_with_names[m]) else: metrics.append(m) return metrics def view( self, layer_name: Union[list, str] = None, data = None, data_type: str = 'training', x=None, y=None, examples_to_view=None, show=False ): """shows all activations, weights and gradients of the model. Arguments: layer_name: the layer to view. If not given, all the layers will be viewed. This argument is only required when the model consists of layers of neural networks. data : the data to use when making calls to model for activation calculation or for gradient calculation. data_type : str It can either ``training``, ``validation`` or ``test`` or ``all``. x: input, alternative to data. If given it will override `data` argument. y: target/observed/label, alternative to data. If given it will override `data` argument. examples_to_view : the examples to view. show: whether to show the plot or not! Returns: An isntance of Visualize :py:class:`ai4water.postprocessing.visualize.Visualize` class. """ from ai4water.postprocessing.visualize import Visualize visualizer = Visualize(model=self, show=show) visualizer(layer_name, data=data, data_type=data_type, x=x, y=y, examples_to_use=examples_to_view ) return visualizer def interpret( self, **kwargs ): """ Interprets the underlying model. Call it after training. Returns: An instance of :py:class:`ai4water.postprocessing.interpret.Interpret` class Example: >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model=...) >>> model.fit(data=busan_beach()) >>> model.interpret() """ # importing ealier will try to import np types as well again from ai4water.postprocessing import Interpret return Interpret(self) def explain(self, *args, **kwargs): """Calls the :py:func:ai4water.postprocessing.explain.explain_model` function to explain the model. Example ------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=data) >>> model.explain(total_data=data, examples_to_explain=2) """ from ai4water.postprocessing.explain import explain_model return explain_model(self, *args, **kwargs) def _save_indices(self): # saves the training and test indices to a json file indices = {} if hasattr(self, 'dh_'): for idx in ['train_indices', 'test_indices']: if hasattr(self.dh_, idx): idx_values = getattr(self.dh_, idx) if idx_values is not None and not isinstance(idx_values, str): idx_values = np.array(idx_values, dtype=int).tolist() else: idx_values = None indices[idx] = idx_values dict_to_file(indices=indices, path=self.path) return def save_config(self, history: dict = None): """saves the current state of model in a json file. By current state, we mean, train and test indices (if available), hyperparameters of related to model and data and current performance statistics. All the data is stored in model.path. """ self._save_indices() config = dict() if history is not None: config['min_loss'] = None config['min_val_loss'] = None min_loss_array = history.get('min_loss_array', None) val_loss_array = history.get('val_loss', None) if val_loss_array is not None and not all(np.isnan(val_loss_array)): config['min_val_loss'] = np.nanmin(val_loss_array) if min_loss_array is not None and not all(np.isnan(min_loss_array)): config['min_loss'] = np.nanmin(min_loss_array) config['config'] = self.config.copy() # it is calculated during run time config['config']['val_metric'] = self.val_metric config['method'] = self.method # we don't want our saved config to have 'path' key in it if 'path' in config['config']: config['config'].pop('path') if self.category == "DL": config['loss'] = self.loss_name() if self.category == "ML" and self.is_custom_model: config['config']['model'] = self.model_name # following parameters are not set during build and are not in "config" which # builds the model because they are set during run time from data # putting them in metaconfig is necessary because when we build model # from config, and want to make some plots such as roc curve, # it will need classes_ attribute. for attr in ['classes_', 'num_classes_', 'is_binary_', 'is_multiclass_', 'is_multilabel_']: config[attr] = getattr(self, attr, None) dict_to_file(config=config, path=self.path) return config @classmethod def from_config( cls, config: dict, make_new_path: bool = False, **kwargs )->"BaseModel": """Loads the model from config dictionary i.e. model.config Arguments --------- config: dict dictionary containing model's parameters i.e. model.config make_new_path : bool, optional whether to make new path or not? **kwargs: any additional keyword arguments to Model class. Returns ------- an instalnce of :py:class:`ai4water.Model` Example ------- >>> from ai4water import Model >>> import numpy as np >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> old_model = Model(model="XGBRegressor") >>> old_model.fit(data=data) ... # now construct a new model instance from config dictionary >>> model = Model.from_config(old_model.config) >>> model.update_weights() >>> x = np.random.random((100, 14)) >>> prediction = model.predict(x=x) """ return cls._get_config_and_path( cls, config=config, make_new_path=make_new_path, **kwargs) @classmethod def from_config_file( cls, config_path: str, make_new_path: bool = False, **kwargs) -> "BaseModel": """ Loads the model from a config file. Arguments ---------- config_path : complete path of config file make_new_path : bool, optional If true, then it means we want to use the config file, only to build the model and a new path will be made. We would not normally update the weights in such a case. **kwargs : any additional keyword arguments for the :py:class:`ai4water.Model` Return ------ an instance of :py:class:`ai4water.Model` class Example ------- >>> from ai4water import Model >>> config_file_path = "../file/to/config.json" >>> model = Model.from_config_file(config_file_path) >>> x = np.random.random((100, 14)) >>> prediction = model.predict(x=x) """ # when an instance of Model is created, config is written, which # will overwrite these attributes so we need to keep track of them # so that after building the model, we can set these attributes to Model attrs = {} with open(config_path, 'r') as fp: config = json.load(fp) for attr in ['classes_', 'num_classes_', 'is_binary_', 'is_multiclass_', 'is_multilabel_']: if attr in config: attrs[attr] = config[attr] model = cls._get_config_and_path( cls, config_path=config_path, make_new_path=make_new_path, **kwargs ) for attr in ['classes_', 'num_classes_', 'is_binary_', 'is_multiclass_', 'is_multilabel_']: if attr in attrs: setattr(model, attr, attrs[attr]) # now we need to save the config again model.save_config() return model @staticmethod def _get_config_and_path( cls, config_path: str = None, config=None, make_new_path=False, **kwargs )->"BaseModel": """Sets some attributes of the cls so that it can be built from config. Also fetches config and path which are used to initiate cls.""" if config is not None and config_path is not None: raise ValueError if config is None: assert config_path is not None with open(config_path, 'r') as fp: meta_config = json.load(fp) config = meta_config['config'] path = os.path.dirname(config_path) else: assert isinstance(config, dict), f""" config must be dictionary but it is of type {config.__class__.__name__}""" path = config['path'] # todo # shouldn't we remove 'path' from Model's init? we just need prefix # path is needed in clsas methods only? if 'path' in config: config.pop('path') if make_new_path: allow_weight_loading = False path = None else: allow_weight_loading = True model = cls(**config, path=path, **kwargs) model.allow_weight_loading = allow_weight_loading model.from_check_point = True return model def update_weights(self, weight_file: str = None): """ Updates the weights of the underlying model. Parameters ---------- weight_file : str, optional complete path of weight file. If not given, the weights are updated from model.w_path directory. For neural network based models, the best weights are updated if more than one weight file is present in model.w_path. Returns ------- None """ if weight_file is None: weight_file = find_best_weight(self.w_path) weight_file_path = os.path.join(self.w_path, weight_file) else: if not os.path.isfile(weight_file): raise ValueError(f'weight_file must be complete path of weight file but it is {weight_file}') weight_file_path = weight_file weight_file = os.path.basename(weight_file) # for printing if not self.allow_weight_loading: raise ValueError(f"Weights loading not allowed because allow_weight_loading is {self.allow_weight_loading}" f"and model path is {self.path}") if self.category == "ML": import joblib # some modules don't have joblib in their requires self._model = joblib.load(weight_file_path) else: # loads the weights of keras model from weight file `w_file`. if self.api == 'functional' and self.config['backend'] == 'tensorflow': self._model.load_weights(weight_file_path) elif self.config['backend'] == 'pytorch': self.load_state_dict(torch.load(weight_file_path)) else: self.load_weights(weight_file_path) if self.verbosity > 0: print("{} Successfully loaded weights from {} file {}".format('*' * 10, weight_file, '*' * 10)) return def eda(self, data, freq: str = None): """Performs comprehensive Exploratory Data Analysis. Parameters ---------- data : freq : if specified, small chunks of data will be plotted instead of whole data at once. The data will NOT be resampled. This is valid only `plot_data` and `box_plot`. Possible values are `yearly`, weekly`, and `monthly`. Returns ------- an instance of EDA :py:class:`ai4water.eda.EDA` class """ # importing EDA earlier will import numpy etc as well from ai4water.eda import EDA # todo, Uniform Manifold Approximation and Projection (UMAP) of input data # todo, radial heatmap to show temporal trends http://holoviews.org/reference/elements/bokeh/RadialHeatMap.html eda = EDA(data=data, path=self.path, in_cols=self.input_features, out_cols=self.output_features, save=True) eda() return eda def update_info(self): self.info["version_info"] =get_version_info() return def print_info(self): class_type = '' if isinstance(self.config['model'], dict): if 'layers' in self.config['model']: model_name = self.__class__.__name__ else: model_name = list(self.config['model'].keys())[0] else: if isinstance(self.config['model'], str): model_name = self.config['model'] else: model_name = self.config['model'].__class__.__name__ if self.verbosity > 0: print(f""" building {self.category} model for {class_type} {self.mode} problem using {model_name}""") return def get_optimizer(self): opt_args = self.get_opt_args() optimizer = OPTIMIZERS[self.config['optimizer']](**opt_args) return optimizer def optimize_hyperparameters( self, data: Union[tuple, list, pd.DataFrame, np.ndarray], algorithm: str = "bayes", num_iterations: int = 14, process_results: bool = True, refit: bool = True, **kwargs ): """ optimizes the hyperparameters of the built model The parameaters that needs to be optimized, must be given as space. Arguments: data : It can be one of following - raw unprepared data in the form of a numpy array or pandas dataframe - a tuple of x,y pairs If it is unprepared data, it is passed to :py:class:`ai4water.preprocessing.DataSet`. which prepares x,y pairs from it. The ``DataSet`` class also splits the data into training, validation and tests sets. If it is a tuple of x,y pairs, it is split into training and validation. In both cases, the loss on validation set is used as objective function. The loss calculated using ``val_metric``. algorithm: str, optional (default="bayes") the algorithm to use for optimization num_iterations: int, optional (default=14) number of iterations for optimization. process_results: bool, optional (default=True) whether to perform postprocessing of optimization results or not refit: bool, optional (default=True) whether to retrain the model using both training and validation data Returns: an instance of :py:class:`ai4water.hyperopt.HyperOpt` which is used for optimization Examples: >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.hyperopt import Integer, Categorical, Real >>> model_config = {"XGBRegressor": {"n_estimators": Integer(low=10, high=20), >>> "max_depth": Categorical([10, 20, 30]), >>> "learning_rate": Real(0.00001, 0.1)}} >>> model = Model(model=model_config) >>> optimizer = model.optimize_hyperparameters(data=busan_beach()) Same can be done if a model is defined using neural networks ... lookback = 14 >>> model_config = {"layers": { ... "Input": {"input_shape": (lookback, 13)}, ... "LSTM": {"config": {"units": Integer(32, 64), "activation": "relu"}}, ... "Dense": {"units": 1, ... "activation": Categorical(["relu", "tanh"], name="dense1_act")}}} >>> model = Model(model=model_config, ts_args={"lookback": lookback}) >>> optimizer = model.optimize_hyperparameters(data=busan_beach(), ... refit=False) """ from ._optimize import OptimizeHyperparameters # optimize_hyperparameters if isinstance(data, list) or isinstance(data, tuple): pass else: setattr(self, 'dh_', DataSet(data, **self.data_config)) _optimizer = OptimizeHyperparameters( self, list(self.opt_paras.values()), algorithm=algorithm, num_iterations=num_iterations, process_results=process_results, **kwargs ).fit(data=data) algo_type = list(self.config['model'].keys())[0] new_model_config = update_model_config(self._original_model_config['model'], _optimizer.best_paras()) self.config['model'][algo_type] = new_model_config new_other_config = update_model_config(self._original_model_config['other'], _optimizer.best_paras()) self.config.update(new_other_config) # if ts_args are optimized, update them as well for k, v in _optimizer.best_paras().items(): if k in self.config['ts_args']: self.config['ts_args'][k] = v if refit: # for ml models, we must build them again # TODO, why not for DL models if self.category == "ML": self.build_ml_model() if isinstance(data, (list, tuple)): assert len(data)==2 x, y = data self.fit_on_all_training_data(x=x, y=y) else: self.fit_on_all_training_data(data=data) else: raise NotImplementedError(f""" Setting `refit` is not supported for neural network based models. please call optimize_hyperparmeters(..., refit=False) """) return _optimizer def optimize_transformations( self, data:Union[np.ndarray, pd.DataFrame], transformations: Union[list, str] = None, include: Union[str, list, dict] = None, exclude: Union[str, list] = None, append: dict = None, y_transformations: Union[list, dict] = None, algorithm: str = "bayes", num_iterations: int = 12, process_results: bool = True, update_config: bool = True ): """optimizes the transformations for the input/output features The 'val_score' parameter given as input to the Model is used as objective function for optimization problem. Arguments: data : It can be one of following - raw unprepared data in the form of a numpy array or pandas dataframe - a tuple of x,y pairs If it is unprepared data, it is passed to :py:class:`ai4water.preprocessing.DataSet`. which prepares x,y pairs from it. The ``DataSet`` class also splits the data into training, validation and tests sets. If it is a tuple of x,y pairs, it is split into training and validation. In both cases, the loss on validation set is used as objective function. The loss calculated using ``val_metric``. transformations : the transformations to consider for input features. By default, following transformations are considered for input features - ``minmax`` rescale from 0 to 1 - ``center`` center the data by subtracting mean from it - ``scale`` scale the data by dividing it with its standard deviation - ``zscore`` first performs centering and then scaling - ``box-cox`` - ``yeo-johnson`` - ``quantile`` - ``robust`` - ``log`` - ``log2`` - ``log10`` - ``sqrt`` square root include : list, dict, str, optional the name/names of input features to include. If you don't want to include any feature. Set this to an empty list exclude: the name/names of input features to exclude append: the input features with custom candidate transformations. For example if we want to try only `minmax` and `zscore` on feature `tide_cm`, then it can be done as following >>> append={"tide_cm": ["minmax", "zscore"]} y_transformations: It can either be a list of transformations to be considered for output features for example >>> y_transformations = ['log', 'log10', 'log2', 'sqrt'] would mean that consider `log`, `log10`, `log2` and `sqrt` are to be considered for output transformations during optimization. It can also be a dictionary whose keys are names of output features and whose values are lists of transformations to be considered for output features. For example >>> y_transformations = {'output1': ['log2', 'log10'], 'output2': ['log', 'sqrt']} Default is None, which means do not optimize transformation for output features. algorithm: str The algorithm to use for optimizing transformations num_iterations: int The number of iterations for optimizatino algorithm. process_results : whether to perform postprocessing of optimization results or not update_config: whether to update the config of model or not. Returns: an instance of HyperOpt :py:class:`ai4water.hyperopt.HyperOpt` class which is used for optimization Example: >>> from ai4water.datasets import busan_beach >>> from ai4water import Model >>> model = Model(model="XGBRegressor") >>> optimizer_ = model.optimize_transformations(data=busan_beach(), exclude="tide_cm") >>> print(optimizer_.best_paras()) # find the best/optimized transformations >>> model.fit(data=busan_beach()) >>> model.predict() """ from ._optimize import OptimizeTransformations # optimize_transformations from .preprocessing.transformations.utils import InvalidTransformation if isinstance(data, list) or isinstance(data, tuple): pass else: setattr(self, 'dh_', DataSet(data=data, **self.data_config)) allowed_transforamtions = ["minmax", "center", "scale", "zscore", "box-cox", "yeo-johnson", "quantile", "robust", "log", "log2", "log10", "sqrt", "none", ] append = append or {} categories = allowed_transforamtions if transformations is not None: assert isinstance(transformations, list) for t in transformations: if t not in allowed_transforamtions: raise InvalidTransformation(t, allowed_transforamtions) categories = transformations if y_transformations: if isinstance(y_transformations, list): for t in y_transformations: if t not in allowed_transforamtions: raise InvalidTransformation(t, allowed_transforamtions) for out in self.output_features: append[out] = y_transformations else: assert isinstance(y_transformations, dict) for out_feature, out_transformations in y_transformations.items(): assert out_feature in self.output_features assert isinstance(out_transformations, list) for t in out_transformations: if t not in allowed_transforamtions: raise InvalidTransformation(t, allowed_transforamtions) append[out_feature] = out_transformations optimizer = OptimizeTransformations( self, algorithm=algorithm, num_iterations=num_iterations, include=include, exclude=exclude, append=append, categories=categories, process_results=process_results, ).fit(data=data) x_transformations = [] y_transformations = [] for feature, method in optimizer.best_paras().items(): if method == "none": pass else: t = {'method': method, 'features': [feature]} if method.startswith("log"): t["treat_negatives"] = True t["replace_zeros"] = True elif method == "box-cox": t["replace_zeros"] = True t["treat_negatives"] = True elif method == "sqrt": t["treat_negatives"] = True t["replace_zeros"] = True if feature in self.input_features: x_transformations.append(t) else: y_transformations.append(t) if update_config: self.config['x_transformation'] = x_transformations self.config['y_transformation'] = y_transformations or None return optimizer def permutation_importance( self, data = None, data_type: str = "test", x=None, y=None, scoring: Union[str, Callable] = "r2", n_repeats: int = 5, noise: Union[str, np.ndarray] = None, use_noise_only: bool = False, weights=None, plot_type: str = None ): """Calculates the permutation importance on the given data Parameters ---------- data : Raw unprepared data from which x,y paris of training and test data are prepared. data_type : str one of `training`, `test` or `validation`. By default test data is used based upon recommendations of Christoph Molnar's book_. Only valid if ``data`` argument is given. x: inputs for the model. alternative to data y: target/observation data for the model. alternative to data scoring: the scoring to use to calculate importance n_repeats: number of times the permutation for each feature is performed. noise: the noise to add when a feature is permutated. It can be a 1D array of length equal to len(data) or string defining the distribution use_noise_only: If True, then the feature being perturbed is replaced by the noise instead of adding the noise into the feature. This argument is only valid if `noise` is not None. weights: plot_type: if not None, it must be either ``heatmap`` or ``boxplot`` or ``bar_chart`` Returns ------- an instance of :py:class:`ai4water.postprocessing.PermutationImprotance` Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model="XGBRegressor") >>> model.fit(data=busan_beach()) >>> perm_imp = model.permutation_importance(data=busan_beach(), ... data_type="validation", plot_type="boxplot") >>> perm_imp.importances .. _book: https://christophm.github.io/interpretable-ml-book/feature-importance.html#feature-importance-data """ assert data_type in ("training", "validation", "test") if x is None: data = getattr(self, f"{data_type}_data")(data=data) x, y = data from .postprocessing.explain import PermutationImportance pm = PermutationImportance( model=self.predict, inputs=x, target=y, scoring=scoring, n_repeats=n_repeats, noise=noise, use_noise_only=use_noise_only, path=os.path.join(self.path, "explain"), feature_names=self.input_features, weights=weights, seed=self.config['seed'], save=True ) if plot_type is not None: assert plot_type in ("boxplot", "heatmap", "bar_chart") if plot_type == "heatmap": pm.plot_as_heatmap() else: pm.plot_1d_pimp(plot_type=plot_type) return pm def sensitivity_analysis( self, data=None, bounds=None, sampler="morris", analyzer:Union[str, list]="sobol", sampler_kwds: dict = None, analyzer_kwds: dict = None, save_plots: bool = True, names: List[str] = None )->dict: """performs sensitivity analysis of the model w.r.t input features in data. The model and its hyperprameters remain fixed while the input data is changed. Parameters ---------- data : data which will be used to get the bounds/limits of input features. If given, it must be 2d numpy array. It should be remembered that the given data is not used during sensitivity analysis. But new synthetic data is prepared on which sensitivity analysis is performed. bounds : list, alternative to data sampler : str, optional any sampler_ from SALib library. For example ``morris``, ``fast_sampler``, ``ff``, ``finite_diff``, ``latin``, ``saltelli``, ``sobol_sequence`` analyzer : str, optional any analyzer_ from SALib lirary. For example ``sobol``, ``dgsm``, ``fast`` ``ff``, ``hdmr``, ``morris``, ``pawn``, ``rbd_fast``. You can also choose more than one analyzer. This is useful when you want to compare results of more than one analyzers. It should be noted that having more than one analyzers does not increases computation time except for ``hdmr`` and ``delta`` analyzers. The ``hdmr`` and ``delta`` analyzers ane computation heavy. For example >>> analyzer = ["morris", "sobol", "rbd_fast"] sampler_kwds : dict keyword arguments for sampler analyzer_kwds : dict keyword arguments for analyzer save_plots : bool, optional names : list, optional names of input features. If not given, names of input features will be used. Returns ------- dict : a dictionary whose keys are names of analyzers and values and sensitivity results for that analyzer. Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> df = busan_beach() >>> input_features=df.columns.tolist()[0:-1] >>> output_features = df.columns.tolist()[-1:] ... # build the model >>> model=Model(model="RandomForestRegressor", >>> input_features=input_features, >>> output_features=output_features) ... # train the model >>> model.fit(data=df) ... # perform sensitivity analysis >>> si = model.sensitivity_analysis(data=df[input_features].values, >>> sampler="morris", analyzer=["morris", "sobol"], >>> sampler_kwds={'N': 100}) .. _sampler: https://salib.readthedocs.io/en/latest/api/SALib.sample.html .. _analyzer: https://salib.readthedocs.io/en/latest/api/SALib.analyze.html """ try: import SALib except (ImportError, ModuleNotFoundError): warnings.warn(""" You must have SALib library installed in order to perform sensitivity analysis. Please install it using 'pip install SALib' and make sure that it is importable """) return {} from ai4water.postprocessing._sa import sensitivity_analysis, sensitivity_plots from ai4water.postprocessing._sa import _make_predict_func if data is not None: if not isinstance(data, np.ndarray): assert isinstance(data, pd.DataFrame) data = data.values x = data # calculate bounds assert isinstance(x, np.ndarray) bounds = [] for feat in range(x.shape[1]): bound = [np.min(x[:, feat]), np.max(x[:, feat])] bounds.append(bound) else: assert bounds is not None assert isinstance(bounds, list) assert all([isinstance(bound, list) for bound in bounds]) analyzer_kwds = analyzer_kwds or {} if self.lookback >1: if self.category == "DL": func = _make_predict_func(self, verbose=0) else: func = _make_predict_func(self) else: func = self.predict if names is None: names = self.input_features results = sensitivity_analysis( sampler, analyzer, func, bounds=bounds, sampler_kwds = sampler_kwds, analyzer_kwds = analyzer_kwds, names=names ) if save_plots: for _analyzer, result in results.items(): res_df = result.to_df() if isinstance(res_df, list): for idx, res in enumerate(res_df): fname = os.path.join(self.path, f"{_analyzer}_{idx}_results.csv") res.to_csv(fname) else: res_df.to_csv(os.path.join(self.path, f"{_analyzer}_results.csv")) sensitivity_plots(_analyzer, result, self.path) return results def shap_values( self, data, layer=None )->np.ndarray: """ returns shap values Parameters ---------- data : raw unprepared data from which training and test data are extracted. layer : Returns ------- Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=data) >>> model.shap_values(data=data) """ from .postprocessing.explain import explain_model_with_shap explainer = explain_model_with_shap( self, total_data=data, layer=layer, ) return explainer.shap_values def explain_example( self, data, example_num:int, method="shap" ): """explains a single exmaple either using shap or lime Parameters ---------- data : the data to use example_num : the example/sample number/index to explain method : either ``shap`` or ``lime`` Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=data) >>> model.explain_example(data=data, example_num=2) """ assert method in ("shap", "lime") if method == "shap": from .postprocessing.explain import explain_model_with_shap explainer = explain_model_with_shap( self, total_data=data, examples_to_explain=example_num) else: from .postprocessing.explain import explain_model_with_lime explainer = explain_model_with_lime( self, total_data=data, examples_to_explain=example_num) return explainer def partial_dependence_plot( self, x=None, data=None, data_type="all", feature_name=None, num_points:int=100, show:bool = True, ): """Shows partial depedence plot for a feature. Parameters ---------- x : the input data to use. If not given, then ``data`` must be given. data : raw unprepared data from which x,y paris are to be made. If given, ``x`` must not be given. data_type : str the kind of the data to be used. It is only valid when ``data`` is given. feature_name : str/list name/names of features. If only one feature is given, 1 dimensional partial dependence plot is plotted. You can also provide a list of two feature names, in which case 2d interaction plot will be plotted. num_points : int number of points. It is used to define grid. show : bool whether to show the plot or not! Returns ------- an instance of :py:class:`ai4water.postprocessing.PartialDependencePlot` Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=data) >>> model.partial_dependence_plot(x=data.iloc[:, 0:-1], feature_name="tide_cm") ... >>> model.partial_dependence_plot(data=data, feature_name="tide_cm") """ if x is None: assert data is not None, f"either x or data must be given" x, _ = getattr(self, f"{data_type}_data")(data=data) from .postprocessing.explain import PartialDependencePlot pdp = PartialDependencePlot( self.predict, data=x, feature_names=self.input_features, num_points=num_points, show=show ) if isinstance(feature_name, str): pdp.plot_1d(feature=feature_name) else: assert isinstance(feature_name, list) assert len(feature_name) == 2 pdp.plot_interaction(features=feature_name) return pdp def prediction_analysis( self, features:Union[list, str], x:Union[np.ndarray, pd.DataFrame]=None, y:np.ndarray=None, data = None, data_type:str = "all", feature_names:Union[list, str]=None, num_grid_points:int = None, grid_types = "percentile", percentile_ranges = None, grid_ranges = None, custom_grid:list = None, show_percentile: bool = False, show_outliers: bool = False, end_point:bool = True, which_classes=None, ncols=2, figsize: tuple = None, annotate:bool = True, annotate_kws:dict = None, cmap="YlGn", border=False, show:bool=True, save_metadata:bool=True )->plt.Axes: """shows prediction distribution with respect to two input features. Parameters ---------- x : input data to the model. y : true data corresponding to ``x``. data : raw unprepared data from which x,y pairs for training,validation and test are generated. It must only be given if ``x`` is not given. data_type : str, optional (default="test") The kind of data to be used. It is only valid if ``data`` argument is used. It should be one of ``training``, ``validation``, ``test`` or ``all``. features: str/list name or names of features to investigate feature_names: list feature names num_grid_points: list, optional, default=None number of grid points for each feature grid_types: list, optional, default=None type of grid points for each feature percentile_ranges: list of tuple, optional, default=None percentile range to investigate for each feature grid_ranges: list of tuple, optional, default=None value range to investigate for each feature custom_grid: list of (Series, 1d-array, list), optional, default=None customized list of grid points for each feature show_percentile: bool, optional, default=False whether to display the percentile buckets for both feature show_outliers: bool, optional, default=False whether to display the out of range buckets for both features end_point: bool, optional If True, stop is the last grid point, default=True Otherwise, it is not included which_classes: list, optional, default=None which classes to plot, only use when it is a multi-class problem figsize: tuple or None, optional, default=None size of the figure, (width, height) ncols: integer, optional, default=2 number subplot columns, used when it is multi-class problem annotate: bool, default=False whether to annotate the points annotate_kws : dict, optional a dictionary of keyword arguments with following keys annotate_counts : bool, default=False whether to annotate counts or not. annotate_colors : tuple pair of colors annotate_color_threshold : float threshold value for annotation annotate_fmt : str format string for annotation. annotate_fontsize : int, optinoal (default=7) fontsize for annotation cmap : border : show : bool, optional (default=True) whether to show the plot or not save_metadata : bool, optional, default=True whether to save the information as csv or not Returns ------- tuple a pandas dataframe and matplotlib Axes Examples -------- >>> from ai4water.datasets import busan_beach >>> from ai4water import Model ... >>> model = Model(model="XGBRegressor") >>> model.fit(data=busan_beach()) >>> model.prediction_analysis(features="tide_cm", ... data=busan_beach(), show_percentile=True) ... # for multiple features >>> model.prediction_analysis( ... ['tide_cm', 'sal_psu'], ... data=busan_beach(), ... annotate_kws={"annotate_counts":True, ... "annotate_colors":("black", "black"), ... "annotate_fontsize":10}, ... custom_grid=[[-41.4, -20.0, 0.0, 20.0, 42.0], ... [33.45, 33.7, 33.9, 34.05, 34.4]], ... ) """ if x is None: assert data is not None x, _ = getattr(self, f"{data_type}_data")(data=data) y = self.predict(x) if isinstance(x, np.ndarray): x = pd.DataFrame(x, columns=self.input_features) if feature_names is None: if isinstance(features, str): feature_names = features else: assert isinstance(features, list) feature_names = "Feature" if not isinstance(features, list): features = [features] _annotate_kws = { 'annotate_counts': True, 'annotate_colors':("black", "white"), 'annotate_color_threshold': None, 'annotate_fmt': None, 'annotate_fontsize': 7 } if annotate_kws is None: annotate_kws = dict() _annotate_kws.update(annotate_kws) if len(features) == 1: ax, summary_df = prediction_distribution_plot( self.mode, inputs=x, prediction=y, feature=features[0], feature_name=feature_names[0], n_classes=self.num_classes_, num_grid_points=num_grid_points or 10, grid_type=grid_types, percentile_range=percentile_ranges, grid_range=grid_ranges, cust_grid_points=custom_grid, show_percentile=show_percentile, show_outliers=show_outliers, end_point=end_point, figsize=figsize, ncols=ncols, show=False, ) else: ax, summary_df = feature_interaction( self.predict, x, features=features, feature_names=feature_names, num_grid_points=num_grid_points, grid_types=grid_types, percentile_ranges=percentile_ranges, grid_ranges=grid_ranges, cust_grid_points=custom_grid, show_percentile=show_percentile, show_outliers=show_outliers, end_point=end_point, which_classes=which_classes, ncols=ncols, figsize=figsize, annotate=annotate, cmap=cmap, border=border, **_annotate_kws, ) fname = f"prediction_analysis_{features[0] if len(features)==1 else features[0]+features[1]}" if save_metadata: summary_df.to_csv(os.path.join(self.path, f"{fname}.csv")) if show: plt.show() return ax def _transform(self, data, name_in_config): """transforms the data using the transformer which has already been fit""" if name_in_config not in self.config: raise NotImplementedError(f"""You have not trained the model using .fit. Making predictions from model or evaluating model without training is not allowed when applying transformations. Because the transformation parameters are calculated using training data. Either train the model first by using.fit() method or remove x_transformation/y_transformation arguments.""") transformer = Transformations.from_config(self.config[name_in_config]) return transformer.transform(data=data) def _transform_x(self, x): """transforms the x data using the transformer which has already been fit""" if self.config['x_transformation']: return self._transform(x, 'x_transformer_') return x def _transform_y(self, y): """transforms the y according the transformer which has already been fit.""" if self.config['y_transformation']: return self._transform(y, 'y_transformer_') return y def _fit_transform_x(self, x): """fits and transforms x and puts the transformer in config witht he key 'x_transformer_'""" return self._fit_transform(x, 'x_transformer_', self.config['x_transformation'], self.input_features) def _fit_transform_y(self, y): """fits and transforms y and puts the transformer in config witht he key 'y_transformer_'""" return self._fit_transform(y, 'y_transformer_', self.config['y_transformation'], self.output_features) def _fit_transform(self, data, key, transformation, feature_names): """fits and transforms the `data` using `transformation` and puts it in config with config `name`.""" if data is not None and transformation: transformer = Transformations(feature_names, transformation) if isinstance(data, pd.DataFrame): data = data.values data = transformer.fit_transform(data) self.config[key] = transformer.config() return data def _inverse_transform_y(self, true_outputs, predicted): """inverse transformation of y/labels for both true and predicted""" if self.config['y_transformation']: y_transformer = Transformations.from_config(self.config['y_transformer_']) if self.config['y_transformation']: # only if we apply transformation on y # both x,and true_y were given true_outputs = self.__inverse_transform_y(true_outputs, y_transformer) # because observed y may have -ves or zeros which would have been # removed during fit and are put back into it during inverse transform, so # in such case predicted y should not be treated by zero indices or negative indices # of true y. In other words, parameters of true y should not have impact on inverse # transformation of predicted y. predicted = self.__inverse_transform_y(predicted, y_transformer, postprocess=False) return true_outputs, predicted def __inverse_transform_y(self, y, transformer, method="inverse_transform", postprocess=True )->np.ndarray: """inverse transforms y where y is supposed to be true or predicted output from model.""" # todo, if train_y had zeros or negatives then this will be wrong if isinstance(y, np.ndarray): # it is ndarray, either num_outs>1 or quantiles>1 or forecast_len>1 some combination of them if y.size > len(y): if y.ndim == 2: for out in range(y.shape[1]): y[:, out] = getattr(transformer, method)(y[:, out], postprocess=postprocess).reshape(-1, ) else: # (exs, outs, quantiles) or (exs, outs, forecast_len) or (exs, forecast_len, quantiles) for out in range(y.shape[1]): for q in range(y.shape[2]): y[:, out, q] = getattr(transformer, method)(y[:, out, q], postprocess=postprocess).reshape(-1, ) else: # 1d array y = getattr(transformer, method)(y, postprocess=postprocess) # y can be None for example when we call model.predict(x=x), # in this case we don't know what is y elif y is not None: raise ValueError(f"can't inverse transform y of type {type(y)}") return y def training_data(self, x=None, y=None, data='training', key='train')->tuple: """ returns the x,y pairs for training. x,y are not used but only given to be used if user overwrites this method for further processing of x, y as shown below. >>> from ai4water import Model >>> class MyModel(Model): >>> def training_data(self, *args, **kwargs) ->tuple: >>> train_x, train_y = super().training_data(*args, **kwargs) ... # further process x, y >>> return train_x, train_y """ return self.__fetch('training', data,key) def validation_data(self, x=None, y=None, data='validation', key="val")->tuple: """ returns the x,y pairs for validation. x,y are not used but only given to be used if user overwrites this method for further processing of x, y as shown below. >>> from ai4water import Model >>> class MyModel(Model): >>> def validation_data(self, *args, **kwargs) ->tuple: >>> train_x, train_y = super().training_data(*args, **kwargs) ... # further process x, y >>> return train_x, train_y """ return self.__fetch('validation', data, key) def test_data(self, x=None, y=None, data='test', key="test")->tuple: """ returns the x,y pairs for test. x,y are not used but only given to be used if user overwrites this method for further processing of x, y as shown below. >>> from ai4water import Model >>> class MyModel(Model): >>> def ttest_data(self, *args, **kwargs) ->tuple: >>> train_x, train_y = super().training_data(*args, **kwargs) ... # further process x, y >>> return train_x, train_y """ return self.__fetch('test', data, key) def all_data(self, x=None, y=None, data=None)->tuple: """it returns all data i.e. training+validation+test after extracting them ``data``. Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model="XGBRegressor") >>> train_x, train_y = model.training_data(data=data) >>> print(train_x.shape, train_y.shape) >>> val_x, val_y = model.validation_data(data=data) >>> print(val_x.shape, val_y.shape) ... # all_data will contain both training and validation data >>> all_x, all_y = model.all_data(data=data) >>> print(all_x.shape, all_y.shape """ train_x, train_y = self.training_data(x=x, y=y, data=data) val_x, val_y = self.validation_data(x=x, y=y, data=data) test_x, test_y = self.test_data(x=x, y=y, data=data) x = [] y = [] if isinstance(train_x, list): for val in range(len(train_x)): # if val data is not available if hasattr(val_x[val], '__len__') and len(val_x[val])==0: x_val = np.concatenate([train_x[val], test_x[val]]) # if test data is not available elif hasattr(test_x[val], '__len__') and len(test_x[val])==0: x_val = np.concatenate([train_x[val], val_x[val]]) # supposing all three data are available else: x_val = np.concatenate([train_x[val], val_x[val], test_x[val]]) x.append(x_val) else: for _x in [train_x, val_x, test_x]: if _x is not None and (hasattr(_x, '__len__') and len(_x)>0): x.append(_x) x = np.concatenate(x) for _y in [train_y, val_y, test_y]: if _y is not None and (hasattr(_y, '__len__') and len(_y)>0): y.append(_y) y = np.concatenate(y) return x, y def __fetch(self, source, data=None, key=None): """if data is string, then it must either be `trianing`, `validation` or `test` or name of a valid dataset. Otherwise data is supposed to be raw data which will be given to DataSet """ if isinstance(data, str): if data in ['training', 'test', 'validation']: if hasattr(self, 'dh_'): data = getattr(self.dh_, f'{data}_data')(key=key) else: raise DataNotFound(source) else: # e.g. 'CAMELS_AUS' dh = DataSet(data=data, **self.data_config) setattr(self, 'dh_', dh) data = getattr(dh, f'{source}_data')(key=key) else: dh = DataSet(data=data, **self.data_config) setattr(self, 'dh_', dh) data = getattr(dh, f'{source}_data')(key=key) x, y = maybe_three_outputs(data, self.teacher_forcing) return x, y def _fetch_data(self, source:str, x=None, y=None, data=None): """The main idea is that the user should be able to fully customize training/test data by overwriting training_data and test_data methods. However, if x is given or data is DataSet then the training_data/test_data methods of this(Model) class will not be called.""" user_defined_x = True prefix = f'{source}_{dateandtime_now()}' key = None if x is None: user_defined_x = False key=f"5_{source}" if isinstance(data, _DataSet): # the user has provided DataSet from which training/test data # needs to be extracted setattr(self, 'dh_', data) data = getattr(data, f'{source}_data')(key=key) else: data = getattr(self, f'{source}_data')(x=x, y=y, data=data, key=key) # data may be tuple/list of three arrays x, y = maybe_three_outputs(data, self.teacher_forcing) return x, y, prefix, key, user_defined_x def _maybe_reduce_nquantiles(self, num_exs:int)->None: self.config['x_transformation'] = _reduce_nquantiles_in_config(self.config['x_transformation'], num_exs) self.config['y_transformation'] = _reduce_nquantiles_in_config(self.config['y_transformation'], num_exs) return def _reduce_nquantiles_in_config(config:Union[str, list, dict], num_exs:int): if isinstance(config, str) and config in ['quantile', 'quantile_normal']: config = {'method': 'quantile', 'n_quantiles': num_exs} elif isinstance(config, dict): if 'method' not in config: # for multiinput cases when x_transformation is defined as # {'inp_1d': 'minmax', 'inp_2d': None} pass # todo elif config['method'] in ['quantile', 'quantile_normal']: config['n_quantiles'] = min(config.get('n_quantiles', num_exs), num_exs) elif isinstance(config, list): for idx, transformer in enumerate(config): if isinstance(transformer, str) and transformer in ['quantile', 'quantile_normal']: config[idx] = {'method': 'quantile', 'n_quantiles': num_exs} elif isinstance(transformer, dict) and transformer['method'] in ['quantile', 'quantile_normal']: transformer['n_quantiles'] = min(transformer.get('n_quantiles', num_exs), num_exs) config[idx] = transformer return config def fill_val(metric_name, default="min", default_min=99999999): if METRIC_TYPES.get(metric_name, default) == "min": return default_min return 0.0 def _find_num_examples(inputs)->Union[int, None]: """find number of examples in inputs""" if isinstance(inputs, (pd.DataFrame, np.ndarray)): return len(inputs) if isinstance(inputs, list): return len(inputs[0]) elif hasattr(inputs, '__len__'): return len(inputs) return None
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/_main.py
_main.py
import gc import math import importlib from typing import Union from SeqMetrics import RegressionMetrics, ClassificationMetrics from .utils.utils import clear_weights, TrainTestSplit from .utils.utils import dateandtime_now, jsonize, MATRIC_TYPES, update_model_config DEFAULTS = { 'r2': 1.0, 'nse': 1.0, 'r2_score': 1.0 } class ModelOptimizerMixIn(object): def __init__( self, model, algorithm, num_iterations, process_results, prefix="hpo", ): self.model = model self.algorithm = algorithm self.num_iterations = num_iterations self.process_results = process_results self.prefix = prefix def fit(self, data=None, ): if isinstance(data, tuple) or isinstance(data, list): assert len(data) == 2 xy = True else: xy = False PREFIX = f"{self.prefix}_{dateandtime_now()}" self.iter = 0 print("{:<15} {:<20}".format("Iteration No.", "Validation Score")) hpo = importlib.import_module("ai4water.hyperopt") val_metric = self.model.val_metric metric_type = MATRIC_TYPES.get(val_metric, 'min') cross_validator = self.model.config['cross_validator'] cross_validate = True if cross_validator is None: cross_validate = False if self.process_results: verbosity = 0 else: verbosity = -1 config = jsonize(self.model.config) SEED = config['seed'] if self.model.mode == "classification": Metrics = ClassificationMetrics else: Metrics = RegressionMetrics def objective_fn( **suggestions, ): # we must not set the seed here to None # this will cause random splitting unpreproducible (if random splitting is applied) config['verbosity'] = verbosity config['prefix'] = PREFIX suggestions = jsonize(suggestions) getattr(self, f'update')(config, suggestions) _model = self.model.from_config( config.copy(), make_new_path=True, ) if cross_validate: if xy: val_score = _model.cross_val_score(*data)[0] else: val_score = _model.cross_val_score(data=data)[0] else: if xy: # todo, it is better to split data outside objective_fn splitter = TrainTestSplit(seed=SEED, test_fraction=config['val_fraction']) if config['split_random']: # for reproducibility, we should use SEED so that at everay optimization # iteration, we split the data in the same way train_x, test_x, train_y, test_y = splitter.split_by_random(*data) else: train_x, test_x, train_y, test_y = splitter.split_by_slicing(*data) _model.fit(x=train_x, y=train_y) p = _model.predict(x=test_x) else: _model.fit(data=data) test_y, p = _model.predict_on_validation_data( data=data, return_true=True, process_results=False) metrics = Metrics(test_y, p) val_score = getattr(metrics, val_metric)() orig_val_score = val_score if metric_type != "min": val_score = 1.0 - val_score if not math.isfinite(val_score): val_score = DEFAULTS.get(val_metric, 1.0) print("{:<15} {:<20.5f} {:<20.5f}".format(self.iter, val_score, orig_val_score)) self.iter += 1 del _model gc.collect() return val_score optimizer = hpo.HyperOpt( self.algorithm, objective_fn=objective_fn, param_space=self.space, num_iterations=self.num_iterations, process_results=self.process_results, opt_path=f"results\\{PREFIX}" ) optimizer.fit() clear_weights(optimizer.opt_path, optimizer.results) return optimizer class OptimizeHyperparameters(ModelOptimizerMixIn): def __init__( self, model, space, algorithm, num_iterations, process_results=False, **kwargs ): super().__init__( model=model, algorithm=algorithm, num_iterations=num_iterations, process_results=process_results, prefix="hpo" ) self.space = space config = jsonize(model.config) model_config = config['model'] # algo type is name of algorithm, e.g. xgboost, randomforest or layers self.algo_type = list(model_config.keys())[0] self.original_model = model._original_model_config def update(self, config, suggestions): # first update the model config parameters new_model_config = update_model_config(self.original_model['model'].copy(), suggestions) config['model'] = {self.algo_type: new_model_config} # now update hyperparameters which are not part of model config new_other_config = update_model_config(self.original_model['other'].copy(), suggestions) config.update(jsonize(new_other_config)) return config class OptimizeTransformations(ModelOptimizerMixIn): def __init__( self, model, categories, num_iterations=12, algorithm="bayes", include=None, exclude=None, append=None, process_results=False, ): super().__init__( model=model, num_iterations=num_iterations, algorithm=algorithm, process_results=process_results, prefix="trans_hpo", ) self.space = make_space(self.model.input_features, include=include, exclude=exclude, append=append, categories=categories) self.input_features = model.input_features assert isinstance(self.input_features, list) self.output_features = model.output_features if isinstance(self.output_features, str): self.output_features = [self.output_features] assert len(self.output_features) == 1 def update(self, config, suggestions): """updates `x_transformation` and `y_transformation` keys in config based upon `suggestions`.""" transformations = [] y_transformations = [] for feature, method in suggestions.items(): if method == "none": pass else: t = {"method": method, "features": [feature]} if method.startswith("log"): t["treat_negatives"] = True t["replace_zeros"] = True elif method in ["box-cox", "yeo-johnson", "power"]: t["treat_negatives"] = True t["replace_zeros"] = True elif method == "sqrt": t['treat_negatives'] = True t["replace_zeros"] = True if feature in self.input_features: transformations.append(t) else: y_transformations.append(t) # following parameters must be overwritten even if they were provided by the user. config['x_transformation'] = transformations config['y_transformation'] = y_transformations or None return def make_space( input_features: list, categories: list, include: Union[str, list, dict] = None, exclude: Union[str, list] = None, append: dict = None, ) -> list: """ Arguments: input_features : categories : include: the names of input features to include exclude: the name/names of input features to exclude append: the input features with custom candidate transformations """ hpo = importlib.import_module("ai4water.hyperopt") Categorical = hpo.Categorical # although we need space as list at the end, it is better to create a dictionary of it # because manipulating dictionary is easier space = { name: Categorical(categories, name=name) for name in input_features } if include is not None: if isinstance(include, str): include = {include: categories} elif isinstance(include, list): _include = {} for feat in include: assert feat in input_features, f"{feat} is not in input_features but is used in include" if isinstance(feat, str): _include[feat] = categories else: assert isinstance(feat, dict) and len(feat) == 1 _include[list(feat.keys())[0]] = list(feat.values())[0] include = _include else: assert isinstance(include, dict) and len(include) == 1 # since include is given, we will ignore default case when all features are considered space = {} for k, v in include.items(): if not isinstance(v, Categorical): assert isinstance(v, list), f"space for {k} must be list but it is {v.__class__.__name__}" v = Categorical(v, name=k) space[k] = v if exclude is not None: if isinstance(exclude, str): exclude = [exclude] assert isinstance(exclude, list) for feat in exclude: space.pop(feat) if append is not None: assert isinstance(append, dict) for k, v in append.items(): if not isinstance(v, Categorical): assert isinstance(v, list), f"space for {k} must be list but it is {v.__class__.__name__}" v = Categorical(v, name=k) space[k] = v return list(space.values())
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/_optimize.py
_optimize.py
__all__ = ["DualAttentionModel", "InputAttentionModel"] from easy_mpl import imshow from .backend import tf, plt, np, os from .backend import keras from .functional import Model as FModel from ai4water.utils.utils import print_something from .utils.utils import DataNotFound from ai4water.nn_tools import check_act_fn from ai4water.preprocessing import DataSet from ai4water.models._tensorflow.layer_definition import MyTranspose, MyDot from ai4water.utils.utils import plot_activations_along_inputs layers = keras.layers KModel = keras.models.Model class DALSTM(keras.layers.Layer): def __init__( self, enc_config: dict = None, dec_config: dict = None, drop_remainder: bool = True, teacher_forcing: bool = False, **kwargs ): self.enc_config = enc_config self.dec_config = dec_config self.drop_remainder = drop_remainder self.teacher_forcing = teacher_forcing super().__init__(**kwargs) raise NotImplementedError class DualAttentionModel(FModel): """ This is Dual-Attention LSTM model of Qin_ et al., 2017. The code is adopted from this_ repository Example: >>> from ai4water import DualAttentionModel >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> model = DualAttentionModel(lookback=5, ... input_features=data.columns.tolist()[0:-1], ... output_features=data.columns.tolist()[-1:]) ... #If you do not wish to feed previous output as input to the model, you ... #can set teacher forcing to False. The drop_remainder argument must be ... #set to True in such a case. >>> model = DualAttentionModel(teacher_forcing=False, batch_size=4, ... drop_remainder=True, ts_args={'lookback':5}) >>> model.fit(data=data) .. _Qin: https://arxiv.org/abs/1704.02971 .. _this: https://github.com/chensvm/A-Dual-Stage-Attention-Based-Recurrent-Neural-Network-for-Time-Series-Prediction """ _enc_config = {'n_h': 20, # length of hidden state m 'n_s': 20, # length of hidden state m 'm': 20, # length of hidden state m 'enc_lstm1_act': None, 'enc_lstm2_act': None, } # arguments for decoder/outputAttention in Dual stage attention _dec_config = { 'p': 30, 'n_hde0': 30, 'n_sde0': 30 } def __init__( self, enc_config: dict = None, dec_config: dict = None, teacher_forcing: bool = True, **kwargs ): """ Arguments: enc_config: dictionary defining configuration of encoder/input attention. It must have following three keys - n_h: 20 - n_s: 20 - m: 20 - enc_lstm1_act: None - enc_lstm2_act: None dec_config: dictionary defining configuration of decoder/output attention. It must have following three keys - p: 30 - n_hde0: None - n_sde0: None teacher_forcing: Whether to use the prvious target/observation as input or not. If yes, then the model will require 2 inputs. The first input will be of shape (num_examples, lookback, num_inputs) while the second input will be of shape (num_examples, lookback-1, 1). This second input is supposed to be the target variable observed at previous time step. kwargs : The keyword arguments for the [ai4water's Model][ai4water.Model] class """ self.method = 'dual_attention' if enc_config is None: enc_config = DualAttentionModel._enc_config else: assert isinstance(enc_config, dict) if dec_config is None: dec_config = DualAttentionModel._dec_config else: assert isinstance(dec_config, dict) self.enc_config = enc_config self.dec_config = dec_config super(DualAttentionModel, self).__init__(teacher_forcing=teacher_forcing, **kwargs) setattr(self, 'category', "DL") def build(self, input_shape=None): self.config['dec_config'] = self.dec_config self.config['enc_config'] = self.enc_config setattr(self, 'batch_size', self.config['batch_size']) setattr(self, 'drop_remainder', self.config['drop_remainder']) self.de_LSTM_cell = layers.LSTM(self.dec_config['p'], return_state=True, name='decoder_LSTM') self.de_densor_We = layers.Dense(self.enc_config['m']) if self.config['drop_remainder']: h_de0 = tf.zeros((self.batch_size, self.dec_config['n_hde0']), name='dec_1st_hidden_state') s_de0 = tf.zeros((self.batch_size, self.dec_config['n_sde0']), name='dec_1st_cell_state') else: h_de0 = layers.Input(shape=(self.dec_config['n_hde0'],), name='dec_1st_hidden_state') s_de0 = layers.Input(shape=(self.dec_config['n_sde0'],), name='dec_1st_cell_state') input_y = None if self.teacher_forcing and self.drop_remainder: input_y = layers.Input(batch_shape=(self.batch_size, self.lookback - 1, self.num_outs), name='input_y') elif not self.drop_remainder: input_y = layers.Input(shape=(self.lookback - 1, self.num_outs), name='input_y') if self.drop_remainder: enc_input = keras.layers.Input(batch_shape=(self.batch_size, self.lookback, self.num_ins), name='enc_input') else: enc_input = keras.layers.Input(shape=(self.lookback, self.num_ins), name='enc_input') enc_lstm_out, s0, h0 = self._encoder(enc_input, self.config['enc_config']) # originally the last dimentions was -1 but I put it equal to 'm' # eq 11 in paper enc_out = layers.Reshape((self.lookback, self.enc_config['m']), name='enc_out_eq_11')(enc_lstm_out) h, context = self.decoder_attention(enc_out, input_y, s_de0, h_de0) h = layers.Reshape((self.num_outs, self.dec_config['p']))(h) # concatenation of decoder hidden state and the context vector. last_concat = layers.Concatenate(axis=2, name='last_concat')([h, context]) # (None, 1, 50) # original it was not defined but in tf-keras we need to define it sec_dim = self.enc_config['m'] + self.dec_config['p'] last_reshape = layers.Reshape((sec_dim,), name='last_reshape')(last_concat) # (None, 50) result = layers.Dense(self.dec_config['p'], name='eq_22')(last_reshape) # (None, 30) # equation 22 output = layers.Dense(self.num_outs)(result) if self.forecast_len>1: output = layers.Reshape(target_shape=(self.num_outs, self.forecast_len))(output) initial_input = [enc_input] if input_y is not None: initial_input.append(input_y) if self.config['drop_remainder']: self._model = self.compile(model_inputs=initial_input, outputs=output) else: self._model = self.compile(model_inputs=initial_input + [s0, h0, s_de0, h_de0], outputs=output) return def _encoder(self, enc_inputs, config, lstm2_seq=True, suf: str = '1', s0=None, h0=None, num_ins=None): if num_ins is None: num_ins = self.num_ins self.en_densor_We = layers.Dense(self.lookback, name='enc_We_'+suf) _config, act_str = check_act_fn({'activation': config['enc_lstm1_act']}) self.en_LSTM_cell = layers.LSTM(config['n_h'], return_state=True, activation=_config['activation'], name='encoder_LSTM_'+suf) config['enc_lstm1_act'] = act_str # initialize the first cell state if s0 is None: if self.drop_remainder: s0 = tf.zeros((self.batch_size, config['n_s']), name=f'enc_first_cell_state_{suf}') else: s0 = layers.Input(shape=(config['n_s'],), name='enc_first_cell_state_' + suf) # initialize the first hidden state if h0 is None: if self.drop_remainder: h0 = tf.zeros((self.batch_size, config['n_h']), name=f'enc_first_hidden_state_{suf}') else: h0 = layers.Input(shape=(config['n_h'],), name='enc_first_hidden_state_' + suf) enc_attn_out = self.encoder_attention(enc_inputs, s0, h0, num_ins, suf) enc_lstm_in = layers.Reshape((self.lookback, num_ins), name='enc_lstm_input_'+suf)(enc_attn_out) _config, act_str = check_act_fn({'activation': config['enc_lstm2_act']}) enc_lstm_out = layers.LSTM(config['m'], return_sequences=lstm2_seq, activation=_config['activation'], name='LSTM_after_encoder_'+suf)(enc_lstm_in) # h_en_all config['enc_lstm2_act'] = act_str return enc_lstm_out, h0, s0 def one_encoder_attention_step(self, h_prev, s_prev, x, t, suf: str = '1'): """ :param h_prev: previous hidden state :param s_prev: previous cell state :param x: (T,n),n is length of input series at time t,T is length of time series :param t: time-step :param suf: str, Suffix to be attached to names :return: x_t's attention weights,total n numbers,sum these are 1 """ _concat = layers.Concatenate()([h_prev, s_prev]) # (none,1,2m) result1 = self.en_densor_We(_concat) # (none,1,T) result1 = layers.RepeatVector(x.shape[2],)(result1) # (none,n,T) x_temp = MyTranspose(axis=(0, 2, 1))(x) # X_temp(None,n,T) # (none,n,T) Ue(T,T), Ue * Xk in eq 8 of paper result2 = MyDot(self.lookback, name='eq_8_mul_'+str(t)+'_'+suf)(x_temp) result3 = layers.Add()([result1, result2]) # (none,n,T) result4 = layers.Activation(activation='tanh')(result3) # (none,n,T) result5 = MyDot(1)(result4) result5 = MyTranspose(axis=(0, 2, 1), name='eq_8_' + str(t)+'_'+suf)(result5) # etk/ equation 8 alphas = layers.Activation(activation='softmax', name='eq_9_'+str(t)+'_'+suf)(result5) # equation 9 return alphas def encoder_attention(self, _input, _s0, _h0, num_ins, suf: str = '1'): s = _s0 _h = _h0 # initialize empty list of outputs attention_weight_t = None for t in range(self.lookback): _context = self.one_encoder_attention_step(_h, s, _input, t, suf=suf) # (none,1,n) x = layers.Lambda(lambda x: _input[:, t, :])(_input) x = layers.Reshape((1, num_ins))(x) _h, _, s = self.en_LSTM_cell(x, initial_state=[_h, s]) if t != 0: # attention_weight_t = layers.Merge(mode='concat', concat_axis=1, # name='attn_weight_'+str(t))([attention_weight_t, # _context]) attention_weight_t = layers.Concatenate( axis=1, name='attn_weight_'+str(t)+'_'+suf)([attention_weight_t, _context]) else: attention_weight_t = _context # get the driving input series enc_output = layers.Multiply(name='enc_output_'+suf)([attention_weight_t, _input]) # equation 10 in paper return enc_output def one_decoder_attention_step(self, _h_de_prev, _s_de_prev, _h_en_all, t): """ :param _h_de_prev: previous hidden state :param _s_de_prev: previous cell state :param _h_en_all: (None,T,m),n is length of input series at time t,T is length of time series :param t: int, timestep :return: x_t's attention weights,total n numbers,sum these are 1 """ # concatenation of the previous hidden state and cell state of the LSTM unit in eq 12 _concat = layers.Concatenate(name='eq_12_'+str(t))([_h_de_prev, _s_de_prev]) # (None,1,2p) result1 = self.de_densor_We(_concat) # (None,1,m) result1 = layers.RepeatVector(self.lookback)(result1) # (None,T,m) result2 = MyDot(self.enc_config['m'])(_h_en_all) result3 = layers.Add()([result1, result2]) # (None,T,m) result4 = layers.Activation(activation='tanh')(result3) # (None,T,m) result5 = MyDot(1)(result4) beta = layers.Activation(activation='softmax', name='eq_13_'+str(t))(result5) # equation 13 _context = layers.Dot(axes=1, name='eq_14_'+str(t))([beta, _h_en_all]) # (1,m) # equation 14 in paper return _context def decoder_attention(self, _h_en_all, _y, _s0, _h0): s = _s0 _h = _h0 for t in range(self.lookback-1): _context = self.one_decoder_attention_step(_h, s, _h_en_all, t) # (batch_size, 1, 20) # if we want to use the true value of target of previous timestep as input then we will use _y if self.teacher_forcing: y_prev = layers.Lambda(lambda y_prev: _y[:, t, :])(_y) # (batch_size, lookback, 1) -> (batch_size, 1) y_prev = layers.Reshape((1, self.num_outs))(y_prev) # -> (batch_size, 1, 1) # concatenation of decoder input and computed context vector # ?? y_prev = layers.Concatenate(axis=2)([y_prev, _context]) # (None,1,21) else: y_prev = _context y_prev = layers.Dense(self.num_outs, name='eq_15_'+str(t))(y_prev) # (None,1,1), Eq 15 in paper _h, _, s = self.de_LSTM_cell(y_prev, initial_state=[_h, s]) # eq 16 ?? _context = self.one_decoder_attention_step(_h, s, _h_en_all, 'final') return _h, _context def fetch_data(self, x, y, source, data=None, **kwargs): if self.teacher_forcing: x, prev_y, labels = getattr(self.dh_, f'{source}_data')(**kwargs) else: x, labels = getattr(self.dh_, f'{source}_data')(**kwargs) prev_y = None n_s_feature_dim = self.enc_config['n_s'] n_h_feature_dim = self.enc_config['n_h'] p_feature_dim = self.dec_config['p'] if kwargs.get('use_datetime_index', False): # during deindexification, first feature will be removed. n_s_feature_dim += 1 n_h_feature_dim += 1 p_feature_dim += 1 idx = np.expand_dims(x[:, 1:, 0], axis=-1) # extract the index from x if self.use_true_prev_y: prev_y = np.concatenate([prev_y, idx], axis=2) # insert index in prev_y other_inputs = [] if not self.drop_remainder: s0 = np.zeros((x.shape[0], n_s_feature_dim)) h0 = np.zeros((x.shape[0], n_h_feature_dim)) h_de0 = s_de0 = np.zeros((x.shape[0], p_feature_dim)) other_inputs = [s0, h0, s_de0, h_de0] if self.teacher_forcing: return [x, prev_y] + other_inputs, labels else: return [x] + other_inputs, labels def training_data(self, x=None, y=None, data='training', key=None): self._maybe_dh_not_set(data=data) return self.fetch_data(x=x, y=y, source='training', data=data, key=key) def validation_data(self, x=None, y=None, data='validation', **kwargs): self._maybe_dh_not_set(data=data) return self.fetch_data(x=x, y=y, source='validation', data=data, **kwargs) def test_data(self, x=None, y=None, data='test', **kwargs): self._maybe_dh_not_set(data=data) return self.fetch_data(x=x, y=y, source='test', data=data, **kwargs) def _maybe_dh_not_set(self, data): """if dh_ has not been set yet, try to create it using data argument if possible""" if isinstance(data, str) and data not in ['training', 'test', 'validation']: self.dh_ = DataSet(data=data, **self.data_config) elif not isinstance(data, str): self.dh_ = DataSet(data=data, **self.data_config) return def interpret( self, data=None, data_type='training', **kwargs): return self.plot_act_along_inputs( data=data, layer_name=f'attn_weight_{self.lookback - 1}_1', data_type=data_type, **kwargs) def get_attention_weights( self, layer_name: str=None, x = None, data = None, data_type = 'training', )->np.ndarray: """ Parameters ---------- layer_name : str, optional the name of attention layer. If not given, the final attention layer will be used. x : optional input data, if given, then ``data`` must not be given data : data_type : str, optional the data to make forward pass to get attention weghts. Possible values are - ``training`` - ``validation`` - ``test`` - ``all`` Returns ------- a numpy array of shape (num_examples, lookback, num_ins) """ if x is not None: # default value assert data_type in ("training", "test", "validation", "all") layer_name = layer_name or f'attn_weight_{self.lookback - 1}_1' assert isinstance(layer_name, str), f""" layer_name must be a string, not of {layer_name.__class__.__name__} type """ from ai4water.postprocessing.visualize import Visualize kwargs = {} if self.config['drop_remainder']: kwargs['batch_size'] = self.config['batch_size'] activation = Visualize(model=self).get_activations( layer_names=layer_name, x=x, data=data, data_type=data_type, **kwargs) activation = activation[layer_name] # (num_examples, lookback, num_ins) return activation def plot_act_along_inputs( self, data, layer_name: str, data_type='training', vmin=None, vmax=None, show=False ): if not os.path.exists(self.act_path): os.makedirs(self.act_path) activation = self.get_attention_weights( layer_name=layer_name, data=data, data_type=data_type, ) act_avg_over_examples = np.mean(activation, axis=0) # (lookback, num_ins) lookback = self.config['ts_args']['lookback'] x, observations = getattr(self, f'{data_type}_data')(data=data) if len(x) == 0 or (isinstance(x, list) and len(x[0]) == 0): raise ValueError(f"no {data_type} data found.") predictions = self.predict(x=x, process_results=False) plt.close('all') fig, axis = plt.subplots() ytick_labels = [f"t-{int(i)}" for i in np.linspace(lookback - 1, 0, lookback)] im = imshow(act_avg_over_examples, ax=axis, aspect="auto", yticklabels=ytick_labels, ax_kws=dict(ylabel='lookback steps'), show=False ) axis.set_xticks(np.arange(self.num_ins)) axis.set_xticklabels(self.input_features, rotation=90) fig.colorbar(im, orientation='horizontal', pad=0.3) plt.savefig( os.path.join(self.act_path, f'acts_avg_over_examples_{data_type}'), dpi=400, bbox_inches='tight') plt.close('all') x = self.inputs_for_attention(x) return plot_activations_along_inputs( data=x, activations=activation, observations=observations, predictions=predictions, in_cols=self.input_features, out_cols=self.output_features, lookback=lookback, name=data_type, path=self.act_path, vmin=vmin, vmax=vmax, show=show ) def plot_act_along_lookback(self, activations, sample=0): assert isinstance(activations, np.ndarray) activation = activations[sample, :, :] act_t = activation.transpose() fig, axis = plt.subplots() for idx, _name in enumerate(self.input_features): axis.plot(act_t[idx, :], label=_name) axis.set_xlabel('Lookback') axis.set_ylabel('Input attention weight') axis.legend(loc="best") plt.show() return def inputs_for_attention(self, inputs): """ returns the inputs for attention mechanism """ if isinstance(inputs, list): inputs = inputs[0] inputs = inputs[:, -1, :] # why 0, why not -1 assert inputs.shape[1] == self.num_ins return inputs def _fit_transform_x(self, x): """transforms x and puts the transformer in config witht he key name""" feature_names = [ self.input_features, [f"{i}" for i in range(self.enc_config['n_s'])], [f"{i}" for i in range(self.enc_config['n_h'])], [f"{i}" for i in range(self.dec_config['n_hde0'])], [f"{i}" for i in range(self.dec_config['n_sde0'])], ] transformation = [self.config['x_transformation'], None, None, None, None] if self.teacher_forcing: feature_names.insert(1, self.output_features) transformation.insert(1, self.config['y_transformation']) return self._fit_transform(x, 'x_transformer_', transformation, feature_names) def _fetch_data(self, source:str, x=None, y=None, data=None): """The main idea is that the user should be able to fully customize training/test data by overwriting training_data and test_data methods. However, if x is given or data is DataSet then the training_data/test_data methods of this(Model) class will not be called.""" x, y, prefix, key, user_defined_x = super()._fetch_data(source, x, y, data) if isinstance(x, np.ndarray): if not self.config['drop_remainder']: n_s_feature_dim = self.config['enc_config']['n_s'] n_h_feature_dim = self.config['enc_config']['n_h'] s0 = np.zeros((x.shape[0], n_s_feature_dim)) h0 = np.zeros((x.shape[0], n_h_feature_dim)) if self.__class__.__name__ == "DualAttentionModel": p_feature_dim = self.dec_config['p'] h_de0 = s_de0 = np.zeros((x.shape[0], p_feature_dim)) x = [x, s0, h0, h_de0, s_de0] else: x = [x, s0, h0] return x, y, prefix, key, user_defined_x class InputAttentionModel(DualAttentionModel): """ InputAttentionModel is same as DualAttentionModel with output attention/decoder part removed. Example: >>> from ai4water import InputAttentionModel >>> from ai4water.datasets import busan_beach >>> model = InputAttentionModel( ... input_features=busan_beach().columns.tolist()[0:-1], ... output_features=busan_beach().columns.tolist()[-1:]) >>> model.fit(data=busan_beach()) """ def __init__(self, *args, teacher_forcing=False, **kwargs): super(InputAttentionModel, self).__init__(*args, teacher_forcing=teacher_forcing, **kwargs) def build(self, input_shape=None): self.config['enc_config'] = self.enc_config setattr(self, 'batch_size', self.config['batch_size']) setattr(self, 'drop_remainder', self.config['drop_remainder']) setattr(self, 'method', 'input_attention') print('building input attention model') enc_input = keras.layers.Input(shape=(self.lookback, self.num_ins), name='enc_input1') lstm_out, h0, s0 = self._encoder(enc_input, self.enc_config, lstm2_seq=False) act_out = layers.LeakyReLU()(lstm_out) predictions = layers.Dense(self.num_outs)(act_out) if self.forecast_len>1: predictions = layers.Reshape(target_shape=(self.num_outs, self.forecast_len))(predictions) if self.verbosity > 2: print('predictions: ', predictions) inputs = [enc_input] if not self.drop_remainder: inputs = inputs + [s0, h0] self._model = self.compile(model_inputs=inputs, outputs=predictions) return def fetch_data(self, source, x=None, y=None, data=None, **kwargs): if x is None: if isinstance(data, str): if data in ("training", "test", "validation"): if hasattr(self, 'dh_'): data = getattr(self.dh_, f'{data}_data')(**kwargs) else: raise DataNotFound(source) else: raise ValueError else: dh = DataSet(data=data, **self.data_config) setattr(self, 'dh_', dh) data = getattr(dh, f'{source}_data')(**kwargs) else: data = x, y if self.teacher_forcing: x, prev_y, labels = data else: x, labels = data n_s_feature_dim = self.config['enc_config']['n_s'] n_h_feature_dim = self.config['enc_config']['n_h'] if kwargs.get('use_datetime_index', False): # during deindexification, first feature will be removed. n_s_feature_dim += 1 n_h_feature_dim += 1 idx = np.expand_dims(x[:, 1:, 0], axis=-1) # extract the index from x if self.teacher_forcing: prev_y = np.concatenate([prev_y, idx], axis=2) # insert index in prev_y if not self.config['drop_remainder']: s0 = np.zeros((x.shape[0], n_s_feature_dim)) h0 = np.zeros((x.shape[0], n_h_feature_dim)) x = [x, s0, h0] if self.verbosity > 0: print_something(x, "input_x") print_something(labels, "target") if self.teacher_forcing: return [x, prev_y], labels else: return x, labels def _fit_transform_x(self, x): """transforms x and puts the transformer in config witht he key name for conformity we need to add feature names of initial states and their transformations will always be None. """ # x can be array when the user does not provide input conditions! if isinstance(x, list): assert len(x) == 3 feature_names = [ self.input_features, [f"{i}" for i in range(self.enc_config['n_s'])], [f"{i}" for i in range(self.enc_config['n_h'])] ] transformation = [self.config['x_transformation'], None, None] return self._fit_transform(x, 'x_transformer_', transformation, feature_names) else: transformation = self.config['x_transformation'] return self._fit_transform(x, 'x_transformer_', transformation, self.input_features)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/tf_models.py
tf_models.py
from typing import Any, List from collections import OrderedDict from ._main import BaseModel from ai4water.tf_attributes import ACTIVATION_LAYERS, tcn, MULTI_INPUT_LAYERS from .nn_tools import get_call_args from .backend import tf, torch, np, os import ai4water.backend as K from .models._torch import LAYERS as TORCH_LAYERS from .tf_attributes import LAYERS if K.BACKEND == 'tensorflow' and tf is not None: MODEL = tf.keras.Model elif K.BACKEND == 'pytorch' and torch is not None: MODEL = torch.nn.Module else: class MODEL(object): pass class Model(MODEL, BaseModel): """ This class Inherits from `BaseModel`. This class is a subclass of keras.Model/torch.nn.Module depending upon the backend used. For scikit-learn/xgboost/catboost type models, this class only inherits from `BaseModel. For deep learning/neural network based models, this class directly exposes all the functionalities of underlying Model. Thus `self` is now a keras Model or torch.nn.Module. If the user wishes to create his/her own NN architecture, he/she should overwrite `initialize_layers` and `call`/`forward` methods. """ def __init__(self, verbosity=1, model=None, path=None, prefix=None, **kwargs): """ Initializes the layers of NN model using `initialize_layers` method. All other input arguments goes to `BaseModel`. """ if K.BACKEND == 'tensorflow' and tf is not None: min_version = tf.__version__.split(".")[1] maj_version = tf.__version__.split(".")[0] if maj_version in ["2"] and min_version in ["3", "4"]: raise NotImplementedError(f""" Not implemented due to a bug in tensorflow as shown here https://github.com/tensorflow/tensorflow/issues/44646 You can use functional API instead by using from ai4water.functional import Model instead of from ai4water import Model Or change the tensorflow version. Current version is {tf.__version__}. """) tf_kwargs = {} for arg in ['inputs', 'outputs']: if arg in kwargs: tf_kwargs[arg] = kwargs[arg] self._go_up = False MODEL.__init__(self, **tf_kwargs) self._go_up = True BaseModel.__init__(self, prefix=prefix, path=path, verbosity=verbosity, model=model, **kwargs) self.config['backend'] = K.BACKEND if torch is not None: from .models._torch import Learner self.torch_learner = Learner( model=self, batch_size=self.config['batch_size'], num_epochs=self.config['epochs'], shuffle=self.config['shuffle'], to_monitor=self.config['monitor'], patience=self.config['patience'], path=self.path, use_cuda=False, wandb_config=self.config['wandb_config'], verbosity=self.verbosity ) if self.category == "DL": self.initialize_layers(self.config['model']['layers']) if K.BACKEND == 'tensorflow': outs = self.call(self._input_lyrs(), run_call=False) setattr(self, 'output_lyrs', outs) self._go_up = False # do not reinitiate BaseModel and other upper classes maj_ver = int(tf.__version__.split('.')[0]) min_ver = int(tf.__version__.split('.')[1][0]) # in tf versions >= 2.5, we don't need to specify inputs and outputs as keyword arguments if maj_ver>1 and min_ver>=5: MODEL.__init__(self, self._input_lyrs(), self.output_lyrs) else: MODEL.__init__(self, inputs=self._input_lyrs(), outputs=self.output_lyrs) self.build(self._get_dummy_input_shape()) # will initialize ML models or build NNs def _input_lyrs(self): """ Input layers of deep learning model. `input_lyrs` can be a ListWrapper so just extract the tensor from the list. if the length of the list ==1 """ input_lyrs = None if hasattr(self, 'input_lyrs'): _input_lyrs = self.input_lyrs if isinstance(_input_lyrs, list) and len(_input_lyrs) == 1: input_lyrs = _input_lyrs[0] elif _input_lyrs.__class__.__name__ == "ListWrapper" and len(_input_lyrs) == 1: input_lyrs = _input_lyrs[0] else: input_lyrs = _input_lyrs return input_lyrs @property def torch_learner(self): return self._torch_learner @torch_learner.setter def torch_learner(self, x): """So that learner can be changed.""" self._torch_learner = x @property def layer_names(self) -> List[str]: """Returns a list of names of layers/nn.modules for deep learning model. For ML models, returns empty list""" _all_layers = [] if self.category == "ML": pass elif self.config['backend'] == 'tensorflow': for layer in self.layers: _all_layers.append(layer.name) elif self.config['backend'] == 'pytorch': _all_layers = list(self._modules.keys()) return _all_layers @property def layers_in_shapes(self) -> dict: """Returns the shapes of inputs to all layers""" shapes = {} for lyr in self.layers: shapes[lyr.name] = lyr.input_shape return shapes @property def layers_out_shapes(self) -> dict: """ returns shapes of outputs from all layers in model as dictionary""" shapes = {} for lyr in self.layers: shapes[lyr.name] = lyr.output_shape return shapes @property def num_input_layers(self) -> int: if self.category != "DL": return np.inf if K.BACKEND == 'pytorch': return 1 else: return len(self.inputs) @property def input_layer_names(self) -> list: default = [] if self.inputs: default = [lyr.name.split(':')[0] for lyr in self.inputs] if len(default) == 0: sec_option_inputs = self._input_lyrs() if isinstance(sec_option_inputs, list): default = [] for i in sec_option_inputs: default.append(i.name) else: default = sec_option_inputs.name return default def _get_dummy_input_shape(self): shape = () if K.BACKEND == 'tensorflow' and self.category == "DL": if isinstance(self.inputs, list): if len(self.inputs)==1: shape = self.inputs[0].shape else: shape = [inp.shape for inp in self.inputs] return shape @property def api(self): return 'subclassing' @property def fit_fn(self): if self.category == "DL": if K.BACKEND == 'tensorflow': return super().fit elif K.BACKEND == 'pytorch': return self.torch_learner.fit return self._model.fit # e.g. for ML models @property def evaluate_fn(self): if self.category == "DL": if K.BACKEND == 'tensorflow': return super().evaluate elif K.BACKEND == 'pytorch': return self.torch_learner.evaluate else: raise ValueError elif self.category == "ML": return self.evalute_ml_models return self._model.evaluate @property def predict_fn(self): if self.category == "DL": if K.BACKEND == 'tensorflow': return super().predict elif K.BACKEND == 'pytorch': return self.torch_learner.predict return self._model.predict def initialize_layers(self, layers_config: dict, inputs=None): """ Initializes the layers/weights/variables which are to be used in `forward` or `call` method. Parameters --------- layers_config : python dictionary to define neural network. For details [see](https://ai4water.readthedocs.io/en/latest/build_dl_models.html) inputs : if None, it will be supposed the the `Input` layer either exists in `layers_config` or an Input layer will be created withing this method before adding any other layer. If not None, then it must be in `Input` layer and the remaining NN architecture will be built as defined in `layers_config`. This can be handy when we want to use this method several times to build a complex or parallel NN structure. Avoid `Input` in layer names. """ layers_config = layers_config.copy() input_lyrs = [] initiated_layers = OrderedDict() wrp_layer = None # indicator for wrapper layers first_layer = True for lyr, lyr_args in layers_config.items(): lyr_config, lyr_inputs, named_outs, call_args = self.deconstruct_lyr_args(lyr, lyr_args) lyr_name, args, lyr_config, activation = self.check_lyr_config(lyr, lyr_config) if K.BACKEND == 'pytorch': if first_layer: first_layer = False if callable(lyr_config): lyr_initiated = lyr_config else: lyr_initiated = TORCH_LAYERS[lyr_name](**lyr_config) setattr(self, lyr, lyr_initiated) initiated_layers[lyr] = {"layer": lyr_initiated, "named_outs": named_outs, 'call_args': call_args, 'inputs': lyr_inputs} else: # may be user has defined layers without input layer, in this case add Input layer as first layer if first_layer: if inputs is not None: # This method was called by providing it inputs. assert isinstance(inputs, tf.Tensor) # since inputs have been defined, all the layers that will be added will be next to first layer first_layer = False layer_outputs = inputs initiated_layers[layer_outputs.name] = {'layer': layer_outputs, 'tf_name': lyr_name} elif lyr_name != "Input": if 'input_shape' in lyr_config: # input_shape is given in the first layer so make input layer initialized_layer = LAYERS["Input"](shape=lyr_config['input_shape']) else: # for simple dense layer based models, lookback will not be used def_shape = (self.num_ins,) if self.lookback == 1 else (self.lookback, self.num_ins) initialized_layer = LAYERS["Input"](shape=def_shape) # first layer is built so next iterations will not be for first layer first_layer = False # put the first layer in memory to be used for model compilation # add th layer which the user had specified as first layer initiated_layers[initialized_layer.name] = {'layer': initialized_layer, 'tf_name': lyr_name} input_lyrs.append(initialized_layer) # The inputs to the layer have not been specified, so either it is an Input layer if lyr_inputs is None: # or it uses the previous outputs as inputs if lyr_name == "Input": # it is an Input layer, hence should not be called initialized_layer = LAYERS[lyr_name](*args, **lyr_config) initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'tf_name': lyr_name} input_lyrs.append(initialized_layer) else: # it is executable and uses previous outputs as inputs if lyr_name in ACTIVATION_LAYERS: layer_outputs = ACTIVATION_LAYERS[lyr_name](name=lyr_config['name']) initiated_layers[lyr_config['name']] = {'layer': layer_outputs, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} elif lyr_name in ['TimeDistributed', 'Bidirectional']: wrp_layer = LAYERS[lyr_name] # because wrapper layer name is property initiated_layers[lyr_config['name']] = {'layer': wrp_layer, 'tf_name': lyr_name} continue elif "LAMBDA" in lyr_name.upper(): # lyr_config is serialized lambda layer, which needs to be deserialized initialized_layer = tf.keras.layers.deserialize(lyr_config) # layers_config['lambda']['config'] still contails lambda, so we need to replace the python # object (lambda) with the serialized version (lyr_config) so that it can be saved as json file. layers_config[lyr]['config'] = lyr_config initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} else: if wrp_layer is not None: initialized_layer = wrp_layer(LAYERS[lyr_name](*args, **lyr_config)) initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} wrp_layer = None else: if lyr_name == "TemporalFusionTransformer": lyr_config['return_attention_components'] = True initialized_layer = LAYERS[lyr_name](*args, **lyr_config) initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} else: # The inputs to this layer have been specified so they must exist in lyr_cache. # it is an executable if lyr_name in ACTIVATION_LAYERS: layer_outputs = ACTIVATION_LAYERS[lyr_name](name=lyr_config['name']) initiated_layers[lyr_config['name']] = {'layer': layer_outputs, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} elif lyr_name in ['TimeDistributed', 'Bidirectional']: wrp_layer = LAYERS[lyr_name] # because wrapper layer name is property initiated_layers[lyr_config['name']] = {'layer': wrp_layer, 'tf_name': lyr_name} continue elif "LAMBDA" in lyr_name.upper(): initialized_layer = tf.keras.layers.deserialize(lyr_config) layers_config[lyr]['config'] = lyr_config initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} else: if wrp_layer is not None: initialized_layer = wrp_layer(LAYERS[lyr_name](*args, **lyr_config)) initiated_layers[lyr_config['name']] = {'layer': initialized_layer, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} wrp_layer = None else: layer_initialized = LAYERS[lyr_name](*args, **lyr_config) initiated_layers[lyr_config['name']] = {'layer': layer_initialized, 'named_outs': named_outs, 'call_args': call_args, 'inputs': lyr_inputs, 'tf_name': lyr_name} if activation is not None: # put the string back to dictionary to be saved in config file lyr_config['activation'] = activation first_layer = False self.jsonize_lyr_config(lyr_config) # inputs = [] todo, indentify input layers # for k,v in lyr_cache.items(): # since the model is not build yet and we have access to only output tensors of each list, this is probably # # the only way to know that how many `Input` layers were encountered during the run of this method. Each # tensor (except TimeDistributed) has .op.inputs attribute, which is empty if a tensor represents output of Input layer. # if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 240: # if k.upper() != "TIMEDISTRIBUTED" and hasattr(v, 'op'): # if hasattr(v.op, 'inputs'): # _ins = v.op.inputs # if len(_ins) == 0: # inputs.append(v) # else: # not sure if this is the proper way of checking if a layer receives an input or not! # if hasattr(v, '_keras_mask'): # inputs.append(v) setattr(self, 'initiated_layers', initiated_layers) setattr(self, 'input_lyrs', input_lyrs) # todo, # # for case when {Input -> Dense, Input_1}, this method wrongly makes Input_1 as output so in such case use # # {Input_1, Input -> Dense }, thus it makes Dense as output and first 2 as inputs, so throwing warning # if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 240: # if len(layer_outputs.op.inputs) < 1: # print("Warning: the output is of Input tensor class type") # else: # if 'op' not in dir(layer_outputs): # layer_outputs does not have `op`, which means it has no incoming node # print("Warning: the output is of Input tensor class type") # outs = None #if BACKEND == 'tensorflow': # outs = self.call(input_lyrs) # setattr(self, 'output_lyrs', outs) # if BACKEND == 'tensorflow': # ## Reinitial # super(Model, self).__init__( # inputs=input_lyrs, # outputs=outs) #MODEL.__init__(self, inputs=inputs, outputs=outs) return input_lyrs # , outs def call(self, inputs, training=None, mask=None, run_call=True): version = ''.join(tf.__version__.split('.')[0:2]).ljust(3, '0') return getattr(self, f'call_{version}')(inputs, training, mask, run_call=run_call) def call_260(self, *args, **kwargs): return self.call_250(*args, **kwargs) def call_270(self, *args, **kwargs): return self.call_250(*args, **kwargs) def call_290(self, *args, **kwargs): return self.call_250(*args, **kwargs) def call_280(self, *args, **kwargs): return self.call_250(*args, **kwargs) def call_200(self, *args, **kwargs): return self.call_210(*args, **kwargs) def call_250(self, inputs, training=None, mask=None, run_call=True): self.treat_casted_inputs(inputs) outs = inputs # inputs can be a list of tensors if isinstance(inputs, list) or isinstance(inputs, tuple) or inputs.__class__.__name__ == "Listwrapper": cache = {getattr(i, '__dummy_name').split(':')[0]:i for i in inputs} # if inputs is a list, then just save it in cache elif isinstance(inputs, dict): cache = inputs elif isinstance(inputs, tuple): if len(inputs) == 1: inputs, = inputs cache = {inputs.name.split(':')[0] : inputs} else: cache = {i.name.split(':')[0]: i for i in inputs} # hopefully this is just one tensor else: cache = {getattr(inputs, '__dummy_name').split(':')[0]: inputs} # todo keep tensor chache and layers cache separate input_tensor = False for idx, (lyr, lyr_args) in enumerate(self.initiated_layers.items()): if isinstance(lyr_args['layer'], tf.Tensor) or idx == 0 or is_input(lyr_args['layer']): # this must be an input layer # assert is_input(lyr_args['layer']) if isinstance(inputs, list): assert all([is_input(_input) for _input in inputs]), inputs if isinstance(inputs, tuple): if not run_call: assert all([is_input(_input) for _input in inputs]) # else: # assert is_input(inputs) input_tensor = True # don't use the tf.keras.Input from self.initiated_layers # outs = lyr_args['layer'] elif lyr_args['tf_name'] in ['TimeDistributed', 'Bidirectional']: # no need to call wrapper layer so move to next iteration continue else: _inputs = lyr_args.get('inputs', None) # inputs have not been explicitly defined by the user so just # use previous output if _inputs is None: _inputs = prev_output_name if idx == 1 and _inputs not in cache: call_args, add_args = inputs, {} else: call_args, add_args = get_call_args( _inputs, cache, lyr_args['call_args'], lyr) # call the initiated layer if lyr in MULTI_INPUT_LAYERS: outs = lyr_args['layer'](*call_args, **add_args) else: outs = lyr_args['layer'](call_args, **add_args) # if the layer is TFT, we need to extract the attention components # so that they can be used during post-processign if lyr in ["TemporalFusionTransformer", "TFT"]: outs, self.TemporalFusionTransformer_attentions = outs self._maybe_handle_multi_outs(lyr_args, cache, outs) if input_tensor: input_tensor = False else: cache[lyr] = outs prev_output_name = lyr return outs def call_210(self, inputs, training=True, mask=None, run_call=True): if int(''.join(np.__version__.split('.')[0:2]).ljust(3, '0')) >= 120: raise NumpyVersionException("Decrease") self.treat_casted_inputs(inputs) outs = inputs # inputs can be a list of tensors if isinstance(inputs, list) or isinstance(inputs, tuple) or inputs.__class__.__name__ == "Listwrapper": cache = {getattr(i, '__dummy_name').split(':')[0]:i for i in inputs} # if inputs is a list, then just save it in cache elif isinstance(inputs, dict): cache = inputs # hopefully this is just one tensor else: cache = {getattr(inputs, '__dummy_name').split(':')[0]: inputs} is_input_tensor = False for idx, (lyr, lyr_args) in enumerate(self.initiated_layers.items()): lyr = lyr.split(':')[0] if isinstance(lyr_args['layer'], tf.Tensor) or idx == 0 or is_input(lyr_args['layer']): is_input_tensor = True # this must be an input layer # assert is_input(lyr_args['layer']) if isinstance(inputs, list): if not run_call: assert all([is_input(_input) for _input in inputs]) if isinstance(inputs, tuple): assert all([is_input(_input) for _input in inputs]) elif lyr_args['tf_name'] in ['TimeDistributed', 'Bidirectional']: # no need to call wrapper layer so move to next iteration continue else: _inputs = lyr_args.get('inputs', None) # inputs have not been explicitly defined by the user so just use previous output if _inputs is None: _inputs = prev_output_name if idx == 1 and _inputs not in cache: call_args, add_args = inputs, {} else: call_args, add_args = get_call_args(_inputs, cache, lyr_args['call_args'], lyr) # call the initiated layer outs = lyr_args['layer'](call_args, **add_args) # if the layer is TFT, we need to extract the attention components # so that they can be used during post-processign if lyr in ["TemporalFusionTransformer", "TFT"]: outs, self.TemporalFusionTransformer_attentions = outs self._maybe_handle_multi_outs(lyr_args, cache, outs) if is_input_tensor: is_input_tensor = False else: cache[lyr] = outs prev_output_name = lyr return outs @staticmethod def _maybe_handle_multi_outs(lyr_args, cache, outs): if lyr_args['named_outs'] is not None: if isinstance(outs, (list, tuple)): # the layer gives multiple outputs either as list/tuple if len(lyr_args['named_outs']) == len(outs): for name, out_tensor in zip(lyr_args['named_outs'], outs): cache[name] = out_tensor else: # even though the layer gives multiple outputs # but the user has assigned it to single variable cache[lyr_args['named_outs']] = outs else: cache[lyr_args['named_outs']] = outs return def treat_casted_inputs(self, casted_inputs): if isinstance(casted_inputs, tuple) or isinstance(casted_inputs, list): for in_tensor, orig_in_name in zip(casted_inputs, self.input_layer_names): assign_dummy_name(in_tensor, orig_in_name) elif isinstance(casted_inputs, dict): names_to_assign = self.input_layer_names if isinstance(names_to_assign, list): assert len(names_to_assign) == len(casted_inputs) for new_name, (_input, in_tensor) in zip(names_to_assign, casted_inputs.items()): assign_dummy_name(in_tensor, new_name) else: raise ValueError else: name_to_assign = self.input_layer_names if isinstance(name_to_assign, list): if len(name_to_assign) == 1: name_to_assign = name_to_assign[0] else: raise ValueError assign_dummy_name(casted_inputs, name_to_assign) return def call_115(self, inputs, training=None, mask=None, run_call=True): outs = inputs # inputs can be a list of tensors if isinstance(inputs, list): cache = {i.name.split(':')[0]: i for i in inputs} # if inputs is a list, then just save it in cache elif isinstance(inputs, dict): cache = inputs # inputs can be a list of tensors but as a ListWrapper elif inputs.__class__.__name__ == "Listwrapper": cache = {i.name.split(':')[0]: i for i in inputs} elif isinstance(inputs, tuple): cache = {i.name.split(':')[0]: i for i in inputs} # hopefully this is just one tensor else: cache = {inputs.name.split(':')[0]: inputs} # todo keep tensor chache and layers cache separate input_tensor = False for idx, (lyr, lyr_args) in enumerate(self.initiated_layers.items()): lyr = lyr.split(':')[0] # todo, this should not have been added if isinstance(lyr_args['layer'], tf.Tensor) or idx == 0 or is_input(lyr_args['layer']): # this must be an input layer # assert is_input(lyr_args['layer']) if isinstance(inputs, list): assert all([is_input(_input) for _input in inputs]) if isinstance(inputs, tuple): assert all([is_input(_input) for _input in inputs]) # else: # assert is_input(inputs) input_tensor = True # don't use the tf.keras.Input from self.initiated_layers elif lyr_args['tf_name'] in ['TimeDistributed', 'Bidirectional']: # no need to call wrapper layer so move to next iteration continue else: _inputs = lyr_args.get('inputs', None) # inputs have not been explicitly defined by the user so just use previous output if _inputs is None: _inputs = prev_output_name call_args, add_args = get_call_args(_inputs, cache, lyr_args['call_args'], lyr) # call the initiated layer outs = lyr_args['layer'](call_args, **add_args) # if the layer is TFT, we need to extract the attention components # so that they can be used during post-processign if lyr in ["TemporalFusionTransformer", "TFT"]: outs, self.TemporalFusionTransformer_attentions = outs self._maybe_handle_multi_outs(lyr_args, cache, outs) if input_tensor: input_tensor = False # cache[_tensor.name] = _tensor else: cache[lyr] = outs prev_output_name = lyr return outs def forward(self, *inputs: Any, **kwargs: Any): """implements forward pass implementation for pytorch based NN models.""" outs = inputs # if inputs is a list, then just save it in cache if isinstance(inputs, dict): cache = inputs # inputs can be a list of tensors but as a ListWrapper elif inputs.__class__.__name__ == "Listwrapper": cache = {i.name.split(':')[0]: i for i in inputs} elif isinstance(inputs, tuple) or isinstance(inputs, list): cache = {} for idx, i in enumerate(inputs): _name = i.name if i.name is not None else f'input_{idx}' cache[_name] = i # hopefully this is just one tensor else: cache = {inputs.name: inputs} for idx, (lyr_name, lyr_args) in enumerate(self.initiated_layers.items()): lyr = lyr_args['layer'] named_outs = lyr_args['named_outs'] call_args = lyr_args['call_args'] _inputs = lyr_args['inputs'] if idx == 0: assert isinstance(inputs, tuple) and len(inputs) == 1 _inputs = 'input_0' if _inputs is None: _inputs = prev_output_name call_args, add_args = get_call_args(_inputs, cache, call_args, lyr_name) # actuall call outs = lyr(call_args, **add_args) if named_outs is not None: if isinstance(outs, list): assert len(named_outs) == len(outs) for name, out_tensor in zip(named_outs, outs): if name in cache: raise ValueError(f"Duplicate layer found with name {name}") cache[name] = out_tensor if isinstance(outs, tuple): assert len(named_outs) == len(outs) for name, out_tensor in zip(named_outs, outs): if name in cache: raise ValueError(f"Duplicate layer found with name {name}") cache[name] = out_tensor else: cache[named_outs] = outs cache[lyr_name] = outs inputs = outs prev_output_name = lyr_name return outs def build(self, input_shape): self.print_info() if self.category == "DL" and K.BACKEND == 'tensorflow': # Initialize the graph self._is_graph_network = True self._init_graph_network( inputs=self._input_lyrs(), outputs=self.output_lyrs ) super().compile( loss=self.loss(), optimizer=self.get_optimizer(), metrics=self.get_metrics()) self.info['model_parameters'] = self.trainable_parameters() if self.verbosity > 0: if 'tcn' in self.config['model']['layers']: if not hasattr(self, '_layers'): setattr(self, '_layers', self.layers) tcn.tcn_full_summary(self, expand_residual_blocks=True) else: self.summary() if self.verbosity >= 0: # if verbosity is -ve then don't plot this self.plot_model(self) elif self.category == "ML": self.build_ml_model() if not getattr(self, 'from_check_point', False) and self.verbosity>=0: # fit may fail so better to save config before as well. This will be overwritten once the fit is complete self.save_config() self.update_info() return def first_layer_shape(self): """ instead of tuple, returning a list so that it can be moified if needed""" if K.BACKEND == 'pytorch': if self.lookback == 1: return [-1, self.num_ins] else: return [-1, self.lookback, self.num_ins] if self.num_input_layers > 1: shapes = {} for lyr in self.inputs: shapes[lyr.name] = lyr.shape return shapes shape = [] for idx, d in enumerate(self.nn_layers()[0].input.shape): if int(tf.__version__[0]) == 1: if isinstance(d, tf.Dimension): # for tf 1.x d = d.value if idx == 0: # the first dimension must remain undefined so that the user may define batch_size d = -1 shape.append(d) return shape def fit(self, *args, **kwargs): # this function is necessary here so that self.fit does not directly call keras.Model.fit # we need to pre-process the data before feeding it to keras.fit return self.call_fit(*args, **kwargs) def evaluate(self, *args, **kwargs): return self.call_evaluate(*args, **kwargs) def predict(self, *args, **kwargs ): return self.call_predict(*args, **kwargs) def loss_name(self): return self.loss @classmethod def from_config(cls, *args, **kwargs): """This method primarily behaves like `from_config` of BaseModel. However, it can also be used like `from_config` of the underlying Model such as `from_config` of tf.keras.Model. # todo test from_config with keras """ _config = args if isinstance(args, tuple): # multiple non-keyword arguments were provided if len(args) > 0: _config = args[0] else: _config = kwargs['config_path'] kwargs.pop('config_path') local = False if 'make_new_path' in kwargs: local = True elif isinstance(_config, str) and os.path.isfile(_config): local = True elif isinstance(_config, dict) and "category" in _config: local = True if local: config = None config_path = None # we need to build ai4water's Model class if isinstance(_config, dict): config = _config else: config_path = _config return BaseModel._get_config_and_path( cls, config=config, config_path=config_path, **kwargs ) # tf1.15 has from_config so call it return super().from_config(*args, **kwargs) def fit_pytorch(self, x, **kwargs): """Trains the pytorch model.""" history = self.torch_learner.fit(x, **kwargs) setattr(self, 'history', history) return history def predict_pytorch(self, x, **kwargs): from .models._torch.utils import to_torch_dataset from torch.utils.data import DataLoader if isinstance(x, torch.utils.data.Dataset): dataset = x elif isinstance(x, np.ndarray): dataset = to_torch_dataset(x=x) elif isinstance(x, list) and len(x) == 1: dataset = to_torch_dataset(x[0]) else: raise ValueError data_loader = DataLoader(dataset, batch_size=self.config['batch_size']) predictions = [] for i, batch_x in enumerate(data_loader): y_pred_ = self(batch_x.float()) predictions.append(y_pred_.detach().numpy()) return np.concatenate(predictions, axis=0) def is_input(tensor, name=''): _is_input = False if int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 240: # Each tensor (except TimeDistributed) has .op.inputs attribute, which is empty # if a tensor represents output of Input layer. if name != "TimeDistributed" and hasattr(tensor, 'op'): if hasattr(tensor.op, 'inputs'): _ins = tensor.op.inputs if len(_ins) == 0: _is_input = True # # not sure if this is the proper way of checking if a layer receives an input or not! elif hasattr(tensor, '_keras_mask'): _is_input = True return _is_input class NumpyVersionException(Exception): def __init__(self, action): self.action = action super().__init__(self.msg()) def msg(self): return f""" version {np.__version__} of numpy is not compatible with tf version {tf.__version__} {self.action} numpy version.""" def assign_dummy_name(tensor, dummy_name): if tf.executing_eagerly(): setattr(tensor, '__dummy_name', dummy_name) else: if "CAST" in tensor.name.upper() or "IteratorGetNext" in tensor.name or len(getattr(tensor, '_consumers', [1]))==0: setattr(tensor, '__dummy_name', dummy_name) print(f"assigning name {dummy_name} to {tensor.name} with shape {getattr(tensor, 'shape', None)}") else: setattr(tensor, '__dummy_name', tensor.name) return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/main.py
main.py
from collections import OrderedDict from .backend import tf, keras if keras is not None: K = keras.backend Sequential = tf.keras.Sequential Model = tf.keras.models.Model else: K, Sequential, Model = None, None, None def is_placeholder(n): return (hasattr(n, '_op') and n._op.type == 'Placeholder') or '_input' in str(n) or 'input' in str(n) def n_(node, output_format, nested=False, module=None): if isinstance(node, list): node_name = '_'.join([str(n.name) for n in node]) else: node_name = str(node.name) if module is not None and nested: node_name = module.name + '/' + node_name if output_format == 'simple' and ':' in node_name: return node_name.split(':')[0] elif output_format == 'full' and hasattr(node, 'output'): return node.output.name return node_name def _evaluate(model: Model, nodes_to_evaluate, x, y=None, auto_compile=False): if not model._is_compiled: if auto_compile: model.compile(loss='mse', optimizer='adam') else: raise Exception('Compilation of the model required.') def eval_fn(k_inputs): try: return K.function(k_inputs, nodes_to_evaluate)(model._standardize_user_data(x, y)) except AttributeError: # one way to avoid forcing non eager mode. if y is None: # tf 2.3.0 upgrade compatibility. return K.function(k_inputs, nodes_to_evaluate)(x) return K.function(k_inputs, nodes_to_evaluate)((x, y)) # although works. except ValueError as e: print('Run it without eager mode tf.compat.v1.disable_eager_execution()') raise e try: return eval_fn(model._feed_inputs + model._feed_targets + model._feed_sample_weights) except Exception: return eval_fn(model._feed_inputs) def get_gradients_of_trainable_weights(model, x, y): """ Get the gradients of trainable_weights for the kernel and the bias nodes for all filters in each layer. Trainable_weights gradients are averaged over the minibatch. :param model: keras compiled model :param x: inputs for which gradients are sought (averaged over all inputs if batch_size > 1) :param y: outputs for which gradients are sought :return: dict mapping layers to corresponding gradients (filter_h, filter_w, in_channels, out_channels) """ nodes = OrderedDict([(n.name, n) for n in model.trainable_weights]) return _get_gradients(model, x, y, nodes) def get_gradients_of_activations(model, x, y, layer_names=None, output_format='simple', nested=False): """ Get gradients of the outputs of the activation functions, regarding the loss. Intuitively, it shows how your activation maps change over a tiny modification of the loss. :param model: keras compiled model or one of ['vgg16', 'vgg19', 'inception_v3', 'inception_resnet_v2', 'mobilenet_v2', 'mobilenetv2']. :param x: Model input (Numpy array). In the case of multi-inputs, x should be of type List. :param y: Model target (Numpy array). In the case of multi-inputs, y should be of type List. :param layer_names: (optional) Single name of a layer or list of layer names for which activations should be returned. It is useful in very big networks when it is computationally expensive to evaluate all the layers/nodes. :param output_format: Change the output dictionary key of the function. - 'simple': output key will match the names of the Keras layers. For example Dense(1, name='d1') will return {'d1': ...}. - 'full': output key will match the full name of the output layer name. In the example above, it will return {'d1/BiasAdd:0': ...}. - 'numbered': output key will be an index range, based on the order of definition of each layer within the model. :param nested: (optional) If set, will move recursively through the model definition to retrieve nested layers. Recursion ends at leaf layers of the model tree or at layers with their name specified in layer_names. E.g., a model with the following structure -layer1 -conv1 ... -fc1 -layer2 -fc2 ... yields a dictionary with keys 'layer1/conv1', ..., 'layer1/fc1', 'layer2/fc2'. If layer_names = ['layer2/fc2'] is specified, the dictionary will only hold one key 'layer2/fc2'. The layer names are generated by joining all layers from top level to leaf level with the separator '/'. :return: Dict {layer_names (specified by output_format) -> activation of the layer output/node (Numpy array)}. """ nodes = OrderedDict() _get_nodes(model, nodes, output_format, nested=nested, layer_names=layer_names) return _get_gradients(model, x, y, nodes) def _get_gradients(model, x, y, nodes): if model.optimizer is None: raise Exception('Please compile the model first. The loss function is required to compute the gradients.') nodes_names = nodes.keys() nodes_values = nodes.values() try: if not hasattr(model, 'total_loss'): raise Exception('Disable TF eager mode to use get_gradients.\n' 'Add this command at the beginning of your script:\n' 'tf.compat.v1.disable_eager_execution()') grads = model.optimizer.get_gradients(model.total_loss, nodes_values) except ValueError as e: if 'differentiable' in str(e): # Probably one of the gradients operations is not differentiable... grads = [] differentiable_nodes = [] for n in nodes_values: try: grads.extend(model.optimizer.get_gradients(model.total_loss, n)) differentiable_nodes.append(n) except ValueError: pass # nodes_values = differentiable_nodes else: raise e gradients_values = _evaluate(model, grads, x, y) return OrderedDict(zip(nodes_names, gradients_values)) def _get_nodes(module, nodes, output_format, nested=False, layer_names=None, depth=0): def update_node(n): is_node_a_model = isinstance(n, (Model, Sequential)) if not is_placeholder(n): if is_node_a_model and nested: return try: mod = None if depth == 0 else module name = n_(n, output_format, nested, mod) if layer_names is None or name in layer_names: if is_node_a_model: if hasattr(n, '_layers'): output = n._layers[-1].output else: output = n.layers[-1].output else: output = n.output nodes.update({name: output}) except AttributeError: pass try: layers = module._layers if hasattr(module, '_layers') else module.layers except AttributeError: return for layer in layers: update_node(layer) if nested: _get_nodes(layer, nodes, output_format, nested, layer_names, depth + 1) def get_activations(model, x, layer_names=None, nodes_to_evaluate=None, output_format='simple', nested=False, auto_compile=True): """ Fetch activations (nodes/layers outputs as Numpy arrays) for a Keras model and an input X. By default, all the activations for all the layers are returned. :param model: Keras compiled model or one of ['vgg16', 'vgg19', 'inception_v3', 'inception_resnet_v2', 'mobilenet_v2', 'mobilenetv2', ...]. :param x: Model input (Numpy array). In the case of multi-inputs, x should be of type List. :param layer_names: (optional) Single name of a layer or list of layer names for which activations should be returned. It is useful in very big networks when it is computationally expensive to evaluate all the layers/nodes. :param nodes_to_evaluate: (optional) List of Keras nodes to be evaluated. Useful when the nodes are not in model.layers. :param output_format: Change the output dictionary key of the function. - 'simple': output key will match the names of the Keras layers. For example Dense(1, name='d1') will return {'d1': ...}. - 'full': output key will match the full name of the output layer name. In the example above, it will return {'d1/BiasAdd:0': ...}. - 'numbered': output key will be an index range, based on the order of definition of each layer within the model. :param nested: If specified, will move recursively through the model definition to retrieve nested layers. Recursion ends at leaf layers of the model tree or at layers with their name specified in layer_names. E.g., a model with the following structure -layer1 -conv1 ... -fc1 -layer2 -fc2 ... yields a dictionary with keys 'layer1/conv1', ..., 'layer1/fc1', 'layer2/fc2'. If layer_names = ['layer2/fc2'] is specified, the dictionary will only hold one key 'layer2/fc2'. The layer names are generated by joining all layers from top level to leaf level with the separator '/'. :param auto_compile: If set to True, will auto-compile the model if needed. :return: Dict {layer_name (specified by output_format) -> activation of the layer output/node (Numpy array)}. """ layer_names = [layer_names] if isinstance(layer_names, str) else layer_names # print('Layer names:', layer_names) nodes = OrderedDict() if nodes_to_evaluate is None: _get_nodes(model, nodes, output_format, nested, layer_names, auto_compile) else: if layer_names is not None: raise ValueError('Do not specify a [layer_name] with [nodes_to_evaluate]. It will not be used.') nodes = OrderedDict([(n_(node, 'full'), node) for node in nodes_to_evaluate]) if len(nodes) == 0: if layer_names is not None: network_layers = ', '.join([layer.name for layer in model.layers]) raise KeyError('Could not find a layer with name: [{}]. ' 'Network layers are [{}]'.format(', '.join(layer_names), network_layers)) else: raise ValueError('Nodes list is empty. Or maybe the model is empty.') # The placeholders are processed later (Inputs node in Keras). Due to a small bug in tensorflow. input_layer_outputs = [] layer_outputs = OrderedDict() for key, node in nodes.items(): if isinstance(node, list): for nod in node: if not is_placeholder(nod): if key not in layer_outputs: layer_outputs[key] = [] layer_outputs[key].append(nod) else: if not is_placeholder(node): layer_outputs.update({key: node}) if nodes_to_evaluate is None or (layer_names is not None) and \ any([n.name in layer_names for n in model.inputs]): input_layer_outputs = list(model.inputs) if len(layer_outputs) > 0: activations = _evaluate(model, layer_outputs.values(), x, y=None) else: activations = {} def craft_output(output_format_): inputs = [x] if not isinstance(x, list) else x activations_inputs_dict = OrderedDict( zip([n_(output, output_format_) for output in input_layer_outputs], inputs)) activations_dict = OrderedDict(zip(layer_outputs.keys(), activations)) result_ = activations_inputs_dict.copy() result_.update(activations_dict) if output_format_ == 'numbered': result_ = OrderedDict([(i, v) for i, (k, v) in enumerate(result_.items())]) return result_ result = craft_output(output_format) if layer_names is not None: # extra check. result = {k: v for k, v in result.items() if k in layer_names} if nodes_to_evaluate is not None and len(result) != len(nodes_to_evaluate): result = craft_output(output_format_='full') # collision detected in the keys. return result
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/keract_mod.py
keract_mod.py
__all__ = ["NN", "check_act_fn"] from weakref import WeakKeyDictionary try: from ai4water.tf_attributes import ACTIVATION_LAYERS, ACTIVATION_FNS, LAYERS, tf except ModuleNotFoundError: tf = None from . import backend as K if K.BACKEND == 'tensorflow': from ai4water.tf_attributes import LAYERS, tf else: try: # maybe torch is also not available. from .models._torch import LAYERS except (ModuleNotFoundError, ImportError): LAYERS = {} np = K.np class AttributeNotSetYet: def __init__(self, func_name): self.data = WeakKeyDictionary() self.func_name = func_name def __get__(self, instance, owner): raise AttributeError("run the function {} first to get {}".format( self.func_name, self.name)) def __set_name__(self, owner, name): self.name = name class AttributeStore(object): """A class which will just make sure that attributes are set at its childs class level and not here. It's purpose is just to avoid cluttering of __init__ method of its child classes. """ def __init__(self): self._model = AttributeNotSetYet("`build` to build neural network") self.method = None self.en_densor_We = None self.en_LSTM_cell = None self.auto_enc_composite = None self.de_LSTM_cell = None self.de_densor_We = None self.scalers = {} self.is_training = False class NN(AttributeStore): def __init__(self, config: dict ): self.config = config self.lookback = self.config['ts_args']['lookback'] AttributeStore.__init__(self) @property def lookback(self): return self._lookback @lookback.setter def lookback(self, x): self._lookback = x def update_cache(self, cache: dict, key, value): if key in cache: raise ValueError("Duplicate input/output name found. The name '{}'" " already exists as input/output for another layer" .format(key)) cache[key] = value return def deconstruct_lyr_args(self, lyr_name, lyr_args) -> tuple: if not isinstance(lyr_args, dict): return lyr_args, None, None, None if callable(lyr_name): if hasattr(lyr_name, '__call__'): raise ValueError else: config = tf.keras.layers.Lambda(lambda x: lyr_name(x)) inputs = lyr_args['inputs'] if 'inputs' in lyr_args else None outputs = lyr_args['outputs'] if 'outputs' in lyr_args else None call_args = lyr_args['call_args'] if 'call_args' in lyr_args else None elif 'config' not in lyr_args: if all([arg not in lyr_args for arg in ['inputs', 'outputs', 'call_args']]): config = lyr_args inputs = None outputs = None call_args = None else: # todo, why we can't have inputs/outputs/call_args without config? raise ValueError(f"No config found for layer '{lyr_name}'") else: config = lyr_args['config'] inputs = lyr_args['inputs'] if 'inputs' in lyr_args else None outputs = lyr_args['outputs'] if 'outputs' in lyr_args else None call_args = lyr_args['call_args'] if 'call_args' in lyr_args else None if tf is not None: if isinstance(config, tf.keras.layers.Lambda): config = tf.keras.layers.serialize(config) return config, inputs, outputs, call_args def check_lyr_config(self, lyr_name: str, config: dict): if callable(lyr_name): # lyr_name is class if not isinstance(config, dict): config = {} args = [config] else: args = {} if 'name' not in config and K.BACKEND != 'pytorch': config['name'] = lyr_name.__name__ config, activation = check_act_fn(config) return lyr_name.__name__, args, config, activation if callable(config): return lyr_name, [], config, None elif not isinstance(config, dict): args = [config] config = {} else: args = [] if 'name' not in config and K.BACKEND != 'pytorch': config['name'] = lyr_name # for reproducibility, dropout seed should be fixed if available in self.config if "Dropout" in lyr_name and K.BACKEND != 'pytorch': if 'seed' not in config: config['seed'] = self.config['seed'] activation = None if "LAMBDA" not in lyr_name.upper(): # for lambda layers, we don't need to check activation functions and layer names. config, activation = check_act_fn(config) # get keras/tensorflow layer compatible layer name lyr_name = self.get_layer_name(lyr_name) return lyr_name, args, config, activation def get_layer_name(self, lyr: str) -> str: layer_name = lyr.split('_')[0] if layer_name not in list(LAYERS.keys()) + list(ACTIVATION_LAYERS.keys()): raise ValueError(f""" The layer name '{lyr}' you specified, does not exist. Is this a user defined layer? If so, make sure your layer is being considered by AI4Water """) return layer_name def get_and_set_attrs(self, layer): # check the type without importing the layer if layer.__class__.__name__ == "TemporalFusionTransformer": # use layer name as there can be more than one layers from same class. setattr(self, f'{layer.name}_attentions', layer.attention_components) return def get_self_attention_weights(self, inputs, **kwargs)->dict: """returns Softmax activations which is used inside SelfAttention layer. :raises ValueError if not SelfAttention layer is found. """ return self.get_intermediate_output("SelfAttention", inputs, keep=1, **kwargs) def get_attention_lstm_weights(self, inputs, **kwargs)->dict: """returns Softmax activations which is inside SelfAttention layer. This function should be called only when AttentionLSTM layer is used. """ return self.get_intermediate_output("self_attention", inputs, keep=1, **kwargs) def get_fttransformer_weights(self, inputs, **kwargs): """ Returns attention weights for FTTransformer model which have shape of (num_samples, num_input_features) """ weights = self.get_intermediate_output('multi_head_attention', inputs, **kwargs) if self.verbosity>0: print(f"found {len(weights)} layers with multi-head-attention weights named {weights.keys()}") importances = [] for k, v in weights.items(): out, importance = v importance = importance[:, :, 0, :] importances.append(np.sum(importance, axis=1)) depth = self.config['model']['layers']['FTTransformer']['config']['depth'] heads = self.config['model']['layers']['FTTransformer']['config']['num_heads'] return np.sum(np.stack(importances), axis=0) / (depth * heads) def get_intermediate_output(self, layer_name, inputs, keep=None, **kwargs)->dict: """keep is only useful when the intermediate layer returns more than 1 output""" new_outs = {} for lyr in self.layers: if layer_name in lyr.name: int_outputs = lyr.output if keep is not None: assert isinstance(int_outputs, (list, tuple)) int_outputs = int_outputs[keep] new_outs[lyr.name] = int_outputs if len(new_outs)==0: raise ValueError(f"No {layer_name} layer found in Model") new_model = tf.keras.models.Model(self.inputs, new_outs) weights = new_model.predict(x=inputs, **kwargs) if isinstance(weights, list): # tensorflow 1 still returns list even if no is dictionary weights_dict = {} for _name, weight in zip(new_outs.keys(), weights): weights_dict[_name] = weight return weights_dict return weights @staticmethod def jsonize_lyr_config(lyr_config:dict): """some arguments in lyr_config dictionary may not be jsonizable. Jsonizing them because we have already used them so now we can save them in json file""" if tf is None: return if isinstance(lyr_config, dict): for key, val in lyr_config.items(): if isinstance(val, tf.DType): lyr_config[key] = val.name return lyr_config def check_act_fn(config: dict): """ it is possible that the config file does not have activation argument or activation is None""" activation = None if 'activation' in config: activation = config['activation'] if activation is not None: assert isinstance(activation, str), f"unknown activation function {activation}" config['activation'] = ACTIVATION_FNS[activation] return config, activation def get_call_args(lyr_inputs, lyr_cache, add_args, lyr_name): """ gets the additional call arguments for a layer. It is supposed that the call arguments are actually tensors/layers that have been created so far in the model including input layer. The call_args can be a list of inputs as well.""" if isinstance(lyr_inputs, list): call_args = [] for lyr_ins in lyr_inputs: if lyr_ins not in lyr_cache: raise ValueError(""" No layer named '{}' currently exists in the model which can be fed as input to '{} layer. Available layers are {}' layer.""".format( lyr_ins, lyr_name, list(lyr_cache.keys()))) call_args.append(lyr_cache[lyr_ins]) else: if lyr_inputs not in lyr_cache: raise ValueError(f""" No layer named '{lyr_inputs}' currently exists in the model which can be fed as input to '{lyr_name}' layer. Available layers are {list(lyr_cache.keys())} """) call_args = lyr_cache[lyr_inputs] return call_args, get_add_call_args(add_args, lyr_cache, lyr_name) def get_add_call_args(add_args, lyr_cache, lyr_name): additional_args = {} if add_args is not None: assert isinstance(add_args, dict), """ call_args to layer '{}' must be provided as dictionary""".format(lyr_name) for arg_name, arg_val in add_args.items(): if isinstance(arg_val, str): if arg_val not in lyr_cache: raise NotImplementedError(""" The value {} for additional call argument {} to '{}' layer not understood""".format(arg_val, arg_name, lyr_name)) additional_args[arg_name] = lyr_cache[arg_val] # the additional argument is a list of tensors, get all of them from lyr_cache elif isinstance(arg_val, list): add_arg_val_list = [] for arg in arg_val: assert isinstance(arg, str) add_arg_val_list.append(lyr_cache[arg]) additional_args[arg_name] = add_arg_val_list elif isinstance(arg_val, bool) or arg_val is None: additional_args[arg_name] = arg_val else: raise NotImplementedError(""" The value `{}` for additional call argument {} to '{}' layer not understood""".format(arg_val, arg_name, lyr_name)) return additional_args
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/nn_tools.py
nn_tools.py
__all__ = ["ACTIVATION_LAYERS", "ACTIVATION_FNS", "LOSSES", "LAYERS", "OPTIMIZERS", "tcn", "MULTI_INPUT_LAYERS"] # it is supposed that tf is available from .backend import get_attributes, tf try: import tcn except ModuleNotFoundError: tcn = None LOSSES = {} LAYERS = {} MULTI_INPUT_LAYERS = {"EALSTM"} if tcn is not None: LAYERS.update({"TCN": tcn.TCN}) try: import atten_lstm except ModuleNotFoundError: atten_lstm = None if atten_lstm is not None: from atten_lstm import SelfAttention, AttentionLSTM LAYERS.update({"SelfAttention": SelfAttention}) LAYERS.update({"AttentionLSTM": AttentionLSTM}) if tf is not None: import ai4water.utils.tf_losses as tf_losses from ai4water.models._tensorflow import NBeats import ai4water.models._tensorflow.attention_layers as attns from ai4water.models._tensorflow import TemporalFusionTransformer keras = tf.keras LOSSES.update({ 'nse': tf_losses.tf_nse, 'kge': tf_losses.tf_kge, }) LOSSES.update(get_attributes(aus=tf.keras, what='losses', case_sensitive=True)) else: NBeats, TemporalFusionTransformer, attns, keras = None, None, None, None if tf is not None: LAYERS.update({"TemporalFusionTransformer": TemporalFusionTransformer}) LAYERS.update({"TFT": TemporalFusionTransformer}) LAYERS.update(get_attributes(aus=tf.keras, what='layers', case_sensitive=True)) from .models._tensorflow.private_layers import PrivateLayers # add private layers to dictionary LAYERS.update(get_attributes(aus=PrivateLayers, what='layers', case_sensitive=True)) if NBeats is not None: LAYERS.update({"NBeats": NBeats}) if attns is not None: LAYERS.update(get_attributes(aus=attns, what='attn_layers', case_sensitive=True)) ACTIVATION_LAYERS = { # https://ai.stanford.edu/%7Eamaas/papers/relu_hybrid_icml2013_final.pdf 'LeakyReLU': lambda name='softsign': keras.layers.LeakyReLU(), # https://arxiv.org/pdf/1502.01852v1.pdf 'PReLU': lambda name='prelu': keras.layers.PReLU(name=name), 'relu': lambda name='relu': keras.layers.Activation('relu', name=name), 'tanh': lambda name='tanh': keras.layers.Activation('tanh', name=name), 'ELU': lambda name='elu': keras.layers.ELU(name=name), 'ThresholdedReLU': lambda name='ThresholdRelu': keras.layers.ThresholdedReLU(name=name), 'selu': lambda name='selu': keras.layers.Activation("selu", name=name), 'sigmoid': lambda name='sigmoid': keras.layers.Activation('sigmoid', name=name), 'hardsigmoid': lambda name='HardSigmoid': keras.layers.Activation('hard_sigmoid', name=name), 'crelu': lambda name='crelu': keras.layers.Activation(tf.nn.crelu, name=name), 'relu6': lambda name='relu6': keras.layers.Activation(tf.nn.relu6, name=name), 'softmax': lambda name='softmax': keras.layers.Activation(tf.nn.softmax, name=name), 'softplus': lambda name='sofplus': keras.layers.Activation(tf.nn.softplus, name=name), 'softsign': lambda name='softsign': keras.layers.Activation(tf.nn.softsign, name=name), "swish": lambda name='swish': keras.layers.Activation(tf.nn.swish, name=name), } ACTIVATION_FNS = { 'relu': 'relu', # keras.layers.Activation('relu', name=name), 'tanh': 'tanh', 'elu': 'elu', "hardsigmoid": 'hard_sigmoid', "linear": 'linear', } if tf is not None: ACTIVATION_FNS.update({ 'leakyrelu': tf.nn.leaky_relu, 'crelu': tf.nn.crelu, 'selu': tf.nn.selu, # tf.keras.activations.selu, # https://arxiv.org/pdf/1706.02515.pdf 'relu6': tf.nn.relu6, # http://www.cs.utoronto.ca/%7Ekriz/conv-cifar10-aug2010.pdf 'softmax': tf.nn.softmax, "softsign": tf.nn.softsign, "softplus": tf.nn.softplus, 'sigmoid': tf.nn.sigmoid, "swish": tf.nn.swish, # https://arxiv.org/pdf/1710.05941.pdf }) OPTIMIZERS = {} if tf is not None: OPTIMIZERS.update(get_attributes(aus=tf.keras, what='optimizers', case_sensitive=True))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/tf_attributes.py
tf_attributes.py
__all__ = ["HARHNModel", "IMVModel"] from typing import Any from easy_mpl import imshow from .main import Model from .utils.utils import dateandtime_now, plot_activations_along_inputs from .backend import torch, np, plt, os, mpl if torch is not None: from .models._torch import IMVTensorLSTM from .models._torch import HARHN else: HARHN, IMVTensorLSTM = None, None class HARHNModel(Model): def __init__(self, use_cuda=True, teacher_forcing=True, **kwargs): dev = torch.device("cpu") if use_cuda and torch.cuda.is_available(): dev = torch.device("cuda") else: # so that use_cuda is not set incorrectly to learner use_cuda = False self.dev = dev super(HARHNModel, self).__init__(teacher_forcing=teacher_forcing, **kwargs) # should be set after initiating upper classes so that torch_learner attribute is set self.torch_learner.use_cuda = use_cuda def initialize_layers(self, layers_config: dict, inputs=None): self.pt_model = HARHN(layers_config['n_conv_lyrs'], self.lookback, self.num_ins, self.num_outs, n_units_enc=layers_config['enc_units'], n_units_dec=layers_config['dec_units'], use_predicted_output=self.teacher_forcing, # self.config['use_predicted_output'] ).to(self.dev) return def forward(self, *inputs: Any, **kwargs: Any): y_pred, _ = self.pt_model(inputs[0], inputs[1][:, -1], **kwargs) return y_pred class IMVModel(HARHNModel): def __init__(self, *args, teacher_forcing=False, **kwargs): super(IMVModel, self).__init__(*args, teacher_forcing=teacher_forcing, **kwargs) def initialize_layers(self, layers_config:dict, inputs=None): self.pt_model = IMVTensorLSTM(self.num_ins, self.num_outs, layers_config['hidden_units'], device=self.dev).to(self.dev) self.alphas, self.betas = [], [] return def forward(self, *inputs: Any, **kwargs: Any): y_pred, alphas, betas = self.pt_model(*inputs, **kwargs) self.alphas.append(alphas) self.betas.append(betas) return y_pred def interpret(self, data='training', x=None, annotate=True, vmin=None, vmax=None, **bar_kws, ): mpl.rcParams.update(mpl.rcParamsDefault) self.alphas, self.betas = [], [] true, predicted = self.predict(data=data, process_results=False, return_true=True) name = f'data_on_{dateandtime_now()}' if x is not None else data betas = [array.detach().cpu().numpy() for array in self.betas] betas = np.concatenate(betas) # (examples, ins, 1) betas = betas.mean(axis=0) # (ins, 1) betas = betas[..., 0] # (ins, ) alphas = [array.detach().cpu().numpy() for array in self.alphas] alphas = np.concatenate(alphas) # (examples, lookback, ins, 1) x, _ = getattr(self, f'{data}_data')() if len(x) == 0 or (isinstance(x, list) and len(x[0]) == 0): raise ValueError(f"no {data} data found.") path = os.path.join(self.path, "interpret") if not os.path.exists(path): os.makedirs(path) plot_activations_along_inputs(data=x[:, -1, :], # todo, is -1 correct? activations=alphas.reshape(-1, self.lookback, self.num_ins), observations=true, predictions=predicted, in_cols=self.input_features, out_cols=self.output_features, lookback=self.lookback, name=name, path=path, vmin=vmin, vmax=vmax ) alphas = alphas.mean(axis=0) # (lookback, ins, 1) alphas = alphas[..., 0] # (lookback, ins) alphas = alphas.transpose(1, 0) # (ins, lookback) all_cols = self.input_features plt.close('all') fig, ax = plt.subplots() fig.set_figwidth(16) fig.set_figheight(16) xticklabels=["t-"+str(i) for i in np.arange(self.lookback, 0, -1)] imshow(alphas, ax=ax, xticklabels=xticklabels, yticklabels=list(all_cols), ax_kws=dict(title="Importance of features and timesteps"), annotate=annotate, show=False) plt.savefig(os.path.join(path, f'acts_{name}'), dpi=400, bbox_inches='tight') plt.close('all') plt.bar(range(self.num_ins), betas, **bar_kws) plt.xticks(ticks=range(len(all_cols)), labels=list(all_cols), rotation=90, fontsize=12) plt.savefig(os.path.join(path, f'feature_importance_{name}'), dpi=400, bbox_inches='tight') return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/pytorch_models.py
pytorch_models.py
__all__ = ["np", "os", "plt", "mpl", "pd", "random", "scipy", "stats", "easy_mpl", "SeqMetrics", "sklearn", "xgboost", "catboost", "lightgbm", "skopt", "hyperopt", "hp", "optuna", "xr", "fiona", "netCDF4", "sns", "imageio", "shapefile", "tf", "torch", "keras", "requests", "plotly", "h5py", "lime", "xgboost_models", "catboost_models", "lightgbm_models", "sklearn_models", "get_attributes", "wandb", "WandbCallback", ] from types import FunctionType import os import random import easy_mpl import scipy from scipy import stats import SeqMetrics import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt try: import sklearn except (ModuleNotFoundError, ImportError): sklearn = None def get_attributes( aus, what: str, retain: str = None, case_sensitive: bool = False ) -> dict: """gets all callable attributes of aus from what and saves them in dictionary with their names as keys. If case_sensitive is True, then the all keys are capitalized so that calling them becomes case insensitive. It is possible that some of the attributes of tf.keras.layers are callable but still not a valid `layer`, sor some attributes of tf.keras.losses are callable but still not valid losses, in that case the error will be generated from tensorflow. We are not catching those error right now. Parameters ---------- aus : parent module what : str child module/package retain : str, optional (default=None) if duplicates of 'what' exist then whether to prefer class or function. For example, fastica and FastICA exist in sklearn.decomposition then if retain is 'function' then fastica will be kept, if retain is 'class' then FastICA is kept. If retain is None, then what comes later will overwrite the previously kept object. case_sensitive : bool, optional (default=False) whether to consider what as case-sensitive or not. In such a case, fastica and FastICA will both be saved as separate objects. Example ------- >>> get_attributes(tf.keras, 'layers') # will get all layers from tf.keras.layers """ if retain: assert retain in ("class", "function") all_attrs = {} for obj in dir(getattr(aus, what)): attr = getattr(getattr(aus, what), obj) if callable(attr) and not obj.startswith('_'): if not case_sensitive: obj = obj.upper() if obj in all_attrs and retain == 'function': if isinstance(attr, FunctionType): all_attrs[obj] = attr elif obj in all_attrs and retain == 'class': if not isinstance(attr, FunctionType): all_attrs[obj] = attr else: all_attrs[obj] = attr return all_attrs def get_sklearn_models(): if sklearn is not None: # the following line must be executed in order for get_attributes to work, don't know why from sklearn.ensemble import RandomForestRegressor sk_maj_ver = int(sklearn.__version__.split('.')[0]) sk_min_ver = int(sklearn.__version__.split('.')[1]) if sk_maj_ver == 0 and sk_min_ver < 24: from sklearn.neural_network import multilayer_perceptron else: from sklearn.neural_network import MLPClassifier from sklearn.multioutput import MultiOutputRegressor from sklearn.naive_bayes import GaussianNB from sklearn.kernel_ridge import KernelRidge from sklearn.isotonic import isotonic_regression from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.compose import TransformedTargetRegressor skl_models = get_attributes(sklearn, "ensemble", case_sensitive=True) skl_models.update(get_attributes(sklearn, "dummy", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "gaussian_process", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "compose", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "linear_model", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "multioutput", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "neighbors", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "neural_network", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "svm", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "tree", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "naive_bayes", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "kernel_ridge", case_sensitive=True)) skl_models.update(get_attributes(sklearn, "isotonic", case_sensitive=True)) from sklearn.calibration import CalibratedClassifierCV skl_models.update(get_attributes(sklearn, "calibration", case_sensitive=True)) from sklearn.semi_supervised import LabelPropagation skl_models.update(get_attributes(sklearn, "semi_supervised", case_sensitive=True)) from sklearn.discriminant_analysis import LinearDiscriminantAnalysis skl_models.update(get_attributes(sklearn, "discriminant_analysis", case_sensitive=True)) skl_models.update({"HistGradientBoostingRegressor": HistGradientBoostingRegressor, "HistGradientBoostingClassifier": HistGradientBoostingClassifier}) else: skl_models = {} return skl_models maj_version = 0 min_version = 0 try: from tensorflow import keras import tensorflow as tf maj_version = int(tf.__version__[0]) min_version = int(tf.__version__[2]) except ModuleNotFoundError: keras = None tf = None try: import skopt except ModuleNotFoundError: skopt = None try: import tcn except ModuleNotFoundError: tcn = None try: import torch except (ModuleNotFoundError, ImportError): torch = None try: import seaborn as sns except ModuleNotFoundError: sns = None try: import imageio except (ModuleNotFoundError, ImportError): imageio = None try: import shapefile except (ModuleNotFoundError, ImportError): shapefile = None catboost_models = {} try: import hyperopt except (ModuleNotFoundError, ImportError): hyperopt = None if hyperopt is None: hp = None else: from hyperopt import hp try: import xarray as xr except (ModuleNotFoundError, ImportError): xr = None try: import fiona except (ModuleNotFoundError, ImportError): fiona = None try: import netCDF4 except (ModuleNotFoundError, ImportError): netCDF4 = None try: import requests except (ModuleNotFoundError, ImportError): requests = None try: import optuna except (ModuleNotFoundError, ImportError): optuna = None try: import plotly except ImportError: plotly = None try: import h5py except ModuleNotFoundError: h5py = None try: import lime except ModuleNotFoundError: lime = None try: import catboost from catboost import CatBoostClassifier, CatBoostRegressor catboost_models.update({"CatBoostClassifier": CatBoostClassifier}) catboost_models.update({"CatBoostRegressor": CatBoostRegressor}) except ModuleNotFoundError: catboost = None xgboost_models = {} try: import xgboost from xgboost import XGBRegressor, XGBClassifier, XGBRFRegressor, XGBRFClassifier xgboost_models.update({ "XGBRegressor": XGBRegressor, "XGBClassifier": XGBClassifier, "XGBRFRegressor": XGBRFRegressor, "XGBRFClassifier": XGBRFClassifier, }) except ModuleNotFoundError: xgboost = None lightgbm_models = {} try: import lightgbm from lightgbm.sklearn import LGBMClassifier, LGBMRegressor lightgbm_models.update({"LGBMClassifier": LGBMClassifier, "LGBMRegressor": LGBMRegressor}) except ModuleNotFoundError: lightgbm = None sklearn_models = get_sklearn_models() if sklearn is not None: from sklearn.experimental import enable_iterative_imputer # noqa imputations = get_attributes(sklearn, 'impute', case_sensitive=True) else: imputations = {} keras = keras torch = torch tf = tf try: from wandb.keras import WandbCallback import wandb except ModuleNotFoundError: WandbCallback = None wandb = None if tf is not None: BACKEND = 'tensorflow' elif torch is not None: BACKEND = 'pytorch' else: BACKEND = None
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/backend.py
backend.py
from typing import Callable, Union from ai4water.backend import np, plt, pd from mpl_toolkits.axes_grid1 import make_axes_locatable from easy_mpl import bar_chart from easy_mpl.utils import make_cols_from_cmap def feature_interaction( predict_func:Callable, X, features, feature_names, n_classes:int = 0, num_grid_points=None, grid_types="percentile", percentile_ranges=None, grid_ranges=None, cust_grid_points=None, show_percentile=False, show_outliers=False, end_point=True, which_classes=None, predict_kwds={}, ncols=2, cmap="YlGn", border=False, figsize=None, annotate=False, annotate_counts=True, annotate_colors=("black", "white"), annotate_color_threshold=None, annotate_fmt=None, annotate_fontsize=7 ): assert isinstance(X, pd.DataFrame) num_grid_points = _expand_default(num_grid_points, 10) #assert grid_types in ['percentile', 'equal'] grid_types = _expand_default(grid_types, 'percentile') percentile_ranges = _expand_default(percentile_ranges, None) _check_percentile_range(percentile_range=percentile_ranges[0]) _check_percentile_range(percentile_range=percentile_ranges[1]) grid_ranges = _expand_default(grid_ranges, None) cust_grid_points = _expand_default(cust_grid_points, None) if not show_outliers: show_outliers = [False, False] else: show_outliers = [True, True] for i in range(2): if (percentile_ranges[i] is None) and (grid_ranges[i] is None) and (cust_grid_points[i] is None): show_outliers[i] = False feature_types = [_check_feature(feature=features[0], df=X), _check_feature(feature=features[1], df=X)] # prediction prediction = predict_func(X, **predict_kwds) info_df = X[_make_list(features[0]) + _make_list(features[1])].copy() actual_prediction_columns = ['actual_prediction'] if n_classes == 0: info_df['actual_prediction'] = prediction elif n_classes == 2: info_df['actual_prediction'] = prediction[:, 1] else: plot_classes = range(n_classes) if which_classes is not None: plot_classes = sorted(which_classes) actual_prediction_columns = [] for class_idx in plot_classes: info_df['actual_prediction_%d' % class_idx] = prediction[:, class_idx] actual_prediction_columns.append('actual_prediction_%d' % class_idx) agg_dict = {} actual_prediction_columns_qs = [] for idx in range(len(actual_prediction_columns)): agg_dict[actual_prediction_columns[idx]] = [q1, q2, q3] actual_prediction_columns_qs += [actual_prediction_columns[idx] + '_%s' % q for q in ['q1', 'q2', 'q3']] agg_dict['fake_count'] = 'count' data_x, actual_plot_data, prepared_results = _prepare_info_plot_interact_data( data_input=info_df, features=features, feature_types=feature_types, num_grid_points=num_grid_points, grid_types=grid_types, percentile_ranges=percentile_ranges, grid_ranges=grid_ranges, cust_grid_points=cust_grid_points, show_percentile=show_percentile, show_outliers=show_outliers, endpoint=end_point, agg_dict=agg_dict) actual_plot_data.columns = ['_'.join(col) if col[1] != '' else col[0] for col in actual_plot_data.columns] actual_plot_data = actual_plot_data.rename(columns={'fake_count_count': 'fake_count'}) # prepare summary data frame summary_df, info_cols = _prepare_info_plot_interact_summary( data_x=data_x, plot_data=actual_plot_data, prepared_results=prepared_results, feature_types=feature_types) summary_df = summary_df[info_cols + ['count'] + actual_prediction_columns_qs] vals = [] for i in np.unique(summary_df['x1']): row = summary_df['actual_prediction_q2'].loc[summary_df['x1'] == i] for j in np.unique(summary_df['x2'])[::-1]: vals.append(row.iloc[j]) counts = [] for i in np.unique(summary_df['x1']): row = summary_df['count'].loc[summary_df['x1'] == i] for j in np.unique(summary_df['x2'])[::-1]: counts.append(row.iloc[j]) xticklabels = summary_df.loc[summary_df['x1'] == 0]['display_column_2'].values[::-1] #if yticklabels is None: yticklabels = summary_df.loc[summary_df['x2'] == 0]['display_column_1'].values x = np.array(vals).reshape(len(yticklabels), len(xticklabels)) df = pd.DataFrame(x, columns=xticklabels, index=yticklabels) counts = np.array(counts).reshape(len(yticklabels), len(xticklabels)) counts = pd.DataFrame(counts, columns=xticklabels, index=yticklabels, dtype=int) fig, axes = plt.subplots(figsize=figsize) im, cbar = heatmap( df, row_labels=df.index, col_labels=df.columns, ax=axes, cmap=cmap, cbarlabel="Median Prediction", border=border ) axes.set_ylabel(features[0]) axes.set_xlabel(features[1]) if annotate: if annotate_counts: annotate_imshow( im, counts.values, fmt=annotate_fmt or "{:n}", fontsize=annotate_fontsize, textcolors=annotate_colors, threshold=annotate_color_threshold) else: annotate_imshow( im, fmt=annotate_fmt or "{:.2f}", fontsize=annotate_fontsize, textcolors=annotate_colors, threshold=annotate_color_threshold, ) return axes, summary_df def prediction_distribution_plot( mode:str, inputs, prediction, feature, feature_name, n_classes: int = None, num_grid_points=10, grid_type='percentile', percentile_range=None, grid_range=None, cust_grid_points=None, show_percentile=False, show_outliers=False, end_point=True, classes=None, ncols=2, figsize=None, show=True, ): """ data = busan_beach() model = Model(model="XGBRegressor") model.fit(data=data) y = model.predict_on_training_data(data=data) x, _ = model.training_data(data=data) prediction_distribution_plot( model.mode, inputs=pd.DataFrame(x, columns=model.input_features), prediction=y, feature='tide_cm', feature_name='tide_cm', show_percentile=True, n_classes=model.num_classes ) plt.show() """ if mode != "regression": assert n_classes is not None is_binary = False if n_classes == 2: is_binary = True # check inputs feature_type, show_outliers = _check_info_plot_params( df=inputs, feature=feature, grid_type=grid_type, percentile_range=percentile_range, grid_range=grid_range, cust_grid_points=cust_grid_points, show_outliers=show_outliers) # make predictions # info_df only contains feature value and actual predictions info_df = inputs[_make_list(feature)] actual_prediction_columns = ['actual_prediction'] if mode == "regression": info_df['actual_prediction'] = prediction elif is_binary: info_df['actual_prediction'] = prediction[:, 1] else: plot_classes = range(n_classes) if classes is not None: _check_classes(classes_list=classes, n_classes=n_classes) plot_classes = sorted(classes) actual_prediction_columns = [] for class_idx in plot_classes: info_df['actual_prediction_%d' % class_idx] = prediction[:, class_idx] actual_prediction_columns.append('actual_prediction_%d' % class_idx) info_df_x, summary_df, info_cols = _prepare_info_plot_data( feature=feature, feature_type=feature_type, data=info_df, num_grid_points=num_grid_points, grid_type=grid_type, percentile_range=percentile_range, grid_range=grid_range, cust_grid_points=cust_grid_points, show_percentile=show_percentile, show_outliers=show_outliers, endpoint=end_point) # prepare data for box lines # each box line contains 'x' and actual prediction q1, q2, q3 box_lines = [] actual_prediction_columns_qs = [] for idx in range(len(actual_prediction_columns)): box_line = info_df_x.groupby('x', as_index=False).agg( {actual_prediction_columns[idx]: [q1, q2, q3]}).sort_values('x', ascending=True) box_line.columns = ['_'.join(col) if col[1] != '' else col[0] for col in box_line.columns] box_lines.append(box_line) actual_prediction_columns_qs += [actual_prediction_columns[idx] + '_%s' % q for q in ['q1', 'q2', 'q3']] summary_df = summary_df.merge(box_line, on='x', how='outer').fillna(0) summary_df = summary_df[info_cols + ['count'] + actual_prediction_columns_qs] # Draw the bar chart fig, ax = plt.subplots(figsize=figsize) color = make_cols_from_cmap("PuBu", len(summary_df), 0.2) ax = bar_chart( summary_df['actual_prediction_q2'], summary_df['display_column'], ax_kws={"xlabel":"Mean Prediction", "xlabel_kws":{"fontsize": 14}, "ylabel": f"{feature_name}", 'ylabel_kws': {'fontsize': 14}}, show=False, color=color, bar_labels=summary_df['count'], bar_label_kws={"color": "black", 'label_type': 'edge', 'fontsize': 14}, ax=ax, ) if show: plt.tight_layout() plt.show() return ax, summary_df def heatmap( data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", xlabel_on_top=True, border:bool = False, **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Parameters ---------- data A 2D numpy array of shape (M, N). row_labels A list or array of length M with the labels for the rows. col_labels A list or array of length N with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. border : xlabel_on_top **kwargs All other arguments are forwarded to `imshow`. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar # cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) # cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) fig: plt.Figure = plt.gcf() cbar = fig.colorbar(im, orientation="vertical", pad=0.2, cax=cax) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # Show all ticks and label them with the respective list entries. ax.set_xticks(np.arange(data.shape[1])) ax.set_xticklabels(col_labels) ax.set_yticks(np.arange(data.shape[0])) ax.set_yticklabels(row_labels) if xlabel_on_top: # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) #else: # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") if not border: # Turn spines off and create white grid. # in older versions ax.spines is dict and in newer versions it is list if isinstance(ax.spines, dict): for v in ax.spines.values(): v.set_visible(False) else: ax.spines[:].set_visible(False) if xlabel_on_top: ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) else: ax.set_xticks(np.arange(data.shape[1] - 1) + .5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def annotate_imshow( im, data:np.ndarray=None, textcolors:Union[tuple, np.ndarray]=("black", "white"), threshold=None, fmt = "{:.2f}", **text_kws ): """annotates imshow https://matplotlib.org/stable/gallery/images_contours_and_fields/image_annotated_heatmap.html """ if data is None: data = im.get_array() use_threshold = True if isinstance(textcolors, np.ndarray) and textcolors.shape == data.shape: assert threshold is None, f"if textcolors is given as array then threshold should be None" use_threshold = False else: if threshold is not None: threshold = im.norm(threshold) else: threshold = im.norm(data.max()) / 2 for i in range(data.shape[0]): for j in range(data.shape[1]): s = fmt.format(float(data[i, j])) if use_threshold: _ = im.axes.text(j, i, s, color=textcolors[int(im.norm(data[i, j]) > threshold)], **text_kws) else: _ = im.axes.text(j, i, s, color=textcolors[i, j], **text_kws) return def _make_list(x): if not isinstance(x, list): return [x] return x def q1(x): return x.quantile(0.25) def q2(x): return x.quantile(0.5) def q3(x): return x.quantile(0.75) def _check_classes(classes_list, n_classes): """Makre sure classes list is valid Notes ----- class index starts from 0 """ if len(classes_list) > 0 and n_classes > 2: if np.min(classes_list) < 0: raise ValueError('class index should be >= 0.') if np.max(classes_list) > n_classes - 1: raise ValueError('class index should be < n_classes.') return def _expand_default(x, default): """Create a list of default values""" if x is None: return [default] * 2 return x def _check_percentile_range(percentile_range): """Make sure percentile range is valid""" if percentile_range is not None: if type(percentile_range) != tuple: raise ValueError('percentile_range: should be a tuple') if len(percentile_range) != 2: raise ValueError('percentile_range: should contain 2 elements') if np.max(percentile_range) > 100 or np.min(percentile_range) < 0: raise ValueError('percentile_range: should be between 0 and 100') return def _check_feature(feature, df): """Make sure feature exists and infer feature type Feature types ------------- 1. binary 2. onehot 3. numeric """ if type(feature) == list: if len(feature) < 2: raise ValueError('one-hot encoding feature should contain more than 1 element') if not set(feature) < set(df.columns.values): raise ValueError('feature does not exist: %s' % str(feature)) feature_type = 'onehot' else: if feature not in df.columns.values: raise ValueError('feature does not exist: %s' % feature) if sorted(list(np.unique(df[feature]))) == [0, 1]: feature_type = 'binary' else: feature_type = 'numeric' return feature_type def _prepare_info_plot_interact_data(data_input, features, feature_types, num_grid_points, grid_types, percentile_ranges, grid_ranges, cust_grid_points, show_percentile, show_outliers, endpoint, agg_dict): """Prepare data for information interact plots""" prepared_results = [] for i in range(2): prepared_result = _prepare_data_x( feature=features[i], feature_type=feature_types[i], data=data_input, num_grid_points=num_grid_points[i], grid_type=grid_types[i], percentile_range=percentile_ranges[i], grid_range=grid_ranges[i], cust_grid_points=cust_grid_points[i], show_percentile=show_percentile, show_outliers=show_outliers[i], endpoint=endpoint) prepared_results.append(prepared_result) if i == 0: data_input = prepared_result['data'].rename(columns={'x': 'x1'}) data_x = prepared_results[1]['data'].rename(columns={'x': 'x2'}) data_x['fake_count'] = 1 plot_data = data_x.groupby(['x1', 'x2'], as_index=False).agg(agg_dict) return data_x, plot_data, prepared_results def _prepare_data_x(feature, feature_type, data, num_grid_points, grid_type, percentile_range, grid_range, cust_grid_points, show_percentile, show_outliers, endpoint): """Map value to bucket based on feature grids""" display_columns = [] bound_ups = [] bound_lows = [] percentile_columns = [] percentile_bound_lows = [] percentile_bound_ups = [] data_x = data.copy() if feature_type == 'binary': feature_grids = np.array([0, 1]) display_columns = ['%s_0' % feature, '%s_1' % feature] data_x['x'] = data_x[feature] if feature_type == 'numeric': percentile_info = None if cust_grid_points is None: feature_grids, percentile_info = _get_grids( feature_values=data_x[feature].values, num_grid_points=num_grid_points, grid_type=grid_type, percentile_range=percentile_range, grid_range=grid_range) else: feature_grids = np.array(sorted(cust_grid_points)) if not show_outliers: data_x = data_x[(data_x[feature] >= feature_grids[0]) & (data_x[feature] <= feature_grids[-1])].reset_index(drop=True) # map feature value into value buckets data_x['x'] = data_x[feature].apply(lambda x: _find_bucket(x=x, feature_grids=feature_grids, endpoint=endpoint)) uni_xs = sorted(data_x['x'].unique()) # create bucket names display_columns, bound_lows, bound_ups = _make_bucket_column_names(feature_grids=feature_grids, endpoint=endpoint) display_columns = np.array(display_columns)[range(uni_xs[0], uni_xs[-1]+1)] bound_lows = np.array(bound_lows)[range(uni_xs[0], uni_xs[-1] + 1)] bound_ups = np.array(bound_ups)[range(uni_xs[0], uni_xs[-1] + 1)] # create percentile bucket names if show_percentile and grid_type == 'percentile': percentile_columns, percentile_bound_lows, percentile_bound_ups = \ _make_bucket_column_names_percentile(percentile_info=percentile_info, endpoint=endpoint) percentile_columns = np.array(percentile_columns)[range(uni_xs[0], uni_xs[-1]+1)] percentile_bound_lows = np.array(percentile_bound_lows)[range(uni_xs[0], uni_xs[-1] + 1)] percentile_bound_ups = np.array(percentile_bound_ups)[range(uni_xs[0], uni_xs[-1] + 1)] # adjust results data_x['x'] = data_x['x'] - data_x['x'].min() if feature_type == 'onehot': feature_grids = display_columns = np.array(feature) data_x['x'] = data_x[feature].apply(lambda x: _find_onehot_actual(x=x), axis=1) data_x = data_x[~data_x['x'].isnull()].reset_index(drop=True) data_x['x'] = data_x['x'].map(int) results = { 'data': data_x, 'value_display': (list(display_columns), list(bound_lows), list(bound_ups)), 'percentile_display': (list(percentile_columns), list(percentile_bound_lows), list(percentile_bound_ups)) } return results def _get_grids(feature_values, num_grid_points, grid_type, percentile_range, grid_range): """Calculate grid points for numeric feature Returns ------- feature_grids: 1d-array calculated grid points percentile_info: 1d-array or [] percentile information for feature_grids exists when grid_type='percentile' """ if grid_type == 'percentile': # grid points are calculated based on percentile in unique level # thus the final number of grid points might be smaller than num_grid_points start, end = 0, 100 if percentile_range is not None: start, end = np.min(percentile_range), np.max(percentile_range) percentile_grids = np.linspace(start=start, stop=end, num=num_grid_points) value_grids = np.percentile(feature_values, percentile_grids) grids_df = pd.DataFrame() grids_df['percentile_grids'] = [round(v, 2) for v in percentile_grids] grids_df['value_grids'] = value_grids grids_df = grids_df.groupby(['value_grids'], as_index=False).agg( {'percentile_grids': lambda v: str(tuple(v)).replace(',)', ')')}).sort_values('value_grids', ascending=True) feature_grids, percentile_info = grids_df['value_grids'].values, grids_df['percentile_grids'].values else: if grid_range is not None: value_grids = np.linspace(np.min(grid_range), np.max(grid_range), num_grid_points) else: value_grids = np.linspace(np.min(feature_values), np.max(feature_values), num_grid_points) feature_grids, percentile_info = value_grids, [] return feature_grids, percentile_info def _find_onehot_actual(x): """Map one-hot value to one-hot name""" try: value = list(x).index(1) except: value = np.nan return value def _find_bucket(x, feature_grids, endpoint): """Find bucket that x falls in""" # map value into value bucket if x < feature_grids[0]: bucket = 0 else: if endpoint: if x > feature_grids[-1]: bucket = len(feature_grids) else: bucket = len(feature_grids) - 1 for i in range(len(feature_grids) - 2): if feature_grids[i] <= x < feature_grids[i + 1]: bucket = i + 1 else: if x >= feature_grids[-1]: bucket = len(feature_grids) else: bucket = len(feature_grids) - 1 for i in range(len(feature_grids) - 2): if feature_grids[i] <= x < feature_grids[i + 1]: bucket = i + 1 return bucket def _make_bucket_column_names_percentile(percentile_info, endpoint): """Create bucket names based on percentile info""" # create percentile bucket names percentile_column_names = [] percentile_info_numeric = [] for p_idx, p in enumerate(percentile_info): p_array = np.array(p.replace('(', '').replace(')', '').split(', ')).astype(np.float64) if p_idx == 0 or p_idx == len(percentile_info) - 1: p_numeric = np.min(p_array) else: p_numeric = np.max(p_array) percentile_info_numeric.append(p_numeric) percentile_bound_lows = [0] percentile_bound_ups = [percentile_info_numeric[0]] for i in range(len(percentile_info) - 1): # for each grid point, percentile information is in tuple format # (percentile1, percentile2, ...) # some grid points would belong to multiple percentiles low, high = percentile_info_numeric[i], percentile_info_numeric[i + 1] low_str, high_str = _get_string(x=low), _get_string(x=high) percentile_column_name = '[%s, %s)' % (low_str, high_str) percentile_bound_lows.append(low) percentile_bound_ups.append(high) if i == len(percentile_info) - 2: if endpoint: percentile_column_name = '[%s, %s]' % (low_str, high_str) else: percentile_column_name = '[%s, %s)' % (low_str, high_str) percentile_column_names.append(percentile_column_name) low, high = percentile_info_numeric[0], percentile_info_numeric[-1] low_str, high_str = _get_string(x=low), _get_string(x=high) if endpoint: percentile_column_names = ['< %s' % low_str] + percentile_column_names + ['> %s' % high_str] else: percentile_column_names = ['< %s' % low_str] + percentile_column_names + ['>= %s' % high_str] percentile_bound_lows.append(high) percentile_bound_ups.append(100) return percentile_column_names, percentile_bound_lows, percentile_bound_ups def _get_string(x): if int(x) == x: x_str = str(int(x)) elif round(x, 1) == x: x_str = str(round(x, 1)) else: x_str = str(round(x, 2)) return x_str def _make_bucket_column_names(feature_grids, endpoint): """Create bucket names based on feature grids""" # create bucket names column_names = [] bound_lows = [np.nan] bound_ups = [feature_grids[0]] feature_grids_str = [] for g in feature_grids: feature_grids_str.append(_get_string(x=g)) # number of buckets: len(feature_grids_str) - 1 for i in range(len(feature_grids_str) - 1): column_name = '[%s, %s)' % (feature_grids_str[i], feature_grids_str[i + 1]) bound_lows.append(feature_grids[i]) bound_ups.append(feature_grids[i + 1]) if (i == len(feature_grids_str) - 2) and endpoint: column_name = '[%s, %s]' % (feature_grids_str[i], feature_grids_str[i + 1]) column_names.append(column_name) if endpoint: column_names = ['< %s' % feature_grids_str[0]] + column_names + ['> %s' % feature_grids_str[-1]] else: column_names = ['< %s' % feature_grids_str[0]] + column_names + ['>= %s' % feature_grids_str[-1]] bound_lows.append(feature_grids[-1]) bound_ups.append(np.nan) return column_names, bound_lows, bound_ups def _check_info_plot_params(df, feature, grid_type, percentile_range, grid_range, cust_grid_points, show_outliers): """Check information plot parameters""" assert isinstance(df, pd.DataFrame) feature_type = _check_feature(feature=feature, df=df) assert grid_type in ['percentile', 'equal'] _check_percentile_range(percentile_range=percentile_range) # show_outliers should be only turned on when necessary if (percentile_range is None) and (grid_range is None) and (cust_grid_points is None): show_outliers = False return feature_type, show_outliers def _prepare_info_plot_interact_summary(data_x, plot_data, prepared_results, feature_types): """Prepare summary data frame for interact plots""" x1_values = [] x2_values = [] for x1_value in range(data_x['x1'].min(), data_x['x1'].max() + 1): for x2_value in range(data_x['x2'].min(), data_x['x2'].max() + 1): x1_values.append(x1_value) x2_values.append(x2_value) summary_df = pd.DataFrame() summary_df['x1'] = x1_values summary_df['x2'] = x2_values summary_df = summary_df.merge(plot_data.rename(columns={'fake_count': 'count'}), on=['x1', 'x2'], how='left').fillna(0) info_cols = ['x1', 'x2', 'display_column_1', 'display_column_2'] for i in range(2): display_columns_i, bound_lows_i, bound_ups_i = prepared_results[i]['value_display'] percentile_columns_i, percentile_bound_lows_i, percentile_bound_ups_i = prepared_results[i]['percentile_display'] summary_df['display_column_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply(lambda x: display_columns_i[int(x)]) if feature_types[i] == 'numeric': summary_df['value_lower_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply(lambda x: bound_lows_i[int(x)]) summary_df['value_upper_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply(lambda x: bound_ups_i[int(x)]) info_cols += ['value_lower_%d' % (i + 1), 'value_upper_%d' % (i + 1)] if len(percentile_columns_i) != 0: summary_df['percentile_column_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply( lambda x: percentile_columns_i[int(x)]) summary_df['percentile_lower_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply( lambda x: percentile_bound_lows_i[int(x)]) summary_df['percentile_upper_%d' % (i + 1)] = summary_df['x%d' % (i + 1)].apply( lambda x: percentile_bound_ups_i[int(x)]) info_cols += ['percentile_column_%d' % (i + 1), 'percentile_lower_%d' % (i + 1), 'percentile_upper_%d' % (i + 1)] return summary_df, info_cols def _prepare_info_plot_data(feature, feature_type, data, num_grid_points, grid_type, percentile_range, grid_range, cust_grid_points, show_percentile, show_outliers, endpoint): """Prepare data for information plots""" prepared_results = _prepare_data_x( feature=feature, feature_type=feature_type, data=data, num_grid_points=num_grid_points, grid_type=grid_type, percentile_range=percentile_range, grid_range=grid_range, cust_grid_points=cust_grid_points, show_percentile=show_percentile, show_outliers=show_outliers, endpoint=endpoint) data_x = prepared_results['data'] display_columns, bound_lows, bound_ups = prepared_results['value_display'] percentile_columns, percentile_bound_lows, percentile_bound_ups = prepared_results['percentile_display'] data_x['fake_count'] = 1 bar_data = data_x.groupby('x', as_index=False).agg({'fake_count': 'count'}).sort_values('x', ascending=True) summary_df = pd.DataFrame(np.arange(data_x['x'].min(), data_x['x'].max() + 1), columns=['x']) summary_df = summary_df.merge(bar_data.rename(columns={'fake_count': 'count'}), on='x', how='left').fillna(0) summary_df['display_column'] = summary_df['x'].apply(lambda x: display_columns[int(x)]) info_cols = ['x', 'display_column'] if feature_type == 'numeric': summary_df['value_lower'] = summary_df['x'].apply(lambda x: bound_lows[int(x)]) summary_df['value_upper'] = summary_df['x'].apply(lambda x: bound_ups[int(x)]) info_cols += ['value_lower', 'value_upper'] if len(percentile_columns) != 0: summary_df['percentile_column'] = summary_df['x'].apply(lambda x: percentile_columns[int(x)]) summary_df['percentile_lower'] = summary_df['x'].apply(lambda x: percentile_bound_lows[int(x)]) summary_df['percentile_upper'] = summary_df['x'].apply(lambda x: percentile_bound_ups[int(x)]) info_cols += ['percentile_column', 'percentile_lower', 'percentile_upper'] return data_x, summary_df, info_cols
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/_info_plots.py
_info_plots.py
from typing import Union from SeqMetrics import RegressionMetrics, ClassificationMetrics from SeqMetrics.utils import plot_metrics from ai4water.backend import easy_mpl as ep from ai4water.backend import np, pd, mpl, plt, os, wandb, sklearn from ai4water.utils.utils import AttribtueSetter from ai4water.utils.utils import get_values from ai4water.utils.utils import dateandtime_now, ts_features, dict_to_file from ai4water.utils.visualizations import Plot, init_subplots from ai4water.utils.visualizations import murphy_diagram, fdc_plot, edf_plot # competitive skill score plot/ bootstrap skill score plot as in MLAir # rank histogram and reliability diagram for probabilitic forecasting model. # show availability plot of data # classification report as in yellow brick # class prediction error as in yellow brick # discremination threshold as in yellow brick # Friedman's H statistic https://blog.macuyiko.com/post/2019/discovering-interaction-effects-in-ensemble-models.html # silhouette analysis # KS Statistic plot from labels and scores/probabilities # reliability curves # cumulative gain # lift curve # mdates = mpl.dates # in order to unify the use of metrics Metrics = { 'regression': lambda t, p, multiclass=False, **kwargs: RegressionMetrics(t, p, **kwargs), 'classification': lambda t, p, multiclass=False, **kwargs: ClassificationMetrics(t, p, multiclass=multiclass, **kwargs) } class ProcessPredictions(Plot): """post processing of results after training.""" available_plots = [ 'regression', 'prediction', 'residual', 'murphy', 'fdc', 'errors', "edf" ] def __init__( self, mode: str, forecast_len: int = None, output_features: Union[list, str] = None, wandb_config: dict = None, path: str = None, dpi: int = 300, show=1, save: bool = True, plots: Union[list, str] = None, quantiles:int=None, ): """ Parameters ---------- mode : str either "regression" or "classification" forecast_len : int, optional (default=None) forecast length, only valid when mode is regression output_features : str, optional names of output features plots : int/list, optional (default=None) the names of plots to draw. Following plots are avialble. ``residual`` ``regression`` ``prediction`` ``errors`` ``fdc`` ``murphy`` ``edf`` path : str folder in which to save the results/plots show : bool whether to show the plots or not save : bool whether to save the plots or not wandb_config : weights and bias configuration dictionary dpi : int determines resolution of saved figure Examples -------- >>> import numpy as np >>> from ai4water.postprocessing import ProcessPredictions >>> true = np.random.random(100) >>> predicted = np.random.random(100) >>> processor = ProcessPredictions("regression", forecast_len=1, ... plots=['prediction', 'regression', 'residual']) >>> processor(true, predicted) # for postprocessing of classification, we need to set the mode >>> true = np.random.randint(0, 2, (100, 1)) >>> predicted = np.random.randint(0, 2, (100, 1)) >>> processor = ProcessPredictions("classification") >>> processor(true, predicted) """ self.mode = mode self.forecast_len = forecast_len self.output_features = output_features self.wandb_config = wandb_config self.quantiles = quantiles self.show = show self.save = save self.dpi = dpi if plots is None: if mode == "regression": plots = ['regression', 'prediction', "residual", "errors", "edf"] else: plots = [] elif not isinstance(plots, list): plots = [plots] assert all([plot in self.available_plots for plot in plots]), f""" {plots}""" self.plots = plots super().__init__(path, save=save) @property def quantiles(self): return self._quantiles @quantiles.setter def quantiles(self, x): self._quantiles = x def _classes(self, array): if self.mode == "classification": return np.unique(array) return [] def n_classes(self, array): if self.mode == "classification": return len(self._classes(array)) return None def save_or_show(self, show=None, **kwargs): if show is None: show = self.show return super().save_or_show(save=self.save, show=show, **kwargs) def __call__( self, true_outputs, predicted, metrics="minimal", prefix="test", index=None, inputs=None, model=None, ): if self.quantiles: return self.process_quantiles(true_outputs, predicted) # it true_outputs and predicted are dictionary of len(1) then just get the values true_outputs = get_values(true_outputs) predicted = get_values(predicted) true_outputs = np.array(true_outputs) predicted = np.array(predicted) AttribtueSetter(self, true_outputs) key = {"regression": "rgr", "classification": "cls"} getattr(self, f"process_{key[self.mode]}_results")( true_outputs, predicted, inputs=inputs, metrics=metrics, prefix=prefix, index=index, ) return def process_quantiles(self, true, predicted): #assert self.num_outs == 1 if true.ndim == 2: # todo, this should be avoided true = np.expand_dims(true, axis=-1) self.quantiles = self.quantiles self.plot_quantiles1(true, predicted) self.plot_quantiles2(true, predicted) self.plot_all_qs(true, predicted) return def horizon_plots(self, errors: dict, fname=''): plt.close('') _, axis = plt.subplots(len(errors), sharex='all') legends = {'r2': "$R^2$", 'rmse': "RMSE", 'nse': "NSE"} idx = 0 for metric_name, val in errors.items(): ax = axis[idx] ax.plot(val, '--o', label=legends.get(metric_name, metric_name)) ax.legend(fontsize=14) if idx >= len(errors) - 1: ax.set_xlabel("Horizons", fontsize=14) ax.set_ylabel(legends.get(metric_name, metric_name), fontsize=14) idx += 1 self.save_or_show(fname=fname) return def plot_results( self, true, predicted: pd.DataFrame, prefix, where, inputs=None, ): """ # kwargs can be any/all of followings # fillstyle: # marker: # linestyle: # markersize: # color: """ for plot in self.plots: if plot == "murphy": self.murphy_plot(true, predicted, prefix, where, inputs) else: getattr(self, f"{plot}_plot")(true, predicted, prefix, where) return def average_target_across_feature(self, true, predicted, feature): raise NotImplementedError def prediction_distribution_across_feature(self, true, predicted, feature): raise NotImplementedError def edf_plot(self, true, predicted, prefix, where, **kwargs): """cumulative distribution function of absolute error between true and predicted. Parameters ----------- true : array like predicted : array like prefix : where : """ if isinstance(true, (pd.DataFrame, pd.Series)): true = true.values if isinstance(predicted, (pd.DataFrame, pd.Series)): predicted = predicted.values error = np.abs(true - predicted) edf_plot(error, xlabel="Absolute Error", show=False) return self.save_or_show(fname=f"{prefix}_error_dist", where=where) def murphy_plot(self, true, predicted, prefix, where, inputs, **kwargs): murphy_diagram(true, predicted, reference_model="LinearRegression", plot_type="diff", inputs=inputs, show=False, **kwargs) return self.save_or_show(fname=f"{prefix}_murphy", where=where) def fdc_plot(self, true, predicted, prefix, where, **kwargs): fdc_plot(predicted, true, show=False, **kwargs) return self.save_or_show(fname=f"{prefix}_fdc", where=where) def residual_plot( self, true, predicted, prefix, where, hist_kws:dict = None, **kwargs ): """ Makes residual plot Parameters ---------- true : array like predicted : array like prefix : where : hist_kws : """ fig, axis = plt.subplots(2, sharex="all") x = predicted.values y = true.values - predicted.values _hist_kws = dict(bins=20, linewidth=0.5, edgecolor="k", grid=False, color='khaki') if hist_kws is not None: _hist_kws.update(hist_kws) ep.hist(y, show=False, ax=axis[0], **_hist_kws) axis[0].set_xticks([]) ep.plot(x, y, 'o', show=False, ax=axis[1], color="darksalmon", markerfacecolor=np.array([225, 121, 144]) / 256.0, markeredgecolor="black", markeredgewidth=0.5, ax_kws=dict( xlabel="Predicted", ylabel="Residual", xlabel_kws={"fontsize": 14}, ylabel_kws={"fontsize": 14}), ) # draw horizontal line on y=0 axis[1].axhline(0.0) plt.suptitle("Residual") return self.save_or_show(fname=f"{prefix}_residual", where=where) def errors_plot(self, true, predicted, prefix, where, **kwargs): errors = Metrics[self.mode](true, predicted, multiclass=self.is_multiclass_) return plot_metrics( errors.calculate_all(), show=self.show, save_path=os.path.join(self.path, where), save=self.save, text_kws = {"fontsize": 16}, max_metrics_per_fig=20, ) def regression_plot( self, true, predicted, target_name, where, annotate_with="r2" ): annotation_val = getattr(RegressionMetrics(true, predicted), annotate_with)() metric_names = {'r2': "$R^2$"} annotation_key = metric_names.get(annotate_with, annotate_with) RIDGE_LINE_KWS = {'color': 'firebrick', 'lw': 1.0} if isinstance(predicted, (pd.DataFrame, pd.Series)): predicted = predicted.values marginals = True if np.isnan(np.array(true)).any() or np.isnan(predicted).any(): marginals = False # if all the values in predicted are same, calculation of kde gives error if (predicted == predicted[0]).all(): marginals = False try: axes = ep.regplot(true, predicted, marker_color='crimson', line_color='k', scatter_kws={'marker': "o", 'edgecolors': 'black', 'linewidth':0.5}, show=False, marginals=marginals, marginal_ax_pad=0.25, marginal_ax_size=0.7, ridge_line_kws=RIDGE_LINE_KWS, hist=False, ) except np.linalg.LinAlgError: axes = ep.regplot(true, predicted, marker_color='crimson', line_color='k', scatter_kws={'marker': "o", 'edgecolors': 'black', 'linewidth': 0.5}, show=False, marginals=False ) axes.annotate(f'{annotation_key}: {round(annotation_val, 3)}', xy=(0.3, 0.95), xycoords='axes fraction', horizontalalignment='right', verticalalignment='top', fontsize=16) return self.save_or_show(fname=f"{target_name}_regression", where=where) def prediction_plot(self, true, predicted, prefix, where): mpl.rcParams.update(mpl.rcParamsDefault) _, axis = init_subplots(width=12, height=8) # it is quite possible that when data is datetime indexed, then it is not # equalidistant and large amount of graph # will have not data in that case lines plot will create a lot of useless # interpolating lines where no data is present. datetime_axis = False if isinstance(true.index, pd.DatetimeIndex) and pd.infer_freq(true.index) is not None: style = '.' true = true predicted = predicted datetime_axis = True else: if np.isnan(true.values).sum() > 0: # For Nan values we should be using this style otherwise nothing is plotted. style = '.' else: style = '-' true = true.values predicted = predicted.values ms = 4 if style == '.' else 2 # because the data is very large, so better to use small marker size if len(true) > 1000: ms = 2 axis.plot(predicted, style, color='r', label='Prediction') axis.plot(true, style, color='b', marker='o', fillstyle='none', markersize=ms, label='True') axis.legend(loc="best", fontsize=22, markerscale=4) if datetime_axis: loc = mdates.AutoDateLocator(minticks=4, maxticks=6) axis.xaxis.set_major_locator(loc) fmt = mdates.AutoDateFormatter(loc) axis.xaxis.set_major_formatter(fmt) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.xlabel("Time", fontsize=18) return self.save_or_show(fname=f"{prefix}_prediction", where=where) def plot_all_qs(self, true_outputs, predicted, save=False): plt.close('all') plt.style.use('ggplot') st, en = 0, true_outputs.shape[0] plt.plot(np.arange(st, en), true_outputs[st:en, 0], label="True", color='navy') for idx, q in enumerate(self.quantiles): q_name = "{:.1f}".format(q * 100) plt.plot(np.arange(st, en), predicted[st:en, idx], label="q {} %".format(q_name)) plt.legend(loc="best") self.save_or_show(save, fname="all_quantiles", where='results') return def plot_quantiles1(self, true_outputs, predicted, st=0, en=None, save=True): plt.close('all') plt.style.use('ggplot') assert true_outputs.shape[-2:] == (1, 1) if en is None: en = true_outputs.shape[0] for q in range(len(self.quantiles) - 1): st_q = "{:.1f}".format(self.quantiles[q] * 100) en_q = "{:.1f}".format(self.quantiles[-q] * 100) plt.plot(np.arange(st, en), true_outputs[st:en, 0], label="True", color='navy') plt.fill_between(np.arange(st, en), predicted[st:en, q].reshape(-1, ), predicted[st:en, -q].reshape(-1, ), alpha=0.2, color='g', edgecolor=None, label=st_q + '_' + en_q) plt.legend(loc="best") self.save_or_show(save, fname='q' + st_q + '_' + en_q, where='results') return def plot_quantiles2( self, true_outputs, predicted, st=0, en=None, save=True ): plt.close('all') plt.style.use('ggplot') if en is None: en = true_outputs.shape[0] for q in range(len(self.quantiles) - 1): st_q = "{:.1f}".format(self.quantiles[q] * 100) en_q = "{:.1f}".format(self.quantiles[q + 1] * 100) plt.plot(np.arange(st, en), true_outputs[st:en, 0], label="True", color='navy') plt.fill_between(np.arange(st, en), predicted[st:en, q].reshape(-1, ), predicted[st:en, q + 1].reshape(-1, ), alpha=0.2, color='g', edgecolor=None, label=st_q + '_' + en_q) plt.legend(loc="best") self.save_or_show(save, fname='q' + st_q + '_' + en_q + ".png", where='results') return def plot_quantile(self, true_outputs, predicted, min_q: int, max_q, st=0, en=None, save=False): plt.close('all') plt.style.use('ggplot') if en is None: en = true_outputs.shape[0] q_name = "{:.1f}_{:.1f}_{}_{}".format(self.quantiles[min_q] * 100, self.quantiles[max_q] * 100, str(st), str(en)) plt.plot(np.arange(st, en), true_outputs[st:en, 0], label="True", color='navy') plt.fill_between(np.arange(st, en), predicted[st:en, min_q].reshape(-1, ), predicted[st:en, max_q].reshape(-1, ), alpha=0.2, color='g', edgecolor=None, label=q_name + ' %') plt.legend(loc="best") self.save_or_show(save, fname="q_" + q_name + ".png", where='results') return def roc_curve(self, estimator, x, y, prefix=None): if hasattr(estimator, '_model'): if estimator._model.__class__.__name__ in ["XGBClassifier", "XGBRFClassifier"] and isinstance(x, np.ndarray): x = pd.DataFrame(x, columns=estimator.input_features) plot_roc_curve(estimator, x, y.reshape(-1, )) self.save_or_show(fname=f"{prefix}_roc") return def confusion_matrix(self, true, predicted, prefix=None, cmap="Blues", **kwargs): """plots confusion matrix. cmap : **kwargs : any keyword arguments for imshow """ cm = ClassificationMetrics( true, predicted, multiclass=self.is_multiclass_).confusion_matrix() kws = { 'annotate': True, 'colorbar': True, 'cmap': cmap, 'xticklabels': self.classes_, 'yticklabels': self.classes_, 'ax_kws': {'xlabel': "Predicted Label", 'ylabel': "True Label"}, 'show': False, 'annotate_kws': {'fontsize': 14, "fmt": '%.f', 'ha':"left"} } kws.update(kwargs) ep.imshow(cm, **kws) self.save_or_show(fname=f"{prefix}_confusion_matrix") return def precision_recall_curve(self, estimator, x, y, prefix=None): if hasattr(estimator, '_model'): if estimator._model.__class__.__name__ in ["XGBClassifier", "XGBRFClassifier"] and isinstance(x, np.ndarray): x = pd.DataFrame(x, columns=estimator.input_features) plot_precision_recall_curve(estimator, x, y.reshape(-1, )) self.save_or_show(fname=f"{prefix}_plot_precision_recall_curve") return def process_rgr_results( self, true: np.ndarray, predicted: np.ndarray, metrics="minimal", prefix=None, index=None, remove_nans=True, inputs=None, ): """ predicted, true are arrays of shape (examples, outs, forecast_len). """ # if user_defined_data: if self.output_features is None: # when data is user_defined, we don't know what out_cols, and forecast_len are if predicted.size == len(predicted): out_cols = ['output'] forecast_len = 1 else: out_cols = [f'output_{i}' for i in range(predicted.shape[-1])] forecast_len = 1 true, predicted = self.maybe_not_3d_data(true, predicted) else: # for cases if they are 2D/1D, add the third dimension. true, predicted = self.maybe_not_3d_data(true, predicted) forecast_len = self.forecast_len if isinstance(forecast_len, dict): forecast_len = np.unique(list(forecast_len.values())).item() out_cols = self.output_features if isinstance(out_cols, dict): _out_cols = [] for cols in out_cols.values(): _out_cols = _out_cols + cols out_cols = _out_cols if len(out_cols) > 1 and not isinstance(predicted, np.ndarray): raise NotImplementedError(""" can not process results with more than 1 output arrays""") for idx, out in enumerate(out_cols): horizon_errors = {metric_name: [] for metric_name in ['nse', 'rmse']} for h in range(forecast_len): errs = dict() fpath = os.path.join(self.path, out) if not os.path.exists(fpath): os.makedirs(fpath) t = pd.DataFrame(true[:, idx, h], index=index, columns=['true_' + out]) p = pd.DataFrame(predicted[:, idx, h], index=index, columns=['pred_' + out]) if wandb is not None and self.wandb_config is not None: _wandb_scatter(t.values, p.values, out) df = pd.concat([t, p], axis=1) df = df.sort_index() fname = f"{prefix}_{out}_{h}" df.to_csv(os.path.join(fpath, fname + ".csv"), index_label='index') self.plot_results(t, p, prefix=fname, where=out, inputs=inputs) if remove_nans: nan_idx = np.isnan(t) t = t.values[~nan_idx] p = p.values[~nan_idx] errors = RegressionMetrics(t, p) errs[out + '_errors_' + str(h)] = getattr(errors, f'calculate_{metrics}')() errs[out + 'true_stats_' + str(h)] = ts_features(t) errs[out + 'predicted_stats_' + str(h)] = ts_features(p) dict_to_file(fpath, errors=errs, name=prefix) for p in horizon_errors.keys(): horizon_errors[p].append(getattr(errors, p)()) if forecast_len > 1: self.horizon_plots(horizon_errors, f'{prefix}_{out}_horizons.png') return def process_cls_results( self, true: np.ndarray, predicted: np.ndarray, metrics="minimal", prefix=None, index=None, inputs=None, model=None, ): """post-processes classification results.""" if self.is_multilabel_: return self.process_multilabel(true, predicted, metrics, prefix, index) if self.is_multiclass_: return self.process_multiclass(true, predicted, metrics, prefix, index) else: return self.process_binary(true, predicted, metrics, prefix, index, model=None) def process_multilabel(self, true, predicted, metrics, prefix, index): for label in range(true.shape[1]): if self.n_classes(true[:, label]) == 2: self.process_binary(true[:, label], predicted[:, label], metrics, f"{prefix}_{label}", index) else: self.process_multiclass(true[:, label], predicted[:, label], metrics, f"{prefix}_{label}", index) return def process_multiclass(self, true, predicted, metrics, prefix, index): if len(predicted) == predicted.size: predicted = predicted.reshape(-1, 1) else: predicted = np.argmax(predicted, axis=1).reshape(-1, 1) if len(true) == true.size: true = true.reshape(-1, 1) else: true = np.argmax(true, axis=1).reshape(-1, 1) if self.output_features is None: self.output_features = [f'feature_{i}' for i in range(self.n_classes(true))] self.confusion_matrix(true, predicted, prefix=prefix) fname = os.path.join(self.path, f"{prefix}_prediction.csv") pd.DataFrame(np.concatenate([true, predicted], axis=1), columns=['true', 'predicted'], index=index).to_csv(fname) class_metrics = ClassificationMetrics(true, predicted, multiclass=True) dict_to_file(self.path, errors=class_metrics.calculate_all(), name=f"{prefix}_{dateandtime_now()}.json") return def process_binary(self, true, predicted, metrics, prefix, index, model=None): assert self.n_classes(true) == 2 if model is not None: try: # todo, also plot for DL self.precision_recall_curve(model, x=true, y=predicted, prefix=prefix) self.roc_curve(model, x=true, y=predicted, prefix=prefix) except NotImplementedError: pass if predicted.ndim == 1: predicted = predicted.reshape(-1, 1) elif predicted.size != len(predicted): predicted = np.argmax(predicted, axis=1).reshape(-1, 1) if true.ndim == 1: true = true.reshape(-1, 1) elif true.size != len(true): true = np.argmax(true, axis=1).reshape(-1, 1) self.confusion_matrix(true, predicted, prefix=prefix) fpath = os.path.join(self.path, prefix) if not os.path.exists(fpath): os.makedirs(fpath) metrics_instance = ClassificationMetrics(true, predicted, multiclass=False) metrics = getattr(metrics_instance, f"calculate_{metrics}")() dict_to_file(fpath, errors=metrics, name=f"{prefix}_{dateandtime_now()}.json" ) fname = os.path.join(fpath, f"{prefix}_.csv") array = np.concatenate([true.reshape(-1, 1), predicted.reshape(-1, 1)], axis=1) pd.DataFrame(array, columns=['true', 'predicted'], index=index).to_csv(fname) return def maybe_not_3d_data(self, true, predicted): forecast_len = self.forecast_len if true.ndim < 3: if isinstance(forecast_len, dict): forecast_len = set(list(forecast_len.values())) assert len(forecast_len) == 1 forecast_len = forecast_len.pop() assert forecast_len == 1, f'{forecast_len}' axis = 2 if true.ndim == 2 else (1, 2) true = np.expand_dims(true, axis=axis) if predicted.ndim < 3: assert forecast_len == 1 axis = 2 if predicted.ndim == 2 else (1, 2) predicted = np.expand_dims(predicted, axis=axis) return true, predicted def plot_roc_curve(*args, **kwargs): try: func = sklearn.metrics.RocCurveDisplay.from_estimator except AttributeError: func = sklearn.metrics.plot_roc_curve return func(*args, **kwargs) def plot_precision_recall_curve(*args, **kwargs): try: func = sklearn.metrics.PrecisionRecallDisplay.from_estimator except AttributeError: func = sklearn.metrics.plot_precision_recall_curve return func(*args, **kwargs) def _wandb_scatter(true: np.ndarray, predicted: np.ndarray, name: str) -> None: """Adds a scatter plot on wandb.""" data = [[x, y] for (x, y) in zip(true.reshape(-1, ), predicted.reshape(-1, ))] table = wandb.Table(data=data, columns=["true", "predicted"]) wandb.log({ "scatter_plot": wandb.plot.scatter(table, "true", "predicted", title=name) }) return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/_process_predictions.py
_process_predictions.py
from itertools import zip_longest from ai4water.backend import np, mpl, plt from ai4water.utils.visualizations import Plot from ai4water.utils.utils import create_subplots class LossCurve(Plot): def __init__(self, path=None, show=1, save:bool=True): self.path = path self.show = show super().__init__(path, save=save) def plot_loss(self, history: dict, name="loss_curve", figsize:tuple=None)->plt.Axes: """Considering history is a dictionary of different arrays, possible training and validation loss arrays, this method plots those arrays.""" plt.clf() plt.close('all') plt.style.use('ggplot') legends = { 'mean_absolute_error': 'Mean Absolute Error', 'mape': 'Mean Absolute Percentage Error', 'mean_squared_logarithmic_error': 'Mean Squared Logarithmic Error', 'pbias': "Percent Bias", "nse": "Nash-Sutcliff Efficiency", "kge": "Kling-Gupta Efficiency", "tf_r2": "$R^{2}$", "r2": "$R^{2}$" } epochs = range(1, len(history['loss']) + 1) nplots = len(history) val_losses = {} losses = history.copy() for k in history.keys(): val_key = f"val_{k}" if val_key in history: nplots -= 1 val_losses[val_key] = losses.pop(val_key) fig, axis = create_subplots(nplots, figsize=figsize) if not isinstance(axis, np.ndarray): axis = np.array([axis]) axis = axis.flat for idx, (key, loss), val_data in zip_longest(range(nplots), losses.items(), val_losses.items()): ax = axis[idx] if val_data is not None: val_key, val_loss = val_data ax.plot(epochs, val_loss, color=[0.96707953, 0.46268314, 0.45772886], label='Validation ') ax.legend() ax.plot(epochs, loss, color=[0.13778617, 0.06228198, 0.33547859], label='Training ') ax.legend() ax.set_xlabel("Epochs") ax.set_ylabel(legends.get(key, key)) ax.set(frame_on=True) self.save_or_show(fname=name, show=self.show) mpl.rcParams.update(mpl.rcParamsDefault) return ax def choose_examples(x, examples_to_use, y=None): """Chooses examples from x and y""" if isinstance(examples_to_use, int): x = x[examples_to_use] x = np.expand_dims(x, 0) # dimension must not decrease index = np.array([examples_to_use]) elif isinstance(examples_to_use, float): assert examples_to_use < 1.0 # randomly choose x fraction from test_x x, index = choose_n_imp_exs(x, int(examples_to_use * len(x)), y) elif hasattr(examples_to_use, '__len__'): index = np.array(examples_to_use) x = x[index] else: raise ValueError(f"unrecognized value of examples_to_use: {examples_to_use}") return x, index def choose_n_imp_exs(x: np.ndarray, n: int, y=None): """Chooses the n important examples from x and y""" n = min(len(x), n) st = n // 2 en = n - st if y is None: idx = np.random.randint(0, len(x), n) else: st = np.argsort(y, axis=0)[0:st].reshape(-1, ) en = np.argsort(y, axis=0)[-en:].reshape(-1, ) idx = np.hstack([st, en]) x = x[idx] return x, idx
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/utils.py
utils.py
import importlib from typing import Callable, Union from SALib.plotting.hdmr import plot from SALib.plotting.bar import plot as barplot from SALib.plotting.morris import covariance_plot from ai4water.backend import easy_mpl as ep from ai4water.backend import np, pd, plt, os def sensitivity_analysis( sampler:str, analyzer:Union[str, list], func:Callable, bounds: list, sampler_kwds: dict = None, analyzer_kwds: dict = None, names: list = None, **kwargs )->dict: """ Parameters ---------- sampler : analyzer : func : bounds : sampler_kwds : analyzer_kwds : names : **kwargs : """ sampler = importlib.import_module(f"SALib.sample.{sampler}") if names is None: names = [f"Feat{i}" for i in range(len(bounds))] # Define the model inputs problem = { 'num_vars': len(bounds), 'names': names, 'bounds': bounds } sampler_kwds = sampler_kwds or {'N': 100} param_values = sampler.sample(problem=problem, **sampler_kwds) print("total samples:", len(param_values)) y = func(x=param_values, **kwargs) y = np.array(y) assert np.size(y) == len(y) , f"output must be 1 dimensional" y = y.reshape(-1, ) results = {} if isinstance(analyzer, list): for _analyzer in analyzer: print(f"Analyzing with {_analyzer}") results[_analyzer] = analyze(_analyzer, param_values, y, problem, analyzer_kwds) else: assert isinstance(analyzer, str) results[analyzer] = analyze(analyzer, param_values, y, problem, analyzer_kwds) return results def analyze(analyzer, param_values, y, problem, analyzer_kwds): _analyzer = importlib.import_module(f"SALib.analyze.{analyzer}") analyzer_kwds = analyzer_kwds or {} if analyzer in ["hdmr", "morris", "dgsm", "ff", "pawn", "rbd_fast", "delta", ] and 'X' not in analyzer_kwds: analyzer_kwds['X'] = param_values Si = _analyzer.analyze(problem=problem, Y=y, **analyzer_kwds) if 'X' in analyzer_kwds: analyzer_kwds.pop('X') return Si def sensitivity_plots(analyzer, si, path=None, show=False): if analyzer == "morris": morris_plots(si, path=path, show=show) elif analyzer in ["sobol"]: sobol_plots(si, show, path) elif analyzer == "hdmr": plt.close('all') plot(si) if path: plt.savefig(os.path.join(path, "hdmr"), bbox_inches="tight") elif analyzer in ["pawn"]: plt.close('all') si_df = si.to_df() bar_plot(si_df[["CV", "median"]], conf_col="median") if path: plt.savefig(os.path.join(path, "pawn_cv"), bbox_inches="tight") if show: plt.show() elif analyzer == "fast": plt.close('all') si_df = si.to_df() bar_plot(si_df[["S1", "S1_conf"]]) if path: plt.savefig(os.path.join(path, "fast_s1"), bbox_inches="tight") if show: plt.show() plt.close('all') bar_plot(si_df[["ST", "ST_conf"]]) if path: plt.savefig(os.path.join(path, "fast_s1"), bbox_inches="tight") if show: plt.show() elif analyzer == "delta": plt.close('all') si_df = si.to_df() bar_plot(si_df[["delta", "delta_conf"]]) if path: plt.savefig(os.path.join(path, "fast_s1"), bbox_inches="tight") if show: plt.show() plt.close('all') bar_plot(si_df[["S1", "S1_conf"]]) if path: plt.savefig(os.path.join(path, "fast_s1"), bbox_inches="tight") if show: plt.show() elif analyzer == "rbd_fast": plt.close('all') si_df = si.to_df() bar_plot(si_df[["S1", "S1_conf"]]) if path: plt.savefig(os.path.join(path, "rbd_fast_s1"), bbox_inches="tight") if show: plt.show() return def sobol_plots(si, show=False, path:str=None): total, first, second = si.to_df() plt.close('all') bar_plot(total) if path: plt.savefig(os.path.join(path, "total"), bbox_inches="tight") if show: plt.show() plt.close('all') bar_plot(first) if path: plt.savefig(os.path.join(path, "first_order"), bbox_inches="tight") if show: plt.show() fig, ax = plt.subplots(figsize=(16, 6)) bar_plot(second, ax=ax) if path: plt.savefig(os.path.join(path, "first_order"), bbox_inches="tight") if show: plt.show() return def morris_plots(si, show:bool=False, path:str=None, annotate=True): plt.close('all') si_df = si.to_df() bar_plot(si_df[["mu_star", "mu_star_conf"]]) if show: plt.show() if path: plt.savefig(os.path.join(path, "morris_bar_plot"), bbox_inches="tight") fig, ax = plt.subplots() covariance_plot(ax, si) if si['sigma'] is not None and annotate: y = si['sigma'] z = si['mu_star'] for i, txt in enumerate(si['names']): ax.annotate(txt, (z[i], y[i])) if show: plt.show() if path: plt.savefig(os.path.join(path, "covariance_plot"), bbox_inches="tight") plt.close('all') barplot(si_df, ax=ax) if path: plt.savefig(os.path.join(path, "morris_bar_plot_all"), bbox_inches="tight") if show: plt.show() return def bar_plot(sis_df:pd.DataFrame, sort=True, conf_col = "_conf", **kwargs): conf_cols = sis_df.columns.str.contains(conf_col) sis = sis_df.loc[:, ~conf_cols].values confs = sis_df.loc[:, conf_cols].values names = sis_df.index if isinstance(names[0], tuple): names = np.array([str(i) for i in names]) if len(sis) == sis.size: confs = confs.reshape(-1, ) sis = sis.reshape(-1,) else: raise ValueError if sort: sort_idx = np.argsort(sis) confs = confs[sort_idx] sis = sis[sort_idx] names = names[sort_idx] label = sis_df.columns[~conf_cols][0] ax = ep.bar_chart(sis, names, orient="v", sort=sort, rotation=90, show=False, label=label, **kwargs) if sort: ax.legend(loc="upper left") else: ax.legend(loc="best") ax.errorbar(np.arange(len(sis)), sis, yerr=confs, fmt=".", color="black") return ax def _show_save(path=None, show=True): if path: plt.savefig(path, bbox_inches="tight") if show: plt.show() return def _make_predict_func(model, **kwargs): from ai4water.preprocessing import DataSet lookback = model.config["ts_args"]['lookback'] def func(x): x = pd.DataFrame(x, columns=model.input_features) ds = DataSet(data=x, ts_args=model.config["ts_args"], input_features=model.input_features, train_fraction=1.0, val_fraction=0.0, verbosity=0) x, _ = ds.training_data() p = model.predict(x=x, **kwargs) return np.concatenate([p, np.zeros((lookback-1, 1))]) return func
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/_sa.py
_sa.py
import json import warnings import numpy as np from typing import Union from ai4water.utils.utils import ts_features from .utils import msg # TODO remove repeated calculation of mse, std, mean etc # TODO make weights, class attribute # TODO write tests # TODO standardized residual sum of squares # http://documentation.sas.com/?cdcId=fscdc&cdcVersion=15.1&docsetId=fsug&docsetTarget=n1sm8nk3229ttun187529xtkbtpu.htm&locale=en # https://arxiv.org/ftp/arxiv/papers/1809/1809.03006.pdf # https://www.researchgate.net/profile/Mark-Tschopp/publication/322147437_Quantifying_Similarity_and_Distance_Measures_for_Vector-Based_Datasets_Histograms_Signals_and_Probability_Distribution_Functions/links/5a48089ca6fdcce1971c8142/Quantifying-Similarity-and-Distance-Measures-for-Vector-Based-Datasets-Histograms-Signals-and-Probability-Distribution-Functions.pdf # maximum absolute error # relative mean absolute error # relative rmse # Log mse # Jeffreys Divergence # kullback-Leibler divergence # Peak flow ratio https://hess.copernicus.org/articles/24/869/2020/ # Legates׳s coefficient of efficiency # outliear percentage : pysteps # mean squared error skill score, mean absolute error skill score, https://doi.org/10.1016/j.ijforecast.2018.11.010 # root mean quartic error, Kolmogorov–Smirnov test integral, OVERPer, Rényi entropy, # 95th percentile: https://doi.org/10.1016/j.solener.2014.10.016 # Friedman test: https://doi.org/10.1016/j.solener.2014.10.016 EPS = 1e-10 # epsilon # TODO classification metrics # cross entropy # TODO probability losses # log normal loss # skill score # TODO multi horizon metrics class Metrics(object): warnings.warn(msg("Metrics"), UserWarning) """ This class does some pre-processign and handles metadata regaring true and predicted arrays. The arguments other than `true` and `predicted` are dynamic i.e. they can be changed from outside the class. This means the user can change their value after creating the class. This will be useful if we want to calculate an error once by ignoring NaN and then by not ignoring the NaNs. However, the user has to run the method `treat_arrays` in order to have the changed values impact on true and predicted arrays. Literature: https://www-miklip.dkrz.de/about/murcss/ """ def __init__(self, true: Union[np.ndarray, list], predicted: Union[np.ndarray, list], replace_nan: Union[int, float, None] = None, replace_inf: Union[int, float, None] = None, remove_zero: bool = False, remove_neg: bool = False, metric_type: str = 'regression' ): """ Arguments: true : array like, ture/observed/actual/target values predicted : array like, simulated values replace_nan : default None. if not None, then NaNs in true and predicted will be replaced by this value. replace_inf : default None, if not None, then inf vlaues in true and predicted will be replaced by this value. remove_zero : default False, if True, the zero values in true or predicted arrays will be removed. If a zero is found in one array, the corresponding value in the other array will also be removed. remove_neg : default False, if True, the negative values in true or predicted arrays will be removed. metric_type : type of metric. """ self.metric_type = metric_type self.true, self.predicted = self._pre_process(true, predicted) self.replace_nan = replace_nan self.replace_inf = replace_inf self.remove_zero = remove_zero self.remove_neg = remove_neg @staticmethod def _minimal() -> list: raise NotImplementedError @staticmethod def _scale_independent_metrics() -> list: raise NotImplementedError @staticmethod def _scale_dependent_metrics() -> list: raise NotImplementedError @property def replace_nan(self): return self._replace_nan @replace_nan.setter def replace_nan(self, x): self._replace_nan = x @property def replace_inf(self): return self._replace_inf @replace_inf.setter def replace_inf(self, x): self._replace_inf = x @property def remove_zero(self): return self._remove_zero @remove_zero.setter def remove_zero(self, x): self._remove_zero = x @property def remove_neg(self): return self._remove_neg @remove_neg.setter def remove_neg(self, x): self._remove_neg = x @property def assert_greater_than_one(self): # assert that both true and predicted arrays are greater than one. if len(self.true) <= 1 or len(self.predicted) <= 1: raise ValueError(f"""Expect length of true and predicted arrays to be larger than 1 but they are {len(self.true)} and {len(self.predicted)}""") return def _pre_process(self, true, predicted): predicted = self._assert_1darray(predicted) true = self._assert_1darray(true) assert len(predicted) == len(true), "lengths of provided arrays mismatch, predicted array: {}, true array: {}" \ .format(len(predicted), len(true)) return true, predicted def _assert_1darray(self, array_like) -> np.ndarray: """Makes sure that the provided `array_like` is 1D numpy array""" if not isinstance(array_like, np.ndarray): if not isinstance(array_like, list): # it can be pandas series or datafrmae if array_like.__class__.__name__ in ['Series', 'DataFrame']: if len(array_like.shape) > 1: # 1d series has shape (x,) while 1d dataframe has shape (x,1) if array_like.shape[1] > 1: # it is a 2d datafrmae raise TypeError("only 1d pandas Series or dataframe are allowed") np_array = np.array(array_like).reshape(-1, ) else: raise TypeError(f"all inputs must be numpy array or list but one is of type {type(array_like)}") else: np_array = np.array(array_like).reshape(-1, ) else: if np.ndim(array_like) > 1: sec_dim = array_like.shape[1] if self.metric_type != 'classification' and sec_dim > 1: raise ValueError(f"Array must not be 2d but it has shape {array_like.shape}") np_array = np.array(array_like).reshape(-1, ) if self.metric_type != 'classification' else array_like else: # maybe the dimension is >1 so make sure it is more np_array = array_like.reshape(-1, ) if self.metric_type != 'classification' else array_like if self.metric_type != 'classification': assert len(np_array.shape) == 1 return np_array def calculate_all(self, statistics=False, verbose=False, write=False, name=None) -> dict: """ calculates errors using all available methods except brier_score.. write: bool, if True, will write the calculated errors in file. name: str, if not None, then must be path of the file in which to write.""" errors = {} for m in self.all_methods: if m not in ["brier_score"]: try: error = float(getattr(self, m)()) # some errors might not have been computed and returned a non float-convertible value e.g. None except TypeError: error = getattr(self, m)() errors[m] = error if verbose: if error is None: print('{0:25} : {1}'.format(m, error)) else: print('{0:25} : {1:<12.3f}'.format(m, error)) if statistics: errors['stats'] = self.stats(verbose=verbose) if write: if name is not None: assert isinstance(name, str) fname = name else: fname = 'errors' with open(fname + ".json", 'w') as fp: json.dump(errors, fp, sort_keys=True, indent=4) return errors def calculate_minimal(self) -> dict: """ Calculates some basic metrics. Returns ------- dict Dictionary with all metrics """ metrics = {} for metric in self._minimal(): metrics[metric] = getattr(self, metric)() return metrics def _error(self, true=None, predicted=None): """ simple difference """ if true is None: true = self.true if predicted is None: predicted = self.predicted return true - predicted def _percentage_error(self): """ Percentage error """ return self._error() / (self.true + EPS) * 100 def _naive_prognose(self, seasonality: int = 1): """ Naive forecasting method which just repeats previous samples """ return self.true[:-seasonality] def _relative_error(self, benchmark: np.ndarray = None): """ Relative Error """ if benchmark is None or isinstance(benchmark, int): # If no benchmark prediction provided - use naive forecasting if not isinstance(benchmark, int): seasonality = 1 else: seasonality = benchmark return self._error(self.true[seasonality:], self.predicted[seasonality:]) / \ (self._error(self.true[seasonality:], self._naive_prognose(seasonality)) + EPS) return self._error() / (self._error(self.true, benchmark) + EPS) def _bounded_relative_error(self, benchmark: np.ndarray = None): """ Bounded Relative Error """ if benchmark is None or isinstance(benchmark, int): # If no benchmark prediction provided - use naive forecasting if not isinstance(benchmark, int): seasonality = 1 else: seasonality = benchmark abs_err = np.abs(self._error(self.true[seasonality:], self.predicted[seasonality:])) abs_err_bench = np.abs(self._error(self.true[seasonality:], self._naive_prognose(seasonality))) else: abs_err = np.abs(self._error()) abs_err_bench = np.abs(self._error()) return abs_err / (abs_err + abs_err_bench + EPS) def _ae(self): """Absolute error """ return np.abs(self.true - self.predicted) def calculate_scale_independent_metrics(self) -> dict: """ Calculates scale independent metrics Returns ------- dict Dictionary with all metrics """ metrics = {} for metric in self._scale_independent_metrics(): metrics[metric] = getattr(self, metric)() return metrics def calculate_scale_dependent_metrics(self) -> dict: """ Calculates scale dependent metrics Returns ------- dict Dictionary with all metrics """ metrics = {} for metric in self._scale_dependent_metrics(): metrics[metric] = getattr(self, metric)() return metrics def scale_dependent_metrics(self): pass def stats(self, verbose: bool = False) -> dict: """ returs some important stats about true and predicted values.""" _stats = dict() _stats['true'] = ts_features(self.true) _stats['predicted'] = ts_features(self.predicted) if verbose: print("\nName True Predicted ") print("----------------------------------------") for k in _stats['true'].keys(): print("{:<25}, {:<10}, {:<10}" .format(k, round(_stats['true'][k], 4), round(_stats['predicted'][k]))) return _stats def percentage_metrics(self): pass def relative_metrics(self): pass def composite_metrics(self): pass def treat_values(self): """ This function is applied by default at the start/at the time of initiating the class. However, it can used any time after that. This can be handy if we want to calculate error first by ignoring nan and then by no ignoring nan. Adopting from https://github.com/BYU-Hydroinformatics/HydroErr/blob/master/HydroErr/HydroErr.py#L6210 Removes the nan, negative, and inf values in two numpy arrays """ sim_copy = np.copy(self.predicted) obs_copy = np.copy(self.true) # Treat missing data in observed_array and simulated_array, rows in simulated_array or # observed_array that contain nan values all_treatment_array = np.ones(obs_copy.size, dtype=bool) if np.any(np.isnan(obs_copy)) or np.any(np.isnan(sim_copy)): if self.replace_nan is not None: # Finding the NaNs sim_nan = np.isnan(sim_copy) obs_nan = np.isnan(obs_copy) # Replacing the NaNs with the input sim_copy[sim_nan] = self.replace_nan obs_copy[obs_nan] = self.replace_nan warnings.warn("Elements(s) {} contained NaN values in the simulated array and " "elements(s) {} contained NaN values in the observed array and have been " "replaced (Elements are zero indexed).".format(np.where(sim_nan)[0], np.where(obs_nan)[0]), UserWarning) else: # Getting the indices of the nan values, combining them, and informing user. nan_indices_fcst = ~np.isnan(sim_copy) nan_indices_obs = ~np.isnan(obs_copy) all_nan_indices = np.logical_and(nan_indices_fcst, nan_indices_obs) all_treatment_array = np.logical_and(all_treatment_array, all_nan_indices) warnings.warn("Row(s) {} contained NaN values and the row(s) have been " "removed (Rows are zero indexed).".format(np.where(~all_nan_indices)[0]), UserWarning) if np.any(np.isinf(obs_copy)) or np.any(np.isinf(sim_copy)): if self.replace_nan is not None: # Finding the NaNs sim_inf = np.isinf(sim_copy) obs_inf = np.isinf(obs_copy) # Replacing the NaNs with the input sim_copy[sim_inf] = self.replace_inf obs_copy[obs_inf] = self.replace_inf warnings.warn("Elements(s) {} contained Inf values in the simulated array and " "elements(s) {} contained Inf values in the observed array and have been " "replaced (Elements are zero indexed).".format(np.where(sim_inf)[0], np.where(obs_inf)[0]), UserWarning) else: inf_indices_fcst = ~(np.isinf(sim_copy)) inf_indices_obs = ~np.isinf(obs_copy) all_inf_indices = np.logical_and(inf_indices_fcst, inf_indices_obs) all_treatment_array = np.logical_and(all_treatment_array, all_inf_indices) warnings.warn( "Row(s) {} contained Inf or -Inf values and the row(s) have been removed (Rows " "are zero indexed).".format(np.where(~all_inf_indices)[0]), UserWarning ) # Treat zero data in observed_array and simulated_array, rows in simulated_array or # observed_array that contain zero values if self.remove_zero: if (obs_copy == 0).any() or (sim_copy == 0).any(): zero_indices_fcst = ~(sim_copy == 0) zero_indices_obs = ~(obs_copy == 0) all_zero_indices = np.logical_and(zero_indices_fcst, zero_indices_obs) all_treatment_array = np.logical_and(all_treatment_array, all_zero_indices) warnings.warn( "Row(s) {} contained zero values and the row(s) have been removed (Rows are " "zero indexed).".format(np.where(~all_zero_indices)[0]), UserWarning ) # Treat negative data in observed_array and simulated_array, rows in simulated_array or # observed_array that contain negative values # Ignore runtime warnings from comparing if self.remove_neg: with np.errstate(invalid='ignore'): obs_copy_bool = obs_copy < 0 sim_copy_bool = sim_copy < 0 if obs_copy_bool.any() or sim_copy_bool.any(): neg_indices_fcst = ~sim_copy_bool neg_indices_obs = ~obs_copy_bool all_neg_indices = np.logical_and(neg_indices_fcst, neg_indices_obs) all_treatment_array = np.logical_and(all_treatment_array, all_neg_indices) warnings.warn("Row(s) {} contained negative values and the row(s) have been " "removed (Rows are zero indexed).".format(np.where(~all_neg_indices)[0]), UserWarning) self.true = obs_copy[all_treatment_array] self.predicted = sim_copy[all_treatment_array] return def mse(self, weights=None) -> float: """ mean square error """ return float(np.average((self.true - self.predicted) ** 2, axis=0, weights=weights))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/SeqMetrics/_main.py
_main.py
import warnings import numpy as np from sklearn import preprocessing # from sklearn.metrics import hinge_loss from sklearn.metrics import balanced_accuracy_score import sklearn from .utils import list_subclass_methods, msg from ._main import Metrics from ai4water.backend import get_attributes CLS_METRICS = get_attributes(sklearn.metrics, '_classification', case_sensitive=True) class ClassificationMetrics(Metrics): """Calculates classification metrics.""" # todo add very major erro and major error warnings.warn(msg("ClassificationMetrics"), UserWarning) def __init__(self, *args, multiclass=False, **kwargs): self.multiclass = multiclass super().__init__(*args, metric_type='classification', **kwargs) self.true_labels = self._true_labels() self.true_logits = self._true_logits() self.pred_labels = self._pred_labels() self.pred_logits = self._pred_logits() self.all_methods = list_subclass_methods(ClassificationMetrics, True) # self.all_methods = [m for m in all_methods if not m.startswith('_')] def __getattr__(self, item): def func(**kwargs): # because we want .f1_score() and not .f1_score return CLS_METRICS[item](self.true_labels, self.pred_labels, **kwargs) return func @staticmethod def _minimal() -> list: """some minimal and basic metrics""" return list_subclass_methods(ClassificationMetrics, True) @staticmethod def _hydro_metrics() -> list: """some minimal and basic metrics""" return list_subclass_methods(ClassificationMetrics, True) def _num_classes(self): return len(self._classes()) def _classes(self): array = self.true_labels return np.unique(array[~np.isnan(array)]) def _true_labels(self): """retuned array is 1d""" if self.multiclass: if self.true.size == len(self.true): return self.true.reshape(-1,1) return np.argmax(self.true.reshape(-1,1), axis=1) # it should be 1 dimensional assert self.true.size == len(self.true) return self.true.reshape(-1,) def _true_logits(self): """returned array is 2d""" if self.multiclass: return self.true lb = preprocessing.LabelBinarizer() return lb.fit_transform(self.true) def _pred_labels(self): """returns 1d""" if self.multiclass: if self.predicted.size == len(self.predicted): return self.predicted.reshape(-1,1) return np.argmax(self.predicted.reshape(-1,1), axis=1) lb = preprocessing.LabelBinarizer() lb.fit(self.true_labels) return lb.inverse_transform(self.predicted) def _pred_logits(self): """returned array is 2d""" if self.multiclass: return self.true # we can't do it return None def cross_entropy(self, epsilon=1e-12): """ Computes cross entropy between targets (encoded as one-hot vectors) and predictions. Input: predictions (N, k) ndarray targets (N, k) ndarray Returns: scalar """ predictions = np.clip(self.predicted, epsilon, 1. - epsilon) n = predictions.shape[0] ce = -np.sum(self.true * np.log(predictions + 1e-9)) / n return ce # def hinge_loss(self): # """hinge loss using sklearn""" # if self.pred_logits is not None: # return hinge_loss(self.true_labels, self.pred_logits) # return None def balanced_accuracy_score(self): return balanced_accuracy_score(self.true_labels, self.pred_labels) def accuracy(self, normalize=True): if normalize: return np.average(self.true_labels==self.pred_labels) return (self.true_labels==self.pred_labels).sum()
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/SeqMetrics/_cls.py
_cls.py
import warnings from math import sqrt from typing import Union from scipy.stats import gmean, kendalltau import numpy as np from .utils import _geometric_mean, _mean_tweedie_deviance, _foo, list_subclass_methods, msg from ._main import Metrics, EPS class RegressionMetrics(Metrics): """ Calculates more than 100 regression performance metrics related to sequence data. Example: >>>import numpy as np >>>from ai4water.postprocessing.SeqMetrics import RegressionMetrics >>>t = np.random.random(10) >>>p = np.random.random(10) >>>errors = RegressionMetrics(t,p) >>>all_errors = errors.calculate_all() """ warnings.warn(msg("RegressionMetrics"), UserWarning) def __init__(self, *args, **kwargs): """ Initializes `Metrics`. args and kwargs go to parent class ['Metrics'][ai4water.postprocessing.SeqMetrics.Metrics]. """ super().__init__(*args, **kwargs) self.all_methods = list_subclass_methods(RegressionMetrics, True, additional_ignores=['calculate_hydro_metrics', # 'calculate_scale_dependent_metrics', # 'calculate_scale_independent_metrics' ]) # if arrays contain negative values, following three errors can not be computed for array in [self.true, self.predicted]: assert len(array) > 0, "Input arrays should not be empty" if len(array[array < 0.0]) > 0: self.all_methods = [m for m in self.all_methods if m not in ('mean_gamma_deviance', 'mean_poisson_deviance', 'mean_square_log_error')] if (array <= 0).any(): # mean tweedie error is not computable self.all_methods = [m for m in self.all_methods if m not in ('mean_gamma_deviance', 'mean_poisson_deviance')] def _hydro_metrics(self) -> list: """Names of metrics related to hydrology""" return self._minimal() + [ 'fdc_flv', 'fdc_fhv', 'kge', 'kge_np', 'kge_mod', 'kge_bound', 'kgeprime_c2m', 'kgenp_bound', 'nse', 'nse_alpha', 'nse_beta', 'nse_mod', 'nse_bound'] @staticmethod def _scale_independent_metrics() -> list: """Names of scale independent metrics.""" return ['mape', 'r2', 'nse'] @staticmethod def _scale_dependent_metrics() -> list: """Names of scale dependent metrics.""" return ['mse', 'rmse', 'mae'] @staticmethod def _minimal() -> list: """some minimal and basic metrics""" return ['r2', 'mape', 'nrmse', 'corr_coeff', 'rmse', 'mae', 'mse', 'mpe', 'mase', 'r2_score'] def abs_pbias(self) -> float: """Absolute Percent bias""" _apb = 100.0 * sum(abs(self.predicted - self.true)) / sum(self.true) # Absolute percent bias return float(_apb) def acc(self) -> float: """Anomaly correction coefficient. Reference: [Langland et al., 2012](https://doi.org/10.3402/tellusa.v64i0.17531). Miyakoda et al., 1972. Murphy et al., 1989.""" a = self.predicted - np.mean(self.predicted) b = self.true - np.mean(self.true) c = np.std(self.true, ddof=1) * np.std(self.predicted, ddof=1) * self.predicted.size return float(np.dot(a, b / c)) def adjusted_r2(self) -> float: """Adjusted R squared.""" k = 1 n = len(self.predicted) adj_r = 1 - ((1 - self.r2()) * (n - 1)) / (n - k - 1) return float(adj_r) def agreement_index(self) -> float: """ Agreement Index (d) developed by [Willmott, 1981](https://doi.org/10.1080/02723646.1981.10642213). It detects additive and pro-portional differences in the observed and simulated means and vari-ances [Moriasi et al., 2015](https://doi.org/10.13031/trans.58.10715). It is overly sensitive to extreme values due to the squared differences [2]. It can also be used as a substitute for R2 to identify the degree to which model predic-tions are error-free [2]. .. math:: d = 1 - \\frac{\\sum_{i=1}^{N}(e_{i} - s_{i})^2}{\\sum_{i=1}^{N}(\\left | s_{i} - \\bar{e} \\right | + \\left | e_{i} - \\bar{e} \\right |)^2} [2] Legates and McCabe, 199 """ agreement_index = 1 - (np.sum((self.true - self.predicted) ** 2)) / (np.sum( (np.abs(self.predicted - np.mean(self.true)) + np.abs(self.true - np.mean(self.true))) ** 2)) return float(agreement_index) def aic(self, p=1) -> float: """ [Akaike’s Information Criterion](https://doi.org/10.1007/978-1-4612-1694-0_15) Modifying from https://github.com/UBC-MDS/RegscorePy/blob/master/RegscorePy/aic.py """ assert p > 0 self.assert_greater_than_one # noac n = len(self.true) resid = np.subtract(self.predicted, self.true) rss = np.sum(np.power(resid, 2)) return float(n * np.log(rss / n) + 2 * p) def aitchison(self, center='mean') -> float: """Aitchison distance. used in [Zhang et al., 2020](https://doi.org/10.5194/hess-24-2505-2020)""" lx = np.log(self.true) ly = np.log(self.predicted) if center.upper() == 'MEAN': m = np.mean elif center.upper() == 'MEDIAN': m = np.median else: raise ValueError clr_x = lx - m(lx) clr_y = ly - m(ly) d = (sum((clr_x - clr_y) ** 2)) ** 0.5 return float(d) def amemiya_adj_r2(self) -> float: """Amemiya’s Adjusted R-squared""" k = 1 n = len(self.predicted) adj_r = 1 - ((1 - self.r2()) * (n + k)) / (n - k - 1) return float(adj_r) def amemiya_pred_criterion(self) -> float: """Amemiya’s Prediction Criterion""" k = 1 n = len(self.predicted) return float(((n + k) / (n - k)) * (1 / n) * self.sse()) def bias(self) -> float: """ Bias as shown in https://doi.org/10.1029/97WR03495 and given by [Gupta et al., 1998](https://doi.org/10.1080/02626667.2018.1552002 .. math:: Bias=\\frac{1}{N}\\sum_{i=1}^{N}(e_{i}-s_{i}) """ bias = np.nansum(self.true - self.predicted) / len(self.true) return float(bias) def bic(self, p=1) -> float: """ Bayesian Information Criterion Minimising the BIC is intended to give the best model. The model chosen by the BIC is either the same as that chosen by the AIC, or one with fewer terms. This is because the BIC penalises the number of parameters more heavily than the AIC [1]. Modified after https://github.com/UBC-MDS/RegscorePy/blob/master/RegscorePy/bic.py [1]: https://otexts.com/fpp2/selecting-predictors.html#schwarzs-bayesian-information-criterion """ assert p >= 0 n = len(self.true) return float(n * np.log(self.sse() / n) + p * np.log(n)) def brier_score(self) -> float: """ Adopted from https://github.com/PeterRochford/SkillMetrics/blob/master/skill_metrics/brier_score.py Calculates the Brier score (BS), a measure of the mean-square error of probability forecasts for a dichotomous (two-category) event, such as the occurrence/non-occurrence of precipitation. The score is calculated using the formula: BS = sum_(n=1)^N (f_n - o_n)^2/N where f is the forecast probabilities, o is the observed probabilities (0 or 1), and N is the total number of values in f & o. Note that f & o must have the same number of values, and those values must be in the range [0,1]. https://data.library.virginia.edu/a-brief-on-brier-scores/ Output: BS : Brier score Reference: Glenn W. Brier, 1950: Verification of forecasts expressed in terms of probabilities. Mon. We. Rev., 78, 1-23. D. S. Wilks, 1995: Statistical Methods in the Atmospheric Sciences. Cambridge Press. 547 pp. """ # Check for valid values index = np.where(np.logical_or(self.predicted < 0, self.predicted > 1)) if np.sum(index) > 0: msg = 'Forecast has values outside interval [0,1].' raise ValueError(msg) index = np.where(np.logical_and(self.true != 0, self.true != 1)) if np.sum(index) > 0: msg = 'Observed has values not equal to 0 or 1.' raise ValueError(msg) # Calculate score bs = np.sum(np.square(self.predicted - self.true)) / len(self.predicted) return bs def corr_coeff(self) -> float: """ Pearson correlation coefficient. It measures linear correlatin between true and predicted arrays. It is sensitive to outliers. Reference: Pearson, K 1895. .. math:: r = \\frac{\\sum ^n _{i=1}(e_i - \\bar{e})(s_i - \\bar{s})}{\\sqrt{\\sum ^n _{i=1}(e_i - \\bar{e})^2} \\sqrt{\\sum ^n _{i=1}(s_i - \\bar{s})^2}} """ correlation_coefficient = np.corrcoef(self.true, self.predicted)[0, 1] return float(correlation_coefficient) def covariance(self) -> float: """ Covariance .. math:: Covariance = \\frac{1}{N} \\sum_{i=1}^{N}((e_{i} - \\bar{e}) * (s_{i} - \\bar{s})) """ obs_mean = np.mean(self.true) sim_mean = np.mean(self.predicted) covariance = np.mean((self.true - obs_mean) * (self.predicted - sim_mean)) return float(covariance) def cronbach_alpha(self) -> float: """ It is a measure of internal consitency of data https://stats.idre.ucla.edu/spss/faq/what-does-cronbachs-alpha-mean/ https://stackoverflow.com/a/20799687/5982232 """ itemscores = np.stack([self.true, self.predicted]) itemvars = itemscores.var(axis=1, ddof=1) tscores = itemscores.sum(axis=0) nitems = len(itemscores) return float(nitems / (nitems - 1.) * (1 - itemvars.sum() / tscores.var(ddof=1))) def centered_rms_dev(self) -> float: """ Modified after https://github.com/PeterRochford/SkillMetrics/blob/master/skill_metrics/centered_rms_dev.py Calculates the centered root-mean-square (RMS) difference between true and predicted using the formula: (E')^2 = sum_(n=1)^N [(p_n - mean(p))(r_n - mean(r))]^2/N where p is the predicted values, r is the true values, and N is the total number of values in p & r. Output: CRMSDIFF : centered root-mean-square (RMS) difference (E')^2 """ # Calculate means pmean = np.mean(self.predicted) rmean = np.mean(self.true) # Calculate (E')^2 crmsd = np.square((self.predicted - pmean) - (self.true - rmean)) crmsd = np.sum(crmsd) / self.predicted.size crmsd = np.sqrt(crmsd) return float(crmsd) def cosine_similarity(self) -> float: """[cosine similary](https://en.wikipedia.org/wiki/Cosine_similarity) It is a judgment of orientation and not magnitude: two vectors with the same orientation have a cosine similarity of 1, two vectors oriented at 90° relative to each other have a similarity of 0, and two vectors diametrically opposed have a similarity of -1, independent of their magnitude. """ return float(np.dot(self.true.reshape(-1,), self.predicted.reshape(-1,)) / (np.linalg.norm(self.true) * np.linalg.norm(self.predicted))) def decomposed_mse(self) -> float: """ Decomposed MSE developed by Kobayashi and Salam (2000) .. math :: dMSE = (\\frac{1}{N}\\sum_{i=1}^{N}(e_{i}-s_{i}))^2 + SDSD + LCS SDSD = (\\sigma(e) - \\sigma(s))^2 LCS = 2 \\sigma(e) \\sigma(s) * (1 - \\frac{\\sum ^n _{i=1}(e_i - \\bar{e})(s_i - \\bar{s})} {\\sqrt{\\sum ^n _{i=1}(e_i - \\bar{e})^2} \\sqrt{\\sum ^n _{i=1}(s_i - \\bar{s})^2}}) """ e_std = np.std(self.true) s_std = np.std(self.predicted) bias_squared = self.bias() ** 2 sdsd = (e_std - s_std) ** 2 lcs = 2 * e_std * s_std * (1 - self.corr_coeff()) decomposed_mse = bias_squared + sdsd + lcs return float(decomposed_mse) def euclid_distance(self) -> float: """Euclidian distance Referneces: Kennard et al., 2010 """ return float(np.linalg.norm(self.true - self.predicted)) def exp_var_score(self, weights=None) -> Union[float, None]: """ Explained variance score https://stackoverflow.com/questions/24378176/python-sci-kit-learn-metrics-difference-between-r2-score-and-explained-varian best value is 1, lower values are less accurate. """ y_diff_avg = np.average(self.true - self.predicted, weights=weights, axis=0) numerator = np.average((self.true - self.predicted - y_diff_avg) ** 2, weights=weights, axis=0) y_true_avg = np.average(self.true, weights=weights, axis=0) denominator = np.average((self.true - y_true_avg) ** 2, weights=weights, axis=0) if numerator == 0.0: return None output_scores = _foo(denominator, numerator) return float(np.average(output_scores, weights=weights)) def expanded_uncertainty(self, cov_fact=1.96) -> float: """By default it calculates uncertainty with 95% confidence interval. 1.96 is the coverage factor corresponding 95% confidence level [2]. This indicator is used in order to show more information about the model deviation [2]. Using formula from by [1] and [2]. [1] https://doi.org/10.1016/j.enconman.2015.03.067 [2] https://doi.org/10.1016/j.rser.2014.07.117 """ sd = np.std(self._error(self.true, self.predicted)) return float(cov_fact * np.sqrt(sd ** 2 + self.rmse() ** 2)) def fdc_fhv(self, h: float = 0.02) -> float: """ modified after: https://github.com/kratzert/ealstm_regional_modeling/blob/64a446e9012ecd601e0a9680246d3bbf3f002f6d/papercode/metrics.py#L190 Peak flow bias of the flow duration curve (Yilmaz 2008). used in kratzert et al., 2018 Returns ------- float Bias of the peak flows Raises ------ RuntimeError If `h` is not in range(0,1) """ if (h <= 0) or (h >= 1): raise RuntimeError("h has to be in the range (0,1)") # sort both in descending order obs = -np.sort(-self.true) sim = -np.sort(-self.predicted) # subset data to only top h flow values obs = obs[:np.round(h * len(obs)).astype(int)] sim = sim[:np.round(h * len(sim)).astype(int)] fhv = np.sum(sim - obs) / (np.sum(obs) + 1e-6) return float(fhv * 100) def fdc_flv(self, low_flow: float = 0.3) -> float: """ bias of the bottom 30 % low flows modified after: https://github.com/kratzert/ealstm_regional_modeling/blob/64a446e9012ecd601e0a9680246d3bbf3f002f6d/papercode/metrics.py#L237 used in kratzert et al., 2018 Parameters ---------- low_flow : float, optional Upper limit of the flow duration curve. E.g. 0.3 means the bottom 30% of the flows are considered as low flows, by default 0.3 Returns ------- float Bias of the low flows. Raises ------ RuntimeError If `low_flow` is not in the range(0,1) """ low_flow = 1.0 - low_flow # make sure that metric is calculated over the same dimension obs = self.true.flatten() sim = self.predicted.flatten() if (low_flow <= 0) or (low_flow >= 1): raise RuntimeError("l has to be in the range (0,1)") # for numerical reasons change 0s to 1e-6 sim[sim == 0] = 1e-6 obs[obs == 0] = 1e-6 # sort both in descending order obs = -np.sort(-obs) sim = -np.sort(-sim) # subset data to only top h flow values obs = obs[np.round(low_flow * len(obs)).astype(int):] sim = sim[np.round(low_flow * len(sim)).astype(int):] # transform values to log scale obs = np.log(obs + 1e-6) sim = np.log(sim + 1e-6) # calculate flv part by part qsl = np.sum(sim - sim.min()) qol = np.sum(obs - obs.min()) flv = -1 * (qsl - qol) / (qol + 1e-6) return float(flv * 100) def gmae(self) -> float: """ Geometric Mean Absolute Error """ return _geometric_mean(np.abs(self._error())) def gmean_diff(self) -> float: """Geometric mean difference. First geometric mean is calculated for each of two samples and their difference is calculated.""" sim_log = np.log1p(self.predicted) obs_log = np.log1p(self.true) return float(np.exp(gmean(sim_log) - gmean(obs_log))) def gmrae(self, benchmark: np.ndarray = None) -> float: """ Geometric Mean Relative Absolute Error """ return _geometric_mean(np.abs(self._relative_error(benchmark))) def calculate_hydro_metrics(self): """ Calculates all metrics for hydrological data. Returns ------- dict Dictionary with all metrics """ metrics = {} for metric in self._hydro_metrics(): metrics[metric] = getattr(self, metric)() return metrics def inrse(self) -> float: """ Integral Normalized Root Squared Error """ return float(np.sqrt(np.sum(np.square(self._error())) / np.sum(np.square(self.true - np.mean(self.true))))) def irmse(self) -> float: """Inertial RMSE. RMSE divided by standard deviation of the gradient of true.""" # Getting the gradient of the observed data obs_len = self.true.size obs_grad = self.true[1:obs_len] - self.true[0:obs_len - 1] # Standard deviation of the gradient obs_grad_std = np.std(obs_grad, ddof=1) # Divide RMSE by the standard deviation of the gradient of the observed data return float(self.rmse() / obs_grad_std) def JS(self) -> float: """Jensen-shannon divergence""" warnings.filterwarnings("ignore", category=RuntimeWarning) d1 = self.true * np.log2(2 * self.true / (self.true + self.predicted)) d2 = self.predicted * np.log2(2 * self.predicted / (self.true + self.predicted)) d1[np.isnan(d1)] = 0 d2[np.isnan(d2)] = 0 d = 0.5 * sum(d1 + d2) return float(d) def kendaull_tau(self, return_p=False) -> Union[float, tuple]: """Kendall's tau https://machinelearningmastery.com/how-to-calculate-nonparametric-rank-correlation-in-python/ used in https://www.jmlr.org/papers/volume20/18-444/18-444.pdf """ coef, p = kendalltau(self.true, self.predicted) if return_p: return coef, p return float(p) def kge(self, return_all=False): """ Kling-Gupta Efficiency Gupta, Kling, Yilmaz, Martinez, 2009, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling output: kge: Kling-Gupta Efficiency cc: correlation alpha: ratio of the standard deviation beta: ratio of the mean """ cc = np.corrcoef(self.true, self.predicted)[0, 1] alpha = np.std(self.predicted) / np.std(self.true) beta = np.sum(self.predicted) / np.sum(self.true) return post_process_kge(cc, alpha, beta, return_all) def kge_bound(self) -> float: """ Bounded Version of the Original Kling-Gupta Efficiency https://iahs.info/uploads/dms/13614.21--211-219-41-MATHEVET.pdf """ kge_ = self.kge(return_all=True)[0, :] kge_c2m_ = kge_ / (2 - kge_) return float(kge_c2m_) def kge_mod(self, return_all=False): """ Modified Kling-Gupta Efficiency (Kling et al. 2012 - https://doi.org/10.1016/j.jhydrol.2012.01.011) """ # calculate error in timing and dynamics r (Pearson's correlation coefficient) sim_mean = np.mean(self.predicted, axis=0, dtype=np.float64) obs_mean = np.mean(self.true, dtype=np.float64) r = np.sum((self.predicted - sim_mean) * (self.true - obs_mean), axis=0, dtype=np.float64) / \ np.sqrt(np.sum((self.predicted - sim_mean) ** 2, axis=0, dtype=np.float64) * np.sum((self.true - obs_mean) ** 2, dtype=np.float64)) # calculate error in spread of flow gamma (avoiding cross correlation with bias by dividing by the mean) gamma = (np.std(self.predicted, axis=0, dtype=np.float64) / sim_mean) / \ (np.std(self.true, dtype=np.float64) / obs_mean) # calculate error in volume beta (bias of mean discharge) beta = np.mean(self.predicted, axis=0, dtype=np.float64) / np.mean(self.true, axis=0, dtype=np.float64) # calculate the modified Kling-Gupta Efficiency KGE' return post_process_kge(r, gamma, beta, return_all) def kge_np(self, return_all=False): """ Non parametric Kling-Gupta Efficiency Corresponding paper: Pool, Vis, and Seibert, 2018 Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency, Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2018.1552002 output: kge: Kling-Gupta Efficiency cc: correlation alpha: ratio of the standard deviation beta: ratio of the mean """ # # self-made formula cc = self.spearmann_corr() fdc_sim = np.sort(self.predicted / (np.nanmean(self.predicted) * len(self.predicted))) fdc_obs = np.sort(self.true / (np.nanmean(self.true) * len(self.true))) alpha = 1 - 0.5 * np.nanmean(np.abs(fdc_sim - fdc_obs)) beta = np.mean(self.predicted) / np.mean(self.true) return post_process_kge(cc, alpha, beta, return_all) def kgeprime_c2m(self) -> float: """ https://iahs.info/uploads/dms/13614.21--211-219-41-MATHEVET.pdf Bounded Version of the Modified Kling-Gupta Efficiency """ kgeprime_ = self.kge_mod(return_all=True)[0, :] kgeprime_c2m_ = kgeprime_ / (2 - kgeprime_) return float(kgeprime_c2m_) def kgenp_bound(self): """ Bounded Version of the Non-Parametric Kling-Gupta Efficiency """ kgenp_ = self.kge_np(return_all=True)[0, :] kgenp_c2m_ = kgenp_ / (2 - kgenp_) return float(kgenp_c2m_) def kl_sym(self) -> Union[float, None]: """Symmetric kullback-leibler divergence""" if not all((self.true == 0) == (self.predicted == 0)): return None # ('KL divergence not defined when only one distribution is 0.') x, y = self.true, self.predicted # set values where both distributions are 0 to the same (positive) value. # This will not contribute to the final distance. x[x == 0] = 1 y[y == 0] = 1 d = 0.5 * np.sum((x - y) * (np.log2(x) - np.log2(y))) return float(d) def lm_index(self, obs_bar_p=None) -> float: """Legate-McCabe Efficiency Index. Less sensitive to outliers in the data. obs_bar_p: float, Seasonal or other selected average. If None, the mean of the observed array will be used. """ mean_obs = np.mean(self.true) a = np.abs(self.predicted - self.true) if obs_bar_p is not None: b = np.abs(self.true - obs_bar_p) else: b = np.abs(self.true - mean_obs) return float(1 - (np.sum(a) / np.sum(b))) def maape(self) -> float: """ Mean Arctangent Absolute Percentage Error Note: result is NOT multiplied by 100 """ return float(np.mean(np.arctan(np.abs((self.true - self.predicted) / (self.true + EPS))))) def mae(self, true=None, predicted=None) -> float: """ Mean Absolute Error """ if true is None: true = self.true if predicted is None: predicted = self.predicted return float(np.mean(np.abs(true - predicted))) def mape(self) -> float: """ Mean Absolute Percentage Error. The MAPE is often used when the quantity to predict is known to remain way above zero [1]. It is useful when the size or size of a prediction variable is significant in evaluating the accuracy of a prediction [2]. It has advantages of scale-independency and interpretability [3]. However, it has the significant disadvantage that it produces infinite or undefined values for zero or close-to-zero actual values [3]. [1] https://doi.org/10.1016/j.neucom.2015.12.114 [2] https://doi.org/10.1088/1742-6596/930/1/012002 [3] https://doi.org/10.1016/j.ijforecast.2015.12.003 """ return float(np.mean(np.abs((self.true - self.predicted) / self.true)) * 100) def mbe(self) -> float: """Mean bias error. This indicator expresses a tendency of model to underestimate (negative value) or overestimate (positive value) global radiation, while the MBE values closest to zero are desirable. The drawback of this test is that it does not show the correct performance when the model presents overestimated and underestimated values at the same time, since overestimation and underestimation values cancel each other. [1] [1] https://doi.org/10.1016/j.rser.2015.08.035 """ return float(np.mean(self._error(self.true, self.predicted))) def mbrae(self, benchmark: np.ndarray = None) -> float: """ Mean Bounded Relative Absolute Error """ return float(np.mean(self._bounded_relative_error(benchmark))) def mapd(self) -> float: """Mean absolute percentage deviation.""" a = np.sum(np.abs(self.predicted - self.true)) b = np.sum(np.abs(self.true)) return float(a / b) def mase(self, seasonality: int = 1): """ Mean Absolute Scaled Error Baseline (benchmark) is computed with naive forecasting (shifted by @seasonality) modified after https://gist.github.com/bshishov/5dc237f59f019b26145648e2124ca1c9 Hyndman, R. J. (2006). Another look at forecast-accuracy metrics for intermittent demand. Foresight: The International Journal of Applied Forecasting, 4(4), 43-46. """ return self.mae() / self.mae(self.true[seasonality:], self._naive_prognose(seasonality)) def mare(self) -> float: """ Mean Absolute Relative Error. When expressed in %age, it is also known as mape. [1] https://doi.org/10.1016/j.rser.2015.08.035 """ return float(np.mean(np.abs(self._error(self.true, self.predicted) / self.true))) def max_error(self) -> float: """ maximum error """ return float(np.max(self._ae())) def mb_r(self) -> float: """Mielke-Berry R value. Berry and Mielke, 1988. Mielke, P. W., & Berry, K. J. (2007). Permutation methods: a distance function approach. Springer Science & Business Media. """ # Calculate metric n = self.predicted.size tot = 0.0 for i in range(n): tot = tot + np.sum(np.abs(self.predicted - self.true[i])) mae_val = np.sum(np.abs(self.predicted - self.true)) / n mb = 1 - ((n ** 2) * mae_val / tot) return float(mb) def mda(self) -> float: """ Mean Directional Accuracy modified after https://gist.github.com/bshishov/5dc237f59f019b26145648e2124ca1c9 """ dict_acc = np.sign(self.true[1:] - self.true[:-1]) == np.sign(self.predicted[1:] - self.predicted[:-1]) return float(np.mean(dict_acc)) def mde(self) -> float: """Median Error""" return float(np.median(self.predicted - self.true)) def mdape(self) -> float: """ Median Absolute Percentage Error """ return float(np.median(np.abs(self._percentage_error())) * 100) def mdrae(self, benchmark: np.ndarray = None) -> float: """ Median Relative Absolute Error """ return float(np.median(np.abs(self._relative_error(benchmark)))) def me(self): """Mean error """ return float(np.mean(self._error())) def mean_bias_error(self) -> float: """ Mean Bias Error It represents overall bias error or systematic error. It shows average interpolation bias; i.e. average over- or underestimation. [1][2].This indicator expresses a tendency of model to underestimate (negative value) or overestimate (positive value) global radiation, while the MBE values closest to zero are desirable. The drawback of this test is that it does not show the correct performance when the model presents overestimated and underestimated values at the same time, since overestimation and underestimation values cancel each other. [2] Willmott, C. J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, 20(1), 89-102. https://doi.org/10.1080/1365881050028697 [1] Valipour, M. (2015). Retracted: Comparative Evaluation of Radiation-Based Methods for Estimation of Potential Evapotranspiration. Journal of Hydrologic Engineering, 20(5), 04014068. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001066 [3] https://doi.org/10.1016/j.rser.2015.08.035 """ return float(np.sum(self.true - self.predicted) / len(self.true)) def mean_var(self) -> float: """Mean variance""" return float(np.var(np.log1p(self.true) - np.log1p(self.predicted))) def mean_poisson_deviance(self, weights=None) -> float: """ mean poisson deviance """ return _mean_tweedie_deviance(self.true, self.predicted, weights=weights, power=1) def mean_gamma_deviance(self, weights=None) -> float: """ mean gamma deviance """ return _mean_tweedie_deviance(self.true, self.predicted, weights=weights, power=2) def median_abs_error(self) -> float: """ median absolute error """ return float(np.median(np.abs(self.predicted - self.true), axis=0)) def med_seq_error(self) -> float: """Median Squared Error Same as mse but it takes median which reduces the impact of outliers. """ return float(np.median((self.predicted - self.true) ** 2)) def mle(self) -> float: """Mean log error""" return float(np.mean(np.log1p(self.predicted) - np.log1p(self.true))) def mod_agreement_index(self, j=1) -> float: """Modified agreement of index. j: int, when j==1, this is same as agreement_index. Higher j means more impact of outliers.""" a = (np.abs(self.predicted - self.true)) ** j b = np.abs(self.predicted - np.mean(self.true)) c = np.abs(self.true - np.mean(self.true)) e = (b + c) ** j return float(1 - (np.sum(a) / np.sum(e))) def mpe(self) -> float: """ Mean Percentage Error """ return float(np.mean(self._percentage_error())) def mrae(self, benchmark: np.ndarray = None): """ Mean Relative Absolute Error """ return float(np.mean(np.abs(self._relative_error(benchmark)))) def msle(self, weights=None) -> float: """ mean square logrithmic error """ return float(np.average((np.log1p(self.true) - np.log1p(self.predicted)) ** 2, axis=0, weights=weights)) def norm_euclid_distance(self) -> float: """Normalized Euclidian distance""" a = self.true / np.mean(self.true) b = self.predicted / np.mean(self.predicted) return float(np.linalg.norm(a - b)) def nrmse_range(self) -> float: """Range Normalized Root Mean Squared Error. RMSE normalized by true values. This allows comparison between data sets with different scales. It is more sensitive to outliers. Reference: Pontius et al., 2008 """ return float(self.rmse() / (np.max(self.true) - np.min(self.true))) def nrmse_ipercentile(self, q1=25, q2=75) -> float: """ RMSE normalized by inter percentile range of true. This is least sensitive to outliers. q1: any interger between 1 and 99 q2: any integer between 2 and 100. Should be greater than q1. Reference: Pontius et al., 2008. """ q1 = np.percentile(self.true, q1) q3 = np.percentile(self.true, q2) iqr = q3 - q1 return float(self.rmse() / iqr) def nrmse_mean(self) -> float: """Mean Normalized RMSE RMSE normalized by mean of true values.This allows comparison between datasets with different scales. Reference: Pontius et al., 2008 """ return float(self.rmse() / np.mean(self.true)) def norm_ae(self) -> float: """ Normalized Absolute Error """ return float(np.sqrt(np.sum(np.square(self._error() - self.mae())) / (len(self.true) - 1))) def norm_ape(self) -> float: """ Normalized Absolute Percentage Error """ return float(np.sqrt(np.sum(np.square(self._percentage_error() - self.mape())) / (len(self.true) - 1))) def nrmse(self) -> float: """ Normalized Root Mean Squared Error """ return float(self.rmse() / (np.max(self.true) - np.min(self.true))) def nse(self) -> float: """Nash-Sutcliff Efficiency. It determine how well the model simulates trends for the output response of concern. But cannot help identify model bias and cannot be used to identify differences in timing and magnitude of peak flows and shape of recession curves; in other words, it cannot be used for single-event simulations. It is sensitive to extreme values due to the squared differ-ences [1]. To make it less sensitive to outliers, [2] proposed log and relative nse. [1] Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. [2] Krause, P., Boyle, D., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 89-97. http://dx.doi.org/10.5194/adgeo-5-89-2005. """ _nse = 1 - sum((self.predicted - self.true) ** 2) / sum((self.true - np.mean(self.true)) ** 2) return float(_nse) def nse_alpha(self) -> float: """ Alpha decomposition of the NSE, see [Gupta et al. 2009](https://doi.org/10.1029/97WR03495) used in kratzert et al., 2018 Returns ------- float Alpha decomposition of the NSE """ return float(np.std(self.predicted) / np.std(self.true)) def nse_beta(self) -> float: """ Beta decomposition of NSE. See [Gupta et. al 2009](https://doi.org/10.1016/j.jhydrol.2009.08.003) used in kratzert et al., 2018 Returns ------- float Beta decomposition of the NSE """ return float((np.mean(self.predicted) - np.mean(self.true)) / np.std(self.true)) def nse_mod(self, j=1) -> float: """ Gives less weightage of outliers if j=1 and if j>1, gives more weightage to outliers. Reference: Krause et al., 2005 """ a = (np.abs(self.predicted - self.true)) ** j b = (np.abs(self.true - np.mean(self.true))) ** j return float(1 - (np.sum(a) / np.sum(b))) def nse_rel(self) -> float: """ Relative NSE. """ a = (np.abs((self.predicted - self.true) / self.true)) ** 2 b = (np.abs((self.true - np.mean(self.true)) / np.mean(self.true))) ** 2 return float(1 - (np.sum(a) / np.sum(b))) def nse_bound(self) -> float: """ Bounded Version of the Nash-Sutcliffe Efficiency https://iahs.info/uploads/dms/13614.21--211-219-41-MATHEVET.pdf """ nse_ = self.nse() nse_c2m_ = nse_ / (2 - nse_) return nse_c2m_ def log_nse(self, epsilon=0.0) -> float: """ log Nash-Sutcliffe model efficiency .. math:: NSE = 1-\\frac{\\sum_{i=1}^{N}(log(e_{i})-log(s_{i}))^2}{\\sum_{i=1}^{N}(log(e_{i})-log(\\bar{e})^2}-1)*-1 """ s, o = self.predicted + epsilon, self.true + epsilon # todo, check why s is here return float(1 - sum((np.log(o) - np.log(o)) ** 2) / sum((np.log(o) - np.mean(np.log(o))) ** 2)) def log_prob(self) -> float: """ Logarithmic probability distribution """ scale = np.mean(self.true) / 10 if scale < .01: scale = .01 y = (self.true - self.predicted) / scale normpdf = -y ** 2 / 2 - np.log(np.sqrt(2 * np.pi)) return float(np.mean(normpdf)) def pbias(self) -> float: """ Percent Bias. It determine how well the model simulates the average magnitudes for the output response of interest. It can also determine over and under-prediction. It cannot be used (1) for single-event simula-tions to identify differences in timing and magnitude of peak flows and the shape of recession curves nor (2) to determine how well the model simulates residual variations and/or trends for the output response of interest. It can give a deceiving rating of model performance if the model overpredicts as much as it underpredicts, in which case PBIAS will be close to zero even though the model simulation is poor. [1] [1] Moriasi et al., 2015 """ return float(100.0 * sum(self.predicted - self.true) / sum(self.true)) def rmsle(self) -> float: """Root mean square log error. This error is less sensitive to [outliers](https://stats.stackexchange.com/q/56658/314919). Compared to RMSE, RMSLE only considers the relative error between predicted and actual values, and the scale of the error is nullified by the log-transformation. Furthermore, RMSLE penalizes underestimation more than overestimation. This is especially useful in those studies where the underestimation of the target variable is not acceptable but overestimation can be tolerated. [1] [1] https://doi.org/10.1016/j.scitotenv.2020.137894 """ return float(np.sqrt(np.mean(np.power(np.log1p(self.predicted) - np.log1p(self.true), 2)))) def rmdspe(self) -> float: """ Root Median Squared Percentage Error """ return float(np.sqrt(np.median(np.square(self._percentage_error()))) * 100.0) def rse(self) -> float: """Relative Squared Error""" return float(np.sum(np.square(self.true - self.predicted)) / np.sum(np.square(self.true - np.mean(self.true)))) def rrse(self) -> float: """ Root Relative Squared Error """ return float(np.sqrt(self.rse())) def rae(self) -> float: """ Relative Absolute Error (aka Approximation Error) """ return float(np.sum(self._ae()) / (np.sum(np.abs(self.true - np.mean(self.true))) + EPS)) def ref_agreement_index(self) -> float: """Refined Index of Agreement. From -1 to 1. Larger the better. Refrence: Willmott et al., 2012""" a = np.sum(np.abs(self.predicted - self.true)) b = 2 * np.sum(np.abs(self.true - self.true.mean())) if a <= b: return float(1 - (a / b)) else: return float((b / a) - 1) def rel_agreement_index(self) -> float: """Relative index of agreement. from 0 to 1. larger the better.""" a = ((self.predicted - self.true) / self.true) ** 2 b = np.abs(self.predicted - np.mean(self.true)) c = np.abs(self.true - np.mean(self.true)) e = ((b + c) / np.mean(self.true)) ** 2 return float(1 - (np.sum(a) / np.sum(e))) def rmse(self, weights=None) -> float: """ root mean square error""" return sqrt(np.average((self.true - self.predicted) ** 2, axis=0, weights=weights)) def r2(self) -> float: """ Quantifies the percent of variation in the response that the 'model' explains. The 'model' here is anything from which we obtained predicted array. It is also called coefficient of determination or square of pearson correlation coefficient. More heavily affected by outliers than pearson correlatin r. https://data.library.virginia.edu/is-r-squared-useless/ """ zx = (self.true - np.mean(self.true)) / np.std(self.true, ddof=1) zy = (self.predicted - np.mean(self.predicted)) / np.std(self.predicted, ddof=1) r = np.sum(zx * zy) / (len(self.true) - 1) return float(r ** 2) def r2_score(self, weights=None): """ This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two. """ if len(self.predicted) < 2: msg = "R^2 score is not well-defined with less than two samples." warnings.warn(msg) return None if weights is None: weight = 1. else: weight = weights[:, np.newaxis] numerator = (weight * (self.true - self.predicted) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (self.true - np.average( self.true, axis=0, weights=weights)) ** 2).sum(axis=0, dtype=np.float64) if numerator == 0.0: return None output_scores = _foo(denominator, numerator) return float(np.average(output_scores, weights=weights)) def relative_rmse(self) -> float: """ Relative Root Mean Squared Error .. math:: RRMSE=\\frac{\\sqrt{\\frac{1}{N}\\sum_{i=1}^{N}(e_{i}-s_{i})^2}}{\\bar{e}} """ rrmse = self.rmse() / np.mean(self.true) return float(rrmse) def rmspe(self) -> float: """ Root Mean Square Percentage Error https://stackoverflow.com/a/53166790/5982232 """ return float(np.sqrt(np.mean(np.square(((self.true - self.predicted) / self.true)), axis=0))) def rsr(self) -> float: """ Moriasi et al., 2007. It incorporates the benefits of error index statistics andincludes a scaling/normalization factor, so that the resulting statistic and reported values can apply to various constitu-ents.""" return float(self.rmse() / np.std(self.true)) def rmsse(self, seasonality: int = 1) -> float: """ Root Mean Squared Scaled Error """ q = np.abs(self._error()) / self.mae(self.true[seasonality:], self._naive_prognose(seasonality)) return float(np.sqrt(np.mean(np.square(q)))) def sa(self) -> float: """Spectral angle. From -pi/2 to pi/2. Closer to 0 is better. It measures angle between two vectors in hyperspace indicating how well the shape of two arrays match instead of their magnitude. Reference: Robila and Gershman, 2005.""" a = np.dot(self.predicted, self.true) b = np.linalg.norm(self.predicted) * np.linalg.norm(self.true) return float(np.arccos(a / b)) def sc(self) -> float: """Spectral correlation. From -pi/2 to pi/2. Closer to 0 is better. """ a = np.dot(self.true - np.mean(self.true), self.predicted - np.mean(self.predicted)) b = np.linalg.norm(self.true - np.mean(self.true)) c = np.linalg.norm(self.predicted - np.mean(self.predicted)) e = b * c return float(np.arccos(a / e)) def sga(self) -> float: """Spectral gradient angle. From -pi/2 to pi/2. Closer to 0 is better. """ sgx = self.true[1:] - self.true[:self.true.size - 1] sgy = self.predicted[1:] - self.predicted[:self.predicted.size - 1] a = np.dot(sgx, sgy) b = np.linalg.norm(sgx) * np.linalg.norm(sgy) return float(np.arccos(a / b)) def smape(self) -> float: """ Symmetric Mean Absolute Percentage Error https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error https://stackoverflow.com/a/51440114/5982232 """ _temp = np.sum(2 * np.abs(self.predicted - self.true) / (np.abs(self.true) + np.abs(self.predicted))) return float(100 / len(self.true) * _temp) def smdape(self) -> float: """ Symmetric Median Absolute Percentage Error Note: result is NOT multiplied by 100 """ return float(np.median(2.0 * self._ae() / ((np.abs(self.true) + np.abs(self.predicted)) + EPS))) def sid(self) -> float: """Spectral Information Divergence. From -pi/2 to pi/2. Closer to 0 is better. """ first = (self.true / np.mean(self.true)) - ( self.predicted / np.mean(self.predicted)) second1 = np.log10(self.true) - np.log10(np.mean(self.true)) second2 = np.log10(self.predicted) - np.log10(np.mean(self.predicted)) return float(np.dot(first, second1 - second2)) def skill_score_murphy(self) -> float: """ Adopted from https://github.com/PeterRochford/SkillMetrics/blob/278b2f58c7d73566f25f10c9c16a15dc204f5869/skill_metrics/skill_score_murphy.py Calculate non-dimensional skill score (SS) between two variables using definition of Murphy (1988) using the formula: SS = 1 - RMSE^2/SDEV^2 SDEV is the standard deviation of the true values SDEV^2 = sum_(n=1)^N [r_n - mean(r)]^2/(N-1) where p is the predicted values, r is the reference values, and N is the total number of values in p & r. Note that p & r must have the same number of values. A positive skill score can be interpreted as the percentage of improvement of the new model forecast in comparison to the reference. On the other hand, a negative skill score denotes that the forecast of interest is worse than the referencing forecast. Consequently, a value of zero denotes that both forecasts perform equally [MLAir, 2020]. Output: SS : skill score Reference: Allan H. Murphy, 1988: Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Wea. Rev., 116, 2417-2424. doi: http//dx.doi.org/10.1175/1520-0493(1988)<2417:SSBOTM>2.0.CO;2 """ # Calculate RMSE rmse2 = self.rmse() ** 2 # Calculate standard deviation sdev2 = np.std(self.true, ddof=1) ** 2 # Calculate skill score ss = 1 - rmse2 / sdev2 return float(ss) def spearmann_corr(self) -> float: """Separmann correlation coefficient. This is a nonparametric metric and assesses how well the relationship between the true and predicted data can be described using a monotonic function. https://hess.copernicus.org/articles/24/2505/2020/hess-24-2505-2020.pdf """ # todo, is this spearman rank correlation? col = [list(a) for a in zip(self.true, self.predicted)] xy = sorted(col, key=lambda _x: _x[0], reverse=False) # rang of x-value for i, row in enumerate(xy): row.append(i + 1) a = sorted(xy, key=lambda _x: _x[1], reverse=False) # rang of y-value for i, row in enumerate(a): row.append(i + 1) mw_rank_x = np.nanmean(np.array(a)[:, 2]) mw_rank_y = np.nanmean(np.array(a)[:, 3]) numerator = np.nansum([float((a[j][2] - mw_rank_x) * (a[j][3] - mw_rank_y)) for j in range(len(a))]) denominator1 = np.sqrt(np.nansum([(a[j][2] - mw_rank_x) ** 2. for j in range(len(a))])) denominator2 = np.sqrt(np.nansum([(a[j][3] - mw_rank_x) ** 2. for j in range(len(a))])) return float(numerator / (denominator1 * denominator2)) def sse(self) -> float: """Sum of squared errors (model vs actual). measure of how far off our model’s predictions are from the observed values. A value of 0 indicates that all predications are spot on. A non-zero value indicates errors. https://dziganto.github.io/data%20science/linear%20regression/machine%20learning/python/Linear-Regression-101-Metrics/ This is also called residual sum of squares (RSS) or sum of squared residuals as per https://www.tutorialspoint.com/statistics/residual_sum_of_squares.htm """ squared_errors = (self.true - self.predicted) ** 2 return float(np.sum(squared_errors)) def std_ratio(self, **kwargs) -> float: """ratio of standard deviations of predictions and trues. Also known as standard ratio, it varies from 0.0 to infinity while 1.0 being the perfect value. """ return float(np.std(self.predicted, **kwargs) / np.std(self.true, **kwargs)) def umbrae(self, benchmark: np.ndarray = None): """ Unscaled Mean Bounded Relative Absolute Error """ return self.mbrae(benchmark) / (1 - self.mbrae(benchmark)) def ve(self) -> float: """ Volumetric efficiency. from 0 to 1. Smaller the better. Reference: Criss and Winston 2008. """ a = np.sum(np.abs(self.predicted - self.true)) b = np.sum(self.true) return float(1 - (a / b)) def volume_error(self) -> float: """ Returns the Volume Error (Ve). It is an indicator of the agreement between the averages of the simulated and observed runoff (i.e. long-term water balance). used in this paper: Reynolds, J.E., S. Halldin, C.Y. Xu, J. Seibert, and A. Kauffeldt. 2017. "Sub-Daily Runoff Predictions Using Parameters Calibrated on the Basis of Data with a Daily Temporal Resolution." Journal of Hydrology 550 (July):399?411. https://doi.org/10.1016/j.jhydrol.2017.05.012. .. math:: Sum(self.predicted- true)/sum(self.predicted) """ # TODO written formula and executed formula are different. ve = np.sum(self.predicted - self.true) / np.sum(self.true) return float(ve) def wape(self) -> float: """ [weighted absolute percentage error](https://mattdyor.wordpress.com/2018/05/23/calculating-wape/) It is a variation of mape but [more suitable for intermittent and low-volume data](https://arxiv.org/pdf/2103.12057v1.pdf). """ return float(np.sum(self._ae() / np.sum(self.true))) def watt_m(self) -> float: """Watterson's M. Refrence: Watterson., 1996""" a = 2 / np.pi c = np.std(self.true, ddof=1) ** 2 + np.std(self.predicted, ddof=1) ** 2 e = (np.mean(self.predicted) - np.mean(self.true)) ** 2 f = c + e return float(a * np.arcsin(1 - (self.mse() / f))) def wmape(self) -> float: """ Weighted Mean Absolute Percent Error https://stackoverflow.com/a/54833202/5982232 """ # Take a series (actual) and a dataframe (forecast) and calculate wmape # for each forecast. Output shape is (1, num_forecasts) # Make an array of mape (same shape as forecast) se_mape = abs(self.true - self.predicted) / self.true # Calculate sum of actual values ft_actual_sum = self.true.sum(axis=0) # Multiply the actual values by the mape se_actual_prod_mape = self.true * se_mape # Take the sum of the product of actual values and mape # Make sure to sum down the rows (1 for each column) ft_actual_prod_mape_sum = se_actual_prod_mape.sum(axis=0) # Calculate the wmape for each forecast and return as a dictionary ft_wmape_forecast = ft_actual_prod_mape_sum / ft_actual_sum return float(ft_wmape_forecast) def post_process_kge(cc, alpha, beta, return_all=False): kge = float(1 - np.sqrt((cc - 1) ** 2 + (alpha - 1) ** 2 + (beta - 1) ** 2)) if return_all: return np.vstack((kge, cc, alpha, beta)) else: return kge
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/SeqMetrics/_rgr.py
_rgr.py
import os import itertools from types import FunctionType from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt from scipy.special import xlogy try: import plotly.graph_objects as go except ModuleNotFoundError: go = None def take(st, en, d): keys = list(d.keys())[st:en] values = list(d.values())[st:en] return {k: v for k, v in zip(keys, values)} def plot_metrics( metrics: dict, ranges: tuple = ((0.0, 1.0), (1.0, 10), (10, 1000)), exclude: list = None, plot_type: str = 'bar', max_metrics_per_fig: int = 15, show: bool = True, save: bool = False, save_path: str = None, **kwargs): """ Plots the metrics given as dictionary as radial or bar plot between specified ranges. Arguments: metrics: dictionary whose keys are names are erros and values are error values. ranges: tuple of tuples defining range of errors to plot in one plot exclude: List of metrics to be excluded from plotting. max_metrics_per_fig: maximum number of metrics to show in one figure. plot_type: either of `radial` or `bar`. show : If, then figure will be shown/drawn save: if True, the figure will be saved. save_path: if given, the figure will the saved at this location. kwargs: keyword arguments for plotting Examples: >>> import numpy as np >>> from ai4water.postprocessing.SeqMetrics import RegressionMetrics >>> from ai4water.postprocessing.SeqMetrics import plot_metrics >>> t = np.random.random((20, 1)) >>> p = np.random.random((20, 1)) >>> er = RegressionMetrics(t, p) >>> all_errors = er.calculate_all() >>> plot_metrics(all_errors, plot_type='bar', max_metrics_per_fig=50) >>># or draw the radial plot >>> plot_metrics(all_errors, plot_type='radial', max_metrics_per_fig=50) ``` """ for idx, rng in enumerate(ranges): assert rng[1] > rng[0], f'For range {idx}, second value: {rng[1]} is not greater than first value: {rng[0]}. ' assert len(rng) == 2, f"Range number {idx} has length {len(rng)}. It must be a tuple of length 2." if exclude is None: exclude = [] _metrics = metrics.copy() for k in metrics.keys(): if k in exclude: _metrics.pop(k) assert plot_type in ['bar', 'radial'], f'plot_type must be either `bar` or `radial`.' for _range in ranges: plot_metrics_between( _metrics, *_range, plot_type=plot_type, max_metrics_per_fig=max_metrics_per_fig, show=show, save=save, save_path=save_path, **kwargs) return def plot_metrics_between( errors: dict, lower: int, upper: int, plot_type: str = 'bar', max_metrics_per_fig: int = 15, save=False, show=True, save_path=None, **kwargs): zero_to_one = {} for k, v in errors.items(): if v is not None: if lower < v < upper: zero_to_one[k] = v st = 0 n = len(zero_to_one) for i in np.array(np.linspace(0, n, int(n/max_metrics_per_fig)+1), dtype=np.int32): if i == 0: pass else: en = i d = take(st, en, zero_to_one) if plot_type == 'radial': plot_radial(d, lower, upper, save=save, show=show, save_path=save_path, **kwargs) else: plot_circular_bar(d, save=save, show=show, save_path=save_path, **kwargs) st = i return def plot_radial(errors: dict, low: int, up: int, save=True, save_path=None, **kwargs): """Plots all the errors in errors dictionary. low and up are used to draw the limits of radial plot.""" if go is None: print("can not plot radial plot because plotly is not installed.") return fill = kwargs.get('fill', None) fillcolor = kwargs.get('fillcolor', None) line = kwargs.get('line', None) marker = kwargs.get('marker', None) OrderedDict(sorted(errors.items(), key=lambda kv: kv[1])) lower = round(np.min(list(errors.values())), 4) upper = round(np.max(list(errors.values())), 4) fig = go.Figure() categories = list(errors.keys()) fig.add_trace(go.Scatterpolar( r=list(errors.values()), theta=categories, # angular coordinates fill=fill, fillcolor=fillcolor, line=line, marker=marker, name='errors' )) fig.update_layout( title_text=f"Errors from {lower} to {upper}", polar=dict( radialaxis=dict( visible=True, range=[low, up] )), showlegend=False ) fig.show() if save: fname = f"radial_errors_from_{lower}_to_{upper}.png" if save_path is not None: fname = os.path.join(save_path, fname) fig.write_image(fname) return def plot_circular_bar( metrics: dict, show=False, save: bool = True, save_path: str = '', **kwargs): """ modified after https://www.python-graph-gallery.com/circular-barplot-basic :param metrics: :param show: :param save: :param save_path: :param kwargs: figsize: linewidth: edgecolor: color: :return: """ # initialize the figure plt.close('all') plt.figure(figsize=kwargs.get('figsize', (8, 12))) ax = plt.subplot(111, polar=True) plt.axis('off') # Set the coordinates limits # upperLimit = 100 lower_limit = 30 value = np.array(list(metrics.values())) lower = round(np.min(list(metrics.values())), 4) upper = round(np.max(list(metrics.values())), 4) # Compute max and min in the dataset _max = max(value) # df['Value'].max() # Let's compute heights: they are a conversion of each item value in those new coordinates # In our example, 0 in the dataset will be converted to the lowerLimit (10) # The maximum will be converted to the upperLimit (100) slope = (_max - lower_limit) / _max heights = slope * value + lower_limit # Compute the width of each bar. In total we have 2*Pi = 360° width = 2 * np.pi / len(metrics) # Compute the angle each bar is centered on: indexes = list(range(1, len(metrics) + 1)) angles = [element * width for element in indexes] # Draw bars bars = ax.bar( x=angles, height=heights, width=width, bottom=lower_limit, linewidth=kwargs.get('linewidth', 2), edgecolor=kwargs.get('edgecolor', "white"), color=kwargs.get('color', "#61a4b2"), ) # little space between the bar and the label label_padding = 4 metric_names = { 'r2': "$R^2$", 'r2_mod': "$R^2$ mod", 'adjusted_r2': 'adjusted $R^2$', # 'nse': "NSE" } # Add labels for bar, angle, label1, label2 in zip(bars, angles, metrics.keys(), metrics.values()): label1 = metric_names.get(label1, label1) label = f'{label1} {round(label2, 4)}' # Labels are rotated. Rotation must be specified in degrees :( rotation = np.rad2deg(angle) # Flip some labels upside down if angle >= np.pi / 2 and angle < 3 * np.pi / 2: alignment = "right" rotation = rotation + 180 else: alignment = "left" # Finally add the labels ax.text( x=angle, y=lower_limit + bar.get_height() + label_padding, s=label, ha=alignment, va='center', rotation=rotation, rotation_mode="anchor") if save: fname = f"{len(metrics)}_bar_errors_from_{lower}_to_{upper}.png" if save_path is not None: fname = os.path.join(save_path, fname) plt.savefig(fname, dpi=400, bbox_inches='tight') if show: plt.show() return def plot1d(true, predicted, save=True, name="plot", show=False): _, axis = plt.subplots() axis.plot(np.arange(len(true)), true, label="True") axis.plot(np.arange(len(predicted)), predicted, label="Predicted") axis.legend(loc="best") if save: plt.savefig(name, dpi=300, bbox_inches='tight') if show: plt.show() plt.close('all') return def _foo(denominator, numerator): nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(1) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. return output_scores def _mean_tweedie_deviance(y_true, y_pred, power=0, weights=None): # copying from # https://github.com/scikit-learn/scikit-learn/blob/95d4f0841d57e8b5f6b2a570312e9d832e69debc/sklearn/metrics/_regression.py#L659 message = ("Mean Tweedie deviance error with power={} can only be used on " .format(power)) if power < 0: # 'Extreme stable', y_true any real number, y_pred > 0 if (y_pred <= 0).any(): raise ValueError(message + "strictly positive y_pred.") dev = 2 * (np.power(np.maximum(y_true, 0), 2 - power) / ((1 - power) * (2 - power)) - y_true * np.power(y_pred, 1 - power) / (1 - power) + np.power(y_pred, 2 - power) / (2 - power)) elif power == 0: # Normal distribution, y_true and y_pred any real number dev = (y_true - y_pred) ** 2 elif power < 1: raise ValueError("Tweedie deviance is only defined for power<=0 and " "power>=1.") elif power == 1: # Poisson distribution, y_true >= 0, y_pred > 0 if (y_true < 0).any() or (y_pred <= 0).any(): raise ValueError(message + "non-negative y_true and strictly " "positive y_pred.") dev = 2 * (xlogy(y_true, y_true / y_pred) - y_true + y_pred) elif power == 2: # Gamma distribution, y_true and y_pred > 0 if (y_true <= 0).any() or (y_pred <= 0).any(): raise ValueError(message + "strictly positive y_true and y_pred.") dev = 2 * (np.log(y_pred / y_true) + y_true / y_pred - 1) else: if power < 2: # 1 < p < 2 is Compound Poisson, y_true >= 0, y_pred > 0 if (y_true < 0).any() or (y_pred <= 0).any(): raise ValueError(message + "non-negative y_true and strictly " "positive y_pred.") else: if (y_true <= 0).any() or (y_pred <= 0).any(): raise ValueError(message + "strictly positive y_true and " "y_pred.") dev = 2 * (np.power(y_true, 2 - power) / ((1 - power) * (2 - power)) - y_true * np.power(y_pred, 1 - power) / (1 - power) + np.power(y_pred, 2 - power) / (2 - power)) return float(np.average(dev, weights=weights)) def _geometric_mean(a, axis=0, dtype=None): """ Geometric mean """ if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it log_a = np.log(np.array(a, dtype=dtype)) elif dtype: # Must change the default dtype allowing array type if isinstance(a, np.ma.MaskedArray): log_a = np.log(np.ma.asarray(a, dtype=dtype)) else: log_a = np.log(np.asarray(a, dtype=dtype)) else: log_a = np.log(a) return float(np.exp(log_a.mean(axis=axis))) def listMethods(cls): return set(x for x, y in cls.__dict__.items() if isinstance(y, (FunctionType, classmethod, staticmethod))) def listParentMethods(cls): return set(itertools.chain.from_iterable( listMethods(c).union(listParentMethods(c)) for c in cls.__bases__)) def list_subclass_methods(cls, is_narrow, ignore_underscore=True, additional_ignores=None): """Finds all methods of a child class""" methods = listMethods(cls) if is_narrow: parent_methods = listParentMethods(cls) methods = set(cls for cls in methods if not (cls in parent_methods)) if additional_ignores is not None: methods = methods - set(additional_ignores) if ignore_underscore: methods = set(cls for cls in methods if not cls.startswith('_')) return methods def msg(module, module_type="class"): return f""" {module} {module_type} has been moved to its own repository called SeqMetrics Please install it using 'pip install SeqMetrics' and then import {module} as from SeqMetrics import {module} """
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/SeqMetrics/utils.py
utils.py
from ai4water.backend import np, pd, os class ExplainerMixin(object): def __init__( self, path, data, features, save=True, show=True, ): if not os.path.exists(path): os.makedirs(path) self.path = path self.data = data self.features = features self.save = save self.show = show @property def data_is_2d(self): if isinstance(self.data, np.ndarray) and self.data.ndim == 2: return True elif isinstance(self.data, pd.DataFrame): return True else: return False @property def data_is_3d(self): if isinstance(self.data, np.ndarray) and self.data.ndim == 3: return True return False @property def single_source(self): if isinstance(self.data, list) and len(self.data) > 1: return False else: return True @property def features(self): return self._features @features.setter def features(self, features): if self.data_is_2d: if type(self.data) == pd.DataFrame: features = self.data.columns.to_list() elif features is None: features = [f"Feature {i}" for i in range(self.data.shape[-1])] else: assert isinstance(features, list) and len(features) == self.data.shape[-1], f""" features must be given as list of length {self.data.shape[-1]} but are of len {len(features)} """ features = features elif not self.single_source and features is None: features = [] for data in self.data: if isinstance(data, pd.DataFrame): _features = data.columns.to_list() else: _features = [f"Feature {i}" for i in range(data.shape[-1])] features.append(_features) elif self.data_is_3d and features is None: features = [f"Feature {i}" for i in range(self.data.shape[-1])] self._features = features @property def unrolled_features(self): # returns the possible names of features if unrolled over time if not self.data_is_2d and self.single_source: features = self.features if features is None: features = [f"Feature_{i}" for i in range(self.data.shape[-1])] lookback = self.data.shape[1] features = [[f"{f}_{i}" for f in features] for i in range(lookback)] features = [item for sublist in features for item in sublist] else: features = None return features
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/_explain.py
_explain.py
import gc from typing import Union, Callable, List import scipy.stats as stats from SeqMetrics import RegressionMetrics, ClassificationMetrics from ai4water.backend import np, plt, os, easy_mpl from ._explain import ExplainerMixin from ai4water.utils.utils import reset_seed, ERROR_LABELS imshow = easy_mpl.imshow bar_chart = easy_mpl.bar_chart boxplot = easy_mpl.boxplot class PermutationImportance(ExplainerMixin): """ permutation importance answers the question, how much the model's prediction performance is influenced by a feature? It defines the feature importance as the decrease in model performance when one feature is corrupted Molnar_ et al., 2021 Attributes: importances Example ------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import PermutationImportance >>> data = busan_beach() >>> model = Model(model="XGBRegressor", verbosity=0) >>> model.fit(data=data) >>> x_val, y_val = model.validation_data() ... # initialize the PermutationImportance class >>> pimp = PermutationImportance(model.predict, x_val, y_val.reshape(-1,)) >>> fig = pimp.plot_1d_pimp() .. _Molnar: https://christophm.github.io/interpretable-ml-book/feature-importance.html#feature-importance """ def __init__( self, model: Callable, inputs: Union[np.ndarray, List[np.ndarray]], target: np.ndarray, scoring: Union[str, Callable] = "r2", n_repeats: int = 14, noise: Union[str, np.ndarray] = None, cat_map:dict = None, use_noise_only: bool = False, feature_names: list = None, path: str = None, seed: int = None, weights=None, save: bool = True, show: bool = True, **kwargs ): """ initiates a the class and calculates the importances Arguments: model: the trained model object which is callable e.g. if you have Keras or sklearn model then you should pass `model.predict` instead of `model`. inputs: arrays or list of arrays which will be given as input to `model` target: the true outputs or labels for corresponding `inputs` It must be a 1-dimensional numpy array scoring: the peformance metric to use. It can be any metric from RegressionMetrics_ or ClassificationMetrics_ or a callable. If callable, then this must take true and predicted as input and sprout a float as output n_repeats: number of times the permutation for each feature is performed. Number of calls to the `model` will be `num_features * n_repeats` noise: The noise to add in the feature. It should be either an array of noise or a string of scipy distribution name_ defining noise. use_noise_only: If True, the original feature will be replaced by the noise. weights: feature_names: names of features seed: random seed for reproducibility. Permutation importance is strongly affected by random seed. Therfore, if you want to reproduce your results, set this value to some integer value. path: path to save the plots show: whether to show the plot or not save: whether to save the plot or not kwargs: any additional keyword arguments for `model` .. _name: https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions .. _RegressionMetrics: https://seqmetrics.readthedocs.io/en/latest/rgr.html#regressionmetrics .. _ClassificationMetrics: https://seqmetrics.readthedocs.io/en/latest/cls.html#classificationmetrics """ assert callable(model), f"model must be callable" self.model = model if inputs.__class__.__name__ in ["Series", "DataFrame"]: inputs = inputs.values self.x = inputs self.y = target self.scoring = scoring self.noise = noise self.cat_map = cat_map if use_noise_only: if noise is None: raise ValueError("you must define the noise in order to replace it with feature") self.use_noise_only = use_noise_only self.n_repeats = n_repeats self.weights = weights self.kwargs = kwargs self.importances = None super().__init__(features=feature_names, data=inputs, path=path or os.getcwd(), show=show, save=save ) self.seed = seed self.base_score = self._base_score() self._calculate(**kwargs) @property def noise(self): return self._noise @noise.setter def noise(self, x): if x is not None: if isinstance(x, str): x = getattr(stats, x)().rvs(len(self.y)) else: assert isinstance(x, np.ndarray) and len(x) == len(self.y) self._noise = x def _base_score(self) -> float: """calculates the base score""" return self._score(self.model(self.x, **self.kwargs)) def _score(self, pred) -> float: """given the prediction, it calculates the score""" if callable(self.scoring): return self.scoring(self.y, pred) else: if hasattr(RegressionMetrics, self.scoring): errors = RegressionMetrics(self.y, pred) else: errors = ClassificationMetrics(self.y, pred) return getattr(errors, self.scoring)() def _calculate( self, **kwargs ): """Calculates permutation importance using self.x""" if self.single_source: if self.x.ndim == 2: # 2d input results = self._permute_importance_2d(self.x, **kwargs) else: results = {} for lb in range(self.x.shape[1]): results[lb] = self._permute_importance_2d(self.x, time_step=lb, **kwargs) else: results = {} for idx in range(len(self.x)): if self.x[idx].ndim == 2: # current input is 2d results[idx] = self._permute_importance_2d( self.x, idx, **kwargs ) elif self.x[idx].ndim == 3: # current input is 3d _results = {} for lb in range(self.x[idx].shape[1]): _results[lb] = self._permute_importance_2d(self.x, inp_idx=idx, time_step=lb, **kwargs) results[idx] = _results else: raise NotImplementedError setattr(self, 'importances', results) return results def plot_as_heatmap( self, annotate=True, **kwargs ): """plots the permutation importance as heatmap. The input data must be 3d. Arguments: annotate: whether to annotate the heat map with kwargs: any keyword arguments for imshow_ function. .. _imshow: https://easy-mpl.readthedocs.io/en/latest/#module-4 """ assert self.data_is_3d, f"data must be 3d but it is has {self.x.shape}" imp = np.stack([np.mean(v, axis=1) for v in self.importances.values()]) lookback = imp.shape[0] ytick_labels = [f"t-{int(i)}" for i in np.linspace(lookback - 1, 0, lookback)] im = imshow( imp, yticklabels=ytick_labels, xticklabels=self.features if len(self.features) <= 14 else None, ax_kws=dict( ylabel="Lookack steps", xlabel="Input Features", title=f"Base Score {round(self.base_score, 3)} with {ERROR_LABELS[self.scoring]}", ), annotate=annotate, colorbar=True, show=False, **kwargs ) axes = im.axes axes.set_xticklabels(axes.get_xticklabels(), rotation=90) if self.show: plt.show( ) return axes def plot_1d_pimp( self, plot_type:str = "boxplot", **kwargs ) -> plt.Axes: """Plots the 1d permutation importance either as box-plot or as bar_chart Arguments --------- plot_type : str, optional either boxplot or barchart **kwargs : keyword arguments either for boxplot or bar_chart Returns ------- matplotlib AxesSubplot """ if isinstance(self.importances, np.ndarray): if self.cat_map is not None: feats = make_feature_list(self.features, self.cat_map) else: feats = self.features ax = self._plot_pimp(self.importances, feats, plot_type=plot_type, **kwargs) else: for idx, importance in enumerate(self.importances.values()): if self.data_is_3d: features = self.features else: features = self.features[idx] ax = self._plot_pimp(importance, features, plot_type=plot_type, name=idx, **kwargs ) plt.close('all') return ax def _permute_importance_2d( self, inputs, inp_idx=None, time_step=None, **kwargs ): """ calculates permutation importance by permuting columns in inputs which is supposed to be 2d array. args are optional inputs to model. """ original_inp_idx = inp_idx if inp_idx is None: inputs = [inputs] inp_idx = 0 permuted_x = inputs[inp_idx].copy() feat_dim = 1 # feature dimension (0, 1, 2) if time_step is not None: feat_dim = 2 col_indices = list(range(permuted_x.shape[feat_dim])) if self.cat_map is not None: col_indices = create_index(col_indices, self.cat_map) # empty container to keep results # (num_features, n_repeats) results = np.full((len(col_indices), self.n_repeats), np.nan) # todo, instead of having two for loops, we can perturb the # inputs at once and concatenate # them as one input and thus call the `model` only once for col_idx, col_index in enumerate(col_indices): # instead of calling the model/func for each n_repeat, prepare the data # for all n_repeats and stack it and call the model/func once. # This reduces calls to model from num_inputs * n_repeats -> num_inputs permuted_inputs = np.full((len(permuted_x)*self.n_repeats, *permuted_x.shape[1:]), np.nan) st, en = 0, len(permuted_x) rng = np.random.default_rng(self.seed) for n_round in range(self.n_repeats): # sklearn sets the random state before permuting each feature # also sklearn sets the RandomState insite a function therefore # the results from this function will not be reproducible with # sklearn and vice versa # We should make a fresh copy because the permuted_x from previous # iteration has been modified permuted_x_ = permuted_x.copy() if time_step is None: permuted_feature = rng.permutation( permuted_x_[:, col_index]) else: permuted_feature = rng.permutation( permuted_x_[:, time_step, col_index] ) if self.noise is not None: if self.use_noise_only: permuted_feature = self.noise else: permuted_feature += self.noise if time_step is None: permuted_x_[:, col_index] = permuted_feature else: permuted_x_[:, time_step, col_index] = permuted_feature permuted_inputs[st:en] = permuted_x_ st = en en += len(permuted_x) results[col_idx] = self._eval(original_inp_idx, inputs, inp_idx, permuted_inputs, len(permuted_x), **kwargs) if self.scoring in ["mse", "rmse", "rmsle", "mape"]: results = self.base_score + results else: # permutation importance is how much performance decreases by permutation results = self.base_score - results gc.collect() if time_step: print(f"finished for time_step {time_step}") return results def _permute_importance_2d1( self, inputs ): """ todo inorder to reproduce sklearn's results, use this function """ def _func(_inputs, col_idx): permuted_x = _inputs.copy() scores = np.full(self.n_repeats, np.nan) random_state = np.random.RandomState(self.seed) for n_round in range(self.n_repeats): perturbed_feature = permuted_x[:, col_idx] random_state.shuffle(perturbed_feature) if self.noise is not None: if self.use_noise_only: perturbed_feature = self.noise else: perturbed_feature += self.noise permuted_x[:, col_idx] = perturbed_feature prediction = self.model(permuted_x) scores[n_round] = self._score(prediction) return scores # empty container to keep results results = np.full((inputs.shape[1], self.n_repeats), np.nan) for col_index in range(inputs.shape[1]): results[col_index, :] = _func(inputs, col_index) # permutation importance is how much performance decreases by permutation results = self.base_score - results return results def _plot_pimp( self, imp, features, axes=None, name=None, plot_type="boxplot", **kwargs ): ax_kws = dict(xlabel=ERROR_LABELS.get(self.scoring, self.scoring), title=f"Base Score {round(self.base_score, 3)}") importances_mean = np.mean(imp, axis=1) perm_sorted_idx = importances_mean.argsort() if plot_type == "boxplot": axes, _ = boxplot( imp[perm_sorted_idx].T, # (num_features, n_repeats) -> (n_repeats, num_features) vert=False, labels=np.array(features)[perm_sorted_idx], ax=axes, show=False, ax_kws=ax_kws, **kwargs ) else: axes = bar_chart(importances_mean, features, show=False, ax=axes, ax_kws=ax_kws, sort=True, **kwargs) if self.save: name = name or '' fname = os.path.join(self.path, f"{plot_type}_{name}_{self.n_repeats}_{self.scoring}") plt.savefig(fname, bbox_inches="tight") if self.show: plt.show() return axes def _eval(self, original_inp_idx, inputs, inp_idx, permuted_inp, batch_size, **kwargs): """batch size here refers to number of examples in one `n_round`.""" # don't disturb the original input data, create new one new_inputs = [None]*len(inputs) new_inputs[inp_idx] = permuted_inp if original_inp_idx is None: # inputs were not list so unpack the list prediction = self.model(*new_inputs, **kwargs) else: for idx, inp in enumerate(inputs): if idx != inp_idx: new_inputs[idx] = np.concatenate([inp for _ in range(self.n_repeats)]) prediction = self.model(new_inputs, **kwargs) st, en = 0, batch_size scores = np.full(self.n_repeats, np.nan) for n_round in range(self.n_repeats): pred = prediction[st:en] scores[n_round] = self._score(pred) st = en en += batch_size gc.collect() return scores def create_index(index:list, cat_mapper:dict)->list: """ mp = [[1,2,3], [8,9,10]] ci = [0,1,2,3,4,5,6,7,8,9,10] result will be [0, [1,2,3], 4, 5,6,7,[8,9,10]] """ mp = list(cat_mapper.values()) ci = index.copy() for sub_list in mp: for element in sub_list: if element in ci: ci.insert(ci.index(element), sub_list) for i in sub_list: ci.remove(i) break return ci def make_feature_list(featur_list:list, cat_map:dict)->list: """ mp = [[1,2,3], [8,9,10]] ci = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] out = ['a', 'x', 'e', 'f', 'g', 'h', 'y'] """ featur_list = featur_list.copy() for key, index_list in cat_map.items(): for index in index_list: featur_list.pop(index) featur_list.insert(index, key) return list(dict.fromkeys(featur_list))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/_permutation_importance.py
_permutation_importance.py
from typing import Union, Callable, List try: import shap from shap import Explanation except ModuleNotFoundError: shap = None Explanation = None import scipy as sp try: import tensorflow.keras.backend as K except ModuleNotFoundError: K = None from ._explain import ExplainerMixin from .utils import convert_ai4water_model from ai4water.backend import sklearn_models, np, pd, os, plt, easy_mpl class ShapExplainer(ExplainerMixin): """ Wrapper around SHAP `explainers` and `plots` to draw and save all the plots for a given model. Attributes: features : train_summary : only for KernelExplainer explainer : shap_values : Methods -------- - summary_plot - force_plot_single_example - dependence_plot_single_feature - force_plot_all Examples: >>> from ai4water.postprocessing import ShapExplainer >>> from sklearn.model_selection import train_test_split >>> from sklearn import linear_model >>> import shap ... >>> X,y = shap.datasets.diabetes() >>> X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2, random_state=0) >>> lin_regr = linear_model.LinearRegression() >>> lin_regr.fit(X_train, y_train) >>> explainer = ShapExplainer(lin_regr, X_test, X_train, num_means=10) >>> explainer() """ allowed_explainers = [ "Explainer", "DeepExplainer", "TreeExplainer", "KernelExplainer", "LinearExplainer", "AdditiveExplainer", "GPUTreeExplainer", "GradientExplainer", "PermutationExplainer", "SamplingExplainer", "PartitionExplainer" ] def __init__( self, model, data: Union[np.ndarray, pd.DataFrame, List[np.ndarray]], train_data: Union[np.ndarray, pd.DataFrame, List[np.ndarray]] = None, explainer: Union[str, Callable] = None, num_means: int = 10, path: str = None, feature_names: list = None, framework: str = None, layer: Union[int, str] = None, save: bool = True, show: bool = True, ): """ Args: model : a Model/regressor/classifier from sklearn/xgboost/catboost/LightGBM/tensorflow/pytorch/ai4water The model must have a `predict` method. data : Data on which to make interpretation. Its dimension should be same as that of training data. It can be either training or test data train_data : The data on which the `model` was trained. It is used to get train_summary. It can a numpy array or a pandas DataFrame. Only required for scikit-learn based models. explainer : str the explainer to use. If not given, the explainer will be inferred. num_means : int Numher of means, used in `shap.kmeans` to calculate train_summary using shap.kmeans. Only used when explainer is "KernelExplainer" path : str path to save the plots. By default, plots will be saved in current working directory feature_names : list Names of features. Should only be given if train/test data is numpy array. framework : str either "DL" or "ML". Here "DL" shows that the `model` is a deep learning or neural network based model and "ML" represents other models. For "DL" the explainer will be either "DeepExplainer" or "GradientExplainer". If not given, it will be inferred. In such a case "DeepExplainer" will be prioritized over "GradientExplainer" for DL frameworks and "TreeExplainer" will be prioritized for "ML" frameworks. layer : Union[int, str] only relevant when framework is "DL" i.e when the model consits of layers of neural networks. show: whether to show the plot or not save: whether to save the plot or not """ assert shap is not None, f""" shap package must be installed to use this class. please install shap e.g with pip install shap """ test_data = maybe_to_dataframe(data, feature_names) train_data = maybe_to_dataframe(train_data, feature_names) super(ShapExplainer, self).__init__(path=path or os.getcwd(), data=test_data, features=feature_names, save=save, show=show ) if train_data is None: self._check_data(test_data) else: self._check_data(train_data, test_data) model, framework, explainer, model_name = convert_ai4water_model(model, framework, explainer) self.is_sklearn = True if model_name not in sklearn_models: if model_name in ["XGBRegressor", "XGBClassifier", "LGBMRegressor", "LGBMClassifier", "CatBoostRegressor", "CatBoostClassifier" "XGBRFRegressor" "XGBRFClassifier" ]: self.is_sklearn = False elif not self._is_dl(model): raise ValueError(f"{model.__class__.__name__} is not a valid model model") self._framework = self.infer_framework(model, framework, layer, explainer) self.model = model self.data = test_data self.layer = layer self.features = feature_names self.explainer = self._get_explainer(explainer, train_data=train_data, num_means=num_means) self.shap_values = self.get_shap_values(test_data) @staticmethod def _is_dl(model): if hasattr(model, "count_params") or hasattr(model, "named_parameters"): return True return False @property def layer(self): return self._layer @layer.setter def layer(self, x): if x is not None: if not isinstance(x, str): assert isinstance(x, int), f"layer must either b string or integer" assert x <= len(self.model.layers) # todo, what about pytorch self._layer = x def map2layer(self, x, layer): feed_dict = dict(zip([self.model.layers[0].input], [x.copy()])) import tensorflow as tf if int(tf.__version__[0]) < 2: sess = K.get_session() else: sess = tf.compat.v1.keras.backend.get_session() if isinstance(layer, int): return sess.run(self.model.layers[layer].input, feed_dict) else: return sess.run(self.model.get_layer(layer).input, feed_dict) def infer_framework(self, model, framework, layer, explainer): if framework is not None: inf_framework = framework elif self._is_dl(model): inf_framework = "DL" elif isinstance(explainer, str) and explainer in ("DeepExplainer", "GradientExplainer"): inf_framework = "DL" elif explainer.__class__.__name__ in ("DeepExplainer", "GradientExplainer"): inf_framework = "DL" else: inf_framework = "ML" assert inf_framework in ("ML", "DL") if inf_framework != "DL": assert layer is None if inf_framework == "DL" and isinstance(explainer, str): assert explainer in ("DeepExplainer", "GradientExplainer", "PermutationExplainer"), f"invalid explainer {inf_framework}" return inf_framework def _get_explainer(self, explainer: Union[str, Callable], num_means, train_data ): if explainer is not None: if callable(explainer): return explainer assert isinstance(explainer, str), f"explainer should be callable or string but" \ f" it is {explainer.__class__.__name__}" assert explainer in self.allowed_explainers, f"{explainer} is not a valid explainer" if explainer == "KernelExplainer": explainer = self._get_kernel_explainer(train_data, num_means) elif explainer == "DeepExplainer": explainer = self._get_deep_explainer() elif explainer == "GradientExplainer": explainer = self._get_gradient_explainer() elif explainer == "PermutationExplainer": explainer = shap.PermutationExplainer(self.model, self.data) else: explainer = getattr(shap, explainer)(self.model) else: # explainer is not given explicitly, we need to infer it explainer = self._infer_explainer_to_use(train_data, num_means) return explainer def _get_kernel_explainer(self, data, num_means): assert isinstance(num_means, int), f'num_means should be integer but given value is of type {num_means.__class__.__name__}' if data is None: raise ValueError("Provide train_data in order to use KernelExplainer.") self.train_summary = shap.kmeans(data, num_means) explainer = shap.KernelExplainer(self.model.predict, self.train_summary) return explainer def _infer_explainer_to_use(self, train_data, num_means): """Tries to infer explainer to use from the type of model.""" # todo, Fig 3 of Lundberberg's Nature MI paper shows that TreeExplainer # performs better than KernelExplainer, so try to use supports_model_with_masker if self.model.__class__.__name__ in ["XGBRegressor", "LGBMRegressor", "CatBoostRegressor", "XGBRFRegressor"]: explainer = shap.TreeExplainer(self.model) elif self.model.__class__.__name__ in sklearn_models: explainer = self._get_kernel_explainer(train_data, num_means) elif self._framework == "DL": explainer = self._get_deep_explainer() else: raise ValueError(f"Can not infer explainer for model {self.model.__class__.__name__}." f" Plesae specify explainer by using `explainer` keyword argument") return explainer def _get_deep_explainer(self): data = self.data.values if isinstance(self.data, pd.DataFrame) else self.data return getattr(shap, "DeepExplainer")(self.model, data) def _get_gradient_explainer(self): if self.layer is None: # GradientExplainer is also possible without specifying a layer return shap.GradientExplainer(self.model, self.data) if isinstance(self.layer, int): return shap.GradientExplainer((self.model.layers[self.layer].input, self.model.layers[-1].output), self.map2layer(self.data, self.layer)) else: return shap.GradientExplainer((self.model.get_layer(self.layer).input, self.model.layers[-1].output), self.map2layer(self.data, self.layer)) def _check_data(self, *data): if self.single_source: for d in data: assert type(d) == np.ndarray or type(d) == pd.DataFrame, f""" data must be numpy array or pandas dataframe but it is of type {d.__class__.__name__}""" assert len(set([d.ndim for d in data])) == 1, "train and test data should have same ndim" assert len(set([d.shape[-1] for d in data])) == 1, "train and test data should have same input features" assert len(set([type(d) for d in data])) == 1, "train and test data should be of same type" return def get_shap_values(self, data, **kwargs): if self.explainer.__class__.__name__ in ["Permutation"]: return self.explainer(data) elif self._framework == "DL": return self._shap_values_dl(data, **kwargs) return self.explainer.shap_values(data) def _shap_values_dl(self, data, ranked_outputs=None, **kwargs): """Gets the SHAP values""" data = data.values if isinstance(data, pd.DataFrame) else data if self.explainer.__class__.__name__ == "Deep": shap_values = self.explainer.shap_values(data, ranked_outputs=ranked_outputs, **kwargs) elif isinstance(self.explainer, shap.GradientExplainer) and self.layer is None: shap_values = self.explainer.shap_values(data, ranked_outputs=ranked_outputs, **kwargs) else: shap_values = self.explainer.shap_values(self.map2layer(data, self.layer), ranked_outputs=ranked_outputs, **kwargs) if ranked_outputs: shap_values, indexes = shap_values return shap_values def __call__(self, force_plots=True, plot_force_all=False, dependence_plots=False, beeswarm_plots=False, heatmap=False, ): """Draws and saves all the plots for a given sklearn model in the path. plot_force_all is set to False by default because it is causing Process finished error due. Avoiding this error is a complex function of scipy and numba versions. """ if dependence_plots: for feature in self.features: self.dependence_plot_single_feature(feature, f"dependence_plot_{feature}") if force_plots: for i in range(self.data.shape[0]): self.force_plot_single_example(i, f"force_plot_{i}") if beeswarm_plots: self.beeswarm_plot() if plot_force_all: self.force_plot_all("force_plot_all") if heatmap: self.heatmap() self.summary_plot("summary_plot") return def summary_plot( self, plot_type: str = None, name: str = "summary_plot", **kwargs ): """ Plots the `summary <https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html#shap.summary_plot>`_ plot of SHAP package. Arguments: plot_type : str, either "bar", or "violen" or "dot" name: name of saved file kwargs: any keyword arguments to shap.summary_plot """ def _summary_plot(_shap_val, _data, _features, _name): plt.close('all') shap.summary_plot(_shap_val, _data, show=False, plot_type=plot_type, feature_names=_features, **kwargs) if self.save: plt.savefig(os.path.join(self.path, _name + " _bar"), dpi=300, bbox_inches="tight") if self.show: plt.show() return shap_vals = self.shap_values if isinstance(shap_vals, list) and len(shap_vals) == 1: shap_vals = shap_vals[0] data = self.data if self.single_source: if data.ndim == 3: assert shap_vals.ndim == 3 for lookback in range(data.shape[1]): _summary_plot(shap_vals[:, lookback], data[:, lookback], self.features, _name=f"{name}_{lookback}") else: _summary_plot(shap_vals, data, self.features, name) else: # data is a list of data sources for idx, _data in enumerate(data): if _data.ndim == 3: for lb in range(_data.shape[1]): _summary_plot(shap_vals[idx][:, lb], _data[:, lb], self.features[idx], _name=f"{name}_{idx}_{lb}") else: _summary_plot(shap_vals[idx], _data, self.features[idx], _name=f"{name}_{idx}") return def force_plot_single_example( self, idx:int, name=None, **force_kws ): """Draws force_plot_ for a single example/row/sample/instance/data point. If the data is 3d and shap values are 3d then they are unrolled/flattened before plotting Arguments: idx: index of exmaple to use. It can be any value >=0 name: name of saved file force_kws : any keyword argument for force plot Returns: plotter object .. _force_plot: https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html """ shap_vals = self.shap_values if isinstance(shap_vals, list) and len(shap_vals) == 1: shap_vals = shap_vals[0] shap_vals = shap_vals[idx] if type(self.data) == np.ndarray: data = self.data[idx] else: data = self.data.iloc[idx, :] if self.explainer.__class__.__name__ == "Gradient": expected_value = [0] else: expected_value = self.explainer.expected_value features = self.features if data.ndim == 2 and shap_vals.ndim == 2: # input was 3d i.e. ml model uses 3d input features = self.unrolled_features expected_value = expected_value[0] # todo shap_vals = shap_vals.reshape(-1,) data = data.reshape(-1, ) plt.close('all') plotter = shap.force_plot( expected_value, shap_vals, data, feature_names=features, show=False, matplotlib=True, **force_kws ) if self.save: name = name or f"force_plot_{idx}" plotter.savefig(os.path.join(self.path, name), dpi=300, bbox_inches="tight") if self.show: plotter.show() return plotter def dependence_plot_all_features(self, **dependence_kws): """dependence plot for all features""" for feature in self.features: self.dependence_plot_single_feature(feature, f"dependence_plot_{feature}", **dependence_kws) return def dependence_plot_single_feature(self, feature, name="dependence_plot", **kwargs): """dependence_ plot for a single feature. See this_ . .. _dependence: https://slundberg.github.io/shap/notebooks/plots/dependence_plot.html .. _this: https://shap-lrjball.readthedocs.io/en/docs_update/generated/shap.dependence_plot.html """ plt.close('all') if len(name) > 150: # matplotlib raises error if the length of filename is too large name = name[0:150] shap_values = self.shap_values if isinstance(shap_values, list) and len(shap_values) == 1: shap_values = shap_values[0] shap.dependence_plot(feature, shap_values, self.data, show=False, **kwargs) if self.save: plt.savefig(os.path.join(self.path, name), dpi=300, bbox_inches="tight") if self.show: plt.show() return def force_plot_all(self, name="force_plot.html", save=True, show=True, **force_kws): """draws force plot for all examples in the given data and saves it in an html""" # following scipy versions cause kernel stoppage when calculating if sp.__version__ in ["1.4.1", "1.5.2", "1.7.1"]: print(f"force plot can not be plotted for scipy version {sp.__version__}. Please change your scipy") return shap_values = self.shap_values if isinstance(shap_values, list) and len(shap_values) == 1: shap_values = shap_values[0] plt.close('all') plot = shap.force_plot(self.explainer.expected_value, shap_values, self.data, **force_kws) if save: shap.save_html(os.path.join(self.path, name), plot) return def waterfall_plot_all_examples( self, name: str = "waterfall", **waterfall_kws ): """Plots the waterfall_ plot of SHAP package It plots for all the examples/instances from test_data. .. _waterfall: https://shap.readthedocs.io/en/latest/generated/shap.plots.waterfall.html """ for i in range(len(self.data)): self.waterfall_plot_single_example(i, name=name, **waterfall_kws) return def waterfall_plot_single_example( self, example_index: int, name: str = "waterfall", max_display: int = 10, ): """draws and saves waterfall_ plot for one example. The waterfall plots are based upon SHAP values and show the contribution by each feature in model's prediction. It shows which feature pushed the prediction in which direction. They answer the question, why the ML model simply did not predict mean of training y instead of what it predicted. The mean of training observations that the ML model saw during training is called base value or expected value. Arguments: example_index : int index of example to use max_display : int maximu features to display name : str name of plot .. _waterfall: https://shap.readthedocs.io/en/latest/generated/shap.plots.waterfall.html """ if self.explainer.__class__.__name__ in ["Deep", "Kernel"]: shap_vals_as_exp = None else: shap_vals_as_exp = self.explainer(self.data) shap_values = self.shap_values if isinstance(shap_values, list) and len(shap_values) == 1: shap_values = shap_values[0] plt.close('all') if shap_vals_as_exp is None: features = self.features if not self.data_is_2d: features = self.unrolled_features # waterfall plot expects first argument as Explaination class # which must have at least these attributes (values, data, feature_names, base_values) # https://github.com/slundberg/shap/issues/1420#issuecomment-715190610 if not self.data_is_2d: # if original data is 3d then we flat it into 1d array values = shap_values[example_index].reshape(-1, ) data = self.data[example_index].reshape(-1, ) else: values = shap_values[example_index] data = self.data.iloc[example_index] exp_value = self.explainer.expected_value if self.explainer.__class__.__name__ in ["Kernel"]: pass else: exp_value = exp_value[0] e = Explanation( values, base_values=exp_value, data=data, feature_names=features ) shap.plots.waterfall(e, show=False, max_display=max_display) else: shap.plots.waterfall(shap_vals_as_exp[example_index], show=False, max_display=max_display) if self.save: plt.savefig(os.path.join(self.path, f"{name}_{example_index}"), dpi=300, bbox_inches="tight") if self.show: plt.show() return def scatter_plot_single_feature( self, feature: int, name: str = "scatter", **scatter_kws ): """scatter plot for a single feature""" if self.explainer.__class__.__name__ in ["Kernel"]: shap_values = Explanation(self.shap_values, data=self.data.values, feature_names=self.features) else: shap_values = self.explainer(self.data) shap.plots.scatter(shap_values[:, feature], show=False, **scatter_kws) if self.save: plt.savefig(os.path.join(self.path, f"{name}_{feature}"), dpi=300, bbox_inches="tight") if self.show: plt.show() return def scatter_plot_all_features(self, name="scatter_plot", **scatter_kws): """draws scatter plot for all features""" if isinstance(self.data, pd.DataFrame): features = self.features else: features = [i for i in range(self.data.shape[-1])] for feature in features: self.scatter_plot_single_feature(feature, name=name, **scatter_kws) return def heatmap(self, name: str = 'heatmap', max_display=10): """Plots the heatmap_ and saves it This can be drawn for xgboost/lgbm as well as for randomforest type models but not for CatBoostRegressor which is todo. Note ---- The upper line plot on the heat map shows $-fx/max(abs(fx))$ where $fx$ is the mean SHAP value of all features. The length of $fx$ is equal to length of data/examples. Thus one point on this line is the mean of SHAP values of all input features for the given/one example normalized by the maximum absolute value of $fx$. .. _heatmap: https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/heatmap.html """ # if heat map is drawn with np.ndarray, it throws errors therefore convert # it into pandas DataFrame. It is more interpretable and does not hurt. try: shap_values = self._get_shap_values_locally() except (ValueError, AttributeError): # some times we are not able to calculate shap values as # being calcultaed inside '_get_shap_values_locally' shap_values = Explanation( self.shap_values, data=self.data.values, feature_names=self.features) # by default examples are ordered in such a way that examples with similar # explanations are grouped together. self._heatmap(shap_values, f"{name}_basic", max_display=max_display) # sort by the maximum absolute value of a feature over all the examples self._heatmap(shap_values, f"{name}_sortby_maxabs", max_display=max_display, feature_values=shap_values.abs.max(0)) # sorting by the sum of the SHAP values over all features gives a complementary perspective on the data self._heatmap(shap_values, f"{name}_sortby_SumOfShap", max_display=max_display, instance_order=shap_values.sum(1)) return def _heatmap(self, shap_values, name, max_display=10, **kwargs): plt.close('all') # set show to False because we want to reset xlabel shap.plots.heatmap(shap_values, show=False, max_display=max_display, **kwargs) plt.xlabel("Examples") if self.save: plt.savefig(os.path.join(self.path, f"{name}_sortby_SumOfShap"), dpi=300, bbox_inches="tight") if self.show: plt.show() return def _get_shap_values_locally(self): data = self.data if not isinstance(self.data, pd.DataFrame) and data.ndim == 2: data = pd.DataFrame(self.data, columns=self.features) # not using global explainer because, this explainer should data as well explainer = shap.Explainer(self.model, data) shap_values = explainer(data) return shap_values def beeswarm_plot( self, name: str = "beeswarm", max_display: int = 10, **kwargs ): """ Draws the beeswarm_ plot of shap. Arguments: name : str name of saved file max_display : maximum kwargs : any keyword arguments for shap.beeswarm plot .. _beeswarm: https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html """ try: shap_values = self._get_shap_values_locally() except (ValueError, AttributeError): shap_values = Explanation(self.shap_values, data=self.data.values, feature_names=self.features) self._beeswarm_plot(shap_values, name=f"{name}_basic", max_display=max_display, **kwargs) # find features with high impacts self._beeswarm_plot(shap_values, name=f"{name}_sortby_maxabs", max_display=max_display, order=shap_values.abs.max(0), **kwargs) # plot the absolute value self._beeswarm_plot(shap_values.abs, name=f"{name}_abs_shapvalues", max_display=max_display, **kwargs) return def _beeswarm_plot(self, shap_values, name, max_display=10, **kwargs): plt.close('all') shap.plots.beeswarm(shap_values, show=False, max_display=max_display, **kwargs) if self.save: plt.savefig(os.path.join(self.path, name), dpi=300, bbox_inches="tight") if self.show: plt.show() return def decision_plot( self, indices=None, name: str = "decision_", **decision_kwargs): """decision_ plot. For details see this blog. .. _decision: https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/decision_plot.html .. _blog: https://towardsdatascience.com/introducing-shap-decision-plots-52ed3b4a1cba """ shap_values = self.shap_values legend_location = "best" legend_labels = None if indices is not None: shap_values = shap_values[(indices), :] if len(shap_values) <= 10: legend_labels = indices legend_location = "lower right" if self.explainer.__class__.__name__ in ["Tree"]: shap.decision_plot(self.explainer.expected_value, shap_values, self.features, legend_labels=legend_labels, show=False, legend_location=legend_location, **decision_kwargs) if self.save: plt.savefig(os.path.join(self.path, name), dpi=300, bbox_inches="tight") if self.show: plt.show() else: raise NotImplementedError def plot_shap_values( self, interpolation=None, cmap="coolwarm", name: str = "shap_values", ): """Plots the SHAP values. Arguments: name: name of saved file interpolation: interpolation argument to axis.imshow cmap: color map """ shap_values = self.shap_values if isinstance(shap_values, list) and len(shap_values) == 1: shap_values: np.ndarray = shap_values[0] def plot_shap_values_single_source(_data, _shap_vals, _features, _name): if _data.ndim == 3 and _shap_vals.ndim == 3: # input is 3d # assert _shap_vals.ndim == 3 return imshow_3d(_shap_vals, _data, _features, name=_name, path=self.path, show=self.show, cmap=cmap) plt.close('all') fig, axis = plt.subplots() im = axis.imshow(_shap_vals.T, aspect='auto', interpolation=interpolation, cmap=cmap ) if _features is not None: # if imshow is successful then don't worry if features are None axis.set_yticks(np.arange(len(_features))) axis.set_yticklabels(_features) axis.set_ylabel("Features") axis.set_xlabel("Examples") fig.colorbar(im) if self.save: plt.savefig(os.path.join(self.path, _name), dpi=300, bbox_inches="tight") if self.show: plt.show() return if self.single_source: plot_shap_values_single_source(self.data, shap_values, self.features, name) else: for idx, d in enumerate(self.data): plot_shap_values_single_source(d, shap_values[idx], self.features[idx], f"{idx}_{name}") return def pdp_all_features( self, **pdp_kws ): """partial dependence plot of all features. Arguments: pdp_kws: any keyword arguments """ for feat in self.features: self.pdp_single_feature(feat, **pdp_kws) return def pdp_single_feature( self, feature_name: str, **pdp_kws ): """partial depence plot using SHAP package for a single feature.""" shap_values = None if hasattr(self.shap_values, 'base_values'): shap_values = self.shap_values if self.model.__class__.__name__.startswith("XGB"): self.model.get_booster().feature_names = self.features fig = shap.partial_dependence_plot( feature_name, model=self.model.predict, data=self.data, model_expected_value=True, feature_expected_value=True, shap_values=shap_values, feature_names=self.features, show=False, **pdp_kws ) if self.save: fname = f"pdp_{feature_name}" plt.savefig(os.path.join(self.path, fname), dpi=300, bbox_inches="tight") if self.show: plt.show() return fig def imshow_3d(values, data, feature_names: list, path, vmin=None, vmax=None, name="", show=False, cmap=None, ): num_examples, lookback, input_features = values.shape assert data.shape == values.shape for idx, feat in enumerate(feature_names): plt.close('all') fig, (ax1, ax2) = plt.subplots(2, sharex='all', figsize=(10, 12)) yticklabels=[f"t-{int(i)}" for i in np.linspace(lookback - 1, 0, lookback)] axis, im = easy_mpl.imshow(data[:, :, idx].transpose(), yticklabels=yticklabels, ax=ax1, vmin=vmin, vmax=vmax, title=feat, cmap=cmap, show=False ) fig.colorbar(im, ax=axis, orientation='vertical', pad=0.2) axis, im = easy_mpl.imshow(values[:, :, idx].transpose(), yticklabels=yticklabels, vmin=vmin, vmax=vmax, xlabel="Examples", title=f"SHAP Values", cmap=cmap, show=False, ax=ax2) fig.colorbar(im, ax=axis, orientation='vertical', pad=0.2) _name = f'{name}_{feat}_shap_values' plt.savefig(os.path.join(path, _name), dpi=400, bbox_inches='tight') if show: plt.show() return def infer_framework(model): if hasattr(model, 'config') and 'backend' in model.config: framework = model.config['backend'] elif type(model) is tuple: a, _ = model try: a.named_parameters() framework = 'pytorch' except: framework = 'tensorflow' else: try: model.named_parameters() framework = 'pytorch' except: framework = 'tensorflow' return framework def maybe_to_dataframe(data, features=None) -> pd.DataFrame: if isinstance(data, np.ndarray) and isinstance(features, list) and data.ndim == 2: data = pd.DataFrame(data, columns=features) return data
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/_shap.py
_shap.py
from typing import Callable, Union, List from easy_mpl import plot from ai4water.backend import np, os, plt, pd from ._explain import ExplainerMixin # todo, optionally show predicted value as dots on plots def compute_bounds(xmin, xmax, xv): """ from shap Handles any setting of xmax and xmin. Note that we handle None, float, or "percentile(float)" formats. """ if xmin is not None or xmax is not None: if type(xmin) == str and xmin.startswith("percentile"): xmin = np.nanpercentile(xv, float(xmin[11:-1])) if type(xmax) == str and xmax.startswith("percentile"): xmax = np.nanpercentile(xv, float(xmax[11:-1])) if xmin is None or xmin == np.nanmin(xv): xmin = np.nanmin(xv) - (xmax - np.nanmin(xv))/20 if xmax is None or xmax == np.nanmax(xv): xmax = np.nanmax(xv) + (np.nanmax(xv) - xmin)/20 return xmin, xmax class PartialDependencePlot(ExplainerMixin): """ Partial dependence plots as introduced by Friedman_ et al., 2001 Example ------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import PartialDependencePlot >>> data = busan_beach() >>> model = Model(model="XGBRegressor") >>> model.fit(data=data) # get the data to explain >>> x, _ = model.training_data() >>> pdp = PartialDependencePlot(model.predict, x, model.input_features, >>> num_points=14) .. _Friedman: https://doi.org/10.1214/aos/1013203451 """ def __init__( self, model: Callable, data, feature_names=None, num_points: int = 100, path=None, save: bool = True, show: bool = True, **kwargs ): """Initiates the class Parameters ---------- model : Callable the trained/calibrated model which must be callable. It must take the `data` as input and sprout an array of predicted values. For example if you are using Keras/sklearn model, then you must pass model.predict data : np.ndarray, pd.DataFrame The inputs to the `model`. It can numpy array or pandas DataFrame. feature_names : list, optional Names of features. Used for labeling. num_points : int, optional determines the grid for evaluation of `model` path : str, optional path to save the plots. By default the results are saved in current directory show: whether to show the plot or not save: whether to save the plot or not **kwargs : any additional keyword arguments for `model` """ self.model = model self.num_points = num_points self.xmin = "percentile(0)" self.xmax = "percentile(100)" self.kwargs = kwargs if isinstance(data, pd.DataFrame): if feature_names is None: feature_names = data.columns.tolist() data = data.values super().__init__(data=data, features=feature_names, path=path or os.getcwd(), show=show, save=save ) def nd_interactions( self, height: int = 2, ice: bool = False, show_dist: bool = False, show_minima: bool = False, ) -> plt.Figure: """Plots 2d interaction plots of all features as done in skopt Arguments: height: height of each subplot in inches ice: whether to show the ice lines or not show_dist: whether to show the distribution of data as histogram or not show_minima: whether to show the function minima or not Returns: matplotlib Figure Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import PartialDependencePlot >>> data = busan_beach() >>> model = Model(model="XGBRegressor") >>> model.fit(data=busan_beach()) >>> x, _ = model.training_data() >>> pdp = PartialDependencePlot(model.predict, x, model.input_features, ... num_points=14) >>> pdp.nd_interactions(show_dist=True) """ n_dims = len(self.features) fig, ax = plt.subplots(n_dims, n_dims, figsize=(height * n_dims, height * n_dims)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) for i in range(n_dims): for j in range(n_dims): # diagonal if i == j: if n_dims > 1: ax_ = ax[i, i] else: ax_ = ax self._plot_pdp_1dim(*self.calc_pdp_1dim(self.data, self.features[i]), self.data, self.features[i], show_dist=show_dist, show_minima=show_minima, ice=ice, show=False, save=False, ax=ax_) # resetting the label # ax_.set_xlabel(self.features[i]) ax_.set_ylabel(self.features[i]) process_axis(ax_, xlabel=self.features[i], top_spine=True, right_spine=True) # lower triangle elif i > j: self.plot_interaction( features=[self.features[j],self.features[i]], ax=ax[i, j], colorbar=False, save=False, show=False, ) elif j > i: if not ax[i, j].lines: # empty axes ax[i, j].axis("off") if j > 0: # not the left most column ax[i, j].yaxis.set_ticks([]) ax[i, j].yaxis.set_visible(False) ax[i, j].yaxis.label.set_visible(False) if i < n_dims-1: # not the bottom most row ax[i, j].xaxis.set_ticks([]) ax[i, j].xaxis.set_visible(False) ax[i, j].xaxis.label.set_visible(False) if self.save: fname = os.path.join(self.path, f"pdp_interact_nd") plt.savefig(fname, bbox_inches="tight", dpi=100*n_dims) if self.show: plt.show() return fig def plot_interaction( self, features: list, lookback: int = None, ax: plt.Axes = None, plot_type: str = "2d", cmap=None, colorbar: bool = True, show:bool = True, save:bool = True, **kwargs ) -> plt.Axes: """Shows interaction between two features Parameters ---------- features : a list or tuple of two feature names to use lookback : optional only relevant in data is 3d ax : optional matplotlib axes on which to draw. If not given, current axes will be used. plot_type : optional either "2d" or "surface" cmap : optional color map to use colorbar : optional whether to show the colorbar or not show : bool save : bool **kwargs : any keyword argument for axes.plot_surface or axes.contourf Returns ------- matplotlib Axes Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import PartialDependencePlot >>> data = busan_beach() >>> model = Model(model="XGBRegressor") >>> model.fit(data=busan_beach()) >>> x, _ = model.training_data() >>> pdp = PartialDependencePlot(model.predict, x, model.input_features, ... num_points=14) ... # specifying features whose interaction is to be calculated and plotted. >>> axis = pdp.plot_interaction(["tide_cm", "wat_temp_c"]) """ if not self.data_is_2d: raise NotImplementedError assert isinstance(features, list) and len(features) == 2 x0, x1, pd_vals = self._interaction(features, self.data, lookback) kwds = {} if plot_type == "surface": kwds['projection'] = '3d' if ax is None: fig = plt.figure() ax = fig.add_subplot(111, **kwds) if plot_type == "surface": _add_surface(ax, x0, x1, pd_vals, cmap, features[0], features[1], **kwargs) else: self._plot_interaction(ax, x0, x1, pd_vals, cmap=cmap, features=features, lookback=lookback, colorbar=colorbar, **kwargs) if save: fname = os.path.join(self.path, f"pdp_interact{features[0]}_{features[1]}") plt.savefig(fname, bbox_inches="tight", dpi=300) if show: plt.show() return ax def _plot_interaction( self, ax, x0, x1, pd_vals, cmap, features, lookback, colorbar=True, **kwargs): """adds a 2d interaction plot""" cntr = ax.contourf(x0, x1, pd_vals, cmap=cmap, **kwargs) xv0 = self.xv(self.data, features[0], lookback) xv1 = self.xv(self.data, features[1], lookback) ax.scatter(xv0, xv1, c='k', s=10, lw=0.) process_axis(ax, xlabel=features[0], ylabel=features[1]) if colorbar: cbar = plt.colorbar(cntr, ax=ax) cbar.set_label(f"E[f(x) | {features[0]}, {features[1]} ]", rotation=90) return def _interaction(self, features, data, lookback): ind0 = self._feature_to_ind(features[0]) ind1 = self._feature_to_ind(features[1]) xs0 = self.grid(self.data, features[0], lookback) xs1 = self.grid(self.data, features[1], lookback) features_tmp = data.copy() x0 = np.zeros((self.num_points, self.num_points)) x1 = np.zeros((self.num_points, self.num_points)) # instead of calling the model in two for loops, prepare data data # stack it in 'features_all' and call the model only once. total_samples = len(data) * self.num_points * self.num_points features_all = np.full((total_samples, *data.shape[1:]), np.nan) st, en = 0, len(data) for i in range(self.num_points): for j in range(self.num_points): features_tmp[:, ind0] = xs0[i] features_tmp[:, ind1] = xs1[j] x0[i, j] = xs0[i] x1[i, j] = xs1[j] features_all[st:en] = features_tmp st = en en += len(data) predictions = self.model(features_all) pd_vals = np.zeros((self.num_points, self.num_points)) st, en = 0, len(data) for i in range(self.num_points): for j in range(self.num_points): pd_vals[i, j] = predictions[st:en].mean() st = en en += len(data) return x0, x1, pd_vals def plot_1d( self, feature:Union[str, List[str]], show_dist: bool = True, show_dist_as: str = "hist", ice: bool = True, feature_expected_value: bool = False, model_expected_value: bool = False, show_ci: bool = False, show_minima: bool = False, ice_only: bool = False, ice_color: str = "lightblue", feature_name:str = None, pdp_line_kws: dict = None, ice_lines_kws: dict = None, hist_kws:dict = None ): """partial dependence plot in one dimension Parameters ---------- feature : the feature name for which to plot the partial dependence For one hot encoded categorical features, provide a list show_dist : whether to show actual distribution of data or not show_dist_as : one of "hist" or "grid" ice : whether to show individual component elements on plot or not feature_expected_value : whether to show the average value of feature on the plot or not model_expected_value : whether to show average prediction on plot or not show_ci : whether to show confidence interval of pdp or not show_minima : whether to indicate the minima or not ice_only : bool, False whether to show only ice plots ice_color : color for ice lines. It can also be a valid maplotlib `colormap <https://matplotlib.org/3.5.1/tutorials/colors/colormaps.html>`_ feature_name : str name of the feature. If not given, then value of ``feature`` is used. pdp_line_kws : dict any keyword argument for axes.plot when plotting pdp lie ice_lines_kws : dict any keyword argument for axes.plot when plotting ice lines hist_kws : any keyword arguemnt for axes.hist when plotting histogram Examples --------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> model = Model(model="XGBRegressor") >>> data = busan_beach() >>> model.fit(data=data) >>> x, _ = model.training_data(data=data) >>> pdp = PartialDependencePlot(model.predict, x, model.input_features, ... num_points=14) >>> pdp.plot_1d("tide_cm") with categorical features >>> from ai4water.datasets import mg_photodegradation >>> data, cat_enc, an_enc = mg_photodegradation(encoding="ohe") >>> model = Model(model="XGBRegressor") >>> model.fit(data=data) >>> x, _ = model.training_data(data=data) >>> pdp = PartialDependencePlot(model.predict, x, model.input_features, ... num_points=14) >>> feature = [f for f in model.input_features if f.startswith('Catalyst_type')] >>> pdp.plot_1d(feature) >>> pdp.plot_1d(feature, show_dist_as="grid") >>> pdp.plot_1d(feature, show_dist=False) >>> pdp.plot_1d(feature, show_dist=False, ice=False) >>> pdp.plot_1d(feature, show_dist=False, ice=False, model_expected_value=True) >>> pdp.plot_1d(feature, show_dist=False, ice=False, feature_expected_value=True) """ if isinstance(feature, tuple): raise NotImplementedError else: if self.single_source: if self.data_is_2d: pdp_vals, ice_vals = self.calc_pdp_1dim(self.data, feature) ax = self._plot_pdp_1dim( pdp_vals, ice_vals, self.data, feature, show_dist=show_dist, show_dist_as=show_dist_as, ice=ice, feature_expected_value=feature_expected_value, show_ci=show_ci, show_minima=show_minima, model_expected_value=model_expected_value, show=self.show, save=self.save, ice_only=ice_only, ice_color=ice_color, feature_name=feature_name, ice_lines_kws=ice_lines_kws, pdp_line_kws=pdp_line_kws, hist_kws=hist_kws ) elif self.data_is_3d: for lb in range(self.data.shape[1]): pdp_vals, ice_vals = self.calc_pdp_1dim(self.data, feature, lb) ax = self._plot_pdp_1dim( pdp_vals, ice_vals, data=self.data, feature=feature, lookback=lb, show_ci=show_ci, show_minima=show_minima, show_dist=show_dist, show_dist_as=show_dist_as, ice=ice, feature_expected_value=feature_expected_value, model_expected_value=model_expected_value, show=self.show, save=self.save, ice_only=ice_only, ice_color=ice_color, ice_lines_kws=ice_lines_kws, pdp_line_kws=pdp_line_kws, hist_kws=hist_kws) else: raise ValueError(f"invalid data shape {self.data.shape}") else: for data in self.data: if self.data_is_2d: ax = self.calc_pdp_1dim(data, feature) else: for lb in []: ax = self.calc_pdp_1dim(data, feature, lb) return ax def xv(self, data, feature, lookback=None): ind = self._feature_to_ind(feature) if data.ndim == 3: xv = data[:, lookback, ind] else: xv = data[:, ind] return xv def grid(self, data, feature, lookback=None): """generates the grid for evaluation of model""" if isinstance(feature, list): # one hot encoded feature self.num_points = len(feature) xs = pd.get_dummies(feature) return [repeat(xs.iloc[i].values, len(data)) for i in range(len(xs))] xmin, xmax = compute_bounds(self.xmin, self.xmax, self.xv(data, feature, lookback)) return np.linspace(xmin, xmax, self.num_points) def calc_pdp_1dim(self, data, feature, lookback=None): """calculates partial dependence for 1 dimension data""" ind = self._feature_to_ind(feature) xs = self.grid(data, feature, lookback) data_temp = data.copy() # instead of calling the model for each num_point, prepare the data # stack it in 'data_all' and call the model only once total_samples = len(data) * self.num_points data_all = np.full((total_samples, *data.shape[1:]), np.nan) pd_vals = np.full(self.num_points, np.nan) ice_vals = np.full((self.num_points, data.shape[0]), np.nan) st, en = 0, len(data) for i in range(self.num_points): if data.ndim == 3: data_temp[:, lookback, ind] = xs[i] else: data_temp[:, ind] = xs[i] data_all[st:en] = data_temp st = en en += len(data) predictions = self.model(data_all, **self.kwargs) st, en = 0, len(data) for i in range(self.num_points): pred = predictions[st:en] pd_vals[i] = pred.mean() ice_vals[i, :] = pred.reshape(-1, ) st = en en += len(data) return pd_vals, ice_vals def _feature_to_ind( self, feature:Union[str, List[str]] ) -> int: ind = feature if isinstance(feature, str): if self.single_source: ind = self.features.index(feature) else: raise NotImplementedError elif isinstance(feature, list): ind = [self.features.index(i) for i in feature] elif not isinstance(feature, int): raise ValueError return ind def _plot_pdp_1dim( self, pd_vals, ice_vals, data, feature, lookback=None, show_dist=True, show_dist_as="hist", ice=True, show_ci=False, show_minima=False, feature_expected_value=False, model_expected_value=False, show=True, save=False, ax=None, ice_color="lightblue", ice_only:bool = False, feature_name:str = None, pdp_line_kws:dict = None, ice_lines_kws:dict = None, hist_kws:dict = None, ): xmin, xmax = compute_bounds(self.xmin, self.xmax, self.xv(data, feature, lookback)) if ax is None: fig = plt.figure() ax = fig.add_axes((0.1, 0.3, 0.8, 0.6)) if isinstance(feature, list): xs = np.arange(len(feature)) if feature_name is None: feature_name = f"Feature" else: if feature_name is None: feature_name = feature xs = self.grid(data, feature, lookback) ylabel = "E[f(x) | " + feature_name + "]" if ice: n = ice_vals.shape[1] if ice_color in plt.colormaps(): colors = plt.get_cmap(ice_color)(np.linspace(0, 0.8, n)) else: colors = [ice_color for _ in range(n)] _ice_lines_kws = dict(linewidth=min(1, 50 / n), alpha=1) if ice_lines_kws is not None: _ice_lines_kws.update(ice_lines_kws) for _ice in range(n): ax.plot(xs, ice_vals[:, _ice], color=colors[_ice], **_ice_lines_kws) ylabel = "f(x) | " + feature_name if show_ci: std = np.std(ice_vals, axis=1) upper = pd_vals + std lower = pd_vals - std color = '#66C2D7' if ice_color != "lightblue": if ice_color not in plt.colormaps(): color = ice_color ax.fill_between(xs, upper, lower, alpha=0.14, color=color) # the line plot _pdp_line_kws = dict(color='blue', linewidth=2, alpha=1) if not ice_only: if pdp_line_kws is not None: _pdp_line_kws.update(pdp_line_kws) plot(xs, pd_vals, show=False, ax=ax, **_pdp_line_kws) title = None if lookback is not None: title = f"lookback: {lookback}" process_axis(ax, ylabel=ylabel, ylabel_kws=dict(fontsize=20), right_spine=False, top_spine=False, tick_params=dict(labelsize=11), xlabel=feature_name, xlabel_kws=dict(fontsize=20), title=title) if isinstance(feature, list): ax.set_xticks(xs) ax.set_xticklabels(feature, rotation=90) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax2 = ax.twinx() if show_dist: _hist_kws = dict(density=False, facecolor='black', alpha=0.1) if hist_kws is not None: _hist_kws.update(hist_kws) xv = self.xv(data, feature, lookback) if show_dist_as == "hist": ax2.hist(xv, 50, range=(xmin, xmax), **_hist_kws) else: _add_dist_as_grid(fig, xv, other_axes=ax, xlabel=feature, xlabel_kws=dict(fontsize=20)) process_axis(ax2, right_spine=False, top_spine=False, left_spine=False, bottom_spine=False, ylim=(0, data.shape[0])) ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.yaxis.set_ticks([]) if feature_expected_value: self._add_feature_exp_val(ax2, ax, xmin, xmax, data, feature, lookback=lookback, feature_name=feature_name) if model_expected_value: self._add_model_exp_val(ax2, ax, data) if show_minima: minina = self.model(data, **self.kwargs).min() ax.axvline(minina, linestyle="--", color="r", lw=1) if save: lookback = lookback or '' fname = os.path.join(self.path, f"pdp_{feature_name}_{lookback}") plt.savefig(fname, bbox_inches="tight", dpi=400) if show: plt.show() return ax def _add_model_exp_val(self, ax, original_axis, data): """adds model expected value on a duplicate axis of ax""" model_expected_val = self.model(data, **self.kwargs).mean() ax2 = ax.twinx() ymin, ymax = original_axis.get_ylim() process_axis(ax2, ylim=(ymin, ymax), yticks=[model_expected_val], yticklabels=["E[f(x)]"], right_spine=False, top_spine=False, tick_params=dict(length=0, labelsize=11) ) original_axis.axhline(model_expected_val, color="#999999", zorder=-1, linestyle="--", linewidth=1) return def _add_feature_exp_val(self, ax, original_axis, xmin, xmax, data, feature, feature_name=None, lookback=None): xv = self.xv(data=data, feature=feature, lookback=lookback) mval = xv.mean() ax3 = ax.twiny() process_axis(ax3, xlim=(xmin, xmax), xticks=[mval], xticklabels=["E[" + feature_name + "]"], tick_params={'length': 0, 'labelsize': 11}, top_spine=False, right_spine=False) original_axis.axvline(mval, color="#999999", zorder=-1, linestyle="--", linewidth=1) return def process_axis( ax: plt.Axes, title=None, title_kws=None, xlabel=None, xlabel_kws=None, ylabel=None, ylabel_kws=None, xticks=None, xticklabels=None, yticks=None, yticklabels=None, tick_params=None, top_spine=None, right_spine=None, bottom_spine=None, left_spine=None, xlim=None, ylim=None ): """processes a matplotlib axes""" if title: title_kws = title_kws or {} ax.set_title(title, **title_kws) if ylabel: ylabel_kws = ylabel_kws or {} ax.set_ylabel(ylabel, **ylabel_kws) if xlabel: xlabel_kws = xlabel_kws or {} ax.set_xlabel(xlabel, **xlabel_kws) if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) if xticks: ax.set_xticks(xticks) if xticklabels is not None: ax.set_xticklabels(xticklabels) if yticks: ax.set_yticks(yticks) if yticklabels is not None: ax.set_yticklabels(yticklabels) if tick_params: ax.tick_params(**tick_params) if top_spine is False: ax.spines['top'].set_visible(False) elif top_spine is True: ax.spines['top'].set_visible(True) if right_spine is False: ax.spines['right'].set_visible(False) elif right_spine is True: ax.spines['right'].set_visible(True) if bottom_spine is False: ax.spines['bottom'].set_visible(False) if left_spine is False: ax.spines['left'].set_visible(False) return def _add_dist_as_grid(fig: plt.Figure, hist_data, other_axes: plt.Axes, xlabel=None, xlabel_kws=None, **plot_params): """Data point distribution plot for numeric feature""" ax = fig.add_axes((0.1, 0.1, 0.8, 0.14), sharex=other_axes) process_axis(ax, top_spine=False, xlabel=xlabel, xlabel_kws=xlabel_kws, bottom_spine=False, right_spine=False, left_spine=False) ax.yaxis.set_visible(False) # hide the yaxis ax.xaxis.set_visible(False) # hide the x-axis color = plot_params.get('pdp_color', '#1A4E5D') ax.plot(hist_data, [1] * len(hist_data), '|', color=color, markersize=20) return def _add_surface(ax, x0, x1, pd_vals, cmap, feature0, feature2, **kwargs): ax.plot_surface(x0, x1, pd_vals, cmap=cmap, **kwargs) ax.set_xlabel(feature0, fontsize=11) ax.set_ylabel(feature2, fontsize=11) ax.set_zlabel(f"E[f(x) | {feature0} {feature2} ]", fontsize=11) return def repeat(array, n:int): # (len(array),) -> (len(array), n) return np.tile(array, n).reshape(-1, len(array))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/_partial_dependence.py
_partial_dependence.py
from typing import Union from ai4water.backend import np, pd, plt, os, lime if lime is not None: from lime import lime_tabular from ._explain import ExplainerMixin class LimeExplainer(ExplainerMixin): """ Wrapper around LIME module. Example: >>> from ai4water import Model >>> from ai4water.postprocessing import LimeExplainer >>> from ai4water.datasets import busan_beach >>> model = Model(model="GradientBoostingRegressor") >>> model.fit(data=busan_beach()) >>> lime_exp = LimeExplainer(model=model, ... train_data=model.training_data()[0], ... data=model.test_data()[0], ... mode="regression") >>> lime_exp.explain_example(0) Attributes: explaination_objects : location explaination objects for each individual example/instance """ def __init__( self, model, data, train_data, mode: str, explainer=None, path=None, feature_names: list = None, verbosity: Union[int, bool] = True, save: bool = True, show: bool = True, **kwargs ): """ Arguments: model : the model to explain. The model must have `predict` method. data : the data to explain. This would typically be test data but it can be any data. train_data : the data on which the model was trained. mode : either of `regression` or `classification` explainer : The explainer to use. By default, LimeTabularExplainer is used. path : path where to save all the plots. By default, plots will be saved in current working directory. feature_names : name/names of features. verbosity : whether to print information or not. show: whether to show the plot or not save: whether to save the plot or not """ self.model = model self.train_data = to_np(train_data) super(LimeExplainer, self).__init__(path=path or os.getcwd(), data=to_np(data), save=save, show=show, features=feature_names) self.mode = mode self.verbosity = verbosity self.explainer = self._get_explainer(explainer, **kwargs) self.explaination_objects = {} @property def mode(self): return self._mode @mode.setter def mode(self, x): if x is not None: assert x in ["regression", "classification"], f"mode must be either regression or classification not {x}" self._mode = x def _get_explainer(self, proposed_explainer=None, **kwargs): if proposed_explainer is None and self.data.ndim <= 2: lime_explainer = lime.lime_tabular.LimeTabularExplainer( self.train_data, feature_names=self.features, # class_names=['price'], # categorical_features=categorical_features, verbose=self.verbosity, mode=self.mode, **kwargs ) elif proposed_explainer in lime.lime_tabular.__dict__.keys(): lime_explainer = getattr(lime.lime_tabular, proposed_explainer)( self.train_data, feature_names=self.features, mode=self.mode, verbose=self.verbosity, **kwargs ) elif self.data.ndim == 3: lime_explainer = lime.lime_tabular.RecurrentTabularExplainer( self.train_data, mode=self.mode, feature_names=self.features, verbose=self.verbosity, **kwargs ) elif proposed_explainer is not None: lime_explainer = getattr(lime, proposed_explainer)( self.train_data, features=self.features, mode=self.mode, **kwargs ) else: raise ValueError(f"Can not infer explainer. Please specify explainer to use.") return lime_explainer def __call__(self, *args, **kwargs): self.explain_all_examples(*args, **kwargs) return def explain_all_examples(self, plot_type="pyplot", name="lime_explaination", num_features=None, **kwargs ): """ Draws and saves plot for all examples of test_data. Arguments: plot_type : name : num_features : kwargs : any keyword argument for `explain_instance` An example here means an instance/sample/data point. """ for i in range(len(self.data)): self.explain_example(i, plot_type=plot_type, name=f"{name}_{i}", num_features=num_features, **kwargs) return def explain_example( self, index: int, plot_type: str = "pyplot", name: str = "lime_explaination", num_features: int = None, colors=None, annotate=False, **kwargs )->plt.Figure: """ Draws and saves plot for a single example of test_data. Arguments: index : index of test_data plot_type : either pyplot or html name : name with which to save the file num_features : colors : annotate : whether to annotate figure or not kwargs : any keyword argument for `explain_instance` Returns: matplotlib figure if plot_type="pyplot" and show is False. """ assert plot_type in ("pyplot", "html") exp = self.explainer.explain_instance(self.data[index], self.model.predict, num_features=num_features or len(self.features), **kwargs ) self.explaination_objects[index] = exp fig = None if plot_type == "pyplot": plt.close() fig = as_pyplot_figure(exp, colors=colors, example_index=index, annotate=annotate) if self.save: plt.savefig(os.path.join(self.path, f"{name}_{index}"), bbox_inches="tight") if self.show: plt.show() else: exp.save_to_file(os.path.join(self.path, f"{name}_{index}")) return fig def to_np(x) -> np.ndarray: if isinstance(x, pd.DataFrame): x = x.values else: assert isinstance(x, np.ndarray) return x def as_pyplot_figure( inst_explainer, label=1, example_index=None, colors: [str, tuple, list] = None, annotate=False, **kwargs): """Returns the explanation as a pyplot figure. Will throw an error if you don't have matplotlib installed Args: inst_explainer : instance explainer label: desired label. If you ask for a label for which an explanation wasn't computed, will throw an exception. Will be ignored for regression explanations. colors : if tuple it must be names of two colors for +ve and -ve example_index : annotate : whether to annotate the figure or not? kwargs: keyword arguments, passed to domain_mapper Returns: pyplot figure (barchart). """ textstr = f"""Prediction: {round(inst_explainer.predicted_value, 2)} Local prediction: {round(inst_explainer.local_pred.item(), 2)}""" if colors is None: colors = ([0.9375, 0.01171875, 0.33203125], [0.23828125, 0.53515625, 0.92578125]) elif isinstance(colors, str): colors = (colors, colors) exp = inst_explainer.as_list(label=label, **kwargs) fig = plt.figure() vals = [x[1] for x in exp] names = [x[0] for x in exp] vals.reverse() names.reverse() if isinstance(colors, tuple): colors = [colors[0] if x > 0 else colors[1] for x in vals] pos = np.arange(len(exp)) + .5 h = plt.barh(pos, vals, align='center', color=colors) plt.yticks(pos, names) if inst_explainer.mode == "classification": title = 'Local explanation for class %s' % inst_explainer.class_names[label] else: title = f'Local explanation for example {example_index}' plt.title(title) plt.grid(linestyle='--', alpha=0.5) if annotate: # https://stackoverflow.com/a/59109053/5982232 plt.legend(h, [textstr], loc="best", fancybox=True, framealpha=0.7, handlelength=0, handletextpad=0) return fig
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/_lime.py
_lime.py
from ai4water.backend import sklearn_models def convert_ai4water_model(old_model, framework=None, explainer=None): """convert ai4water's Model class to sklearn/xgboost..etc type model classes """ new_model = old_model model_name = old_model.__class__.__name__ if old_model.__class__.__name__ == "Model" and "ai4water" in str(type(old_model)): # this is ai4water model class if old_model.category == "ML": model_name = list(old_model.config['model'].keys())[0] new_model, _explainer = to_native(old_model, model_name) explainer = explainer or _explainer framework = "ML" else: framework = "DL" explainer = explainer or "DeepExplainer" if 'functional' in str(type(old_model)): new_model = functional_to_keras(old_model) return new_model, framework, explainer, model_name def to_native(model, model_name:str): # because transformations are part of Model in ai4water, and TreeExplainer # is based upon on tree structure, it will not consider ransformation as part of Model if model.config['x_transformation']or model.config['y_transformation']: explainer = "KernelExplainer" else: explainer = "TreeExplainer" if model_name.startswith("XGB"): import xgboost BaseModel = xgboost.__dict__[model_name] elif model_name.startswith("LGB"): import lightgbm BaseModel = lightgbm.__dict__[model_name] elif model_name.startswith("Cat"): import catboost BaseModel = catboost.__dict__[model_name] elif model_name in sklearn_models: BaseModel = sklearn_models[model_name] explainer = "KernelExplainer" else: raise ValueError class DummyModel(BaseModel): """First priority is to get attribute from ai4water's Model and then from the underlying library's model class.""" def __getattribute__(self, item): return getattr(model, item) def __getattr__(self, item): return getattr(model._model, item) return DummyModel(), explainer def get_features(features, features_to_explain): if features_to_explain is not None: if isinstance(features_to_explain, str): features_to_explain = [features_to_explain] else: features_to_explain = features assert isinstance(features_to_explain, list) for f in features_to_explain: assert f in features return features_to_explain def functional_to_keras(old_model): """converts the model of functional api to keras model""" assert old_model.config['x_transformation'] is None assert old_model.config['y_transformation'] is None from tensorflow.keras.models import Model from tensorflow.keras.layers import Flatten # keras model from functional api old_model = old_model._model old_m_outputs = old_model.outputs if isinstance(old_m_outputs, list): assert len(old_m_outputs) == 1 old_m_outputs = old_m_outputs[0] if len(old_m_outputs.shape) > 2: # (None, ?, ?) new_outputs = Flatten()(old_m_outputs) # (None, ?) assert new_outputs.shape.as_list()[-1] == 1 # (None, 1) new_model = Model(old_model.inputs, new_outputs) else: # (None, ?) assert old_m_outputs.shape.as_list()[-1] == 1 # (None, 1) new_model = old_model return new_model
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/utils.py
utils.py
from typing import Union from ...preprocessing import DataSet from ._shap import ShapExplainer, shap from ._lime import LimeExplainer, lime from ..utils import choose_examples from .utils import convert_ai4water_model, get_features from ai4water.backend import os def explain_model( model, data_to_expalin=None, train_data=None, total_data=None, features_to_explain: Union[str, list] = None, examples_to_explain: Union[int, float, list] = 0, explainer=None, layer: Union[str, int] = None, method: str = "both" ): """ Explains the ai4water's Model class. Arguments: model : the AI4Water's model to explain features_to_explain : the input features to explain. It must be a string or a list of strings where a string is a feature name. examples_to_explain : the examples to explain. If integer, it will be the number/index of example to explain. If float, it will be fraction of values to explain. If list/array, it will be index of examples to explain. The examples are choosen which have highest variance in prediction. explainer : the explainer to use. If None, it will be inferred based upon the model type. layer : layer to explain. Only relevant if the model consits of layers of neural networks. If integer, it will be the number of layer to explain. If string, it will be name of layer of to explain. method : either 'both', 'shap' or 'lime'. If both, then the model will be explained using both lime and shap methods. Returns: if `method`==both, it will return a tuple of LimeExplainer and ShapExplainer otherwise it will return the instance of either LimeExplainer or ShapExplainer. Example: >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import explain_model >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=busan_beach()) >>> explain_model(model, total_data=busan_beach()) """ data = {'data_to_explain': data_to_expalin, 'train_data': train_data, 'total_data': total_data} if method == 'both': exp1 = _explain_with_lime(model=model, examples_to_explain=examples_to_explain, **data) exp2 = _explain_with_shap(model, features_to_explain=features_to_explain, examples_to_explain=examples_to_explain, explainer=explainer, layer=layer, **data) explainer = (exp1, exp2) elif method == 'shap' and shap: explainer = _explain_with_shap(model, features_to_explain=features_to_explain, examples_to_explain=examples_to_explain, explainer=explainer, layer=layer, **data) elif method == 'lime' and lime: explainer = _explain_with_lime(model=model, examples_to_explain=examples_to_explain, **data) else: ValueError(f"unrecognized method {method}") return explainer def explain_model_with_lime( model, data_to_explain=None, train_data=None, total_data=None, examples_to_explain: Union[int, float, list] = 0, ) -> "LimeExplainer": """Explains the model with LimeExplainer Parameters ---------- data_to_explain : the data to explain train_data : the data used for training. total_data : total data from which training and test data will be extracted. This is only required if data_to_explain/train data is not given. model : the AI4Water's model to explain examples_to_explain : the examples to explain Returns ------- an instance of [LimeExplainer][ai4water.postprocessing.explain.LimeExplainer] Example ------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import explain_model_with_lime >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=busan_beach()) >>> explain_model_with_lime(model, total_data=busan_beach()) """ if total_data is None: train_x = train_data test_x = data_to_explain test_y = None else: assert total_data is not None train_x, _ = model.training_data(data=total_data) test_x, test_y = model.test_data(data=total_data) features = model.input_features lime_exp_path = maybe_make_path(os.path.join(model.path, "explainability", "lime")) test_x, index = choose_examples(test_x, examples_to_explain, test_y) mode = model.mode verbosity = model.verbosity if model.lookback > 1: explainer = "RecurrentTabularExplainer" else: explainer = "LimeTabularExplainer" model, _, _, _ = convert_ai4water_model(model) if mode == "classification": return explainer = LimeExplainer(model, data=test_x, train_data=train_x, path=lime_exp_path, feature_names=features, explainer=explainer, mode=mode, verbosity=verbosity, show=False ) for i in range(explainer.data.shape[0]): explainer.explain_example(i, name=f"lime_exp_for_{index[i]}") return explainer def explain_model_with_shap( model, data_to_explain=None, train_data=None, total_data=None, features_to_explain: Union[str, list] = None, examples_to_explain: Union[int, float, list] = 0, explainer=None, layer: Union[str, int] = None, plot_name="summary", ) -> "ShapExplainer": """Expalins the model which is built by AI4Water's Model class using SHAP. Parameters ---------- model : the model to explain. data_to_explain : the data to explain. If given, then ``train_data`` must be given as well. If not given then ``total_data`` must be given. train_data : the data on which model was trained. If not given, then ``total_data`` must be given. total_data : raw unpreprocessed data from which train and test data will be extracted. The explanation will be done on test data. This is only required if data_to_explain and train_data are not given. features_to_explain : the features to explain. examples_to_explain : the examples to explain. If integer, it will be the number of examples to explain. If float, it will be fraction of values to explain. If list/array, it will be index of examples to explain. The examples are choosen which have highest variance in prediction. explainer : the explainer to use layer : layer to explain. plot_name : name of plot to draw Returns ------- an instance of ShapExplainer Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.postprocessing.explain import explain_model_with_shap >>> model = Model(model="RandomForestRegressor") >>> model.fit(data=busan_beach()) >>> explain_model_with_shap(model, total_data=busan_beach()) """ assert hasattr(model, 'path') if data_to_explain is None: assert total_data is not None train_x, _ = model.training_data(data=total_data) data_to_explain, test_y = model.test_data(data=total_data) else: assert train_data is not None assert data_to_explain is not None train_x = train_data data_to_explain = data_to_explain test_y = None features = model.input_features shap_exp_path = maybe_make_path(os.path.join(model.path, "explainability", "shap")) if not isinstance(model.dh_, DataSet): raise NotImplementedError features_to_explain = get_features(features, features_to_explain) model, framework, _explainer, _ = convert_ai4water_model(model) if framework == "DL": layer = layer or 2 explainer = explainer or _explainer if examples_to_explain is None: examples_to_explain = 0 data_to_explain, index = choose_examples(data_to_explain, examples_to_explain, test_y) explainer = ShapExplainer(model=model, data=data_to_explain, train_data=train_x, explainer=explainer, path=shap_exp_path, framework=framework, feature_names=features_to_explain, layer=layer, show=False ) if plot_name == "all": for i in range(explainer.data.shape[0]): explainer.force_plot_single_example(i, f"force_plot_{index[i]}") explainer.summary_plot() explainer.plot_shap_values() else: explainer.plot_shap_values() return explainer def _explain_with_lime(*args, **kwargs): explainer = None if lime: explainer = explain_model_with_lime(*args, **kwargs) return explainer def _explain_with_shap(*args, **kwargs): explainer = None if shap: explainer = explain_model_with_shap(*args, **kwargs) return explainer def maybe_make_path(path): if not os.path.exists(path): os.makedirs(path) return path
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/explain/explainer_helper_funcs.py
explainer_helper_funcs.py
import warnings from ai4water.backend import xgboost, tf, np, pd, mpl, plt, os from ai4water.backend import easy_mpl as ep from ai4water.utils.visualizations import Plot from ai4water.utils.utils import plot_activations_along_inputs class Interpret(Plot): """Interprets the ai4water Model. The ``Interpret`` class is different than the methods in ``explain`` module. The ``Interpret`` class explains the behaviour of the model by using consituents of the model itself for example attention weights or feature importance. """ def __init__(self, model, save:bool = False, show:bool = True): """ Arguments --------- model : an instance of ai4water's Model save : bool show : bool """ self.model = model self.save = save self.show = show super().__init__(model.path) if self.model.category.upper() == "DL": if hasattr(model, 'interpret') and not model.__class__.__name__ == "Model": model.interpret() elif self.model.category == 'ML': use_xgb = False if self.model._model.__class__.__name__ == "XGBRegressor": use_xgb = True self.plot_feature_importance(use_xgb = use_xgb) @property def model(self): return self._model @model.setter def model(self, x): self._model = x def feature_importance(self): if self.model.category.upper() == "ML": estimator = self.model._model if not is_fitted(estimator): print(f"the model {estimator} is not fitted yet so not feature importance") return model_name = list(self.model.config['model'].keys())[0] if model_name.upper() in ["SVC", "SVR"]: if estimator.kernel == "linear": # https://stackoverflow.com/questions/41592661/determining-the-most-contributing-features-for-svm-classifier-in-sklearn return estimator.coef_ elif hasattr(estimator, "feature_importances_"): return estimator.feature_importances_ def f_importances_svm(self, coef, names): plt.close('all') mpl.rcParams.update(mpl.rcParamsDefault) classes = coef.shape[0] features = coef.shape[1] _, axis = plt.subplots(classes, sharex='all') axis = axis if hasattr(axis, "__len__") else [axis] for idx, ax in enumerate(axis): # colors = ['red' if c < 0 else 'blue' for c in self._model.coef_[idx]] ax.bar(range(features), self._model.coef_[idx], 0.4) plt.xticks(ticks=range(features), labels=self.model.input_features, rotation=90, fontsize=12) self.save_or_show(save=self.save, fname=f"{list(self.model.config['model'].keys())[0]}_feature_importance") return def plot_feature_importance( self, importance=None, use_xgb=False, max_num_features=20, figsize=None, **kwargs): """ plots feature importance when the model is tree based. """ figsize = figsize or (8, 8) if importance is None: importance = self.feature_importance() if self.model.category == "ML": model_name = list(self.model.config['model'].keys())[0] if model_name.upper() in ["SVC", "SVR"]: if self.model._model.kernel == "linear": return self.f_importances_svm(importance, self.model.input_features) else: warnings.warn(f"for {self.model._model.kernel} kernels of {model_name}, feature " f"importance can not be plotted.") return if isinstance(importance, np.ndarray): assert importance.ndim <= 2 if importance is None: return all_cols = self.model.input_features + self.model.output_features if self.model.teacher_forcing: all_cols = self.model.input_features imp_sort = np.sort(importance)[::-1] all_cols = np.array(all_cols) all_cols = all_cols[np.argsort(importance)[::-1]] # save the whole importance before truncating it fname = os.path.join(self.model.path, 'feature_importance.csv') pd.DataFrame(imp_sort, index=all_cols, columns=['importance_sorted']).to_csv(fname) imp = np.concatenate([imp_sort[0:max_num_features], [imp_sort[max_num_features:].sum()]]) all_cols = list(all_cols[0:max_num_features]) + [f'rest_{len(all_cols) - max_num_features}'] if use_xgb: self._feature_importance_xgb(max_num_features=max_num_features) else: plt.close('all') _, axis = plt.subplots(figsize=figsize) ep.bar_chart(labels=all_cols, values=imp, ax=axis, ax_kws={'title':"Feature importance", 'xlabel_kws': {'fontsize': 12}}, show=False) self.save_or_show(save=self.save, show=self.show, fname="feature_importance.png") return def _feature_importance_xgb(self, max_num_features=None, **kwargs): # https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.plot_importance if xgboost is None: warnings.warn("install xgboost to plot plot_importance using xgboost", UserWarning) else: booster = self.model._model.get_booster() booster.feature_names = self.model.input_features plt.close('all') # global feature importance with xgboost comes with different types xgboost.plot_importance(booster, max_num_features=max_num_features) self.save_or_show(save=self.save, show=self.show, fname="feature_importance_weight.png") plt.close('all') xgboost.plot_importance(booster, importance_type="cover", max_num_features=max_num_features, **kwargs) self.save_or_show(save=self.save, show=self.show, fname="feature_importance_type_cover.png") plt.close('all') xgboost.plot_importance(booster, importance_type="gain", max_num_features=max_num_features, **kwargs) self.save_or_show(save=self.save, show=self.show, fname="feature_importance_type_gain.png") return def compare_xgb_f_imp( self, calculation_method="all", rescale=True, figsize:tuple=None, backend:str = 'matplotlib', **kwargs ): """compare various feature importance calculations methods that are built in in XGBoost""" inp_features = self.model.input_features assert isinstance(inp_features, list) booster = self.model._model.get_booster() booster.feature_names = self.model.input_features _importance_types = ['weight', 'gain', 'cover', 'total_gain', 'total_cover'] importance_types = _importance_types.copy() if calculation_method != "all": if isinstance(calculation_method, str): calculation_method = [calculation_method] assert isinstance(calculation_method, list) # remove those which are not desired for imp in _importance_types: if imp not in calculation_method: importance_types.remove(imp) # container to hold importances with each method importance = [] for idx, imp_type in enumerate(importance_types): score = pd.Series(booster.get_score(importance_type=imp_type)) score = pd.DataFrame(score, columns=[imp_type]) if rescale: # so that the sum of all feature importance is 1.0 and the # scale is relative score = score / score.sum() importance.append(score) importance = pd.concat(importance, axis=1) if backend=="plotly": width = figsize[0] if figsize else 1200 height = figsize[1] if figsize else 1200 return xgb_fimp_with_plotly(importance, importance_types, fig_width=width, fig_height=height, path=self.model.path) plt.close('all') fig, axis = plt.subplots(importance.shape[1], sharex="all", figsize=figsize) for ax, imp in zip(axis.flat, importance.columns): ax = ep.bar_chart( importance[imp], labels=importance.index, orient="vertical", show=False, rotation=90, label=imp, ax=ax, **kwargs) ax.legend() fname = os.path.join(self.model.path, "xgb_f_imp_comp") if self.save: plt.savefig(fname, bbox_inches="tight") if self.show: plt.show() return fig def tft_attention_components( self, x = None, data=None, data_type:str = "test", ): """ Gets attention components of tft layer from ai4water's Model. Parameters ---------- x : the input data to the model data : raw data from which ``x``/inputs are extracted. data_type : the data to use to calculate attention components Returns ------- dict dictionary containing attention components of tft as numpy arrays. Following four attention components are present in the dictionary - decoder_self_attn: (attention_heads, ?, total_time_steps, 22) - static_variable_selection_weights: - encoder_variable_selection_weights: (?, encoder_steps, input_features) - decoder_variable_selection_weights: (?, decoder_steps, input_features) str a string indicating which data was used """ maybe_create_path(self.model.path) if x is None: x, _, = getattr(self.model, f'{data_type}_data')(data=data) if len(x) == 0 and data_type == "test": warnings.warn("No test data found. using validation data instead", UserWarning) x, _, = getattr(self.model, 'validation_data')(data=data) assert len(x) >0 attentions = self.model.TemporalFusionTransformer_attentions if self.model.api == 'subclassing': inputs = self.model.inputs else: inputs = self.model._model.inputs attention_components = {} for k, v in attentions.items(): if v is not None: temp_model = tf.keras.Model(inputs=inputs, outputs=v) attention_components[k] = temp_model.predict(x=x, verbose=0, steps=1) return attention_components, data def get_enc_var_selection_weights(self, data, data_type:str='test'): """Returns encoder variable selection weights of TFT model""" ac, _ = self.tft_attention_components(data=data, data_type=data_type) return ac['encoder_variable_selection_weights'] def interpret_example_tft( self, example_index:int, x = None, data=None, data_type='test' ): """interprets a single example using TFT model. Parameters --------- example_index : int index of example to be explained x : input data, if not given, ``data`` must be given data : the data whose example to interpret. data_type : str either ``training``, ``test``, ``validation`` or ``all``. It is only useful when ``data`` argument is used. """ assert data_type in ("training", "test", "validation", "all") if x is None: data_name = data_type else: data_name = "data" enc_var_selection_weights = self.get_enc_var_selection_weights( data=data, data_type=data_type) plt.close('all') im = ep.imshow( enc_var_selection_weights[example_index], aspect="auto", ax_kws=dict(title=example_index, ylabel="lookback steps"), show=False ) plt.xticks(np.arange(self.model.num_ins), self.model.input_features, rotation=90) plt.colorbar(im, orientation='vertical', pad=0.05) fname = os.path.join(maybe_create_path(self.model.path), f'{data_name}_enc_var_selec_{example_index}.png') if self.save: plt.savefig(fname, bbox_inches='tight', dpi=300) if self.show: plt.show() return def interpret_tft( self, x=None, y=None, data=None, data_type="test" ): """global interpretation of TFT model. Arguments: x : input data. If not given, ``data`` argument must be given. y : labels/target/true data corresponding to ``x``. It is only used for plotting. data : the data to use to interpret model. It is only required when ``x`` is not given. data_type : either ``training``, ``test``, ``validation`` or ``all``. It is only useful when ``data`` argument is used. """ if x is None: predictions = getattr(self.model, f"predict_on_{data_type}_data")( data=data, process_results=False, verbose=0) x, y, = getattr(self.model, f'{data_type}_data')(data=data) else: predictions = self.model.predict(x=x, verbose=0) ac, data = self.tft_attention_components(data=data) encoder_variable_selection_weights = ac['encoder_variable_selection_weights'] plot_activations_along_inputs( activations=encoder_variable_selection_weights, data=x[:, -1], observations=y, predictions=predictions, in_cols=self.model.input_features, out_cols=self.model.output_features, lookback=self.model.lookback, name=f'tft_encoder_weights_{data}', path=maybe_create_path(self.model.path) ) return def interpret_attention_lstm( self, x=None, data = None, data_type:str = "test" ): """ Arguments: x : input data. If not given, ``data`` argument must be given. data : the data to use to interpret model. It is only required when ``x`` is not given. data_type : either ``training``, ``test``, ``validation`` or ``all``. It is only useful when ``data`` argument is used. """ raise NotImplementedError def interpret_tab_transformer( self, x=None, data = None, data_type:str = "test" ): """ Arguments: x : input data. If not given, ``data`` argument must be given. data : the data to use to interpret model. It is only required when ``x`` is not given. data_type : either ``training``, ``test``, ``validation`` or ``all``. It is only useful when ``data`` argument is used. """ raise NotImplementedError def interpret_ft_transformer( self, x=None, data = None, data_type:str = "test" ): """ Arguments: x : input data. If not given, ``data`` argument must be given. data : the data to use to interpret model. It is only required when ``x`` is not given. data_type : either ``training``, ``test``, ``validation`` or ``all``. It is only useful when ``data`` argument is used. """ raise NotImplementedError def xgb_fimp_with_plotly( importance:pd.DataFrame, importance_types, fig_width, fig_height, path, ): import plotly.graph_objects as go from plotly.subplots import make_subplots # initiate figure with subplots fig = make_subplots( rows=len(importance_types) + 1, cols=1, vertical_spacing=0.02 # shared_xaxes=True ) for idx, col in enumerate(importance.columns): fig.add_trace(go.Bar( x=importance.index.tolist(), y=importance[col], name=col ), row=idx + 1, col=1) fig.update_xaxes(showticklabels=False) # hide all the xticks fig.update_xaxes(showticklabels=True, row=len(importance_types), col=1, tickangle=-45, title="Input Features" ) # Here we modify the tickangle of the xaxis, resulting in rotated labels. fig.update_layout( height=fig_height, width=fig_width, legend_title="Calculation Method", title_text="XGBoost Feature Importance", title_x=0.42, font=dict( family="Times New Roman", size=26, ) ) fname = os.path.join(path, "xgb_f_imp_comp.html") fig.write_html(fname) return fig def maybe_create_path(path): path = os.path.join(path, "interpret") if not os.path.exists(path): os.makedirs(path) return path def is_fitted(estimator): if hasattr(estimator, 'is_fitted'): # for CATBoost return estimator.is_fitted attrs = [v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")] if not attrs: return False return True
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/interpret/_main.py
_main.py
import warnings from typing import Union from ai4water.backend import easy_mpl as ep from ai4water.backend import tf, keras, np, plt, os, random, lightgbm, xgboost, sklearn if tf is not None: import ai4water.keract_mod as keract else: keract = None from ai4water.utils.plotting_tools import Plots from ai4water.utils.utils import maybe_three_outputs, get_nrows_ncols from ..utils import choose_examples try: from ai4water.utils.utils_from_see_rnn import rnn_histogram except ModuleNotFoundError: rnn_histogram = None try: from dtreeviz import trees except ModuleNotFoundError: trees = None RNN_INFO = {"LSTM": {'rnn_type': 'LSTM', 'gate_names': ['INPUT', 'FORGET', 'CELL', 'OUTPUT'], 'n_gates': 4, 'is_bidir': False, 'rnn_dim': 64, 'uses_bias': True, 'direction_names': [[]] } } CMAPS = [ 'jet_r', 'ocean_r', 'viridis_r', 'BrBG', 'GnBu', #'crest_r', 'Blues_r', 'bwr_r', #'flare', 'YlGnBu' ] TREE_BASED_MODELS = [ "DecisionTreeRegressor", "ExtraTreeRegressor", "XGBRFRegressor", "XGBRegressor", "CatBoostRegressor", "LGBMRegressor", "DecisionTreeClassifier", "ExtraTreeClassifier", "XGBClassifier", "XGBRFClassifier", "CatBoostClassifier", "LGBMClassifier" ] class Visualize(Plots): """Hepler class to peek inside the machine learning mdoel. If the machine learning model consists of layers of neural networks, then this class can be used to plot following 4 items - outputs of individual layers - gradients of outputs of individual layers - weights and biases of individual layers - gradients of weights of individual layers If the machine learning model consists of tree, then this class can be used to plot the learned tree of the model. methods ------- - get_activations - activations - get_activation_gradients - activation_gradients - get_weights - weights - get_weight_gradients - weight_gradients - decision_tree """ def __init__( self, model, save=True, show=True, verbosity=None, ): """ Arguments: model : the learned machine learning model. save : bool show : bool verbosity : bool/int """ plt.rcParams.update(plt.rcParamsDefault) self.model = model self.verbosity = model.verbosity if verbosity is None else verbosity self.save=save self.show=show self.vis_path = os.path.join(model.path, "visualize") if not os.path.exists(self.vis_path): os.makedirs(self.vis_path) Plots.__init__(self, path=self.vis_path, config=model.config) def __call__( self, layer_name, data=None, data_type='training', x=None, y=None, examples_to_use=None ): if self.model.category == "DL": self.activations(layer_name, data=data, data_type=data_type, x=x, examples_to_use=examples_to_use) self.activation_gradients(layer_name, x=x, y=y, data=data, data_type=data_type, examples_to_use=examples_to_use) self.weights(layer_name) self.weight_gradients(layer_name, data=data, data_type=data_type, x=x, y=y) else: self.decision_tree() self.decision_tree_leaves(data=data, data_type=data_type) return def get_activations( self, layer_names: Union[list, str] = None, x=None, data = None, data_type: str = 'training', batch_size:int=None, ) -> dict: """ gets the activations/outputs of any layer of the Keras Model. Arguments: layer_names : name of list of names of layers whose activations are to be returned. x : The input that will be fed to NN to extract activations. If provided, it will override `data`. data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract input data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active batch_size : int Returns: a dictionary whose keys are names of layers and values are weights of those layers as numpy arrays """ if x is None: x, y = self._get_xy_from_data(data=data, data_type=data_type) if self.model.api == "subclassing": dl_model = self.model else: dl_model = self.model._model if isinstance(x, list): num_examples = len(x[0]) elif isinstance(x, np.ndarray): num_examples = len(x) else: raise ValueError if batch_size: # feed each batch and get activations per batch assert isinstance(layer_names, str) _activations = [] for batch in range(num_examples // batch_size): batch_x = _get_batch_input(x, batch, batch_size) batch_activations = keract.get_activations( dl_model, batch_x, layer_names=layer_names, auto_compile=True) assert len(batch_activations) == 1 # todo _activations.append(list(batch_activations.values())[0]) activations = {layer_names: np.concatenate(_activations)} else: activations = keract.get_activations(dl_model, x, layer_names=layer_names, auto_compile=True) return activations def activations( self, layer_names=None, x=None, data = None, data_type:str = "training", examples_to_use: Union[int, list, np.ndarray, range] = None, **kwargs ): """ Plots outputs of any layer of neural network. Arguments: x : if given, will override, 'data'. data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract input data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active layer_names : name of layer whose output is to be plotted. If None, it will plot outputs of all layers examples_to_use : If integer, it will be the number of examples to use. If array like, it will be the indices of examples to use. """ activations = self.get_activations(x=x, data=data, data_type=data_type) if layer_names is not None: if isinstance(layer_names, str): layer_names = [layer_names] else: layer_names = layer_names else: layer_names = list(activations.keys()) assert isinstance(layer_names, list) if self.verbosity > 0: print("Plotting activations of layers") for lyr_name, activation in activations.items(): if lyr_name in layer_names: # activation may be tuple e.g if input layer receives more than # 1 input if isinstance(activation, np.ndarray): if activation.ndim == 2 and examples_to_use is None: examples_to_use = range(len(activation)-1) self._plot_activations( activation, lyr_name, examples_to_use, **kwargs ) elif isinstance(activation, tuple): for act in activation: self._plot_activations(act, lyr_name, **kwargs) return def _plot_activations(self, activation, lyr_name, examples_to_use=None, **kwargs): if examples_to_use is None: indices = range(len(activation)) else: activation, indices = choose_examples(activation, examples_to_use) if kwargs is None: kwargs = {} if "LSTM" in lyr_name.upper() and np.ndim(activation) in (2, 3): if activation.ndim == 3: self.features_2d(activation, show=self.show, name=lyr_name + "_outputs", sup_title="Activations", n_rows=6, sup_xlabel="LSTM units", sup_ylabel="Lookback steps", title=indices, ) else: self._imshow(activation, f"{lyr_name} Activations", fname=lyr_name, show=self.show, ylabel="Examples", xlabel="LSTM units", cmap=random.choice(CMAPS)) elif np.ndim(activation) == 2 and activation.shape[1] > 1: if "lstm" in lyr_name.lower(): kwargs['xlabel'] = "LSTM units" self._imshow(activation, lyr_name + " Activations", show=self.show, fname=lyr_name, **kwargs) elif np.ndim(activation) == 3: if "input" in lyr_name.lower(): kwargs['xticklabels'] = self.model.input_features self._imshow_3d(activation, lyr_name, save=self.show, **kwargs, where='') elif np.ndim(activation) == 2: # this is now 1d # shape= (?, 1) self.plot1d(activation, label=lyr_name + ' Outputs', show=self.show, fname=lyr_name + '_outputs', **kwargs ) else: print(""" ignoring activations for {} because it has shape {}, {}""".format( lyr_name, activation.shape, np.ndim(activation))) return def get_weights(self)->dict: """ returns all trainable weights as arrays in a dictionary""" weights = {} for weight in self.model.trainable_weights: if tf.executing_eagerly(): weights[weight.name] = weight.numpy() else: weights[weight.name] = keras.backend.eval(weight) return weights def weights( self, layer_names: Union[str, list] = None, **kwargs ): """Plots the weights of a specific layer or all layers. Arguments: layer_names : The layer whose weights are to be viewed. """ weights = self.get_weights() if self.verbosity > 0: print("Plotting trainable weights of layers of the model.") if layer_names is None: layer_names = list(weights.keys()) elif isinstance(layer_names, str): layer_names = [layer_names] else: layer_names = layer_names for lyr in layer_names: for _name, weight in weights.items(): if lyr in _name: title = _name fname = _name + '_weights' rnn_args = None if "LSTM" in title.upper(): rnn_args = {'n_gates': 4, 'gate_names_str': "(input, forget, cell, output)"} if np.ndim(weight) == 2 and weight.shape[1] > 1: self._imshow(weight, title, show=self.show, fname=fname, rnn_args=rnn_args) elif len(weight) > 1 and np.ndim(weight) < 3: self.plot1d(weight, title, self.show, fname, rnn_args=rnn_args, **kwargs) elif "conv" in _name.lower() and np.ndim(weight) == 3: _name = _name.replace("/", "_") _name = _name.replace(":", "_") self.features_2d(data=weight, save=self.show, name=_name, slices=64, slice_dim=2, tight=True, borderwidth=1) else: print("""ignoring weight for {} because it has shape {} """.format(_name, weight.shape)) return def get_activation_gradients( self, layer_names: Union[str, list] = None, x=None, y=None, data = None, data_type:str = "training", ) -> dict: """ Finds gradients of outputs of a layer. either x,y or data is required Arguments: layer_names : The layer for which, the gradients of its outputs are to be calculated. x : input data. Will overwrite `data` y : corresponding label of x. Will overwrite `data`. data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract x and y data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active """ if isinstance(layer_names, str): layer_names = [layer_names] if x is None: x, y = self._get_xy_from_data(data=data, data_type=data_type) from ai4water.functional import Model as FModel if isinstance(self.model, FModel): model = self.model._model else: model = self.model return keract.get_gradients_of_activations( model, x, y, layer_names=layer_names) def activation_gradients( self, layer_names: Union[str, list], data = None, data_type='training', x=None, y=None, examples_to_use=None, plot_type="2D", ): """Plots the gradients o activations/outputs of layers Arguments: layer_names : the layer name for which the gradients of its outputs are to be plotted. data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract x and y which will be given to NN to get gradients of ativations data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active x : alternative to data y : alternative to data examples_to_use : the examples from the data to use. If None, then all examples will be used, which is equal to the length of data. plot_type : """ if plot_type == "2D": return self.activation_gradients_2D( layer_names, data=data, data_type=data_type, x=x, y=y, examples_to_use=examples_to_use ) return self.activation_gradients_1D( layer_names, data=data, data_type=data_type, x=x, y=y, examples_to_use=examples_to_use ) def activation_gradients_2D( self, layer_names=None, data = None, data_type:str='training', x=None, y=None, examples_to_use=None ): """Plots activations of intermediate layers except input and output Arguments: layer_names : data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract input data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active x : y : examples_to_use : if integer, it will be the number of examples to use. If array like, it will be index of examples to use """ gradients = self.get_activation_gradients( layer_names=layer_names, data=data, data_type=data_type, x=x, y=y) return self._plot_act_grads(gradients, examples_to_use) def activation_gradients_1D( self, layer_names, data = None, data_type:str='training', x=None, y=None, examples_to_use=None ): """Plots gradients of layer outputs as 1D Arguments: layer_names : examples_to_use : data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract input data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active x : y : """ gradients = self.get_activation_gradients( layer_names=layer_names, data=data, data_type=data_type, x=x, y=y) for lyr_name, gradient in gradients.items(): fname = lyr_name + "_output_grads" title = lyr_name + " Output Gradients" if np.ndim(gradient) == 3: for idx, example in enumerate(gradient): _title = f"{title}_{idx}" _fname = f"{fname}_{idx}" if "LSTM" in lyr_name: example = example.T self.features_1d(example, name=_fname, title=_title, xlabel="Lookback steps", ylabel="Gradients") return def _plot_act_grads(self, gradients, examples_to_use=24): if self.verbosity > 0: print("Plotting gradients of activations of layersr") for lyr_name, gradient in gradients.items(): if examples_to_use is None: indices = range(len(gradient)) else: gradient, indices = choose_examples(gradient, examples_to_use) fname = lyr_name + "_output_grads" title = lyr_name + " Output Gradients" if "LSTM" in lyr_name.upper() and np.ndim(gradient) in (2, 3): if gradient.ndim == 2: self._imshow(gradient, fname=fname, label=title, show=self.show, xlabel="LSTM units") else: self.features_2d(gradient, name=fname, title=indices, show=self.show, n_rows=6, sup_title=title, sup_xlabel="LSTM units", sup_ylabel="Lookback steps") elif np.ndim(gradient) == 2: if gradient.shape[1] > 1: # (?, ?) self._imshow(gradient, title, self.show, fname) elif gradient.shape[1] == 1: # (? , 1) self.plot1d(np.squeeze(gradient), title, self.show, fname) elif np.ndim(gradient) == 3 and gradient.shape[1] == 1: if gradient.shape[2] == 1: # (?, 1, 1) self.plot1d(np.squeeze(gradient), title, self.show, fname) else: # (?, 1, ?) self._imshow(np.squeeze(gradient), title, self.show, fname) elif np.ndim(gradient) == 3: if gradient.shape[2] == 1: # (?, ?, 1) self._imshow(np.squeeze(gradient), title, self.show, fname) elif gradient.shape[2] > 1: # (?, ?, ?) self._imshow_3d(gradient, lyr_name, self.show) else: print(""" ignoring activation gradients for {} because it has shape {} {} """.format(lyr_name, gradient.shape, np.ndim(gradient))) def _get_xy_from_data(self, data, data_type:str = "training"): assert data is not None, f"If x is not given, data must be given" assert isinstance(data_type, str) data = getattr(self.model, f'{data_type}_data')(data=data) x, y = maybe_three_outputs(data) return x, y def get_weight_gradients( self, x=None, y=None, data = None, data_type: str = 'training' ) -> dict: """Returns the gradients of weights. Arguments: x : inputs, if not given, then ``data`` must be given y : target data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract x and y data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active Returns: dictionary whose keys are names of layers and values are gradients of weights as numpy arrays. """ if x is None: x, y = self._get_xy_from_data(data=data, data_type=data_type) from ai4water.functional import Model as FModel if isinstance(self.model, FModel): model = self.model._model else: model = self.model return keract.get_gradients_of_trainable_weights(model, x, y) def weight_gradients( self, layer_names: Union[str, list] = None, data = None, data_type='training', x=None, y=None, ): """Plots gradient of all trainable weights Arguments: layer_names : the layer whose weeights are to be considered. data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract x and y data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active x : alternative to data y : alternative to data """ gradients = self.get_weight_gradients( data=data, data_type=data_type, x=x, y=y) if layer_names is None: layers_to_plot = list(gradients.keys()) elif isinstance(layer_names, str): layers_to_plot = [layer_names] else: layers_to_plot = layer_names if self.verbosity > 0: print("Plotting gradients of trainable weights") for lyr_to_plot in layers_to_plot: for lyr_name, gradient in gradients.items(): # because lyr_name is most likely larger if lyr_to_plot in lyr_name: title = lyr_name + "Weight Gradients" fname = lyr_name + '_weight_grads' rnn_args = None if "LSTM" in title.upper(): rnn_args = { 'n_gates': 4, 'gate_names_str': "(input, forget, cell, output)"} if np.ndim(gradient) == 3: self.rnn_histogram(gradient, name=fname, title=title) if np.ndim(gradient) == 2 and gradient.shape[1] > 1: self._imshow(gradient, title, show=self.show, fname=fname, rnn_args=rnn_args) elif len(gradient) and np.ndim(gradient) < 3: self.plot1d(gradient, title, show=self.show, fname=fname, rnn_args=rnn_args) else: print(f"""ignoring weight gradients for {lyr_name} because it has shape {gradient.shape} {np.ndim(gradient)} """) return def find_num_lstms(self, layer_names=None) -> list: """Finds names of lstm layers in model""" if layer_names is not None: if isinstance(layer_names, str): layer_names = [layer_names] assert isinstance(layer_names, list) lstm_names = [] for lyr, config in self.config['model']['layers'].items(): if "LSTM" in lyr.upper(): config = config.get('config', config) prosp_name = config.get('name', lyr) if layer_names is not None: if prosp_name in layer_names: lstm_names.append(prosp_name) else: lstm_names.append(prosp_name) return lstm_names def get_rnn_weights(self, weights: dict, layer_names=None) -> dict: """Finds RNN related weights. It combines kernel recurrent curnel and bias of each layer into a list. """ lstm_weights = {} if self.config['model'] is not None and 'layers' in self.config['model']: if "LSTM" in self.config['model']['layers']: lstms = self.find_num_lstms(layer_names) for lstm in lstms: lstm_w = [] for w in ["kernel", "recurrent_kernel", "bias"]: w_name = lstm + "/lstm_cell/" + w w_name1 = f"{lstm}/{w}" for k, v in weights.items(): if any(_w in k for _w in [w_name, w_name1]): lstm_w.append(v) lstm_weights[lstm] = lstm_w return lstm_weights def rnn_weights_histograms(self, layer_name): weights = self.get_weights() rnn_weights = self.get_rnn_weights(weights, layer_name) for k, w in rnn_weights.items(): self.rnn_histogram(w, name=k + "_weight_histogram") return def rnn_weight_grads_as_hist( self, layer_name=None, data=None, data_type='training', x=None, y=None, ): gradients = self.get_weight_gradients( data=data, data_type=data_type, x=x, y=y) rnn_weights = self.get_rnn_weights(gradients) for k, w in rnn_weights.items(): self.rnn_histogram(w, name=k + "_weight_grads_histogram") return def rnn_histogram(self, data, save=True, name='', **kwargs): if save: save = os.path.join(self.vis_path, name + "0D.png") else: save = None if rnn_histogram is None: warnings.warn("install see-rnn to plot rnn_histogram plot", UserWarning) else: rnn_histogram(data, RNN_INFO["LSTM"], bins=400, savepath=save, show=self.show, **kwargs) return def decision_tree(self, show=False, **kwargs): """Plots the decision tree""" plot_tree = sklearn.tree.plot_tree fname = os.path.join(self.path, "decision_tree") if self.model.category == "ML": model_name = list(self.model.config['model'].keys())[0] if model_name in TREE_BASED_MODELS: _fig, axis = plt.subplots(figsize=kwargs.get('figsize', (10, 10))) if model_name.startswith("XGB"): # https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.plot_tree xgboost.plot_tree(self.model._model, ax=axis, **kwargs) elif model_name.startswith("Cat"): gv_object = self.model._model.plot_tree(0, **kwargs) if self.show: gv_object.view() gv_object.save(filename="decision_tree", directory=self.path) elif model_name.startswith("LGBM"): lightgbm.plot_tree(self.model._model, ax=axis, **kwargs) else: # sklearn types plot_tree(self.model._model, feature_names=self.model.input_features, ax=axis, **kwargs) plt.savefig(fname, dpi=500) if self.show: plt.show() else: print(f"decision tree can not be plotted for {model_name}") else: print(f""" decision tree can not be plotted for {self.model.category} models""") return def decision_tree_leaves( self, data = None, data_type:str='training' ): """Plots dtreeviz related plots if dtreeviz is installed data : raw unprepared data from which will be forwarded to :py:meth:`ai4water.preprocessing.DataSet` to extract input data_type : str either ``training``, ``validation`` or ``test``. Only relevant if ``data`` argument is active """ model = list(self.config['model'].keys())[0] if model in ["DecisionTreeRegressor", "DecisionTreeClassifier"]: if trees is None: print("dtreeviz related plots can not be plotted") else: x, y = getattr(self.model, f'{data_type}_data')(data=data) if np.ndim(y) > 2: y = np.squeeze(y, axis=2) trees.viz_leaf_samples(self.model._model, x, self.in_cols) self.save_or_show(self.save, fname="viz_leaf_samples", where="plots") trees.ctreeviz_leaf_samples(self.model._model, x, y, self.in_cols) self.save_or_show(self.save, fname="ctreeviz_leaf_samples", where="plots") return def features_2d(self, data, name, save=True, slices=24, slice_dim=0, **kwargs): """Calls the features_2d from see-rnn""" st=0 if 'title' in kwargs: title = kwargs.pop('title') else: title = None for en in np.arange(slices, data.shape[slice_dim] + slices, slices): if save: fname = name + f"_{st}_{en}" save = os.path.join(self.path, fname+".png") else: save = None if isinstance(title, np.ndarray): _title = title[st:en] else: _title = title if slice_dim == 0: features_2D(data[st:en, :], savepath=save, title=_title, **kwargs) else: # assuming it will always be the last dim if not first features_2D(data[..., st:en], savepath=save, title=_title, **kwargs) st = en return def features_1d(self, data, save=True, name='', **kwargs): if save: save = os.path.join(self.path, name + ".png") else: save=None if features_1D is None: warnings.warn("install see-rnn to plot features-1D plot", UserWarning) else: features_1D(data, savepath=save, **kwargs) return def features_2D(data, n_rows=None, cmap=None, sup_xlabel=None, sup_ylabel=None, sup_title=None, title=None, show=False, savepath=None): """ title: title for individual axis sup_title: title for whole plot """ n_subplots = len(data) if data.ndim == 3 else 1 nrows, ncols = get_nrows_ncols(n_rows, n_subplots) cmap = cmap or random.choice(CMAPS) fig, axis = plt.subplots(nrows=nrows, ncols=ncols, dpi=100, figsize=(10, 10), sharex='all', sharey='all') num_subplots = len(axis.ravel()) if isinstance(axis, np.ndarray) else 1 if isinstance(title, str): title = [title for _ in range(num_subplots)] elif isinstance(title, list): assert len(title) == num_subplots elif isinstance(title, np.ndarray): assert len(title) == num_subplots elif title: title = np.arange(num_subplots) if isinstance(axis, plt.Axes): axis = np.array([axis]) vmin = data.min() vmax = data.max() for idx, ax in enumerate(axis.flat): im = ep.imshow(data[idx], ax=ax, cmap=cmap, vmin=vmin, vmax=vmax, ax_kws=dict(title=title[idx]), show=False) if sup_xlabel: fig.text(0.5, 0.04, sup_xlabel, ha='center', fontsize=20) if sup_ylabel: fig.text(0.04, 0.5, sup_ylabel, va='center', rotation='vertical', fontsize=20) fig.subplots_adjust(hspace=0.2) cbar_ax = fig.add_axes([0.92, 0.15, 0.05, 0.7]) fig.colorbar(im, cax=cbar_ax) if sup_title: plt.suptitle(sup_title) # fig.tight_layout() if savepath: plt.savefig(savepath, bbox_inches="tight") if show: plt.show() return def features_1D(data, xlabel=None, ylabel=None, savepath=None, show=None, title=None): assert data.ndim == 2 _, axis = plt.subplots() for i in data: axis.plot(i) if xlabel: axis.set_xlabel(xlabel) if ylabel: axis.set_ylabel(ylabel) if title: axis.set_title(title) if savepath: plt.savefig(savepath, bbox_inches="tight") if show: plt.show() return def _get_batch_input(inp, batch_idx, batch_size): if isinstance(inp, list): batch_inp = [] for x in inp: st = batch_idx*batch_size batch_inp.append(x[st: st+batch_size]) else: st = batch_idx * batch_size batch_inp = inp[st: st+batch_size] return batch_inp
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/postprocessing/visualize/_main.py
_main.py
import re from weakref import WeakKeyDictionary from ai4water.backend import np metric_dict = { 'Exa': 1e18, 'Peta': 1e15, 'Tera': 1e12, 'Giga': 1e9, 'Mega': 1e6, 'Kilo': 1e3, 'Hecto': 1e2, 'Deca': 1e1, None: 1, 'Deci': 1e-1, 'Centi': 1e-2, 'Milli': 1e-3, 'Micro': 1e-6, 'Nano': 1e-9, 'Pico': 1e-12, 'Femto': 1e-15, 'Atto': 1e-18 } time_dict = { 'Year': 31540000, 'Month': 2628000, 'Weak': 604800, 'Day': 86400, 'Hour': 3600, 'Minute': 60, 'Second': 1, } imperial_dist_dict = { 'Mile': 63360, 'Furlong': 7920, 'Rod': 198, 'Yard': 36, 'Foot': 12, 'Inch': 1 } unit_plurals = { "Inches": "Inch", "Miles": "Mile", "Meters": "Meter", "Feet": "Foot" } def check_plurals(unit): if unit in unit_plurals: unit = unit_plurals[unit] return unit def split_speed_units(unit): dist = unit.split("Per")[0] zeit = unit.split("Per")[1] # distance and speed may contain underscore ('_') at start or at end e.g. when unit is "Meter_Per_Second" # we need to remove all such underscores dist = dist.replace("_", "") zeit = zeit.replace("_", "") if dist in unit_plurals: dist = unit_plurals[dist] return dist, zeit class WrongUnitError(Exception): def __init__(self, u_type, qty, unit, allowed, prefix=None): self.u_type = u_type self.qty = qty self.unit = unit self.allowed = allowed self.pre = prefix def __str__(self): if self.pre is None: return ''' * * {} unit `{}` for {} is wrong. Use either of {} * '''.format(self.u_type, self.unit, self.qty, self.allowed) # prefix {milli} provided for {input} unit of {temperature} is wrong. {input} unit is {millipascal}, allowed are {}} else: return """ * * prefix `{}` provided for {} unit of {} is wrong. * {} unit is: {}. Allowed units are * {}. * """.format(self.pre, self.u_type, self.qty, self.u_type, self.unit, self.allowed) def check_converter(converter): super_keys = converter.keys() for k, v in converter.items(): sub_keys = v.keys() if all(x in super_keys for x in sub_keys): a = 1 else: a = 0 if all(x in sub_keys for x in super_keys): b = 1 else: b = 0 assert a == b TempUnitConverter = { "FAHRENHEIT": { "Fahrenheit": lambda fahrenheit: fahrenheit * 1.0, # fahrenheit to Centigrade "Kelvin": lambda fahrenheit: (fahrenheit + 459.67) * 5/9, # fahrenheit to kelvin "Centigrade": lambda fahrenheit: (fahrenheit - 32.0) / 1.8 # fahrenheit to Centigrade }, "KELVIN": { "Fahrenheit": lambda kelvin: kelvin * 9/5 - 459.67, # kelvin to fahrenheit "Kelvin": lambda k: k*1.0, # Kelvin to Kelvin "Centigrade": lambda kelvin: kelvin - 273.15 # kelvin to Centigrade} }, "CENTIGRADE": { "Fahrenheit": lambda centigrade: centigrade * 1.8 + 32, # Centigrade to fahrenheit "Kelvin": lambda centigrade: centigrade + 273.15, # Centigrade to kelvin "Centigrade": lambda centigrade: centigrade * 1.0} } PressureConverter = { "Pascal": { # Pascal to "Pascal": lambda pascal: pascal, "Bar": lambda pascal: pascal * 1e-5, "Atm": lambda pascal: pascal / 101325, "Torr": lambda pascal: pascal * 0.00750062, "Psi": lambda pascal: pascal / 6894.76, "Ta": lambda pascal: pascal * 1.01971621298E-5 }, "Bar": { # Bar to "Pascal": lambda bar: bar / 0.00001, "Bar": lambda bar: bar, "Atm": lambda bar: bar / 1.01325, "Torr": lambda bar: bar * 750.062, "Psi": lambda bar: bar * 14.503, "Ta": lambda bar: bar * 1.01972 }, "Atm": { # Atm to "Pascal": lambda atm: atm * 101325, "Bar": lambda atm: atm * 1.01325, "Atm": lambda atm: atm, "Torr": lambda atm: atm * 760, "Psi": lambda atm: atm * 14.6959, "At": lambda atm: atm * 1.03322755477 }, "Torr": { # Torr to "Pascal": lambda torr: torr / 0.00750062, "Bar": lambda torr: torr / 750.062, "Atm": lambda torr: torr / 760, "Torr": lambda tor: tor, "Psi": lambda torr: torr / 51.7149, "Ta": lambda torr: torr * 0.00135950982242 }, "Psi": { # Psi to "Pascal": lambda psi: psi * 6894.76, "Bar": lambda psi: psi / 14.5038, "Atm": lambda psi: psi / 14.6959, "Torr": lambda psi: psi * 51.7149, "Psi": lambda psi: psi, "Ta": lambda psi: psi * 0.0703069578296, }, "Ta": { # Ta to "Pascal": lambda at: at / 1.01971621298E-5, "Bar": lambda at: at / 1.0197, "Atm": lambda at: at / 1.03322755477, "Torr": lambda at: at / 0.00135950982242, "Psi": lambda at: at / 0.0703069578296, "Ta": lambda ta: ta } } DistanceConverter = { "Meter": { "Meter": lambda meter: meter, "Inch": lambda meter: meter * 39.3701 }, "Inch": { "Meter": lambda inch: inch * 0.0254, "Inch": lambda inch: inch } } class Pressure(object): """ ```python p = Pressure(20, "Pascal") print(p.MilliBar) #>> 0.2 print(p.Bar) #>> 0.0002 p = Pressure(np.array([10, 20]), "KiloPascal") print(p.MilliBar) # >> [100, 200] p = Pressure(np.array([1000, 2000]), "MilliBar") print(p.KiloPascal) #>> [100, 200] print(p.Atm) # >> [0.98692, 1.9738] ``` """ def __init__(self, val, input_unit): self.val = val check_converter(PressureConverter) self.input_unit = input_unit @property def allowed(self): return list(PressureConverter.keys()) @property def input_unit(self): return self._input_unit @input_unit.setter def input_unit(self, in_unit): self._input_unit = in_unit def __getattr__(self, out_unit): # pycharm calls this method for its own working, executing default behaviour at such calls if out_unit.startswith('_'): return self.__getattribute__(out_unit) else: act_iu, iu_pf = self._preprocess(self.input_unit, "Input") act_ou, ou_pf = self._preprocess(out_unit, "Output") if act_iu not in self.allowed: raise WrongUnitError("Input", self.__class__.__name__, act_iu, self.allowed) if act_ou not in self.allowed: raise WrongUnitError("output", self.__class__.__name__, act_ou, self.allowed) ou_f = PressureConverter[act_iu][act_ou](self.val) val = np.round(np.array((iu_pf * ou_f) / ou_pf), 5) return val def _preprocess(self, given_unit, io_type="Input"): split_u = split_units(given_unit) if len(split_u) < 1: # Given unit contained no capital letter so list is empty raise WrongUnitError(io_type, self.__class__.__name__, given_unit, self.allowed) pf, ou_pf = 1.0, 1.0 act_u = split_u[0] if len(split_u) > 1: pre_u = split_u[0] # prefix of input unit act_u = split_u[1] # actual input unit if pre_u in metric_dict: pf = metric_dict[pre_u] # input unit prefix factor else: raise WrongUnitError(io_type, self.__class__.__name__, act_u, self.allowed, pre_u) return act_u, pf class NotString: def __init__(self): self.data = WeakKeyDictionary() def __get__(self, instance, owner): return self.data[instance] def __set__(self, instance, value): if isinstance(value, list) or isinstance(value, np.ndarray): value = np.array(value).astype(np.float32) self.data[instance] = value def __set_name__(self, owner, name): self.name = name class Temp(object): """ The idea is to write the conversion functions in a dictionary and then dynamically create attribute it the attribute is present in converter as key otherwise raise WongUnitError. converts temperature among units [kelvin, centigrade, fahrenheit] :param `temp` a numpy array :param `input_unit` str, units of temp, should be "Kelvin", "Centigrade" or "Fahrenheit" Example: ```python temp = np.arange(10) T = Temp(temp, 'Centigrade') T.Kelvin >> array([273 274 275 276 277 278 279 280 281 282]) T.Fahrenheit >> array([32. , 33.8, 35.6, 37.4, 39.2, 41. , 42.8, 44.6, 46.4, 48.2]) T.Centigrade >>array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) ``` """ val = NotString() def __init__(self, val, input_unit): self.val = val check_converter(TempUnitConverter) self.input_unit = input_unit def __getattr__(self, out_unit): # pycharm calls this method for its own working, executing default behaviour at such calls if out_unit.startswith('_'): return self.__getattribute__(out_unit) else: if out_unit not in TempUnitConverter[self.input_unit]: raise WrongUnitError("output", self.__class__.__name__, out_unit, self.allowed) val = TempUnitConverter[self.input_unit][str(out_unit)](self.val) return val @property def allowed(self): return list(TempUnitConverter.keys()) @property def input_unit(self): return self._input_unit @input_unit.setter def input_unit(self, in_unit): if in_unit.upper() == 'CELCIUS': in_unit = 'CENTIGRADE' if in_unit.upper() not in self.allowed: raise WrongUnitError("Input", self.__class__.__name__, in_unit, self.allowed) self._input_unit = in_unit.upper() class Distance(object): """ unit converter for distance or length between different imperial and/or metric units. ```python t = Distance(np.array([2.0]), "Mile") np.testing.assert_array_almost_equal(t.Inch, [126720], 5) np.testing.assert_array_almost_equal(t.Meter, [3218.688], 5) np.testing.assert_array_almost_equal(t.KiloMeter, [3.218688], 5) np.testing.assert_array_almost_equal(t.CentiMeter, [321869], 0) np.testing.assert_array_almost_equal(t.Foot, [10560.], 5) t = Distance(np.array([5000]), "MilliMeter") np.testing.assert_array_almost_equal(t.Inch, [196.85039], 5) np.testing.assert_array_almost_equal(t.Meter, [5.0], 5) np.testing.assert_array_almost_equal(t.KiloMeter, [0.005], 5) np.testing.assert_array_almost_equal(t.CentiMeter, [500.0], 5) np.testing.assert_array_almost_equal(t.Foot, [16.404199], 5) ``` """ def __init__(self, val, input_unit): self.val = val self.input_unit = input_unit @property def allowed(self): return list(imperial_dist_dict.keys()) + ['Meter'] @property def input_unit(self): return self._input_unit @input_unit.setter def input_unit(self, in_unit): self._input_unit = in_unit def __getattr__(self, out_unit): # pycharm calls this method for its own working, executing default behaviour at such calls if out_unit.startswith('_'): return self.__getattribute__(out_unit) else: act_iu, iu_pf = self._preprocess(self.input_unit, "Input") act_ou, ou_pf = self._preprocess(out_unit, "Output") act_iu = check_plurals(act_iu) act_ou = check_plurals(act_ou) if act_iu not in self.allowed: raise WrongUnitError("Input", self.__class__.__name__, act_iu, self.allowed) if act_ou not in self.allowed: raise WrongUnitError("output", self.__class__.__name__, act_ou, self.allowed) out_in_meter = self._to_meters(ou_pf, act_ou) # get number of meters in output unit input_in_meter = self.val * iu_pf # for default case when input unit has Meter in it # if input unit is in imperial system, first convert it into inches and then into meters if act_iu in imperial_dist_dict: input_in_inches = imperial_dist_dict[act_iu] * self.val * iu_pf input_in_meter = DistanceConverter['Inch']['Meter'](input_in_inches) val = input_in_meter / out_in_meter return val def _to_meters(self, prefix, actual_unit): meters = prefix if actual_unit != "Meter": inches = imperial_dist_dict[actual_unit] * prefix meters = DistanceConverter['Inch']['Meter'](inches) return meters def _preprocess(self, given_unit, io_type="Input"): # TODO unit must not be split based on capital letters, it is confusing and prone to erros split_u = split_units(given_unit) if len(split_u) < 1: # Given unit contained no capital letter so list is empty raise WrongUnitError(io_type, self.__class__.__name__, given_unit, self.allowed) pf, ou_pf = 1.0, 1.0 act_u = split_u[0] if len(split_u) > 1: pre_u = split_u[0] # prefix of input unit act_u = split_u[1] # actual input unit if pre_u in metric_dict: pf = metric_dict[pre_u] # input unit prefix factor else: raise WrongUnitError(io_type, self.__class__.__name__, act_u, self.allowed, pre_u) return act_u, pf class Time(object): """ ```python t = Time(np.array([100, 200]), "Hour") np.testing.assert_array_almost_equal(t.Day, [4.16666667, 8.33333333], 5) t = Time(np.array([48, 24]), "Day") np.testing.assert_array_almost_equal(t.Minute, [69120., 34560.], 5) ``` """ def __init__(self, val, input_unit): self.val = val self.input_unit = input_unit @property def allowed(self): return list(time_dict.keys()) @property def input_unit(self): return self._input_unit @input_unit.setter def input_unit(self, in_unit): self._input_unit = in_unit def __getattr__(self, out_unit): # pycharm calls this method for its own working, executing default behaviour at such calls if out_unit.startswith('_'): return self.__getattribute__(out_unit) else: act_iu, iu_pf = self._preprocess(self.input_unit, "Input") act_ou, ou_pf = self._preprocess(out_unit, "Output") if act_iu not in self.allowed: raise WrongUnitError("Input", self.__class__.__name__, act_iu, self.allowed) if act_ou not in self.allowed: raise WrongUnitError("output", self.__class__.__name__, act_ou, self.allowed) in_sec = time_dict[act_iu] * self.val * iu_pf val = in_sec / (time_dict[act_ou]*ou_pf) return val def _preprocess(self, given_unit, io_type="Input"): split_u = split_units(given_unit) if len(split_u) < 1: # Given unit contained no capital letter so list is empty raise WrongUnitError(io_type, self.__class__.__name__, given_unit, self.allowed) pf, ou_pf = 1.0, 1.0 act_u = split_u[0] if len(split_u) > 1: pre_u = split_u[0] # prefix of input unit act_u = split_u[1] # actual input unit if pre_u in metric_dict: pf = metric_dict[pre_u] # input unit prefix factor else: raise WrongUnitError(io_type, self.__class__.__name__, act_u, self.allowed, pre_u) return act_u, pf class Speed(object): """ converts between different units using Distance and Time classes which convert distance and time units separately. This class both classes separately and then does the rest of the work. ```python s = Speed(np.array([10]), "KiloMeterPerHour") np.testing.assert_array_almost_equal(s.MeterPerSecond, [2.77777778], 5) np.testing.assert_array_almost_equal(s.MilePerHour, [6.21371192], 5) np.testing.assert_array_almost_equal(s.FootPerSecond, [9.11344415], 5) s = Speed(np.array([14]), "FootPerSecond") np.testing.assert_array_almost_equal(s.MeterPerSecond, [4.2672], 5) np.testing.assert_array_almost_equal(s.MilePerHour, [9.54545], 5) np.testing.assert_array_almost_equal(s.KiloMeterPerHour, [15.3619], 4) s = Speed(np.arange(10), 'KiloMetersPerHour') o = np.array([ 0. , 10.936, 21.872, 32.808, 43.744, 54.680, 65.616 , 76.552, 87.489, 98.425]) np.testing.assert_array_almost_equal(s.InchesPerSecond, o, 2) ``` """ def __init__(self, val, input_unit): self.val = val self.input_unit = input_unit @property def input_unit(self): return self._input_unit @input_unit.setter def input_unit(self, in_unit): if '_' in in_unit: raise ValueError("remove underscore from units {}".format(in_unit)) self._input_unit = in_unit def __getattr__(self, out_unit): # pycharm calls this method for its own working, executing default behaviour at such calls if out_unit.startswith('_'): return self.__getattribute__(out_unit) else: in_dist, in_zeit = split_speed_units(self.input_unit) out_dist, out_zeit = split_speed_units(out_unit) d = Distance(np.array([1]), in_dist) dist_f = getattr(d, out_dist) # distance factor t = Time(np.array([1]), in_zeit) time_f = getattr(t, out_zeit) # time factor out_val = self.val * (dist_f/time_f) return out_val def split_units(unit): """splits string `unit` based on capital letters""" return re.findall('[A-Z][^A-Z]*', unit)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/et/converter.py
converter.py
from ai4water.backend import np, random # Latent heat of vaporisation [MJ.Kg-1] LAMBDA = 2.45 #: Solar constant [ MJ m-2 min-1] SOLAR_CONSTANT = 0.0820 SB_CONS = 3.405e-12 # per minute ALLOWED_COLUMNS = ['temp', 'tmin', 'tmax', 'rel_hum', 'sol_rad', 'rn', 'wind_speed', 'es', 'sunshine_hrs', 'rh_min', 'rh_max', 'rh_mean', 'et_rad', 'cs_rad', 'half_hr', 'tdew', 'daylight_hrs'] def random_array(_length, lower=0.0, upper=0.5): """This creates a random array of length `length` and the floats vary between `lower` and `upper`.""" rand_array = np.zeros(_length) for i in range(_length): rand_array[i] = random.uniform(lower, upper) return rand_array def Colors(_name): colors = {'sol_rad': np.array([0.84067393, 0.66066663, 0.22888342]), 'rel_hum': np.array([0.50832319, 0.53790088, 0.17337983]), 'rh_mean': np.array([0.34068018, 0.65708722, 0.19501699]), 'tmax': np.array([0.94943837, 0.34234137, 0.03188675]), 'tmin': np.array([0.91051202, 0.65414968, 0.48220781]), 'ra': np.array([0.64027147, 0.75848599, 0.59123481]), 'rn': np.array([0.68802968, 0.38316639, 0.13177745]), 'ea': np.array([0.19854081, 0.44556471, 0.35620562]), 'wind_speed': np.array([0.40293934, 0.51160837, 0.1293387]), 'jday': np.array([0.88396109, 0.14081036, 0.44402598]), 'half_hr': np.array([0.53974518, 0.48519598, 0.11808065]), 'sha': np.array([0.67873225, 0.67178641, 0.01953063])} if 'Daily' in _name: return np.array([0.63797563, 0.05503074, 0.07078517]) elif 'Minute' in _name: return np.array([0.27822191, 0.7608274, 0.89536561]) elif 'Hourly' in _name: return np.array([0.70670405, 0.71039014, 0.54375619]) elif 'Monthly' in _name: return np.array([0.39865179, 0.61455622, 0.57515074]) elif 'Yearly' in _name: return np.array([0.81158386, 0.182704, 0.93272506]) elif 'Sub_hourly' in _name: return np.array([0.1844271, 0.70936978, 0.53026012]) elif _name in colors: return colors[_name] else: c = random_array(3, 0.01, 0.99) print('for ', _name, c) return c default_constants = { 'lat': {'desc': 'latitude in decimal degrees', 'def_val': None, 'min': -90, 'max': 90}, 'long': {'desc': 'longitude in decimal degrees', 'def_val': None}, 'a_s': {'desc': 'fraction of extraterrestrial radiation reaching earth on sunless days', 'def_val': 0.23}, 'b_s': {'desc': """difference between fracion of extraterrestrial radiation reaching full-sun days and that on sunless days""", 'def_val': 0.5}, 'albedo': {'desc': """a numeric value between 0 and 1 (dimensionless), albedo of evaporative surface representing the portion of the incident radiation that is reflected back at the surface. Default is 0.23 for surface covered with short reference crop, which is for the calculation of Matt-Shuttleworth reference crop evaporation.""", 'def_val': 0.23, 'min': 0, 'max': 1}, 'abtew_k': {'desc': 'a coefficient used in Abtew', 'def_val': 0.52}, 'CH': {'desc': 'crop height', 'def_val': 0.12}, 'Ca': {'desc': 'Specific heat of air', 'def_val': 0.001013}, 'surf_res': {'desc': "surface resistance (s/m) depends on the type of reference crop. Default is 70 for short" " reference crop", 'def_val': 70, 'min': 0, 'max': 9999}, 'alphaPT': {'desc': 'Priestley-Taylor coefficient', 'def_val': 1.26}, 'ritchie_a': {'desc': "Coefficient for Richie method", 'def_val': 0.002322}, 'ritchie_b': {'desc': "Coefficient for Richie method", 'def_val': 0.001548}, 'ritchie_c': {'desc': "Coefficient for Ritchie Method", 'def_val': 0.11223} }
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/et/global_variables.py
global_variables.py
import re import math from easy_mpl.utils import process_axis from .converter import Temp, Speed, Pressure from .global_variables import ALLOWED_COLUMNS, SOLAR_CONSTANT, LAMBDA from .global_variables import default_constants, SB_CONS from ai4water.backend import np, pd, plt class AttributeChecker: def __init__(self, input_df): self.input = self.check_in_df(input_df) self.output = {} self.allowed_columns = ALLOWED_COLUMNS self.no_of_hours = None def check_in_df(self, data_frame) -> pd.DataFrame: if not isinstance(data_frame, pd.DataFrame): raise TypeError("input must be a pandas dataframe") for col in data_frame.columns: if col not in ALLOWED_COLUMNS: raise ValueError("""col {} given in input dataframe is not allowed. Allowed columns names are {}""" .format(col, ALLOWED_COLUMNS)) if not isinstance(data_frame.index, pd.DatetimeIndex): index = pd.to_datetime(data_frame.index) if not isinstance(index, pd.DatetimeIndex): raise TypeError("index of input dataframe must be convertible to pd.DatetimeIndex") if data_frame.shape[0] > 1: data_frame.index.freq = pd.infer_freq(data_frame.index) else: setattr(self, 'single_vale', True) setattr(self, 'in_freq', data_frame.index.freqstr) return data_frame class PlotData(AttributeChecker): """ Methods: plot_inputs plot_outputs """ def __init__(self, input_df, units): super(PlotData, self).__init__(input_df) self.units = units def plot_inputs(self, _name=False): no_of_plots = len(self.input.columns) plt.close('all') fig, axis = plt.subplots(no_of_plots, sharex='all') fig.set_figheight(no_of_plots+2) fig.set_figwidth(10.48) idx = 0 for ax, col in zip(axis, self.input.columns): show_xaxis = False if idx > no_of_plots-2: show_xaxis = True if col in self.units: yl = self.units[col] else: yl = ' ' data = self.input[col] process_axis(ax, data, label=col, show_xaxis=show_xaxis, ylabel=yl, legend_kws={'markerscale':8}, max_xticks=4) idx += 1 plt.subplots_adjust(wspace=0.001, hspace=0.001) if _name: plt.savefig(_name, dpi=300, bbox_inches='tight') plt.show() def plot_outputs(self, name='', _name=False): def marker_scale(_col): if 'Monthly' in _col: return 4 elif 'Yearly' in _col: return 10 else: return 0.5 to_plot = [] for key in self.output.keys(): if name in key: to_plot.append(key) no_of_plots = len(to_plot) plt.close('all') fig, axis = plt.subplots(no_of_plots, sharex='all') if no_of_plots==1: axis = [axis] fig.set_figheight(no_of_plots+4) fig.set_figwidth(10.48) idx = 0 for ax, col in zip(axis, self.output.keys()): show_xaxis = False if idx > no_of_plots-2: show_xaxis = True data = self.output[col] process_axis(ax, data, ms=marker_scale(col), label=col, show_xaxis=show_xaxis, ylabel='mm', legend_kws={'markerscale': 8}, max_xticks=4) idx += 1 plt.subplots_adjust(wspace=0.001, hspace=0.001) if _name: plt.savefig(_name, dpi=300, bbox_inches='tight') plt.show() class PreProcessing(PlotData): """ Attributes freq_str: str daily_index: pd.DatetimeIndex freq_in_mins: int """ def __init__(self, input_df, units, constants, calculate_at='same', verbosity=1): super(PreProcessing, self).__init__(input_df, units) self.units = units self.default_cons = default_constants self.cons = constants self.freq_in_mins = calculate_at self.sb_cons = self.freq_in_mins self.lat_rad = self.cons self._check_compatability() self.verbosity = verbosity @property def seconds(self): """finds number of seconds between two steps of input data""" if len(self.input) > 1: return (self.input.index[1]-self.input.index[0])/np.timedelta64(1, 's') @property def sb_cons(self): return self._sb_cons @sb_cons.setter def sb_cons(self, freq_in_mins): self._sb_cons = freq_in_mins * SB_CONS @property def lat_rad(self): return self._lat_rad @lat_rad.setter def lat_rad(self, constants): if 'lat_rad' in constants: self._lat_rad = constants['lat_rad'] elif 'lat_dec_deg' in constants: self._lat_rad = constants['lat_dec_deg'] * 0.0174533 # # degree to radians else: raise ConnectionResetError("Provide latitude information in as lat_rat or as lat_dec_deg in constants") @property def freq_in_mins(self): return self._freq_in_mins @freq_in_mins.setter def freq_in_mins(self, calculate_at): if calculate_at is not None and calculate_at != 'same': if isinstance(calculate_at, str): in_minutes = freq_in_mins_from_string(calculate_at) else: raise TypeError("invalid type of frequency demanded", calculate_at) else: in_minutes = freq_in_mins_from_string(self.input.index.freqstr) self._freq_in_mins = in_minutes @property def freq_str(self) -> str: minutes = self.freq_in_mins freq_str = min_to_str(minutes) return freq_str def daily_index(self) -> pd.DatetimeIndex: start_year = justify_len(str(self.input.index[0].year)) end_year = justify_len(str(self.input.index[-1].year)) start_month = justify_len(str(self.input.index[0].month)) end_month = justify_len(str(self.input.index[0].month)) start_day = justify_len(str(self.input.index[0].day)) end_day = justify_len(str(self.input.index[0].day)) st = start_year + start_month + start_day en = end_year + end_month + end_day return pd.date_range(st, en, freq='D') def _check_compatability(self): self._preprocess_temp() self._preprocess_rh() self._check_wind_units() self._cehck_pressure_units() self._check_rad_units() # getting julian day self.input['jday'] = self.input.index.dayofyear if self.freq_in_mins == 60: a = self.input.index.hour ma = np.convolve(a, np.ones((2,)) / 2, mode='same') ma[0] = ma[1] - (ma[2] - ma[1]) self.input['half_hr'] = ma freq = self.input.index.freqstr if len(freq) > 1: setattr(self, 'no_of_hours', int(freq[0])) else: setattr(self, 'no_of_hours', 1) self.input['t1'] = np.zeros(len(self.input)) + self.no_of_hours elif self.freq_in_mins < 60: a = self.input.index.hour b = (self.input.index.minute + self.freq_in_mins / 2.0) / 60.0 self.input['half_hr'] = a + b self.input['t1'] = np.zeros(len(self.input)) + self.freq_in_mins / 60.0 for val in ['sol_rad', 'rn']: if val in self.input: if self.freq_in_mins <= 60: self.input['is_day'] = np.where(self.input[val].values > 0.1, 1, 0) return def _preprocess_rh(self): # make sure that we mean relative humidity calculated if possible if 'rel_hum' in self.input.columns: rel_hum = self.input['rel_hum'] rel_hum = np.where(rel_hum < 0.0, 0.0, rel_hum) rel_hum = np.where(rel_hum >= 100.0, 100.0, rel_hum) self.input['rh_mean'] = rel_hum self.input['rel_hum'] = rel_hum else: if 'rh_min' in self.input.columns: self.input['rh_mean'] = np.mean(np.array([self.input['rh_min'].values, self.input['rh_max'].values]), axis=0) return def _preprocess_temp(self): """ converts temperature related input to units of Centigrade if required. """ # converting temperature units to celsius for val in ['tmin', 'tmax', 'temp', 'tdew']: if val in self.input: t = Temp(self.input[val].values, self.units[val]) temp = t.Centigrade self.input[val] = np.where(temp < -30, -30, temp) # if 'temp' is given, it is assumed to be mean otherwise calculate mean and put it as `temp` in input dataframe. if 'temp' not in self.input.columns: if 'tmin' in self.input.columns and 'tmax' in self.input.columns: self.input['temp'] = np.mean(np.array([self.input['tmin'].values, self.input['tmax'].values]), axis=0) return def _check_wind_units(self): # check units of wind speed and convert if needed if 'wind_speed' in self.input: wind = self.input['wind_speed'].values wind = np.where(wind < 0.0, 0.0, wind) w = Speed(wind, self.units['wind_speed']) self.input['wind_speed'] = w.MeterPerSecond return def _cehck_pressure_units(self): """ converts pressure related input to units of KiloPascal if required. """ for pres in ['ea', 'es', 'vp_def']: if pres in self.input: p = Pressure(self.input[pres].values, self.units[pres]) self.input[pres] = p.KiloPascal def _check_rad_units(self): """ Currently it does not converts radiation units, only makes sure that they are > 0.0. """ for val in ['rn', 'sol_rad']: if val in self.input: rad = self.input[val].values rad = np.where(rad < 0.0, 0.0, rad) self.input[val] = rad class TransFormData(PreProcessing): """ transforms input or output data to different frequencies. """ def __init__(self, input_df, units, constants, calculate_at='same', verbosity=1): self.verbosity = verbosity input_df = self.freq_check(input_df, calculate_at) input_df = self.transform_data(input_df, calculate_at) super(TransFormData, self).__init__(input_df, units, constants, calculate_at, verbosity) def freq_check(self, input_df, freq: str): """ Makes sure that the input dataframe.index as frequency. It frequency is not there, it means it contains missing data. In this case this method fills missing values. In such case, the argument freq must not be `same`. """ if input_df.shape[0] > 1: input_df.index.freq = pd.infer_freq(input_df.index) if input_df.index.freq is None: if freq == 'same' or freq is None: raise ValueError("input data does not have uniform time-step. Provide a value for argument" " `calculate_at` ") else: new_freq = freq_in_mins_from_string(freq) try: input_df.index.freq = freq except ValueError: input_df = self.fill_missing_data(input_df, str(new_freq) + 'min') return input_df def fill_missing_data(self, df: pd.DataFrame, new_freq: str): if self.verbosity > 0: print("input contains missing values or time-steps") df = force_freq(df.copy(), new_freq, 'input', 'nearest') assert df.index.freqstr is not None return df def transform_data(self, input_df, calculate_at): if calculate_at == 'same' or calculate_at is None: df = input_df else: new_freq_mins = freq_in_mins_from_string(calculate_at) old_freq_mins = freq_in_mins_from_string(input_df.index.freqstr) if new_freq_mins == old_freq_mins: df = input_df elif new_freq_mins > old_freq_mins: # we want to calculate at higher/larger time-step print('downsampling input data from {} to {}'.format(old_freq_mins, new_freq_mins)) df = self.downsample_input(input_df, new_freq_mins) else: print('upsampling input data from {} to {}'.format(old_freq_mins, new_freq_mins)) # we want to calculate at smaller time-step df = self.upsample_input(input_df, new_freq_mins) return df def upsample_input(self, df, out_freq): # from larger timestep to smaller timestep, such as from daily to hourly for col in df.columns: df[col] = self.upsample_df(pd.DataFrame(df[col]), col, out_freq) return df def downsample_input(self, df, out_freq): # from low timestep to high timestep i.e from 1 hour to 24 hour # from hourly to daily for col in df.columns: df[col] = self.downsample_df(pd.DataFrame(df[col]), col, out_freq) return df def transform_etp(self, name): freq_to_trans = self.get_freq() down_sample = freq_to_trans['up_sample'] up_sample = freq_to_trans['down_sample'] for freq in up_sample: in_col_name = 'et_' + name + '_' + self.freq_str freq_str = min_to_str(freq) out_col_name = 'et_' + name + '_' + freq_str self.output[out_col_name] = self.upsample_df(pd.DataFrame(self.output[in_col_name]), 'et', freq) for freq in down_sample: in_col_name = 'et_' + name + '_' + self.freq_str freq_str = min_to_str(freq) out_col_name = 'et_' + name + '_' + freq_str self.output[out_col_name] = self.downsample_df(pd.DataFrame(self.output[in_col_name]), 'et', freq) def downsample_df(self, data_frame: pd.DataFrame, data_name: str, out_freq: int): # from low timestep to high timestep i.e from 1 hour to 24 hour # from hourly to daily col_name = data_frame.columns[0] data_frame = data_frame.copy() old_freq = data_frame.index.freq if self.verbosity > 1: print('downsampling {} data from {} to {}'.format(col_name, old_freq, min_to_str(out_freq))) out_freq = str(out_freq) + 'min' # e.g. from hourly to daily if data_name in ['temp', 'rel_hum', 'rh_min', 'rh_max', 'uz', 'u2', 'wind_speed_kph', 'q_lps']: return data_frame.resample(out_freq).mean() elif data_name in ['rain_mm', 'ss_gpl', 'sol_rad', 'etp', 'et']: return data_frame.resample(out_freq).sum() def upsample_df(self, data_frame, data_name, out_freq_int): # from larger timestep to smaller timestep, such as from daily to hourly out_freq = str(out_freq_int) + 'min' col_name = data_frame.columns[0] old_freq = data_frame.index.freqstr nan_idx = data_frame.isna() # preserving indices with nan values nan_idx_r = nan_idx.resample(out_freq).ffill() nan_idx_r = nan_idx_r.fillna(False) # the first value was being filled with NaN, idk y? data_frame = data_frame.copy() if self.verbosity > 1: print('upsampling {} data from {} to {}'.format(data_name, old_freq, min_to_str(out_freq_int))) # e.g from monthly to daily or from hourly to sub_hourly if data_name in ['temp', 'rel_hum', 'rh_min', 'rh_max', 'uz', 'u2', 'q_lps']: data_frame = data_frame.resample(out_freq).interpolate(method='linear') # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan elif data_name in ['rain_mm', 'ss_gpl', 'sol_rad', 'pet', 'pet_hr', 'et', 'etp']: # distribute rainfall equally to smaller time steps. like hourly 17.4 will be 1.74 at 6 min resolution idx = data_frame.index[-1] + get_offset(data_frame.index.freqstr) data_frame = data_frame.append(data_frame.iloc[[-1]].rename({data_frame.index[-1]: idx})) data_frame = add_freq(data_frame) df1 = data_frame.resample(out_freq).ffill().iloc[:-1] df1[col_name] /= df1.resample(data_frame.index.freqstr)[col_name].transform('size') data_frame = df1.copy() # filling those interpolated values with NaNs which were NaN before interpolation data_frame[nan_idx_r] = np.nan return data_frame def get_freq(self) -> dict: """ decides which frequencies to """ all_freqs = {'Sub_hourly': {'down_sample': [1], 'up_sample': [60, 1440, 43200, 525600]}, 'Hourly': {'down_sample': [1], 'up_sample': [1440, 43200, 525600]}, 'Sub_daily': {'down_sample': [1, 60], 'up_sample': [1440, 43200, 525600]}, 'Daily': {'down_sample': [1, 60], 'up_sample': [43200, 525600]}, 'Sub_monthly': {'down_sample': [1, 60, 1440], 'up_sample': [43200, 525600]}, 'Monthly': {'down_sample': [1, 60, 1440], 'up_sample': [525600]}, 'Annualy': {'down_sample': [1, 60, 1440, 43200], 'up_sample': []} } return all_freqs[self.freq_str] class Utils(TransFormData): """ Contains functions methods for calculation of ETP with various methods. Methods: net_rad atm_pressure _wind_2m """ def __init__(self, input_df, units, constants, calculate_at=None, verbosity: bool=1): """ Arguments: calculate_at :a valid pandas dataframe frequency verbosity : """ super(Utils, self).__init__(input_df, units, constants, calculate_at=calculate_at, verbosity=verbosity) @property def seasonal_correction(self): """Seasonal correction for solar time (Eqs. 57 & 58) uses ---------- doy : scalar or array_like of shape(M, ) Day of year. Returns ------ ndarray Seasonal correction [hour] """ doy = self.input['jday'] b = 2 * math.pi * (doy - 81.) / 364. return 0.1645 * np.sin(2 * b) - 0.1255 * np.cos(b) - 0.0250 * np.sin(b) def net_rad(self, ea, rs=None): """ Calculate daily net radiation at the crop surface, assuming a grass reference crop. Net radiation is the difference between the incoming net shortwave (or solar) radiation and the outgoing net longwave radiation. Output can be converted to equivalent evaporation [mm day-1] using ``energy2evap()``. Based on equation 40 in Allen et al (1998). :uses rns: Net incoming shortwave radiation [MJ m-2 day-1]. Can be estimated using ``net_in_sol_rad()``. rnl: Net outgoing longwave radiation [MJ m-2 day-1]. Can be estimated using ``net_out_lw_rad()``. :return: net radiation [MJ m-2 timestep-1]. :rtype: float """ if 'rn' not in self.input: if rs is None: rs = self.rs() if 'rns' not in self.input: rns = self.net_in_sol_rad(rs) else: rns = self.input['rns'] rnl = self.net_out_lw_rad(rs=rs, ea=ea) rn = np.subtract(rns, rnl) self.input['rn'] = rn # for future use else: rn = self.input['rn'] return rn def rs(self): """ calculate solar radiation either from temperature (as second preference, as it is les accurate) or from daily _sunshine hours as second preference). Sunshine hours is given second preference because sunshine hours will remain same for all years if sunshine hours data is not provided (which is difficult to obtain), but temperature data which is easy to obtain and thus will be different for different years""" if 'sol_rad' not in self.input.columns: if 'sunshine_hrs' in self.input.columns: rs = self.sol_rad_from_sun_hours() if self.verbosity > 0: print("Sunshine hour data is used for calculating incoming solar radiation") elif 'tmin' in self.input.columns and 'tmax' in self.input.columns: rs = self._sol_rad_from_t() if self.verbosity > 0: print("solar radiation is calculated from temperature") else: raise ValueError("""Unable to calculate solar radiation. Provide either of following inputs: sol_rad, sunshine_hrs or tmin and tmax""") else: rs = self.input['sol_rad'] self.input['sol_rad'] = rs return rs def net_in_sol_rad(self, rs): """ Calculate net incoming solar (or shortwave) radiation (*Rns*) from gross incoming solar radiation, assuming a grass reference crop. Net incoming solar radiation is the net shortwave radiation resulting from the balance between incoming and reflected solar radiation. The output can be converted to equivalent evaporation [mm day-1] using ``energy2evap()``. Based on FAO equation 38 in Allen et al (1998). Rns = (1-a)Rs uses Gross incoming solar radiation [MJ m-2 day-1]. If necessary this can be estimated using functions whose name begins with 'solar_rad_from'. :param rs: solar radiation albedo: Albedo of the crop as the proportion of gross incoming solar radiation that is reflected by the surface. Default value is 0.23, which is the value used by the FAO for a short grass reference crop. Albedo can be as high as 0.95 for freshly fallen snow and as low as 0.05 for wet bare soil. A green vegetation over has an albedo of about 0.20-0.25 (Allen et al, 1998). :return: Net incoming solar (or shortwave) radiation [MJ m-2 day-1]. :rtype: float """ return np.multiply((1 - self.cons['albedo']), rs) def net_out_lw_rad(self, rs, ea): """ Estimate net outgoing longwave radiation. This is the net longwave energy (net energy flux) leaving the earth's surface. It is proportional to the absolute temperature of the surface raised to the fourth power according to the Stefan-Boltzmann law. However, water vapour, clouds, carbon dioxide and dust are absorbers and emitters of longwave radiation. This function corrects the Stefan- Boltzmann law for humidity (using actual vapor pressure) and cloudiness (using solar radiation and clear sky radiation). The concentrations of all other absorbers are assumed to be constant. The output can be converted to equivalent evaporation [mm timestep-1] using ``energy2evap()``. Based on FAO equation 39 in Allen et al (1998). uses: Absolute daily minimum temperature [degrees Kelvin] Absolute daily maximum temperature [degrees Kelvin] Solar radiation [MJ m-2 day-1]. If necessary this can be estimated using ``sol+rad()``. Clear sky radiation [MJ m-2 day-1]. Can be estimated using ``cs_rad()``. Actual vapour pressure [kPa]. Can be estimated using functions with names beginning with 'avp_from'. :param ea: actual vapour pressure, can be calculated using method avp_from :param rs: solar radiation :return: Net outgoing longwave radiation [MJ m-2 timestep-1] :rtype: float """ if 'tmin' in self.input.columns and 'tmax' in self.input.columns: added = np.add(np.power(self.input['tmax'].values+273.16, 4), np.power(self.input['tmin'].values+273.16, 4)) divided = np.divide(added, 2.0) else: divided = np.power(self.input['temp'].values+273.16, 4.0) tmp1 = np.multiply(self.sb_cons, divided) tmp2 = np.subtract(0.34, np.multiply(0.14, np.sqrt(ea))) tmp3 = np.subtract(np.multiply(1.35, np.divide(rs, self._cs_rad())), 0.35) return np.multiply(tmp1, np.multiply(tmp2, tmp3)) # eq 39 def sol_rad_from_sun_hours(self): """ Calculate incoming solar (or shortwave) radiation, *Rs* (radiation hitting a horizontal plane after scattering by the atmosphere) from relative sunshine duration. If measured radiation data are not available this method is preferable to calculating solar radiation from temperature. If a monthly mean is required then divide the monthly number of sunshine hours by number of days in the month and ensure that *et_rad* and *daylight_hours* was calculated using the day of the year that corresponds to the middle of the month. Based on equations 34 and 35 in Allen et al (1998). uses: Number of daylight hours [hours]. Can be calculated using ``daylight_hours()``. Sunshine duration [hours]. Can be calculated using ``sunshine_hours()``. Extraterrestrial radiation [MJ m-2 day-1]. Can be estimated using ``et_rad()``. :return: Incoming solar (or shortwave) radiation [MJ m-2 day-1] :rtype: float """ # 0.5 and 0.25 are default values of regression constants (Angstrom values) # recommended by FAO when calibrated values are unavailable. ss_hrs = self.input['sunshine_hrs'] # sunshine_hours dl_hrs = self.daylight_fao56() # daylight_hours return np.multiply(np.add(self.cons['a_s'], np.multiply(np.divide(ss_hrs, dl_hrs), self.cons['b_s'])), self._et_rad()) def _sol_rad_from_t(self, coastal=False): """ Estimate incoming solar (or shortwave) radiation [Mj m-2 day-1] , *Rs*, (radiation hitting a horizontal plane after scattering by the atmosphere) from min and max temperature together with an empirical adjustment coefficient for 'interior' and 'coastal' regions. The formula is based on equation 50 in Allen et al (1998) which is the Hargreaves radiation formula (Hargreaves and Samani, 1982, 1985). This method should be used only when solar radiation or sunshine hours data are not available. It is only recommended for locations where it is not possible to use radiation data from a regional station (either because climate conditions are heterogeneous or data are lacking). **NOTE**: this method is not suitable for island locations due to the moderating effects of the surrounding water. """ # Determine value of adjustment coefficient [deg C-0.5] for # coastal/interior locations if coastal: # for 'coastal' locations, situated on or adjacent to the coast of a large l adj = 0.19 # and mass and where air masses are influenced by a nearby water body, else: # for 'interior' locations, where land mass dominates and air adj = 0.16 # masses are not strongly influenced by a large water body et_rad = None cs_rad = None if 'et_rad' not in self.input: et_rad = self._et_rad() self.input['et_rad'] = et_rad if 'cs_rad' not in self.input: cs_rad = self._cs_rad() self.input['cs_rad'] = cs_rad sol_rad = np.multiply(adj, np.multiply(np.sqrt(np.subtract(self.input['tmax'].values, self.input['tmin'].values)), et_rad)) # The solar radiation value is constrained by the clear sky radiation return np.min(np.array([sol_rad, cs_rad]), axis=0) def _cs_rad(self, method='asce'): """ Estimate clear sky radiation from altitude and extraterrestrial radiation. Based on equation 37 in Allen et al (1998) which is recommended when calibrated Angstrom values are not available. et_rad is Extraterrestrial radiation [MJ m-2 day-1]. Can be estimated using ``et_rad()``. :return: Clear sky radiation [MJ m-2 day-1] :rtype: float """ if method.upper() == 'ASCE': return (0.00002 * self.cons['altitude'] + 0.75) * self._et_rad() elif method.upper() == 'REFET': sc = self.seasonal_correction() _omega = omega(solar_time_rad(self.cons['long_dec_deg'], self.input['half_hour'], sc)) else: raise ValueError def daylight_fao56(self): """get number of maximum hours of sunlight for a given latitude using equation 34 in Fao56. Annual variation of sunlight hours on earth are plotted in figre 14 in ref 1. dr = pd.date_range('20110903 00:00', '20110903 23:59', freq='H') sol_rad = np.array([0.45 for _ in range(len(dr))]) df = pd.DataFrame(np.stack([sol_rad],axis=1), columns=['sol_rad'], index=dr) constants = {'lat' : -20} units={'solar_rad': 'MegaJoulePerMeterSquarePerHour'} eto = ReferenceET(df,units,constants=constants) N = np.unique(eto.daylight_fao56()) array([11.66]) 1) http://www.fao.org/3/X0490E/x0490e07.htm""" ws = self.sunset_angle() hrs = (24/3.14) * ws # if self.input_freq == 'Monthly': # df = pd.DataFrame(hrs, index=self.daily_index) # hrs = df.resample('M').mean().values.reshape(-1,) return hrs def _et_rad(self): """ Estimate extraterrestrial radiation (*Ra*, 'top of the atmosphere radiation'). For daily, it is based on equation 21 in Allen et al (1998). If monthly mean radiation is required make sure *sol_dec*. *sha* and *irl* have been calculated using the day of the year that corresponds to the middle of the month. **Note**: From Allen et al (1998): "For the winter months in latitudes greater than 55 degrees (N or S), the equations have limited validity. Reference should be made to the Smithsonian Tables to assess possible deviations." :return: extraterrestrial radiation [MJ m-2 timestep-1] :rtype: float dr = pd.date_range('20110903 00:00', '20110903 23:59', freq='D') sol_rad = np.array([0.45 ]) df = pd.DataFrame(np.stack([sol_rad],axis=1), columns=['sol_rad'], index=dr) constants = {'lat' : -20} units={'sol_rad': 'MegaJoulePerMeterSquarePerHour'} eto = ReferenceET(df,units,constants=constants) ra = eto._et_rad() [32.27] """ if self.freq_in_mins < 1440: # TODO should sub_hourly be different from Hourly? j = (3.14/180) * self.cons['lat_dec_deg'] # eq 22 phi dr = self.inv_rel_dist_earth_sun() # eq 23 sol_dec = self.dec_angle() # eq 24 # gamma w1, w2 = self.solar_time_angle() t1 = (12*60)/math.pi t2 = np.multiply(t1, np.multiply(SOLAR_CONSTANT, dr)) t3 = np.multiply(np.subtract(w2, w1), np.multiply(np.sin(j), np.sin(sol_dec))) t4 = np.subtract(np.sin(w2), np.sin(w1)) t5 = np.multiply(np.multiply(np.cos(j), np.cos(sol_dec)), t4) t6 = np.add(t5, t3) ra = np.multiply(t2, t6) # eq 28 elif self.freq_in_mins == 1440: # daily frequency sol_dec = self.dec_angle() # based on julian day sha = self.sunset_angle() # sunset hour angle[radians], based on latitude ird = self.inv_rel_dist_earth_sun() tmp1 = (24.0 * 60.0) / math.pi tmp2 = np.multiply(sha, np.multiply(math.sin(self.lat_rad), np.sin(sol_dec))) tmp3 = np.multiply(math.cos(self.lat_rad), np.multiply(np.cos(sol_dec), np.sin(sha))) ra = np.multiply(tmp1, np.multiply(SOLAR_CONSTANT, np.multiply(ird, np.add(tmp2, tmp3)))) # eq 21 else: raise NotImplementedError self.input['ra'] = ra return ra def sunset_angle(self): """ calculates sunset hour angle in radians given by Equation 25 in Fao56 (1) 1): http://www.fao.org/3/X0490E/x0490e07.htm""" if 'sha' not in self.input: j = (3.14/180.0) * self.cons['lat_dec_deg'] # eq 22 d = self.dec_angle() # eq 24, declination angle angle = np.arccos(-np.tan(j)*np.tan(d)) # eq 25 self.input['sha'] = angle else: angle = self.input['sha'].values return angle def inv_rel_dist_earth_sun(self): """ Calculate the inverse relative distance between earth and sun from day of the year. Based on FAO equation 23 in Allen et al (1998). ird = 1.0 + 0.033 * cos( [2pi/365] * j ) :return: Inverse relative distance between earth and the sun :rtype: np array """ if 'ird' not in self.input: inv1 = np.multiply(2*math.pi/365.0, self.input['jday'].values) inv2 = np.cos(inv1) inv3 = np.multiply(0.033, inv2) ird = np.add(1.0, inv3) self.input['ird'] = ird else: ird = self.input['ird'] return ird def dec_angle(self): """ finds solar declination angle """ if 'sol_dec' not in self.input: if self.freq_str == 'monthly': solar_dec = np.array(0.409 * np.sin(2*3.14 * self.daily_index().dayofyear/365 - 1.39)) else: solar_dec = 0.409 * np.sin(2*3.14 * self.input['jday'].values/365 - 1.39) # eq 24, declination angle self.input['solar_dec'] = solar_dec else: solar_dec = self.input['solar_dec'] return solar_dec def solar_time_angle(self): """ returns solar time angle at start, mid and end of period using equation 29, 31 and 30 respectively in Fao w = pi/12 [(t + 0.06667 ( lz-lm) + Sc) -12] t =standard clock time at the midpoint of the period [hour]. For example for a period between 14.00 and 15.00 hours, t = 14.5 lm = longitude of the measurement site [degrees west of Greenwich] lz = longitude of the centre of the local time zone [degrees west of Greenwich] w1 = w - pi*t1/24 w2 = w + pi*t1/24 where: w = solar time angle at midpoint of hourly or shorter period [rad] t1 = length of the calculation period [hour]: i.e., 1 for hourly period or 0.5 for a 30-minute period www.fao.org/3/X0490E/x0490e07.htm """ # TODO find out how to calculate lz # https://github.com/djlampert/PyHSPF/blob/c3c123acf7dba62ed42336f43962a5e4db922422/src/pyhspf/preprocessing/etcalculator.py#L610 lz = np.abs(15 * round(self.cons['long_dec_deg'] / 15.0)) lm = np.abs(self.cons['long_dec_deg']) t1 = 0.0667*(lz-lm) t2 = self.input['half_hr'].values + t1 + self.solar_time_cor() t3 = np.subtract(t2, 12) w = np.multiply((math.pi/12.0), t3) # eq 31, in rad w1 = np.subtract(w, np.divide(np.multiply(math.pi, self.input['t1']).values, 24.0)) # eq 29 w2 = np.add(w, np.divide(np.multiply(math.pi, self.input['t1']).values, 24.0)) # eq 30 return w1, w2 def solar_time_cor(self): """seasonal correction for solar time by implementation of eqation 32 in hour, `Sc`""" upar = np.multiply((2*math.pi), np.subtract(self.input['jday'].values, 81)) b = np.divide(upar, 364) # eq 33 t1 = np.multiply(0.1645, np.sin(np.multiply(2, b))) t2 = np.multiply(0.1255, np.cos(b)) t3 = np.multiply(0.025, np.sin(b)) return t1-t2-t3 # eq 32 def avp_from_rel_hum(self): """ Estimate actual vapour pressure (*ea*) from saturation vapour pressure and relative humidity. Based on FAO equation 17 in Allen et al (1998). ea = [ e_not(tmin)RHmax/100 + e_not(tmax)RHmin/100 ] / 2 uses Saturation vapour pressure at daily minimum temperature [kPa]. Saturation vapour pressure at daily maximum temperature [kPa]. Minimum relative humidity [%] Maximum relative humidity [%] :return: Actual vapour pressure [kPa] :rtype: float http://www.fao.org/3/X0490E/x0490e07.htm#TopOfPage """ if 'ea' in self.input: avp = self.input['ea'] else: avp = 0.0 # TODO `shub_hourly` calculation should be different from `Hourly` # use equation 54 in http://www.fao.org/3/X0490E/x0490e08.htm#TopOfPage if self.freq_in_mins <= 60: # for hourly or sub_hourly avp = np.multiply(self.sat_vp_fao56(self.input['temp'].values), np.divide(self.input['rel_hum'].values, 100.0)) elif self.freq_in_mins == 1440: if 'rh_min' in self.input.columns and 'rh_max' in self.input.columns: tmp1 = np.multiply(self.sat_vp_fao56(self.input['tmin'].values), np.divide(self.input['rh_max'].values, 100.0)) tmp2 = np.multiply(self.sat_vp_fao56(self.input['tmax'].values), np.divide(self.input['rh_min'].values, 100.0)) avp = np.divide(np.add(tmp1, tmp2), 2.0) elif 'rel_hum' in self.input.columns: # calculation actual vapor pressure from mean humidity # equation 19 t1 = np.divide(self.input['rel_hum'].values, 100) t2 = np.divide(np.add(self.sat_vp_fao56(self.input['tmax'].values), self.sat_vp_fao56(self.input['tmin'].values)), 2.0) avp = np.multiply(t1, t2) else: raise NotImplementedError(" for frequency of {} minutes, actual vapour pressure can not be calculated" .format(self.freq_in_mins)) self.input['ea'] = avp return avp def sat_vp_fao56(self, temp): """calculates saturation vapor pressure (*e_not*) as given in eq 11 of FAO 56 at a given temp which must be in units of centigrade. using Tetens equation es = 0.6108 * exp((17.26*temp)/(temp+273.3)) where es is in KiloPascal units. Murray, F. W., On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, 203-204, 1967. """ # e_not_t = multiply(0.6108, np.exp( multiply(17.26939, temp) / add(temp , 237.3))) e_not_t = np.multiply(0.6108, np.exp(np.multiply(17.27, np.divide(temp, np.add(temp, 237.3))))) return e_not_t def soil_heat_flux(self, rn=None): if self.freq_in_mins == 1440: return 0.0 elif self.freq_in_mins <= 60: gd = np.multiply(0.1, rn) gn = np.multiply(0.5, rn) return np.where(self.input['is_day'] == 1, gd, gn) elif self.freq_in_mins > 1440: raise NotImplementedError def mean_sat_vp_fao56(self): """ calculates mean saturation vapor pressure (*es*) for a day, weak or month according to eq 12 of FAO 56 using tmin and tmax which must be in centigrade units """ es = None # for case when tmax and tmin are not given and only `temp` is given if 'tmax' not in self.input: if 'temp' in self.input: es = self.sat_vp_fao56(self.input['temp']) # for case when `tmax` and `tmin` are provided elif 'tmax' in self.input: es_tmax = self.sat_vp_fao56(self.input['tmax'].values) es_tmin = self.sat_vp_fao56(self.input['tmin'].values) es = np.mean(np.array([es_tmin, es_tmax]), axis=0) else: raise NotImplementedError return es def psy_const(self) -> float: """ Calculate the psychrometric constant. This method assumes that the air is saturated with water vapour at the minimum daily temperature. This assumption may not hold in arid areas. Based on equation 8, page 95 in Allen et al (1998). uses Atmospheric pressure [kPa]. :return: Psychrometric constant [kPa degC-1]. :rtype: array """ return np.multiply(0.000665, self.atm_pressure()) def slope_sat_vp(self, t): """ slope of the relationship between saturation vapour pressure and temperature for a given temperature according to equation 13 in Fao56[1]. delta = 4098 [0.6108 exp(17.27T/T+237.3)] / (T+237.3)^2 :param t: Air temperature [deg C]. Use mean air temperature for use in Penman-Monteith. :return: Saturation vapour pressure [kPa degC-1] [1]: http://www.fao.org/3/X0490E/x0490e07.htm#TopOfPage """ to_exp = np.divide(np.multiply(17.27, t), np.add(t, 237.3)) tmp = np.multiply(4098, np.multiply(0.6108, np.exp(to_exp))) return np.divide(tmp, np.power(np.add(t, 237.3), 2)) def _wind_2m(self, method='fao56', z_o=0.001): """ converts wind speed (m/s) measured at height z to 2m using either FAO 56 equation 47 or McMohan eq S4.4. u2 = uz [ 4.87/ln(67.8z-5.42) ] eq 47 in [1], eq S5.20 in [2]. u2 = uz [ln(2/z_o) / ln(z/z_o)] eq S4.4 in [2] :param `method` string, either of `fao56` or `mcmohan2013`. if `mcmohan2013` is chosen then `z_o` is used :param `z_o` float, roughness height. Default value is from [2] :return: Wind speed at 2 m above the surface [m s-1] [1] http://www.fao.org/3/X0490E/x0490e07.htm [2] McMahon, T., Peel, M., Lowe, L., Srikanthan, R. & McVicar, T. 2012. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences Discussions, 9, 11829-11910. https://www.hydrol-earth-syst-sci.net/17/1331/2013/hess-17-1331-2013-supplement.pdf """ # if value of height at which wind is measured is not given, then don't convert if 'wind_z' in self.cons: wind_z = self.cons['wind_z'] else: wind_z = None if wind_z is None: if self.verbosity > 0: print("""WARNING: givn wind data is not at 2 meter and `wind_z` is also not given. So assuming wind given as measured at 2m height""") return self.input['wind_speed'].values else: if method == 'fao56': return np.multiply(self.input['wind_speed'], (4.87 / math.log((67.8 * wind_z) - 5.42))) else: return np.multiply(self.input['wind_speed'].values, math.log(2/z_o) / math.log(wind_z/z_o)) def atm_pressure(self) -> float: """ Estimate atmospheric pressure from altitude. Calculated using a simplification of the ideal gas law, assuming 20 degrees Celsius for a standard atmosphere. Based on equation 7, page 62 in Allen et al (1998). :return: atmospheric pressure [kPa] :rtype: float """ tmp = (293.0 - (0.0065 * self.cons['altitude'])) / 293.0 return math.pow(tmp, 5.26) * 101.3 def tdew_from_t_rel_hum(self): """ Calculates the dew point temperature given temperature and relative humidity. Following formulation given at https://goodcalculators.com/dew-point-calculator/ The formula is Tdew = (237.3 × [ln(RH/100) + ( (17.27×T) / (237.3+T) )]) / (17.27 - [ln(RH/100) + ( (17.27×T) / (237.3+T) )]) Where: Tdew = dew point temperature in degrees Celsius (°C), T = air temperature in degrees Celsius (°C), RH = relative humidity (%), ln = natural logarithm. The formula also holds true as calculations shown at http://www.decatur.de/javascript/dew/index.html """ temp = self.input['temp'] neum = (237.3 * (np.log(self.input['rel_hum'] / 100.0) + ((17.27 * temp) / (237.3 + temp)))) denom = (17.27 - (np.log(self.input['rel_hum'] / 100.0) + ((17.27 * temp) / (237.3 + temp)))) td = neum / denom self.input['tdew'] = td return def evap_pan(self): """ pan evaporation which is used in almost all penman related methods """ ap = self.cons['pen_ap'] lat = self.cons['lat_dec_deg'] rs = self.rs() delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() vabar = self.avp_from_rel_hum() # Vapour pressure vas = self.mean_sat_vp_fao56() u2 = self._wind_2m() r_nl = self.net_out_lw_rad(rs=rs, ea=vabar) # net outgoing longwave radiation ra = self._et_rad() # eq 34 in Thom et al., 1981 f_pan_u = np.add(1.201, np.multiply(1.621, u2)) # eq 4 and 5 in Rotstayn et al., 2006 p_rad = np.add(1.32, np.add(np.multiply(4e-4, lat), np.multiply(8e-5, lat**2))) f_dir = np.add(-0.11, np.multiply(1.31, np.divide(rs, ra))) rs_pan = np.multiply(np.add(np.add(np.multiply(f_dir, p_rad), np.multiply(1.42, np.subtract(1, f_dir))), np.multiply(0.42, self.cons['albedo'])), rs) rn_pan = np.subtract(np.multiply(1-self.cons['alphaA'], rs_pan), r_nl) # S6.1 in McMohan et al 2013 tmp1 = np.multiply(np.divide(delta, np.add(delta, np.multiply(ap, gamma))), np.divide(rn_pan, LAMBDA)) tmp2 = np.divide(np.multiply(ap, gamma), np.add(delta, np.multiply(ap, gamma))) tmp3 = np.multiply(f_pan_u, np.subtract(vas, vabar)) tmp4 = np.multiply(tmp2, tmp3) epan = np.add(tmp1, tmp4) return epan def rad_to_evap(self): """ converts solar radiation to equivalent inches of water evaporation SRadIn[in/day] = SolRad[Ley/day] / ((597.3-0.57) * temp[centigrade]) * 2.54) [1] or using equation 20 of FAO chapter 3 from TABLE 3 in FAO chap 3. SRadIn[mm/day] = 0.408 * Radiation[MJ m-2 day-1] SRadIn[mm/day] = 0.035 * Radiation[Wm-2] SRadIn[mm/day] = Radiation[MJ m-2 day-1] / 2.45 SRadIn[mm/day] = Radiation[J cm-2 day-1] / 245 SRadIn[mm/day] = Radiation[Wm-2] / 28.4 [1] https://github.com/respec/BASINS/blob/4356aa9481eb7217cb2cbc5131a0b80a932907bf/atcMetCmp/modMetCompute.vb#L1251 https://github.com/DanluGuo/Evapotranspiration/blob/8efa0a2268a3c9fedac56594b28ac4b5197ea3fe/R/Evapotranspiration.R http://www.fao.org/3/X0490E/x0490e07.htm """ # TODO following equation assumes radiations in langleys/day ando output in Inches tmp1 = np.multiply(np.subtract(597.3, np.multiply(0.57, self.input['temp'].values)), 2.54) rad_in = np.divide(self.input['sol_rad'].values, tmp1) return rad_in def equil_temp(self, et_daily): # equilibrium temperature T_e t_e = self.input['temp'].copy() ta = self.input['temp'] vabar = self.avp_from_rel_hum() r_n = self.net_rad(vabar) # net radiation gamma = self.psy_const() for i in range(9999): v_e = 0.6108 * np.exp(17.27 * t_e/(t_e + 237.3)) # saturated vapour pressure at T_e (S2.5) t_e_new = ta - 1 / gamma * (1 - r_n / (LAMBDA * et_daily)) * (v_e - vabar) # rearranged from S8.8 delta_t_e = t_e_new - t_e maxdelta_t_e = np.abs(np.max(delta_t_e)) t_e = t_e_new if maxdelta_t_e < 0.01: break return t_e def freq_in_mins_from_string(input_string: str) -> int: if has_numbers(input_string): in_minutes = split_freq(input_string) elif input_string.upper() in ['D', 'H', 'M', 'DAILY', 'HOURLY', 'MONTHLY', 'YEARLY', 'MIN', 'MINUTE']: in_minutes = str_to_mins(input_string.upper()) else: raise TypeError("invalid input string", input_string) return int(in_minutes) def str_to_mins(input_string: str) -> int: d = {'MIN': 1, 'MINUTE': 1, 'DAILY': 1440, 'D': 1440, 'HOURLY': 60, 'HOUR': 60, 'H': 60, 'MONTHLY': 43200, 'M': 43200, 'YEARLY': 525600 } return d[input_string] def split_freq(freq_str: str) -> int: match = re.match(r"([0-9]+)([a-z]+)", freq_str, re.I) if match: minutes, freq = match.groups() if freq.upper() in ['H', 'HOURLY', 'HOURS', 'HOUR']: minutes = int(minutes) * 60 elif freq.upper() in ['D', 'DAILY', 'DAY', 'DAYS']: minutes = int(minutes) * 1440 return int(minutes) else: raise NotImplementedError def has_numbers(input_string: str) -> bool: return bool(re.search(r'\d', input_string)) def justify_len(string: str, length: int = 2, pad: str = '0') -> str: if len(string) < length: zeros_to_pad = pad * int(len(string) - length) new_string = zeros_to_pad + string else: new_string = string return new_string def add_freq(dataframe, name=None, _force_freq=None, method=None): """Add a frequency attribute to idx, through inference or directly. Returns a copy. If `freq` is None, it is inferred. """ idx = dataframe.index idx = idx.copy() # if freq is None: if idx.freq is None: freq = pd.infer_freq(idx) idx.freq = freq if idx.freq is None: if _force_freq is not None: dataframe = force_freq(dataframe, _force_freq, name, method=method) else: raise AttributeError('no discernible frequency found in {} for {}. Specify' ' a frequency string with `freq`.'.format(name, name)) else: print('frequency {} is assigned to {}'.format(idx.freq, name)) dataframe.index = idx return dataframe def force_freq(data_frame, freq_to_force, name, method=None): old_nan_counts = data_frame.isna().sum() old_shape = data_frame.shape dr = pd.date_range(data_frame.index[0], data_frame.index[-1], freq=freq_to_force) df_unique = data_frame[~data_frame.index.duplicated(keep='first')] # first remove duplicate indices if present if method: df_idx_sorted = df_unique.sort_index() df_reindexed = df_idx_sorted.reindex(dr, method='nearest') else: df_reindexed = df_unique.reindex(dr, fill_value=np.nan) df_reindexed.index.freq = pd.infer_freq(df_reindexed.index) new_nan_counts = df_reindexed.isna().sum() print('Frequency {} is forced to {} dataframe, NaN counts changed from {} to {}, shape changed from {} to {}' .format(df_reindexed.index.freq, name, old_nan_counts.values, new_nan_counts.values, old_shape, df_reindexed.shape)) return df_reindexed def min_to_str(minutes: int) -> str: if minutes == 1: freq_str = 'Minute' elif 60 > minutes > 1: freq_str = 'Sub_hourly' elif minutes == 60: freq_str = 'Hourly' elif 1440 > minutes > 60: freq_str = 'Sub-daily' elif minutes == 1440: freq_str = 'Daily' elif 43200 > minutes > 1440: freq_str = 'Sub-monthly' elif minutes == 43200: freq_str = 'Monthly' elif 525600 > minutes > 43200: freq_str = 'Sub-yearly' elif minutes == 525600: freq_str = 'Yearly' else: raise ValueError("Can not calculate frequency string from given frequency in minutes ", minutes) return freq_str time_step = {'D': 'Day', 'H': 'Hour', 'M': 'MonthEnd'} def get_offset(freqstr: str) -> str: offset_step = 1 if freqstr in time_step: freqstr = time_step[freqstr] elif has_numbers(freqstr): in_minutes = split_freq(freqstr) freqstr = 'Minute' offset_step = int(in_minutes) offset = getattr(pd.offsets, freqstr)(offset_step) return offset def _wrap(x, x_min, x_max): """Wrap floating point values into range Parameters ---------- x : ndarray Values to wrap. x_min : float Minimum value in output range. x_max : float Maximum value in output range. Returns ------- ndarray """ return np.mod((x - x_min), (x_max - x_min)) + x_min def omega(solar_time): """Solar hour angle (Eq. 55) Parameters ---------- solar_time : scalar or array_like of shape(M, ) Solar time (i.e. noon is 0) [hours]. Returns ------- omega : ndarray Hour angle [radians]. """ _omega = (2 * math.pi / 24.0) * solar_time # Need to adjust omega so that the values go from -pi to pi # Values outside this range are wrapped (i.e. -3*pi/2 -> pi/2) _omega = _wrap(_omega, -math.pi, math.pi) return _omega def solar_time_rad(lon, time_mid, sc): """Solar time (i.e. noon is 0) (Eq. 55) Parameters ---------- lon : scalar or array_like of shape(M, ) Longitude [radians]. time_mid : scalar or array_like of shape(M, ) UTC time at midpoint of period [hours]. sc : scalar or array_like of shape(M, ) Seasonal correction [hours]. Returns ------- ndarray Solar time [hours]. Notes ----- This function could be integrated into the _omega() function since they are always called together (i.e. _omega(_solar_time_rad()). It was built independently from _omega to eventually support having a separate solar_time functions for longitude in degrees. """ return time_mid + (lon * 24 / (2 * math.pi)) + sc - 12
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/et/utils.py
utils.py
from .utils import Utils from .global_variables import LAMBDA from ai4water.backend import np, pd # TODO, classify methods which require wind_speed, or which require solar_rad. class ETBase(Utils): """ This is the base class for evapotranspiration calculation. It calculates etp according to Jensen and Haise_ method. Any new ETP calculation must inherit from it and must implement the ``__call__`` method. .. _Haise: https://doi.org/10.1061/JRCEA4.0000287 """ def __init__(self, input_df: pd.DataFrame, units:dict, constants:dict, **kwargs ): """ Parameters --------- input_df : units : constants : kwargs : """ self.name = self.__class__.__name__ super(ETBase, self).__init__(input_df.copy(), units.copy(), constants.copy(), **kwargs) def requirements(self, **kwargs): if 'constants' in kwargs: constants = kwargs['constants'] else: constants = ['lat_dec_deg', 'altitude', 'ct', 'tx'] if 'ts' in kwargs: ts = kwargs['ts'] else: ts = ['temp'] for cons in constants: if cons not in self.cons: if cons in self.default_cons: val = self.default_cons[cons]['def_val'] desc = self.default_cons[cons]['desc'] if val is not None: print("Warning: default value {} of parameter {} which is {} is being used".format(val, cons, desc)) self.cons[cons] = val else: raise ValueError("Value of constant {} must be provided to calculate ETP using {}" .format(cons, self.name)) for _ts in ts: if _ts not in self.input.columns: raise ValueError("Timeseries {} is required for calculation of ETP using {}" .format(_ts, self.name)) def __call__(self, *args, transform: bool=False, **kwargs): """ as given (eq 9) in Xu and Singh, 2000 and implemented here_ uses: a_s, b_s, ct=0.025, tx=-3 Arguments: transform : whether to transform the calculated etp to frequecies other than at which it is calculated. .. _here: https://github.com/DanluGuo/Evapotranspiration/blob/8efa0a2268a3c9fedac56594b28ac4b5197ea3fe/R/Evapotranspiration.R#L2734 """ self.requirements(constants=['lat_dec_deg', 'altitude', 'ct', 'tx'], ts=['temp']) rs = self.rs() tmp1 = np.multiply(np.multiply(self.cons['ct'], np.add(self.input['temp'], self.cons['tx'])), rs) et = np.divide(tmp1, LAMBDA) self.post_process(et, transform=transform) return et def post_process(self, et, transform=False): if isinstance(et, np.ndarray): et = pd.Series(et, index=self.input.index) self.output['et_' + self.name + '_' + self.freq_str] = et if transform: self.transform_etp(self.name) def summary(self): methods_evaluated = [] for m in self.output.keys(): if 'Hourly' in m: methods_evaluated.append(m) for m in methods_evaluated: ts = self.output[m] yrs = np.unique(ts.index.year) print('For {} \n'.format(m.split('_')[1], end=',')) for yr in yrs: st, en = str(yr) + '0101', str(yr) + '1231' yr_ts = ts[st:en] yr_sum = yr_ts.sum().values[0] yr_mean = yr_ts.mean().values[0] print('for year {}:, sum: {:<10.1f} mean: {:<10.1f}'.format(yr, yr_sum, yr_mean)) class Abtew(ETBase): """ daily etp using equation 3 in Abtew_ 1996. `k` is a dimentionless coefficient. uses: , k=0.52, a_s=0.23, b_s=0.5 :param `k` coefficient, default value taken from [1] :param `a_s` fraction of extraterrestrial radiation reaching earth on sunless days :param `b_s` difference between fracion of extraterrestrial radiation reaching full-sun days and that on sunless days. .. _Abtew: https://doi.org/10.1111/j.1752-1688.1996.tb04044.x """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'abtew_k']) rs = self.rs() et = np.multiply(self.cons['abtew_k'], np.divide(rs, LAMBDA)) self.post_process(et, kwargs.get('transform', False)) return et class Albrecht(ETBase): """ Developed in Germany by Albrecht, 1950. Djaman et al., 2016 Wrote the formula as eto = (0.1005 + 0.297 * u2) * (es - ea) """ def __call__(self, *args, **kwargs): # Mean saturation vapour pressure if 'es' not in self.input: if self.freq_str == 'Daily': es = self.mean_sat_vp_fao56() elif self.freq_str == 'Hourly': es = self.sat_vp_fao56(self.input['temp'].values) elif self.freq_str == 'sub_hourly': # TODO should sub-hourly be same as hourly? es = self.sat_vp_fao56(self.input['temp'].values) else: raise NotImplementedError else: es = self.input['es'] # actual vapour pressure ea = self.avp_from_rel_hum() u2 = self._wind_2m() eto = (0.1005 + 0.297 * u2) * (es - ea) self.post_process(eto, kwargs.get('transform', False)) return eto class BlaneyCriddle(ETBase): """ using formulation of Blaney-Criddle for daily reference crop ETP using monthly mean tmin and tmax. Inaccurate under extreme climates. underestimates in windy, dry and sunny conditions and overestimates under calm, humid and clouded conditions. Doorenbos, J., & Pruitt, W. O. (1977). Crop water requirements, FAO Irrigation and Drainage. Paper 24, 2a ed., Roma, Italy. """ def __call__(self, *args, **kwargs): # TODO include modified BlaneyCriddle as introduced in [3] self.requirements(constants=['e0', 'e1', 'e2', 'e3', 'e4']) # check that all constants are present N = self.daylight_fao56() # mean daily percentage of annual daytime hours u2 = self._wind_2m() rh_min = self.input['rh_min'] n = self.input['sunshine_hrs'] ta = self.input['temp'].values # undefined working variable (Allena and Pruitt, 1986; Shuttleworth, 1992) (S9.8) a1 = self.cons['e0'] + self.cons['e1'] * rh_min + self.cons['e2'] * n / N a2 = self.cons['e3'] * u2 a3 = self.cons['e4'] * rh_min * n / N + self.cons['e5'] * rh_min * u2 bvar = a1 + a2 + a3 # calculate yearly sum of daylight hours and assign that value to each point in array `N` n_annual = assign_yearly(N, self.input.index) # percentage of actual daytime hours for the day comparing to the annual sum of maximum sunshine hours p_y = 100 * n / n_annual['N'].values # reference crop evapotranspiration et = (0.0043 * rh_min - n / N - 1.41) + bvar * p_y * (0.46 * ta + 8.13) self.post_process(et, kwargs.get('transform', False)) return et class BrutsaertStrickler(ETBase): """ using formulation given by BrutsaertStrickler :param `alpha_pt` Priestley-Taylor coefficient = 1.26 for Priestley-Taylor_ model (Priestley and Taylor, 1972) :param `a_s` fraction of extraterrestrial radiation reaching earth on sunless days :param `b_s` difference between fracion of extraterrestrial radiation reaching full-sun days and that on sunless days. :param `albedo` Any numeric value between 0 and 1 (dimensionless), albedo of the evaporative surface representing the portion of the incident radiation that is reflected back at the surface. Default is 0.23 for surface covered with short reference crop. :return: et .. _Priestley-Taylor: https://doi.org/10.1029/WR015i002p00443 """ def __call__(self, *args, **kwargs): self.requirements(constants=['alphaPT']) # check that all constants are present delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() vabar = self.avp_from_rel_hum() # Vapour pressure, *ea* vas = self.mean_sat_vp_fao56() u2 = self._wind_2m() f_u2 = np.add(2.626, np.multiply(1.381, u2)) r_ng = self.net_rad(vabar) alpha_pt = self.cons['alphaPT'] et = np.subtract(np.multiply(np.multiply((2*alpha_pt-1), np.divide(delta, np.add(delta, gamma))), np.divide(r_ng, LAMBDA)), np.multiply(np.multiply(np.divide(gamma, np.add(delta, gamma)), f_u2), np.subtract(vas, vabar))) self.post_process(et, kwargs.get('transform', False)) return et class Camargo(ETBase): """ Originally presented by Camargo, 1971. Following formula is presented in Fernandes et al., 2012 quoting Sedyiama et al., 1997. eto = f * Tmean * ra * nd Gurski et al., 2018 has not written nd in formula. He expressed formula to convert extra-terresterial radiation into equivalent mm/day as ra[mm/day] = ra[MegaJoulePerMeterSquare PerDay] / 2.45 where 2.45 is constant. eto: reference etp in mm/day. f: an empircal factor taken as 0.01 ra: extraterrestrial radiation expressed as mm/day nd: length of time interval """ def __call__(self, *args, **kwargs): self.requirements(constants=['f_camargo']) # check that all constants are present ra = self._et_rad() if self.freq_str == 'Daily': ra = ra/2.45 else: raise NotImplementedError et = self.cons['f_camargo'] * self.input['temp'] * ra self.post_process(et, kwargs.get('transform', False)) return et class Caprio(ETBase): """ Developed by Caprio (1974). Pandey et al 2016 wrote the equation as eto = (0.01092708*t + 0.0060706) * rs """ def __call__(self, *args, **kwargs): rs = self.rs() eto = (0.01092708 * self.input['temp'] + 0.0060706) * rs self.post_process(eto, kwargs.get('transform', False)) return eto class ChapmanAustralia(ETBase): """using formulation of Chapman_, 2001, uses: a_s=0.23, b_s=0.5, ap=2.4, alphaA=0.14, albedo=0.23 .. _Chapman: https://116.90.59.164/MODSIM03/Volume_01/A03/04_Chapman.pdf """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'alphaA', 'pan_ap', 'albedo'], ts=['temp']) lat = self.cons['lat_dec_deg'] a_p = 0.17 + 0.011 * abs(lat) b_p = np.power(10, (0.66 - 0.211 * abs(lat))) # constants (S13.3) epan = self.evap_pan() et = np.add(np.multiply(a_p, epan), b_p) self.post_process(et, kwargs.get('transform', False)) return et class Copais(ETBase): """ Developed for central Greece by Alexandris et al 2006 and used in Alexandris et al 2008. """ def __call__(self, *args, **kwargs): et = None self.post_process(et, kwargs.get('transform', False)) return et class Dalton(ETBase): """ using Dalton formulation as mentioned here_ in mm/dday uses: es: mean saturation vapour pressure ea: actual vapour pressure u2: wind speed .. _here: https://water-for-africa.org/en/dalton.html """ def __call__(self, *args, **kwargs): u2 = self._wind_2m() fau = 0.13 + 0.14 * u2 # Mean saturation vapour pressure if 'es' not in self.input: if self.freq_str == 'Daily': es = self.mean_sat_vp_fao56() elif self.freq_str == 'Hourly': es = self.sat_vp_fao56(self.input['temp'].values) elif self.freq_str == 'sub_hourly': # TODO should sub-hourly be same as hourly? es = self.sat_vp_fao56(self.input['temp'].values) else: raise NotImplementedError else: es = self.input['es'] # actual vapour pressure ea = self.avp_from_rel_hum() if 'vp_def' not in self.input: vp_d = es - ea # vapor pressure deficit else: vp_d = self.input['vp_def'] etp = fau * vp_d self.post_process(etp, kwargs.get('transform', False)) return etp class DeBruinKeijman(ETBase): """ Calculates daily Pot ETP, developed by deBruin and Jeijman 1979 and used in Rosenberry et al 2004. """ class DoorenbosPruitt(ETBase): """ Developed by Doorenbos and Pruitt (1777), Poyen et al wrote following equation et = a(delta/(delta+gamma) * rs) + b b = -0.3 a = 1.066 - 0.13 x10^{-2} * rh + 0.045*ud - 0.2x10^{-3}*rh * ud - 0.315x10^{-4}*rh**2 - 0.11x10{-2}*ud**2 used in Xu HP 2000. """ class GrangerGray(ETBase): """ using formulation of Granger & Gray 1989 which is for non-saturated lands and modified form of penman 1948. uses: , wind_f`='pen48', a_s=0.23, b_s=0.5, albedo=0.23 :param `wind_f` str, if 'pen48 is used then formulation of [1] is used otherwise formulation of [3] requires wind_f to be 2.626. :param `a_s fraction of extraterrestrial radiation reaching earth on sunless days :param `b_s` difference between fracion of extraterrestrial radiation reaching full-sun days and that on sunless days. :param `albedo` Any numeric value between 0 and 1 (dimensionless), albedo of the evaporative surface representing the portion of the incident radiation that is reflected back at the surface. Default is 0.23 for surface covered with short reference crop. :return: https://doi.org/10.1016/0022-1694(89)90249-7 """ def __call__(self, *args, **kwargs): self.requirements(constants=['wind_f']) # check that all constants are present if self.cons['wind_f'] not in ['pen48', 'pen56']: raise ValueError('value of given wind_f is not allowed.') if self.cons['wind_f'] == 'pen48': _a = 2.626 _b = 0.09 else: _a = 1.313 _b = 0.06 # rs = self.rs() delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() vabar = self.avp_from_rel_hum() # Vapour pressure r_n = self.net_rad(vabar) # net radiation vas = self.mean_sat_vp_fao56() u2 = self._wind_2m() fau = _a + 1.381 * u2 ea = np.multiply(fau, np.subtract(vas, vabar)) # dimensionless relative drying power eq 7 in Granger, 1998 dry_pow = np.divide(ea, np.add(ea, np.divide(np.subtract(r_n, self.soil_heat_flux()), LAMBDA))) # eq 6 in Granger, 1998 g_g = 1 / (0.793 + 0.20 * np.exp(4.902 * dry_pow)) + 0.006 * dry_pow tmp1 = np.divide(np.multiply(delta, g_g), np.add(np.multiply(delta, g_g), gamma)) tmp2 = np.divide(np.subtract(r_n, self.soil_heat_flux()), LAMBDA) tmp3 = np.multiply(np.divide(np.multiply(gamma, g_g), np.add(np.multiply(delta, g_g), gamma)), ea) et = np.add(np.multiply(tmp1, tmp2), tmp3) self.post_process(et, kwargs.get('transform', False)) return et class Hamon(ETBase): """calculates evapotranspiration in mm using Hamon 1963 method as given in Lu et al 2005. It uses daily mean temperature which can also be calculated from daily max and min temperatures. It also requires `daylight_hrs` which is hours of day light, which if not provided as input, will be calculated from latitutde. This means if `daylight_hrs` timeseries is not provided as input, then argument `lat` must be provided. pet = cts * n * n * vdsat vdsat = (216.7 * vpsat) / (tavc + 273.3) vpsat = 6.108 * exp((17.26939 * tavc)/(tavc + 237.3)) :uses cts: float, or array of 12 values for each month of year or a time series of equal length as input data. if it is float, then that value will be considered for whole year. Default value of 0.0055 was used by Hamon 1961, although he later used different value but I am using same value as it is used by WDMUtil. It should be also noted that 0.0055 is to be used when pet is in inches. So I am dividing the whole pet by 24.5 in order to convert from inches to mm while still using 0.0055. References ---------- Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. International Association of Scientific Hydrology Publication, 63, 52-62. Lu et al. (2005). A comparison of six potential evaportranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41, 621-633. """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'albedo', 'cts'], ts=['temp']) # allow cts to be provided as input while calling method, e.g we may want to use array if 'cts' in kwargs: cts = kwargs['cts'] else: cts = self.cons['cts'] if 'sunshine_hrs' not in self.input.columns: if 'daylight_hrs' not in self.input.columns: daylight_hrs = self.daylight_fao56() else: daylight_hrs = self.input['daylight_hrus'] sunshine_hrs = daylight_hrs print('Warning, sunshine hours are consiered equal to daylight hours') else: sunshine_hrs = self.input['sunshine_hrs'] sunshine_hrs = np.divide(sunshine_hrs, 12.0) # preference should be given to tmin and tmax if provided and if tmin, tmax is not provided then use temp which # is mean temperature. This is because in original equations, vd_sat is calculated as average of max vapour # pressure and minimum vapour pressue. if 'tmax' not in self.input.columns: if 'temp' not in self.input.columns: raise ValueError('Either tmax and tmin or mean temperature should be provided as input') else: vd_sat = self.sat_vp_fao56(self.input['temp']) else: vd_sat = self.mean_sat_vp_fao56() # in some literature, the equation is divided by 100 by then the cts value is 0.55 instead of 0.0055 et = cts * 25.4 * np.power(sunshine_hrs, 2) * (216.7 * vd_sat * 10 / (np.add(self.input['temp'], 273.3))) self.post_process(et, kwargs.get('transform', False)) return et class HargreavesSamani(ETBase): """ estimates daily ETo using Hargreaves method Hargreaves and Samani_, 1985. :uses temp tmin tmax :param method: str, if `1985`, then the method of 1985 (Hargreaves and Samani, 1985) is followed as calculated by and mentioned by Hargreaves and Allen, 2003. if `2003`, then as formula is used as mentioned in [1] Note: Current test passes for 1985 method. There is a variation of Hargreaves introduced by Trajkovic 2007 as mentioned in Alexandris 2008. .. _Samani: https://rdrr.io/cran/Evapotranspiration/man/ET.HargreavesSamani.html """ def __call__(self, method='1985', **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'albedo'], ts=['temp']) if method == '2003': tmp1 = np.multiply(0.0023, np.add(self.input['temp'], 17.8)) tmp2 = np.power(np.subtract(self.input['tmax'].values, self.input['tmin'].values), 0.5) tmp3 = np.multiply(0.408, self._et_rad()) et = np.multiply(np.multiply(tmp1, tmp2), tmp3) else: ra_my = self._et_rad() tmin = self.input['tmin'].values tmax = self.input['tmax'].values ta = self.input['temp'].values # empirical coefficient by Hargreaves and Samani (1985) (S9.13) c_hs = 0.00185 * np.power((np.subtract(tmax, tmin)), 2) - 0.0433 * (np.subtract(tmax, tmin)) + 0.4023 et = 0.0135 * c_hs * ra_my / LAMBDA * np.power((np.subtract(tmax, tmin)), 0.5) * (np.add(ta, 17.8)) self.post_process(et, kwargs.get('transform', False)) return et class Haude(ETBase): """ only requires air temp and relative humidity at 2:00 pm. Good for moderate zones despite being simple References ---------- [1]. Haude, W. (1954). Zur praktischen Bestimmung der aktuellen und potentiellen Evaporation und Evapotranspiration. Schweinfurter Dr. und Verlag-Ges.. """ def __call__(self, *args, **kwargs): etp = None # f_mon * (6.11 × 10(7.48 × T / (237+T)) - rf × es) self.post_process(etp, kwargs.get('transform', False)) return etp class JensenHaiseBasins(ETBase): """ This method generates daily pan evaporation (inches) using a coefficient for the month `cts`, , the daily average air temperature (F), a coefficient `ctx`, and solar radiation (langleys/day) as givn in BASINS program[2]. The computations are based on the Jensen and Haise (1963) formula. PET = CTS * (TAVF - CTX) * RIN where PET = daily potential evapotranspiration (in) CTS = monthly variable coefficient TAVF = mean daily air temperature (F), computed from max-min CTX = coefficient RIN = daily solar radiation expressed in inches of evaporation RIN = SWRD/(597.3 - (.57 * TAVC)) * 2.54 where SWRD = daily solar radiation (langleys) TAVC = mean daily air temperature (C) :uses cts float or array like. Value of monthly coefficient `cts` to be used. If float, then same value is assumed for all months. If array like then it must be of length 12. :uses ctx `float` constant coefficient value of `ctx` to be used in Jensen and Haise formulation. """ def __call__(self, *args, **kwargs): if 'cts_jh' in kwargs: cts = kwargs['cts_jh'] else: cts = self.cons['cts_jh'] if 'cts_jh' in kwargs: ctx = kwargs['ctx_jh'] else: ctx = self.cons['ctx_jh'] if not isinstance(cts, float): if not isinstance(np.array(ctx), np.ndarray): raise ValueError('cts must be array like') else: # if cts is array like it must be given for 12 months of year, not more not less if len(np.array(cts)) > 12: raise ValueError('cts must be of length 12') else: # if only one value is given for all moths distribute it as monthly value cts = np.array([cts for _ in range(12)]) if not isinstance(ctx, float): raise ValueError('ctx must be float') # distributing cts values for all dates of input data self.input['cts'] = np.nan for m, i in zip(self.input.index.month, self.input.index): for _m in range(m): self.input.at[i, 'cts'] = cts[_m] cts = self.input['cts'] taf = self.input['temp'].values rad_in = self.rad_to_evap() pan_evp = np.multiply(np.multiply(cts, np.subtract(taf, ctx)), rad_in) et = np.where(pan_evp < 0.0, 0.0, pan_evp) self.post_process(et, kwargs.get('transform', False)) return et class Kharrufa(ETBase): """ For monthly potential evapotranspiration estimation, originally presented by Kharrufa, 1885. Xu and Singh, 2001 presented following formula: et = 0.34 * p * Tmean**1.3 et: pot. evapotranspiration in mm/month. Tmean: Average temperature in Degree Centigrade p: percentage of total daytime hours for the period used (daily or monthly) outof total daytime hours of the year (365 * 12) Kharrufa, N. S. (1985). Simplified equation for evapotranspiration in arid regions. Beitrage zur Hydrologie, 5(1), 39-47. """ def __call__(self, *args, **kwargs): ta = self.input['temp'] N = self.daylight_fao56() # mean daily percentage of annual daytime hours n_annual = assign_yearly(N, self.input.index) et = 0.34 * n_annual['N'].values * ta**1.3 self.post_process(et, kwargs.get('transform', False)) return et class Linacre(ETBase): """ using formulation of Linacre 1977 who simplified Penman method. :uses temp tdew/rel_hum https://doi.org/10.1016/0002-1571(77)90007-3 """ def __call__(self, *args, **kwargs): if 'tdew' not in self.input: if 'rel_hum' in self.input: self.tdew_from_t_rel_hum() tm = np.add(self.input['temp'].values, np.multiply(0.006, self.cons['altitude'])) tmp1 = np.multiply(500, np.divide(tm, 100 - self.cons['lat_dec_deg'])) tmp2 = np.multiply(15, np.subtract(self.input['temp'].values, self.input['tdew'].values)) upar = np.add(tmp1, tmp2) et = np.divide(upar, np.subtract(80, self.input['temp'].values)) self.post_process(et, kwargs.get('transform', False)) return et class Makkink(ETBase): """ :uses a_s, b_s temp solar_rad using formulation of Makkink """ def __call__(self, *args, **kwargs): rs = self.rs() delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() et = np.subtract(np.multiply(np.multiply(0.61, np.divide(delta, np.add(delta, gamma))), np.divide(rs, 2.45)), 0.12) self.post_process(et, kwargs.get('transform', False)) return et class Irmak(ETBase): """ Pandey et al 2016, presented 3 formulas for Irmak. 1 eto = -0.611 + 0.149 * rs + 0.079 * t 2 eto = -0.642 + 0.174 * rs + 0.0353 * t 3 eto = -0.478 + 0.156 * rs - 0.0112 * tmax + 0.0733 * tmin References: Irmak 2003 Tabari et al 2011 Pandey et al 2016 """ class Mahringer(ETBase): """ Developed by Mahringer in Germany. [1] Wrote formula as eto = 0.15072 * sqrt(3.6) * (es - ea) """ class Mather(ETBase): """ Developed by Mather 1978 and used in Rosenberry et al 2004. Calculates daily Pot ETP. pet = [1.6 (10T_a/I) ** 6.75e-7 * I**3 - 7.71e-7 * I**2 + 1.79e-2 * I + 0.49] (10/d) I = annual heat index, sum(Ta/5)1.514 d = number of days in month """ class MattShuttleworth(ETBase): """ using formulation of Matt-Shuttleworth and Wallace, 2009. This is designed for semi-arid and windy areas as an alternative to FAO-56 Reference Crop method 10.13031/2013.29217 https://elibrary.asabe.org/abstract.asp?aid=29217 """ def __call__(self, *args, **kwargs): self.requirements(constants=['CH', 'Roua', 'Ca', 'surf_res']) ch = self.cons['CH'] # crop height ro_a = self.cons['Roua'] ca = self.cons['Ca'] # specific heat of the air # surface resistance (s m-1) of a well-watered crop equivalent to the FAO crop coefficient r_s = self.cons['surf_res'] vabar = self.avp_from_rel_hum() # Vapour pressure vas = self.mean_sat_vp_fao56() r_n = self.net_rad(vabar) # net radiation u2 = self._wind_2m() # Wind speed delta = self.slope_sat_vp(self.input['temp'].values) # slope of vapour pressure curve gam = self.psy_const() # psychrometric constant tmp1 = self.seconds * ro_a * ca # clinmatological resistance (s*m^-1) (S5.34) r_clim = np.multiply(tmp1, np.divide(np.subtract(vas, vabar), np.multiply(delta, r_n))) r_clim = np.where(r_clim == 0, 0.1, r_clim) # correction for r_clim = 0 u2 = np.where(u2 == 0, 0.1, u2) # correction for u2 = 0 # ratio of vapour pressure deficits at 50m to vapour pressure deficits at 2m heights, eq S5.35 a1 = (302 * (delta + gam) + 70 * gam * u2) a2 = (208 * (delta + gam) + 70 * gam * u2) a3 = 1/r_clim * ((302 * (delta + gam) + 70 * gam * u2) / (208 * (delta + gam) + 70 * gam * u2) * (208 / u2) - (302 / u2)) vpd50_to_vpd2 = a1/a2 + a3 # aerodynamic coefficient for crop height (s*m^-1) (eq S5.36 in McMohan et al 2013) a1 = 1 / (0.41**2) a2 = np.log((50 - 0.67 * ch) / (0.123 * ch)) a3 = np.log((50 - 0.67 * ch) / (0.0123 * ch)) a4 = np.log((2 - 0.08) / 0.0148) / np.log((50 - 0.08) / 0.0148) rc_50 = a1 * a2 * a3 * a4 a1 = 1/LAMBDA a2 = (delta * r_n + (ro_a * ca * u2 * (vas - vabar)) / rc_50 * vpd50_to_vpd2) a3 = (delta + gam * (1 + r_s * u2 / rc_50)) et = a1 * a2/a3 self.post_process(et, kwargs.get('transform', False)) return et class McGuinnessBordne(ETBase): """ calculates evapotranspiration [mm/day] using Mcguinnes Bordne formulation McGuinnes and Bordne, 1972. """ def __call__(self, *args, **kwargs): ra = self._et_rad() # latent heat of vaporisation, MJ/Kg _lambda = LAMBDA # multiply((2.501 - 2.361e-3), self.input['temp'].values) tmp1 = np.multiply((1/_lambda), ra) tmp2 = np.divide(np.add(self.input['temp'].values, 5), 68) et = np.multiply(tmp1, tmp2) self.post_process(et, kwargs.get('transform', False)) return et class Penman(ETBase): """ calculates pan evaporation from open water using formulation of Penman, 1948, as mentioned (as eq 12) in McMahon et al., 2012. If wind data is missing then equation 33 from Valiantzas, 2006 is used which does not require wind data. uses: wind_f='pen48', a_s=0.23, b_s=0.5, albedo=0.23 uz temp rs reh_hum :param `wind_f` str, if 'pen48 is used then formulation of [1] is used otherwise formulation of [3] requires wind_f to be 2.626. """ # todo, gives -ve values sometimes def __call__(self, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'wind_f', 'albedo'], ts=['temp', 'rh_mean']) if self.cons['wind_f'] not in ['pen48', 'pen56']: raise ValueError('value of given wind_f is not allowed.') wind_method = 'macmohan' if 'wind_method' in kwargs: wind_method = kwargs['wind_method'] if self.cons['wind_f'] == 'pen48': _a = 2.626 _b = 0.09 else: _a = 1.313 _b = 0.06 delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() rs = self.rs() vabar = self.avp_from_rel_hum() # Vapour pressure *ea* r_n = self.net_rad(vabar, rs) # net radiation vas = self.mean_sat_vp_fao56() if 'wind_speed' in self.input.columns: if self.verbosity > 1: print("Wind data have been used for calculating the Penman evaporation.") u2 = self._wind_2m(method=wind_method) fau = _a + 1.381 * u2 ea = np.multiply(fau, np.subtract(vas, vabar)) tmp1 = np.divide(delta, np.add(delta, gamma)) tmp2 = np.divide(r_n, LAMBDA) tmp3 = np.multiply(np.divide(gamma, np.add(delta, gamma)), ea) evap = np.add(np.multiply(tmp1, tmp2), tmp3) # if wind data is not available else: if self.verbosity > 1: print("Alternative calculation for Penman evaporation without wind data has been performed") ra = self._et_rad() tmp1 = np.multiply(np.multiply(0.047, rs), np.sqrt(np.add(self.input['temp'].values, 9.5))) tmp2 = np.multiply(np.power(np.divide(rs, ra), 2.0), 2.4) tmp3 = np.multiply(_b, np.add(self.input['temp'].values, 20)) tmp4 = np.subtract(1, np.divide(self.input['rh_mean'].values, 100)) tmp5 = np.multiply(tmp3, tmp4) evap = np.add(np.subtract(tmp1, tmp2), tmp5) self.post_process(evap, kwargs.get('transform', False)) return evap class PenPan(ETBase): """ implementing the PenPan formulation for Class-A pan evaporation as given in Rotstayn et al., 2006 """ def __call__(self, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'pen_ap', 'albedo', 'alphaA', 'pan_over_est', 'pan_est'], ts=['temp', 'wind_speed']) epan = self.evap_pan() et = epan if self.cons['pan_over_est']: if self.cons['pan_est'] == 'pot_et': et = np.multiply(np.divide(et, 1.078), self.cons['pan_coef']) else: et = np.divide(et, 1.078) self.post_process(et, kwargs.get('transform', False)) return et class PenmanMonteith(ETBase): """ calculates reference evapotrnaspiration according to Penman-Monteith (Allen et al 1998) equation which is also recommended by FAO. The etp is calculated at the time step determined by the step size of input data. For hourly or sub-hourly calculation, equation 53 is used while for daily time step equation 6 is used. # Requirements Following timeseries data is used relative humidity temperature Following constants are used lm=None, a_s=0.25, b_s=0.5, albedo=0.23 http://www.fao.org/3/X0490E/x0490e08.htm#chapter%204%20%20%20determination%20of%20eto """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'albedo', 'a_s', 'b_s'], ts=['temp', 'wind_speed', 'jday']) wind_2m = self._wind_2m() d = self.slope_sat_vp(self.input['temp'].values) g = self.psy_const() # Mean saturation vapour pressure if 'es' not in self.input: if self.freq_in_mins == 1440: es = self.mean_sat_vp_fao56() elif self.freq_in_mins == 60: es = self.sat_vp_fao56(self.input['temp'].values) elif self.freq_in_mins < 60: # TODO should sub-hourly be same as hourly? es = self.sat_vp_fao56(self.input['temp'].values) else: raise NotImplementedError else: es = self.input['es'] # actual vapour pressure ea = self.avp_from_rel_hum() if 'vp_def' not in self.input: vp_d = es - ea # vapor pressure deficit else: vp_d = self.input['vp_def'] rn = self.net_rad(ea) # eq 40 in Fao _g = self.soil_heat_flux(rn) t1 = 0.408 * (d*(rn - _g)) nechay = d + g*(1 + 0.34 * wind_2m) if self.freq_in_mins == 1440: t5 = t1 / nechay t6 = 900/(self.input['temp']+273) * wind_2m * vp_d * g / nechay pet = np.add(t5, t6) elif self.freq_in_mins < 1440: # TODO should sub-hourly be same as hourly? t3 = np.multiply(np.divide(37, self.input['temp']+273.0), g) t4 = np.multiply(t3, np.multiply(wind_2m, vp_d)) upar = t1 + t4 pet = upar / nechay else: raise NotImplementedError("For frequency of {} minutes, {} method can not be implemented" .format(self.freq_in_mins, self.name)) self.post_process(pet, kwargs.get('transform', False)) return pet class PriestleyTaylor(ETBase): """ following formulation of Priestley & Taylor, 1972. uses: , a_s=0.23, b_s=0.5, alpha_pt=1.26, albedo=0.23 :param `alpha_pt` Priestley-Taylor coefficient = 1.26 for Priestley-Taylor model (Priestley and Taylor, 1972) https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'alpha_pt', 'albedo']) delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() vabar = self.avp_from_rel_hum() # *ea* r_n = self.net_rad(vabar) # net radiation # vas = self.mean_sat_vp_fao56() tmp1 = np.divide(delta, np.add(delta, gamma)) tmp2 = np.multiply(tmp1, np.divide(r_n, LAMBDA)) tmp3 = np.subtract(tmp2, np.divide(self.soil_heat_flux(), LAMBDA)) et = np.multiply(self.cons['alpha_pt'], tmp3) self.post_process(et, kwargs.get('transform', False)) return et class Romanenko(ETBase): def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'albedo'], ts=['temp']) """ using formulation of Romanenko uses: temp rel_hum There are two variants of it in Song et al 2017. https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2151471 """ t = self.input['temp'].values vas = self.mean_sat_vp_fao56() vabar = self.avp_from_rel_hum() # Vapour pressure *ea* tmp1 = np.power(np.add(1, np.divide(t, 25)), 2) tmp2 = np.subtract(1, np.divide(vabar, vas)) et = np.multiply(np.multiply(4.5, tmp1), tmp2) self.post_process(et, kwargs.get('transform', False)) return et class SzilagyiJozsa(ETBase): """ using formulation of Azilagyi, 2007. https://doi.org/10.1029/2006GL028708 """ def __call__(self, *args, **kwargs): self.requirements(constants=['wind_f', 'alphaPT']) if self.cons['wind_f'] == 'pen48': _a = 2.626 _b = 0.09 else: _a = 1.313 _b = 0.06 alpha_pt = self.cons['alphaPT'] # Priestley Taylor constant delta = self.slope_sat_vp(self.input['temp'].values) gamma = self.psy_const() rs = self.rs() vabar = self.avp_from_rel_hum() # Vapour pressure *ea* r_n = self.net_rad(vabar) # net radiation vas = self.mean_sat_vp_fao56() if 'uz' in self.input.columns: if self.verbosity > 1: print("Wind data have been used for calculating the Penman evaporation.") u2 = self._wind_2m() fau = _a + 1.381 * u2 ea = np.multiply(fau, np.subtract(vas, vabar)) tmp1 = np.divide(delta, np.add(delta, gamma)) tmp2 = np.divide(r_n, LAMBDA) tmp3 = np.multiply(np.divide(gamma, np.add(delta, gamma)), ea) et_penman = np.add(np.multiply(tmp1, tmp2), tmp3) # if wind data is not available else: if self.verbosity > 1: print("Alternative calculation for Penman evaporation without wind data have been performed") ra = self._et_rad() tmp1 = np.multiply(np.multiply(0.047, rs), np.sqrt(np.add(self.input['temp'].values, 9.5))) tmp2 = np.multiply(np.power(np.divide(rs, ra), 2.0), 2.4) tmp3 = np.multiply(_b, np.add(self.input['temp'].values, 20)) tmp4 = np.subtract(1, np.divide(self.input['rh_mean'].values, 100)) tmp5 = np.multiply(tmp3, tmp4) et_penman = np.add(np.subtract(tmp1, tmp2), tmp5) # find equilibrium temperature T_e t_e = self.equil_temp(et_penman) delta_te = self.slope_sat_vp(t_e) # slope of vapour pressure curve at T_e # Priestley-Taylor evapotranspiration at T_e et_pt_te = np.multiply(alpha_pt, np.multiply(np.divide(delta_te, np.add(delta_te, gamma)), np.divide(r_n, LAMBDA))) et = np.subtract(np.multiply(2, et_pt_te), et_penman) self.post_process(et, kwargs.get('transform', False)) return et class Thornthwait(ETBase): """calculates reference evapotrnaspiration according to empirical temperature based Thornthwaite (Thornthwaite 1948) method. The method actualy calculates both ETP and evaporation. It requires only temperature and day length as input. Suitable for monthly values. """ def __call__(self, *args, **kwargs): if 'daylight_hrs' not in self.input.columns: day_hrs = self.daylight_fao56() else: day_hrs = self.input['daylight_hrs'] self.input['adj_t'] = np.where(self.input['temp'].values < 0.0, 0.0, self.input['temp'].values) I = self.input['adj_t'].resample('A').apply(custom_resampler) # heat index (I) a = (6.75e-07 * I ** 3) - (7.71e-05 * I ** 2) + (1.792e-02 * I) + 0.49239 self.input['a'] = a a_mon = self.input['a'] # monthly values filled with NaN a_mon = pd.DataFrame(a_mon) a_ann = pd.DataFrame(a) a_monthly = a_mon.merge(a_ann, left_index=True, right_index=True, how='left').fillna(method='bfill') self.input['I'] = I i_mon = self.input['I'] # monthly values filled with NaN i_mon = pd.DataFrame(i_mon) i_ann = pd.DataFrame(I) i_monthly = i_mon.merge(i_ann, left_index=True, right_index=True, how='left').fillna(method='bfill') tmp1 = np.multiply(1.6, np.divide(day_hrs, 12.0)) tmp2 = np.divide(self.input.index.daysinmonth, 30.0) tmp3 = np.multiply(np.power(np.multiply(10.0, np.divide(self.input['temp'].values, i_monthly['I'].values)), a_monthly['a'].values), 10.0) pet = np.multiply(tmp1, np.multiply(tmp2, tmp3)) # self.input['Thornthwait_daily'] = np.divide(self.input['Thornthwait_Monthly'].values, self.input.index.days_in_month) self.post_process(pet, kwargs.get('transform', False)) return pet class MortonCRAE(ETBase): """ for monthly pot. ET and wet-environment areal ET and actual ET by Morton 1983. :return: """ class Papadakis(ETBase): """ Calculates monthly values based on saturation vapor pressure and temperature. Following equation is given by eto = 0.5625 * (ea_tmax - ed) ea: water pressure corresponding to avg max temperature [KiloPascal]. ed: saturation water pressure corresponding to the dew point temperature [KiloPascal]. Rosenberry et al., 2004 presented following equation quoting McGuinnes and Bordne, 1972 pet = 0.5625 * [es_max - (es_min - 2)] (10/d) d = number of days in month es = saturated vapour pressure at temperature of air in millibars """ class Ritchie(ETBase): """ Given by Jones and Ritchie 1990 and quoted by Valipour, 2005 and Pandey et al., 2016 et = rs * alpha [0.002322 * tmax + 0.001548*tmin + 0.11223] """ def __call__(self, *args, **kwargs): self.requirements(constants=['ritchie_a', 'ritchie_b', 'ritchie_b', 'ritchie_alpha'], ts=['tmin', 'tmax']) ritchie_a = self.cons['ritchie_a'] ritchie_b = self.cons['ritchie_b'] ritchie_c = self.cons['ritchie_c'] alpha = self.cons['ritchie_alpha'] rs = self.rs() eto = rs * alpha * [ritchie_a * self.input['tmax'] + ritchie_b * self.input['tmin'] + ritchie_c] self.post_process(eto, kwargs.get('transform', False)) return eto class Turc(ETBase): """ The original formulation is from Turc, 1961 which was developed for southern France and Africa. Pandey et al 2016 mentioned a modified version of Turc quoting Xu et al., 2008, Singh, 2008 and Chen and Chen, 2008. eto = alpha_t * 0.013 T/(T+15) ( (23.8856Rs + 50)/gamma) A shorter version of this formula is quoted by Valipour, 2015 quoting Xu et al., 2008 eto = (0.3107 * Rs + 0.65) [T alpha_t / (T + 15)] Here it is implemented as given (as eq 5) in Alexandris, et al., 2008 which is; for rh > 50 %: eto = 0.0133 * [T_mean / (T_mean + 15)] ( Rs + 50) for rh < 50 %: eto = 0.0133 * [T_mean / (T_mean + 15)] ( Rs + 50) [1 + (50 - Rh) / 70] uses :param `k` float or array like, monthly crop coefficient. A single value means same crop coefficient for whole year :param `a_s` fraction of extraterrestrial radiation reaching earth on sunless days :param `b_s` difference between fracion of extraterrestrial radiation reaching full-sun days and that on sunless days. Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann. Agron, 12(1), 13-49. """ def __call__(self, *args, **kwargs): self.requirements(constants=['lat_dec_deg', 'altitude', 'turc_k'], ts=['temp']) use_rh = False # because while testing daily, rhmin and rhmax are given and rhmean is calculated by default if 'use_rh' in kwargs: use_rh = kwargs['use_rh'] rs = self.rs() ta = self.input['temp'].values et = np.multiply(np.multiply(self.cons['turc_k'], (np.add(np.multiply(23.88, rs), 50))), np.divide(ta, (np.add(ta, 15)))) if use_rh: if 'rh_mean' in self.input.columns: rh_mean = self.input['rh_mean'].values eq1 = np.multiply(np.multiply(np.multiply(self.cons['turc_k'], (np.add(np.multiply(23.88, rs), 50))), np.divide(ta, (np.add(ta, 15)))), (np.add(1, np.divide((np.subtract(50, rh_mean)), 70)))) eq2 = np.multiply(np.multiply(self.cons['turc_k'], (np.add(np.multiply(23.88, rs), 50))), np.divide(ta, (np.add(ta, 15)))) et = np.where(rh_mean < 50, eq1, eq2) self.post_process(et, kwargs.get('transform', False)) return et class Valiantzas(ETBase): """ Djaman 2016 mentioned 2 methods from him, however Valipour 2015 tested 5 variants of his formulations in Iran. Ahmad et al 2019 used 6 variants of this method however, Djaman et al., 2017 used 9 of its variants. These 9 methods are given below: method_1: This is equation equation 19 in Valiantzas, 2012. This also does not require wind data. eto = 0.0393 * Rs* sqrt(T_avg + 9.5) - (0.19 * Rs**0.6 * lat_rad**0.15) + 0.0061(T_avg + 20)(1.12*_avg - T_min - 2)**0.7 method_2: This is equation 14 in Valiantzas, 2012. This does not require wind data. The recommended value of alpha is 0.23. eto = 0.0393 * Rs * sqrt(T_avg + 9.5) - (0.19 * Rs**0.6 * lat_rad**0.15) + 0.078(T_avg + 20)(1 - rh/100) method_3 eto = 0.0393 * Rs * sqrt(T_avg + 9.5) - (Rs/Ra)**2 - [(T_avg + 20) * (1-rh/100) * ( 0.024 - 0.1 * Waero)] method_4: This is equation 35 in Valiantzas 2013c paper and was reffered as Fo-PENM method with using alpha as 0.25. eto = 0.051 * (1 - alpha) * Rs * sqrt(T_avg + 9.5) - 2.4 * (Rs/Ra)**2 + [0.048 * (T_avg + 20) * ( 1- rh/100) * (0.5 + 0.536 * u2)] + (0.00012 * z) method_5: This is equation 30 in Valiantzas 2013c. This is when no wind data is available. eto = 0.0393 * Rs sqrt(T_avg + 9.5) - [2.46 * Rs * lat**0.15 / (4 * sin(2 * pi * J / 365 - 1.39) lat + 12)**2 + 0.92]**2 - 0.024 * (T_avg + 20)(1 - rh/100) - (0.0268 * Rs) + (0.0984 * (T_avg + 17)) * (1.03 + 0.00055) * (T_max - T_min)**2 - rh/100 method_6 This method is when wind speed and solar radiation data is not available. This is equation 34 in Valiantzas, 2013c. eto = 0.0068 * Ra * sqrt[(T_avg + 9.5) * (T_max - T_min)] - 0.0696 * (T_max - T_min) - 0.024 * (T_avg + 20) * [ ((1-rh/100) - 0.00455 * Ra * sqrt(T_max - T_dew) + 0.0984 * (T_avg + 17) * (1.03 + 0.0055) * (T_max - T_min)**2) - rh/100 method_7: This is equation 27 in Valiantzas, 2013c. This method requires all data. Djaman et al., (by mistake) used 0.0043 in denominator instead of 0.00043. eto = 0.051 * (1-alpha) * Rs * (T_avg + 9.5)**0.5 - 0.188 * (T_avg + 13) * (Rs/Ra - 0.194) * (1 - 0.00015) * (T_avg + 45)**2 * sqrt(rh/100) - 0.0165 * Rs * u**0.7 + 0.0585 * (T_avg + 17) * u**0.75 * {[1 + 0.00043 * (T_max - T_min)**2]**2 - rh/100} / [1 + 0.00043 * (T_max - T_min)**2 + 0.0001*z] method_8: eto = 0.051 * (1-alpha) * Rs * (T_avg + 9.5)**0.5 - 2.4 (Rs/Ra)**2 - 2.4 * (T_avg + 20) * (1 - rh/100) - 0.0165 * Rs * u**0.7 + 0.0585 * (T_avg + 17) * u**0.75 * { [1 + 0.00043 (T_max - T_min)**2]**2 - rh/100} / ( 1 + 0.00043 * (T_max - T_min)**2 + (0.0001 * z) method_9: This must be equation 29 of Valiantzas, 2013c but method 9 in Djaman et al., 2017 used 2.46 instead of 22.46. This formulation does not require Ra. eto = [0.051 * (1-alpha) * Rs (T_avg + 9.5)**2 * (2.46 * Rs * lat**0.15 / (4 sin(2 * pi J / 365 - 1.39) * lat + 12)**2 + 0.92)]**2 - 0.024 * (T_avg + 20) * (1-rh/100) - 0.0165 * Rs * u**0.7 + 0.0585 * (T_avg + 17) * u**0.75 * {[(1.03 + 0.00055) * (T_max - T_min)**2 - rh/100] + 0.0001*z} """ def __call__(self, method='method_1', **kwargs): self.requirements(constants=['valiantzas_alpha'], ts=['temp']) alpha = self.cons['valiantzas_alpha'] z = self.cons['altitute'] rh = self.input['rh'] ta = self.input['temp'] tmin = self.input['tmin'] tmax = self.input['tmax'] j = self.input['jday'] ra = self._et_rad() u2 = self._wind_2m() w_aero = np.where(rh <= 65.0, 1.067, 0.78) # empirical weighted factor rs_ra = (self.rs() / ra)**2 tr = tmax - tmin tr_sq = tr**2 lat_15 = self.lat_rad**0.15 t_sqrt = np.sqrt(ta + 9.5) init = 0.0393 * self.rs() * t_sqrt rs_fact = 0.19 * (self.rs()**0.6) * lat_15 t_20 = ta + 20 rh_factor = 1.0 - (rh/100.0) if method == 'method_1': eto = init - rs_fact + 0.0061 * t_20 * (1.12 * (ta - tmin) - 2.0)**0.7 elif method == 'method_2': eto = init - rs_fact + (0.078 * t_20 * rh_factor) elif method == 'method_3': eto = init - rs_ra - (t_20 * rh_factor * (0.024 - 0.1 * w_aero)) elif method == 'method_4': eto = 0.051 * (1 - alpha) * self.rs() * t_sqrt - 2.4 * rs_ra + (0.048 * t_20 * rh_factor * (0.5 + 0.536 * u2)) + (0.00012 * z) elif method == 'method_5': eto = init elif method == 'method_6': pass elif method == 'method_7': pass elif method == 'method_8': pass elif method == 'method_9': eto = 0.051 * (1 - alpha) * self.rs() * (ta + 9.5)**2 * (2.46 * self.rs() * lat_15) / (4 * np.sin(2 * 3.14 * j / 365 - 1.39)) else: raise ValueError self.post_process(eto, kwargs.get('transform', False)) return eto class Oudin(ETBase): """ https://doi.org/10.1016/j.jhydrol.2004.08.026 """ pass class RengerWessolek(ETBase): """ RENGER, M. & WESSOLEK, G. (1990): Auswirkungen von Grundwasserabsenkung und Nutzungsänderungen auf die Grundwasserneubildung. – Mit. Inst. für Wasserwesen, Univ. der Bundeswehr München, 386: 295-307. """ class Black(ETBase): """ https://doi.org/10.2136/sssaj1969.03615995003300050013x """ class McNaughtonBlack(ETBase): """ https://doi.org/10.1029/WR009i006p01579 """ def custom_resampler(array_like): """calculating heat index using monthly values of temperature.""" return np.sum(np.power(np.divide(array_like, 5.0), 1.514)) def assign_yearly(data, index): # TODO for leap years or when first or final year is not complete, the results are not correct immitate # https://github.com/cran/Evapotranspiration/blob/master/R/Evapotranspiration.R#L1848 """ assigns `step` summed data to whole data while keeping the length of data preserved.""" n_ts = pd.DataFrame(data, index=index, columns=['N']) a = n_ts.resample('A').sum() # annual sum ad = a.resample('D').backfill() # annual sum backfilled # for case if len(ad) < 2: ad1 = pd.DataFrame(np.full(data.shape, np.nan), pd.date_range(n_ts.index[0], periods=len(data), freq='D'), columns=['N']) ad1.loc[ad1.index[-1]] = ad.values ad2 = ad1.bfill() return ad2 else: idx = pd.date_range(n_ts.index[0], ad.index[-1], freq="D") n_df_ful = pd.DataFrame(np.full(idx.shape, np.nan), index=idx, columns=['N']) n_df_ful['N'][ad.index] = ad.values.reshape(-1, ) n_df_obj = n_df_ful[n_ts.index[0]: n_ts.index[-1]] n_df_obj1 = n_df_obj.bfill() return n_df_obj1
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/et/et_methods.py
et_methods.py
from typing import Union, List from .utils import _make_output_layer def TabTransformer( num_numeric_features: int, cat_vocabulary: dict, hidden_units=32, num_heads: int = 4, depth: int = 4, dropout: float = 0.1, num_dense_lyrs: int = 1, prenorm_mlp:bool = True, post_norm: bool = True, final_mlp_units: Union[int, List[int]] = 16, num_outputs: int = 1, mode: str = "regression", output_activation: str = None, seed:int = 313, backend:str = "tf" )->dict: """ Tab Transformer following the work of `Huang et al., 2021 <https://arxiv.org/abs/2012.06678>_` Parameters ---------- num_numeric_features : int number of numeric features to be used as input. cat_vocabulary : dict a dictionary whose keys are names of categorical features and values are lists which consist of unique values of categorical features. You can use the function :fun:`ai4water.models.utils.gen_cat_vocab` to create this for your own data. The length of dictionary should be equal to number of categorical features. hidden_units : int, optional (default=32) number of hidden units num_heads : int, optional (default=4) number of attention heads depth : int (default=4) number of transformer blocks to be stacked on top of each other dropout : int, optional (default=0.1) droput rate in transformer post_norm : bool (default=True) prenorm_mlp : bool (default=True) num_dense_lyrs : int (default=2) number of dense layers in MLP block final_mlp_units : int (default=16) number of units/neurons in final MLP layer i.e. the MLP layer after Transformer block num_outputs : int, optional (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. seed : int seed for reproducibility backend : str either ``tf`` or ``pytorch`` Returns ------- dict : a dictionary with ``layers`` as key Examples ---------- >>> from ai4water import Model >>> from ai4water.models import TabTransformer >>> from ai4water.utils.utils import TrainTestSplit >>> from ai4water.models.utils import gen_cat_vocab >>> from ai4water.datasets import mg_photodegradation ... ... # bring the data as DataFrame >>> data, _, _ = mg_photodegradation() ... # Define categorical and numerical features and label >>> NUMERIC_FEATURES = data.columns.tolist()[0:9] >>> CAT_FEATURES = ["Catalyst_type", "Anions"] >>> LABEL = "Efficiency (%)" ... # create vocabulary of unique values of categorical features >>> cat_vocab = gen_cat_vocab(data) ... # make sure the data types are correct >>> data[NUMERIC_FEATURES] = data[NUMERIC_FEATURES].astype(float) >>> data[CAT_FEATURES] = data[CAT_FEATURES].astype(str) >>> data[LABEL] = data[LABEL].astype(float) >>> # split the data into training and test set >>> splitter = TrainTestSplit(seed=313) >>> train_data, test_data, _, _ = splitter.split_by_random(data) ... ... # build the model >>> model = Model(model=TabTransformer( ... num_numeric_features=len(NUMERIC_FEATURES), cat_vocabulary=cat_vocab, ... hidden_units=16, final_mlp_units=[84, 42])) ... # make a list of input arrays for training data >>> train_x = [train_data[NUMERIC_FEATURES].values, train_data[CAT_FEATURES]] >>> test_x = [test_data[NUMERIC_FEATURES].values, test_data[CAT_FEATURES].values] ... >>> h = model.fit(x=train_x, y= train_data[LABEL].values, ... validation_data=(test_x, test_data[LABEL].values), epochs=1) """ kws = dict( cat_vocabulary=cat_vocabulary, num_numeric_features=num_numeric_features, hidden_units=hidden_units, num_heads = num_heads, depth = depth, dropout = dropout, num_dense_lyrs = num_dense_lyrs, prenorm_mlp = prenorm_mlp, post_norm = post_norm, final_mlp_units = final_mlp_units, num_outputs = num_outputs, mode = mode, output_activation = output_activation, seed = seed) if backend=="tf": from ._tensorflow import TabTransformer return TabTransformer(**kws) else: raise NotImplementedError def FTTransformer( num_numeric_features:int, cat_vocabulary:dict = None, hidden_units = 32, num_heads: int = 4, depth:int = 4, dropout: float = 0.1, num_dense_lyrs:int = 2, post_norm:bool = True, final_mlp_units:int = 16, num_outputs: int = 1, mode: str = "regression", output_activation: str = None, seed: int = 313, backend:str = "tf" )->dict: """ FT Transformer following the work of `Gorishniy et al., 2021 <https://arxiv.org/pdf/2106.11959v2.pdf>`_ Parameters ---------- num_numeric_features : int number of numeric features to be used as input. cat_vocabulary : dict a dictionary whose keys are names of categorical features and values are lists which consist of unique values of categorical features. You can use the function :fun:`ai4water.models.utils.gen_cat_vocab` to create this for your own data. The length of dictionary should be equal to number of categorical features. If it is None, then it is supposed that no categoical variables are available and the model will expect only numerical input features. hidden_units : int, optional (default=32) number of hidden units num_heads : int, optional (default=4) number of attention heads depth : int (default=4) number of transformer blocks to be stacked on top of each other dropout : int, optional (default=0.1) droput rate in transformer post_norm : bool (default=True) num_dense_lyrs : int (default=2) number of dense layers in MLP block final_mlp_units : int (default=16) number of units/neurons in final MLP layer i.e. the MLP layer after Transformer block num_outputs : int, optional (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. seed : int backend : str either ``tf`` or ``pytorch`` Returns ------- dict : a dictionary with ``layers`` as key Examples ---------- >>> from ai4water import Model >>> from ai4water.models import FTTransformer >>> from ai4water.datasets import mg_photodegradation >>> from ai4water.models.utils import gen_cat_vocab >>> from ai4water.utils.utils import TrainTestSplit >>> # bring the data as DataFrame >>> data, _, _ = mg_photodegradation() ... # Define categorical and numerical features and label >>> NUMERIC_FEATURES = data.columns.tolist()[0:9] >>> CAT_FEATURES = ["Catalyst_type", "Anions"] >>> LABEL = "Efficiency (%)" ... # create vocabulary of unique values of categorical features >>> cat_vocab = gen_cat_vocab(data) ... # make sure the data types are correct >>> data[NUMERIC_FEATURES] = data[NUMERIC_FEATURES].astype(float) >>> data[CAT_FEATURES] = data[CAT_FEATURES].astype(str) >>> data[LABEL] = data[LABEL].astype(float) ... # split the data into training and test set >>> splitter = TrainTestSplit(seed=313) >>> train_data, test_data, _, _ = splitter.split_by_random(data) ... # build the model >>> model = Model(model=FTTransformer(len(NUMERIC_FEATURES), cat_vocab)) ... # make a list of input arrays for training data >>> train_x = [train_data[NUMERIC_FEATURES].values, ... train_data[CAT_FEATURES].values] ... >>> test_x = [test_data[NUMERIC_FEATURES].values, ... test_data[CAT_FEATURES].values] ... # train the model >>> h = model.fit(x=train_x, y= train_data[LABEL].values, ... validation_data=(test_x, test_data[LABEL].values), ... epochs=1) """ kws = dict( cat_vocabulary=cat_vocabulary, num_numeric_features=num_numeric_features, hidden_units=hidden_units, num_heads = num_heads, depth = depth, dropout = dropout, num_dense_lyrs = num_dense_lyrs, post_norm = post_norm, final_mlp_units = final_mlp_units, num_outputs = num_outputs, mode = mode, output_activation = output_activation, seed = seed) if backend=="tf": from ._tensorflow import FTTransformer return FTTransformer(**kws) else: raise NotImplementedError def MLP( units: Union[int, list] = 32, num_layers:int = 1, input_shape: tuple = None, num_outputs:int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, mode:str = "regression", output_activation:str = None, backend:str = "tf", **kwargs )->dict: """helper function to make multi layer perceptron model. This model consists of stacking layers of Dense_ layers. The number of dense layers are defined by ``num_layers``. Each layer can be optionaly followed by a Dropout_ layer. Parameters ---------- units : Union[int, list], default=32 number of units in Dense layer num_layers : int, optional, (default, 1) number of Dense_ or Linear_ layers to use as hidden layers, excluding output layer. input_shape : tuple, optional (default=None) shape of input tensor to the model. If specified, it should exclude batch_size for example if model takes inputs (num_examples, num_features) then we should define the shape as (num_features,). The batch_size dimension is always None. num_outputs : int, (default=1) number of output features from the network activation : Union[str, list], optional (default=None) activation function to use. dropout : Union[float, list], optional dropout to use in Dense layer mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str (default='tf') either ``tf`` or ``pytorch`` **kwargs : any additional keyword arguments for Dense_ layer Returns ------- dict : a dictionary with 'layers' as key which can be fed to ai4water's Model Examples -------- >>> from ai4water import Model >>> from ai4water.models import MLP >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> input_features = data.columns.tolist()[0:-1] >>> output_features = data.columns.tolist()[-1:] ... # build a basic MLP >>> MLP(32) ... # MLP with 3 Dense layers >>> MLP(32, 3) ... # we can specify input shape as 3d (first dimension is always None) >>> MLP(32, 3, (5, 10)) ... # we can also specify number of units for each layer >>> MLP([32, 16, 8], 3, (13, 1)) ... # we can feed any argument which is accepted by Dense layer >>> mlp = MLP(32, 3, (13, ), use_bias=True, activation="relu") ... # we can feed the output of MLP to ai4water's Model >>> model = Model(model=mlp, input_features=input_features, >>> output_features=output_features) >>> model.fit(data=data) similary for pytorch as backend we can build the model as below >>> model = Model(model=MLP(32, 2, (13,), backend="pytorch"), ... backend="pytorch", ... input_features = input_features, ... output_features = output_features) >>> model.fit(data=data) .. _Dense: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense .. _Linear: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html .. _Dropout: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout """ check_backend("MLP", backend=backend) kws = dict( units = units, num_layers = num_layers, input_shape = input_shape, num_outputs = num_outputs, activation = activation, dropout = dropout, mode = mode, output_activation = output_activation, **kwargs ) if backend == "tf": from ._tensorflow import MLP return MLP(**kws) else: from ._torch import MLP return MLP(**kws) def LSTM( units: Union[int, list] = 32, num_layers:int = 1, input_shape: tuple = None, num_outputs:int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, mode:str = "regression", output_activation:str = None, backend:str = "tf", **kwargs ): """helper function to make LSTM Model Parameters ---------- units : Union[int, list], optional (default 32) number of units in LSTM layer num_layers : int (default=1) number of lstm layers to use input_shape : tuple, optional (default=None) shape of input tensor to the model. If specified, it should exclude batch_size for example if model takes inputs (num_examples, lookback, num_features) then we should define the shape as (lookback, num_features). The batch_size dimension is always None. num_outputs : int, optinoal (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. activation : Union[str, list], optional activation function to use in LSTM dropout : if > 0.0, a dropout layer is added after each LSTM layer mode : str, optional either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str the type of backend to use. Allowed vlaues are ``tf`` or ``pytorch``. **kwargs : any keyword argument for LSTM layer of `tensorflow <https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM>`_ or `pytorch <https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html>`_ layer Returns ------- dict : a dictionary with 'layers' as key Examples -------- >>> from ai4water import Model >>> from ai4water.models import LSTM >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> input_features = data.columns.tolist()[0:-1] >>> output_features = data.columns.tolist()[-1:] # a simple LSTM model with 32 neurons/units >>> LSTM(32) # to build a model with stacking of LSTM layers >>> LSTM(32, num_layers=2) # we can build ai4water's model and train it >>> lstm = LSTM(32) >>> model = Model(model=lstm, input_features=input_features, >>> output_features=output_features, ts_args={"lookback": 5}) >>> model.fit(data=data) Similary for pytorch as backend the interface will be same except that we need to explicitly tell the backend as below >>> model = Model(model=LSTM(32, 2, (5, 13), backend="pytorch"), ... backend="pytorch", ... input_features = input_features, ... output_features = output_features, ... ts_args={'lookback':5}) >>> model.fit(data=data) """ check_backend("LSTM", backend=backend) kws = dict( units = units, num_layers = num_layers, input_shape = input_shape, num_outputs = num_outputs, activation = activation, dropout = dropout, mode = mode, output_activation = output_activation, **kwargs ) if backend == "tf": from ._tensorflow import LSTM return LSTM(**kws) else: from ._torch import LSTM return LSTM(**kws) def AttentionLSTM( units: Union[int, list] = 32, num_layers:int = 1, input_shape: tuple = None, num_outputs:int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, atten_units:int = 128, atten_activation:str = "tanh", mode:str = "regression", output_activation:str = None, backend:str = "tf", **kwargs ): """helper function to make LSTM Model Parameters ---------- units : Union[int, list], optional (default 32) number of units in LSTM layer num_layers : int (default=1) number of lstm layers to use input_shape : tuple, optional (default=None) shape of input tensor to the model. If specified, it should exclude batch_size for example if model takes inputs (num_examples, lookback, num_features) then we should define the shape as (lookback, num_features). The batch_size dimension is always None. num_outputs : int, optinoal (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. activation : Union[str, list], optional activation function to use in LSTM dropout : if > 0.0, a dropout layer is added after each LSTM layer atten_units : int number of units in SelfAttention layer atten_activation : str activation function in SelfAttention layer mode : str, optional either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str the type of backend to use. Allowed vlaues are ``tf`` or ``pytorch``. **kwargs : any keyword argument for LSTM layer of `tensorflow <https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM>`_ or `pytorch <https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html>`_ layer Returns ------- dict : a dictionary with 'layers' as key Examples -------- >>> from ai4water import Model >>> from ai4water.datasets import busan_beach >>> from ai4water.models import AttentionLSTM >>> data = busan_beach() >>> input_features = data.columns.tolist()[0:-1] >>> output_features = data.columns.tolist()[-1:] # a simple Attention LSTM model with 32 neurons/units >>> AttentionLSTM(32) # to build a model with stacking of LSTM layers >>> AttentionLSTM(32, num_layers=2) # we can build ai4water's model and train it >>> lstm = AttentionLSTM(32) >>> model = Model(model=lstm, input_features=input_features, >>> output_features=output_features, ts_args={"lookback": 5}) >>> model.fit(data=data) """ check_backend("AttentionLSTM", backend=backend) kws = dict( units = units, num_layers = num_layers, input_shape = input_shape, num_outputs = num_outputs, activation = activation, dropout = dropout, atten_units = atten_units, atten_activation = atten_activation, mode = mode, output_activation = output_activation, **kwargs ) if backend == "tf": from ._tensorflow import AttentionLSTM return AttentionLSTM(**kws) else: raise NotImplementedError def CNN( filters: Union[int, list] = 32, kernel_size: Union[int, tuple, list] = 3, convolution_type: str = "1D", num_layers: int = 1, padding: Union[str, list] = "same", strides: Union[int, list]= 1, pooling_type: Union[str, list] = None, pool_size: Union[int, list] = 2, batch_normalization: Union[bool, list] = None, activation: Union[str, list] = None, dropout: Union[float, list] = None, input_shape: tuple = None, num_outputs:int = 1, mode: str = "regression", output_activation:str = None, backend:str = "tf", **kwargs )->dict: """helper function to make convolution neural network based model. Parameters ---------- filters : Union[int, list], optional number of filters in convolution layer. If given as list, it should be equal to ``num_layers``. kernel_size : Union[int, list], optional kernel size in (each) convolution layer convolution_type : str, optional, (default="1D") either ``1D`` or ``2D`` or ``3D`` num_layers : int, optional number of convolution layers to use. Should be > 0. padding : Union[str, list], optional padding to use in (each) convolution layer strides : Union[int, list], optional strides to use in (each) convolution layer pooling_type : str, optional either "MaxPool" or "AveragePooling" pool_size : Union[int, list], optional only valid if pooling_type is not None batch_normalization : whether to use batch_normalization after each convolution or convolution+pooling layer. If true, a batch_norm_ layer is added. activation : Union[str, list], optional activation function to use in convolution layer dropout : Union[float, list], optional if > 0.0, a dropout layer is added after each LSTM layer input_shape : tuple, optional (default=None) shape of input tensor to the model. If specified, it should exclude batch_size for example if model takes inputs (num_examples, lookback, num_features) then we should define the shape as (lookback, num_features). The batch_size dimension is always None. num_outputs : int, optional, (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str either "tf" or "pytorch" **kwargs : any keyword argument for Convolution_ layer Returns ------- dict : a dictionary with 'layers' as key Examples -------- >>> from ai4water import Model >>> from ai4water.models import CNN >>> from ai4water.datasets import busan_beach ... >>> data = busan_beach() >>> time_steps = 5 >>> input_features = data.columns.tolist()[0:-1] >>> output_features = data.columns.tolist()[-1:] >>> model_config = CNN(32, 2, "1D", input_shape=(time_steps, len(input_features))) >>> model = Model(model=model_config, ts_args={"lookback": time_steps}, backend="pytorch", ... input_features=input_features, output_features=output_features) ... >>> model.fit(data=data) >>> model_config = CNN(32, 2, "1D", pooling_type="MaxPool", input_shape=(time_steps, len(input_features))) >>> model = Model(model=model_config, ts_args={"lookback": time_steps}, backend="pytorch", ... input_features=input_features, output_features=output_features) ... >>> model.fit(data=data) .. _Convolution: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D .. _batch_norm: https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization """ check_backend("CNN", backend=backend) kws = dict( filters=filters, kernel_size=kernel_size, convolution_type=convolution_type, num_layers=num_layers, padding=padding, strides=strides, pooling_type=pooling_type, pool_size=pool_size, batch_normalization=batch_normalization, activation=activation, dropout=dropout, input_shape=input_shape, num_outputs=num_outputs, mode=mode, output_activation=output_activation, **kwargs ) if backend == "tf": from ._tensorflow import CNN return CNN(**kws) else: for arg in ['strides', 'kernel_size']: kws.pop(arg) from ._torch import CNN return CNN(**kws) def CNNLSTM( input_shape:tuple, sub_sequences=3, cnn_layers:int = 2, lstm_layers:int = 1, filters:Union[int, list]=32, kernel_size: Union[int, tuple, list]=3, max_pool:bool=False, units: Union[int, tuple, list] = 32, num_outputs:int = 1, mode:str = "regression", output_activation:str = None, backend:str = "tf", )->dict: """ helper function to make CNNLSTM model. It adds one or more 1D convolutional layers before one or more LSTM layers. Parameters ---------- input_shape : tuple shape of input tensor to the model. If specified, it should exclude batch_size for example if model takes inputs (num_examples, lookback, num_features) then we should define the shape as (lookback, num_features). The batch_size dimension is always None. sub_sequences : int number of sub_sequences in which to divide the input before applying Conv1D on it. cnn_layers : int , optional (default=2) number of cnn layers lstm_layers : number of lstm layers filters : Union[int, list], optional number of filters in (each) cnn layer kernel_size : Union[int, tuple, list], optional kernel size in (each) cnn layer max_pool : bool, optional (default=True) whether to use max_pool after every cnn layer or not units : Union[int, list], optional (default=32) number of units in (each) lstm layer num_outputs : int, optional (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str Returns ------- dict : a dictionary with ``layers`` as key Examples -------- >>> from ai4water import Model >>> from ai4water.models import CNNLSTM >>> from ai4water.datasets import busan_beach ... # define data and input/output features >>> data = busan_beach() >>> inputs = data.columns.tolist()[0:-1] >>> outputs = [data.columns.tolist()[-1]] >>> lookback_steps = 9 ... # get configuration of CNNLSTM as dictionary which can be given to Model >>> model_config = CNNLSTM(input_shape=(lookback_steps, len(inputs)), sub_sequences=3) ... # build the model >>> model = Model(model=model_config, input_features=inputs, ... output_features=outputs, ts_args={"lookback": lookback_steps}) ... # train the model >>> model.fit(data=data) """ check_backend("CNNLSTM", backend=backend) kws = dict( input_shape=input_shape, sub_sequences=sub_sequences, cnn_layers=cnn_layers, lstm_layers=lstm_layers, filters=filters, kernel_size=kernel_size, max_pool=max_pool, units=units, num_outputs=num_outputs, mode=mode, output_activation=output_activation ) if backend == "tf": from ._tensorflow import CNNLSTM return CNNLSTM(**kws) else: raise NotImplementedError def LSTMAutoEncoder( input_shape:tuple, encoder_layers:int = 1, decoder_layers:int = 1, encoder_units: Union[int, list]=32, decoder_units: Union[int, list]=32, num_outputs: int = 1, prediction_mode: bool = True, mode:str = "regression", output_activation: str = None, backend:str = "tf", **kwargs )->dict: """ helper function to make LSTM based AutoEncoder model. Parameters ---------- input_shape : tuple shape of input tensor to the model. This shape should exclude batch_size for example if model takes inputs (num_examples, num_features) then we should define the shape as (num_features,). The batch_size dimension is always None. encoder_layers : int, optional (default=1) number of encoder LSTM layers decoder_layers : int, optional (default=1) number of decoder LSTM layers encoder_units : Union[int, list], optional, (default=32) number of units in (each) encoder LSTM decoder_units : Union[int, list], optional, (default=32) number of units in (each) decoder LSTM prediction_mode : bool, optional (default="prediction") either "prediction" or "reconstruction" num_outputs : int, optional number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str **kwargs Returns ------- dict : a dictionary with ``layers`` as key Examples -------- >>> from ai4water import Model >>> from ai4water.models import LSTMAutoEncoder >>> from ai4water.datasets import busan_beach ... # define data and input/output features >>> data = busan_beach() >>> inputs = data.columns.tolist()[0:-1] >>> outputs = [data.columns.tolist()[-1]] >>> lookback_steps = 9 ... # get configuration of CNNLSTM as dictionary which can be given to Model >>> model_config = LSTMAutoEncoder((lookback_steps, len(inputs)), 2, 2, 32, 32) ... # build the model >>> model = Model(model=model_config, input_features=inputs, ... output_features=outputs, ts_args={"lookback": lookback_steps}) ... # train the model >>> model.fit(data=data) specify neurons in each of encoder and decoder LSTMs >>> model_config = LSTMAutoEncoder((lookback_steps, len(inputs)), 2, 2, [64, 32], [32, 64]) ... # build the model >>> model = Model(model=model_config, input_features=inputs, ... output_features=outputs, ts_args={"lookback": lookback_steps}) ... # train the model >>> model.fit(data=data) """ check_backend("LSTMAutoEncoder", backend=backend) kws = dict( input_shape=input_shape, encoder_layers=encoder_layers, decoder_layers=decoder_layers, encoder_units=encoder_units, decoder_units=decoder_units, num_outputs=num_outputs, prediction_mode=prediction_mode, mode=mode, output_activation=output_activation, **kwargs ) if backend == "tf": from ._tensorflow import LSTMAutoEncoder return LSTMAutoEncoder(**kws) else: raise NotImplementedError def TCN( input_shape, filters:int = 32, kernel_size: int = 2, nb_stacks: int = 1, dilations = [1, 2, 4, 8, 16, 32], num_outputs:int = 1, mode="regression", output_activation: str = None, backend:str = "tf", **kwargs )->dict: """helper function for building temporal convolution network Parameters ---------- input_shape : tuple shape of input tensor to the model. This shape should exclude batch_size for example if model takes inputs (num_examples, num_features) then we should define the shape as (num_features,). The batch_size dimension is always None. filters : int, optional (default=32) number of filters kernel_size : int, optional (default=2) kernel size nb_stacks : int, optional (default= number of stacks of tcn layer dilations : dilation rate num_outputs : int, optional number of output features. If ``mode`` is ``classification``, this refers to number of classes. mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str **kwargs any additional keyword argument Returns ------- dict : a dictionary with ``layers`` as key Examples -------- >>> from ai4water import Model >>> from ai4water.models import TCN >>> from ai4water.datasets import busan_beach ... # define data and input/output features >>> data = busan_beach() >>> inputs = data.columns.tolist()[0:-1] >>> outputs = [data.columns.tolist()[-1]] >>> lookback_steps = 9 ... # get configuration of CNNLSTM as dictionary which can be given to Model >>> model_config = TCN((lookback_steps, len(inputs)), 32) ... # build the model >>> model = Model(model=model_config, input_features=inputs, ... output_features=outputs, ts_args={"lookback": lookback_steps}) ... # train the model >>> model.fit(data=data) """ check_backend("TCN", backend=backend) kws = dict( input_shape=input_shape, filters=filters, kernel_size=kernel_size, nb_stacks=nb_stacks, dilations=dilations, num_outputs=num_outputs, mode=mode, output_activation=output_activation, **kwargs ) if backend == "tf": from ._tensorflow import TCN return TCN(**kws) else: raise NotImplementedError def TFT( input_shape, hidden_units: int = 32, num_heads: int = 3, dropout:float = 0.1, num_outputs:int = 1, use_cudnn:bool = False, mode:str="regression", output_activation:str = None, backend:str = "tf", )->dict: """helper function for temporal fusion transformer based model Parameters ---------- input_shape : tuple shape of input tensor to the model. This shape should exclude batch_size for example if model takes inputs (num_examples, num_features) then we should define the shape as (num_features,). The batch_size dimension is always None. hidden_units : int, optional (default=32) number of hidden units num_heads : int, optional (default=1) number of attention heads dropout : int, optional (default=0.1) droput rate num_outputs : int, optional (default=1) number of output features. If ``mode`` is ``classification``, this refers to number of classes. use_cudnn : bool, optional (default=False) whether to use cuda or not mode : str, optional (default="regression") either ``regression`` or ``classification`` output_activation : str, optional (default=None) activation of the output layer. If not given and the mode is clsasification then the activation of output layer is decided based upon ``num_outputs`` argument. In such a case, for binary classification, sigmoid with 1 output neuron is preferred. Therefore, even if the num_outputs are 2, the last layer will have 1 neuron and activation function is ``sigmoid``. Although the user can set ``softmax`` for 2 num_outputs as well (binary classification) but this seems superfluous and is slightly more expensive. For multiclass, the last layer will have neurons equal to num_outputs and ``softmax`` as activation. backend : str Returns ------- dict : a dictionary with ``layers`` as key Examples -------- >>> from ai4water.functional import Model >>> from ai4water.models import TFT >>> from ai4water.datasets import busan_beach >>> model = Model(model=TFT(input_shape=(14, 13)), ... ts_args={"lookback": 14}) >>> model.fit(data=busan_beach()) """ kws = dict( input_shape=input_shape, hidden_units=hidden_units, num_heads=num_heads, dropout=dropout, use_cudnn=use_cudnn, num_outputs=num_outputs, mode=mode, output_activation=output_activation ) if backend == "tf": from ._tensorflow import TFT return TFT(**kws) else: raise NotImplementedError def check_backend(model:str, backend:str="tf")->None: if backend=="tf": try: import tensorflow as tf except Exception as e: raise Exception(f""" You must have installed tensorflow to use {model} model. Importing tensorflow raised following error \n{e}""") elif backend == "pytorch": try: import torch except Exception as e: raise Exception(f""" You must have installed PyTorch to use {model} model. Importing pytorch raised following error \n{e}""") return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/__init__.py
__init__.py
__all__ = ["attn_layers"] from tensorflow.python.ops import math_ops from tensorflow.python.ops import array_ops import math from ai4water.backend import np, tf, keras initializers = tf.keras.initializers regularizers = tf.keras.regularizers constraints = tf.keras.constraints Layer = tf.keras.layers.Layer layers = tf.keras.layers K = tf.keras.backend Dense = tf.keras.layers.Dense Lambda = tf.keras.layers.Lambda Activation = tf.keras.layers.Activation Softmax = tf.keras.layers.Softmax dot = tf.keras.layers.dot concatenate = tf.keras.layers.concatenate # A review of different attention mechanisms is given at following link # https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html # Raffel, SeqWeightedSelfAttention and HierarchicalAttention appear to be very much similar. class BahdanauAttention(Layer): """ Also known as Additive attention. https://github.com/thushv89/attention_keras/blob/master/src/layers/attention.py This can be implemented in encoder-decoder model as shown here. https://github.com/thushv89/attention_keras/blob/master/src/examples/nmt/model.py This class implements Bahdanau attention (https://arxiv.org/pdf/1409.0473.pdf). There are three sets of weights introduced W_a, U_a, and V_a The original code had following MIT licence ---------------------------------------------------------- MIT License Copyright (c) 2019 Thushan Ganegedara Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ---------------------------------------------------------- """ def __init__(self, **kwargs): super(BahdanauAttention, self).__init__(**kwargs) def build(self, input_shape): assert isinstance(input_shape, list) # Create a trainable weight variable for this layer. self.W_a = self.add_weight(name='W_a', shape=tf.TensorShape((input_shape[0][2], input_shape[0][2])), initializer='uniform', trainable=True) self.U_a = self.add_weight(name='U_a', shape=tf.TensorShape((input_shape[1][2], input_shape[0][2])), initializer='uniform', trainable=True) self.V_a = self.add_weight(name='V_a', shape=tf.TensorShape((input_shape[0][2], 1)), initializer='uniform', trainable=True) super(BahdanauAttention, self).build(input_shape) def __call__(self, inputs, verbose=False): """ inputs: [encoder_output_sequence, decoder_output_sequence] """ if not self.built: self._maybe_build(inputs) assert type(inputs) == list encoder_out_seq, decoder_out_seq = inputs if verbose: print('encoder_out_seq>', encoder_out_seq.shape) print('decoder_out_seq>', decoder_out_seq.shape) def energy_step(inputs, states): """ Step function for computing energy for a single decoder state """ assert_msg = "States must be a list. However states {} is of type {}".format(states, type(states)) assert isinstance(states, list) or isinstance(states, tuple), assert_msg """ Some parameters required for shaping tensors""" en_seq_len, en_hidden = encoder_out_seq.shape[1], encoder_out_seq.shape[2] de_hidden = inputs.shape[-1] """ Computing S.Wa where S=[s0, s1, ..., si]""" # batch_size*en_seq_len, latent_dim reshaped_enc_outputs = K.reshape(encoder_out_seq, (-1, en_hidden)) # batch_size*en_seq_len, latent_dim W_a_dot_s = K.reshape(K.dot(reshaped_enc_outputs, self.W_a), (-1, en_seq_len, en_hidden)) if verbose: print('wa.s>',W_a_dot_s.shape) """ Computing hj.Ua """ # batch_size, 1, latent_dim U_a_dot_h = K.expand_dims(K.dot(inputs, self.U_a), 1) if verbose: print('Ua.h>',U_a_dot_h.shape) """ tanh(S.Wa + hj.Ua) """ # batch_size*en_seq_len, latent_dim reshaped_Ws_plus_Uh = K.tanh(K.reshape(W_a_dot_s + U_a_dot_h, (-1, en_hidden))) if verbose: print('Ws+Uh>', reshaped_Ws_plus_Uh.shape) """ softmax(va.tanh(S.Wa + hj.Ua)) """ # batch_size, en_seq_len e_i = K.reshape(K.dot(reshaped_Ws_plus_Uh, self.V_a), (-1, en_seq_len)) # batch_size, en_seq_len e_i = K.softmax(e_i, name='softmax') if verbose: print('ei>', e_i.shape) return e_i, [e_i] def context_step(inputs, states): """ Step function for computing ci using ei """ # batch_size, hidden_size c_i = K.sum(encoder_out_seq * K.expand_dims(inputs, -1), axis=1) if verbose: print('ci>', c_i.shape) return c_i, [c_i] def create_inital_state(inputs, hidden_size): # We are not using initial states, but need to pass something to K.rnn funciton fake_state = K.zeros_like(inputs) # <= (batch_size, enc_seq_len, latent_dim) fake_state = K.sum(fake_state, axis=[1, 2]) # <= (batch_size) fake_state = K.expand_dims(fake_state) # <= (batch_size, 1) fake_state = K.tile(fake_state, [1, hidden_size]) # <= (batch_size, latent_dim) return fake_state fake_state_c = create_inital_state(encoder_out_seq, encoder_out_seq.shape[-1]) fake_state_e = create_inital_state(encoder_out_seq, encoder_out_seq.shape[1]) # <= (batch_size, enc_seq_len, latent_dim) """ Computing energy outputs """ # e_outputs => (batch_size, de_seq_len, en_seq_len) last_out, e_outputs, _ = K.rnn( energy_step, decoder_out_seq, [fake_state_e], ) """ Computing context vectors """ last_out, c_outputs, _ = K.rnn( context_step, e_outputs, [fake_state_c], ) return c_outputs, e_outputs def compute_output_shape(self, input_shape): """ Outputs produced by the layer """ return [ tf.TensorShape((input_shape[1][0], input_shape[1][1], input_shape[1][2])), tf.TensorShape((input_shape[1][0], input_shape[1][1], input_shape[0][1])) ] def dot_product(x, kernel): """ Wrapper for dot product operation, in order to be compatible with both Theano and Tensorflow Args: x (): input kernel (): weights Returns: """ if K.backend() == 'tensorflow': return K.squeeze(K.dot(x, K.expand_dims(kernel)), axis=-1) else: return K.dot(x, kernel) class HierarchicalAttention(Layer): """ Used from https://gist.github.com/cbaziotis/7ef97ccf71cbc14366835198c09809d2 Attention operation, with a context/query vector, for temporal data. Supports Masking. Follows the work of Yang et al., 2016 [https://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf] "Hierarchical Attention Networks for Document Classification" by using a context vector to assist the attention # Input shape 3D tensor with shape: `(samples, steps, features)`. # Output shape 2D tensor with shape: `(samples, features)`. How to use: Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True. The dimensions are inferred based on the output shape of the RNN. Note: The layer has been tested with Keras 2.0.6 Example: model.add(LSTM(64, return_sequences=True)) model.add(AttentionWithContext()) # next add a Dense layer (for classification/regression) or whatever... """ def __init__(self, W_regularizer=None, u_regularizer=None, b_regularizer=None, W_constraint=None, u_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.u_regularizer = regularizers.get(u_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.W_constraint = constraints.get(W_constraint) self.u_constraint = constraints.get(u_constraint) self.b_constraint = constraints.get(b_constraint) self.bias = bias super(HierarchicalAttention, self).__init__(**kwargs) def build(self, input_shape): assert len(input_shape) == 3 self.W = self.add_weight(shape=(input_shape[-1], input_shape[-1],), initializer=self.init, name='{}_W'.format(self.name), regularizer=self.W_regularizer, constraint=self.W_constraint) if self.bias: self.b = self.add_weight(shape=(input_shape[-1],), initializer='zero', name='{}_b'.format(self.name), regularizer=self.b_regularizer, constraint=self.b_constraint) self.u = self.add_weight(shape=(input_shape[-1],), initializer=self.init, name='{}_u'.format(self.name), regularizer=self.u_regularizer, constraint=self.u_constraint) super(HierarchicalAttention, self).build(input_shape) def compute_mask(self, input, input_mask=None): # do not pass the mask to the next layers return None def __call__(self, x, mask=None): # TODO different result when using call() if not self.built: self._maybe_build(x) uit = dot_product(x, self.W) # eq 5 in paper if self.bias: uit += self.b uit = K.tanh(uit) # eq 5 in paper ait = dot_product(uit, self.u) a = K.exp(ait) # apply mask after the exp. will be re-normalized next if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano a *= K.cast(mask, K.floatx()) # in some cases especially in the early stages of training the sum may be almost zero # and this results in NaN's. A workaround is to add a very small positive number ε to the sum. # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx()) # eq 6 in paper a /= math_ops.cast(math_ops.reduce_sum(a, axis=1, keepdims=True, name="HA_sum") + K.epsilon(), K.floatx(), name="HA_cast") a = array_ops.expand_dims(a, axis=-1, name="HA_expand_dims") weighted_input = tf.math.multiply(x,a,name="HA_weighted_input") #x * a return K.sum(weighted_input, axis=1) # eq 7 in paper def compute_output_shape(self, input_shape): return input_shape[0], input_shape[-1] class SeqSelfAttention(Layer): ATTENTION_TYPE_ADD = 'additive' ATTENTION_TYPE_MUL = 'multiplicative' def __init__(self, units=32, attention_width=None, attention_type=ATTENTION_TYPE_ADD, return_attention=False, history_only=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, use_additive_bias=True, use_attention_bias=True, attention_activation=None, attention_regularizer_weight=0.0, **kwargs): """ using implementation of https://github.com/CyberZHG/keras-self-attention/blob/master/keras_self_attention/seq_self_attention.py Layer initialization. For additive attention, see: https://arxiv.org/pdf/1806.01264.pdf :param units: The dimension of the vectors that used to calculate the attention weights. :param attention_width: The width of local attention. :param attention_type: 'additive' or 'multiplicative'. :param return_attention: Whether to return the attention weights for visualization. :param history_only: Only use historical pieces of data. :param kernel_initializer: The initializer for weight matrices. :param bias_initializer: The initializer for biases. :param kernel_regularizer: The regularization for weight matrices. :param bias_regularizer: The regularization for biases. :param kernel_constraint: The constraint for weight matrices. :param bias_constraint: The constraint for biases. :param use_additive_bias: Whether to use bias while calculating the relevance of inputs features in additive mode. :param use_attention_bias: Whether to use bias while calculating the weights of attention. :param attention_activation: The activation used for calculating the weights of attention. :param attention_regularizer_weight: The weights of attention regularizer. :param kwargs: Parameters for parent class. The original code which has here been slightly modified came with following licence. ---------------------------------- MIT License Copyright (c) 2018 PoW Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- """ super(SeqSelfAttention, self).__init__(**kwargs) self.supports_masking = True self.units = units self.attention_width = attention_width self.attention_type = attention_type self.return_attention = return_attention self.history_only = history_only if history_only and attention_width is None: self.attention_width = int(1e9) self.use_additive_bias = use_additive_bias self.use_attention_bias = use_attention_bias self.kernel_initializer = keras.initializers.get(kernel_initializer) self.bias_initializer = keras.initializers.get(bias_initializer) self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) self.bias_regularizer = keras.regularizers.get(bias_regularizer) self.kernel_constraint = keras.constraints.get(kernel_constraint) self.bias_constraint = keras.constraints.get(bias_constraint) self.attention_activation = keras.activations.get(attention_activation) self.attention_regularizer_weight = attention_regularizer_weight self._backend = keras.backend.backend() if attention_type.upper().startswith('ADD'): self.Wx, self.Wt, self.bh = None, None, None self.Wa, self.ba = None, None elif attention_type.upper().startswith('MUL'): self.Wa, self.ba = None, None else: raise NotImplementedError('No implementation for attention type : ' + attention_type) def get_config(self): config = { 'units': self.units, 'attention_width': self.attention_width, 'attention_type': self.attention_type, 'return_attention': self.return_attention, 'history_only': self.history_only, 'use_additive_bias': self.use_additive_bias, 'use_attention_bias': self.use_attention_bias, 'kernel_initializer': keras.initializers.serialize(self.kernel_initializer), 'bias_initializer': keras.initializers.serialize(self.bias_initializer), 'kernel_regularizer': keras.regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': keras.regularizers.serialize(self.bias_regularizer), 'kernel_constraint': keras.constraints.serialize(self.kernel_constraint), 'bias_constraint': keras.constraints.serialize(self.bias_constraint), 'attention_activation': keras.activations.serialize(self.attention_activation), 'attention_regularizer_weight': self.attention_regularizer_weight, } base_config = super(SeqSelfAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) def build(self, input_shape): if self.attention_type.upper().startswith('ADD'): self._build_additive_attention(input_shape) elif self.attention_type.upper().startswith('MUL'): self._build_multiplicative_attention(input_shape) super(SeqSelfAttention, self).build(input_shape) def _build_additive_attention(self, input_shape): feature_dim = int(input_shape[2]) self.Wt = self.add_weight(shape=(feature_dim, self.units), name='{}_Add_Wt'.format(self.name), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.Wx = self.add_weight(shape=(feature_dim, self.units), name='{}_Add_Wx'.format(self.name), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_additive_bias: self.bh = self.add_weight(shape=(self.units,), name='{}_Add_bh'.format(self.name), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) self.Wa = self.add_weight(shape=(self.units, 1), name='{}_Add_Wa'.format(self.name), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_attention_bias: self.ba = self.add_weight(shape=(1,), name='{}_Add_ba'.format(self.name), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) def _build_multiplicative_attention(self, input_shape): feature_dim = int(input_shape[2]) self.Wa = self.add_weight(shape=(feature_dim, feature_dim), name='{}_Mul_Wa'.format(self.name), initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_attention_bias: self.ba = self.add_weight(shape=(1,), name='{}_Mul_ba'.format(self.name), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) def __call__(self, inputs, mask=None, **kwargs): # TODO different result when using call() if not self.built: self._maybe_build(inputs) input_len = K.shape(inputs)[1] if self.attention_type.upper().startswith('ADD'): e = self._call_additive_emission(inputs) else: e = self._call_multiplicative_emission(inputs) if self.attention_activation is not None: e = self.attention_activation(e) if self.attention_width is not None: if self.history_only: lower = K.arange(0, input_len) - (self.attention_width - 1) else: lower = K.arange(0, input_len) - self.attention_width // 2 lower = K.expand_dims(lower, axis=-1) upper = lower + self.attention_width indices = K.expand_dims(K.arange(0, input_len), axis=0) e -= 10000.0 * (1.0 - K.cast(lower <= indices, K.floatx()) * K.cast(indices < upper, K.floatx())) if mask is not None: mask = K.expand_dims(K.cast(mask, K.floatx()), axis=-1) e -= 10000.0 * ((1.0 - mask) * (1.0 - K.permute_dimensions(mask, (0, 2, 1)))) # a_{t} = \text{softmax}(e_t) a = Softmax(axis=-1, name='SeqSelfAttention_Softmax')(e) # l_t = \sum_{t'} a_{t, t'} x_{t'} v = K.batch_dot(a, inputs) if self.attention_regularizer_weight > 0.0: self.add_loss(self._attention_regularizer(a)) if self.return_attention: return [v, a] return v def _call_additive_emission(self, inputs): input_shape = K.shape(inputs) batch_size, input_len = input_shape[0], input_shape[1] # h_{t, t'} = \tanh(x_t^T W_t + x_{t'}^T W_x + b_h) q = K.expand_dims(K.dot(inputs, self.Wt), 2) k = K.expand_dims(K.dot(inputs, self.Wx), 1) if self.use_additive_bias: h = K.tanh(q + k + self.bh) else: h = K.tanh(q + k) # e_{t, t'} = W_a h_{t, t'} + b_a if self.use_attention_bias: e = K.reshape(K.dot(h, self.Wa) + self.ba, (batch_size, input_len, input_len)) else: e = K.reshape(K.dot(h, self.Wa), (batch_size, input_len, input_len)) return e def _call_multiplicative_emission(self, inputs): # e_{t, t'} = x_t^T W_a x_{t'} + b_a e = K.batch_dot(K.dot(inputs, self.Wa), K.permute_dimensions(inputs, (0, 2, 1))) if self.use_attention_bias: e += self.ba[0] return e def compute_output_shape(self, input_shape): output_shape = input_shape if self.return_attention: attention_shape = (input_shape[0], output_shape[1], input_shape[1]) return [output_shape, attention_shape] return output_shape def compute_mask(self, inputs, mask=None): if self.return_attention: return [mask, None] return mask def _attention_regularizer(self, attention): batch_size = K.cast(K.shape(attention)[0], K.floatx()) input_len = K.shape(attention)[-1] indices = K.expand_dims(K.arange(0, input_len), axis=0) diagonal = K.expand_dims(K.arange(0, input_len), axis=-1) eye = K.cast(K.equal(indices, diagonal), K.floatx()) return self.attention_regularizer_weight * K.sum(K.square(K.batch_dot( attention, K.permute_dimensions(attention, (0, 2, 1))) - eye)) / batch_size @staticmethod def get_custom_objects(): return {'SeqSelfAttention': SeqSelfAttention} class SeqWeightedAttention(keras.layers.Layer): r"""Y = \text{softmax}(XW + b) X See: https://arxiv.org/pdf/1708.00524.pdf using implementation of https://github.com/CyberZHG/keras-self-attention/blob/master/keras_self_attention/seq_weighted_attention.py The original code which has here been slightly modified came with following licence. ----------------------------------------------------------------------- MIT License Copyright (c) 2018 PoW Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- """ def __init__(self, use_bias=True, return_attention=False, **kwargs): super(SeqWeightedAttention, self).__init__(**kwargs) self.supports_masking = True self.use_bias = use_bias self.return_attention = return_attention self.W, self.b = None, None def get_config(self): config = { 'use_bias': self.use_bias, 'return_attention': self.return_attention, } base_config = super(SeqWeightedAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) def build(self, input_shape): self.W = self.add_weight(shape=(int(input_shape[2]), 1), name='{}_W'.format(self.name), initializer=keras.initializers.get('uniform')) if self.use_bias: self.b = self.add_weight(shape=(1,), name='{}_b'.format(self.name), initializer=keras.initializers.get('zeros')) super(SeqWeightedAttention, self).build(input_shape) def __call__(self, x, mask=None): # TODO different result when using call() if not self.built: self._maybe_build(x) logits = K.dot(x, self.W) if self.use_bias: logits += self.b x_shape = K.shape(x) logits = K.reshape(logits, (x_shape[0], x_shape[1])) if mask is not None: mask = K.cast(mask, K.floatx()) logits -= 10000.0 * (1.0 - mask) ai = math_ops.exp(logits - K.max(logits, axis=-1, keepdims=True), name="SeqWeightedAttention_exp") #att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon()) att_weights = tf.math.divide(ai, (math_ops.reduce_sum(ai, axis=1, keepdims=True, name="SeqWeightedAttention_sum") + K.epsilon()), name="SeqWeightedAttention_weights") weighted_input = x * K.expand_dims(att_weights) result = K.sum(weighted_input, axis=1) if self.return_attention: return [result, att_weights] return result def compute_output_shape(self, input_shape): output_len = input_shape[2] if self.return_attention: return [(input_shape[0], output_len), (input_shape[0], input_shape[1])] return input_shape[0], output_len def compute_mask(self, _, input_mask=None): if self.return_attention: return [None, None] return None @staticmethod def get_custom_objects(): return {'SeqWeightedAttention': SeqWeightedAttention} class SnailAttention(Layer): """ Based on work of Mishra et al., 2018 https://openreview.net/pdf?id=B1DmUzWAW Adopting code from https://github.com/philipperemy/keras-snail-attention/blob/master/attention.py """ def __init__(self, dims, k_size, v_size, seq_len=None, **kwargs): self.k_size = k_size self.seq_len = seq_len self.v_size = v_size self.dims = dims self.sqrt_k = math.sqrt(k_size) self.keys_fc = None self.queries_fc = None self.values_fc = None super(SnailAttention, self).__init__(**kwargs) def build(self, input_shape): # https://stackoverflow.com/questions/54194724/how-to-use-keras-layers-in-custom-keras-layer self.keys_fc = Dense(self.k_size, name="Keys_SnailAttn") self.keys_fc.build((None, self.dims)) self._trainable_weights.extend(self.keys_fc.trainable_weights) self.queries_fc = Dense(self.k_size, name="Queries_SnailAttn") self.queries_fc.build((None, self.dims)) self._trainable_weights.extend(self.queries_fc.trainable_weights) self.values_fc = Dense(self.v_size, name="Values_SnailAttn") self.values_fc.build((None, self.dims)) self._trainable_weights.extend(self.values_fc.trainable_weights) #super(SnailAttention, self).__init__(**kwargs) def __call__(self, inputs, **kwargs): if not self.built: self._maybe_build(inputs) # check that the implementation matches exactly py torch. keys = self.keys_fc(inputs) queries = self.queries_fc(inputs) values = self.values_fc(inputs) logits = K.batch_dot(queries, K.permute_dimensions(keys, (0, 2, 1))) mask = K.ones_like(logits) * np.triu((-np.inf) * np.ones(logits.shape.as_list()[1:]), k=1) logits = mask + logits probs = Softmax(axis=-1, name="Softmax_SnailAttn")(logits / self.sqrt_k) read = K.batch_dot(probs, values) output = K.concatenate([inputs, read], axis=-1) return output def compute_output_shape(self, input_shape): output_shape = list(input_shape) output_shape[-1] += self.v_size return tuple(output_shape) def regularized_padded_conv(conv_dim, *args, **kwargs): if conv_dim == "1d": return layers.Conv1D(*args, **kwargs, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(5e-4)) elif conv_dim == "2d": return layers.Conv2D(*args, **kwargs, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(5e-4)) else: raise ValueError(f"conv_dim must be either 1d or 2d but it is {conv_dim}") class ChannelAttention(layers.Layer): """Code adopted from https://github.com/zhangkaifang/CBAM-TensorFlow2.0. This feature attention generates time step context descriptors self.avg and self. max by using both average and max pooling operations along the time step axis and then fowards to a shared multi-layer perception (MLP) to produce the feature (channel) attention map.""" def __init__(self, conv_dim, in_planes, ratio=16, **kwargs): if conv_dim not in ["1d", "2d"]: raise ValueError(f" conv_dim must be either 1d or 2d but it is {conv_dim}") super(ChannelAttention, self).__init__(**kwargs) if conv_dim == "1d": self.axis = (1,) self.avg= layers.GlobalAveragePooling1D() self.max= layers.GlobalMaxPooling1D() self.conv1 = layers.Conv1D(in_planes//ratio, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, activation=tf.nn.relu, name='channel_attn1') self.conv2 = layers.Conv1D(in_planes, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, name='channel_attn2') elif conv_dim == "2d": self.axis = (1,1) self.avg= layers.GlobalAveragePooling2D() self.max= layers.GlobalMaxPooling2D() self.conv1 = layers.Conv2D(in_planes//ratio, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, activation=tf.nn.relu, name='channel_attn1') self.conv2 = layers.Conv2D(in_planes, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, name='channe2_attn1') def __call__(self, inputs, *args): avg = self.avg(inputs) # [256, 32, 32, 64] -> [256, 64] max_pool = self.max(inputs) # [256, 32, 32, 64] -> [256, 64] avg = layers.Reshape((*self.axis, avg.shape[1]))(avg) # shape (None, 1, 1 feature) # [256, 1, 1, 64] max_pool = layers.Reshape((*self.axis, max_pool.shape[1]))(max_pool) # shape (None, 1, 1 feature) # [256, 1, 1, 64] avg_out = self.conv2(self.conv1(avg)) # [256, 1, 1, 64] -> [256, 1, 1, 4] -> [256, 1, 1, 64] max_out = self.conv2(self.conv1(max_pool)) # [256, 1, 1, 64] -> [256, 1, 1, 4] -> [256, 1, 1, 64] out = avg_out + max_out # [256, 1, 1, 64] out = tf.nn.sigmoid(out, name="ChannelAttention_sigmoid") # [256, 1, 1, 64] return out class SpatialAttention(layers.Layer): """Code adopted from https://github.com/zhangkaifang/CBAM-TensorFlow2.0 . The time step (spatial) attention module generates a concatenated feature descriptor [F'Tavg;F'Tmax]∈R2×T by applying average pooling and max pooling along the feature axis, followed by a standard convolution layer.[6]. .. [6] Cheng, Y., Liu, Z., & Morimoto, Y. (2020). Attention-Based SeriesNet: An Attention-Based Hybrid Neural Network Model for Conditional Time Series Forecasting. Information, 11(6), 305. """ def __init__(self, conv_dim, kernel_size=7, **kwargs): if conv_dim not in ["1d", "2d"]: raise ValueError(f" conv_dim must be either 1d or 2d but it is {conv_dim}") super(SpatialAttention, self).__init__(**kwargs) if conv_dim == "1d": self.axis = 2 elif conv_dim == "2d": self.axis = 3 self.conv1 = regularized_padded_conv(conv_dim, 1, kernel_size=kernel_size, strides=1, activation=tf.nn.sigmoid, name="spatial_attn") def __call__(self, inputs, *args): avg_out = tf.reduce_mean(inputs, axis=self.axis, name="SpatialAttention_mean") # [256, 32, 32, 64] -> [256, 32, 32] max_out = tf.reduce_max(inputs, axis=self.axis, name="SpatialAttention_max") # [256, 32, 32, 64] -> [256, 32, 32] out = tf.stack([avg_out, max_out], axis=self.axis, name="SpatialAttention_stack") # concat。 -> [256, 32, 32, 2] out = self.conv1(out) # -> [256, 32, 32, 1] return out class attn_layers(object): SeqSelfAttention = SeqSelfAttention SnailAttention = SnailAttention SeqWeightedAttention = SeqWeightedAttention BahdanauAttention = BahdanauAttention HierarchicalAttention = HierarchicalAttention SpatialAttention = SpatialAttention ChannelAttention = ChannelAttention
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/attention_layers.py
attention_layers.py
from typing import Union from ai4water.backend import tf layers = tf.keras.layers Dense = tf.keras.layers.Dense Layer = tf.keras.layers.Layer activations = tf.keras.activations K = tf.keras.backend constraints = tf.keras.constraints initializers = tf.keras.initializers regularizers = tf.keras.regularizers from tensorflow.python.ops import array_ops from .attention_layers import ChannelAttention, SpatialAttention, regularized_padded_conv def _get_tensor_shape(t): return t.shape class ConditionalRNN(tf.keras.layers.Layer): # Arguments to the RNN like return_sequences, return_state... def __init__(self, units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, dropout=0.0, recurrent_dropout=0.0, kernel_regularizer=None, recurrent_regularizer=None, cell=tf.keras.layers.LSTMCell, *args, **kwargs): """ Conditional RNN. Conditions time series on categorical data. :param units: int, The number of units in the RNN Cell :param cell: string, cell class or object (pre-instantiated). In the case of string, 'GRU', 'LSTM' and 'RNN' are supported. :param args: Any parameters of the tf.keras.layers.RNN class, such as return_sequences, return_state, stateful, unroll... """ super().__init__() self.units = units self.final_states = None self.init_state = None if isinstance(cell, str): if cell.upper() == 'GRU': cell = tf.keras.layers.GRUCell elif cell.upper() == 'LSTM': cell = tf.keras.layers.LSTMCell elif cell.upper() == 'RNN': cell = tf.keras.layers.SimpleRNNCell else: raise Exception('Only GRU, LSTM and RNN are supported as cells.') self._cell = cell if hasattr(cell, 'units') else cell(units=units, activation=activation, dropout=dropout, recurrent_dropout=recurrent_dropout, recurrent_activation=recurrent_activation, kernel_initializer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, use_bias=use_bias ) self.rnn = tf.keras.layers.RNN(cell=self._cell, *args, **kwargs) # single cond self.cond_to_init_state_dense_1 = tf.keras.layers.Dense(units=self.units) # multi cond max_num_conditions = 10 self.multi_cond_to_init_state_dense = [] for _ in range(max_num_conditions): self.multi_cond_to_init_state_dense.append(tf.keras.layers.Dense(units=self.units)) self.multi_cond_p = tf.keras.layers.Dense(1, activation=None, use_bias=True) def _standardize_condition(self, initial_cond): initial_cond_shape = initial_cond.shape if len(initial_cond_shape) == 2: initial_cond = tf.expand_dims(initial_cond, axis=0) first_cond_dim = initial_cond.shape[0] if isinstance(self._cell, tf.keras.layers.LSTMCell): if first_cond_dim == 1: initial_cond = tf.tile(initial_cond, [2, 1, 1]) elif first_cond_dim != 2: raise Exception('Initial cond should have shape: [2, batch_size, hidden_size] ' 'or [batch_size, hidden_size]. Shapes do not match.', initial_cond_shape) elif isinstance(self._cell, tf.keras.layers.GRUCell) or isinstance(self._cell, tf.keras.layers.SimpleRNNCell): if first_cond_dim != 1: raise Exception('Initial cond should have shape: [1, batch_size, hidden_size] ' 'or [batch_size, hidden_size]. Shapes do not match.', initial_cond_shape) else: raise Exception('Only GRU, LSTM and RNN are supported as cells.') return initial_cond def __call__(self, inputs, *args, **kwargs): """ :param inputs: List of n elements: - [0] 3-D Tensor with shape [batch_size, time_steps, input_dim]. The inputs. - [1:] list of tensors with shape [batch_size, cond_dim]. The conditions. In the case of a list, the tensors can have a different cond_dim. :return: outputs, states or outputs (if return_state=False) """ assert (isinstance(inputs, list) or isinstance(inputs, tuple)) and len(inputs) >= 2, f"{type(inputs)}" x = inputs[0] cond = inputs[1:] if len(cond) > 1: # multiple conditions. init_state_list = [] for ii, c in enumerate(cond): init_state_list.append(self.multi_cond_to_init_state_dense[ii](self._standardize_condition(c))) multi_cond_state = self.multi_cond_p(tf.stack(init_state_list, axis=-1)) multi_cond_state = tf.squeeze(multi_cond_state, axis=-1) self.init_state = tf.unstack(multi_cond_state, axis=0) else: cond = self._standardize_condition(cond[0]) if cond is not None: self.init_state = self.cond_to_init_state_dense_1(cond) self.init_state = tf.unstack(self.init_state, axis=0) out = self.rnn(x, initial_state=self.init_state, *args, **kwargs) if self.rnn.return_state: outputs, h, c = out final_states = tf.stack([h, c]) return outputs, final_states else: return out class BasicBlock(layers.Layer): """ The official implementation is at https://github.com/Jongchan/attention-module/blob/master/MODELS/cbam.py The implementation of [1] does not have two conv and bn paris. They just applied channel attention followed by spatial attention on inputs. [1] https://github.com/kobiso/CBAM-tensorflow/blob/master/attention_module.py#L39 """ expansion = 1 def __init__(self, conv_dim, out_channels=32, stride=1, **kwargs): super(BasicBlock, self).__init__(**kwargs) # 1. BasicBlock模块中的共有2个卷积;BasicBlock模块中的第1个卷积层; self.conv1 = regularized_padded_conv(conv_dim, out_channels, kernel_size=3, strides=stride) self.bn1 = layers.BatchNormalization() # 2. 第2个;第1个卷积如果做stride就会有一个下采样,在这个里面就不做下采样了。这一块始终保持size一致,把stride固定为1 self.conv2 = regularized_padded_conv(conv_dim, out_channels, kernel_size=3, strides=1) self.bn2 = layers.BatchNormalization() # ############################## 注意力机制 ############################### self.ca = ChannelAttention(conv_dim=conv_dim, in_planes=out_channels) self.sa = SpatialAttention(conv_dim=conv_dim) # # 3. 判断stride是否等于1,如果为1就是没有降采样。 # if stride != 1 or in_channels != self.expansion * out_channels: # self.shortcut = Sequential([regularized_padded_conv(self.expansion * out_channels, # kernel_size=1, strides=stride), # layers.BatchNormalization()]) # else: # self.shortcut = lambda x, _: x def call(self, inputs, training=False): out = self.conv1(inputs) out = self.bn1(out, training=training) out = tf.nn.relu(out) out = self.conv2(out) out = self.bn2(out, training=training) # ############################## 注意力机制 ############################### out = self.ca(out) * out out = self.sa(out) * out # out = out + self.shortcut(inputs, training) # out = tf.nn.relu(out) return out class scaled_dot_product_attention(layers.Layer): def __init__(self, **kwargs): super().__init__(**kwargs) def __call__(self, q, k, v, mask): """Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) mask: Float tensor with shape broadcastable to (..., seq_len_q, seq_len_k). Defaults to None. Returns: output, attention_weights """ matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # add the mask to the scaled tensor. if mask is not None: scaled_attention_logits += (mask * -1e9) # softmax is normalized on the last axis (seq_len_k) so that the scores # add up to 1. attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1, name='scaled_dot_prod_attn_weights') # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v, name='scaled_dot_prod_attn_outs') # (..., seq_len_q, depth_v) return output, attention_weights MHW_COUNTER = 0 ENC_COUNTER = 0 class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 global MHW_COUNTER MHW_COUNTER += 1 self.depth = d_model // self.num_heads self.wq = tf.keras.layers.Dense(d_model, name=f"wq_{MHW_COUNTER}") self.wk = tf.keras.layers.Dense(d_model, name=f"wk_{MHW_COUNTER}") self.wv = tf.keras.layers.Dense(d_model, name=f"wv_{MHW_COUNTER}") self.dense = tf.keras.layers.Dense(d_model) def split_heads(self, x, batch_size): """Split the last dimension into (num_heads, depth). Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth) """ x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return tf.transpose(x, perm=[0, 2, 1, 3]) def __call__(self, v, k, q, mask): batch_size = tf.shape(q)[0] q = self.wq(q) # (batch_size, seq_len, d_model) k = self.wk(k) # (batch_size, seq_len, d_model) v = self.wv(v) # (batch_size, seq_len, d_model) q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth) k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth) v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth) # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) scaled_attention, attention_weights = scaled_dot_product_attention( )(q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model) output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model) return output, attention_weights def point_wise_feed_forward_network(d_model, dff): return tf.keras.Sequential([ tf.keras.layers.Dense(dff, activation='swish', name='swished_dense'), # (batch_size, seq_len, dff) tf.keras.layers.Dense(d_model, name='ffn_output') # (batch_size, seq_len, d_model) ]) class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1, **kwargs): super(EncoderLayer, self).__init__(**kwargs) global MHW_COUNTER MHW_COUNTER += 1 self.mha = MultiHeadAttention(d_model, num_heads) # self.ffn = point_wise_feed_forward_network(d_model, dff) self.swished_dense = layers.Dense(dff, activation='swish', name=f'swished_dense_{MHW_COUNTER}') self.ffn_output = layers.Dense(d_model, name=f'ffn_output_{MHW_COUNTER}') self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def __call__(self, x, training=True, mask=None): attn_output, attn_weights = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model) # ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model) temp = self.swished_dense(out1) ffn_output = self.ffn_output(temp) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model) return out2, attn_weights class TransformerBlocks(tf.keras.layers.Layer): """ This layer stacks Transformers on top of each other. Example ------- >>> import numpy as np >>> from tensorflow.keras.models import Model >>> from tensorflow.keras.layers import Input, Dense >>> from ai4water.models._tensorflow import TransformerBlocks >>> inp = Input(shape=(10, 32)) >>> out, _ = TransformerBlocks(4, 4, 32)(inp) >>> out = Dense(1)(out) >>> model = Model(inputs=inp, outputs=out) >>> model.compile(optimizer="Adam", loss="mse") >>> x = np.random.random((100, 10, 32)) >>> y = np.random.random(100) >>> h = model.fit(x,y) """ def __init__( self, num_blocks:int, num_heads:int, embed_dim:int, name:str = "TransformerBlocks", **kwargs ): """ Parameters ----------- num_blocks : int num_heads : int embed_dim : int **kwargs : additional keyword arguments for :class:`ai4water.models.tensorflow.Transformer` """ super(TransformerBlocks, self).__init__(name=name) self.num_blocks = num_blocks self.num_heads = num_heads self.embed_dim = embed_dim self.blocks = [] for n in range(num_blocks): self.blocks.append(Transformer(num_heads, embed_dim, **kwargs)) def get_config(self)->dict: config = { "num_blocks": self.num_blocks, "num_heads": self.num_heads, "embed_dim": self.embed_dim } return config def __call__(self, inputs, *args, **kwargs): attn_weights_list = [] for transformer in self.blocks: inputs, attn_weights = transformer(inputs) attn_weights_list.append(tf.reduce_sum(attn_weights[:, :, 0, :])) importances = tf.reduce_sum(tf.stack(attn_weights_list), axis=0) / ( self.num_blocks * self.num_heads) return inputs, importances class Transformer(tf.keras.layers.Layer): """ A basic transformer block consisting of LayerNormalization -> Add -> MultiheadAttention -> MLP -> Example ------- >>> import numpy as np >>> from tensorflow.keras.models import Model >>> from tensorflow.keras.layers import Input, Dense >>> from ai4water.models._tensorflow import Transformer >>> inp = Input(shape=(10, 32)) >>> out, _ = Transformer(4, 32)(inp) >>> out = Dense(1)(out) >>> model = Model(inputs=inp, outputs=out) >>> model.compile(optimizer="Adam", loss="mse") >>> x = np.random.random((100, 10, 32)) >>> y = np.random.random(100) >>> h = model.fit(x,y) """ def __init__( self, num_heads:int = 4, embed_dim:int=32, dropout=0.1, post_norm:bool = True, prenorm_mlp:bool = False, num_dense_lyrs:int = 1, seed:int = 313, *args, **kwargs ): """ Parameters ----------- num_heads : int number of attention heads embed_dim : int embedding dimension. This value is also used for units/neurons in MLP blocl dropout : float dropout rate in MLP blocl post_norm : bool (default=True) whether to apply LayerNormalization on the outputs or not. prenorm_mlp : bool whether to apply LayerNormalization on inputs of MLP or not num_dense_lyrs : int number of Dense layers in MLP block. """ super(Transformer, self).__init__(*args, **kwargs) self.num_heads = num_heads self.embed_dim = embed_dim self.dropout = dropout self.post_norm = post_norm self.prenorm_mlp = prenorm_mlp self.seed = seed assert num_dense_lyrs <= 2 self.num_dense_lyrs = num_dense_lyrs self.att = tf.keras.layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim, dropout=dropout ) self.skip1 = tf.keras.layers.Add() self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.ffn = self._make_mlp() self.skip2 = tf.keras.layers.Add() self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) def _make_mlp(self): lyrs = [] if self.prenorm_mlp: lyrs += [tf.keras.layers.LayerNormalization(epsilon=1e-6)] lyrs += [ Dense(self.embed_dim, activation=tf.keras.activations.gelu), tf.keras.layers.Dropout(self.dropout, seed=self.seed), ] if self.num_dense_lyrs>1: lyrs += [tf.keras.layers.Dense(self.embed_dim)] return tf.keras.Sequential(lyrs) def get_config(self)->dict: config = { "num_heads": self.num_heads, "embed_dim": self.embed_dim, "dropout": self.dropout, "post_norm": self.post_norm, "pre_norm_mlp": self.prenorm_mlp, "seed": self.seed, "num_dense_lyrs": self.num_dense_lyrs } return config def __call__(self, inputs, *args, **kwargs): inputs = self.layernorm1(inputs) attention_output, att_weights = self.att( inputs, inputs, return_attention_scores=True ) attention_output = self.skip1([inputs, attention_output]) feedforward_output = self.ffn(attention_output) outputs = self.skip2([feedforward_output, attention_output]) if self.post_norm: return self.layernorm2(outputs), att_weights return outputs, att_weights class NumericalEmbeddings(layers.Layer): def __init__( self, num_features, emb_dim, *args, **kwargs ): self.num_features = num_features self.emb_dim = emb_dim super(NumericalEmbeddings, self).__init__(*args, **kwargs) def build(self, input_shape): w_init = tf.random_normal_initializer() # features, n_bins, emb_dim self.linear_w = tf.Variable( initial_value=w_init( shape=(self.num_features, 1, self.emb_dim), dtype='float32' ), trainable=True, name="NumEmbeddingWeights") # features, n_bins, emb_dim self.linear_b = tf.Variable( w_init( shape=(self.num_features, 1), dtype='float32' ), trainable=True, name="NumEmbeddingBias") return def get_config(self)->dict: config = { "num_features": self.num_features, "emb_dim": self.emb_dim } return config def call(self, X, *args, **kwargs): embs = tf.einsum('f n e, b f -> bfe', self.linear_w, X) embs = tf.nn.relu(embs + self.linear_b) return embs class CatEmbeddings(layers.Layer): """ The layer to encode categorical features. Parameters ----------- vocabulary : dict embed_dim : int dimention of embedding for each categorical feature lookup_kws : dict keyword arguments that will go to StringLookup layer """ def __init__( self, vocabulary:dict, embed_dim:int = 32, lookup_kws:dict = None, *args, **kwargs ): super(CatEmbeddings, self).__init__(*args, **kwargs) self.vocabulary = vocabulary self.embed_dim = embed_dim self.lookup_kws = lookup_kws self.lookups = {} self.embedding_lyrs = {} self.feature_names = [] _lookup_kws = dict(mask_token=None, num_oov_indices=0, output_mode="int") if lookup_kws is not None: _lookup_kws.update(lookup_kws) for feature_name, vocab in vocabulary.items(): lookup = layers.StringLookup( vocabulary=vocab, **_lookup_kws ) self.lookups[feature_name] = lookup embedding = layers.Embedding( input_dim=len(vocab), output_dim=embed_dim ) self.embedding_lyrs[feature_name] = embedding self.feature_names.append(feature_name) def get_config(self)->dict: config = { "lookup_kws": self.lookup_kws, "embed_dim": self.embed_dim, "vocabulary": self.vocabulary } return config def call(self, inputs, *args, **kwargs): """ The tensors in `inputs` list must be in same order as in the `vocabulary` dictionary. Parameters ------------- inputs : list a list of tensors of shape (None,) Returns ------- a tensor of shape (None, num_cat_features, embed_dim) """ encoded_features = [] for idx, feat_name in enumerate(self.feature_names): feat_input = inputs[:, idx] lookup = self.lookups[feat_name] encoded_feature = lookup(feat_input) embedding = self.embedding_lyrs[feat_name] encoded_categorical_feature = embedding(encoded_feature) encoded_features.append(encoded_categorical_feature) cat_embeddings = tf.stack(encoded_features, axis=1) return cat_embeddings class TabTransformer(layers.Layer): """ tensorflow/keras layer which implements logic of TabTransformer model. The TabTransformer layer converts categorical features into contextual embeddings by passing them into Transformer block. The output of Transformer block is concatenated with numerical features and passed through an MLP to get the final model output. It is available only in tensorflow >= 2.6 """ def __init__( self, num_numeric_features: int, cat_vocabulary: dict, hidden_units=32, lookup_kws:dict=None, num_heads: int = 4, depth: int = 4, dropout: float = 0.1, num_dense_lyrs: int = 2, prenorm_mlp: bool = True, post_norm: bool = True, final_mlp_units = 16, final_mpl_activation:str = "selu", seed: int = 313, *args, **kwargs ): """ Parameters ---------- num_numeric_features : int number of numeric features to be used as input. cat_vocabulary : dict a dictionary whose keys are names of categorical features and values are lists which consist of unique values of categorical features. You can use the function :py:meth:`ai4water.models.utils.gen_cat_vocab` to create this for your own data. The length of dictionary should be equal to number of categorical features. If it is None, then this layer expects only numeri features hidden_units : int, optional (default=32) number of hidden units num_heads : int, optional (default=4) number of attention heads depth : int (default=4) number of transformer blocks to be stacked on top of each other dropout : int, optional (default=0.1) droput rate in transformer post_norm : bool (default=True) prenorm_mlp : bool (default=True) num_dense_lyrs : int (default=2) number of dense layers in MLP block inside the Transformer final_mlp_units : int (default=16) number of units/neurons in final MLP layer i.e. the MLP layer after Transformer block """ super(TabTransformer, self).__init__(*args, **kwargs) self.cat_vocabulary = cat_vocabulary self.num_numeric_inputs = num_numeric_features self.hidden_units = hidden_units self.lookup_kws = lookup_kws self.num_heads = num_heads self.depth = depth self.dropout = dropout self.final_mlp_units = final_mlp_units self.final_mpl_activation = final_mpl_activation self.seed = seed self.cat_embs = CatEmbeddings( vocabulary=cat_vocabulary, embed_dim=hidden_units, lookup_kws=lookup_kws ) # layer normalization of numerical features self.lyr_norm = layers.LayerNormalization(epsilon=1e-6) self.transformers = TransformerBlocks( embed_dim=hidden_units, num_heads=num_heads, num_blocks=depth, num_dense_lyrs=num_dense_lyrs, post_norm=post_norm, prenorm_mlp=prenorm_mlp, dropout=dropout, seed=seed ) self.flatten = layers.Flatten() self.concat = layers.Concatenate() self.mlp = self.create_mlp( activation=self.final_mpl_activation, normalization_layer=layers.BatchNormalization(), name="MLP", ) # Implement an MLP block def create_mlp( self, activation, normalization_layer, name=None ): if isinstance(self.final_mlp_units, int): hidden_units = [self.final_mlp_units] else: assert isinstance(self.final_mlp_units, list) hidden_units = self.final_mlp_units mlp_layers = [] for units in hidden_units: mlp_layers.append(normalization_layer), mlp_layers.append(layers.Dense(units, activation=activation)) mlp_layers.append(layers.Dropout(self.dropout, seed=self.seed)) return tf.keras.Sequential(mlp_layers, name=name) def __call__(self, inputs:list, *args, **kwargs): """ inputs : list of 2. The first tensor is numerical inputs and second tensor is categorical inputs """ num_inputs = inputs[0] cat_inputs = inputs[1] cat_embs = self.cat_embs(cat_inputs) transformer_outputs, imp = self.transformers(cat_embs) flat_transformer_outputs = self.flatten(transformer_outputs) num_embs = self.lyr_norm(num_inputs) x = self.concat([num_embs, flat_transformer_outputs]) return self.mlp(x), imp class FTTransformer(layers.Layer): """ tensorflow/keras layer which implements logic of FTTransformer model. In FTTransformer, both categorical and numerical features are passed through transformer block and then passed through MLP layer to get the final model prediction. """ def __init__( self, num_numeric_features: int, cat_vocabulary: Union[dict, None] = None, hidden_units=32, num_heads: int = 4, depth: int = 4, dropout: float = 0.1, lookup_kws:dict = None, num_dense_lyrs: int = 2, post_norm: bool = True, final_mlp_units: int = 16, with_cls_token:bool = False, seed: int = 313, *args, **kwargs ): """ Parameters ---------- num_numeric_features : int number of numeric features to be used as input. cat_vocabulary : dict/None a dictionary whose keys are names of categorical features and values are lists which consist of unique values of categorical features. You can use the function :py:meth:`ai4water.models.utils.gen_cat_vocab` to create this for your own data. The length of dictionary should be equal to number of categorical features. If it is None, then this layer expects only numeri features hidden_units : int, optional (default=32) number of hidden units num_heads : int, optional (default=4) number of attention heads depth : int (default=4) number of transformer blocks to be stacked on top of each other dropout : float, optional (default=0.1) droput rate in transformer lookup_kws : dict keyword arguments for lookup layer post_norm : bool (default=True) num_dense_lyrs : int (default=2) number of dense layers in MLP block inside the Transformer final_mlp_units : int (default=16) number of units/neurons in final MLP layer i.e. the MLP layer after Transformer block with_cls_token : bool (default=False) whether to use cls token or not seed : int seed for reproducibility """ super(FTTransformer, self).__init__(*args, **kwargs) self.cat_vocabulary = cat_vocabulary self.num_numeric_inputs = num_numeric_features self.hidden_units = hidden_units self.num_heads = num_heads self.depth = depth self.dropout = dropout self.final_mlp_units = final_mlp_units self.with_cls_token = with_cls_token self.seed = seed if cat_vocabulary is not None: self.cat_embs = CatEmbeddings( vocabulary=cat_vocabulary, embed_dim=hidden_units, lookup_kws=lookup_kws ) self.num_embs = NumericalEmbeddings( num_features=num_numeric_features, emb_dim=hidden_units ) if cat_vocabulary is not None: self.concat = layers.Concatenate(axis=1) self.transformers = TransformerBlocks( embed_dim=hidden_units, num_heads=num_heads, num_blocks=depth, num_dense_lyrs=num_dense_lyrs, post_norm=post_norm, dropout=dropout, seed=seed ) self.lmbda = tf.keras.layers.Lambda(lambda x: x[:, 0, :]) self.lyr_norm = layers.LayerNormalization(epsilon=1e-6) self.mlp = layers.Dense(final_mlp_units) def build(self, input_shape): if self.with_cls_token: # CLS token w_init = tf.random_normal_initializer() self.cls_weights = tf.Variable( initial_value=w_init(shape=(1, self.hidden_units), dtype="float32"), trainable=True, ) return def __call__(self, inputs:list, *args, **kwargs): """ inputs : If categorical variables are considered then inputs is a list of 2. The first tensor is numerical inputs and second tensor is categorical inputs. If categorical variables are not considered then inputs is just a single tensor! """ if self.cat_vocabulary is None: if isinstance(inputs, list): assert len(inputs) == 1 num_inputs = inputs[0] else: num_inputs = inputs else: assert len(inputs) == 2 num_inputs = inputs[0] cat_inputs = inputs[1] # cls_tokens = tf.repeat(self.cls_weights, repeats=tf.shape(inputs[self.numerical[0]])[0], axis=0) # cls_tokens = tf.expand_dims(cls_tokens, axis=1) num_embs = self.num_embs(num_inputs) if self.cat_vocabulary is None: embs = num_embs else: cat_embs = self.cat_embs(cat_inputs) embs = self.concat([num_embs, cat_embs]) x, imp = self.transformers(embs) x = self.lmbda(x) x = self.lyr_norm(x) return self.mlp(x), imp class Conditionalize(tf.keras.layers.Layer): """Mimics the behaviour of cond_rnn of Philipperemy but puts the logic of condition in a separate layer so that it becomes easier to use it. Example -------- >>> from ai4water.models._tensorflow import Conditionalize >>> from tensorflow.keras.layers import Input, LSTM >>> i = Input(shape=(10, 3)) >>> raw_conditions = Input(shape=(14,)) >>> processed_conds = Conditionalize(32)([raw_conditions, raw_conditions, raw_conditions]) >>> rnn = LSTM(32)(i, initial_state=[processed_conds, processed_conds]) This layer can also be used in ai4water model when defining the model using declarative model definition style >>> from ai4water import Model >>> import numpy as np >>> model = Model(model={"layers": { ... "Input": {"shape": (10, 3)}, ... "Input_cat": {"shape": (10,)}, ... "Conditionalize": {"config": {"units": 32, "name": "h_state"}, ... "inputs": "Input_cat"}, ... "LSTM": {"config": {"units": 32}, ... "inputs": "Input", ... 'call_args': {'initial_state': ['h_state', 'h_state']}}, ... "Dense": {"units": 1}}}, ... ts_args={"lookback": 10}, verbosity=0, epochs=1) ... # define the input and call the .fit method >>> x1 = np.random.random((100, 10, 3)) >>> x2 = np.random.random((100, 10)) >>> y = np.random.random(100) >>> h = model.fit(x=[x1, x2], y=y) """ def __init__(self, units, max_num_cond=10, use_bias:bool = True, **kwargs): self.units = units super().__init__(**kwargs) # single cond self.cond_to_init_state_dense_1 = tf.keras.layers.Dense(units=self.units, use_bias=use_bias, name="conditional_dense") # multi cond self.multi_cond_to_init_state_dense = [] for i in range(max_num_cond): self.multi_cond_to_init_state_dense.append(tf.keras.layers.Dense( units=self.units, use_bias=use_bias, name=f"conditional_dense{i}")) self.multi_cond_p = tf.keras.layers.Dense(1, activation=None, use_bias=True, name="conditional_dense_out") @staticmethod def _standardize_condition(initial_cond): assert len(initial_cond.shape) == 2, initial_cond.shape return initial_cond def __call__(self, inputs, *args, **kwargs): if args or kwargs: raise ValueError(f"Unrecognized input arguments\n args: {args} \nkwargs: {kwargs}") if inputs.__class__.__name__ in ("Tensor", "KerasTensor"): inputs = [inputs] assert isinstance(inputs, (list, tuple)) and len(inputs) >= 1, f"{type(inputs)}" cond = inputs if len(cond) > 1: # multiple conditions. init_state_list = [] for idx, c in enumerate(cond): init_state_list.append(self.multi_cond_to_init_state_dense[idx](self._standardize_condition(c))) multi_cond_state = tf.stack(init_state_list, axis=-1) # -> (?, units, num_conds) multi_cond_state = self.multi_cond_p(multi_cond_state) # -> (?, units, 1) cond_state = tf.squeeze(multi_cond_state, axis=-1) # -> (?, units) else: cond = self._standardize_condition(cond[0]) cond_state = self.cond_to_init_state_dense_1(cond) # -> (?, units) return cond_state class _NormalizedGate(Layer): _Normalizers = { 'relu': tf.nn.relu, 'sigmoid': tf.nn.sigmoid } def __init__(self, in_features, out_shape, normalizer="relu"): super(_NormalizedGate, self).__init__() self.in_features = in_features self.out_shape = out_shape self.normalizer = self._Normalizers[normalizer] self.fc = Dense(out_shape[0]*out_shape[1], use_bias=True, kernel_initializer="Orthogonal", bias_initializer="zeros") def call(self, inputs): h = self.fc(inputs) h = tf.reshape(h, (-1, *self.out_shape)) h = self.normalizer(h) normalized, _ = tf.linalg.normalize(h, axis=-1) return normalized class _MCLSTMCell(Layer): """ Examples -------- m_inp = tf.range(50, dtype=tf.float32) m_inp = tf.reshape(m_inp, (5, 10, 1)) aux_inp = tf.range(150, dtype=tf.float32) aux_inp = tf.reshape(aux_inp, (5, 10, 3)) cell = _MCLSTMCell(1, 3, 8) m_out_, ct_ = cell(m_inp, aux_inp) """ def __init__( self, mass_input_size, aux_input_size, units, time_major:bool = False, ): super(_MCLSTMCell, self).__init__() self.units = units self.time_major = time_major gate_inputs = aux_input_size + self.units + mass_input_size self.output_gate = Dense(self.units, activation="sigmoid", kernel_initializer="Orthogonal", bias_initializer="zeros", name="sigmoid_gate") self.input_gate = _NormalizedGate(gate_inputs, (mass_input_size, self.units), "sigmoid") self.redistribution = _NormalizedGate(gate_inputs, (self.units, self.units), "relu") def call(self, x_m, x_a, ct=None): if not self.time_major: # (batch_size, lookback, input_features) -> (lookback, batch_size, input_features) x_m = tf.transpose(x_m, [1, 0, 2]) x_a = tf.transpose(x_a, [1, 0, 2]) lookback_steps, batch_size, _ = x_m.shape if ct is None: ct = tf.zeros((batch_size, self.units)) m_out, c = [], [] for time_step in range(lookback_steps): mt_out, ct = self._step(x_m[time_step], x_a[time_step], ct) m_out.append(mt_out) c.append(ct) m_out, c = tf.stack(m_out), tf.stack(c) # (lookback, batch_size, units) return m_out, c def _step(self, xt_m, xt_a, c): features = tf.concat([xt_m, xt_a, c / (tf.norm(c) + 1e-5)], axis=-1) # (examples, ?) # compute gate activations i = self.input_gate(features) # (examples, 1, units) r = self.redistribution(features) # (examples, units, units) o = self.output_gate(features) # (examples, units) m_in = tf.squeeze(tf.matmul(tf.expand_dims(xt_m, axis=-2), i), axis=-2) m_sys = tf.squeeze(tf.matmul(tf.expand_dims(c, axis=-2), r), axis=-2) m_new = m_in + m_sys return tf.multiply(o, m_new), tf.multiply(tf.subtract(1.0, o), m_new) class MCLSTM(Layer): """Mass-Conserving LSTM model from Hoedt et al. [1]_. This implementation follows of NeuralHydrology's implementation of MCLSTM with some changes: 1) reduced sum is not performed for over the units 2) time_major argument is added 3) no implementation of Embedding Examples -------- >>> from ai4water.models._tensorflow import MCLSTM >>> import tensorflow as tf >>> inputs = tf.range(150, dtype=tf.float32) >>> inputs = tf.reshape(inputs, (10, 5, 3)) >>> mc = MCLSTM(1, 2, 8, 1) >>> h = mc(inputs) # (batch, units) ... >>> mc = MCLSTM(1, 2, 8, 1, return_sequences=True) >>> h = mc(inputs) # (batch, lookback, units) ... >>> mc = MCLSTM(1, 2, 8, 1, return_state=True) >>> _h, _o, _c = mc(inputs) # (batch, lookback, units) ... >>> mc = MCLSTM(1, 2, 8, 1, return_state=True, return_sequences=True) >>> _h, _o, _c = mc(inputs) # (batch, lookback, units) ... ... # with time_major as True >>> inputs = tf.range(150, dtype=tf.float32) >>> inputs = tf.reshape(inputs, (5, 10, 3)) >>> mc = MCLSTM(1, 2, 8, 1, time_major=True) >>> _h = mc(inputs) # (batch, units) ... >>> mc = MCLSTM(1, 2, 8, 1, time_major=True, return_sequences=True) >>> _h = mc(inputs) # (lookback, batch, units) ... >>> mc = MCLSTM(1, 2, 8, 1, time_major=True, return_state=True) >>> _h, _o, _c = mc(inputs) # (batch, units), ..., (lookback, batch, units) ... ... # end to end keras Model >>> from tensorflow.keras.layers import Dense, Input >>> from tensorflow.keras.models import Model >>> import numpy as np ... >>> inp = Input(batch_shape=(32, 10, 3)) >>> lstm = MCLSTM(1, 2, 8)(inp) >>> out = Dense(1)(lstm) ... >>> model = Model(inputs=inp, outputs=out) >>> model.compile(loss='mse') ... >>> x = np.random.random((320, 10, 3)) >>> y = np.random.random((320, 1)) >>> y = model.fit(x=x, y=y) References ---------- .. [1] https://arxiv.org/abs/2101.05186 """ def __init__( self, num_mass_inputs, dynamic_inputs, units, num_targets=1, time_major:bool = False, return_sequences:bool = False, return_state:bool = False, name="MCLSTM", **kwargs ): """ Parameters ---------- num_targets : int number of inputs for which mass balance is to be reserved. dynamic_inputs : number of inpts other than mass_targets units : hidden size, determines the size of weight matrix time_major : bool, optional (default=True) if True, the data is expected to be of shape (lookback, batch_size, input_features) otherwise, data is expected of shape (batch_size, lookback, input_features) """ super(MCLSTM, self).__init__(name=name, **kwargs) assert num_mass_inputs ==1 assert units>1 assert num_targets==1 self.n_mass_inputs = num_mass_inputs self.units = units self.n_aux_inputs = dynamic_inputs self.time_major = time_major self.return_sequences = return_sequences self.return_state = return_state self.mclstm = _MCLSTMCell( self.n_mass_inputs, self.n_aux_inputs, self.units, self.time_major, ) def call(self, inputs): x_m = inputs[:, :, :self.n_mass_inputs] # (batch, lookback, 1) x_a = inputs[:, :, self.n_mass_inputs:] # (batch, lookback, dynamic_inputs) output, c = self.mclstm(x_m, x_a) # (lookback, batch, units) # unlike NeuralHydrology, we don't preform reduced sum over units # to keep with the convention in keras/lstm #output = tf.math.reduce_sum(output[:, :, 1:], axis=-1, keepdims=True) if self.time_major: h, m_out, c = output, output, c if not self.return_sequences: h = h[-1] else: h = tf.transpose(output, [1, 0, 2]) # -> (batch_size, lookback, 1) #m_out = tf.transpose(output, [1, 0, 2]) # -> (batch_size, lookback, 1) c = tf.transpose(c, [1, 0, 2]) # -> (batch_size, lookback, units) if not self.return_sequences: h = h[:, -1] if self.return_state: return h, h, c return h class EALSTM(Layer): """Entity Aware LSTM as proposed by Kratzert et al., 2019 [1]_ The difference here is that a Dense layer is not applied on cell state as done in original implementation in NeuralHydrology [2]_. This is left to user's discretion. Examples -------- >>> from ai4water.models._tensorflow import EALSTM >>> import tensorflow as tf >>> batch_size, lookback, num_dyn_inputs, num_static_inputs, units = 10, 5, 3, 2, 8 >>> inputs = tf.range(batch_size*lookback*num_dyn_inputs, dtype=tf.float32) >>> inputs = tf.reshape(inputs, (batch_size, lookback, num_dyn_inputs)) >>> stat_inputs = tf.range(batch_size*num_static_inputs, dtype=tf.float32) >>> stat_inputs = tf.reshape(stat_inputs, (batch_size, num_static_inputs)) >>> lstm = EALSTM(units, num_static_inputs) >>> h_n = lstm(inputs, stat_inputs) # -> (batch_size, units) ... ... # with return sequences >>> lstm = EALSTM(units, num_static_inputs, return_sequences=True) >>> h_n = lstm(inputs, stat_inputs) # -> (batch, lookback, units) ... ... # with return sequences and return_state >>> lstm = EALSTM(units, num_static_inputs, return_sequences=True, return_state=True) >>> h_n, [c_n, y_hat] = lstm(inputs, stat_inputs) # -> (batch, lookback, units), [(), ()] ... ... # end to end Keras model >>> from tensorflow.keras.models import Model >>> from tensorflow.keras.layers import Input, Dense >>> import numpy as np >>> inp_dyn = Input(batch_shape=(batch_size, lookback, num_dyn_inputs)) >>> inp_static = Input(batch_shape=(batch_size, num_static_inputs)) >>> lstm = EALSTM(units, num_static_inputs)(inp_dyn, inp_static) >>> out = Dense(1)(lstm) >>> model = Model(inputs=[inp_dyn, inp_static], outputs=out) >>> model.compile(loss='mse') >>> print(model.summary()) ... # generate hypothetical data and train it >>> dyn_x = np.random.random((100, lookback, num_dyn_inputs)) >>> static_x = np.random.random((100, num_static_inputs)) >>> y = np.random.random((100, 1)) >>> h = model.fit(x=[dyn_x, static_x], y=y, batch_size=batch_size) References ---------- .. [1] https://doi.org/10.5194/hess-23-5089-2019 .. [2] https://github.com/neuralhydrology/neuralhydrology """ def __init__( self, units:int, num_static_inputs:int, use_bias:bool=True, activation = "tanh", recurrent_activation="sigmoid", static_activation="sigmoid", kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', static_initializer = "glorot_uniform", kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, static_constraint=None, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, static_regularizer=None, return_state=False, return_sequences=False, time_major=False, **kwargs ): """ Parameters ---------- units : int number of units num_static_inputs : int number of static features static_activation : activation function for static input gate static_regularizer : static_constraint : static_initializer : """ super(EALSTM, self).__init__(**kwargs) self.units = units self.num_static_inputs = num_static_inputs self.activation = activations.get(activation) self.rec_activation = activations.get(recurrent_activation) self.static_activation = static_activation self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.static_initializer = initializers.get(static_initializer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.static_constraint = static_constraint self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.static_regularizer = static_regularizer self.return_state = return_state self.return_sequences = return_sequences self.time_major=time_major self.input_gate = Dense(units, use_bias=self.use_bias, kernel_initializer=self.static_initializer, bias_initializer=self.bias_initializer, activation=self.static_activation, kernel_constraint=self.static_constraint, bias_constraint=self.bias_constraint, kernel_regularizer=self.static_regularizer, bias_regularizer=self.bias_regularizer, name="input_gate") def call(self, inputs, static_inputs, initial_state=None, **kwargs): """ static_inputs : of shape (batch, num_static_inputs) """ if not self.time_major: inputs = tf.transpose(inputs, [1, 0, 2]) lookback, batch_size, _ = inputs.shape if initial_state is None: initial_state = tf.zeros((batch_size, self.units)) # todo state = [initial_state, initial_state] else: state = initial_state # calculate input gate only once because inputs are static inp_g = self.input_gate(static_inputs) # (batch, num_static_inputs) -> (batch, units) outputs, states = [], [] for time_step in range(lookback): _out, state = self.cell(inputs[time_step], inp_g, state) outputs.append(_out) states.append(state) outputs = tf.stack(outputs) h_s = tf.stack([states[i][0] for i in range(lookback)]) c_s = tf.stack([states[i][1] for i in range(lookback)]) if not self.time_major: outputs = tf.transpose(outputs, [1, 0, 2]) h_s = tf.transpose(h_s, [1, 0, 2]) c_s = tf.transpose(c_s, [1, 0, 2]) states = [h_s, c_s] last_output = outputs[:, -1] else: states = [h_s, c_s] last_output = outputs[-1] h = last_output if self.return_sequences: h = outputs if self.return_state: return h, states return h def cell(self, inputs, i, states): h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state k_f, k_c, k_o = array_ops.split(self.kernel, num_or_size_splits=3, axis=1) x_f = K.dot(inputs, k_f) x_c = K.dot(inputs, k_c) x_o = K.dot(inputs, k_o) if self.use_bias: b_f, b_c, b_o = array_ops.split( self.bias, num_or_size_splits=3, axis=0) x_f = K.bias_add(x_f, b_f) x_c = K.bias_add(x_c, b_c) x_o = K.bias_add(x_o, b_o) # forget gate f = self.rec_activation(x_f + K.dot(h_tm1, self.rec_kernel[:, :self.units])) # cell state c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1, self.rec_kernel[:, self.units:self.units * 2])) # output gate o = self.rec_activation(x_o + K.dot(h_tm1, self.rec_kernel[:, self.units * 2:])) h = o * self.activation(c) return h, [h, c] def build(self, input_shape): """ kernel, recurrent_kernel and bias are initiated for 3 gates instead of 4 gates as in original LSTM """ input_dim = input_shape[-1] self.bias = self.add_weight( shape=(self.units * 3,), name='bias', initializer=self.bias_initializer, constraint=self.bias_constraint, regularizer=self.bias_regularizer ) self.kernel = self.add_weight( shape=(input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, constraint=self.kernel_constraint, regularizer=self.kernel_regularizer ) self.rec_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, constraint=self.recurrent_constraint, regularizer=self.recurrent_regularizer ) self.built = True return class PrivateLayers(object): class layers: BasicBlock = BasicBlock CONDRNN = ConditionalRNN Conditionalize = Conditionalize MCLSTM = MCLSTM EALSTM = EALSTM CatEmbeddings = CatEmbeddings TransformerBlocks = TransformerBlocks NumericalEmbeddings = NumericalEmbeddings TabTransformer = TabTransformer FTTransformer = FTTransformer
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/private_layers.py
private_layers.py
__all__ = ['TemporalFusionTransformer'] """ This file contain most of the code from https://github.com/google-research/google-research/blob/master/tft/libs/tft_model.py The TemporalFusionTransformer class has been modified so that it can be used as regular layer and without static, categorical, observation and future inputs. It has also been modified to use 1D CNN as an alternative of LSTM The original code had Apache Licence, Version 2.0 although a lot of the code has been modified here. http://www.apache.org/licenses/LICENSE-2.0 """ import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.layers import TimeDistributed, Dense, InputLayer, Embedding, Conv1D, Flatten from .utils import concatenate, gated_residual_network, add_and_norm, apply_gating_layer, get_decoder_mask from .utils import InterpretableMultiHeadAttention # Layer definitions. stack = tf.keras.backend.stack class TemporalFusionTransformer(tf.keras.layers.Layer): """ Implements the model of https://arxiv.org/pdf/1912.09363.pdf This layer applies variable selection three times. First on static inputs, then on encoder inputs and then on decoder inputs. The corresponding weights are called `static_weights`, `historical_weights` and `future_weights` respectively. 1, 11, 21, 31, a 2, 12, 22, 32, b 3, 13, 23, 33, c 4, 14, 24, 34, d Parameters --------- hidden_units : int determines the depth/weight matrices size in TemporalFusionTransformer. num_encoder_steps : int lookback steps used in the model. num_heads : int must be>=1, number of attention heads to be used in MultiheadAttention layer. num_inputs : int number of input features total_time_steps : int greater than num_encoder_steps, This is sum of lookback steps + forecast length. Forecast length is the number of horizons to be predicted. known_categorical_inputs : list a,b,c input_obs_loc : unknown_inputs : static_inputs : static_input_loc None/list: location of static inputs category_counts : list Number of categories per categorical variable use_cnn : bool whether to use cnn or not. If not, then lstm will be used otherwise 1D CNN will be used with "causal" padding. kernel_size : int kernel size for 1D CNN. Only valid if use_cnn is True. use_cudnn : bool default False, Whether to use Keras CuDNNLSTM or standard LSTM layers dropout_rate : float default 0.1, >=0 and <=1 amount of dropout to be used at GRNs. future_inputs : bool whether the given data contains futre known observations or not. return_attention_components bool: If True, then this layer (upon its call) will return outputs + attention componnets. Attention components are dictionary consisting of following keys and their values as numpy arrays. return_sequences bool: if True, then output and attention weights will consist of encoder_lengths/lookback and decoder_length/forecast_len. Otherwise predictions for only decoder_length will be returned. Example ------- >>> params = {'num_inputs': 3, 'total_time_steps': 192, 'known_regular_inputs': [0, 1, 2]} >>> output_size = 1 >>> quantiles = [0.25, 0.5, 0.75] >>> layers = { >>> "Input": {"config": {"shape": (params['total_time_steps'], params['num_inputs']), 'name': "Model_Input"}}, >>> "TemporalFusionTransformer": {"config": params}, >>> "lambda": {"config": tf.keras.layers.Lambda(lambda _x: _x[Ellipsis, -1, :])}, >>> "Dense": {"config": {"units": output_size * len(quantiles)}}, >>> 'Reshape': {'target_shape': (3, 1)}} """ def __init__( self, hidden_units: int, num_encoder_steps: int, num_heads: int, num_inputs: int, total_time_steps: int, known_categorical_inputs, static_input_loc, category_counts, known_regular_inputs, input_obs_loc, use_cnn: bool = False, kernel_size: int = None, # stack_size:int = 1, use_cudnn: bool = False, dropout_rate: float = 0.1, future_inputs: bool = False, return_attention_components: bool = False, return_sequences: bool = False, **kwargs ): if use_cudnn: assert kernel_size is not None self.time_steps = total_time_steps self.input_size = num_inputs self.use_cnn = use_cnn self.kernel_size = kernel_size self._known_regular_input_idx = known_regular_inputs # [1,2,3] self._input_obs_loc = input_obs_loc # [0] self._static_input_loc = static_input_loc # [3,4] self.category_counts = category_counts # [2, 2] self._known_categorical_input_idx = known_categorical_inputs # Network params self.use_cudnn = use_cudnn # Whether to use GPU optimised LSTM self.hidden_units = int(hidden_units) self.dropout_rate = float(dropout_rate) self.encoder_steps = num_encoder_steps # historical steps/lookback steps self.num_heads = int(num_heads) # self.num_stacks= int(stack_size) # todo self.future_inputs = future_inputs self.return_attention_components = return_attention_components self.return_sequences = return_sequences super().__init__(**kwargs) def __call__(self, alle_inputs, *args, **kwargs): """Returns graph defining layers of the TFT. """ # Size definitions. encoder_steps = self.encoder_steps # encoder_steps unknown_inputs, known_combined_layer, obs_inputs, static_inputs = self.get_tft_embeddings(alle_inputs) # known_combined_layer.shape = (num_examples, time_steps, hidden_units, num_outputs) # obs_inputs.shape = (num_examples, time_steps, hidden_units, 1) # static_inputs.shape = (num_examples, num_cat_variables, hidden_units) # Isolate known and observed historical inputs. if unknown_inputs is not None: historical_inputs = concatenate([ unknown_inputs[:, :encoder_steps, :], known_combined_layer[:, :encoder_steps, :], obs_inputs[:, :encoder_steps, :] ], axis=-1, name="historical_inputs") else: if obs_inputs is not None: # we are extracting only historical data i.e. lookback from obs_inputs # (num_examples, encoder_steps, hidden_units, 4) <- (num_examples, encoder_steps, hidden_units, num_outputs) | (num_examples, encoder_steps, hidden_units, 1) historical_inputs = concatenate([ known_combined_layer[:, :encoder_steps, :], obs_inputs[:, :encoder_steps, :]], axis=-1, name="historical_inputs") else: historical_inputs = known_combined_layer[:, :encoder_steps, :] if self.future_inputs: assert self.time_steps - self.encoder_steps > 0 # Isolate only known future inputs. future_inputs = known_combined_layer[:, encoder_steps:, :] # (num_examples, 24, hidden_units, num_outputs) else: assert self.time_steps == self.encoder_steps future_inputs = None def static_combine_and_mask(embedding): """Applies variable selection network to static inputs. Args: embedding: Transformed static inputs (num_examples, num_cat_variables, hidden_units) Returns: Tensor output for variable selection network """ # Add temporal features _, num_static, _ = embedding.get_shape().as_list() flatten = tf.keras.layers.Flatten()(embedding) # (num_examples, hidden_units*num_cat_variables) # Nonlinear transformation with gated residual network. mlp_outputs = gated_residual_network( # (num_examples, num_cat_variables) flatten, self.hidden_units, output_size=num_static, dropout_rate=self.dropout_rate, use_time_distributed=False, additional_context=None, name='GRN_static' ) # (num_examples, num_cat_variables) sparse_weights = tf.keras.layers.Activation('softmax', name='sparse_static_weights')(mlp_outputs) sparse_weights = K.expand_dims(sparse_weights, axis=-1) # (num_examples, num_cat_variables, 1) trans_emb_list = [] for i in range(num_static): e = gated_residual_network( # e.shape = (num_examples, 1, hidden_units) embedding[:, i:i + 1, :], self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name=f'GRN_static_{i}' ) trans_emb_list.append(e) # (num_examples, num_cat_variables, hidden_units) transformed_embedding = concatenate(trans_emb_list, axis=1, name="transfomred_embedds") # (num_examples, num_cat_variables, hidden_units) combined = tf.keras.layers.Multiply(name="StaticWStaticEmb")( [sparse_weights, transformed_embedding]) static_vec = K.sum(combined, axis=1) # (num_examples, hidden_units) return static_vec, sparse_weights static_context_state_h = None static_context_state_c = None static_context_variable_selection = None static_context_enrichment = None static_weights = None if static_inputs is not None: static_encoder, static_weights = static_combine_and_mask(static_inputs) # static_encoder.shape = (num_examples, hidden_units) # static_weights.shape = (num_examples, num_cat_variables, 1) static_context_variable_selection = gated_residual_network( # (num_examples, hidden_units) static_encoder, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name="GNR_st_cntxt_var_select" ) static_context_enrichment = gated_residual_network( # (num_examples, hidden_units) static_encoder, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name="GRN_st_cntxt_enrich" ) static_context_state_h = gated_residual_network( # (num_examples, hidden_units) static_encoder, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name="GRN_st_cntxt_h" ) static_context_state_c = gated_residual_network( # (num_examples, hidden_units) static_encoder, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name="GRN_st_cntxt_c" ) def lstm_combine_and_mask(embedding, static_context, _name=None): """Apply temporal variable selection networks. Args: embedding: Transformed inputs. (num_examples, time_steps, hidden_units, num_inputs) # time_steps can be either encoder_steps or decoder_steps. # num_inputs can be either encoder_inputs or decoder_inputs static_context: _name: name of encompassing layers Returns: Processed tensor outputs. (num_examples, time_steps, hidden_units) """ # Add temporal features _, time_steps, embedding_dim, num_inputs = embedding.get_shape().as_list() flatten = K.reshape(embedding, # (num_examples, time_steps, num_inputs*hidden_units) [-1, time_steps, embedding_dim * num_inputs]) if static_context is not None: _expanded_static_context = K.expand_dims( # (num_examples, 1, hidden_units) static_context, axis=1) else: _expanded_static_context = None # Variable selection weights mlp_outputs, static_gate = gated_residual_network( flatten, self.hidden_units, output_size=num_inputs, dropout_rate=self.dropout_rate, use_time_distributed=False, additional_context=_expanded_static_context, return_gate=True, name=f'GRN_with_{_name}' ) # mlp_outputs.shape (num_examples, time_steps, num_inputs) # static_gate.shape (num_examples, time_steps, num_inputs) # sparse_weights (num_examples, time_steps, num_inputs) sparse_weights = tf.keras.layers.Activation('softmax', # --> (num_examples, time_steps, num_inputs) name=f'sparse_{_name}_weights_softmax')(mlp_outputs) sparse_weights = tf.expand_dims(sparse_weights, axis=2) # (num_examples, time_steps, 1, num_inputs) # Non-linear Processing & weight application trans_emb_list = [] for i in range(num_inputs): grn_output = gated_residual_network( # --> (num_examples, time_steps, hidden_units) embedding[Ellipsis, i], # feeding (num_examples, time_steps, hidden_units) as input self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name=f'GRN_with_{_name}_for_{i}' ) trans_emb_list.append(grn_output) # (num_examples, time_steps, hidden_units, num_inputs) transformed_embedding = stack(trans_emb_list, axis=-1) # --> (num_examples, time_steps, hidden_units, num_inputs) combined = tf.keras.layers.Multiply(name=f'sparse_and_transform_{_name}')( [sparse_weights, transformed_embedding]) temporal_ctx = K.sum(combined, axis=-1) # (num_examples, time_steps, hidden_units) return temporal_ctx, sparse_weights, static_gate historical_features, historical_weights, historical_gate = lstm_combine_and_mask( historical_inputs, static_context_variable_selection, _name='history' ) # historical_features.shape = (num_examples, encoder_steps, hidden_units) # historical_flags (num_examples, encoder_steps, 1, 4) future_features = None future_weights = None if future_inputs is not None: future_features, future_weights, future_gate = lstm_combine_and_mask( future_inputs, static_context_variable_selection, _name='future') # future_features = (num_examples, decoder_length, hidden_units) # future_flags = (num_examples, decoder_length, 1, num_outputs) initial_states = None if static_context_state_h is not None: initial_states = [static_context_state_h, static_context_state_c] if self.use_cnn: history_lstm = build_cnn(historical_features, self.hidden_units, self.kernel_size, return_state=True, _name="history", use_cudnn=self.use_cudnn) else: lstm = get_lstm(self.hidden_units, return_state=True, _name="history", use_cudnn=self.use_cudnn) history_lstm, state_h, state_c = lstm(historical_features, initial_state=initial_states) # history_lstm = (num_examples, encoder_steps, hidden_units) if future_features is not None: if self.use_cnn: future_lstm = build_cnn(future_features, self.hidden_units, self.kernel_size, return_state=False, _name="Future", use_cudnn=self.use_cudnn) else: lstm = get_lstm(self.hidden_units, return_state=False, _name="Future", use_cudnn=self.use_cudnn) future_lstm = lstm(future_features, initial_state=[state_h, state_c]) # future_lstm = (num_examples, decoder_length, hidden_units) lstm_output = concatenate([history_lstm, future_lstm], axis=1, name='history_plus_future_lstm') # (num_examples, time_steps, hidden_units) # Apply gated skip connection input_embeddings = concatenate([historical_features, future_features], axis=1, name="history_plus_future_embeddings" ) # (num_examples, time_steps, hidden_units) else: lstm_output = history_lstm input_embeddings = historical_features lstm_output, _ = apply_gating_layer( # (num_examples, time_steps, hidden_units) lstm_output, self.hidden_units, self.dropout_rate, activation=None, name='GatingOnLSTM') # (num_examples, time_steps, hidden_units) temporal_feature_layer = add_and_norm([lstm_output, input_embeddings], name='AfterLSTM') # Static enrichment layers expanded_static_context = None if static_context_enrichment is not None: # (num_examples, 1, hidden_units) expanded_static_context = K.expand_dims(static_context_enrichment, axis=1) atten_input, _ = gated_residual_network( # (num_examples, time_steps, hidden_units) temporal_feature_layer, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, additional_context=expanded_static_context, return_gate=True, name='GRN_temp_feature' ) # Decoder self attention self_attn_layer = InterpretableMultiHeadAttention( self.num_heads, self.hidden_units, dropout=self.dropout_rate, name="InterpMultiHeadAtten") mask = get_decoder_mask(atten_input) # in some implementation cases, queries contain only decoder_length part but since official google repo # used all the inputs i.e. encoder+decoder part, we are doing so as well. # This is more useful in cases since transformer layer can be used as many to many. # Thus current behaviour is similar to `return_sequences=True` of LSTM. if self.return_sequences: queries = atten_input else: queries = atten_input[:, self.encoder_steps:] # queries (batch_size, time_steps, hidden_units # atten_input (batch_size, time_steps, hidden_units atten_output, self_att = self_attn_layer(queries, atten_input, atten_input, mask=mask) # atten_output (batch_size, time_steps, hidden_units) # self_att (num_heads, batch_size, time_steps, time_steps # x = (num_examples, time_steps, hidden_units) atten_output, _ = apply_gating_layer( # # x = (num_examples, time_steps, hidden_units) atten_output, self.hidden_units, dropout_rate=self.dropout_rate, activation=None, name="GatingOnX" ) # # x = (num_examples, time_steps, hidden_units) atten_output = add_and_norm([atten_output, queries], name="XAndEnriched") # Nonlinear processing on outputs decoder = gated_residual_network( # # x = (num_examples, time_steps, hidden_units) atten_output, self.hidden_units, dropout_rate=self.dropout_rate, use_time_distributed=False, name="NonLinearityOnOut" ) # Final skip connection decoder, _ = apply_gating_layer(decoder, self.hidden_units, activation=None, name="FinalSkip") # # x = (num_examples, time_steps, hidden_units) # (num_examples, time_steps, hidden_units) transformer_output = add_and_norm([decoder, temporal_feature_layer], name="DecoderAndTempFeature") # Attention components for explainability attention_components = { # Temporal attention weights 'decoder_self_attn': self_att, # (num_atten_heads, num_examples, time_steps, time_steps) # Static variable selection weights # (num_examples, 1) 'static_variable_selection_weights': static_weights[Ellipsis, 0] if static_weights is not None else None, # Variable selection weights of past inputs # (num_examples, encoder_steps, input_features) 'encoder_variable_selection_weights': historical_weights[Ellipsis, 0, :], # Variable selection weights of future inputs # (num_examples, decoder_steps, input_features) 'decoder_variable_selection_weights': future_weights[Ellipsis, 0, :] if future_weights is not None else None } self.attention_components = attention_components if self.return_attention_components: return transformer_output, attention_components return transformer_output def get_tft_embeddings(self, all_inputs): """Transforms raw inputs to embeddings. Applies linear transformation onto continuous variables and uses embeddings for categorical variables. Args: all_inputs: Inputs to transform [batch_size, time_steps, input_features] whre time_steps include both lookback and forecast. The input_features dimention of all_inputs can contain following inputs. `static_inputs`, `obs_inputs`, `categorical_inputs`, `regular_inputs`. Returns: Tensors for transformed inputs. unknown_inputs: known_combined_layer: contains regular inputs and categorical inputs (all known) obs_inputs: target values to be used as inputs. static_inputs """ time_steps = self.time_steps # Sanity checks for i in self._known_regular_input_idx: if i in self._input_obs_loc: raise ValueError('Observation cannot be known a priori!') if self._input_obs_loc is not None: for i in self._input_obs_loc: if i in self._static_input_loc: raise ValueError('Observation cannot be static!') if all_inputs.get_shape().as_list()[-1] != self.input_size: raise ValueError( 'Illegal number of inputs! Inputs observed={}, expected={}'.format( all_inputs.get_shape().as_list()[-1], self.input_size)) num_categorical_variables = len(self.category_counts) # 1 num_regular_variables = self.input_size - num_categorical_variables # 4 embeddings = [] if num_categorical_variables > 0: embedding_sizes = [ # [hidden_units] self.hidden_units for i, size in enumerate(self.category_counts) ] for i in range(num_categorical_variables): embedding = tf.keras.Sequential([InputLayer([time_steps]),Embedding( self.category_counts[i], embedding_sizes[i], input_length=time_steps, dtype=tf.float32) ]) embeddings.append(embedding) # regular_inputs regular_inputs, categorical_inputs = all_inputs[:, :, :num_regular_variables], \ all_inputs[:, :, num_regular_variables:] # regular_inputs (num_examples, time_steps, 4) # categorical_inputs (num_examples, time_steps, num_static_inputs) # list of lengnth=(num_static_inputs) with shape (num_examples, time_steps, hidden_units) embedded_inputs = [ embeddings[i](categorical_inputs[Ellipsis, i]) for i in range(num_categorical_variables) ] else: embedded_inputs = [] # --> (num_examples, total_time_steps, num_inputs) regular_inputs = all_inputs[:, :, :num_regular_variables] categorical_inputs = None # Static inputs if len(self._static_input_loc) > 0: # [4] static_inputs = [tf.keras.layers.Dense(self.hidden_units, name=f'StaticInputs{i}')( regular_inputs[:, 0, i:i + 1]) for i in range(num_regular_variables) if i in self._static_input_loc] + [embedded_inputs[i][:, 0, :] for i in range(num_categorical_variables) if i + num_regular_variables in self._static_input_loc] # (num_examples, num_cat_variables, hidden_units) <- [(num_examples, hidden_units)] static_inputs = stack(static_inputs, axis=1) else: # there are not static inputs static_inputs = None def convert_real_to_embedding(_x, _name=None): """Applies linear transformation for time-varying inputs.""" return TimeDistributed(Dense(self.hidden_units, name=_name))(_x) # whether we have and want to use target observations as inputs or not? if len(self._input_obs_loc) > 0: # Targets obs_inputs = stack([ # (num_examples, time_steps, hidden_units, 1) convert_real_to_embedding(regular_inputs[Ellipsis, i:i + 1], _name='InputObsDense') for i in self._input_obs_loc], axis=-1) else: obs_inputs = None wired_embeddings = [] if num_categorical_variables > 0: # Observed (a prioir unknown) inputs for i in range(num_categorical_variables): if i not in self._known_categorical_input_idx \ and i not in self._input_obs_loc: e = embeddings[i](categorical_inputs[:, :, i]) wired_embeddings.append(e) unknown_inputs = [] for i in range(regular_inputs.shape[-1]): if i not in self._known_regular_input_idx \ and i not in self._input_obs_loc: e = convert_real_to_embedding(regular_inputs[Ellipsis, i:i + 1], _name=f'RegularInputsDense{i}') unknown_inputs.append(e) if unknown_inputs + wired_embeddings: if len(wired_embeddings) > 0: unknown_inputs = stack(unknown_inputs + wired_embeddings, axis=-1) else: unknown_inputs = None # A priori known inputs known_regular_inputs = [ # list of tensors all of shape (num_examples, total_time_steps, hidden_units) # feeding (num_examples, total_time_steps, 1) at each loop convert_real_to_embedding(regular_inputs[Ellipsis, i:i + 1], _name=f'KnownRegularInputs') for i in self._known_regular_input_idx if i not in self._static_input_loc ] known_categorical_inputs = [ # [] embedded_inputs[i] for i in self._known_categorical_input_idx if i + num_regular_variables not in self._static_input_loc ] # (num_examples, time_steps, hidden_units, num_outputs) known_combined_layer = stack(known_regular_inputs + known_categorical_inputs, axis=-1) return unknown_inputs, known_combined_layer, obs_inputs, static_inputs def build_cnn(inputs, filters, kernel_size, return_state, _name, use_cudnn=True): cnn = Conv1D(filters=filters, kernel_size=kernel_size, padding="causal", name=_name) cnn_output = cnn(inputs) return cnn_output # LSTM layer def get_lstm(hidden_units, return_state, _name=None, use_cudnn=True): """Returns LSTM cell initialized with default parameters.""" if use_cudnn: lstm = tf.keras.layers.CuDNNLSTM( hidden_units, return_sequences=True, return_state=return_state, stateful=False, name=_name ) else: lstm = tf.keras.layers.LSTM( hidden_units, return_sequences=True, return_state=return_state, stateful=False, # Additional params to ensure LSTM matches CuDNN, See TF 2.0 : # (https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM) activation='tanh', recurrent_activation='sigmoid', recurrent_dropout=0, unroll=False, use_bias=True, name=_name ) return lstm
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/tft_layer.py
tft_layer.py
from typing import Union, List from ai4water.backend import tf from ..utils import _make_output_layer, _check_length def MLP( units: Union[int, list] = 32, num_layers: int = 1, input_shape: tuple = None, num_outputs: int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, mode: str = "regression", output_activation: str = None, **kwargs ): """makes layers for MLP model for tensorflow""" assert num_layers>=1 units = _check_length(units, num_layers) dropout = _check_length(dropout, num_layers) activation = _check_length(activation, num_layers) if input_shape is None: layers = {} else: layers = {"Input": {"shape": input_shape}} for idx, lyr in enumerate(range(num_layers)): config = {"units": units[idx], "activation": activation[idx], } config.update(kwargs) _lyr = {f"Dense_{lyr}": config} layers.update(_lyr) _dropout = dropout[idx] if _dropout and _dropout > 0.0: layers.update({"Dropout": {"rate": _dropout}}) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def LSTM( units: Union[int, list] = 32, num_layers:int = 1, input_shape: tuple = None, num_outputs:int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, mode:str = "regression", output_activation:str = None, **kwargs ): """helper function to make LSTM Model for tensorflow """ units, dropout, activation, layers = _precheck( num_layers, input_shape, units, dropout, activation) for idx, lyr in enumerate(range(num_layers)): return_sequences = False if idx+1 != num_layers: return_sequences = True config = {"units": units[idx], "activation": activation[idx], "return_sequences": return_sequences, } config.update(kwargs) _lyr = {f"LSTM_{lyr}": config} layers.update(_lyr) _dropout = dropout[idx] if _dropout and _dropout > 0.0: layers.update({"Dropout": {"rate": _dropout}}) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def AttentionLSTM( units: Union[int, list] = 32, num_layers: int = 1, input_shape: tuple = None, num_outputs: int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, atten_units:int = 128, atten_activation:str = "tanh", mode: str = "regression", output_activation: str = None, **kwargs )->dict: """helper function to make AttentionLSTM Model for tensorflow""" units, dropout, activation, layers = _precheck( num_layers, input_shape, units, dropout, activation) for idx, lyr in enumerate(range(num_layers)): config = {"units": units[idx], "activation": activation[idx], "return_sequences": True, } config.update(kwargs) _lyr = {f"LSTM_{lyr}": config} layers.update(_lyr) _dropout = dropout[idx] if _dropout and _dropout > 0.0: layers.update({"Dropout": {"rate": _dropout}}) attn_layer = {"SelfAttention": {"config": {"units": atten_units, "activation": atten_activation}, "outputs": ["atten_outputs", "atten_weights"]}} layers.update(attn_layer) layers = _make_output_layer( layers, mode, num_outputs, output_activation, inputs="atten_outputs" ) return {'layers': layers} def CNN( filters: Union[int, list] = 32, kernel_size: Union[int, tuple, list] = 3, convolution_type: str = "1D", num_layers: int = 1, padding: Union[str, list] = "same", strides: Union[int, list]= 1, pooling_type: Union[str, list] = None, pool_size: Union[int, list] = 2, batch_normalization: Union[bool, list] = None, activation: Union[str, list] = None, dropout: Union[float, list] = None, input_shape: tuple = None, num_outputs:int = 1, mode: str = "regression", output_activation:str = None, **kwargs )->dict: """helper function to make convolution neural network based model for tensorflow """ assert num_layers>=1 assert convolution_type in ("1D", "2D", "3D") assert pooling_type in ("MaxPool", "AveragePooling", None) filters = _check_length(filters, num_layers) activation = _check_length(activation, num_layers) padding = _check_length(padding, num_layers) strides = _check_length(strides, num_layers) pooling_type = _check_length(pooling_type, num_layers) pool_size = _check_length(pool_size, num_layers) kernel_size = _check_length(kernel_size, num_layers) batch_normalization = _check_length(batch_normalization, num_layers) dropout = _check_length(dropout, num_layers) if input_shape is None: layers = {} else: assert len(input_shape) >= 2 layers = {"Input": {"shape": input_shape}} for idx, lyr in enumerate(range(num_layers)): pool_type = pooling_type[idx] batch_norm = batch_normalization[idx] config = { "filters": filters[idx], "kernel_size": kernel_size[idx], "activation": activation[idx], "strides": strides[idx], "padding": padding[idx] } config.update(kwargs) _lyr = {f"Conv{convolution_type}_{lyr}": config} layers.update(_lyr) if pool_type: pool_lyr = f"{pool_type}{convolution_type}" _lyr = {pool_lyr: {"pool_size": pool_size[idx]}} layers.update(_lyr) if batch_norm: layers.update({"BatchNormalization": {}}) _dropout = dropout[idx] if _dropout and _dropout > 0.0: layers.update({"Dropout": {"rate": _dropout}}) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def CNNLSTM( input_shape:tuple, sub_sequences=3, cnn_layers:int = 2, lstm_layers:int = 1, filters:Union[int, list]=32, kernel_size: Union[int, tuple, list]=3, max_pool:bool=False, units: Union[int, tuple, list] = 32, num_outputs:int = 1, mode:str = "regression", output_activation:str = None, )->dict: """ helper function to make CNNLSTM model for tensorflow """ assert len(input_shape) == 2 layers = {"Input": {"shape": input_shape}} lookback = input_shape[-2] input_features = input_shape[-1] time_steps = lookback // sub_sequences new_shape = sub_sequences, time_steps, input_features layers.update({"Reshape": {"target_shape": new_shape}}) filters = _check_length(filters, cnn_layers) kernel_size = _check_length(kernel_size, cnn_layers) units = _check_length(units, lstm_layers) for idx, cnn_lyr in enumerate(range(cnn_layers)): layers.update({f"TimeDistributed_{idx}": {}}) config = {"filters": filters[idx], "kernel_size": kernel_size[idx], "padding": "same"} layers.update({f"Conv1D_{idx}": config}) if max_pool: layers.update({f"TimeDistributed_mp{idx}": {}}) layers.update({f"MaxPool1D_{idx}": {}}) layers.update({"TimeDistributed_e": {}}) layers.update({'Flatten': {}}) for lstm_lyr in range(lstm_layers): return_sequences = False if lstm_lyr+1 != lstm_layers: return_sequences = True config = {"units": units[lstm_lyr], "return_sequences": return_sequences } layers.update({f"LSTM_{lstm_lyr}": config}) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {"layers": layers} def LSTMAutoEncoder( input_shape:tuple, encoder_layers:int = 1, decoder_layers:int = 1, encoder_units: Union[int, list]=32, decoder_units: Union[int, list]=32, num_outputs: int = 1, prediction_mode: bool = True, mode:str = "regression", output_activation: str = None, **kwargs )->dict: """ helper function to make LSTM based AutoEncoder model for tensorflow """ assert len(input_shape)>=2 assert encoder_layers >= 1 assert decoder_layers >= 1 lookback = input_shape[-2] encoder_units = _check_length(encoder_units, encoder_layers) decoder_units = _check_length(decoder_units, decoder_layers) layers = {"Input": {"shape": input_shape}} for idx, enc_lyr in enumerate(range(encoder_layers)): return_sequences = False if idx + 1 != encoder_layers: return_sequences = True config = { "units": encoder_units[idx], "return_sequences": return_sequences } lyr = {f"LSTM_e{idx}": config} layers.update(lyr) layers.update({'RepeatVector': lookback}) for idx, dec_lyr in enumerate(range(decoder_layers)): return_sequences = False if idx + 1 != decoder_units: return_sequences = True config = { "units": decoder_units[idx], "return_sequences": return_sequences } lyr = {f"LSTM_d{idx}": config} layers.update(lyr) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def TCN( input_shape, filters:int = 32, kernel_size: int = 2, nb_stacks: int = 1, dilations = [1, 2, 4, 8, 16, 32], num_outputs:int = 1, mode="regression", output_activation: str = None, **kwargs )->dict: """helper function for building temporal convolution network with tensorflow """ layers = {"Input": {"shape": input_shape}} config = {'nb_filters': filters, 'kernel_size': kernel_size, 'nb_stacks': nb_stacks, 'dilations': dilations, 'padding': 'causal', 'use_skip_connections': True, 'return_sequences': False, 'dropout_rate': 0.0} config.update(kwargs) layers.update({"TCN": config}) layers.update({"Flatten": {}}) layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def TFT( input_shape, hidden_units: int = 32, num_heads: int = 3, dropout:float = 0.1, num_outputs:int = 1, use_cudnn:bool = False, mode:str="regression", output_activation:str = None, )->dict: """helper function for temporal fusion transformer based model for tensorflow """ num_encoder_steps = input_shape[-2] input_features = input_shape[-1] params = { 'total_time_steps': num_encoder_steps, 'num_encoder_steps': num_encoder_steps, 'num_inputs': input_features, 'category_counts': [], 'input_obs_loc': [], # leave empty if not available 'static_input_loc': [], # if not static inputs, leave this empty 'known_regular_inputs': list(range(input_features)), 'known_categorical_inputs': [], # leave empty if not applicable 'hidden_units': hidden_units, 'dropout_rate': dropout, 'num_heads': num_heads, 'use_cudnn': use_cudnn, 'future_inputs': False, 'return_sequences': True, } layers = { "Input": {"config": {"shape": (params['total_time_steps'], input_features)}}, "TemporalFusionTransformer": {"config": params}, "lambda": {"config": tf.keras.layers.Lambda(lambda _x: _x[Ellipsis, -1, :])}, } layers = _make_output_layer( layers, mode, num_outputs, output_activation ) return {'layers': layers} def TabTransformer( num_numeric_features: int, cat_vocabulary: dict, hidden_units=32, num_heads: int = 4, depth: int = 4, dropout: float = 0.1, num_dense_lyrs: int = 2, prenorm_mlp:bool = True, post_norm: bool = True, final_mlp_units: Union[int, List[int]] = 16, num_outputs: int = 1, mode: str = "regression", output_activation: str = None, seed:int = 313, ): """ TabTransformer for tensorflow """ layers = _make_input_lyrs(num_numeric_features, len(cat_vocabulary)) layers.update( {"TabTransformer": {"config": dict( cat_vocabulary=cat_vocabulary, num_numeric_features=num_numeric_features, hidden_units = hidden_units, num_heads = num_heads, depth= depth, dropout = dropout, num_dense_lyrs = num_dense_lyrs, prenorm_mlp = prenorm_mlp, post_norm = post_norm, final_mlp_units = final_mlp_units, seed = seed, ), "inputs": ["Input_num", "Input_cat"], "outputs": ['transformer_output', 'imp']}} ) layers = _make_output_layer( layers, mode, num_outputs, output_activation, inputs="transformer_output" ) return {"layers": layers} def FTTransformer( num_numeric_features:int, cat_vocabulary:dict=None, hidden_units = 32, num_heads: int = 4, depth:int = 4, dropout: float = 0.1, num_dense_lyrs: int = 2, lookup_kws:dict = None, post_norm:bool = True, final_mlp_units:int = 16, num_outputs: int = 1, mode: str = "regression", output_activation: str = None, seed:int = 313, )->dict: """ FTTransformer for tensorflow """ if cat_vocabulary: layers = _make_input_lyrs(num_numeric_features, len(cat_vocabulary)) inputs = ["Input_num", "Input_cat"] else: layers = _make_input_lyrs(num_numeric_features) inputs = "Input_num" body = { "FTTransformer": {"config": dict( cat_vocabulary=cat_vocabulary, num_numeric_features=num_numeric_features, hidden_units=hidden_units, num_heads=num_heads, depth=depth, lookup_kws=lookup_kws, num_dense_lyrs=num_dense_lyrs, post_norm=post_norm, final_mlp_units=final_mlp_units, dropout=dropout, seed=seed ), "inputs": inputs, "outputs": ['transformer_output', 'imp']} } layers.update(body) layers = _make_output_layer( layers, mode, num_outputs, output_activation, inputs='transformer_output' ) return {"layers": layers} def _make_input_lyrs( num_numeric_features:int, num_cat_features:int=None, numeric_dtype:tf.DType=tf.float32, cat_dtype:tf.DType = tf.string )->dict: if num_cat_features: lyrs = { "Input_num": {"shape": (num_numeric_features,), "dtype": numeric_dtype}, "Input_cat": {"shape": (num_cat_features,), "dtype": cat_dtype} } else: lyrs = { "Input_num": {"shape": (num_numeric_features,), "dtype": numeric_dtype} } return lyrs def _precheck(num_layers, input_shape, units, dropout, activation): assert num_layers>=1 if input_shape is None: layers = {} else: layers = {"Input": {"shape": input_shape}} assert len(input_shape)>=2 units = _check_length(units, num_layers) dropout = _check_length(dropout, num_layers) activation = _check_length(activation, num_layers) return units, dropout, activation, layers
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/_functions.py
_functions.py
from tensorflow.python.ops import sparse_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.ops import array_ops import tensorflow.keras.backend as K from tensorflow.keras.layers import Layer, Multiply from tensorflow.keras.layers import TimeDistributed, Dense, Dropout, Add, Activation, Lambda from ai4water.backend import tf LayerNorm = tf.keras.layers.LayerNormalization def concatenate(tensors, axis=-1, name="concat"): """Concatenates a list of tensors alongside the specified axis. Args: tensors: list of tensors to concatenate. axis: concatenation axis. name: str, Returns: A tensor. Example: >>>a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>>b = tf.constant([[10, 20, 30], [40, 50, 60], [70, 80, 90]]) >>>tf.keras.backend.concatenate((a, b), axis=-1) <tf.Tensor: shape=(3, 6), dtype=int32, numpy= array([[ 1, 2, 3, 10, 20, 30], [ 4, 5, 6, 40, 50, 60], [ 7, 8, 9, 70, 80, 90]], dtype=int32)> """ if axis < 0: rank = K.ndim(tensors[0]) if rank: axis %= rank else: axis = 0 if all(K.is_sparse(x) for x in tensors): return sparse_ops.sparse_concat(axis, tensors, name=name) elif all(isinstance(x, ragged_tensor.RaggedTensor) for x in tensors): return array_ops.concat(tensors, axis, name=name) else: return array_ops.concat([K.to_dense(x) for x in tensors], axis, name=name) # Layer utility functions. def linear_layer(size, activation=None, use_time_distributed=False, use_bias=True, kernel_constraint=None, name=None ): """Returns simple Keras linear layer. Args: size: Output size activation: Activation function to apply if required use_time_distributed: Whether to apply layer across time use_bias: Whether bias should be included in layer kernel_constraint: name: """ linear = tf.keras.layers.Dense(size, activation=activation, use_bias=use_bias, name=name, kernel_constraint=kernel_constraint) if use_time_distributed: linear = TimeDistributed(linear, name=name) return linear def apply_gating_layer(x, hidden_layer_size, dropout_rate=None, use_time_distributed=False, activation=None, activation_kernel_constraint=None, gating_kernel_constraint=None, name=None, seed=313, ): """Applies a Gated Linear Unit (GLU) to an input. Args: x: Input to gating layer having shape (num_examples, hidden_units) hidden_layer_size: Dimension of GLU dropout_rate: Dropout rate to apply if any use_time_distributed: Whether to apply across time activation: Activation function to apply to the linear feature transform if necessary name: name of encompassing layers activation_kernel_constraint: gating_kernel_constraint Returns: Tuple of tensors for: (GLU output, gate) where GLU output has the shape (num_examples, hidden_units) """ if dropout_rate is not None: x = Dropout(dropout_rate, name=f'Dropout_{name}', seed=seed)(x) if use_time_distributed: activation_layer = TimeDistributed(Dense(hidden_layer_size, kernel_constraint=activation_kernel_constraint, activation=activation, name=f'gating_act_{name}'), name=f'gating_act_{name}')(x) gated_layer = TimeDistributed( Dense(hidden_layer_size, activation='sigmoid', kernel_constraint=gating_kernel_constraint, name=f'gating_{name}'), name=f'gating_{name}')(x) else: activation_layer = Dense( hidden_layer_size, activation=activation, kernel_constraint=activation_kernel_constraint, name=f'gating_act_{name}')(x) gated_layer = Dense( hidden_layer_size, activation='sigmoid', kernel_constraint=gating_kernel_constraint, name=f'gating_{name}')( x) return Multiply(name=f'MulGating_{name}')([activation_layer, gated_layer]), gated_layer def add_and_norm(x_list, name=None, norm=True): """Applies skip connection followed by layer normalisation. Args: x_list: List of inputs to sum for skip connection name: Returns: Tensor output from layer. """ tmp = Add(name=f'add_{name}')(x_list) if norm: tmp = LayerNorm(name=f'norm_{name}')(tmp) return tmp def gated_residual_network( x, hidden_layer_size, output_size=None, dropout_rate=None, use_time_distributed=True, additional_context=None, return_gate=False, activation:str='elu', kernel_constraint1=None, kernel_constraint2=None, kernel_constraint3=None, gating_kernel_constraint1=None, gating_kernel_constraint2=None, norm=True, name='GRN', seed=313, ): """Applies the gated residual network (GRN) as defined in paper. Args: x: Network inputs hidden_layer_size: Internal state size output_size: Size of output layer dropout_rate: Dropout rate if dropout is applied use_time_distributed: Whether to apply network across time dimension additional_context: Additional context vector to use if relevant return_gate: Whether to return GLU gate for diagnostic purposes name: name of all layers activation: the kind of activation function to use kernel_constraint1: kernel constranint to be applied on skip_connection layer kernel_constraint2: kernel constranint to be applied on 1st linear layer before activation kernel_constraint3: kernel constranint to be applied on 2nd linear layer after activation gating_kernel_constraint1: kernel constraint for activation in gating layer gating_kernel_constraint2: kernel constaint for gating layer Returns: Tuple of tensors for: (GRN output, GLU gate) """ # Setup skip connection if output_size is None: output_size = hidden_layer_size skip = x else: linear = Dense(output_size, name=f'skip_connection_{name}', kernel_constraint=kernel_constraint1) if use_time_distributed: linear = TimeDistributed(linear, name=f'skip_connection_{name}') skip = linear(x) # Apply feedforward network hidden = linear_layer( hidden_layer_size, activation=None, use_time_distributed=use_time_distributed, kernel_constraint=kernel_constraint2, name=f"ff_{name}" )(x) if additional_context is not None: hidden = hidden + linear_layer( hidden_layer_size, activation=None, use_time_distributed=use_time_distributed, use_bias=False, name=f'addition_cntxt_{name}' )(additional_context) hidden = Activation(activation, name=f'{name}_{activation}')(hidden) hidden = linear_layer( hidden_layer_size, activation=None, kernel_constraint=kernel_constraint3, use_time_distributed=use_time_distributed, name=f'{name}_LastDense' )( hidden) gating_layer, gate = apply_gating_layer( hidden, output_size, dropout_rate=dropout_rate, use_time_distributed=use_time_distributed, activation=None, activation_kernel_constraint=gating_kernel_constraint1, gating_kernel_constraint=gating_kernel_constraint2, name=name, seed=seed ) if return_gate: return add_and_norm([skip, gating_layer], name=name, norm=norm), gate else: return add_and_norm([skip, gating_layer], name=name, norm=norm) # Attention Components. def get_decoder_mask(self_attn_inputs): """Returns causal mask to apply for self-attention layer. Args: self_attn_inputs: Inputs to self attention layer to determine mask shape """ len_s = tf.shape(self_attn_inputs)[1] bs = tf.shape(self_attn_inputs)[:1] mask = K.cumsum(tf.eye(len_s, batch_shape=bs), 1) return mask class ScaledDotProductAttention(tf.keras.layers.Layer): """Defines scaled dot product attention layer. Attributes: dropout: Dropout rate to use activation: Normalisation function for scaled dot product attention (e.g. softmax by default) """ def __init__(self, attn_dropout=0.0, seed=313, **kwargs): self.dropout = Dropout(attn_dropout, name="ScaledDotProdAtten_dropout", seed=seed) self.activation = Activation('softmax', name="ScaledDotProdAtten_softmax") super().__init__(**kwargs) def __call__(self, q, k, v, mask, idx): """Applies scaled dot product attention. Args: q: Queries k: Keys v: Values mask: Masking if required -- sets softmax to very large value Returns: Tuple of (layer outputs, attention weights) """ temper = tf.sqrt(tf.cast(tf.shape(k)[-1], dtype='float32')) attn = MyLambda(name=f"ScaledDotProdAttenLambda{idx}")([q, k], temper=temper) if mask is not None: mmask = Lambda(lambda x: (-1e+9) * (1. - K.cast(x, 'float32')), name=f"ScaledDotProdAttenLambdaMask{idx}")( mask) # setting to infinity attn = Add(name=f'SDPA_ADD_{idx}')([attn, mmask]) attn = self.activation(attn) attn = self.dropout(attn) output = Lambda(lambda x: K.batch_dot(x[0], x[1]), name=f"ScaledDotProdAttenOutput{idx}")([attn, v]) return output, attn class MyLambda(Layer): def __init__(self, name="ScaledDotProdAttenLambda", *args, **kwargs): super(MyLambda, self).__init__(*args, name=name, **kwargs) def call(self, x, temper, *args, **kwargs): return K.batch_dot(x[0], x[1], axes=[2, 2]) / temper class InterpretableMultiHeadAttention(tf.keras.layers.Layer): """Defines interpretable multi-head attention layer. Attributes: n_head: Number of heads d_k: Key/query dimensionality per head d_v: Value dimensionality dropout: Dropout rate to apply qs_layers: List of queries across heads ks_layers: List of keys across heads vs_layers: List of values across heads attention: Scaled dot product attention layer w_o: Output weight matrix to project internal state to the original TFT state size """ def __init__(self, n_head, d_model, dropout, seed=313, **kwargs): """Initialises layer. Args: n_head: Number of heads d_model: TFT state dimensionality dropout: Dropout discard rate """ self.n_head = n_head self.d_k = self.d_v = d_k = d_v = d_model // n_head self.dropout = dropout self.seed=seed self.qs_layers = [] self.ks_layers = [] self.vs_layers = [] # Use same value layer to facilitate interp vs_layer = Dense(d_v, use_bias=False) for _ in range(n_head): self.qs_layers.append(Dense(d_k, use_bias=False)) self.ks_layers.append(Dense(d_k, use_bias=False)) self.vs_layers.append(vs_layer) # use same vs_layer self.attention = ScaledDotProductAttention(name="ScaledDotProdAtten", seed=seed) self.w_o = Dense(d_model, use_bias=False, name="MH_atten_output") super().__init__(**kwargs) def __call__(self, q, k, v, mask=None): """Applies interpretable multihead attention. Using T to denote the number of time steps fed into the transformer. Args: q: Query tensor of shape=(?, T, d_model) k: Key of shape=(?, T, d_model) v: Values of shape=(?, T, d_model) mask: Masking if required with shape=(?, T, T) Returns: Tuple of (layer outputs, attention weights) """ n_head = self.n_head heads = [] attns = [] for i in range(n_head): qs = self.qs_layers[i](q) ks = self.ks_layers[i](k) vs = self.vs_layers[i](v) head, attn = self.attention(qs, ks, vs, mask, i) head_dropout = Dropout(self.dropout, seed=self.seed)(head) heads.append(head_dropout) attns.append(attn) head = array_ops.stack(heads, axis=0, name="MultiHeadAtten_heads") if n_head > 1 else heads[0] attn = array_ops.stack(attns, axis=0, name="MultiHeadAttention_attens") _outputs = K.mean(head, axis=0) if n_head > 1 else head _outputs = self.w_o(_outputs) _outputs = Dropout(self.dropout, name="MHA_output_do", seed=self.seed)(_outputs) # output dropout return _outputs, attn # Loss functions. def tensorflow_quantile_loss(y, y_pred, quantile): """Computes quantile loss for tensorflow. Standard quantile loss as defined in the "Training Procedure" section of the main TFT paper Args: y: Targets y_pred: Predictions quantile: Quantile to use for loss calculations (between 0 & 1) Returns: Tensor for quantile loss. """ # Checks quantile if quantile < 0 or quantile > 1: raise ValueError( 'Illegal quantile value={}! Values should be between 0 and 1.'.format(quantile)) prediction_underflow = y - y_pred q_loss = quantile * tf.maximum(prediction_underflow, 0.) + ( 1. - quantile) * tf.maximum(-prediction_underflow, 0.) return tf.reduce_sum(q_loss, axis=-1) def quantile_loss(a, b, quantiles, output_size): """Returns quantile loss for specified quantiles. Args: a: Targets b: Predictions quantiles: output_size: """ quantiles_used = set(quantiles) loss = 0. for i, quantile in enumerate(quantiles): if quantile in quantiles_used: loss += tensorflow_quantile_loss( a[Ellipsis, output_size * i:output_size * (i + 1)], b[Ellipsis, output_size * i:output_size * (i + 1)], quantile) return loss
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/utils.py
utils.py
from ai4water.backend import keras, np K = keras.backend Concatenate, Add, Reshape = keras.layers.Concatenate, keras.layers.Add, keras.layers.Reshape Input, Dense, Lambda, Subtract = keras.layers.Input, keras.layers.Dense, keras.layers.Lambda, keras.layers.Subtract Model = keras.models.Model class NBeats(keras.layers.Layer): """ This implementation is same as that of Philip peremy_ with few modifications. Here NBeats can be used as a layer. The output shape will be (batch_size, forecast_length, input_dim) Some other changes have also been done to make this layer compatable with ai4water. Example ------- >>> x = np.random.random((100, 10, 3)) >>> y = np.random.random((100, 1)) ... >>> model = Model(model={"layers": >>> {"Input": {"shape": (10, 3)}, >>> "NBeats": {"lookback": 10, "forecast_length": 1, "num_exo_inputs": 2}, >>> "Flatten": {}, >>> "Reshape": {"target_shape": (1,1)}}}, >>> ts_args={'lookback':10}) ... >>> model.fit(x=x, y=y.reshape(-1,1,1)) .. _peremy: https://github.com/philipperemy/n-beats/tree/master/nbeats_keras) """ GENERIC_BLOCK = 'generic' TREND_BLOCK = 'trend' SEASONALITY_BLOCK = 'seasonality' def __init__( self, units: int = 256, lookback: int = 10, forecast_len: int = 2, stack_types=(TREND_BLOCK, SEASONALITY_BLOCK), nb_blocks_per_stack=3, thetas_dim=(4, 8), share_weights_in_stack=False, nb_harmonics=None, num_inputs=1, num_exo_inputs=0, **kwargs ): """ Initiates the Nbeats layer Arguments: units : Number of units in NBeats layer. It determines the size of NBeats. lookback: Number of historical time-steps used to predict next value forecast_len : stack_types : nb_blocks_per_stack : theta_dim : share_weights_in_stack : nb_harmonics : num_inputs: num_exo_inputs: kwargs : """ if num_inputs != 1: raise NotImplementedError self.stack_types = stack_types self.nb_blocks_per_stack = nb_blocks_per_stack self.thetas_dim = thetas_dim self.units = units self.share_weights_in_stack = share_weights_in_stack self.lookback = lookback self.forecast_length = forecast_len self.input_dim = num_inputs self.exo_dim = num_exo_inputs self.exo_shape = (self.lookback, self.exo_dim) self._weights = {} self.nb_harmonics = nb_harmonics assert len(self.stack_types) == len(self.thetas_dim) super().__init__(**kwargs) def __call__(self, inputs, *args, **kwargs): """The first num_inputs from inputs will be considered as the same feature which is being predicted. Since the ai4water, by default does nowcasting instead of forecasting, and NBeats using the target/ground truth as input, using NBeats for nowcasting does not make sense. For example in case, the inputs is of shape (100, 5, 3), then inputs consists of three inputs and we consider the first input as target feature and other two as exogenous features. """ e_ = {} if self.has_exog(): x = inputs[..., 0:self.input_dim] e = inputs[..., self.input_dim:] for k in range(self.exo_dim): e_[k] = Lambda(lambda z: z[..., k])(e) else: x = inputs x_ = {} for k in range(self.input_dim): x_[k] = Lambda(lambda z: z[..., k])(x) y_ = {} for stack_id in range(len(self.stack_types)): stack_type = self.stack_types[stack_id] nb_poly = self.thetas_dim[stack_id] for block_id in range(self.nb_blocks_per_stack): backcast, forecast = self.create_block(x_, e_, stack_id, block_id, stack_type, nb_poly) for k in range(self.input_dim): x_[k] = Subtract()([x_[k], backcast[k]]) if stack_id == 0 and block_id == 0: y_[k] = forecast[k] else: y_[k] = Add()([y_[k], forecast[k]]) for k in range(self.input_dim): y_[k] = Reshape(target_shape=(self.forecast_length, 1))(y_[k]) if self.input_dim > 1: y_ = Concatenate(axis=-1)([y_[ll] for ll in range(self.input_dim)]) else: y_ = y_[0] return y_ def has_exog(self): return self.exo_dim > 0 def _r(self, layer_with_weights, stack_id): # mechanism to restore weights when block share the same weights. # only useful when share_weights_in_stack=True. if self.share_weights_in_stack: layer_name = layer_with_weights.name.split('/')[-1] try: reused_weights = self._weights[stack_id][layer_name] return reused_weights except KeyError: pass if stack_id not in self._weights: self._weights[stack_id] = {} self._weights[stack_id][layer_name] = layer_with_weights return layer_with_weights def create_block(self, x, e, stack_id, block_id, stack_type, nb_poly): # register weights (useful when share_weights_in_stack=True) def reg(layer): return self._r(layer, stack_id) # update name (useful when share_weights_in_stack=True) def n(layer_name): return '/'.join([str(stack_id), str(block_id), stack_type, layer_name]) backcast_ = {} forecast_ = {} d1 = reg(Dense(self.units, activation='relu', name=n('d1'))) d2 = reg(Dense(self.units, activation='relu', name=n('d2'))) d3 = reg(Dense(self.units, activation='relu', name=n('d3'))) d4 = reg(Dense(self.units, activation='relu', name=n('d4'))) if stack_type == 'generic': theta_b = reg(Dense(nb_poly, activation='linear', use_bias=False, name=n('theta_b'))) theta_f = reg(Dense(nb_poly, activation='linear', use_bias=False, name=n('theta_f'))) backcast = reg(Dense(self.lookback, activation='linear', name=n('backcast'))) forecast = reg(Dense(self.forecast_length, activation='linear', name=n('forecast'))) elif stack_type == 'trend': theta_f = theta_b = reg(Dense(nb_poly, activation='linear', use_bias=False, name=n('theta_f_b'))) backcast = Lambda(trend_model, arguments={"is_forecast": False, "backcast_length": self.lookback, "forecast_length": self.forecast_length}) forecast = Lambda(trend_model, arguments={"is_forecast": True, "backcast_length": self.lookback, "forecast_length": self.forecast_length}) else: # 'seasonality' if self.nb_harmonics: theta_b = reg(Dense(self.nb_harmonics, activation='linear', use_bias=False, name=n('theta_b'))) else: theta_b = reg(Dense(self.forecast_length, activation='linear', use_bias=False, name=n('theta_b'))) theta_f = reg(Dense(self.forecast_length, activation='linear', use_bias=False, name=n('theta_f'))) backcast = Lambda(seasonality_model, arguments={"is_forecast": False, "backcast_length": self.lookback, "forecast_length": self.forecast_length}) forecast = Lambda(seasonality_model, arguments={"is_forecast": True, "backcast_length": self.lookback, "forecast_length": self.forecast_length}) for k in range(self.input_dim): if self.has_exog(): d0 = Concatenate()([x[k]] + [e[ll] for ll in range(self.exo_dim)]) else: d0 = x[k] d1_ = d1(d0) d2_ = d2(d1_) d3_ = d3(d2_) d4_ = d4(d3_) theta_f_ = theta_f(d4_) theta_b_ = theta_b(d4_) backcast_[k] = backcast(theta_b_) forecast_[k] = forecast(theta_f_) return backcast_, forecast_ def linear_space(backcast_length, forecast_length, fwd_looking=True): ls = K.arange(-float(backcast_length), float(forecast_length), 1) / backcast_length if fwd_looking: ls = ls[backcast_length:] else: ls = ls[:backcast_length] return ls def seasonality_model(thetas, backcast_length, forecast_length, is_forecast): p = thetas.get_shape().as_list()[-1] p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1) t = linear_space(backcast_length, forecast_length, fwd_looking=is_forecast) s1 = K.stack([K.cos(2 * np.pi * i * t) for i in range(p1)], axis=0) s2 = K.stack([K.sin(2 * np.pi * i * t) for i in range(p2)], axis=0) if p == 1: s = s2 else: s = K.concatenate([s1, s2], axis=0) s = K.cast(s, np.float32) return K.dot(thetas, s) def trend_model(thetas, backcast_length, forecast_length, is_forecast): p = thetas.shape[-1] t = linear_space(backcast_length, forecast_length, fwd_looking=is_forecast) t = K.transpose(K.stack([t ** i for i in range(p)], axis=0)) t = K.cast(t, np.float32) return K.dot(thetas, K.transpose(t))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_tensorflow/nbeats_keras.py
nbeats_keras.py
from ai4water.backend import torch if torch is None: nn = None else: nn = torch.nn class IMVTensorLSTM(torch.jit.ScriptModule): __constants__ = ["n_units", "input_dim"] def __init__(self, input_dim, output_dim, n_units, device, init_std=0.02): super().__init__() self.U_j = nn.Parameter(torch.randn(input_dim, 1, n_units) * init_std) self.U_i = nn.Parameter(torch.randn(input_dim, 1, n_units) * init_std) self.U_f = nn.Parameter(torch.randn(input_dim, 1, n_units) * init_std) self.U_o = nn.Parameter(torch.randn(input_dim, 1, n_units) * init_std) self.W_j = nn.Parameter(torch.randn(input_dim, n_units, n_units) * init_std) self.W_i = nn.Parameter(torch.randn(input_dim, n_units, n_units) * init_std) self.W_f = nn.Parameter(torch.randn(input_dim, n_units, n_units) * init_std) self.W_o = nn.Parameter(torch.randn(input_dim, n_units, n_units) * init_std) self.b_j = nn.Parameter(torch.randn(input_dim, n_units) * init_std) self.b_i = nn.Parameter(torch.randn(input_dim, n_units) * init_std) self.b_f = nn.Parameter(torch.randn(input_dim, n_units) * init_std) self.b_o = nn.Parameter(torch.randn(input_dim, n_units) * init_std) self.F_alpha_n = nn.Parameter(torch.randn(input_dim, n_units, 1) * init_std) self.F_alpha_n_b = nn.Parameter(torch.randn(input_dim, 1) * init_std) self.F_beta = nn.Linear(2 * n_units, 1) self.Phi = nn.Linear(2 * n_units, output_dim) self.n_units = n_units self.input_dim = input_dim self.device = device @torch.jit.script_method def forward(self, x): h_tilda_t = torch.zeros(x.shape[0], self.input_dim, self.n_units).to(self.device) c_tilda_t = torch.zeros(x.shape[0], self.input_dim, self.n_units).to(self.device) outputs = torch.jit.annotate(List[Tensor], []) for t in range(x.shape[1]): # eq 1 j_tilda_t = torch.tanh(torch.einsum("bij,ijk->bik", h_tilda_t, self.W_j) + torch.einsum("bij,jik->bjk", x[:, t, :].unsqueeze(1), self.U_j) + self.b_j) # eq 5 i_tilda_t = torch.sigmoid(torch.einsum("bij,ijk->bik", h_tilda_t, self.W_i) + torch.einsum("bij,jik->bjk", x[:, t, :].unsqueeze(1), self.U_i) + self.b_i) f_tilda_t = torch.sigmoid(torch.einsum("bij,ijk->bik", h_tilda_t, self.W_f) + torch.einsum("bij,jik->bjk", x[:, t, :].unsqueeze(1), self.U_f) + self.b_f) o_tilda_t = torch.sigmoid(torch.einsum("bij,ijk->bik", h_tilda_t, self.W_o) + torch.einsum("bij,jik->bjk", x[:, t, :].unsqueeze(1), self.U_o) + self.b_o) # eq 6 c_tilda_t = c_tilda_t * f_tilda_t + i_tilda_t * j_tilda_t # eq 7 h_tilda_t = (o_tilda_t * torch.tanh(c_tilda_t)) outputs += [h_tilda_t] outputs = torch.stack(outputs) outputs = outputs.permute(1, 0, 2, 3) # eq 8 alphas = torch.tanh(torch.einsum("btij,ijk->btik", outputs, self.F_alpha_n) + self.F_alpha_n_b) alphas = torch.exp(alphas) alphas = alphas / torch.sum(alphas, dim=1, keepdim=True) g_n = torch.sum(alphas * outputs, dim=1) hg = torch.cat([g_n, h_tilda_t], dim=2) mu = self.Phi(hg) betas = torch.tanh(self.F_beta(hg)) betas = torch.exp(betas) betas = betas / torch.sum(betas, dim=1, keepdim=True) mean = torch.sum(betas * mu, dim=1) return mean, alphas, betas class IMVFullLSTM(torch.jit.ScriptModule): __constants__ = ["n_units", "input_dim"] def __init__(self, input_dim, output_dim, n_units, device, init_std=0.02): super().__init__() self.U_j = nn.Parameter(torch.randn(input_dim, 1, n_units) * init_std) self.W_j = nn.Parameter(torch.randn(input_dim, n_units, n_units) * init_std) self.b_j = nn.Parameter(torch.randn(input_dim, n_units) * init_std) self.W_i = nn.Linear(input_dim * (n_units + 1), input_dim * n_units) self.W_f = nn.Linear(input_dim * (n_units + 1), input_dim * n_units) self.W_o = nn.Linear(input_dim * (n_units + 1), input_dim * n_units) self.F_alpha_n = nn.Parameter(torch.randn(input_dim, n_units, 1) * init_std) self.F_alpha_n_b = nn.Parameter(torch.randn(input_dim, 1) * init_std) self.F_beta = nn.Linear(2 * n_units, 1) self.Phi = nn.Linear(2 * n_units, output_dim) self.n_units = n_units self.input_dim = input_dim self.device = device @torch.jit.script_method def forward(self, x): h_tilda_t = torch.zeros(x.shape[0], self.input_dim, self.n_units).to(self.device) c_t = torch.zeros(x.shape[0], self.input_dim * self.n_units).to(self.device) outputs = torch.jit.annotate(List[Tensor], []) for t in range(x.shape[1]): # eq 1 j_tilda_t = torch.tanh(torch.einsum("bij,ijk->bik", h_tilda_t, self.W_j) + torch.einsum("bij,jik->bjk", x[:, t, :].unsqueeze(1), self.U_j) + self.b_j) inp = torch.cat([x[:, t, :], h_tilda_t.view(h_tilda_t.shape[0], -1)], dim=1) # eq 2 i_t = torch.sigmoid(self.W_i(inp)) f_t = torch.sigmoid(self.W_f(inp)) o_t = torch.sigmoid(self.W_o(inp)) # eq 3 c_t = c_t * f_t + i_t * j_tilda_t.view(j_tilda_t.shape[0], -1) # eq 4 h_tilda_t = (o_t * torch.tanh(c_t)).view(h_tilda_t.shape[0], self.input_dim, self.n_units) outputs += [h_tilda_t] outputs = torch.stack(outputs) outputs = outputs.permute(1, 0, 2, 3) # eq 8 alphas = torch.tanh(torch.einsum("btij,ijk->btik", outputs, self.F_alpha_n) + self.F_alpha_n_b) alphas = torch.exp(alphas) alphas = alphas / torch.sum(alphas, dim=1, keepdim=True) g_n = torch.sum(alphas * outputs, dim=1) hg = torch.cat([g_n, h_tilda_t], dim=2) mu = self.Phi(hg) betas = torch.tanh(self.F_beta(hg)) betas = torch.exp(betas) betas = betas / torch.sum(betas, dim=1, keepdim=True) mean = torch.sum(betas * mu, dim=1) return mean, alphas, betas
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_torch/imv_networks.py
imv_networks.py
from ai4water.backend import torch class HSGLayer(torch.nn.Module): def __init__(self, n_units, init_gates_closed): super(HSGLayer, self).__init__() self.W_R = torch.nn.Linear(n_units, n_units, bias=False) self.W_F = torch.nn.Linear(n_units, n_units) if init_gates_closed: self.W_F.bias = torch.nn.Parameter(torch.Tensor([-2.5]*n_units).cuda()) def forward(self, s_l_t, s_prime_tm1): g = torch.sigmoid(self.W_R(s_prime_tm1) + self.W_F(s_l_t)) s_prime_t = g*s_prime_tm1 + (1 - g)*s_l_t return s_prime_t class RHNCell(torch.nn.Module): def __init__(self, in_feats, n_units, rec_depth=3, couple_gates=True, use_hsg=False, init_gates_closed=False): super(RHNCell, self).__init__() self.rec_depth = rec_depth self.in_feats = in_feats self.n_units = n_units self.couple_gates = couple_gates self.use_HSG = use_hsg self.W_H = torch.nn.Linear(in_feats, n_units, bias=False) self.W_T = torch.nn.Linear(in_feats, n_units, bias=False) if not couple_gates: self.W_C = torch.nn.Linear(in_feats, n_units, bias=False) self.R_H = torch.nn.ModuleList([torch.nn.Linear(n_units, n_units) for _ in range(rec_depth)]) self.R_T = torch.nn.ModuleList([torch.nn.Linear(n_units, n_units) for _ in range(rec_depth)]) if not couple_gates: self.R_C = torch.nn.ModuleList([torch.nn.Linear(n_units, n_units) for _ in range(rec_depth)]) if use_hsg: self.HSG = HSGLayer(n_units, init_gates_closed) if init_gates_closed: for l in range(rec_depth): self.R_T[l].bias = torch.nn.Parameter(torch.Tensor([-2.5] * n_units).cuda()) if not couple_gates: self.R_C[l].bias = torch.nn.Parameter(torch.Tensor([-2.5] * n_units).cuda()) def forward(self, x, s): if self.use_HSG: s_prime_tm1 = s preds = [] for l in range(self.rec_depth): if l == 0: h_l_t = torch.tanh(self.W_H(x) + self.R_H[l](s)) t_l_t = torch.sigmoid(self.W_T(x) + self.R_T[l](s)) if not self.couple_gates: c_l_t = torch.sigmoid(self.W_C(x) + self.R_C[l](s)) else: h_l_t = torch.tanh(self.R_H[l](s)) t_l_t = torch.sigmoid(self.R_T[l](s)) if not self.couple_gates: c_l_t = torch.sigmoid(self.R_C[l](s)) if not self.couple_gates: s = h_l_t * t_l_t + c_l_t * s else: s = h_l_t * t_l_t + (1 - t_l_t) * s preds.append(s) if self.use_HSG: s = self.HSG(s, s_prime_tm1) preds.pop() preds.append(s) preds = torch.stack(preds) return s, preds class RHN(torch.nn.Module): def __init__(self, in_feats, out_feats, n_units=32, rec_depth=3, couple_gates=True, use_hsg=False, init_gates_closed=False, use_batch_norm=False): super(RHN, self).__init__() assert rec_depth > 0 self.rec_depth = rec_depth self.in_feats = in_feats self.n_units = n_units self.init_gates_closed = init_gates_closed self.couple_gates = couple_gates self.use_HSG = use_hsg self.use_batch_norm = use_batch_norm self.RHNCell = RHNCell(in_feats, n_units, rec_depth, couple_gates=couple_gates, use_hsg=use_hsg, init_gates_closed=init_gates_closed) if use_batch_norm: self.bn_x = torch.nn.BatchNorm1d(in_feats) self.bn_s = torch.nn.BatchNorm1d(n_units) def forward(self, x): s = torch.zeros(x.shape[0], self.n_units).cuda() preds = [] highway_states = [] for t in range(x.shape[1]): if self.use_batch_norm: x_inp = self.bn_x(x[:, t, :]) s = self.bn_s(s) else: x_inp = x[:, t, :] s, all_s = self.RHNCell(x_inp, s) preds.append(s) highway_states.append(all_s) preds = torch.stack(preds) preds = preds.permute(1, 0, 2) highway_states = torch.stack(highway_states) highway_states = highway_states.permute(2, 0, 3, 1) out = preds return out, highway_states class ConvBlock(torch.nn.Module): def __init__(self, timesteps, in_channels, n_filters=32, filter_size=5): super(ConvBlock, self).__init__() padding1 = self._calc_padding(timesteps, filter_size) self.conv = torch.nn.Conv1d(in_channels, n_filters, filter_size, padding=padding1) self.relu = torch.nn.ReLU() self.maxpool = torch.nn.AdaptiveMaxPool1d(timesteps) self.zp = torch.nn.ConstantPad1d((1, 0), 0) def _calc_padding(self, lin, kernel, stride=1, dilation=1): p = int(((lin - 1) * stride + 1 + dilation * (kernel - 1) - lin) / 2) return p def forward(self, x): x = x.permute(0, 2, 1) x = self.conv(x) x = self.relu(x) x = self.maxpool(x) x = x.permute(0, 2, 1) return x class HARHN(torch.nn.Module): def __init__(self, n_conv_layers, lookback, in_feats, target_feats, n_units_enc=32, n_units_dec=32, enc_input_size=32, rec_depth=3, use_predicted_output=True, out_feats=1, n_filters=32, filter_size=5): super(HARHN, self).__init__() assert n_conv_layers > 0 self.n_convs = n_conv_layers self.n_units_enc = n_units_enc self.n_units_dec = n_units_dec self.rec_depth = rec_depth self.T = lookback self.use_predicted_output = use_predicted_output self.convs = torch.nn.ModuleList([ConvBlock(lookback, in_feats, n_filters=n_filters, filter_size=filter_size) if i == 0 else ConvBlock(lookback, n_filters, n_filters=n_filters, filter_size=filter_size) for i in range(n_conv_layers)]) self.conv_to_enc = torch.nn.Linear(n_filters, enc_input_size) self.RHNEncoder = RHN(enc_input_size, out_feats=n_units_enc, n_units=n_units_enc, rec_depth=rec_depth) self.RHNDecoder = RHNCell(target_feats, n_units_dec, rec_depth=rec_depth) self.T_k = torch.nn.ModuleList([torch.nn.Linear(n_units_dec, n_units_enc, bias=False) for _ in range(self.rec_depth)]) self.U_k = torch.nn.ModuleList([torch.nn.Linear(n_units_enc, n_units_enc) for _ in range(self.rec_depth)]) self.v_k = torch.nn.ModuleList([torch.nn.Linear(n_units_enc, 1) for _ in range(self.rec_depth)]) self.W_tilda = torch.nn.Linear(target_feats, target_feats, bias=False) self.V_tilda = torch.nn.Linear(rec_depth * n_units_enc, target_feats) self.W = torch.nn.Linear(n_units_dec, target_feats) self.V = torch.nn.Linear(rec_depth * n_units_enc, target_feats) def forward(self, x, y_prev_t): if self.use_predicted_output: y_prev_t = y_prev_t[0:x.shape[0]] for conv in range(self.n_convs): x = self.convs[conv](x) x = self.conv_to_enc(x) x, h_t_l = self.RHNEncoder(x) # h_T_L.shape = (batch_size, T, n_units_enc, rec_depth) s = torch.zeros(x.shape[0], self.n_units_dec).cuda() for t in range(self.T): s_rep = s.unsqueeze(1) s_rep = s_rep.repeat(1, self.T, 1) d_t = [] for k in range(self.rec_depth): h_t_k = h_t_l[..., k] _ = self.U_k[k](h_t_k) _ = self.T_k[k](s_rep) e_t_k = self.v_k[k](torch.tanh(self.T_k[k](s_rep) + self.U_k[k](h_t_k))) alpha_t_k = torch.softmax(e_t_k, 1) d_t_k = torch.sum(h_t_k * alpha_t_k, dim=1) d_t.append(d_t_k) d_t = torch.cat(d_t, dim=1) if self.use_predicted_output: _, s, y_prev_t = self._last_v2(y_prev_t, d_t, s) else: _, s, _ = self._last_v1(y_prev_t, d_t, s, t) y_t = self.W(s) + self.V(d_t) return y_t, y_prev_t def _last_v2(self, y_prev_t, d_t, s): y_tilda_t = self.W_tilda(y_prev_t) + self.V_tilda(d_t) s, _ = self.RHNDecoder(y_tilda_t, s) y_prev_t = self.W(s) + self.V(d_t) return y_tilda_t, s, y_prev_t def _last_v1(self, y_prev_t, d_t, s, t): y_tilda_t = self.W_tilda(y_prev_t) + self.V_tilda(d_t) s, _ = self.RHNDecoder(y_tilda_t[:, t, :], s) return y_tilda_t, s, y_prev_t
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_torch/HARHN.py
HARHN.py
from typing import Union from ..utils import _check_length def MLP( units: Union[int, list] = 32, num_layers: int = 1, input_shape: tuple = None, num_outputs: int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = None, mode: str = "regression", output_activation: str = None, **kwargs ): """makes layers for MLP model for tensorflow""" assert num_layers>=1 assert input_shape is not None if isinstance(units, int): units = [units]*num_layers if not isinstance(activation, list): activation = [activation] * num_layers if not isinstance(dropout, list): dropout = [dropout] * num_layers in_feat = input_shape[-1] out_feat = units[0] layers = {} for i in range(num_layers): lyr = {f"Linear_{i}": {"in_features": in_feat, "out_features": out_feat}} in_feat = out_feat out_feat = units[i] layers.update(lyr) if activation[i]: layers.update({f'{activation[i]}_{i}': {}}) if dropout[i]: layers.update({f'Dropout_{i}': dropout[i]}) layers = _make_output_layer( layers, mode, out_feat, num_outputs, output_activation ) return {"layers": layers} def LSTM( units: Union[int, list] = 32, num_layers: int = 1, input_shape: tuple = None, num_outputs: int = 1, activation: Union[str, list] = None, dropout: Union[float, list] = 0., mode: str = "regression", output_activation: str = None, **kwargs ): """ helper function to make LSTM layers for pytorch """ assert isinstance(input_shape, (tuple, list)) assert len(input_shape)==2 if dropout is None: dropout = 0. layers = { 'LSTM_0': {"config": dict( input_size=input_shape[1], hidden_size= units, batch_first= True, num_layers= num_layers, dropout=dropout, **kwargs ), "outputs": ['lstm_output', 'states_0'] }, 'slice': {"config": lambda x: x[:, -1, :], # we want to get the output from last lookback step. "inputs": "lstm_output"}, } layers = _make_output_layer( layers, mode, units, num_outputs, output_activation ) return {"layers": layers} def CNN( filters: Union[int, list] = None, out_channels = 32, kernel_size: Union[int, tuple, list] = 3, convolution_type: str = "1D", num_layers: int = 1, padding: Union[str, list] = "same", stride: Union[int, list] = 1, pooling_type: Union[str, list] = None, pool_size: Union[int, list] = 2, batch_normalization: Union[bool, list] = None, activation: Union[str, list] = None, dropout: Union[float, list] = None, input_shape: tuple = None, num_outputs: int = 1, mode: str = "regression", output_activation: str = None, **kwargs, ): """ helper function to make CNN model with pytorch as backend """ out_channels = _check_length(out_channels, num_layers) #activation = _check_length(activation, num_layers) padding = _check_length(padding, num_layers) stride = _check_length(stride, num_layers) pooling_type = _check_length(pooling_type, num_layers) pool_size = _check_length(pool_size, num_layers) kernel_size = _check_length(kernel_size, num_layers) batch_normalization = _check_length(batch_normalization, num_layers) dropout = _check_length(dropout, num_layers) assert isinstance(input_shape, (tuple, list)) assert len(input_shape)==2 in_feat = input_shape[-1] out_feat = out_channels[0] layers = {} for idx in range(num_layers): pool_type = pooling_type[idx] batch_norm = batch_normalization[idx] config = { "kernel_size": kernel_size[idx], "stride": stride[idx], "padding": padding[idx], "in_channels": in_feat, "out_channels": out_feat } if kwargs is not None: config.update(kwargs) layers.update({f"Conv1d_{idx}": config}) if pool_type: pool_lyr = f"{pool_type}{convolution_type}" _lyr = {pool_lyr: {"pool_size": pool_size[idx]}} layers.update(_lyr) if batch_norm: layers.update({"BatchNormalization": {}}) if dropout[idx]: layers.update({f'Dropout_{idx}': dropout[idx]}) layers = _make_output_layer( layers, mode, out_feat, num_outputs, output_activation ) return {"layers": layers} def _make_output_layer( layers, mode, in_features, num_outputs, output_activation ): if output_activation is None and mode == "classification": # for binary it is better to use sigmoid if num_outputs > 2: output_activation = "softmax" else: output_activation = "sigmoid" num_outputs = 1 layers.update( {"Linear_out": {"in_features": in_features, 'out_features': num_outputs}}) return layers
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_torch/_functions.py
_functions.py
from typing import Union import gc from SeqMetrics import RegressionMetrics from ai4water.backend import easy_mpl as ep from ai4water.backend import os, np, plt, torch, pd try: import wandb except ModuleNotFoundError: wandb = None # only so that docs can be built without having torch to be installed try: from .utils import to_torch_dataset, TorchMetrics except ModuleNotFoundError: to_torch_dataset, TorchMetrics = None, None if torch is not None: from .pytorch_attributes import LOSSES else: LOSSES = {} from ai4water.utils.utils import dateandtime_now, find_best_weight F = { 'mse': [np.nanmin, np.less], 'nse': [np.nanmax, np.greater], 'r2': [np.nanmax, np.greater], 'pbias': [np.nanmin, np.less], 'mape': [np.nanmin, np.less], 'rmse': [np.nanmin, np.less], 'nrmse': [np.nanmin, np.less], 'kge': [np.nanmax, np.greater], } class AttributeContainer(object): def __init__(self, num_epochs, to_monitor=None, use_cuda=None, path=None, verbosity=1): self.to_monitor = get_metrics_to_monitor(to_monitor) self.num_epochs = num_epochs self.epoch = 0 self.val_loader = None self.train_loader = None self.criterion = None self.optimizer = None self.val_epoch_losses = {} self.train_epoch_losses = None self.train_metrics = {metric: np.full(num_epochs, np.nan) for metric in self.to_monitor} self.val_metrics = {f'val_{metric}': np.full(num_epochs, np.nan) for metric in self.to_monitor} self.best_epoch = 0 # todo, self.use_cuda = use_cuda if use_cuda is not None else torch.cuda.is_available() self.verbosity = verbosity def_path = path if path is not None else os.path.join(os.getcwd(), 'results', dateandtime_now()) if not os.path.exists(def_path) and verbosity >= 0: if not os.path.isdir(def_path): os.makedirs(def_path) else: os.mkdir(def_path) self.path = def_path @property def use_cuda(self): return self._use_cuda @use_cuda.setter def use_cuda(self, x): self._use_cuda = x @property def optimizer(self): return self._optimizer @optimizer.setter def optimizer(self, x): self._optimizer = x @property def loss(self): return self._loss @loss.setter def loss(self, x): if isinstance(x, str): x = LOSSES[x.upper()]() self._loss = x @property def path(self): return self._path @path.setter def path(self, x): self._path = x def _device(self): if self.use_cuda: return torch.device("cuda") else: return torch.device("cpu") class Learner(AttributeContainer): """Trains the pytorch model. Motivated from fastai""" def __init__( self, model, # torch.nn.Module, batch_size: int = 32, num_epochs: int = 14, patience: int = 100, shuffle: bool = True, to_monitor: list = None, use_cuda:bool = False, path: str = None, wandb_config:dict = None, verbosity=1, **kwargs ): """ Initializes the Learner class Arguments: model : a pytorch model having following attributes and methods - num_outs - w_path - `loss` - `get_optimizer` batch_size : batch size num_epochs : Number of epochs for which to train the model patience : how many epochs to wait before stopping the training in case `to_monitor` does not improve. shuffle : use_cuda : whether to use cuda or not to_monitor : list of metrics to monitor path : path to save results/weights wandb_config : config for wandb Example ------- >>> from torch import nn >>> import torch >>> from ai4water.models._torch import Learner ... >>> class Net(nn.Module): >>> def __init__(self, D_in, H, D_out): ... super(Net, self).__init__() ... # hidden layer ... self.linear1 = nn.Linear(D_in, H) ... self.linear2 = nn.Linear(H, D_out) >>> def forward(self, x): ... l1 = self.linear1(x) ... a1 = torch.sigmoid(l1) ... yhat = torch.sigmoid(self.linear2(a1)) ... return yhat ... >>> learner = Learner(model=Net(1, 2, 1), ... num_epochs=501, ... patience=50, ... batch_size=1, ... shuffle=False) ... >>> learner.optimizer = torch.optim.SGD(learner.model.parameters(), lr=0.1) >>> def criterion_cross(labels, outputs): ... out = -1 * torch.mean(labels * torch.log(outputs) + (1 - labels) * torch.log(1 - outputs)) ... return out >>> learner.loss = criterion_cross ... >>> X = torch.arange(-20, 20, 1).view(-1, 1).type(torch.FloatTensor) >>> Y = torch.zeros(X.shape[0]) >>> Y[(X[:, 0] > -4) & (X[:, 0] < 4)] = 1.0 ... >>> learner.fit(X, Y) >>> metrics = learner.evaluate(X, y=Y, metrics=['r2', 'nse', 'mape']) >>> t = learner.predict(X, y=Y, name='training') """ super().__init__(num_epochs, to_monitor, path=path, use_cuda=use_cuda, verbosity=verbosity) if self.use_cuda: model = model.to(self._device()) self.model = model self.batch_size = batch_size self.shuffle = shuffle self.patience = patience self.wandb_config = wandb_config def fit( self, x, y=None, validation_data=None, **kwargs ): """Runs the training loop for pytorch model. Arguments --------- x : Can be one of following - an instance of torch.Dataset, y will be ignored - an instance of torch.DataLoader, y will be ignored - a torch tensor containing input data for each example - a numpy array or pandas DataFrame - a list of torch tensors or numpy arrays y : if `x` is torch tensor, then `y` is the label/target for each corresponding example. validation_data : can be one of following: - an instance of torch.Dataset - an instance of torch.DataLoader - a tuple of x,y pairs where x and y are tensors Default is None, which means no validation is performed. kwargs : can be `callbacks` For example to use a callable as callback use following >>> callbacks = [{'after_epochs': 300, 'func': PlotStuff}] where `PlotStuff` is a callable. Each `callable` is provided with following keyword arguments - epoch : the current epoch at which callable is called. - model : the model - train_data : training data_loader - val_data : validation data_loader """ self.on_train_begin(x, y=y, validation_data=validation_data, **kwargs) for epoch in range(self.num_epochs): self.epoch = epoch self.train_for_epoch() self.validate_for_epoch() self.on_epoch_end() if epoch - self.best_epoch > self.patience: if self.verbosity > 0: print(f"Stopping early because improvment in loss did not happen since {self.best_epoch}th epoch") break return self.on_train_end() def predict( self, x, y=None, batch_size: int = None, reg_plot: bool = True, name: str = None, **kwargs ) -> np.ndarray: """Makes prediction on the given data Arguments: x : data on which to evalute. It can be - a torch.utils.data.Dataset - a torch.utils.data.DataLoader - a torch.Tensor - a numpy array - a list of torch tensors numpy arrays y : only relevent if `x` is torch.Tensor. It comprises labels for correspoing x. batch_size : None means make prediction on whole data in one go reg_plot : whether to plot regression line or not name : string to be used for title and name of saved plot Returns: predicted output as numpy array """ true, pred = self._eval(x=x, y=y, batch_size=batch_size) if y is not None and reg_plot and pred.size > 0.0: ep.regplot(true, pred, show=False) plt.savefig(os.path.join(self.path, f'{name}_regplot.png')) #if self.use_cuda: torch.cuda.empty_cache() gc.collect() return pred def _eval(self, x, y=None, batch_size=None): loader, _ = self._get_loader(x=x, y=y, batch_size=batch_size, shuffle=False) true, pred = [], [] for i, (batch_x, batch_y) in enumerate(loader): batch_y, pred_y = self.eval(batch_x, batch_y) true.append(batch_y.detach().cpu().numpy()) pred.append(pred_y.detach().cpu().numpy()) true = np.concatenate(true) pred = np.concatenate(pred) del loader del batch_x del batch_y gc.collect() return true, pred def eval(self, batch_x, batch_y): """Calls the model with x and y data and returns trues and preds""" batch_x = batch_x if isinstance(batch_x, list) else [batch_x] batch_x = [tensor.float() for tensor in batch_x] if self.use_cuda: batch_x = [tensor.cuda() for tensor in batch_x] batch_y = batch_y.cuda() pred_y = self.model(*batch_x) del batch_x return batch_y, pred_y def evaluate( self, x, y, batch_size: int = None, metrics: Union[str, list] = 'r2', **kwargs ): """ Evaluates the `model` on the given data. Arguments: x : data on which to evalute. It can be - a torch.utils.data.Dataset - a torch.utils.data.DataLoader - a torch.Tensor - a numpy.ndarray - a list of torch tensors numpy arrays y : It comprises labels for correspoing x. batch_size : None means make prediction on whole data in one go metrics : name of performance metric to measure. It can be a single metric or a list of metrics. Allowed metrics are anyone from `ai4water.post_processing.SeqMetrics.RegressionMetrics` kwargs : Returns: if metrics is string the returned value is float otherwise it will be a dictionary """ # todo y->pred is only converting tensor into numpy array true, pred = self._eval(x=x, y=y, batch_size=batch_size) evaluator = RegressionMetrics(true, pred) errors = {} if isinstance(metrics, str): errors = getattr(evaluator, metrics)() else: assert isinstance(metrics, list) for m in metrics: errors[m] = getattr(evaluator, m)() return errors def train_for_epoch(self): """Trains pytorch model for one complete epoch""" epoch_losses = {metric: np.full(len(self.train_loader), np.nan) for metric in self.to_monitor} # todo, it would be better to avoid reshaping/view at all if hasattr(self.model, 'num_outs'): num_outs = self.model.num_outs else: num_outs = self.num_outs for i, (batch_x, batch_y) in enumerate(self.train_loader): # todo, feeding batch_y to eval is only putting it on right device # can we do it before? batch_y, pred_y = self.eval(batch_x, batch_y) if num_outs: batch_y = batch_y.float().view(len(batch_y), num_outs) pred_y = pred_y.view(len(pred_y), num_outs) loss = self.criterion(batch_y, pred_y) loss = loss.float() loss.backward() self.optimizer.step() self.optimizer.zero_grad() # calculate metrics for each mini-batch er = TorchMetrics(batch_y, pred_y) for k, v in epoch_losses.items(): v[i] = getattr(er, k)().detach().item() # epoch_losses['mse'][i] = loss.detach() # take the mean for all mini-batches without considering infinite values self.train_epoch_losses = {k: round(float(np.mean(v[np.isfinite(v)])), 4) for k, v in epoch_losses.items()} if self.wandb_config is not None: wandb.log(self.train_epoch_losses, step=self.epoch) if self.use_cuda: torch.cuda.empty_cache() return def validate_for_epoch(self): """If validation data is available, then it performs the validation """ if self.val_loader is not None: epoch_losses = {metric: np.full(len(self.val_loader), np.nan) for metric in self.to_monitor} for i, (batch_x, batch_y) in enumerate(self.val_loader): batch_y, pred_y = self.eval(batch_x, batch_y) # calculate metrics for each mini-batch er = TorchMetrics(batch_y, pred_y) for k, v in epoch_losses.items(): v[i] = getattr(er, k)().detach().item() # take the mean for all mini-batches self.val_epoch_losses = {f'val_{k}': round(float(np.mean(v)), 4) for k, v in epoch_losses.items()} if self.wandb_config is not None: wandb.log(self.val_epoch_losses, step=self.epoch) for k, v in self.val_epoch_losses.items(): metric = k.split('_')[1] f1 = F[metric][0] f2 = F[metric][1] if f2(v, f1(self.val_metrics[k])): torch.save(self.model.state_dict(), self._weight_fname(self.epoch, v)) self.best_epoch = self.epoch break # weights are saved for this epoch so no need to check other metrics return def _weight_fname(self, epoch, loss): return os.path.join(getattr(self.model, 'w_path', self.path), f"weights_{epoch}_{loss}") def _get_train_val_loaders(self, x, y=None, validation_data=None): train_loader, self.num_outs = self._get_loader(x=x, y=y, batch_size=self.batch_size, shuffle=self.shuffle) val_loader, _ = self._get_loader(x=validation_data, batch_size=self.batch_size, shuffle=self.shuffle) return train_loader, val_loader def on_train_begin(self, x, y=None, validation_data=None, **kwargs): self.cbs = kwargs.get('callbacks', []) # no callback by default if self.verbosity > 0: print("{}{}{}".format('*' * 25, 'Training Started', '*' * 25)) formatter = "{:<7}" + " {:<15}" * (len(self.train_metrics) + len(self.val_metrics)) print(formatter.format('Epoch: ', *self.train_metrics.keys(), *self.train_metrics.keys())) print("{}".format('*' * 70)) if hasattr(self.model, 'loss'): self.criterion = self.model.loss() else: self.criterion = self.loss if hasattr(self.model, 'get_optimizer'): self.optimizer = self.model.get_optimizer() else: self.optimizer = self.optimizer self.train_loader, self.val_loader = self._get_train_val_loaders( x, y=y, validation_data=validation_data) if self.wandb_config is not None: assert wandb is not None assert isinstance(self.wandb_config, dict) wandb.init(name=os.path.basename(self.path), project=self.wandb_config.get('probject', 'test_project'), notes='This is Learner from AI4Water test run', tags=['ai4water', 'pytorch'], entity=self.wandb_config.get('entity', '')) return def on_train_end(self): self.update_weights() self.train_metrics['loss'] = self.train_metrics.pop('mse') self.val_metrics['val_loss'] = self.val_metrics.pop('val_mse') class History(object): history = {} history.update(self.train_metrics) history.update(self.val_metrics) setattr(self, 'history', History()) if self.wandb_config is not None: wandb.finish() return History() def update_weights(self, weight_file_path: str = None): """If `weight_file_path` is not given then it finds the best weights and updates the model with best wieghts. Arguments: weight_file_path : complete path of weights which are to be loaded """ if weight_file_path: assert os.path.exists(weight_file_path) best_weights = os.path.basename(weight_file_path) else: w_path = getattr(self.model, 'w_path', self.path) best_weights = find_best_weight(w_path, epoch_identifier=self.best_epoch) if best_weights is not None: if best_weights.endswith(".hdf5"): # todo, find_best_weight should not add .hdf5 best_weights = best_weights.split(".hdf5")[0] weight_file_path = os.path.join(w_path, best_weights) if best_weights is not None: # fpath = os.path.splitext(weight_file_path)[0] # we are not saving the whole model but only state_dict self.model.load_state_dict(torch.load(weight_file_path)) if self.verbosity > 0: print("{} Successfully loaded weights from {} file {}".format('*' * 10, best_weights, '*' * 10)) return def update_metrics(self): for k, v in self.train_metrics.items(): v[self.epoch] = self.train_epoch_losses[k] if self.val_loader is not None: for k, v in self.val_metrics.items(): v[self.epoch] = self.val_epoch_losses[k] return def on_epoch_begin(self): return def on_epoch_end(self): formatter = "{:<7}" + "{:<15.7f} " * (len(self.val_epoch_losses) + len(self.train_epoch_losses)) if self.val_loader is None: # otherwise model is already saved based upon validation performance for k, v in self.train_epoch_losses.items(): f1 = F[k][0] f2 = F[k][1] if f2(v, f1(self.train_metrics[k])): torch.save(self.model.state_dict(), self._weight_fname(self.epoch, v)) self.best_epoch = self.epoch break if self.verbosity > 0: print(formatter.format(self.epoch, *self.train_epoch_losses.values(), *self.val_epoch_losses.values())) for cb in self.cbs: if self.epoch % cb['after_epochs'] == 0: cb['func'](epoch=self.epoch, model=self.model, train_data=self.train_loader, val_data=self.val_loader ) self.update_metrics() return def _get_loader(self, x, y=None, batch_size=None, shuffle=True): data_loader = None num_outs = None if x is None: return None, None if isinstance(x, list): if len(x) == 1: x = x[0] if isinstance(x, torch.utils.data.Dataset): dataset = x else: dataset = to_torch_dataset(x, y) else: dataset = to_torch_dataset(x, y) elif isinstance(x, (np.ndarray, pd.DataFrame)): if y is not None: # if x is numpy array or DataFrame, so should y assert isinstance(y, (np.ndarray, pd.DataFrame, pd.Series)) # if it is DataFrame or Series if hasattr(y, 'values'): y = y.values if len(y.shape) == 1: num_outs = 1 else: num_outs = y.shape[-1] if isinstance(x, pd.DataFrame): x = x.values dataset = to_torch_dataset(x, y) elif isinstance(x, torch.utils.data.Dataset): dataset = x elif isinstance(x, torch.utils.data.DataLoader): data_loader = x elif isinstance(x, torch.Tensor): dataset = to_torch_dataset(x=x, y=y) elif isinstance(x, tuple): # x is tuple of x,y pairs assert len(x) == 2 dataset = to_torch_dataset(x=x[0], y=x[1]) else: raise NotImplementedError(f'unrecognized data of type {x.__class__.__name__} given') if data_loader is None: if batch_size is None: batch_size = len(dataset) data_loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle ) return data_loader, num_outs def plot_model_using_tensorboard( self, x=None, path='tensorboard/tensorboard' ): """Plots the neural network on tensorboard Arguments --------- x : torch.Tensor input to the model path : str path to save tensorboard graph """ from torch.utils.tensorboard import SummaryWriter # default `log_dir` is "runs" - we'll be more specific here writer = SummaryWriter(path) if x is None: x, _ = iter(self.train_loader).next() writer.add_graph(self.model, x) writer.close() return def plot_model(self, y=None): """Helper function to plot dot diagram of model using torchviz module. Arguments --------- y : torch.Tensor output tensor """ try: from torchviz import make_dot except ModuleNotFoundError: print("You must install torchviz to plot model." "see https://github.com/szagoruyko/pytorchviz#installation for installation") return if y is None: x, _ = iter(self.train_loader).next() y = self.model(x) fname = os.path.join(self.path, 'model.png') dot = make_dot(y, dict(self.model.named_parameters()), show_attrs=True, show_saved=True) dot.render(fname) return dot def get_metrics_to_monitor(metrics): if metrics is None: _metrics = ['mse'] elif isinstance(metrics, list): _metrics = metrics + ['mse'] else: assert isinstance(metrics, str) _metrics = ['mse', metrics] return list(set(_metrics))
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/models/_torch/pytorch_training.py
pytorch_training.py
import gc import json import math import warnings from typing import Union, Tuple, List, Callable, Optional from SeqMetrics import RegressionMetrics, ClassificationMetrics from ai4water.backend import tf, os, np, pd, plt, easy_mpl, sklearn from ai4water.backend import xgboost, catboost, lightgbm from ai4water.hyperopt import HyperOpt from ai4water.preprocessing import DataSet from ai4water.utils.utils import make_model from ai4water.utils.utils import TrainTestSplit from ai4water.utils.utils import jsonize, ERROR_LABELS from ai4water.utils.utils import AttribtueSetter from ai4water.postprocessing import ProcessPredictions from ai4water.utils.visualizations import edf_plot from ai4water.utils.utils import create_subplots from ai4water.utils.utils import find_best_weight, dateandtime_now, dict_to_file from ai4water.functional import Model as FModel from ai4water._main import BaseModel plot = easy_mpl.plot bar_chart = easy_mpl.bar_chart taylor_plot = easy_mpl.taylor_plot dumbbell_plot = easy_mpl.dumbbell_plot reg_plot = easy_mpl.regplot if tf is not None: if 230 <= int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 250: from ai4water.functional import Model print(f""" Switching to functional API due to tensorflow version {tf.__version__} for experiments""") else: from ai4water import Model else: from ai4water import Model SEP = os.sep # todo plots comparing different models in following youtube videos at 6:30 and 8:00 minutes. # https://www.youtube.com/watch?v=QrJlj0VCHys # compare models using statistical tests wuch as Giacomini-White test or Diebold-Mariano test # paired ttest 5x2cv # in order to unify the use of metrics Metrics = { 'regression': lambda t, p, multiclass=False, **kwargs: RegressionMetrics( t, p, **kwargs), 'classification': lambda t, p, multiclass=False, **kwargs: ClassificationMetrics( t, p, multiclass=multiclass, **kwargs) } Monitor = { 'regression': ['r2', 'corr_coeff', 'mse', 'rmse', 'r2_score', 'nse', 'kge', 'mape', 'pbias', 'bias', 'mae', 'nrmse', 'mase'], 'classification': ['accuracy', 'precision', 'recall', 'f1_score'] } reg_dts = ["ExtraTreeRegressor","DecisionTreeRegressor", "ExtraTreesRegressor", "RandomForestRegressor", "AdaBoostRegressor", "BaggingRegressor", "HistGradientBoostingRegressor", "GradientBoostingRegressor"] cls_dts = ["DecisionTreeClassifier", "ExtraTreeClassifier", "ExtraTreesClassifier", "AdaBoostClassifier","RandomForestClassifier", "BaggingClassifier" "GradientBoostingClassifier", "HistGradientBoostingClassifier"] if xgboost is not None: reg_dts += ["XGBRegressor"] cls_dts += ["XGBClassifier"] if catboost is not None: reg_dts += ["CatBoostRegressor"] cls_dts += ["CatBoostClassifier"] if lightgbm is not None: reg_dts += ["LGBMRegressor"] cls_dts += ["LGBMClassifier"] DTs = {"regression": reg_dts, "classification": cls_dts } LMs = { "regression": ["LinearRegression", "Ridge", "RidgeCV", "SGDRegressor", "ElasticNetCV", "ElasticNet", "Lasso", "LassoCV", "Lars", "LarsCV", "LassoLars", "LassoLarsCV", "LassoLarsIC"], "classification": ["LogisticRegression", "LogisticRegressionCV", "PassiveAggressiveClassifier", "Perceptron", "RidgeClassifier", "RidgeClassifierCV", "SGDClassifier", "SGDClassifierCV"] } class Experiments(object): """ Base class for all the experiments. All the experiments must be subclasses of this class. The core idea of ``Experiments`` is based upon ``model``. An experiment consists of one or more models. The models differ from each other in their structure/idea/concept/configuration. When :py:meth:`ai4water.experiments.Experiments.fit` is called, each ``model`` is built and trained. The user can customize, building and training process by subclassing this class and customizing :py:meth:`ai4water.experiments.Experiments._build` and :py:meth:`ai4water.experiments.Experiments._fit` methods. Attributes ------------ - metrics - exp_path - model_ - models Methods -------- - fit - taylor_plot - loss_comparison - plot_convergence - from_config - compare_errors - plot_improvement - compare_convergence - plot_cv_scores - fit_with_tpot """ def __init__( self, cases: dict = None, exp_name: str = None, num_samples: int = 5, verbosity: int = 1, monitor: Union[str, list, Callable] = None, show: bool = True, save: bool = True, **model_kws, ): """ Arguments --------- cases : python dictionary defining different cases/scenarios. See TransformationExperiments for use case. exp_name : name of experiment, used to define path in which results are saved num_samples : only relevent when you wan to optimize hyperparameters of models using ``grid`` method verbosity : bool, optional determines the amount of information monitor : str, list, optional list of performance metrics to monitor. It can be any performance metric SeqMetrics_ library. By default ``r2``, ``corr_coeff``, ``mse``, ``rmse``, ``r2_score``, ``nse``, ``kge``, ``mape``, ``pbias``, ``bias``, ``mae``, ``nrmse`` ``mase`` are considered for regression and ``accuracy``, ``precision`` ``recall`` are considered for classification. The user can also put a custom metric to monitor. In such a case we it should be callable which accepts two input arguments. The first one is array of true and second is array of predicted values. >>> def f1_score(t,p)->float: >>> return ClassificationMetrics(t, p).f1_score(average="macro") >>> monitor = [f1_score, "accuracy"] Here ``f1_score`` is a function which accepts two arays. **model_kws : keyword arguments which are to be passed to `Model` and are not optimized. .. _SeqMetrics: https://seqmetrics.readthedocs.io/en/latest/index.html """ self.opt_results = None self.optimizer = None self.exp_name = 'Experiments_' + str(dateandtime_now()) if exp_name is None else exp_name self.num_samples = num_samples self.verbosity = verbosity self.show = show self.save = save self.models = [method for method in dir(self) if method.startswith('model_')] if cases is None: cases = {} self.cases = {'model_' + key if not key.startswith('model_') else key: val for key, val in cases.items()} self.models = self.models + list(self.cases.keys()) self.exp_path = os.path.join(os.getcwd(), "results", self.exp_name) if not os.path.exists(self.exp_path): os.makedirs(self.exp_path) self.eval_models = {} self.optimized_models = {} if monitor is None: self.monitor = Monitor[self.mode] else: if not isinstance(monitor, list): monitor = [monitor] self.monitor = monitor self.model_kws = model_kws # _run_type is actually set during call to .fit self._run_type = None @property def category(self)->str: raise NotImplementedError @property def plots_(self)->list: if self.mode == "regression": return ['regression', 'prediction', "residual", "edf"] return [] def metric_kws(self, metric_name:str=None)->dict: return {} def _pre_build_hook(self, **suggested_paras): """Anything that needs to be performed before building the model.""" return suggested_paras def config(self)->dict: _config = { "models":self.models, "exp_path": self.exp_path, "exp_name": self.exp_name, "cases": self.cases, "model_kws": jsonize(self.model_kws), "eval_models": self.eval_models, "optimized_models": self.optimized_models, } for attr in ['is_multiclass_', 'is_binary_', 'is_multilabel_', 'considered_models_']: if hasattr(self, attr): _config[attr] = getattr(self, attr) return _config def save_config(self): dict_to_file(self.exp_path, config=self.config()) return def build_from_config(self, config_path:str)->BaseModel: assert os.path.exists(config_path), f"{config_path} does not exist" if self.category == "DL": model = FModel else: model = Model model = model.from_config_file(config_path=config_path) assert isinstance(model, BaseModel) setattr(self, 'model_', model) return model def update_model_weight( self, model:Model, config_path:str ): """updates the weight of model. If no saved weight is found, a warning is raised. """ best_weights = find_best_weight(os.path.join(config_path, "weights")) # Sometimes no weight is saved when the prediction is None, # todo # should we raise error in such case? What are other cases when best_weights can be None if best_weights is None: warnings.warn(f"Can't find weight for {model} from \n {config_path}") return weight_file = os.path.join(model.w_path, best_weights) model.update_weights(weight_file=weight_file) if self.verbosity>1: print("{} Successfully loaded weights from {} file {}".format('*' * 10, weight_file, '*' * 10)) return @property def tpot_estimator(self): raise NotImplementedError @property def mode(self): raise NotImplementedError @property def num_samples(self): return self._num_samples @num_samples.setter def num_samples(self, x): self._num_samples = x def _reset(self): self.cv_scores_ = {} self.metrics = {} self.features = {} self.iter_metrics = {} self.considered_models_ = [] return def _named_x0(self)->dict: x0 = getattr(self, 'x0', None) param_space = getattr(self, 'param_space', None) if param_space: names = [s.name for s in param_space] if x0: return {k: v for k, v in zip(names, x0)} return {} def _get_config(self, model_type, model_name, **suggested_paras): # the config must contain the suggested parameters by the hpo algorithm if model_type in self.cases: config = self.cases[model_type] config.update(suggested_paras) elif model_name in self.cases: config = self.cases[model_name] config.update(suggested_paras) elif hasattr(self, model_type): config = getattr(self, model_type)(**suggested_paras) else: raise TypeError return config def _dry_run_a_model( self, model_type, model_name, cross_validate, train_x, train_y, val_x, val_y): """runs the `.fit` of allt he models being considered once. Also populates following attributes - eval_models - cv_scores_ - metrics - features """ if self.verbosity >= 0: print(f"running {model_name} model") config = self._get_config(model_type, model_name, **self._named_x0()) model = self._build_fit( train_x, train_y, title=f"{self.exp_name}{SEP}{model_name}", validation_data=(val_x, val_y), cross_validate=cross_validate, **config) train_results = self._predict(model=model, x=train_x, y=train_y) self._populate_results(model_name, train_results) if val_x is not None and (hasattr(val_x, '__len__') and len(val_x)>0): val_results = self._predict(model=model, x=val_x, y=val_y) self._populate_results(model_name, train_results=train_results, val_results=val_results) if cross_validate: cv_scoring = model.val_metric self.cv_scores_[model_type] = getattr(model, f'cross_val_scores') setattr(self, '_cv_scoring', cv_scoring) self.eval_models[model_type] = self.model_.path return def _optimize_a_model( self, model_type, model_name,opt_method, num_iterations, cross_validate, post_optimize, train_x, train_y, val_x, val_y, **hpo_kws, ): def objective_fn(**suggested_paras) -> float: config = self._get_config(model_type, model_name, **suggested_paras) return self._build_fit_eval( train_x=train_x, train_y=train_y, validation_data=(val_x, val_y), cross_validate=cross_validate, title=f"{self.exp_name}{SEP}{model_name}", **config) opt_dir = os.path.join(os.getcwd(), f"results{SEP}{self.exp_name}{SEP}{model_name}") if self.verbosity > 0: print(f"optimizing {model_name} using {opt_method} method") self.optimizer = HyperOpt( opt_method, objective_fn=objective_fn, param_space=self.param_space, opt_path=opt_dir, num_iterations=num_iterations, # number of iterations x0=self.x0, verbosity=self.verbosity, **hpo_kws ) self.opt_results = self.optimizer.fit() self.optimized_models[model_type] = self.optimizer.opt_path if cross_validate: # if we do train_best, self.model_ will change and this cv_scoring = self.model_.val_metric self.cv_scores_[model_type] = getattr(self.model_, f'cross_val_scores') setattr(self, '_cv_scoring', cv_scoring) x, y = _combine_training_validation_data(train_x, train_y, (val_x, val_y)) if post_optimize == 'eval_best': train_results = self.eval_best(x, y, model_name, opt_dir) else: train_results = self.train_best(x, y, model_name) self._populate_results(model_type, train_results) if not hasattr(self, 'model_'): # todo asking user to define this parameter is not good raise ValueError(f'The `build` method must set a class level attribute named `model_`.') self.eval_models[model_type] = self.model_.path self.iter_metrics[model_type] = self.model_iter_metric return def fit( self, x=None, y=None, data=None, validation_data: Optional[tuple] = None, run_type: str = "dry_run", opt_method: str = "bayes", num_iterations: int = 12, include: Union[None, list, str] = None, exclude: Union[None, list, str] = '', cross_validate: bool = False, post_optimize: str = 'eval_best', **hpo_kws ): """ Runs the fit loop for all the ``models`` of experiment. The user can however, specify the models by making use of ``include`` and ``exclude`` keywords. The data should be defined according to following four rules either - only x,y should be given (val will be taken from it according to splitting schemes) - or x,y and validation_data should be given - or only data should be given (train and validation data will be taken accoring to splitting schemes) Parameters ---------- x : input data. When ``run_type`` is ``dry_run``, then the each model is trained on this data. If ``run_type`` is ``optimize``, validation_data is not given, then x,y pairs of validation data are extracted from this data based upon splitting scheme i.e. ``val_fraction`` argument. y : label/true/observed data data : Raw unprepared data from which x,y pairs for training and validation will be extracted. this will be passed to :py:meth:`ai4water.Model.fit`. This is is only required if ``x`` and ``y`` are not given validation_data : a tuple which consists of x,y pairs for validation data. This can only be given if ``x`` and ``y`` are given and ``data`` is not given. run_type : str, optional (default="dry_run") One of ``dry_run`` or ``optimize``. If ``dry_run``, then all the `models` will be trained only once. if ``optimize``, then hyperparameters of all the models will be optimized. opt_method : str, optional (default="bayes") which optimization method to use. options are ``bayes``, ``random``, ``grid``. Only valid if ``run_type`` is ``optimize`` num_iterations : int, optional number of iterations for optimization. Only valid if ``run_type`` is ``optimize``. include : list/str optional (default="DTs") name of models to included. If None, all the models found will be trained and or optimized. Default is "DTs", which means all decision tree based models will be used. exclude : name of ``models`` to be excluded cross_validate : bool, optional (default=False) whether to cross validate the model or not. This depends upon `cross_validator` agrument to the `Model`. post_optimize : str, optional one of ``eval_best`` or ``train_best``. If eval_best, the weights from the best models will be uploaded again and the model will be evaluated on train, test and all the data. If ``train_best``, then a new model will be built and trained using the parameters of the best model. **hpo_kws : keyword arguments for :py:class:`ai4water.hyperopt.HyperOpt` class. Examples --------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> exp = MLRegressionExperiments() >>> exp.fit(data=busan_beach()) If you want to compare only RandomForest, XGBRegressor, CatBoostRegressor and LGBMRegressor, use the ``include`` keyword >>> exp.fit(data=busan_beach(), include=['RandomForestRegressor', 'XGBRegressor', >>> 'CatBoostRegressor', 'LGBMRegressor']) Similarly, if you want to exclude certain models from comparison, you can use ``exclude`` keyword >>> exp.fit(data=busan_beach(), exclude=["SGDRegressor"]) if you want to perform cross validation for each model, we must give the ``cross_validator`` argument which will be passed to ai4water Model >>> exp = MLRegressionExperiments(cross_validator={"KFold": {"n_splits": 10}}) >>> exp.fit(data=busan_beach(), cross_validate=True) Setting ``cross_validate`` to True will populate `cv_scores_` dictionary which can be accessed as ``exp.cv_scores_`` if you want to optimize the hyperparameters of each model, >>> exp.fit(data=busan_beach(), run_type="optimize", num_iterations=20) """ train_x, train_y, val_x, val_y, _, _ = self.verify_data( x, y, data, validation_data) AttribtueSetter(self, train_y) del x, y, data, validation_data gc.collect() assert run_type in ['optimize', 'dry_run'], f"run_type mus" self._run_type = run_type assert post_optimize in ['eval_best', 'train_best'], f""" post_optimize must be either 'eval_best' or 'train_best' but it is {post_optimize}""" if exclude == '': exclude = [] if hpo_kws is None: hpo_kws = {} models_to_consider = self._check_include_arg(include) if exclude is None: exclude = [] elif isinstance(exclude, str): exclude = [exclude] consider_exclude(exclude, self.models, models_to_consider) self._reset() setattr(self, 'considered_models_', models_to_consider) for model_type in models_to_consider: model_name = model_type.split('model_')[1] self.model_iter_metric = {} self.iter_ = 0 # there may be attributes int the model, which needs to be loaded so run the method first. # such as param_space etc. if hasattr(self, model_type): getattr(self, model_type)() if run_type == 'dry_run': self._dry_run_a_model( model_type, model_name, cross_validate, train_x, train_y, val_x, val_y) else: self._optimize_a_model( model_type, model_name, opt_method, num_iterations, cross_validate, post_optimize, train_x, train_y, val_x, val_y, **hpo_kws ) self.save_config() save_json_file(os.path.join(self.exp_path, 'features.json'), self.features) save_json_file(os.path.join(self.exp_path, 'metrics.json'), self.metrics) return def eval_best( self, x, y, model_type:str, opt_dir:str, ): """Evaluate the best models.""" folders = [path for path in os.listdir(opt_dir) if os.path.isdir(os.path.join(opt_dir, path)) and path.startswith('1_')] if len(folders) < 1: return self.train_best(x, y, model_type) assert len(folders) == 1, f"{folders}" for mod_path in folders: config_path = os.path.join(opt_dir, mod_path, "config.json") model = self.build_from_config(config_path) self.update_model_weight(model, os.path.join(opt_dir, mod_path)) results = self._predict(model, x=x, y=y) return results def train_best( self, x, y, model_type, ): """Finds the best model, builts it, fits it and makes predictions from it.""" best_paras = self.optimizer.best_paras() if best_paras.get('lookback', 1) > 1: _model = 'layers' else: _model = model_type title = f"{self.exp_name}{SEP}{model_type}{SEP}best" model = self._build_fit(x, y, view=False, title=title, cross_validate=False, model={_model: self.optimizer.best_paras()}, ) results = self._predict(model, x=x, y=y) return results def _populate_results( self, model_type: str, train_results: Tuple[np.ndarray, np.ndarray], val_results: Tuple[np.ndarray, np.ndarray] = None, test_results: Tuple[np.ndarray, np.ndarray] = None, ): """populates self.metrics and self.features dictionaries""" if not model_type.startswith('model_'): # internally we always use model_ at the start. model_type = f'model_{model_type}' metrics = dict() features = dict() # save performance metrics of train and test if train_results is not None: metrics['train'] = self._get_metrics(*train_results) features['train'] = { 'true': {'std': np.std(train_results[0])}, 'simulation': {'std': np.std(train_results[1])} } if val_results is not None: metrics['val'] = self._get_metrics(*val_results) features['val'] = { 'true': {'std': np.std(val_results[0])}, 'simulation': {'std': np.std(val_results[1])} } if test_results is not None: self.metrics[model_type]['test'] = self._get_metrics(*test_results) self.features[model_type]['test'] = { 'true': {'std': np.std(test_results[0])}, 'simulation': {'std': np.std(test_results[1])} } if metrics: self.metrics[model_type] = metrics self.features[model_type] = features return def _get_metrics(self, true:np.ndarray, predicted:np.ndarray)->dict: """get the performance metrics being monitored given true and predicted data""" metrics_inst = Metrics[self.mode](true, predicted, replace_nan=True, replace_inf=True, multiclass=self.is_multiclass_) metrics = {} for metric in self.monitor: if isinstance(metric, str): metrics[metric] = getattr(metrics_inst, metric)(**self.metric_kws(metric)) elif callable(metric): # metric is a callable metrics[metric.__name__] = metric(true, predicted) else: raise ValueError(f"invalid metric f{metric}") return metrics def taylor_plot( self, x=None, y=None, data=None, include: Union[None, list] = None, exclude: Union[None, list] = None, figsize: tuple = (5, 8), **kwargs ) -> plt.Figure: """ Compares the models using taylor_plot_. Parameters ---------- x : input data, if not given, then ``data`` must be given. y : target data data : raw unprocessed data from which x,y pairs can be drawn. This data will be passed to DataSet class and :py:meth:`ai4water.preprocessing.DataSet.test_data` method will be used to draw x,y pairs. include : str, list, optional if not None, must be a list of models which will be included. None will result in plotting all the models. exclude : str, list, optional if not None, must be a list of models which will excluded. None will result in no exclusion figsize : tuple, optional figure size as (width,height) **kwargs : all the keyword arguments for taylor_plot_ function. Returns ------- plt.Figure Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> inputs = list(data.columns)[0:-1] >>> outputs = list(data.columns)[-1] >>> experiment = MLRegressionExperiments(input_features=inputs, output_features=outputs) >>> experiment.fit(data=data) >>> experiment.taylor_plot(data=data) .. _taylor_plot: https://easy-mpl.readthedocs.io/en/latest/plots.html#easy_mpl.taylor_plot """ _, _, _, _, x, y = self.verify_data(data=data, test_data=(x, y)) self._build_predict_from_configs(x, y) metrics = self.metrics.copy() include = self._check_include_arg(include) if exclude is not None: consider_exclude(exclude, self.models, metrics) if 'name' in kwargs: fname = kwargs.pop('name') else: fname = 'taylor' fname = os.path.join(os.getcwd(), f'results{SEP}{self.exp_name}{SEP}{fname}.png') train_std = [_model['train']['true']['std'] for _model in self.features.values()] train_std = list(set(train_std))[0] if 'test' in list(self.features.values())[0]: test_stds = [_model['test']['true']['std'] for _model in self.features.values()] test_data_type = "test" else: test_stds = [_model['val']['true']['std'] for _model in self.features.values()] test_data_type = "val" # if any value in test_stds is nan, set(test_stds)[0] will be nan if np.isnan(list(set(test_stds)))[0]: test_std = list(set(test_stds))[1] else: test_std = list(set(test_stds))[0] assert not np.isnan(test_std) observations = {'train': {'std': train_std}, test_data_type: {'std': test_std}} simulations = {'train': None, test_data_type: None} for scen in ['train', test_data_type]: scen_stats = {} for model, _metrics in metrics.items(): model_stats = {'std': self.features[model][scen]['simulation']['std'], 'corr_coeff': _metrics[scen]['corr_coeff'], 'pbias': _metrics[scen]['pbias'] } if model in include: key = shred_model_name(model) scen_stats[key] = model_stats simulations[scen] = scen_stats ax = taylor_plot( observations=observations, simulations=simulations, figsize=figsize, show=False, **kwargs ) if self.save: plt.savefig(fname, dpi=600, bbox_inches="tight") if self.show: plt.show() return ax def _consider_include(self, include: Union[str, list], to_filter:dict): filtered = {} include = self._check_include_arg(include) for m in include: if m in to_filter: filtered[m] = to_filter[m] return filtered def _check_include_arg( self, include:Union[str, List[str]], default=None, )->list: """ if include is None, then self.models is returned. """ if default is None: default = self.models if isinstance(include, str): if include == "DTs": include = DTs[self.mode] elif include == "LMs": include = LMs[self.mode] else: include = [include] if include is None: include = default include = ['model_' + _model if not _model.startswith('model_') else _model for _model in include] # make sure that include contains same elements which are present in models for elem in include: assert elem in self.models, f""" {elem} to `include` are not available. Available cases are {self.models} and you wanted to include {include} """ return include def plot_improvement( self, metric_name: str, plot_type: str = 'dumbbell', lower_limit: Union[int, float] = -1.0, upper_limit: Union[int, float] = None, name: str = '', **kwargs ) -> pd.DataFrame: """ Shows how much improvement was observed after hyperparameter optimization. This plot is only available if ``run_type`` was set to `optimize` in :py:meth:`ai4water.experiments.Experiments.fit`. Arguments --------- metric_name : the peformance metric for comparison plot_type : str, optional the kind of plot to draw. Either ``dumbbell`` or ``bar`` lower_limit : float/int, optional (default=-1.0) clip the values below this value. Set this value to None to avoid clipping. upper_limit : float/int, optional (default=None) clip the values above this value name : str, optional name of file to save the figure **kwargs : any additional keyword arguments for `dumbell plot <https://easy-mpl.readthedocs.io/en/latest/plots.html#easy_mpl.dumbbell_plot>`_ or `bar_chart <https://easy-mpl.readthedocs.io/en/latest/plots.html#easy_mpl.bar_chart>`_ Returns ------- pd.DataFrame Examples -------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> experiment = MLRegressionExperiments() >>> experiment.fit(data=busan_beach(), run_type="optimize", num_iterations=30) >>> experiment.plot_improvement('r2') ... >>> # or draw dumbbell plot ... >>> experiment.plot_improvement('r2', plot_type='bar') """ assert self._run_type == "optimize", f""" when run_type argument during .fit() is {self._run_type}, we can not have improvement plot""" data: str = 'test' assert data in ['training', 'test', 'validation'] improvement = pd.DataFrame(columns=['start', 'end']) for model, model_iter_metrics in self.iter_metrics.items(): initial = model_iter_metrics[0][metric_name] final = self.metrics[model]['test'][metric_name] key = shred_model_name(model) improvement.loc[key] = [initial, final] baseline = improvement['start'] if lower_limit: baseline = np.where(baseline < lower_limit, lower_limit, baseline) if upper_limit: baseline = np.where(baseline > upper_limit, upper_limit, baseline) improvement['start'] = baseline if plot_type == "dumbbell": dumbbell_plot( improvement['start'], improvement['end'], improvement.index.tolist(), ax_kws=dict(xlabel=ERROR_LABELS.get(metric_name, metric_name)), show=False, **kwargs ) #ax.set_xlabel(ERROR_LABELS.get(metric_name, metric_name)) else: colors = { 'start': np.array([0, 56, 104]) / 256, 'end': np.array([126, 154, 178]) / 256 } order = ['start', 'end'] if metric_name in ['r2', 'nse', 'kge', 'corr_coeff', 'r2_mod', 'r2_score']: order = ['end', 'start'] fig, ax = plt.subplots() for ordr in order: bar_chart(improvement[ordr], improvement.index.tolist(), ax=ax, color=colors[ordr], show=False, ax_kws={'xlabel':ERROR_LABELS.get(metric_name, metric_name), 'label':ordr}, **kwargs) ax.legend() plt.title('Improvement after Optimization') if self.save: fname = os.path.join( os.getcwd(), f'results{SEP}{self.exp_name}{SEP}{name}_improvement_{metric_name}.png') plt.savefig(fname, dpi=300, bbox_inches=kwargs.get('bbox_inches', 'tight')) if self.show: plt.show() return improvement def compare_errors( self, matric_name: str, x=None, y=None, data = None, cutoff_val: float = None, cutoff_type: str = None, sort_by: str = 'test', ignore_nans: bool = True, colors = None, cmaps = None, figsize:tuple = None, **kwargs ) -> pd.DataFrame: """ Plots a specific performance matric for all the models which were run during :py:meth:`ai4water.experiments.Experiments.fit` call. Parameters ---------- matric_name : str performance matric whose value to plot for all the models x : input data, if not given, then ``data`` must be given. y : target data data : raw unprocessed data from which x,y pairs can be drawn. This data will be passed to :py:meth:`ai4water.preprocessing.DataSet` class and :py:meth:`ai4water.preprocessing.DataSet.test_data` method will be used to draw x,y pairs. cutoff_val : float if provided, only those models will be plotted for whome the matric is greater/smaller than this value. This works in conjuction with `cutoff_type`. cutoff_type : str one of ``greater``, ``greater_equal``, ``less`` or ``less_equal``. Criteria to determine cutoff_val. For example if we want to show only those models whose $R^2$ is > 0.5, it will be 'max'. sort_by: either ``test`` or ``train``. How to sort the results for plotting. If 'test', then test performance matrics will be sorted otherwise train performance matrics will be sorted. ignore_nans: default True, if True, then performance matrics with nans are ignored otherwise nans/empty bars will be shown to depict which models have resulted in nans for the given performance matric. colors : color for bar chart. To assign separate colors for both bar charts, provide a list of two. cmaps : color map for bar chart. To assign separate cmap for both bar charts, provide a list of two. figsize : tuple figure size as (width, height) **kwargs : any keyword argument that goes to `easy_mpl.bar_chart` returns ------- pd.DataFrame pandas dataframe whose index is models and has two columns with name 'train' and 'test' These columns contain performance metrics for the models.. Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> inputs = list(data.columns)[0:-1] >>> outputs = list(data.columns)[-1] >>> experiment = MLRegressionExperiments(input_features=inputs, output_features=outputs) >>> experiment.fit(data=data) >>> experiment.compare_errors('mse', data=data) >>> experiment.compare_errors('r2', data=data, cutoff_val=0.2, cutoff_type='greater') """ _, _, _, _, x, y = self.verify_data(data=data, test_data=(x, y)) # populate self.metrics dictionary self._build_predict_from_configs(x, y) models = self.sort_models_by_metric(matric_name, cutoff_val, cutoff_type, ignore_nans, sort_by) plt.close('all') fig, axis = plt.subplots(1, 2, sharey='all', figsize=figsize) labels = [model.split('model_')[1] for model in models.index.tolist()] models.index = labels if kwargs is not None: for arg in ['ax', 'labels', 'values', 'show', 'sort', 'ax_kws']: assert arg not in kwargs, f"{arg} not allowed in kwargs" color1, color2 = None, None if colors is not None: if hasattr(colors, '__len__') and len(colors)==2: color1, color2 = colors else: color1 = colors color2 = colors cmap1, cmap2 = None, None if cmaps is not None: if hasattr(cmaps, '__len__') and len(cmaps)==2: cmap1, cmap2 = cmaps else: cmap1 = cmaps cmap2 = cmaps bar_chart(ax=axis[0], labels=labels, color=color1, cmap=cmap1, values=models['train'], ax_kws={'title':"Train", 'xlabel':ERROR_LABELS.get(matric_name, matric_name)}, show=False, **kwargs, ) bar_chart(ax=axis[1], labels=labels, values=models.iloc[:, 1], color=color2, cmap=cmap2, ax_kws={'title': models.columns.tolist()[1], 'xlabel':ERROR_LABELS.get(matric_name, matric_name), 'show_yaxis':False}, show=False, **kwargs ) appendix = f"{cutoff_val or ''}{cutoff_type or ''}{len(models)}" if self.save: fname = os.path.join( os.getcwd(), f'results{SEP}{self.exp_name}{SEP}ErrorComprison_{matric_name}_{appendix}.png') plt.savefig(fname, dpi=100, bbox_inches='tight') if self.show: plt.show() return models def loss_comparison( self, loss_name: str = 'loss', include: list = None, figsize: int = None, start: int = 0, end: int = None, **kwargs ) -> plt.Axes: """ Plots the loss curves of the evaluated models. This method is only available if the models which are being compared are deep leanring mdoels. Parameters ---------- loss_name : str, optional the name of loss value, must be recorded during training include: name of models to include figsize : tuple size of the figure start : int end : int **kwargs : any other keyword arguments to be passed to the `plot <https://easy-mpl.readthedocs.io/en/latest/plots.html#easy_mpl.plot>`_ Returns ------- matplotlib axes Example ------- >>> from ai4water.experiments import DLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> exp = DLRegressionExperiments( >>> input_features = data.columns.tolist()[0:-1], >>> output_features = data.columns.tolist()[-1:], >>> epochs=300, >>> train_fraction=1.0, >>> y_transformation="log", >>> x_transformation="minmax", >>> ) >>> exp.fit(data=data) >>> exp.loss_comparison() you may wish to plot on log scale >>> exp.loss_comparison(ax_kws={'logy':True}) """ include = self._check_include_arg(include, self.considered_models_) if self.model_.category == "ML": raise NotImplementedError(f"Non neural network models can not have loss comparison") loss_curves = {} for _model, _path in self.eval_models.items(): if _model in include: df = pd.read_csv(os.path.join(_path, 'losses.csv'), usecols=[loss_name]) loss_curves[_model] = df.values end = end or len(df) ax_kws = { 'xlabel': "Epochs", 'ylabel': 'Loss'} if len(loss_curves) > 5: ax_kws['legend_kws'] = {'bbox_to_anchor': (1.1, 0.99)} _kws = {'linestyle': '-'} if kwargs is not None: if 'ax_kws' in kwargs: ax_kws.update(kwargs.pop('ax_kws')) _kws.update(kwargs) _, axis = plt.subplots(figsize=figsize) for _model, _loss in loss_curves.items(): label = shred_model_name(_model) plot(_loss[start:end], ax=axis, label=label, show=False, ax_kws=ax_kws, **_kws) axis.grid(ls='--', color='lightgrey') if self.save: fname = os.path.join(self.exp_path, f'loss_comparison_{loss_name}.png') plt.savefig(fname, dpi=100, bbox_inches='tight') if self.show: plt.show() return axis def compare_convergence( self, name: str = 'convergence_comparison', **kwargs ) -> Union[plt.Axes, None]: """ Plots and compares the convergence plots of hyperparameter optimization runs. Only valid if `run_type=optimize` during :py:meth:`ai4water.experiments.Experiments.fit` call. Parameters ---------- name : str name of file to save the plot kwargs : keyword arguments to plot_ function Returns ------- if the optimized models are >1 then it returns the maplotlib axes on which the figure is drawn otherwise it returns None. Examples -------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> experiment = MLRegressionExperiments() >>> experiment.fit(data=busan_beach(), run_type="optimize", num_iterations=30) >>> experiment.compare_convergence() .. _plot: https://easy-mpl.readthedocs.io/en/latest/plots.html#easy_mpl.plot """ if len(self.optimized_models) < 1: print('No model was optimized') return plt.close('all') fig, axis = plt.subplots() for _model, opt_path in self.optimized_models.items(): with open(os.path.join(opt_path, 'iterations.json'), 'r') as fp: iterations = json.load(fp) convergence = sort_array(list(iterations.keys())) label = shred_model_name(_model) _kws = dict( linestyle='--', ax_kws = dict(xlabel='Number of iterations $n$', ylabel=r"$\min f(x)$ after $n$ calls", label=label) ) if kwargs is not None: _kws.update(kwargs) plot( convergence, ax=axis, show=False, **_kws ) if self.save: fname = os.path.join(self.exp_path, f'{name}.png') plt.savefig(fname, dpi=100, bbox_inches='tight') if self.show: plt.show() return axis def _load_model(self, model_name:str): """ builds the model from config and then update the weights and returns it """ m_path = self._get_best_model_path(model_name) c_path = os.path.join(m_path, 'config.json') model = self.build_from_config(c_path) # calculate pr curve for each model self.update_model_weight(model, m_path) return model def compare_edf_plots( self, x=None, y=None, data=None, exclude:Union[list, str] = None, figsize=None, fname: Optional[str] = "edf", **kwargs ): """compare EDF plots of all the models which have been fitted. This plot is only available for regression problems. parameters ---------- x : input data y : target data data : raw unprocessed data from which x,y pairs of the test data are drawn exclude : list name of models to exclude from plotting figsize : figure size as (width, height) fname : str, optional name of the file to save plot **kwargs any keword arguments for `py:meth:ai4water.utils.utils.edf_plot` Returns ------- plt.Figure matplotlib Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> dataset = busan_beach() >>> inputs = list(dataset.columns)[0:-1] >>> outputs = list(dataset.columns)[-1] >>> experiment = MLRegressionExperiments(input_features=inputs, output_features=outputs) >>> experiment.fit(data=dataset, include="LMs") >>> experiment.compare_edf_plots(data=dataset, exclude="SGDRegressor") """ assert self.mode == "regression", f"This plot is not available for {self.mode} mode" _, _, _, _, x, y = self.verify_data(data=data, test_data=(x, y)) model_folders = self._get_model_folders() if exclude is None: exclude = [] elif isinstance(exclude, str): exclude = [exclude] fig, axes = plt.subplots(figsize=figsize) # load all models from config for model_name in model_folders: if model_name not in exclude: model = self._load_model(model_name) true, prediction = model.predict(x, y, return_true=True, process_results=False) assert len(true) == true.size assert len(prediction) == prediction.size error = np.abs(true.reshape(-1,) - prediction.reshape(-1,)) if model_name.endswith("Regressor"): label = model_name.split("Regressor")[0] elif model_name.endswith("Classifier"): label = model_name.split("Classifier")[0] else: label = model_name edf_plot(error, xlabel="Absolute Error", ax=axes, label=label, show=False, **kwargs) axes.grid(ls='--', color='lightgrey') if len(model_folders)>7: axes.legend(loc=(1.05, 0.0)) if self.save: fname = os.path.join(self.exp_path, f'{fname}.png') plt.savefig(fname, dpi=600, bbox_inches='tight') if self.show: plt.show() return def compare_regression_plots( self, x=None, y=None, data=None, include: Union[None, list] = None, figsize: tuple=None, fname: Optional[str] = "regression", **kwargs )->plt.Figure: """compare regression plots of all the models which have been fitted. This plot is only available for regression problems. parameters ---------- x : input data y : target data data : raw unprocessed data from which x,y pairs of the test data are drawn include : str, list, optional if not None, must be a list of models which will be included. None will result in plotting all the models. figsize : figure size as (width, length) fname : str, optional name of the file to save the plot **kwargs any keyword arguments for `obj`:easy_mpl.reg_plot Returns ------- plt.Figure matplotlib Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> dataset = busan_beach() >>> inputs = list(dataset.columns)[0:-1] >>> outputs = list(dataset.columns)[-1] >>> experiment = MLRegressionExperiments(input_features=inputs, output_features=outputs) >>> experiment.fit(data=dataset) >>> experiment.compare_regression_plots(data=dataset) """ assert self.mode == "regression", f""" This plot is not available for {self.mode} mode""" _, _, _, _, x, y = self.verify_data(data=data, test_data=(x, y)) model_folders = self._get_model_folders() include = self._check_include_arg(include, self.considered_models_) fig, axes = create_subplots(naxes=len(include), figsize=figsize, sharex="all") if not isinstance(axes, np.ndarray): axes = np.array(axes) # load all models from config for model_name, ax in zip(include, axes.flat): model_name = model_name.split('model_')[1] model = self._load_model(model_name) true, prediction = model.predict(x, y, return_true=True, process_results=False) if np.isnan(prediction).sum() == prediction.size: if self.verbosity>=0: print(f"Model {model_name} only predicted nans") continue reg_plot(true, prediction, marker_size=5, ax=ax, show=False, **kwargs) ax.set_xlabel('') ax.set_ylabel('') if model_name.endswith("Regressor"): label = model_name.split("Regressor")[0] elif model_name.endswith("Classifier"): label = model_name.split("Classifier")[0] else: label = model_name ax.legend(labels=[label], fontsize=9, numpoints=2, fancybox=False, framealpha=0.0) if hasattr(fig, "supxlabel"): fig.supxlabel("Observed", fontsize=14) fig.supylabel("Predicted", fontsize=14) if self.save: fname = os.path.join(self.exp_path, f'{fname}.png') plt.savefig(fname, dpi=600, bbox_inches='tight') if self.show: plt.show() return fig def compare_residual_plots( self, x=None, y=None, data = None, include: Union[None, list] = None, figsize: tuple = None, fname: Optional[str] = "residual" )->plt.Figure: """compare residual plots of all the models which have been fitted. This plot is only available for regression problems. parameters ---------- x : input data y : target data data : raw unprocessed data frmm which test x,y pairs are drawn using :py:meth:`ai4water.preprocessing.DataSet`. class. Only valid if x and y are not given. include : str, list, optional if not None, must be a list of models which will be included. None will result in plotting all the models. figsize : tuple figure size as (width, height) fname : str, optional name of file to save the plot Returns ------- plt.Figure matplotlib Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> dataset = busan_beach() >>> inputs = list(dataset.columns)[0:-1] >>> outputs = list(dataset.columns)[-1] >>> experiment = MLRegressionExperiments(input_features=inputs, output_features=outputs) >>> experiment.fit(data=dataset) >>> experiment.compare_residual_plots(data=dataset) """ assert self.mode == "regression", f"This plot is not available for {self.mode} mode" include = self._check_include_arg(include, self.considered_models_) _, _, _, _, x, y = self.verify_data(data=data, test_data=(x, y)) model_folders = self._get_model_folders() fig, axes = create_subplots(naxes=len(include), figsize=figsize) if not isinstance(axes, np.ndarray): axes = np.array(axes) # load all models from config for model_and_name, ax in zip(include, axes.flat): model_name = model_and_name.split('model_')[1] model = self._load_model(model_name) true, prediction = model.predict(x, y, return_true=True, process_results=False) plot( prediction, true - prediction, 'o', show=False, ax=ax, color="darksalmon", markerfacecolor=np.array([225, 121, 144]) / 256.0, markeredgecolor="black", markeredgewidth=0.15, markersize=1.5, ) # draw horizontal line on y=0 ax.axhline(0.0) if model_name.endswith("Regressor"): label = model_name.split("Regressor")[0] elif model_name.endswith("Classifier"): label = model_name.split("Classifier")[0] else: label = model_name ax.legend(labels=[label], fontsize=9, numpoints=2, fancybox=False, framealpha=0.0) if hasattr(fig, "supxlabel"): fig.supxlabel("Prediction") fig.supylabel("Residual") if self.save: fname = os.path.join(self.exp_path, f'{fname}.png') plt.savefig(fname, dpi=600, bbox_inches='tight') if self.show: plt.show() return fig @classmethod def from_config( cls, config_path: str, **kwargs ) -> "Experiments": """ Loads the experiment from the config file. Arguments: config_path : complete path of experiment kwargs : keyword arguments to experiment Returns: an instance of `Experiments` class """ if not config_path.endswith('.json'): raise ValueError(f""" {config_path} is not a json file """) with open(config_path, 'r') as fp: config = json.load(fp) cv_scores = {} scoring = "mse" for model_name, model_path in config['eval_models'].items(): with open(os.path.join(model_path, 'config.json'), 'r') as fp: model_config = json.load(fp) # if cross validation was performed, then read those results. cross_validator = model_config['config']['cross_validator'] if cross_validator is not None: cv_name = str(list(cross_validator.keys())[0]) scoring = model_config['config']['val_metric'] cv_fname = os.path.join(model_path, f'{cv_name}_{scoring}' + ".json") if os.path.exists(cv_fname): with open(cv_fname, 'r') as fp: cv_scores[model_name] = json.load(fp) exp = cls(exp_name=config['exp_name'], cases=config['cases'], **kwargs) #exp.config = config exp._from_config = True # following four attributes are only available if .fit was run exp.considered_models_ = config.get('considered_models_', []) exp.is_binary_ = config.get('is_binary_', None) exp.is_multiclass_ = config.get('is_multiclass_', None) exp.is_multilabel_ = config.get('is_multilabel_', None) exp.metrics = load_json_file( os.path.join(os.path.dirname(config_path), "metrics.json")) exp.features = load_json_file( os.path.join(os.path.dirname(config_path), "features.json")) exp.cv_scores_ = cv_scores exp._cv_scoring = scoring return exp def plot_cv_scores( self, name: str = "cv_scores", exclude: Union[str, list] = None, include: Union[str, list] = None, **kwargs ) -> Union[plt.Axes, None]: """ Plots the box whisker plots of the cross validation scores. This plot is only available if cross_validation was set to True during :py:meth:`ai4water.experiments.Experiments.fit`. Arguments --------- name : str name of the file to save the plot include : str/list models to include exclude : models to exclude **kwargs : any of the following keyword arguments - notch - vert - figsize - bbox_inches Returns ------- matplotlib axes if the figure is drawn otherwise None Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> exp = MLRegressionExperiments(cross_validator={"KFold": {"n_splits": 10}}) >>> exp.fit(data=busan_beach(), cross_validate=True) >>> exp.plot_cv_scores() """ if len(self.cv_scores_) == 0: return scoring = self._cv_scoring cv_scores = self.cv_scores_ consider_exclude(exclude, self.models, cv_scores) cv_scores = self._consider_include(include, cv_scores) model_names = [m.split('model_')[1] for m in list(cv_scores.keys())] if len(model_names) < 5: rotation = 0 else: rotation = 90 plt.close() _, axis = plt.subplots(figsize=kwargs.get('figsize', (8, 6))) axis.boxplot(np.array(list(cv_scores.values())).squeeze().T, notch=kwargs.get('notch', None), vert=kwargs.get('vert', None), labels=model_names ) axis.set_xticklabels(model_names, rotation=rotation) axis.set_xlabel("Models", fontsize=16) axis.set_ylabel(ERROR_LABELS.get(scoring, scoring), fontsize=16) fname = os.path.join(os.getcwd(), f'results{SEP}{self.exp_name}{SEP}{name}_{len(model_names)}.png') if self.save: plt.savefig(fname, dpi=300, bbox_inches=kwargs.get('bbox_inches', 'tight')) if self.show: plt.show() return axis def _compare_cls_curves( self, x, y, func, name, figsize:tuple=None, **kwargs ): assert self.mode == "classification", f""" {name} is only available for classification mode.""" model_folders = [p for p in os.listdir(self.exp_path) if os.path.isdir(os.path.join(self.exp_path, p))] _, ax = plt.subplots(figsize=figsize) # find all the model folders m_paths = [] for m in model_folders: if any(m in m_ for m_ in self.considered_models_): m_paths.append(m) nplots = 0 # load all models from config for model_name in m_paths: model = self._load_model(model_name) kws = {'estimator': model, 'X': x, 'y': y.reshape(-1, ), 'ax': ax, 'name': model.model_name } if kwargs: kws.update(kwargs) if 'LinearSVC' in model.model_name: # sklearn LinearSVC does not have predict_proba # but ai4water Model does have this method # which will only throw error kws['estimator'] = model._model if model.model_name in ['Perceptron', 'PassiveAggressiveClassifier', 'NearestCentroid', 'RidgeClassifier', 'RidgeClassifierCV']: continue if model.model_name in ['NuSVC', 'SVC']: if not model._model.get_params()['probability']: continue if 'SGDClassifier' in model.model_name: if model._model.get_params()['loss'] == 'hinge': continue func(**kws) nplots += 1 ax.grid(ls='--', color='lightgrey') if nplots>5: plt.legend(bbox_to_anchor=(1.1, 0.99)) if self.save: fname = os.path.join(self.exp_path, f"{name}.png") plt.savefig(fname, dpi=300, bbox_inches='tight') if self.show: plt.show() return ax def compare_precision_recall_curves( self, x, y, figsize:tuple=None, **kwargs ): """compares precision recall curves of the all the models. parameters ---------- x : input data y : labels for the input data figsize : tuple figure size **kwargs : any keyword arguments for :obj:matplotlib.plot function Returns ------- plt.Axes matplotlib axes on which figure is drawn Example ------- >>> from ai4water.datasets import MtropicsLaos >>> from ai4water.experiments import MLClassificationExperiments >>> data = MtropicsLaos().make_classification(lookback_steps=1) # define inputs and outputs >>> inputs = data.columns.tolist()[0:-1] >>> outputs = data.columns.tolist()[-1:] # initiate the experiment >>> exp = MLClassificationExperiments( ... input_features=inputs, ... output_features=outputs) # run the experiment >>> exp.fit(data=data, include=["model_LGBMClassifier", ... "model_XGBClassifier", ... "RandomForestClassifier"]) ... # Compare Precision Recall curves >>> exp.compare_precision_recall_curves(data[inputs].values, data[outputs].values) """ return self._compare_cls_curves( x, y, name="precision_recall_curves", func=sklearn.metrics.PrecisionRecallDisplay.from_estimator, figsize=figsize, **kwargs ) def compare_roc_curves( self, x, y, figsize:tuple=None, **kwargs ): """compares roc curves of the all the models. parameters ---------- x : input data y : labels for the input data figsize : tuple figure size **kwargs : any keyword arguments for :obj:matplotlib.plot function Returns ------- plt.Axes matplotlib axes on which figure is drawn Example ------- >>> from ai4water.datasets import MtropicsLaos >>> from ai4water.experiments import MLClassificationExperiments >>> data = MtropicsLaos().make_classification(lookback_steps=1) # define inputs and outputs >>> inputs = data.columns.tolist()[0:-1] >>> outputs = data.columns.tolist()[-1:] # initiate the experiment >>> exp = MLClassificationExperiments( ... input_features=inputs, ... output_features=outputs) # run the experiment >>> exp.fit(data=data, include=["model_LGBMClassifier", ... "model_XGBClassifier", ... "RandomForestClassifier"]) ... # Compare ROC curves >>> exp.compare_roc_curves(data[inputs].values, data[outputs].values) """ return self._compare_cls_curves( x=x, y=y, name="roc_curves", func=sklearn.metrics.RocCurveDisplay.from_estimator, figsize=figsize, **kwargs ) def sort_models_by_metric( self, metric_name, cutoff_val=None, cutoff_type=None, ignore_nans: bool = True, sort_by="test" ) -> pd.DataFrame: """returns the models sorted according to their performance""" idx = list(self.metrics.keys()) metrics = dict() metrics['train'] = np.array([v['train'][metric_name] for v in self.metrics.values()]) if 'test' in list(self.metrics.values())[0]: metrics['test'] = np.array([v['test'][metric_name] for v in self.metrics.values()]) else: metrics['val'] = np.array([v['val'][metric_name] for v in self.metrics.values()]) if 'test' not in metrics and sort_by == "test": sort_by = "val" df = pd.DataFrame(metrics, index=idx) if ignore_nans: df = df.dropna() df = df.sort_values(by=[sort_by], ascending=False) if cutoff_type is not None: assert cutoff_val is not None if cutoff_type == "greater": df = df.loc[df[sort_by] > cutoff_val] else: df = df.loc[df[sort_by] < cutoff_val] return df def fit_with_tpot( self, data, models: Union[int, List[str], dict, str] = None, selection_criteria: str = 'mse', scoring: str = None, **tpot_args ): """ Fits the tpot_'s fit method which finds out the best pipline for the given data. Arguments --------- data : models : It can be of three types. - If list, it will be the names of machine learning models/ algorithms to consider. - If integer, it will be the number of top algorithms to consider for tpot. In such a case, you must have first run `.fit` method before running this method. If you run the tpot using all available models, it will take hours to days for medium sized data (consisting of few thousand examples). However, if you run first .fit and see for example what are the top 5 models, then you can set this argument to 5. In such a case, tpot will search pipeline using only the top 5 algorithms/models that have been found using .fit method. - if dictionary, then the keys should be the names of algorithms/models and values shoudl be the parameters for each model/algorithm to be optimized. - You can also set it to ``all`` consider all models available in ai4water's Experiment module. - default is None, which means, the `tpot_config` argument will be None selection_criteria : The name of performance metric. If ``models`` is integer, then according to this performance metric the models will be choosen. By default the models will be selected based upon their mse values on test data. scoring : the performance metric to use for finding the pipeline. tpot_args : any keyword argument for tpot's Regressor_ or Classifier_ class. This can include arguments like ``generations``, ``population_size`` etc. Returns ------- the tpot object Example ------- >>> from ai4water.experiments import MLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> exp = MLRegressionExperiments(exp_name=f"tpot_reg_{dateandtime_now()}") >>> exp.fit(data=busan_beach()) >>> tpot_regr = exp.fit_with_tpot(busan_beach(), 2, generations=1, population_size=2) .. _tpot: http://epistasislab.github.io/tpot/ .. _Regressor: http://epistasislab.github.io/tpot/api/#regression .. _Classifier: http://epistasislab.github.io/tpot/api/#classification """ tpot_caller = self.tpot_estimator assert tpot_caller is not None, f"tpot must be installed" param_space = {} tpot_config = None for m in self.models: getattr(self, m)() ps = getattr(self, 'param_space') path = getattr(self, 'path') param_space[m] = {path: {p.name: p.grid for p in ps}} if isinstance(models, int): assert len(self.metrics) > 1, f""" you must first run .fit() method in order to choose top {models} models""" # sort the models w.r.t their performance sorted_models = self.sort_models_by_metric(selection_criteria) # get names of models models = sorted_models.index.tolist()[0:models] tpot_config = {} for m in models: c: dict = param_space[f"{m}"] tpot_config.update(c) elif isinstance(models, list): tpot_config = {} for m in models: c: dict = param_space[f"model_{m}"] tpot_config.update(c) elif isinstance(models, dict): tpot_config = {} for mod_name, mod_paras in models.items(): if "." in mod_name: mod_path = mod_name else: c: dict = param_space[f"model_{mod_name}"] mod_path = list(c.keys())[0] d = {mod_path: mod_paras} tpot_config.update(d) elif isinstance(models, str) and models == "all": tpot_config = {} for mod_name, mod_config in param_space.items(): mod_path = list(mod_config.keys())[0] mod_paras = list(mod_config.values())[0] tpot_config.update({mod_path: mod_paras}) fname = os.path.join(self.exp_path, "tpot_config.json") with open(fname, 'w') as fp: json.dump(jsonize(tpot_config), fp, indent=True) tpot = tpot_caller( verbosity=self.verbosity + 1, scoring=scoring, config_dict=tpot_config, **tpot_args ) not_allowed_args = ["cross_validator", "wandb_config", "val_metric", "loss", "optimizer", "lr", "epochs", "quantiles", "patience"] model_kws = self.model_kws for arg in not_allowed_args: if arg in model_kws: model_kws.pop(arg) dh = DataSet(data, **model_kws) train_x, train_y = dh.training_data() tpot.fit(train_x, train_y.reshape(-1, 1)) if "regressor" in self.tpot_estimator.__name__: mode = "regression" else: mode = "classification" visualizer = ProcessPredictions(path=self.exp_path, show=bool(self.verbosity), mode=mode) for idx, data_name in enumerate(['training', 'test']): x_data, y_data = getattr(dh, f"{data_name}_data")(key=str(idx)) pred = tpot.fitted_pipeline_.predict(x_data) r2 = RegressionMetrics(y_data, pred).r2() # todo, perform inverse transform and deindexification visualizer( pd.DataFrame(y_data.reshape(-1, )), pd.DataFrame(pred.reshape(-1, )), ) # save the python code of fitted pipeline tpot.export(os.path.join(self.exp_path, "tpot_fitted_pipeline.py")) # save each iteration fname = os.path.join(self.exp_path, "evaluated_individuals.json") with open(fname, 'w') as fp: json.dump(tpot.evaluated_individuals_, fp, indent=True) return tpot def _build_fit( self, train_x=None, train_y=None, validation_data=None, view=False, title=None, cross_validate: bool=False, refit: bool=False, **kwargs )->Model: model: Model = self._build(title=title, **kwargs) self._fit( model, train_x=train_x, train_y=train_y, validation_data=validation_data, cross_validate=cross_validate, refit = refit, ) if view: self._model.view() return self.model_ def _build_fit_eval( self, train_x=None, train_y=None, validation_data:tuple=None, view=False, title=None, cross_validate: bool=False, refit: bool=False, **kwargs )->float: """ Builds and run one 'model' of the experiment. Since an experiment consists of many models, this method is also run many times. refit : bool This means fit on training + validation data. This is true when we have optimized the hyperparameters and now we would like to fit on training + validation data as well. """ model = self._build_fit(train_x, train_y, validation_data, view, title, cross_validate, refit, **kwargs) # return the validation score return self._evaluate(model, *validation_data) def _build(self, title=None, **suggested_paras): """Builds the ai4water Model class and makes it a class attribute.""" suggested_paras = self._pre_build_hook(**suggested_paras) suggested_paras = jsonize(suggested_paras) verbosity = max(self.verbosity - 1, 0) if 'verbosity' in self.model_kws: verbosity = self.model_kws.pop('verbosity') if self.category == "DL": model = FModel else: model = Model model = model( prefix=title, verbosity=verbosity, **self.model_kws, **suggested_paras ) setattr(self, 'model_', model) return model def _fit( self, model:Model, train_x, train_y, validation_data, cross_validate: bool = False, refit: bool = False ): """Trains the model""" if cross_validate: return model.cross_val_score(*_combine_training_validation_data( train_x, train_y, validation_data)) if refit: # we need to combine training (x,y) + validation data. return model.fit_on_all_training_data(*_combine_training_validation_data( train_x, train_y, validation_data=validation_data)) if self.category == "DL": model.fit(x=train_x, y=train_y, validation_data=validation_data) else: model.fit(x=train_x, y=train_y) # model_ is used in the class for prediction so it must be the # updated/trained model self.model_ = model return def _evaluate( self, model:Model, x, y, ) -> float: """Evaluates the model""" #if validation_data is None: t, p = model.predict( x=x, y=y, return_true=True, process_results=False) test_metrics = self._get_metrics(t, p) metrics = Metrics[self.mode](t, p, remove_zero=True, remove_neg=True, replace_nan=True, replace_inf=True, multiclass=self.is_multiclass_) self.model_iter_metric[self.iter_] = test_metrics self.iter_ += 1 val_score_ = getattr(metrics, model.val_metric)() val_score = val_score_ if model.val_metric in [ 'r2', 'nse', 'kge', 'r2_mod', 'r2_adj', 'r2_score' ] or self.mode == "classification": val_score = 1.0 - val_score_ if not math.isfinite(val_score): val_score = 9999 # TODO, find a better way to handle this print(f"val_score: {round(val_score, 5)} {model.val_metric}: {val_score_}") return val_score def _predict( self, model: Model, x, y )->Tuple[np.ndarray, np.ndarray]: """ Makes predictions on training and test data from the model. It is supposed that the model has been trained before.""" true, predicted = model.predict(x, y, return_true=True, process_results=False) if np.isnan(predicted).sum() == predicted.size: warnings.warn(f"model {model.model_name} predicted only nans") else: ProcessPredictions(self.mode, forecast_len=model.forecast_len, path=model.path, output_features=model.output_features, plots=self.plots_, show=bool(model.verbosity), )(true, predicted) return true, predicted def verify_data( self, x=None, y=None, data=None, validation_data: tuple = None, test_data: tuple = None, ) -> tuple: """ verifies that either - only x,y should be given (val will be taken from it according to splitting schemes) - or x,y and validation_data should be given (means no test data) - or x, y and validation_data and test_data are given - or only data should be given (train, validation and test data will be taken accoring to splitting schemes) """ def num_examples(samples): if isinstance(samples, list): assert len(set(len(sample) for sample in samples)) == 1 return len(samples[0]) return len(samples) model_maker = make_model(**self.model_kws) data_config = model_maker.data_config if x is None: assert y is None, f"y must only be given if x is given. x is {type(x)}" if data is None: # x,y and data are not given, we may be given test/validation data train_x, train_y = None, None if validation_data is None: val_x, val_y = None, None else: val_x, val_y = validation_data if test_data is None: test_x, test_y = None, None else: test_x, test_y = test_data else: # case 4, only data is given assert data is not None, f"if x is given, data must not be given" assert validation_data is None, f"validation data must only be given if x is given" #assert test_data is None, f"test data must only be given if x is given" data_config.pop('category') if 'lookback' in self._named_x0() and 'ts_args' not in self.model_kws: # the value of lookback has been set by model_maker which can be wrong # because the user expects it to be hyperparameter data_config['ts_args']['lookback'] = self._named_x0()['lookback'] # when saving is done during initialization of DataSet and verbosity>0 # it prints information two times! save = data_config.pop('save') or True dataset = DataSet(data=data, save=False, category=self.category, **data_config) if save: verbosity = dataset.verbosity dataset.verbosity = 0 dataset.to_disk() dataset.verbosity = verbosity train_x, train_y = dataset.training_data() val_x, val_y = dataset.validation_data() # todo what if there is not validation data test_x, test_y = dataset.test_data() if len(test_x) == 0: test_x, test_y = None, None elif test_data is None and validation_data is None: # case 1, only x,y are given assert num_examples(x) == num_examples(y) splitter= TrainTestSplit(data_config['val_fraction'], seed=data_config['seed'] or 313) if data_config['split_random']: train_x, val_x, train_y, val_y = splitter.split_by_random(x, y) else: train_x, val_x, train_y, val_y = splitter.split_by_slicing(x, y) test_x, test_y = None, None elif test_data is None: # case 2: x,y and validation_data should be given (means no test data) assert num_examples(x) == num_examples(y) train_x, train_y = x, y val_x, val_y = validation_data test_x, test_y = None, None else: # case 3 assert num_examples(x) == num_examples(y) train_x, train_y = x, y val_x, val_y = validation_data test_x, test_y = test_data return train_x, train_y, val_x, val_y, test_x, test_y def _get_model_folders(self): model_folders = [p for p in os.listdir(self.exp_path) if os.path.isdir(os.path.join(self.exp_path, p))] # find all the model folders m_folders = [] for m in model_folders: if any(m in m_ for m_ in self.considered_models_): m_folders.append(m) return m_folders def _build_predict_from_configs(self, x, y): model_folders = self._get_model_folders() # load all models from config for model_name in model_folders: model = self._load_model(model_name) out = model.predict(x=x, y=y, return_true=True, process_results=False) self._populate_results(f"model_{model_name}", train_results=None, test_results=out) return def _get_best_model_path(self, model_name): m_path = os.path.join(self.exp_path, model_name) if len(os.listdir(m_path)) == 1: m_path = os.path.join(m_path, os.listdir(m_path)[0]) elif 'best' in os.listdir(m_path): # within best folder thre is another folder m_path = os.path.join(m_path, 'best') assert len(os.listdir(m_path)) == 1 m_path = os.path.join(m_path, os.listdir(m_path)[0]) else: folders = [path for path in os.listdir(m_path) if os.path.isdir(os.path.join(m_path, path)) and path.startswith('1_')] if len(folders) == 1: m_path = os.path.join(m_path, folders[0]) else: raise ValueError(f"Cant find best model in {m_path}") return m_path class TransformationExperiments(Experiments): """Helper class to conduct experiments with different transformations Example: >>> from ai4water.datasets import busan_beach >>> from ai4water.experiments import TransformationExperiments >>> from ai4water.hyperopt import Integer, Categorical, Real ... # Define your experiment >>> class MyTransformationExperiments(TransformationExperiments): ... ... def update_paras(self, **kwargs): ... _layers = { ... "LSTM": {"config": {"units": int(kwargs['lstm_units']}}, ... "Dense": {"config": {"units": 1, "activation": kwargs['dense_actfn']}}, ... "reshape": {"config": {"target_shape": (1, 1)}} ... } ... return {'model': {'layers': _layers}, ... 'lookback': int(kwargs['lookback']), ... 'batch_size': int(kwargs['batch_size']), ... 'lr': float(kwargs['lr']), ... 'transformation': kwargs['transformation']} >>> data = busan_beach() >>> inputs = ['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm', 'pcp3_mm'] >>> outputs = ['tetx_coppml'] >>> cases = {'model_minmax': {'transformation': 'minmax'}, ... 'model_zscore': {'transformation': 'zscore'}} >>> search_space = [ ... Integer(low=16, high=64, name='lstm_units', num_samples=2), ... Integer(low=3, high=15, name="lookback", num_samples=2), ... Categorical(categories=[4, 8, 12, 16, 24, 32], name='batch_size'), ... Real(low=1e-6, high=1.0e-3, name='lr', prior='log', num_samples=2), ... Categorical(categories=['relu', 'elu'], name='dense_actfn'), ... ] >>> x0 = [20, 14, 12, 0.00029613, 'relu'] >>> experiment = MyTransformationExperiments(cases=cases, input_features=inputs, ... output_features=outputs, exp_name="testing" ... param_space=search_space, x0=x0) """ @property def mode(self): return "regression" @property def category(self): return "ML" def __init__(self, param_space=None, x0=None, cases: dict = None, exp_name: str = None, num_samples: int = 5, verbosity: int = 1, **model_kws): self.param_space = param_space self.x0 = x0 exp_name = exp_name or 'TransformationExperiments' + f'_{dateandtime_now()}' super().__init__( cases=cases, exp_name=exp_name, num_samples=num_samples, verbosity=verbosity, **model_kws ) @property def tpot_estimator(self): return None def update_paras(self, **suggested_paras): raise NotImplementedError(f""" You must write the method `update_paras` which should build the Model with suggested parameters and return the keyword arguments including `model`. These keyword arguments will then be used to build ai4water's Model class. """) def _build(self, title=None, **suggested_paras): """Builds the ai4water Model class""" suggested_paras = jsonize(suggested_paras) verbosity = max(self.verbosity - 1, 0) if 'verbosity' in self.model_kws: verbosity = self.model_kws.pop('verbosity') model = Model( prefix=title, verbosity=verbosity, **self.update_paras(**suggested_paras), **self.model_kws ) setattr(self, 'model_', model) return model def process_model_before_fit(self, model): """So that the user can perform processing of the model by overwriting this method""" return model def sort_array(array): """ array: [4, 7, 3, 9, 4, 8, 2, 8, 7, 1] returns: [4, 4, 3, 3, 3, 3, 2, 2, 2, 1] """ results = np.array(array, dtype=np.float32) iters = range(1, len(results) + 1) return [np.min(results[:i]) for i in iters] def consider_exclude(exclude: Union[str, list], models, models_to_filter: Union[list, dict] = None ): if isinstance(exclude, str): exclude = [exclude] if exclude is not None: exclude = ['model_' + _model if not _model.startswith('model_') else _model for _model in exclude] for elem in exclude: assert elem in models, f""" {elem} to `exclude` is not available. Available models are {models} and you wanted to exclude {exclude}""" if models_to_filter is not None: # maybe the model has already been removed from models_to_filter # when we considered include keyword argument. if elem in models_to_filter: if isinstance(models_to_filter, list): models_to_filter.remove(elem) else: models_to_filter.pop(elem) else: assert elem in models, f'{elem} is not in models' return def load_json_file(fpath): with open(fpath, 'r') as fp: result = json.load(fp) return result def save_json_file(fpath, obj): with open(fpath, 'w') as fp: json.dump(jsonize(obj), fp, sort_keys=True, indent=4) def shred_model_name(model_name): key = model_name[6:] if model_name.startswith('model_') else model_name key = key[0:-9] if key.endswith("Regressor") else key return key def _combine_training_validation_data( x_train, y_train, validation_data=None, )->tuple: """ combines x,y pairs of training and validation data. """ if validation_data is None: return x_train, y_train x_val, y_val = validation_data if isinstance(x_train, list): x = [] for val in range(len(x_train)): if x_val is not None: _val = np.concatenate([x_train[val], x_val[val]]) x.append(_val) else: _val = x_train[val] y = y_train if hasattr(y_val, '__len__') and len(y_val) > 0: y = np.concatenate([y_train, y_val]) elif isinstance(x_train, np.ndarray): x, y = x_train, y_train # if not validation data is available then use only training data if x_val is not None: if hasattr(x_val, '__len__') and len(x_val)>0: x = np.concatenate([x_train, x_val]) y = np.concatenate([y_train, y_val]) else: raise NotImplementedError return x, y
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/experiments/_main.py
_main.py
__all__ = ["MLClassificationExperiments"] from ._main import Experiments from .utils import classification_space from ai4water.utils.utils import dateandtime_now from ai4water.backend import catboost, xgboost, lightgbm class MLClassificationExperiments(Experiments): """Runs classification models for comparison, with or without optimization of hyperparameters. It compares around 30 classification algorithms from sklearn, xgboost, catboost and lightgbm. Examples -------- >>> from ai4water.datasets import MtropicsLaos >>> from ai4water.experiments import MLClassificationExperiments >>> data = MtropicsLaos().make_classification(lookback_steps=2) >>> inputs = data.columns.tolist()[0:-1] >>> outputs = data.columns.tolist()[-1:] >>> exp = MLClassificationExperiments(input_features=inputs, >>> output_features=outputs) >>> exp.fit(data=data, include=["CatBoostClassifier", "LGBMClassifier", >>> 'RandomForestClassifier', 'XGBClassifier']) >>> exp.compare_errors('accuracy', data=data) """ def __init__( self, param_space=None, x0=None, cases=None, exp_name='MLClassificationExperiments', num_samples=5, monitor = None, **model_kws ): """ Parameters ---------- param_space : list, optional x0 : list, optional cases : dict, optional exp_name : str, optional name of experiment num_samples : int, optional monitor : list/str, optional **model_kws : keyword arguments for :py:class:`ai4water.Model` class """ self.param_space = param_space self.x0 = x0 self.spaces = classification_space(num_samples=num_samples,) if exp_name == "MLClassificationExperiments": exp_name = f"{exp_name}_{dateandtime_now()}" super().__init__( cases=cases, exp_name=exp_name, num_samples=num_samples, monitor=monitor, **model_kws ) if catboost is None: self.models.remove('model_CatBoostClassifier') if lightgbm is None: self.models.remove('model_LGBMClassifier') if xgboost is None: self.models.remove('model_XGBRFClassifier') self.models.remove('model_XGBClassifier') @property def tpot_estimator(self): try: from tpot import TPOTClassifier except (ModuleNotFoundError, ImportError): TPOTClassifier = None return TPOTClassifier @property def mode(self): return "classification" @property def category(self): return "ML" def metric_kws(self, metric_name:str=None): kws = { 'precision': {'average': 'macro'}, 'recall': {'average': 'macro'}, 'f1_score': {'average': 'macro'}, } return kws.get(metric_name, {}) def model_AdaBoostClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html self.path = "sklearn.ensemble.AdaBoostClassifier" self.param_space = self.spaces["AdaBoostClassifier"]["param_space"] self.x0 = self.spaces["AdaBoostClassifier"]["x0"] return {'model': {'AdaBoostClassifier': kwargs}} def model_BaggingClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html self.path = "sklearn.ensemble.BaggingClassifier" self.param_space = self.spaces["BaggingClassifier"]["param_space"] self.x0 = self.spaces["BaggingClassifier"]["x0"] return {'model': {'BaggingClassifier': kwargs}} def model_BernoulliNB(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html self.path = "sklearn.naive_bayes.BernoulliNB" self.param_space = self.spaces["BernoulliNB"]["param_space"] self.x0 = self.spaces["BernoulliNB"]["x0"] return {'model': {'BernoulliNB': kwargs}} def model_CalibratedClassifierCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html self.path = "sklearn.calibration.CalibratedClassifierCV" self.param_space = self.spaces["CalibratedClassifierCV"]["param_space"] self.x0 = self.spaces["CalibratedClassifierCV"]["x0"] return {'model': {'CalibratedClassifierCV': kwargs}} # def model_CheckingClassifier(self, **kwargs): # return def model_DecisionTreeClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html self.path = "sklearn.tree.DecisionTreeClassifier" self.param_space = self.spaces["DecisionTreeClassifier"]["param_space"] self.x0 = self.spaces["DecisionTreeClassifier"]["x0"] return {'model': {'DecisionTreeClassifier': kwargs}} def model_DummyClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html self.path = "sklearn.dummy.DummyClassifier" self.param_space = self.spaces["DummyClassifier"]["param_space"] self.x0 = self.spaces["DummyClassifier"]["x0"] return {'model': {'DummyClassifier': kwargs}} def model_ExtraTreeClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html self.path = "sklearn.tree.ExtraTreeClassifier" self.param_space = self.spaces["ExtraTreeClassifier"]["param_space"] self.x0 = self.spaces["ExtraTreeClassifier"]["x0"] return {'model': {'ExtraTreeClassifier': kwargs}} def model_ExtraTreesClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html self.path = "sklearn.ensemble.ExtraTreesClassifier" self.param_space = self.spaces["ExtraTreesClassifier"]["param_space"] self.x0 = self.spaces["ExtraTreesClassifier"]["x0"] return {'model': {'ExtraTreesClassifier': kwargs}} def model_GaussianProcessClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html self.path = "sklearn.gaussian_process.GaussianProcessClassifier" self.param_space = self.spaces["GaussianProcessClassifier"]["param_space"] self.x0 = self.spaces["GaussianProcessClassifier"]["x0"] return {'model': {'GaussianProcessClassifier': kwargs}} def model_GradientBoostingClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html self.path = "sklearn.ensemble.GradientBoostingClassifier" self.param_space = self.spaces["GradientBoostingClassifier"]["param_space"] self.x0 = self.spaces["GradientBoostingClassifier"]["x0"] return {'model': {'GradientBoostingClassifier': kwargs}} def model_HistGradientBoostingClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html self.path = "sklearn.ensemble.HistGradientBoostingClassifier" self.param_space = self.spaces["HistGradientBoostingClassifier"]["param_space"] self.x0 = self.spaces["HistGradientBoostingClassifier"]["x0"] return {'model': {'HistGradientBoostingClassifier': kwargs}} def model_KNeighborsClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html self.path = "sklearn.neighbors.KNeighborsClassifier" self.param_space = self.spaces["KNeighborsClassifier"]["param_space"] self.x0 = self.spaces["KNeighborsClassifier"]["x0"] return {'model': {'KNeighborsClassifier': kwargs}} def model_LabelPropagation(self, **kwargs): ## https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelPropagation.html self.path = "sklearn.semi_supervised.LabelPropagation" self.param_space = self.spaces["LabelPropagation"]["param_space"] self.x0 = self.spaces["LabelPropagation"]["x0"] return {'model': {'LabelPropagation': kwargs}} def model_LabelSpreading(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html self.path = "sklearn.semi_supervised.LabelSpreading" self.param_space = self.spaces["LabelSpreading"]["param_space"] self.x0 = self.spaces["LabelSpreading"]["x0"] return {'model': {'LabelSpreading': kwargs}} def model_LGBMClassifier(self, **kwargs): # https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html self.path = "lightgbm.LGBMClassifier" self.param_space = self.spaces["LGBMClassifier"]["param_space"] self.x0 = self.spaces["LGBMClassifier"]["x0"] return {'model': {'LGBMClassifier': kwargs}} def model_LinearDiscriminantAnalysis(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html self.path = "sklearn.discriminant_analysis.LinearDiscriminantAnalysis" self.param_space = self.spaces["LinearDiscriminantAnalysis"]["param_space"] self.x0 = self.spaces["LinearDiscriminantAnalysis"]["x0"] return {'model': {'LinearDiscriminantAnalysis': kwargs}} def model_LinearSVC(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html self.path = "sklearn.svm.LinearSVC" self.param_space = self.spaces["LinearSVC"]["param_space"] self.x0 = self.spaces["LinearSVC"]["x0"] return {'model': {'LinearSVC': kwargs}} def model_LogisticRegression(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html self.path = "sklearn.linear_model.LogisticRegression" self.param_space = self.spaces["LogisticRegression"]["param_space"] self.x0 = self.spaces["LogisticRegression"]["x0"] return {'model': {'LogisticRegression': kwargs}} def model_MLPClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html self.path = "sklearn.neural_network.MLPClassifier" self.param_space = self.spaces["MLPClassifier"]["param_space"] self.x0 = self.spaces["MLPClassifier"]["x0"] return {'model': {'MLPClassifier': kwargs}} def model_NearestCentroid(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html self.path = "sklearn.neighbors.NearestCentroid" self.param_space = self.spaces["NearestCentroid"]["param_space"] self.x0 = self.spaces["NearestCentroid"]["x0"] return {'model': {'NearestCentroid': kwargs}} def model_NuSVC(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html self.path = "sklearn.svm.NuSVC" self.param_space = self.spaces["NuSVC"]["param_space"] self.x0 = self.spaces["NuSVC"]["x0"] return {'model': {'NuSVC': kwargs}} def model_PassiveAggressiveClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html self.path = "sklearn.linear_model.PassiveAggressiveClassifier" self.param_space = self.spaces["PassiveAggressiveClassifier"]["param_space"] self.x0 = self.spaces["PassiveAggressiveClassifier"]["x0"] return {'model': {'PassiveAggressiveClassifier': kwargs}} def model_Perceptron(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html self.path = "sklearn.linear_model.Perceptron" self.param_space = self.spaces["Perceptron"]["param_space"] self.x0 = self.spaces["Perceptron"]["x0"] return {'model': {'Perceptron': kwargs}} def model_QuadraticDiscriminantAnalysis(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html self.path = "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis" self.param_space = self.spaces["QuadraticDiscriminantAnalysis"]["param_space"] self.x0 = self.spaces["QuadraticDiscriminantAnalysis"]["x0"] return {'model': {'QuadraticDiscriminantAnalysis': kwargs}} # def model_RadiusNeighborsClassifier(self, **kwargs): # # https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html # # self.path = "sklearn.neighbors.RadiusNeighborsClassifier" # self.param_space = self.spaces["RadiusNeighborsClassifier"]["param_space"] # self.x0 = self.spaces["RadiusNeighborsClassifier"]["x0"] # # return {'model': {'RadiusNeighborsClassifier': kwargs}} def model_RandomForestClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html self.path = "sklearn.ensemble.RandomForestClassifier" self.param_space = self.spaces["RandomForestClassifier"]["param_space"] self.x0 = self.spaces["RandomForestClassifier"]["x0"] return {'model': {'RandomForestClassifier': kwargs}} def model_RidgeClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html self.path = "sklearn.linear_model.RidgeClassifier" self.param_space = self.spaces["RidgeClassifier"]["param_space"] self.x0 = self.spaces["RidgeClassifierCV"]["x0"] return {'model': {'RidgeClassifier': kwargs}} def model_RidgeClassifierCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html self.path = "sklearn.linear_model.RidgeClassifierCV" self.param_space = self.spaces["RidgeClassifierCV"]["param_space"] self.x0 = self.spaces["RidgeClassifierCV"]["x0"] return {'model': {'RidgeClassifierCV': kwargs}} def model_SGDClassifier(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html self.path = "sklearn.linear_model.SGDClassifier" self.param_space = self.spaces["SGDClassifier"]["param_space"] self.x0 = self.spaces["SGDClassifier"]["x0"] return {'model': {'SGDClassifier': kwargs}} def model_SVC(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html self.path = "sklearn.svm.SVC" self.param_space = self.spaces["SVC"]["param_space"] self.x0 = self.spaces["SVC"]["x0"] return {'model': {'SVC': kwargs}} def model_XGBClassifier(self, **kwargs): # https://xgboost.readthedocs.io/en/latest/python/python_api.html self.path = "xgboost.XGBClassifier" self.param_space = self.spaces["XGBClassifier"]["param_space"] self.x0 = self.spaces["XGBClassifier"]["x0"] return {'model': {'XGBClassifier': kwargs}} def model_XGBRFClassifier(self, **kwargs): # https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRFClassifier self.path = "xgboost.XGBRFClassifier" self.param_space = self.spaces["XGBRFClassifier"]["param_space"] self.x0 = self.spaces["XGBRFClassifier"]["x0"] return {'model': {'XGBRFClassifier': kwargs}} def model_CatBoostClassifier(self, **suggestions): # https://catboost.ai/en/docs/concepts/python-reference_catboostclassifier self.path = "catboost.CatBoostClassifier" self.param_space = self.spaces["CatBoostClassifier"]["param_space"] self.x0 = self.spaces["CatBoostClassifier"]["x0"] return {'model': {'CatBoostClassifier': suggestions}}
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/experiments/_cls.py
_cls.py
__all__ = ["MLRegressionExperiments"] from ai4water.utils.utils import get_version_info, dateandtime_now from ._main import Experiments from .utils import regression_space from ai4water.backend import xgboost, lightgbm, catboost, sklearn VERSION_INFO = get_version_info(sklearn=sklearn) class MLRegressionExperiments(Experiments): """ Compares peformance of 40+ machine learning models for a regression problem. The experiment consists of `models` which are run using `fit()` method. A `model` is one experiment. The user can define new `models` by subclassing this class. In fact any new method in the sub-class which starts with `model_` wll be considered as a new `model`. Otherwise the user has to overwite the attribute `models` to redefine, which methods (of class) are to be used as models and which should not. The method which is a `model` must only return key word arguments which will be streamed to the `Model` using `build_and_run` method. Inside this new method the user must define, which parameters to optimize, their param_space for optimization and the initial values to use for optimization. """ def __init__(self, param_space=None, x0=None, cases=None, exp_name='MLRegressionExperiments', num_samples=5, verbosity=1, **model_kws): """ Initializes the class Arguments: param_space: dimensions of parameters which are to be optimized. These can be overwritten in `models`. x0 list: initial values of the parameters which are to be optimized. These can be overwritten in `models` exp_name str: name of experiment, all results will be saved within this folder model_kws dict: keyword arguments which are to be passed to `Model` and are not optimized. Examples: >>> from ai4water.datasets import busan_beach >>> from ai4water.experiments import MLRegressionExperiments >>> # first compare the performance of all available models without optimizing their parameters >>> data = busan_beach() # read data file, in this case load the default data >>> inputs = list(data.columns)[0:-1] # define input and output columns in data >>> outputs = list(data.columns)[-1] >>> comparisons = MLRegressionExperiments( ... input_features=inputs, output_features=outputs, ... nan_filler= {'method': 'KNNImputer', 'features': inputs} ) >>> comparisons.fit(data=data,run_type="dry_run") >>> comparisons.compare_errors('r2', data=data) >>> # find out the models which resulted in r2> 0.5 >>> best_models = comparisons.compare_errors('r2', cutoff_type='greater', ... cutoff_val=0.3, data=data) >>> # now build a new experiment for best models and otpimize them >>> comparisons = MLRegressionExperiments( ... input_features=inputs, output_features=outputs, ... nan_filler= {'method': 'KNNImputer', 'features': inputs}, ... exp_name="BestMLModels") >>> comparisons.fit(data=data, run_type="optimize", include=best_models.index) >>> comparisons.compare_errors('r2', data=data) >>> comparisons.taylor_plot() # see help(comparisons.taylor_plot()) to tweak the taylor plot """ self.param_space = param_space self.x0 = x0 if exp_name == "MLRegressionExperiments": exp_name = f"{exp_name}_{dateandtime_now()}" super().__init__( cases=cases, exp_name=exp_name, num_samples=num_samples, verbosity=verbosity, **model_kws ) self.spaces = regression_space(num_samples=num_samples) if catboost is None: self.models.remove('model_CatBoostRegressor') if lightgbm is None: self.models.remove('model_LGBMRegressor') if xgboost is None: self.models.remove('model_XGBRFRegressor') self.models.remove('model_XGBRegressor') sk_maj_ver = int(sklearn.__version__.split('.')[0]) sk_min_ver = int(sklearn.__version__.split('.')[1]) if sk_maj_ver == 0 and sk_min_ver < 23: for m in ['model_PoissonRegressor', 'model_TweedieRegressor']: self.models.remove(m) @property def tpot_estimator(self): try: from tpot import TPOTRegressor except (ModuleNotFoundError, ImportError): TPOTRegressor = None return TPOTRegressor @property def category(self)->str: return "ML" @property def mode(self): return "regression" def model_AdaBoostRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html self.path = "sklearn.ensemble.AdaBoostRegressor" self.param_space = self.spaces["AdaBoostRegressor"]["param_space"] self.x0 = self.spaces["AdaBoostRegressor"]["x0"] return {'model': {'AdaBoostRegressor': kwargs}} def model_ARDRegression(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html self.path = "sklearn.linear_model.ARDRegression" self.param_space = self.spaces["ARDRegression"]["param_space"] self.x0 = self.spaces["ARDRegression"]["x0"] return {'model': {'ARDRegression': kwargs}} def model_BaggingRegressor(self, **kwargs): self.path = "sklearn.ensemble.BaggingRegressor" self.param_space = self.spaces["BaggingRegressor"]["param_space"] self.x0 = self.spaces["BaggingRegressor"]["x0"] return {'model': {'BaggingRegressor': kwargs}} def model_BayesianRidge(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html self.path = "sklearn.linear_model.BayesianRidge" self.param_space = self.spaces["BayesianRidge"]["param_space"] self.x0 = self.spaces["BayesianRidge"]["x0"] return {'model': {'BayesianRidge': kwargs}} def model_CatBoostRegressor(self, **kwargs): # https://catboost.ai/docs/concepts/python-reference_parameters-list.html self.path = "catboost.CatBoostRegressor" self.param_space = self.spaces["CatBoostRegressor"]["param_space"] self.x0 = self.spaces["CatBoostRegressor"]["x0"] return {'model': {'CatBoostRegressor': kwargs}} def model_DecisionTreeRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html self.path = "sklearn.tree.DecisionTreeRegressor" # TODO not converging self.param_space = self.spaces["DecisionTreeRegressor"]["param_space"] self.x0 = self.spaces["DecisionTreeRegressor"]["x0"] return {'model': {'DecisionTreeRegressor': kwargs}} def model_DummyRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html self.path = "sklearn.dummy.DummyRegressor" self.param_space = self.spaces["DummyRegressor"]["param_space"] self.x0 = self.spaces["DummyRegressor"]["x0"] kwargs.update({'constant': 0.2, 'quantile': 0.2}) return {'model': {'DummyRegressor': kwargs}} def model_ElasticNet(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html self.path = "sklearn.linear_model.ElasticNet" self.param_space = self.spaces["ElasticNet"]["param_space"] self.x0 = self.spaces["ElasticNet"]["x0"] return {'model': {'ElasticNet': kwargs}} def model_ElasticNetCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html self.path = "sklearn.linear_model.ElasticNetCV" self.param_space = self.spaces["ElasticNetCV"]["param_space"] self.x0 = self.spaces["ElasticNetCV"]["x0"] return {'model': {'ElasticNetCV': kwargs}} def model_ExtraTreeRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeRegressor.htm self.path = "sklearn.tree.ExtraTreeRegressor" self.param_space = self.spaces["ExtraTreeRegressor"]["param_space"] self.x0 = self.spaces["ExtraTreeRegressor"]["x0"] return {'model': {'ExtraTreeRegressor': kwargs}} def model_ExtraTreesRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html self.path = "sklearn.ensemble.ExtraTreesRegressor" self.param_space = self.spaces["ExtraTreesRegressor"]["param_space"] self.x0 = self.spaces["ExtraTreesRegressor"]["x0"] return {'model': {'ExtraTreesRegressor': kwargs}} # def model_GammaRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html?highlight=gammaregressor # self.param_space = [ # Real(low=0.0, high=1.0, name='alpha', num_samples=self.num_samples), # Integer(low=50, high=500, name='max_iter', num_samples=self.num_samples), # Real(low= 1e-6, high= 1e-2, name='tol', num_samples=self.num_samples), # Categorical(categories=[True, False], name='warm_start'), # Categorical(categories=[True, False], name='fit_intercept') # ] # self.x0 = [0.5, 100,1e-6, True, True] # return {'model': {'GammaRegressor': kwargs}} def model_GaussianProcessRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html self.path = "sklearn.gaussian_process.GaussianProcessRegressor" self.param_space = self.spaces["GaussianProcessRegressor"]["param_space"] self.x0 = self.spaces["GaussianProcessRegressor"]["x0"] return {'model': {'GaussianProcessRegressor': kwargs}} def model_GradientBoostingRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html self.path = "sklearn.ensemble.GradientBoostingRegressor" self.param_space = self.spaces["GradientBoostingRegressor"]["param_space"] self.x0 = self.spaces["GradientBoostingRegressor"]["x0"] return {'model': {'GradientBoostingRegressor': kwargs}} def model_HistGradientBoostingRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html # TODO not hpo not converging self.path = "sklearn.ensemble.HistGradientBoostingRegressor" self.param_space = self.spaces["HistGradientBoostingRegressor"]["param_space"] self.x0 = self.spaces["HistGradientBoostingRegressor"]["x0"] return {'model': {'HistGradientBoostingRegressor':kwargs}} def model_HuberRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html self.path = "sklearn.linear_model.HuberRegressor" self.param_space = self.spaces["HuberRegressor"]["param_space"] self.x0 = self.spaces["HuberRegressor"]["x0"] return {'model': {'HuberRegressor': kwargs}} def model_KernelRidge(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html self.path = "sklearn.kernel_ridge.KernelRidge" self.param_space = self.spaces["KernelRidge"]["param_space"] self.x0 = self.spaces["KernelRidge"]["x0"] return {'model': {'KernelRidge': kwargs}} def model_KNeighborsRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html self.path = "sklearn.neighbors.KNeighborsRegressor" self.param_space = self.spaces["KNeighborsRegressor"]["param_space"] self.x0 = self.spaces["KNeighborsRegressor"]["x0"] return {'model': {'KNeighborsRegressor': kwargs}} def model_LassoLars(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html self.path = "sklearn.linear_model.LassoLars" self.param_space = self.spaces["LassoLars"]["param_space"] self.x0 = self.spaces["LassoLars"]["x0"] return {'model': {'LassoLars': kwargs}} def model_Lars(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html self.path = "sklearn.linear_model.Lars" self.param_space = self.spaces["Lars"]["param_space"] self.x0 = self.spaces["Lars"]["x0"] return {'model': {'Lars': kwargs}} def model_LarsCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LarsCV.html self.path = "sklearn.linear_model.LarsCV" self.param_space = self.spaces["LarsCV"]["param_space"] self.x0 = self.spaces["LarsCV"]["x0"] return {'model': {'LarsCV': kwargs}} def model_LinearSVR(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html self.path = "sklearn.svm.LinearSVR" self.param_space = self.spaces["LinearSVR"]["param_space"] self.x0 = self.spaces["LinearSVR"]["x0"] return {'model': {'LinearSVR': kwargs}} def model_Lasso(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html self.path = "sklearn.linear_model.Lasso" self.param_space = self.spaces["Lasso"]["param_space"] self.x0 = self.spaces["Lasso"]["x0"] return {'model': {'Lasso': kwargs}} def model_LassoCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html self.path = "sklearn.linear_model.LassoCV" self.param_space = self.spaces["LassoCV"]["param_space"] self.x0 = self.spaces["LassoCV"]["x0"] return {'model': {'LassoCV': kwargs}} def model_LassoLarsCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html self.path = "sklearn.linear_model.LassoLarsCV" self.param_space = self.spaces["LassoLarsCV"]["param_space"] self.x0 = self.spaces["LassoLarsCV"]["x0"] return {'model': {'LassoLarsCV': kwargs}} def model_LassoLarsIC(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html self.path = "sklearn.linear_model.LassoLarsIC" self.param_space = self.spaces["LassoLarsIC"]["param_space"] self.x0 = self.spaces["LassoLarsIC"]["x0"] return {'model': {'LassoLarsIC': kwargs}} def model_LGBMRegressor(self, **kwargs): # https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html self.path = "lightgbm.LGBMRegressor" self.param_space = self.spaces["LGBMRegressor"]["param_space"] self.x0 = self.spaces["LGBMRegressor"]["x0"] return {'model': {'LGBMRegressor': kwargs}} def model_LinearRegression(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html self.path = "sklearn.linear_model.LinearRegression" self.param_space = self.spaces["LinearRegression"]["param_space"] self.x0 = self.spaces["LinearRegression"]["x0"] return {'model': {'LinearRegression': kwargs}} def model_MLPRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html self.path = "sklearn.neural_network.MLPRegressor" self.param_space = self.spaces["MLPRegressor"]["param_space"] self.x0 = self.spaces["MLPRegressor"]["x0"] return {'model': {'MLPRegressor': kwargs}} def model_NuSVR(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html self.path = "sklearn.svm.NuSVR" self.param_space = self.spaces["NuSVR"]["param_space"] self.x0 = self.spaces["NuSVR"]["x0"] return {'model': {'NuSVR': kwargs}} def model_OrthogonalMatchingPursuit(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html self.path = "sklearn.linear_model.OrthogonalMatchingPursuit" self.param_space = self.spaces["OrthogonalMatchingPursuit"]["param_space"] self.x0 = self.spaces["OrthogonalMatchingPursuit"]["x0"] return {'model': {'OrthogonalMatchingPursuit': kwargs}} def model_OrthogonalMatchingPursuitCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html self.path = "sklearn.linear_model.OrthogonalMatchingPursuitCV" self.param_space = self.spaces["OrthogonalMatchingPursuitCV"]["param_space"] self.x0 = self.spaces["OrthogonalMatchingPursuitCV"]["x0"] return {'model': {'OrthogonalMatchingPursuitCV': kwargs}} def model_OneClassSVM(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html self.path = "sklearn.svm.OneClassSVM" self.param_space = self.spaces["OneClassSVM"]["param_space"] self.x0 = self.spaces["OneClassSVM"]["x0"] return {'model': {'OneClassSVM': kwargs}} def model_PoissonRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html self.path = "sklearn.linear_model.PoissonRegressor" self.param_space = self.spaces["PoissonRegressor"]["param_space"] self.x0 = self.spaces["PoissonRegressor"]["x0"] return {'model': {'PoissonRegressor': kwargs}} def model_Ridge(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html self.path = "sklearn.linear_model.Ridge" self.param_space = self.spaces["Ridge"]["param_space"] self.x0 = self.spaces["Ridge"]["x0"] return {'model': {'Ridge': kwargs}} def model_RidgeCV(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html self.path = "sklearn.linear_model.RidgeCV" self.param_space = self.spaces["RidgeCV"]["param_space"] self.x0 = self.spaces["RidgeCV"]["x0"] return {'model': {'RidgeCV': kwargs}} def model_RadiusNeighborsRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html self.path = "sklearn.neighbors.RadiusNeighborsRegressor" self.param_space = self.spaces["RadiusNeighborsRegressor"]["param_space"] self.x0 = self.spaces["RadiusNeighborsRegressor"]["x0"] return {'model': {'RadiusNeighborsRegressor': kwargs}} def model_RANSACRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html self.path = "sklearn.linear_model.RANSACRegressor" self.param_space = self.spaces["RANSACRegressor"]["param_space"] self.x0 = self.spaces["RANSACRegressor"]["x0"] return {'model': {'RANSACRegressor': kwargs}} def model_RandomForestRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html self.path = "sklearn.ensemble.RandomForestRegressor" self.param_space = self.spaces["RandomForestRegressor"]["param_space"] self.x0 = self.spaces["RandomForestRegressor"]["x0"] return {'model': {'RandomForestRegressor': kwargs}} def model_SVR(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html self.path = "sklearn.svm.SVR" self.param_space = self.spaces["SVR"]["param_space"] self.x0 = self.spaces["SVR"]["x0"] return {'model': {'SVR': kwargs}} def model_SGDRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html self.path = "sklearn.linear_model.SGDRegressor" self.param_space = self.spaces["SGDRegressor"]["param_space"] self.x0 = self.spaces["SGDRegressor"]["x0"] return {'model': {'SGDRegressor': kwargs}} # def model_TransformedTargetRegressor(self, **kwargs): # ## https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html # self.param_space = [ # Categorical(categories=[None], name='regressor'), # Categorical(categories=[None], name='transformer'), # Categorical(categories=[None], name='func') # ] # self.x0 = [None, None, None] # return {'model': {'TransformedTargetRegressor': kwargs}} def model_TweedieRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html self.path = "sklearn.linear_model.TweedieRegressor" self.param_space = self.spaces["TweedieRegressor"]["param_space"] self.x0 = self.spaces["TweedieRegressor"]["x0"] return {'model': {'TweedieRegressor': kwargs}} def model_TheilSenRegressor(self, **kwargs): # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html self.path = "sklearn.linear_model.TheilSenRegressor" self.param_space = self.spaces["TheilSenRegressor"]["param_space"] self.x0 = self.spaces["TheilSenRegressor"]["x0"] return {'model': {'TheilSenRegressor': kwargs}} # TODO # def model_GAMMAREGRESSOR(self, **kwargs): # # ValueError: Some value(s) of y are out of the valid range for family GammaDistribution # return {'GAMMAREGRESSOR': {}} def model_XGBRFRegressor(self, **kwargs): # https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRFRegressor self.path = "xgboost.XGBRFRegressor" self.param_space = self.spaces["XGBRFRegressor"]["param_space"] self.x0 = self.spaces["XGBRFRegressor"]["x0"] return {'model': {'XGBRFRegressor': kwargs}} def model_XGBRegressor(self, **kwargs): # ##https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor self.path = "xgboost.XGBRegressor" self.param_space = self.spaces["XGBRegressor"]["param_space"] self.x0 = self.spaces["XGBRegressor"]["x0"] return {'model': {'XGBRegressor': kwargs}}
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/experiments/_rgr.py
_rgr.py
__all__ = ["DLRegressionExperiments", "DLClassificationExperiments"] from ai4water.backend import tf from ai4water.utils.utils import jsonize from ai4water.hyperopt import Integer, Real, Categorical from ai4water.utils.utils import dateandtime_now from ai4water.models import MLP, CNN, LSTM, CNNLSTM, LSTMAutoEncoder, TFT, TCN from ._main import Experiments from .utils import dl_space class DLRegressionExperiments(Experiments): """ A framework for comparing several basic DL architectures for a given data. This class can also be used for hyperparameter optimization of more than one DL models/architectures. However, the parameters which determine the dimensions of input data such as ``lookback`` should are not allowed to optimize when using random or grid search. To check the available models >>> exp = DLRegressionExperiments(...) >>> exp.models If learning rate, batch size, and lookback are are to be optimzied, their space can be specified in the following way: >>> exp = DLRegressionExperiments(...) >>> exp.lookback_space = [Integer(1, 100, name='lookback')] Example ------- >>> from ai4water.experiments import DLRegressionExperiments >>> from ai4water.datasets import busan_beach >>> data = busan_beach() >>> exp = DLRegressionExperiments( >>> input_features = data.columns.tolist()[0:-1], >>> output_features = data.columns.tolist()[-1:], >>> epochs=300, >>> train_fraction=1.0, >>> y_transformation="log", >>> x_transformation="minmax", >>> ts_args={'lookback':9} >>> ) ... # runt he experiments >>> exp.fit(data=data) """ def __init__( self, input_features: list, param_space=None, x0=None, cases: dict = None, exp_name: str = None, num_samples: int = 5, verbosity: int = 1, **model_kws ): """initializes the experiment.""" self.input_features = input_features self.param_space = param_space # batch_size and lr will come from x0 so should not be # in model_kws if 'batch_size' in model_kws: self.batch_size_x0 = model_kws.pop('batch_size') else: self.batch_size_x0 = 32 if 'lr' in model_kws: self.lr_x0 = model_kws.pop('lr') else: self.lr_x0 = 0.001 self.x0 = x0 # during model initiation, we must provide input_features argument model_kws['input_features'] = input_features self.lookback_space = [] self.batch_size_space = Categorical(categories=[4, 8, 12, 16, 32], name="batch_size") self.lr_space = Real(1e-5, 0.005, name="lr") exp_name = exp_name or 'DLExperiments' + f'_{dateandtime_now()}' super().__init__( cases=cases, exp_name=exp_name, num_samples=num_samples, verbosity=verbosity, **model_kws ) self.spaces = dl_space(num_samples=num_samples) @property def category(self): return "DL" @property def input_shape(self) -> tuple: features = len(self.input_features) shape = features, if "ts_args" in self.model_kws: if "lookback" in self.model_kws['ts_args']: shape = self.model_kws['ts_args']['lookback'], features return shape @property def lookback_space(self): return self._lookback_space @lookback_space.setter def lookback_space(self, space): self._lookback_space = space @property def batch_size_space(self): return self._batch_size_space @batch_size_space.setter def batch_size_space(self, bs_space): self._batch_size_space = bs_space @property def lr_space(self): return self._lr_space @lr_space.setter def lr_space(self, lr_space): self._lr_space = lr_space @property def static_space(self): _space = [] if self.lookback_space: _space.append(self.lookback_space) if self.batch_size_space: _space.append(self.batch_size_space) if self.lr_space: _space.append(self.lr_space) return _space @property def static_x0(self): _x0 = [] if self.lookback_space: _x0.append(self.model_kws.get('lookback', 5)) if self.batch_size_space: _x0.append(self.batch_size_x0) if self.lr_space: _x0.append(self.lr_x0) return _x0 @property def mode(self): return "regression" @property def tpot_estimator(self): return None def _pre_build_hook(self, **suggested_paras): """suggested_paras contain model configuration which may contain executable tf layers which should be serialized properly. """ suggested_paras = jsonize(suggested_paras, { tf.keras.layers.Layer: tf.keras.layers.serialize}) return suggested_paras def model_MLP(self, **kwargs): """multi-layer perceptron model""" self.param_space = self.spaces["MLP"]["param_space"] + self.static_space self.x0 = self.spaces["MLP"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': MLP(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_LSTM(self, **kwargs): """LSTM based model""" self.param_space = self.spaces["LSTM"]["param_space"] + self.static_space self.x0 = self.spaces["LSTM"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': LSTM(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_CNN(self, **kwargs): """1D CNN based model""" self.param_space = self.spaces["CNN"]["param_space"] + self.static_space self.x0 = self.spaces["CNN"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': CNN(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_CNNLSTM(self, **kwargs)->dict: """CNN-LSTM model""" self.param_space = self.spaces["CNNLSTM"]["param_space"] + self.static_space self.x0 = self.spaces["CNNLSTM"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) assert len(self.input_shape) == 2 config = {'model': CNNLSTM(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_LSTMAutoEncoder(self, **kwargs): """LSTM based auto-encoder model.""" self.param_space = self.spaces["LSTMAutoEncoder"]["param_space"] + self.static_space self.x0 = self.spaces["LSTMAutoEncoder"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': LSTMAutoEncoder(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_TCN(self, **kwargs): """Temporal Convolution network based model.""" self.param_space = self.spaces["TCN"]["param_space"] + self.static_space self.x0 = self.spaces["TCN"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': TCN(input_shape=self.input_shape, mode=self.mode, **kwargs)} config.update(_kwargs) return config def model_TFT(self, **kwargs): """temporal fusion transformer model.""" self.param_space = self.spaces["TFT"]["param_space"] + self.static_space self.x0 = self.spaces["TFT"]["x0"] + self.static_x0 _kwargs = {} for arg in ['batch_size', 'lr']: if arg in kwargs: _kwargs[arg] = kwargs.pop(arg) config = {'model': TFT(input_shape=self.input_shape, **kwargs)} config.update(_kwargs) return config class DLClassificationExperiments(DLRegressionExperiments): """ Compare multiple neural network architectures for a classification problem Examples --------- >>> from ai4water.experiments import DLClassificationExperiments >>> from ai4water.datasets import MtropicsLaos >>> data = MtropicsLaos().make_classification( ... input_features=['air_temp', 'rel_hum'], ... lookback_steps=5) ... #define inputs and outputs >>> inputs = data.columns.tolist()[0:-1] >>> outputs = data.columns.tolist()[-1:] ... #create the experiments class >>> exp = DLClassificationExperiments( ... input_features=inputs, ... output_features=outputs, ... epochs=5, ... ts_args={"lookback": 5} ...) ... #run the experiments >>> exp.fit(data=data, include=["TFT", "MLP"]) """ def __init__( self, exp_name=f"DLClassificationExperiments_{dateandtime_now()}", *args, **kwargs): super(DLClassificationExperiments, self).__init__( exp_name=exp_name, *args, **kwargs ) @property def mode(self): return "classification" def metric_kws(self, metric_name:str=None): kws = { 'precision': {'average': 'macro'}, 'recall': {'average': 'macro'}, 'f1_score': {'average': 'macro'}, } return kws.get(metric_name, {})
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/experiments/_dl.py
_dl.py
import sys from ai4water.hyperopt import Integer, Real, Categorical def regression_space( num_samples:int, num_examples:int=None, verbosity: bool = 0 )->dict: spaces = { "AdaBoostRegressor":{ "param_space": [ Integer(low=5, high=100, name='n_estimators', num_samples=num_samples), Real(low=0.001, high=1.0, prior='log-uniform', name='learning_rate', num_samples=num_samples)], "x0": [50, 1.0]}, "ARDRegression":{ "param_space":[ Real(low=1e-7, high=1e-5, name='alpha_1', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='alpha_2', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='lambda_1', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='lambda_2', num_samples=num_samples), Real(low=1000, high=1e5, name='threshold_lambda', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [1e-7, 1e-7, 1e-7, 1e-7, 1000, True]}, "BaggingRegressor": { "param_space": [ Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), Real(low=0.1, high=1.0, name='max_samples', num_samples=num_samples), Real(low=0.1, high=1.0, name='max_features', num_samples=num_samples), Categorical(categories=[True, False], name='bootstrap'), Categorical(categories=[True, False], name='bootstrap_features')], #Categorical(categories=[True, False], name='oob_score')], # linked with bootstrap "x0": [10, 1.0, 1.0, True, False]}, "BayesianRidge": { "param_space": [ Integer(low=40, high=1000, name='n_iter', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='alpha_1', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='alpha_2', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='lambda_1', num_samples=num_samples), Real(low=1e-7, high=1e-5, name='lambda_2', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [40, 1e-7, 1e-7, 1e-7, 1e-7, True]}, "DummyRegressor": { "param_space": [ Categorical(categories=['mean', 'median', 'quantile'], name='strategy')], "x0": ['quantile']}, "KNeighborsRegressor": { "param_space": [ Integer(low=3, high=num_examples or 50, name='n_neighbors', num_samples=num_samples), Categorical(categories=['uniform', 'distance'], name='weights'), Categorical(categories=['auto', 'ball_tree', 'kd_tree', 'brute'], name='algorithm'), Integer(low=10, high=100, name='leaf_size', num_samples=num_samples), Integer(low=1, high=5, name='p', num_samples=num_samples)], "x0": [5, 'uniform', 'auto', 30, 2]}, "LassoLars":{ "param_space": [ Real(low=1.0, high=5.0, name='alpha', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [1.0, False]}, "Lars": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Integer(low=100, high=1000, name='n_nonzero_coefs', num_samples=num_samples)], "x0": [True, 100]}, "LarsCV": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Integer(low=100, high=1000, name='max_iter', num_samples=num_samples), Integer(low=100, high=5000, name='max_n_alphas', num_samples=num_samples)], "x0": [True, 500, 1000]}, "LinearSVR": { "param_space": [ Real(low=1.0, high=5.0, name='C', num_samples=num_samples), Real(low=0.01, high=0.9, name='epsilon', num_samples=num_samples), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [1.0, 0.01, 1e-5, True]}, "Lasso": { "param_space": [ Real(low=1.0, high=5.0, name='alpha', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples)], "x0": [1.0, True, 1e-5]}, "LassoCV": { "param_space": [ Real(low=1e-5, high=1e-2, name='eps', num_samples=num_samples), Integer(low=10, high=1000, name='n_alphas', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_iter', num_samples=num_samples)], "x0": [1e-3, 100, True, 1000]}, "LassoLarsCV": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_n_alphas', num_samples=num_samples)], "x0": [True, 1000]}, "LassoLarsIC": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Categorical(categories=['bic', 'aic'], name='criterion')], "x0": [True, 'bic']}, "LinearRegression": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept')], "x0": [True]}, "MLPRegressor": { "param_space": [ Integer(low=10, high=500, name='hidden_layer_sizes', num_samples=num_samples), Categorical(categories=['identity', 'logistic', 'tanh', 'relu'], name='activation'), Categorical(categories=['lbfgs', 'sgd', 'adam'], name='solver'), Real(low=1e-6, high=1e-3, name='alpha', num_samples=num_samples), # Real(low=1e-6, high=1e-3, name='learning_rate') Categorical(categories=['constant', 'invscaling', 'adaptive'], name='learning_rate'),], "x0": [10, 'relu', 'adam', 1e-6, 'constant']}, "NuSVR": { "param_space": [ Real(low=0.5,high=0.9, name='nu', num_samples=num_samples), Real(low=1.0, high=5.0, name='C', num_samples=num_samples), Categorical(categories=['linear', 'poly', 'rbf', 'sigmoid'], name='kernel')], "x0": [0.5, 1.0, 'sigmoid']}, "OrthogonalMatchingPursuit": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Real(low=0.1, high=10, name='tol', num_samples=num_samples)], "x0": [True, 0.1]}, "OrthogonalMatchingPursuitCV": { "param_space": [ # Integer(low=10, high=100, name='max_iter'), Categorical(categories=[True, False], name='fit_intercept')], "x0": [ # 50, True]}, "OneClassSVM": { "param_space": [ Categorical(categories=['linear', 'poly', 'rbf', 'sigmoid'], name='kernel'), Real(low=0.1, high=0.9, name='nu', num_samples=num_samples), Categorical(categories=[True, False], name='shrinking')], "x0": ['rbf', 0.1, True]}, "PoissonRegressor": { "param_space": [ Real(low=0.0, high=1.0, name='alpha', num_samples=num_samples), # Categorical(categories=[True, False], name='fit_intercept'), Integer(low=50, high=500, name='max_iter', num_samples=num_samples)], "x0": [0.5, 100]}, "Ridge": { "param_space": [ Real(low=0.0, high=3.0, name='alpha', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Categorical(categories=['auto', 'svd', 'cholesky', 'saga'], name='solver'),], "x0": [1.0, True, 'auto']}, "RidgeCV": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Categorical(categories=['auto', 'svd', 'eigen'], name='gcv_mode'),], "x0": [True, 'auto']}, "RadiusNeighborsRegressor": { "param_space": [ Categorical(categories=['uniform', 'distance'], name='weights'), Categorical(categories=['auto', 'ball_tree', 'kd_tree', 'brute'], name='algorithm'), Integer(low=10, high=300, name='leaf_size', num_samples=num_samples), Integer(low=1,high=5, name='p', num_samples=num_samples)], "x0": ['uniform', 'auto', 10, 1]}, "RANSACRegressor": { "param_space": [ Integer(low=10, high=1000, name='max_trials', num_samples=num_samples), Real(low=0.01, high=0.99, name='min_samples', num_samples=num_samples)], "x0": [10, 0.01]}, "TweedieRegressor": { "param_space": [ Real(low=0.0, high=5.0, name='alpha', num_samples=num_samples), Categorical(categories=['auto', 'identity', 'log'], name='link'), Integer(low=50, high=500, name='max_iter', num_samples=num_samples)], "x0": [1.0, 'auto',100]}, "TheilSenRegressor": { "param_space": [ Categorical(categories=[True, False], name='fit_intercept'), Integer(low=30, high=1000, name='max_iter', num_samples=num_samples), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples), # Integer(low=self.data.shape[1]+1, high=len(self.data), name='n_subsamples') ], "x0": [True, 50, 0.001]}, "XGBRegressor": { "param_space": [ # Number of gradient boosted trees Integer(low=5, high=200, name='n_estimators', num_samples=num_samples), # Maximum tree depth for base learners #Integer(low=3, high=50, name='max_depth', num_samples=num_samples), Real(low=0.0001, high=0.5, name='learning_rate', prior='log-uniform', num_samples=num_samples), Categorical(categories=['gbtree', 'gblinear', 'dart'], name='booster'), # Minimum loss reduction required to make a further partition on a leaf node of the tree. # Real(low=0.1, high=0.9, name='gamma', num_samples=self.num_samples), # Minimum sum of instance weight(hessian) needed in a child. # Real(low=0.1, high=0.9, name='min_child_weight', num_samples=self.num_samples), # Maximum delta step we allow each tree’s weight estimation to be. # Real(low=0.1, high=0.9, name='max_delta_step', num_samples=self.num_samples), # Subsample ratio of the training instance. # Real(low=0.1, high=0.9, name='subsample', num_samples=self.num_samples), # Real(low=0.1, high=0.9, name='colsample_bytree', num_samples=self.num_samples), # Real(low=0.1, high=0.9, name='colsample_bylevel', num_samples=self.num_samples), # Real(low=0.1, high=0.9, name='colsample_bynode', num_samples=self.num_samples), # Real(low=0.1, high=0.9, name='reg_alpha', num_samples=self.num_samples), # Real(low=0.1, high=0.9, name='reg_lambda', num_samples=self.num_samples) ], "x0": None}, "RandomForestRegressor": { "param_space": [ Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.1, high=0.5, name='min_samples_split', num_samples=num_samples), # Real(low=0.1, high=1.0, name='min_samples_leaf'), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [10, 5, 0.4, # 0.2, 0.1, 'auto']}, "GradientBoostingRegressor": { "param_space": [ # number of boosting stages to perform Integer(low=5, high=500, name='n_estimators', num_samples=num_samples), # shrinks the contribution of each tree Real(low=0.001, high=1.0, prior='log-uniform', name='learning_rate', num_samples=num_samples), # fraction of samples to be used for fitting the individual base learners Real(low=0.1, high=1.0, name='subsample', num_samples=num_samples), Real(low=0.1, high=0.9, name='min_samples_split', num_samples=num_samples), Integer(low=2, high=30, name='max_depth', num_samples=num_samples)], "x0": [5, 0.001, 1, 0.1, 3]}, "LGBMRegressor": { "param_space": [ # todo, during optimization not working with 'rf' Categorical(categories=['gbdt', 'dart', 'goss'], name='boosting_type'), Integer(low=10, high=200, name='num_leaves', num_samples=num_samples), Real(low=0.0001, high=0.1, name='learning_rate', prior='log-uniform', num_samples=num_samples), Integer(low=20, high=100, name='n_estimators', num_samples=num_samples)], "x0": ['gbdt', 31, 0.1, 100]}, "CatBoostRegressor": { "param_space": [ # maximum number of trees that can be built Integer(low=20, high=100, name='iterations', num_samples=num_samples), # Used for reducing the gradient step. Real(low=0.0001, high=0.5, prior='log-uniform', name='learning_rate', num_samples=num_samples), # Coefficient at the L2 regularization term of the cost function. Real(low=0.5, high=5.0, name='l2_leaf_reg', num_samples=num_samples), # arger the value, the smaller the model size. Real(low=0.1, high=10, name='model_size_reg', num_samples=num_samples), # percentage of features to use at each split selection, when features are selected over again at random. Real(low=0.1, high=0.95, name='rsm', num_samples=num_samples), # number of splits for numerical features Integer(low=32, high=1032, name='border_count', num_samples=num_samples), # The quantization mode for numerical features. The quantization mode for numerical features. Categorical(categories=['Median', 'Uniform', 'UniformAndQuantiles', 'MaxLogSum', 'MinEntropy', 'GreedyLogSum'], name='feature_border_type')], "x0": [50, 0.01, 3.0, 0.5, 0.5, 32, 'GreedyLogSum']}, "DecisionTreeRegressor": { "param_space": [ Categorical(["best", "random"], name='splitter'), Integer(low=2, high=10, name='min_samples_split', num_samples=num_samples), # Real(low=1, high=5, name='min_samples_leaf'), Real(low=0.0, high=0.5, name="min_weight_fraction_leaf", num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name="max_features")], "x0": ['best', 2, 0.0, 'auto']}, "ElasticNet": { "param_space": [ Real(low=1.0, high=5.0, name='alpha', num_samples=num_samples), Real(low=0.1, high=1.0, name='l1_ratio', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_iter', num_samples=num_samples), Real(low=1e-5, high=1e-3, name='tol', num_samples=num_samples)], "x0": [2.0, 0.2, True, 1000, 1e-4]}, "ElasticNetCV": { "param_space": [ Real(low=0.1, high=1.0, name='l1_ratio', num_samples=num_samples), Real(low=1e-5, high=1e-2, name='eps', num_samples=num_samples), Integer(low=10, high=1000, name='n_alphas', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_iter', num_samples=num_samples)], "x0": [0.5, 1e-3, 100, True, 1000]}, "ExtraTreeRegressor": { "param_space": [ Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.1, high=0.5, name='min_samples_split', num_samples=num_samples), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [5, 0.2, 0.2, 'auto']}, "ExtraTreesRegressor": { "param_space": [ Integer(low=5, high=500, name='n_estimators', num_samples=num_samples), Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Integer(low=2, high=10, name='min_samples_split', num_samples=num_samples), Integer(low=1, high=10, num_samples=num_samples, name='min_samples_leaf'), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [100, 5, 2, 1, 0.0, 'auto']}, "GaussianProcessRegressor": { "param_space": [ Real(low=1e-10, high=1e-7, name='alpha', num_samples=num_samples), Integer(low=0, high=5, name='n_restarts_optimizer', num_samples=num_samples)], "x0": [1e-10, 1]}, "HistGradientBoostingRegressor": { "param_space": [ # Used for reducing the gradient step. Real(low=0.0001, high=0.9, prior='log-uniform', name='learning_rate', num_samples=num_samples), Integer(low=50, high=500, name='max_iter', num_samples=num_samples), # maximum number of trees. Integer(low=2, high=100, name='max_depth', num_samples=num_samples), # maximum number of trees. # maximum number of leaves for each tree Integer(low=10, high=100, name='max_leaf_nodes', num_samples=num_samples), # minimum number of samples per leaf Integer(low=10, high=100, name='min_samples_leaf', num_samples=num_samples), # Used for reducing the gradient step. Real(low=00, high=0.5, name='l2_regularization', num_samples=num_samples)], "x0": [0.1, 100, 10, 31, 20, 0.0]}, "HuberRegressor": { "param_space": [ Real(low=1.0, high=5.0, name='epsilon', num_samples=num_samples), Integer(low=50, high=500, name='max_iter', num_samples=num_samples), Real(low=1e-5, high=1e-2, name='alpha', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [2.0, 50, 1e-5, False]}, "KernelRidge": { "param_space": [ Real(low=1.0, high=5.0, name='alpha', num_samples=num_samples) # Categorical(categories=['poly', 'linear', name='kernel']) ], "x0": [1.0]}, "SVR": { "param_space": [ # https://stackoverflow.com/questions/60015497/valueerror-precomputed-matrix-must-be-a-square-matrix-input-is-a-500x29243-mat # todo, optimization not working with 'precomputed' Categorical(categories=['linear', 'poly', 'rbf', 'sigmoid'], name='kernel'), Real(low=1.0, high=5.0, name='C', num_samples=num_samples), Real(low=0.01, high=0.9, name='epsilon', num_samples=num_samples)], "x0": ['rbf',1.0, 0.01]}, "SGDRegressor": { "param_space": [ Categorical(categories=['l1', 'l2', 'elasticnet'], name='penalty'), Real(low=0.01, high=1.0, name='alpha', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_iter', num_samples=num_samples), Categorical(categories=['constant', 'optimal', 'invscaling', 'adaptive'], name='learning_rate')], "x0": ['l2', 0.1, True, 1000, 'invscaling']}, "XGBRFRegressor": { "param_space": [ # Number of gradient boosted trees Integer(low=5, high=100, name='n_estimators', num_samples=num_samples), # Maximum tree depth for base learners Integer(low=3, high=50, name='max_depth', num_samples=num_samples), Real(low=0.0001, high=0.5, prior='log-uniform', name='learning_rate', num_samples=num_samples), # Categorical(categories=['gbtree', 'gblinear', 'dart'], name='booster'), # todo solve error # Minimum loss reduction required to make a further partition on a leaf node of the tree. Real(low=0.1, high=0.9, name='gamma', num_samples=num_samples), # Minimum sum of instance weight(hessian) needed in a child. Real(low=0.1, high=0.9, name='min_child_weight', num_samples=num_samples), # Maximum delta step we allow each tree’s weight estimation to be. Real(low=0.1, high=0.9, name='max_delta_step', num_samples=num_samples), # Subsample ratio of the training instance. Real(low=0.1, high=0.9, name='subsample', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bytree', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bylevel', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bynode', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_alpha', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_lambda', num_samples=num_samples)], "x0": [50, 3, 0.001, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]} } # remove the estimators from those libraries which are not available/installed libraries_to_models = { 'catboost': ['CatBoostRegressor'], 'xgboost': ['XGBRFRegressor', 'XGBRegressor'], 'lightgbm': ['LGBMRegressor'] } _remove_estimator(spaces, libraries_to_models, verbosity) return spaces def classification_space(num_samples:int, verbosity=0, n_features:int = None): ridge_cls = _ridge_classifier(num_samples=num_samples) ridge_cls_cv = _ridge_classifiercv() spaces = { "AdaBoostClassifier": { "param_space": [ Integer(low=10, high=500, name='n_estimators', num_samples=num_samples), Real(low=1.0, high=5.0, name='learning_rate', num_samples=num_samples), Categorical(categories=['SAMME', 'SAMME.R'], name='algorithm')], "x0": [50, 1.0, 'SAMME']}, "BaggingClassifier": { "param_space": [ Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), Real(low=0.1, high=1.0, name='max_samples', num_samples=num_samples), Real(low=0.1, high=1.0, name='max_features', num_samples=num_samples), Categorical(categories=[True, False], name='bootstrap'), Categorical(categories=[True, False], name='bootstrap_features') # Categorical(categories=[True, False], name='oob_score'), # linked with bootstrap ], "x0": [10, 1.0, 1.0, True, False]}, "BernoulliNB": { "param_space": [ Real(low=0.1, high=1.0, name='alpha', num_samples=num_samples), Real(low=0.0, high=1.0, name='binarize', num_samples=num_samples)], "x0": [0.5, 0.5]}, "CalibratedClassifierCV": { "param_space": [ Categorical(categories=['sigmoid', 'isotonic'], name='method'), #Integer(low=5, high=50, name='n_jobs', num_samples=num_samples) ], "x0": ['sigmoid']}, "DecisionTreeClassifier": { "param_space": [ Categorical(["best", "random"], name='splitter'), Integer(low=2, high=10, name='min_samples_split', num_samples=num_samples), # Real(low=1, high=5, name='min_samples_leaf'), Real(low=0.0, high=0.5, name="min_weight_fraction_leaf", num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name="max_features"),], "x0": ['best', 2, 0.0, 'auto']}, "DummyClassifier": { "param_space": [ Categorical(categories=['stratified', 'most_frequent', 'prior', 'uniform', 'constant'], name='strategy')], "x0": ['prior']}, "ExtraTreeClassifier": { "param_space": [ Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.1, high=0.5, name='min_samples_split', num_samples=num_samples), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [5, 0.2, 0.2, 'auto']}, "ExtraTreesClassifier": { "param_space": [ Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.1, high=0.5, name='min_samples_split', num_samples=num_samples), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [10, 5, 0.4, 0.1, 'auto']}, "GaussianProcessClassifier": { "param_space": [ Integer(low=0, high=5, name='n_restarts_optimizer', num_samples=num_samples)], "x0": [1]}, "GradientBoostingClassifier": { "param_space": [ # number of boosting stages to perform Integer(low=5, high=500, name='n_estimators', num_samples=num_samples), # shrinks the contribution of each tree Real(low=0.001, high=1.0, prior='log-uniform', name='learning_rate', num_samples=num_samples), # fraction of samples to be used for fitting the individual base learners Real(low=0.1, high=1.0, name='subsample', num_samples=num_samples), Real(low=0.1, high=0.9, name='min_samples_split', num_samples=num_samples), Integer(low=2, high=30, name='max_depth', num_samples=num_samples)], "x0": [5, 0.001, 1, 0.1, 3]}, "HistGradientBoostingClassifier": { "param_space": [ # Used for reducing the gradient step. Real(low=0.0001, high=0.9, prior='log-uniform', name='learning_rate', num_samples=num_samples), Integer(low=50, high=500, name='max_iter', num_samples=num_samples), # maximum number of trees. Integer(low=2, high=100, name='max_depth', num_samples=num_samples), # maximum number of trees. # maximum number of leaves for each tree Integer(low=10, high=100, name='max_leaf_nodes', num_samples=num_samples), # minimum number of samples per leaf Integer(low=10, high=100, name='min_samples_leaf', num_samples=num_samples), # Used for reducing the gradient step. Real(low=00, high=0.5, name='l2_regularization', num_samples=num_samples)], "x0": [0.1, 100, 10, 31, 20, 0.0]}, "KNeighborsClassifier": { "param_space": [ Integer(low=3, high=5, name='n_neighbors', num_samples=num_samples), Categorical(categories=['uniform', 'distance'], name='weights'), Categorical(categories=['auto', 'ball_tree', 'kd_tree', 'brute'], name='algorithm'), Integer(low=10, high=100, name='leaf_size', num_samples=num_samples), Integer(low=1, high=5, name='p', num_samples=num_samples)], "x0": [5, 'uniform', 'auto', 30, 2]}, "LabelPropagation": { "param_space": [ Categorical(categories=['knn', 'rbf'], name='kernel'), Integer(low=5, high=10, name='n_neighbors', num_samples=num_samples), Integer(low=50, high=1000, name='max_iter', num_samples=num_samples), Real(low=1e-6, high=1e-2, name='tol', num_samples=num_samples), #Integer(low=2, high=10, name='n_jobs', num_samples=num_samples) ], "x0": ['knn', 5, 50, 1e-4]}, "LabelSpreading": { "param_space": [ Categorical(categories=['knn', 'rbf'], name='kernel'), Integer(low=5, high=10, name='n_neighbors', num_samples=num_samples), Integer(low=10, high=100, name='max_iter', num_samples=num_samples), Real(low=0.1, high=1.0, name='alpha', num_samples=num_samples), Real(low=1e-6, high=1e-2, name='tol', num_samples=num_samples), #Integer(low=2, high=50, name='n_jobs', num_samples=num_samples) ], "x0": ['knn', 5, 10, 0.1, 1e-4]}, "LGBMClassifier": { "param_space": [ Categorical(categories=['gbdt', 'dart', 'goss', 'rf'], name='boosting_type'), Integer(low=10, high=200, name='num_leaves', num_samples=num_samples), Real(low=0.0001, high=0.1, prior='log-uniform', name='learning_rate', num_samples=num_samples), Integer(low=10, high=100, name='min_child_samples', num_samples=num_samples), Integer(low=20, high=500, name='n_estimators', num_samples=num_samples)], "x0": ['rf', 10, 0.001, 10, 20]}, "LinearDiscriminantAnalysis": { "param_space": [ Categorical(categories=[False, True], name='store_covariance'), Integer(low=2, high=100, name='n_components', num_samples=num_samples), Real(low=1e-6, high=1e-2, name='tol', num_samples=num_samples)], "x0": [True, 2, 1e-4]}, "LinearSVC": { "param_space": [ Categorical(categories=[True, False], name='dual'), Real(low=1.0, high=5.0, name='C', num_samples=10), Integer(low=100, high=1000, name='max_iter', num_samples=num_samples), Real(low=1e-5, high=1e-1, name='tol', num_samples=10), Categorical(categories=[True, False], name='fit_intercept')], "x0": [True, 1.0, 100, 1e-4, True]}, "LogisticRegression": { "param_space": [ #Categorical(categories=[True, False], name='dual'), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples), Real(low=0.5, high=5.0, name='C', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=100, high=1000, name='max_iter', num_samples=10) #Categorical(categories=['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'], name='solver') ], "x0": [1e-6, 1.0, True, 100]}, "MLPClassifier": { "param_space": [ Integer(low=10, high=500, name='hidden_layer_sizes', num_samples=num_samples), Categorical(categories=['identity', 'logistic', 'tanh', 'relu'], name='activation'), Categorical(categories=['lbfgs', 'sgd', 'adam'], name='solver'), Real(low=1e-6, high=1e-3, name='alpha', num_samples=num_samples), # Real(low=1e-6, high=1e-3, name='learning_rate') Categorical(categories=['constant', 'invscaling', 'adaptive'], name='learning_rate'), ], "x0": [10, 'relu', 'adam', 1e-6, 'constant']}, "NearestCentroid": { "param_space": [ Real(low=1, high=50, name='shrink_threshold', num_samples=num_samples)], "x0": [5]}, "NuSVC": { "param_space": [ Real(low=0.5, high=0.9, name='nu', num_samples=num_samples), Integer(low=100, high=1000, name='max_iter', num_samples=num_samples), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples), Real(low=100, high=500, name='cache_size', num_samples=num_samples)], "x0": [0.5, 100, 1e-5, 100]}, "PassiveAggressiveClassifier": { "param_space": [ Real(low=1.0, high=5.0, name='C', num_samples=num_samples), Real(low=0.1, high=1.0, name='validation_fraction', num_samples=num_samples), Real(low=1e-4, high=1e-1, name='tol', num_samples=num_samples), Integer(low=100, high=1000, name='max_iter', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [1.0, 0.1, 1e-4, 200, True]}, "Perceptron": { "param_space": [ Real(low=1e-6, high=1e-2, name='alpha', num_samples=num_samples), Real(low=0.1, high=1.0, name='validation_fraction', num_samples=num_samples), Real(low=1e-4, high=1e-1, name='tol', num_samples=num_samples), Integer(low=100, high=1000, name='max_iter', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept')], "x0": [1e-4, 0.1, 1e-3, 200, True]}, "QuadraticDiscriminantAnalysis": { "param_space": [ Real(low=0.0, high=1.0, name='reg_param', num_samples=num_samples), Real(low=1e-4, high=1e-1, name='tol', num_samples=num_samples), Categorical(categories=[True, False], name='store_covariance')], "x0": [0.1, 1e-3, True]}, "RadiusNeighborsClassifier": { "param_space": [ Categorical(categories=['uniform', 'distance'], name='weights'), Categorical(categories=['auto', 'ball_tree', 'kd_tree', 'brute'], name='algorithm'), Integer(low=10, high=300, name='leaf_size', num_samples=num_samples), Integer(low=1, high=5, name='p', num_samples=num_samples)], "x0": ['uniform', 'auto', 10, 1]}, "RandomForestClassifier": { "param_space": [ Integer(low=50, high=1000, name='n_estimators', num_samples=num_samples), Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Integer(low=2, high=10, name='min_samples_split', num_samples=num_samples), Real(low=0.0, high=0.5, name='min_weight_fraction_leaf', num_samples=num_samples), Categorical(categories=['auto', 'sqrt', 'log2'], name='max_features')], "x0": [100, 5, 2, 0.2, 'auto']}, "RidgeClassifier": { "param_space": ridge_cls.space, "x0": ridge_cls.x0}, "RidgeClassifierCV": { "param_space": ridge_cls_cv.space, "x0": ridge_cls_cv.x0}, "SGDClassifier": { "param_space": [ Categorical(categories=['l1', 'l2', 'elasticnet'], name='penalty'), Real(low=1e-6, high=1e-2, name='alpha', num_samples=num_samples), Real(low=0.0, high=1.0, name='eta0', num_samples=num_samples), Categorical(categories=[True, False], name='fit_intercept'), Integer(low=500, high=5000, name='max_iter', num_samples=num_samples), Categorical(categories=['constant', 'optimal', 'invscaling', 'adaptive'], name='learning_rate')], "x0": ['l2', 1e-4, 0.5,True, 1000, 'invscaling']}, "SVC": { "param_space": [ Real(low=1.0, high=5.0, name='C', num_samples=num_samples), Real(low=1e-5, high=1e-1, name='tol', num_samples=num_samples), Real(low=200, high=1000, name='cache_size', num_samples=num_samples)], "x0": [1.0, 1e-3, 200]}, "XGBClassifier": { "param_space": [ # Number of gradient boosted trees Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), # Maximum tree depth for base learners Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.0001, high=0.5, prior='log-uniform', name='learning_rate', num_samples=num_samples), # Categorical(categories=['gbtree', 'gblinear', 'dart'], name='booster'), Real(low=0.1, high=0.9, name='gamma', num_samples=num_samples), # Minimum loss reduction required to make a further partition on a leaf node of the tree. Real(low=0.1, high=0.9, name='min_child_weight', num_samples=num_samples), # Minimum sum of instance weight(hessian) needed in a child. Real(low=0.1, high=0.9, name='max_delta_step', num_samples=num_samples), # Maximum delta step we allow each tree’s weight estimation to be. # Subsample ratio of the training instance. Real(low=0.1, high=0.9, name='subsample', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bytree', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bylevel', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bynode', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_alpha', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_lambda', num_samples=num_samples)], "x0": [10, 3, 0.0001, 'gbtree', 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]}, "XGBRFClassifier": { "param_space": [ # Number of gradient boosted trees Integer(low=5, high=50, name='n_estimators', num_samples=num_samples), # Maximum tree depth for base learners Integer(low=3, high=30, name='max_depth', num_samples=num_samples), Real(low=0.0001, high=0.5, prior='log-uniform', name='learning_rate', num_samples=num_samples), # Categorical(categories=['gbtree', 'gblinear', 'dart'], name='booster'), Real(low=0.1, high=0.9, name='gamma', num_samples=num_samples), # Minimum loss reduction required to make a further partition on a leaf node of the tree. Real(low=0.1, high=0.9, name='min_child_weight', num_samples=num_samples), # Minimum sum of instance weight(hessian) needed in a child. Real(low=0.1, high=0.9, name='max_delta_step', num_samples=num_samples), # Maximum delta step we allow each tree’s weight estimation to be. # Subsample ratio of the training instance. Real(low=0.1, high=0.9, name='subsample', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bytree', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bylevel', num_samples=num_samples), Real(low=0.1, high=0.9, name='colsample_bynode', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_alpha', num_samples=num_samples), Real(low=0.1, high=0.9, name='reg_lambda', num_samples=num_samples)], "x0": [10, 3, 0.0001, 'gbtree', 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]}, "CatBoostClassifier": { "param_space": [ # maximum number of trees that can be built Integer(low=20, high=100, name='iterations', num_samples=num_samples), # Used for reducing the gradient step. Real(low=0.0001, high=0.5, prior='log-uniform', name='learning_rate', num_samples=num_samples), # depth # https://stackoverflow.com/q/67299869/5982232 Integer(1, 15, name="depth", num_samples=num_samples), # Coefficient at the L2 regularization term of the cost function. Real(low=0.5, high=5.0, name='l2_leaf_reg', num_samples=num_samples), # arger the value, the smaller the model size. Real(low=0.1, high=10, name='model_size_reg', num_samples=num_samples), # percentage of features to use at each split selection, when features are selected over again at random. Real(low=0.1, high=0.95, name='rsm', num_samples=num_samples), # number of splits for numerical features Integer(low=32, high=1032, name='border_count', num_samples=num_samples), # The quantization mode for numerical features. The quantization mode for numerical features. Categorical(categories=['Median', 'Uniform', 'UniformAndQuantiles', 'MaxLogSum', 'MinEntropy', 'GreedyLogSum'], name='feature_border_type')], "x0": [100, 0.01, 5, 3.0, 0.5, 0.5, 32, 'GreedyLogSum']} } # remove the estimators from those libraries which are not available/installed libraries_to_models = { 'catboost': ['CatBoostClassifier'], 'xgboost': ['XGBRFClassifier', 'XGBClassifier'], 'lightgbm': ['LGBMClassifier'] } _remove_estimator(spaces, libraries_to_models, verbosity) return spaces def dl_space( num_samples:int=10 )->dict: spaces = { "MLP": { "param_space":[ Integer(8, 128, name="units", num_samples=num_samples), Categorical([1, 2, 3], name="num_layers"), Real(0.0, 0.4, name="dropout", num_samples=num_samples), Categorical(["relu", "linear", "leakyrelu", "elu", "tanh", "sigmoid"], name="activation")], 'x0': [32, 1, 0.0, "relu"]}, "LSTM":{ "param_space": [ Integer(8, 128, name="units", num_samples=num_samples), Categorical([1, 2, 3], name="num_layers"), Real(0.0, 0.4, name="dropout", num_samples=num_samples), Categorical(["relu", "leakyrelu", "elu", "tanh", "sigmoid"], name="activation")], 'x0': [32, 1, 0.0, "relu"]}, "CNN": { "param_space": [ Integer(8, 128, name="filters", num_samples=num_samples), Categorical([2,3,4,5], name="kernel_size"), Categorical([1, 2, 3], name="num_layers"), Real(0.0, 0.4, name="dropout"), Categorical(["relu", "leakyrelu", "elu", "tanh", "sigmoid"], name="activation")], "x0": [32, 2, 1, 0.0, "relu"]}, "CNNLSTM": { "param_space": [ Categorical([1,2,3], name="cnn_layers"), Categorical([1, 2, 3], name="lstm_layers"), Integer(8, 128, name="units", num_samples=num_samples), Integer(8, 128, name="filters", num_samples=num_samples), Categorical([2,3,4,5], name="kernel_size")], "x0": [2, 1, 32, 32, 2]}, "LSTMAutoEncoder": { "param_space": [ Integer(8, 128, name="encoder_units", num_samples=num_samples), Integer(8, 128, name="decoder_units", num_samples=num_samples), Categorical([1,2,3], name="encoder_layers"), Categorical([1,2,3], name="decoder_layers")], "x0": [32, 32, 1, 1]}, "TCN": { "param_space": [ Integer(16, 128, name="filters", num_samples=num_samples), Categorical([2,3,4,5], name="kernel_size")], "x0": [64, 2]}, "TFT": { "param_space":[ Integer(16, 128, name="hidden_units", num_samples=num_samples), Categorical([1, 2, 3, 4, 5], name="num_heads")], "x0": [64, 2]} } return spaces def _remove_estimator(spaces, libraries_to_models, verbosity=0): for lib, estimators in libraries_to_models.items(): if lib not in sys.modules: for estimator in estimators: if verbosity>0: print(f"excluding {estimator} because library {lib} is not found") spaces.pop(estimator) return spaces def regression_models()->list: """returns availabel regression models as list""" return list(regression_space(5,5).keys()) def classification_models()->list: """returns availabel classification models as list""" return list(classification_space(5,0).keys()) class _ridge_classifier(object): def __init__(self, num_samples=10): import sklearn self.space = [ Real(low=1.0, high=5.0, name='alpha', num_samples=num_samples), Real(low=1e-4, high=1e-1, name='tol', num_samples=num_samples), Categorical(categories=[True, False], name='normalize'), Categorical(categories=[True, False], name='fit_intercept')] self.x0 = [1.0, 1e-3, True, True] if sklearn.__version__ > "1.0.0": self.space.pop(2) self.x0.pop(2) class _ridge_classifiercv(object): def __init__(self): import sklearn self.space = [ Categorical(categories=[1e-3, 1e-2, 1e-1, 1], name='alphas'), Categorical(categories=[True, False], name='normalize'), Categorical(categories=[True, False], name='fit_intercept') ] self.x0 = [1.0, True, True] if sklearn.__version__ > "1.0.0": self.space.pop(1) self.x0.pop(1)
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/experiments/utils.py
utils.py
import warnings from collections import OrderedDict from typing import Callable from typing import List from typing import Optional from ai4water.backend import np from optuna.logging import get_logger from optuna._transform import _SearchSpaceTransform from optuna.study import Study from optuna.trial import FrozenTrial from optuna.trial import TrialState from optuna.importance._fanova import FanovaImportanceEvaluator from optuna.visualization._utils import _check_plot_args from optuna.importance import get_param_importances #from optuna.importance._fanova import FanovaImportanceEvaluator try: from optuna.visualization._plotly_imports import go from optuna.visualization._plotly_imports import _imports except (ImportError, ModuleNotFoundError): go, _imports = None, None from easy_mpl import bar_chart logger = get_logger(__name__) def _get_distributions(study, params): # based on supposition that get_distributions only returns an ordered dictionary and requiring `storage` attribute # of study is redundant assert params is None trial = study.trials[0] return OrderedDict(trial.distributions) class ImportanceEvaluator1(FanovaImportanceEvaluator): def evaluate( self, study: Study, params: Optional[List[str]] = None, *, target: Optional[Callable[[FrozenTrial], float]] = None, ): if target is None and study._is_multi_objective(): raise ValueError( "If the `study` is being used for multi-objective optimization, " "please specify the `target`." ) distributions = _get_distributions(study, params) if len(distributions) == 0: return OrderedDict() trials = [] for trial in study.trials: if trial.state != TrialState.COMPLETE: continue if any(name not in trial.params for name in distributions.keys()): continue trials.append(trial) trans = _SearchSpaceTransform(distributions, transform_log=False, transform_step=False) n_trials = len(trials) trans_params = np.empty((n_trials, trans.bounds.shape[0]), dtype=np.float64) trans_values = np.empty(n_trials, dtype=np.float64) for trial_idx, trial in enumerate(trials): trans_params[trial_idx] = trans.transform(trial.params) trans_values[trial_idx] = trial.value if target is None else target(trial) # if nan values are present in target, use mean to fill them nan_idx = np.isnan(trans_values) if nan_idx.any(): warnings.warn("Nan value encountered in target values", UserWarning) # fill nan values with mean trans_values[nan_idx] = np.nanmean(trans_values) # if inf values are present in target, fill them with max inf_idx = np.isinf(trans_values) if inf_idx.any(): warnings.warn("Infinity value encountered in target values", UserWarning) # first convert infs to NaNs with np.isinf masking and then NaNs to max values trans_values[inf_idx] = np.nan trans_values[np.isnan(trans_values)] = np.nanmax(trans_values) trans_bounds = trans.bounds column_to_encoded_columns = trans.column_to_encoded_columns if trans_params.size == 0: # `params` were given but as an empty list. return OrderedDict() # Many (deep) copies of the search spaces are required during the tree traversal and using # Optuna distributions will create a bottleneck. # Therefore, search spaces (parameter distributions) are represented by a single # `numpy.ndarray`, coupled with a list of flags that indicate whether they are categorical # or not. evaluator = self._evaluator evaluator.fit( X=trans_params, y=trans_values, search_spaces=trans_bounds, column_to_encoded_columns=column_to_encoded_columns, ) importances = {} variance = {} for i, name in enumerate(distributions.keys()): try: _mean, _std = evaluator.get_importance((i,)) except TypeError: # in newer optuna versions, it requires integer not list _mean, _std = evaluator.get_importance(i) importances[name] = _mean variance[name] = {'mean': _mean, 'std': _std} total_importance = sum(importances.values()) for name in importances: importances[name] /= total_importance sorted_importances = OrderedDict( reversed( sorted(importances.items(), key=lambda name_and_importance: name_and_importance[1]) ) ) self.importance_paras = variance return sorted_importances def plot_param_importances( study: Study, evaluator=None, params: Optional[List[str]] = None, *, target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ): _check_plot_args(study, target, target_name) if go is not None: _imports.check() layout = go.Layout( title="Hyperparameter Importances", xaxis={"title": f"Importance for {target_name}"}, yaxis={"title": "Hyperparameter"}, showlegend=False, ) # Importances cannot be evaluated without completed trials. # Return an empty figure for consistency with other visualization functions. trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if go and len(trials) == 0: logger.warning("Study instance does not contain completed trials.") return go.Figure(data=[], layout=layout) if evaluator is None: evaluator = ImportanceEvaluator1() try: importances = get_param_importances( study, evaluator=evaluator, params=params, target=target ) except RuntimeError: # sometimes it is returning error e.g. when number of trials are < 4 return None, None, None importances = OrderedDict(reversed(list(importances.items()))) importance_values = list(importances.values()) param_names = list(importances.keys()) ax = bar_chart(importance_values, param_names, orient='h', show=False, ax_kws={'title':"fANOVA hyperparameter importance", 'xlabel':"Relative Importance"}) return importances, evaluator.importance_paras, ax def _get_distribution(param_name: str, study: Study): for trial in study.trials: if param_name in trial.distributions: return trial.distributions[param_name] assert False
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/hyperopt/_optuna_fanova.py
_optuna_fanova.py
import json import copy import inspect import warnings from typing import Union, Dict from collections import OrderedDict from .utils import plot_convergences from .utils import get_one_tpe_x_iter from .utils import to_skopt_as_dict from .utils import post_process_skopt_results from .utils import to_skopt_space from .utils import save_skopt_results from .utils import Dimension from .utils import plot_convergence from ._space import Categorical, Real, Integer from .utils import sort_x_iters, x_iter_for_tpe from .utils import loss_histogram, plot_hyperparameters from ai4water.utils.utils import JsonEncoder from ai4water.utils.utils import clear_weights from ai4water.utils.utils import jsonize, dateandtime_now from ai4water.utils.visualizations import edf_plot from ai4water.backend import hyperopt as _hyperopt from ai4water.utils.utils import create_subplots from ai4water.backend import np, pd, plt, os, sklearn, optuna, plotly, skopt, easy_mpl GridSearchCV = sklearn.model_selection.GridSearchCV RandomizedSearchCV = sklearn.model_selection.RandomizedSearchCV ParameterGrid = sklearn.model_selection.ParameterGrid ParameterSampler = sklearn.model_selection.ParameterSampler bar_chart = easy_mpl.bar_chart parallel_coordinates = easy_mpl.parallel_coordinates if skopt is None: pass else: Space = skopt.space.space.Space #Dimension = skopt.space.space.Dimension forest_minimize = skopt.forest_minimize gp_minimize = skopt.gp_minimize BayesSearchCV = skopt.BayesSearchCV use_named_args = skopt.utils.use_named_args from skopt.plots import plot_evaluations if _hyperopt is not None: space_eval = _hyperopt.space_eval hp = _hyperopt.hp miscs_to_idxs_vals = _hyperopt.base.miscs_to_idxs_vals Apply = _hyperopt.pyll.base.Apply fmin_hyperopt = _hyperopt.fmin tpe = _hyperopt.tpe STATUS_OK = _hyperopt.STATUS_OK Trials = _hyperopt.Trials rand = _hyperopt.rand else: space_eval, hp = None, None miscs_to_idxs_vals = None Apply = None fmin_hyperopt = None tpe = None STATUS_OK = None Trials = None rand = None if _hyperopt is not None: try: # atpe is only available in later versions of hyperopt atpe = _hyperopt.atpe except AttributeError: atpe = None else: atpe = None if optuna is None: plot_contour = None else: plot_contour = optuna.visualization.plot_contour from ._fanova import fANOVA # TODO RayTune libraries under the hood https://docs.ray.io/en/master/tune/api_docs/suggestion.html#summary # TODO add generic algorithm, deap/pygad # TODO skopt provides functions other than gp_minimize, see if they are useful and can be used. # todo loading gpmin_results is not consistent. SEP = os.sep COUNTER = 0 ALGORITHMS = { 'bayes': {}, 'bayes_rf': {'name': 'decision_tree', 'backend': ['skopt']}, 'gbrt': {'name': 'gradient-boosted-tree regression', 'backend': ['skopt']}, 'tpe': {'name': 'Tree of Parzen Estimators', 'backend': ['hyperopt', 'optuna']}, 'atpe': {'name': 'Adaptive Tree of Parzen Estimators', 'backend': ['hyperopt']}, 'random': {'name': 'random search', 'backend': ['sklearn', 'optuna', 'hyperopt']}, 'grid': {'name': 'grid search', 'backend': ['sklearn', 'optuna']}, 'cmaes': {'name': 'Covariance Matrix Adaptation Evolution Strategy', 'backend': ['optuna']} } class HyperOpt(object): """ The purpose of this class is to provide a uniform and simplifed interface to use `hyperopt`, `optuna`, `scikit-optimize` and `scikit-learn` based hyperparameter optimization methods. Ideally this class should provide all the functionalities of beforementioned libaries with a uniform interface. It however also complements these libraries by combining their functionalities and adding some additional functionalities to them. On the other hand this class should not limit or complicate the use of its underlying libraries. This means all the functionalities of underlying libraries are available in this class as well. Moreover, you can use this class just as you use one of its underlying library. The purpose here is to make a class which allows application of any of the available optimization methods on any type of model/classifier/regressor. If the classifier/regressor is of sklearn-based, then for random search, we use RanddomSearchCV_, for grid search, we use GridSearchCV_ and for Bayesian, we use BayesSearchCV_ . On the other hand, if the model is not sklearn-based, you will still be able to implement any of the three methods. In such case, the bayesian_ will be implemented using `gp_minimize`. Random search and grid search will be done by simple iterating over the sample space generated as in sklearn based samplers. However, the post-processing of the results is (supposed to be) done same as is done in RandomSearchCV and GridSearchCV. The class is expected to pass all the tests written in sklearn or skopt for corresponding classes. For detailed use of this class see this `hpo_tutorial`_ Attributes -------------- - results dict: - gpmin_results dict: - skopt_results : - hp_space : - space - skopt_space : - space dict: - title str: name of the folder in which all results will be saved. By default this is same as name of `algorithm`. For `AI4Water` based models, this is more detailed, containing problem type etc. Methods ------- - eval_with_best: evaluates the objective_fn on best parameters - best_paras(): returns the best parameters from optimization. The following examples illustrate how we can uniformly apply different optimization algorithms. Examples -------- >>> from ai4water import Model >>> from ai4water.hyperopt import HyperOpt, Categorical, Integer, Real >>> from ai4water.datasets import busan_beach >>> from SeqMetrics import RegressionMetrics >>> data = busan_beach() >>> input_features = ['tide_cm', 'wat_temp_c', 'sal_psu', 'air_temp_c', 'pcp_mm', 'pcp3_mm'] >>> output_features = ['tetx_coppml'] We have to define an objective function which will take keyword arguments and return a scaler value as output. This scaler value will be minized during optimzation >>> def objective_fn(**suggestion)->float: ... # the objective function must receive new parameters as keyword arguments ... model = Model( ... input_features=input_features, ... output_features=output_features, ... model={"XGBRegressor": suggestion}, ... verbosity=0) ... ... model.fit(data=data) ... ... t, p = model.predict(return_true=True) ... mse = RegressionMetrics(t, p).mse() ... # the objective function must return a scaler value which needs to be minimized ... return mse Define search space The search splace determines pool from which parameters are chosen during optimization. >>> num_samples=5 # only relavent for random and grid search >>> search_space = [ ... Categorical(['gbtree', 'dart'], name='booster'), ... Integer(low=1000, high=2000, name='n_estimators', num_samples=num_samples), ... Real(low=1.0e-5, high=0.1, name='learning_rate', num_samples=num_samples) ... ] ... # Using Baysian with gaussian processes >>> optimizer = HyperOpt('bayes', objective_fn=objective_fn, param_space=search_space, ... num_iterations=num_iterations ) >>> optimizer.fit() Using TPE with optuna >>> num_iterations = 10 >>> optimizer = HyperOpt('tpe', objective_fn=objective_fn, param_space=search_space, ... backend='optuna', ... num_iterations=num_iterations ) >>> optimizer.fit() Using cmaes with optuna >>> optimizer = HyperOpt('cmaes', objective_fn=objective_fn, param_space=search_space, ... backend='optuna', ... num_iterations=num_iterations ) >>> optimizer.fit() Using random with optuna, we can also try hyperopt and sklearn as backend for random algorithm >>> optimizer = HyperOpt('random', objective_fn=objective_fn, param_space=search_space, ... backend='optuna', ... num_iterations=num_iterations ) >>> optimizer.fit() Using TPE of hyperopt >>> optimizer = HyperOpt('tpe', objective_fn=objective_fn, param_space=search_space, ... backend='hyperopt', ... num_iterations=num_iterations ) >>> optimizer.fit() Using grid with sklearn >>> optimizer = HyperOpt('grid', objective_fn=objective_fn, param_space=search_space, ... backend='sklearn', ... num_iterations=num_iterations ) >>> optimizer.fit() .. _hpo_tutorial: https://ai4water-examples.readthedocs.io/en/latest/auto_examples/index.html#hyperparameter-optimization .. _GridSearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html .. _RanddomSearchCV: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html .. _BayesSearchCV: https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html .. _bayesian: https://github.com/scikit-optimize/scikit-optimize/blob/9334d50a1ad5c9f7c013a1c1cb95313a54b83168/examples/bayesian-optimization.py#L109 """ def __init__( self, algorithm: str, *, param_space, objective_fn, eval_on_best: bool = False, backend: str = None, opt_path: str = None, process_results: bool = True, verbosity: int = 1, **kwargs ): """ Initializes the class Parameters ---------- algorithm : str must be one of ``random``, ``grid``, ``bayes``, ``bayes_rf``, and ``tpe``, defining which optimization algorithm to use. objective_fn : callable Any callable function whose returned value is to be minimized. It can also be either sklearn/xgboost based regressor/classifier. param_space : list, dict the search space of parameters to be optimized. We recommend the use of Real, Integer and categorical classes from [ai4water.hyperopt][ai4water.hyperopt.Integer] (not from skopt.space). These classes allow a uniform way of defining the parameter space for all the underlying libraries. However, to make this class work exactly similar to its underlying libraries, the user can also define parameter space as is defined in its underlying libraries. For example, for hyperopt based method like 'tpe' the parameter space can be specified as in the examples of hyperopt library. In case the code breaks, please report. eval_on_best : bool, optional if True, then after optimization, the objective_fn will be evaluated on best parameters and the results will be stored in the folder named "best" inside `title` folder. opt_path : path to save the results backend : str, optional Defines which backend library to use for the `algorithm`. For example the user can specify whether to use `optuna` or `hyper_opt` or `sklearn` for `grid` algorithm. verbosity : bool, optional determines amount of information being printed **kwargs : Any additional keyword arguments will for the underlying optimization algorithm. In case of using AI4Water model, these must be arguments which are passed to AI4Water's Model class. """ if algorithm not in ALGORITHMS: raise ValueError(f"""Invalid value of algorithm provided. Allowd values for algorithm" are {list(ALGORITHMS.keys())}. You provided {algorithm}""") self.objective_fn = objective_fn self.algorithm = algorithm self.backend = backend self.param_space = param_space self.original_space = param_space # todo self.space and self.param_space should be combined. self.title = self.algorithm self.results = OrderedDict() # internally stored results self.gpmin_results = None # self.data = None self.eval_on_best = eval_on_best self.opt_path = opt_path self._process_results = process_results self.objective_fn_is_dl = False self.verbosity = verbosity self.gpmin_args = self.check_args(**kwargs) if self.use_sklearn: if self.algorithm == "random": self.optfn = RandomizedSearchCV(estimator=objective_fn, param_distributions=param_space, **kwargs) else: self.optfn = GridSearchCV(estimator=objective_fn, param_grid=param_space, **kwargs) elif self.use_skopt_bayes: self.optfn = BayesSearchCV(estimator=objective_fn, search_spaces=param_space, **kwargs) @property def backend(self): return self._backend @backend.setter def backend(self, x): if x is not None: assert x in ['optuna', 'hyperopt', 'sklearn', 'skopt'], f""" Backend must be one of hyperopt, optuna or sklearn but is is {x}""" if self.algorithm == 'tpe': if x is None: x = 'optuna' assert x in ['optuna', 'hyperopt'] elif self.algorithm == 'cmaes': if x is None: x = 'optuna' assert x == 'optuna' elif self.algorithm == 'atpe': if x is None: x = 'hyperopt' assert x == 'hyperopt' elif self.algorithm == 'random': if x is None: x = 'sklearn' assert x in ['optuna', 'hyperopt', 'sklearn'] elif self.algorithm == 'grid': if x is None: x = 'sklearn' assert x in ['sklearn', 'optuna'] elif self.algorithm in ['bayes', "bayes_rf"]: if x is None: x = 'skopt' else: raise ValueError if x == 'hyperopt' and _hyperopt is None: raise ValueError(f"You must install `hyperopt` to use it as backend for {self.algorithm} algorithm.") if x == 'optuna' and optuna is None: raise ValueError(f"You must install optuna to use `optuna` as backend for {self.algorithm} algorithm") self._backend = x @property def title(self): return self._title @title.setter def title(self, x): self._title = x + '_' + str(dateandtime_now()) @property def objective_fn_is_dl(self): return self._objective_fn_is_dl @objective_fn_is_dl.setter def objective_fn_is_dl(self, x): self._objective_fn_is_dl = x def check_args(self, **kwargs): kwargs = copy.deepcopy(kwargs) if 'n_initial_points' in kwargs: if int(''.join(skopt.__version__.split('.')[1])) < 8: raise ValueError(f""" 'n_initial_points' argument is not available in skopt version < 0.8. However you are using skopt version {skopt.__version__} . See https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html#skopt.gp_minimize for more details. """"") if 'x0' in kwargs and self.algorithm in ['tpe', 'atpe', 'random', 'grid', 'cmaes']: kwargs.pop('x0') return kwargs def __getattr__(self, item): # TODO, not sure if this is the best way but venturing since it is done by the legend # here https://github.com/philipperemy/n-beats/blob/master/nbeats_keras/model.py#L166 # Since it was not possible to inherit this class from BaseSearchCV and BayesSearchCV at the same time, this # hack makes sure that all the functionalities of GridSearchCV, RandomizeSearchCV and BayesSearchCV are also # available with class. if self.use_sklearn or self.use_skopt_bayes: return getattr(self.optfn, item) else: raise AttributeError(f"HyperOpt does not have attribute {item}") @property def param_space(self): return self._param_space @param_space.setter def param_space(self, x): if self.algorithm in ["bayes", "bayes_rf"]: assert Dimension is not None, f"you must have scikit-optimize installed to use {self.algorithm}." if isinstance(x, dict): _param_space = [] for k, v in x.items(): assert isinstance(v, Dimension), f""" space for parameter {k} is of invalid type {v.__class__.__name__}. For {self.algorithm}, it must be of type {Dimension.__name__} """ _param_space.append(v) else: assert isinstance(x, list), f""" param space must be list of parameters but it is of type {x.__class__.__name__}""" for space in x: # each element in the list can be a tuple of lower and and upper bounds if not isinstance(space, tuple): assert isinstance(space, Dimension), f""" param space must be one of Integer, Real or Categorical but it is of type {space.__class__.__name__}""" _param_space = x elif self.algorithm in ["random", "grid"] and self.backend != 'optuna': # todo, do we also need to provide grid of sample space for random?? if isinstance(x, dict): _param_space = x elif isinstance(x, list): _param_space = {} for _space in x: assert isinstance(_space, Dimension) _param_space[_space.name] = _space.grid else: raise ValueError elif self.algorithm in ['tpe', 'atpe', 'random'] and self.backend == 'hyperopt': if isinstance(x, list): # space is provided as list. Either all of them must be hp.space or Dimension. if isinstance(x[0], Dimension): _param_space = {} for space in x: assert isinstance(space, Dimension) _param_space[space.name] = space.as_hp() elif isinstance(x[0], Apply): _param_space = [] for space in x: assert isinstance(space, Apply), f"""invalid space type {space.__class__.__name__}""" _param_space.append(space) else: raise NotImplementedError elif isinstance(x, Dimension): # for single hyper-parameter optimization ? _param_space = x.as_hp() else: _param_space = x elif self.backend == 'optuna': if isinstance(x, list): _param_space = {} for s in x: assert isinstance(s, Dimension) _param_space[s.name] = s elif isinstance(x, dict): assert all([isinstance(s, Dimension) for s in x.values()]) _param_space = x else: raise NotImplementedError(f"unknown type of space {x.__class__.__name__}") else: raise ValueError self._param_space = _param_space def skopt_space(self): """Tries to make skopt compatible Space object. If unsuccessful, return None""" return to_skopt_space(self.original_space) def space(self) -> dict: """Returns a skopt compatible space but as dictionary""" return to_skopt_as_dict(self.algorithm, self.backend, self.original_space) @property def use_sklearn(self): # will return True if we are to use sklearn's GridSearchCV or RandomSearchCV if self.algorithm in ["random", "grid"] and "sklearn" in str(type(self.objective_fn)): return True return False @property def use_skopt_bayes(self): # will return true if we have to use skopt based BayesSearchCV if self.algorithm in ["bayes", "bayes_rf"] and "sklearn" in str(type(self.objective_fn)): assert not self.use_sklearn return True return False @property def use_skopt_gpmin(self): # will return True if we have to use skopt based gp_minimize function. This is to implement Bayesian on # non-sklearn based models if self.algorithm in ["bayes", "bayes_rf"] and "sklearn" not in str(type(self.objective_fn)): assert not self.use_sklearn assert not self.use_skopt_bayes return True return False @property def use_tpe(self): if self.algorithm in ['tpe', 'atpe', 'random'] and self.backend == 'hyperopt': return True else: return False @property def use_own(self): # return True, we have to build our own optimization method. if not self.use_sklearn and not self.use_skopt_bayes and not self.use_skopt_gpmin: return True return False @property def random_state(self): if "random_state" not in self.gpmin_args: return np.random.RandomState(313) else: return np.random.RandomState(self.gpmin_args['random_state']) @property def num_iterations(self): if self.backend == 'sklearn' and self.algorithm == 'grid': self.gpmin_args['num_iterations'] = len(ParameterGrid(self.param_space)) if 'num_iterations' in self.gpmin_args: return self.gpmin_args['num_iterations'] if self.algorithm in ['tpe', 'atpe', 'random'] and self.backend == 'hyperopt': return self.gpmin_args.get('max_evals', 9223372036854775807) if self.backend == 'optuna': return self.gpmin_args.get('n_trials', None) # default value of n_trials is None in study.optimize() if 'n_calls' in self.gpmin_args: return self.gpmin_args['n_calls'] return self.gpmin_args['n_iter'] @property def use_named_args(self): argspec = inspect.getfullargspec(self.objective_fn) if argspec.varkw is None: return False elif isinstance(argspec.varkw, str): return True else: raise NotImplementedError @property def opt_path(self): return self._opt_path @opt_path.setter def opt_path(self, path): if path is None: path = os.path.join(os.getcwd(), f"results{SEP}" + self.title) if not os.path.exists(path): os.makedirs(path) elif not os.path.exists(path): os.makedirs(path) self._opt_path = path def best_paras(self, as_list=False) -> Union[list, dict]: # returns best parameters either as dictionary or as list if self.use_skopt_gpmin: xys = self.xy_of_iterations() paras = xys[self.best_iter()]['x'] elif self.backend == 'hyperopt': d = get_one_tpe_x_iter(self.trials.best_trial['misc']['vals'], self.hp_space()) if as_list: return list(d.values()) else: return d elif self.backend == 'optuna': if as_list: return list(self.study.best_trial.params.values()) return self.study.best_trial.params elif self.use_skopt_bayes or self.use_sklearn: # using BayesSerchCV paras = self.optfn.best_params_ else: paras = sort_x_iters(self.results[self.best_iter()]['x'], list(self.param_space.keys())) if as_list: return list(paras.values()) return paras def fit(self, *args, **kwargs): """Makes and calls the underlying fit method parameters ---------- **kwargs : any keyword arguments for the userdefined objective function Example ------- >>> def objective_fn(a=2, b=5, **suggestions)->float: ... # do something e.g calcualte validation score >>> val_score = 2.0 >>> return val_score """ if self.use_sklearn or self.use_skopt_bayes: fit_fn = self.optfn.fit elif self.use_skopt_gpmin: fit_fn = self.own_fit elif self.use_own: self.predict = self._predict if self.algorithm == "grid" and self.backend != 'optuna': fit_fn = self.grid_search elif self.algorithm == 'random' and self.backend not in ['optuna', 'hyperopt']: fit_fn = self.random_search elif self.backend == 'hyperopt': fit_fn = self.fmin elif self.backend == 'optuna': fit_fn = self.optuna_objective else: raise NotImplementedError else: raise NotImplementedError(f"""No fit function found for algorithm {self.algorithm} with backend {self.backend}""") res = fit_fn(*args, **kwargs) serialized = self.serialize() fname = os.path.join(self.opt_path, 'serialized.json') with open(fname, 'w') as fp: json.dump(serialized, fp, sort_keys=True, indent=4, cls=JsonEncoder) return res def original_para_order(self): if isinstance(self.param_space, dict): return list(self.param_space.keys()) elif self.skopt_space() is not None: names = [] for s in self.skopt_space(): names.append(s.name) return names else: raise NotImplementedError def dims(self): # this will be used for gp_minimize return list(self.param_space) def model_for_gpmin(self, **kws): """ This function can be called in two cases - The user has made its own objective_fn. - We make objective_fn using AI4Water and return the error. In first case, we just return what user has provided. """ if callable(self.objective_fn) and not self.use_named_args: # external function for bayesian but this function does not require named args. return self.objective_fn dims = self.dims() if self.use_named_args: # external function and this function accepts named args. @use_named_args(dimensions=dims) def fitness(**kwargs): return self.objective_fn(**kwargs, **kws) return fitness raise ValueError(f"used named args is {self.use_named_args}") def own_fit(self, **kws): """kws are the keyword arguments to user objective function by the user """ if self.algorithm == "bayes": minimize_func = gp_minimize else: # bayes_rf minimize_func = forest_minimize kwargs = self.gpmin_args if 'num_iterations' in kwargs: kwargs['n_calls'] = kwargs.pop('num_iterations') try: search_result = minimize_func( func=self.model_for_gpmin(**kws), dimensions=self.dims(), **kwargs) except ValueError as e: if int(''.join(sklearn.__version__.split('.')[1])) > 22: raise ValueError(f""" For bayesian optimization, If your sklearn version is above 0.23, then this error may be related to https://github.com/kiudee/bayes-skopt/issues/90 . Try to lower the sklearn version to 0.22 and run again. {e} """) else: raise ValueError(e) # the `space` in search_results may not be in same order as originally provided. space = search_result['space'] if space.__dict__.__len__() > 1: ordered_sapce = OrderedDict() for k in self.space().keys(): ordered_sapce[k] = [s for s in space if s.name == k][0] search_result['space'] = Space(ordered_sapce.values()) self.gpmin_results = search_result if len(self.results) < 1: fv = search_result.func_vals xiters = search_result.x_iters for idx, y, x in zip(range(len(fv)), fv, xiters): self.results[idx] = {'y': y, 'x': x} if self._process_results: post_process_skopt_results(search_result, self.results, self.opt_path, rename=True) if len(search_result.func_vals)<=100 and self.algorithm != "bayes_rf": save_skopt_results(search_result, self.opt_path) self.process_results() if self.eval_on_best: self.eval_with_best() return search_result def save_results(self, results, path:str = None): """ saves the hpo results so that they can be loaded using load_results method. parameters ---------- results : hpo results i.e. output of optimizer.fit() path : path where to save the results """ assert self.algorithm == "bayes" if path is None: path = self.opt_path save_skopt_results(results, path) return def eval_sequence(self, params, **kwargs): """" kwargs : any additional keyword arguments for objective_fn """ if self.verbosity > 0: print(f"total number of iterations: {len(params)}") for idx, para in enumerate(params): if self.use_named_args: # objective_fn is external but uses kwargs err = self.objective_fn(**para, **kwargs) else: # objective_fn is external and does not uses keywork arguments try: err = self.objective_fn(*list(para.values()), **kwargs) except TypeError: raise TypeError(f""" use_named_args argument is set to {self.use_named_args}. If your objective function takes key word arguments, make sure that this argument is set to True during initiatiation of HyperOpt.""") err = round(err, 8) self.results[idx] = {'y':err, 'x':sort_x_iters(para, self.original_para_order())} if self._process_results: clear_weights(self.opt_path, self.results, rename=True) self.process_results() if self.eval_on_best: self.eval_with_best() return self.results def grid_search(self, **kwargs): params = list(ParameterGrid(self.param_space)) self.param_grid = params return self.eval_sequence(params, **kwargs) def random_search(self, **kwargs): """ objective function that will used during random search method. parameters ---------- kwargs : keyword arguments in the user defined objective function. """ for k, v in self.param_space.items(): if v is None: grid = self.space()[k].grid assert grid is not None, f"""grid for parameter {k} could not be created. Inferred grid is {grid}. Please either provide the `num_samples` parameter while creating space or explicitly provide grid for {k}""" param_list = list(ParameterSampler(self.param_space, n_iter=self.num_iterations, random_state=self.random_state)) if len(param_list) < self.num_iterations: # we need to correct it so that num_iterations gets calculated correctly next time self.gpmin_args['n_calls'] = len(param_list) self.gpmin_args['n_iter'] = len(param_list) self.param_grid = param_list return self.eval_sequence(param_list, **kwargs) def optuna_objective(self, **kwargs): """ objective function that will used during random search method. parameters ---------- kwargs : keyword arguments in the user defined objective function. """ if self.verbosity == 0: optuna.logging.set_verbosity(optuna.logging.ERROR) sampler = { 'tpe': optuna.samplers.TPESampler, 'cmaes': optuna.samplers.CmaEsSampler, 'random': optuna.samplers.RandomSampler, 'grid': optuna.samplers.GridSampler } def objective(trial): suggestion = {} for space_name, _space in self.param_space.items(): suggestion[space_name] = _space.suggest(trial) return self.objective_fn(**suggestion, **kwargs) if self.algorithm in ['tpe', 'cmaes', 'random']: study = optuna.create_study(direction='minimize', sampler=sampler[self.algorithm]()) else: space = {s.name: s.grid for s in self.skopt_space()} study = optuna.create_study(sampler=sampler[self.algorithm](space)) study.optimize(objective, n_trials=self.num_iterations) setattr(self, 'study', study) if self._process_results: self.process_results() return study def fmin(self, **kwargs): suggest_options = { 'tpe': tpe.suggest, 'random': rand.suggest } if atpe is not None: suggest_options.update({'atpe': atpe.suggest}) trials = Trials() model_kws = self.gpmin_args if 'num_iterations' in model_kws: model_kws['max_evals'] = model_kws.pop('num_iterations') space = self.hp_space() if self.use_named_args: def objective_fn(kws): # the objective function in hyperopt library receives a dictionary return self.objective_fn(**kws) objective_f = objective_fn else: objective_f = self.objective_fn if len(self.space()) > 1: space = list(self.hp_space().values()) elif len(self.space()) == 1: space = list(self.hp_space().values())[0] else: raise NotImplementedError best = fmin_hyperopt(objective_f, space=space, algo=suggest_options[self.algorithm], trials=trials, **kwargs, **model_kws) with open(os.path.join(self.opt_path, 'trials.json'), "w") as fp: json.dump(jsonize(trials.trials), fp, sort_keys=True, indent=4, cls=JsonEncoder) setattr(self, 'trials', trials) # self.results = trials.results if self._process_results: self.process_results() return best def _predict(self, *args, **params): if self.use_named_args: return self.objective_fn(**params) if callable(self.objective_fn) and not self.use_named_args: return self.objective_fn(*args) def hp_space(self) -> dict: """returns a dictionary whose values are hyperopt equivalent space instances.""" return {k: v.as_hp(False if self.algorithm == 'atpe' else True) for k,v in self.space().items()} def xy_of_iterations(self) -> Dict[int,Dict[str, Union[str, dict]]]: """returns a dictionary whose keys are iteration numbers are values are xy parirs at those iterations. Returns Dict[int, Dict[str, [dict,float]]] """ if self.backend == "optuna": num_iters = range(self.num_iterations) results = {} for idx, trial in zip(num_iters, self.study.trials): results[idx] = {'y': trial.value, 'x': trial.params} return results elif self.backend == "hyperopt": return x_iter_for_tpe(self.trials, self.hp_space(), as_list=False) elif self.backend == 'skopt': if self.use_skopt_bayes: fv = self.optfn.cv_results_['mean_test_score'] xiters = self.optfn.cv_results_['params'] else: assert self.gpmin_results is not None, f"gpmin_results is not populated yet" fv = self.gpmin_results['func_vals'] xiters = self.gpmin_results['x_iters'] results = {} for idx, y, x in zip(range(len(fv)), fv, xiters): results[idx] = {'y': y, 'x': self.to_kw(x)} return results else: # for sklearn based return self.results def func_vals(self)->np.ndarray: """returns the value of objective function at each iteration.""" if self.backend == 'hyperopt': return np.array([self.trials.results[i]['loss'] for i in range(self.num_iterations)]) elif self.backend == 'optuna': return np.array([s.values for s in self.study.trials]) elif self.use_skopt_bayes or self.use_sklearn: return self.optfn.cv_results_['mean_test_score'] else: return np.array([v['y'] for v in self.results.values()]) def skopt_results(self): class OptimizeResult: x_iters = [list(s['x'].values()) for s in self.xy_of_iterations().values()] func_vals = self.func_vals() space = self.skopt_space() if isinstance(self.best_paras(), list): x = self.best_paras elif isinstance(self.best_paras(), dict): x = list(self.best_paras().values()) else: raise NotImplementedError return OptimizeResult() def best_iter(self)->int: """returns the iteration on which best/optimized parameters are obtained. The indexing starts from 0. """ return np.nanargmin(self.func_vals()).item() def best_xy(self) -> dict: """Returns best (optimized) parameters as dictionary. The dictionary has two keys ``x`` and ``y``. ``x`` is the best hyperparameters while `y` is the corresponding objective function value. """ d = self.xy_of_iterations() key = list(d.keys())[self.best_iter()] return d[key] def _plot_edf(self, save=True, show=False, **kwargs): """empirical CDF of objective function""" plt.close("all") y = np.array(list(self.xy_of_iterations().keys())).astype("float64") edf_plot(y, show=show, **kwargs) if save: plt.savefig(os.path.join(self.opt_path, "edf")) return def plot_parallel_coords(self, save=True, show=False, **kwargs): """ parallel coordinates of hyperparameters Parameters ----------- save : bool, default=True show : bool, default=False **kwargs : any keyword arguments for easy_mpl.parallel_coordinates """ d = self.xy_of_iterations() data = pd.DataFrame([list(v['x'].values()) for v in d.values()], columns=[s for s in self.space()]) categories = np.array(list(self.xy_of_iterations().keys())).astype("float64") _kws = dict(coord_title_kws=dict(rotation=10, fontsize=12)) if kwargs is not None: _kws.update(kwargs) parallel_coordinates( data=data, categories=categories, title="Hyperparameters", show=False, **_kws ) if save: fname = os.path.join(self.opt_path, "parallel_coordinates") plt.savefig(fname, dpi=500, bbox_inches="tight") if show: plt.show() return def _plot_evaluations(self, save=True): plt.close('all') plot_evaluations(self.skopt_results(), dimensions=self.best_paras(as_list=True)) if save: plt.savefig(os.path.join(self.opt_path, "evaluations.png"), dpi=300, bbox_inches='tight') return def _plot_convergence(self, original:bool=False, ax = None, save=True, show=False, **kwargs): plt.close('all') if original: ax = easy_mpl.plot(self.func_vals(), marker=".", markersize= 12, lw= 2, ax_kws=dict(xlabel="Number of calls $n$", ylabel=r"$\min f(x)$ after $n$ calls", grid=True), show=False, **kwargs) else: ax = plot_convergence(self.func_vals(), ax=ax, show=False, **kwargs) if save: fname = os.path.join(self.opt_path, "convergence.png") plt.savefig(fname, dpi=300, bbox_inches='tight') if show: plt.show() return ax def process_results(self, show=False): """post processing of results""" self.save_iterations_as_xy() self.plot_parallel_coords() # deep learning related results if self.objective_fn_is_dl: plot_convergences( self.opt_path, what='val_loss', ylabel='Validation MSE') plot_convergences( self.opt_path, what='loss', ylabel='MSE', leg_pos="upper right") self._plot_edf() # distributions/historgrams of explored hyperparameters self._plot_distributions(show=show) # convergence plot, #if sr.x_iters is not None and self.backend != "skopt": # todo self._plot_convergence(show=show) # plot of hyperparameter space as explored by the optimizer if self.backend != 'skopt' and len(self.space()) < 20 and skopt is not None: self._plot_evaluations() if len(self.best_paras(True))>1: plt.close('all') try: self.plot_importance() plt.close('all') self.plot_importance(plot_type="bar", show=show) except (RuntimeError, AttributeError): warnings.warn(f"Error encountered during fanova calculation") if self.backend == 'hyperopt': loss_histogram([y for y in self.trials.losses()], save=True, fname=os.path.join(self.opt_path, "loss_histogram.png") ) plot_hyperparameters( self.trials, fname=os.path.join(self.opt_path, "hyperparameters.png"), save=True) if plotly is not None: if self.backend == 'optuna': fig = plot_contour(self.study) plotly.offline.plot(fig, filename=os.path.join(self.opt_path, 'contours.html'), auto_open=False) return def plot_importance( self, save=True, show:bool=False, plot_type="box", with_optuna:bool = False, **tree_kws )->plt.Axes: """plots hyperparameter importance using fANOVA""" if with_optuna: return self._calc_importance_with_optuna(plot_type, save=save, show=show) X = pd.DataFrame([list(iter_xy['x'].values()) for iter_xy in self.xy_of_iterations().values()]) Y = np.array([iter_xy['y'] for iter_xy in self.xy_of_iterations().values()]) X.columns = list(self.xy_of_iterations()[0]['x'].keys()) dtypes = [space.__class__.__name__ for space in self.skopt_space()] bounds = [(space.low, space.high) if isinstance(space, (Real, Integer)) else None for space in self.skopt_space()] kws = {'X': X, 'Y': Y, 'dtypes': dtypes, 'bounds': bounds} kws.update(tree_kws) if plot_type == "bar": try: importance = fANOVA(**kws).feature_importance() except (AttributeError, RuntimeError): raise ValueError(f"Error encountered during fANOVA, try setting `with_optuna` to True") ax = self._plot_importance_as_barchart(importance, save=save) else: try: mean, std = fANOVA(**kws).feature_importance(return_raw=True) except (AttributeError, RuntimeError): raise ValueError(f"Error encountered during fANOVA, try setting `with_optuna` to True") ax = self._plot_importance_as_boxplot(mean, std, save) if show: plt.show() return ax def _plot_importance_as_boxplot(self, mean, std, save:bool=False): df = pd.DataFrame([mean, std]) plt.close('all') ax = df.boxplot(rot=70, return_type="axes") ax.set_ylabel("Relative Importance") if save: plt.savefig(os.path.join( self.opt_path, "fanova_importance_hist.png"), dpi=300, bbox_inches='tight') fname = "fanova_importances_raw.json" with open(os.path.join(self.opt_path, fname), 'w') as fp: json.dump(jsonize(df.to_dict()), fp, indent=4, sort_keys=True) return ax def _plot_importance_as_barchart(self, importance, save=False): df = pd.DataFrame.from_dict(importance, orient='index') ax = bar_chart(df, orient='h', show=False, ax_kws={'title': "fANOVA hyperparameter importance", 'xlabel': "Relative Importance"}) fname = "fanova_importances.json" if save: plt.savefig(os.path.join(self.opt_path, 'fanova_importance_bar.png'), bbox_inches="tight", dpi=300) with open(os.path.join(self.opt_path, fname), 'w') as fp: json.dump(jsonize(df.to_dict()), fp, indent=4, sort_keys=True) return ax def _calc_importance_with_optuna(self, plot_type="bar", save=False, show=True): # todo, it is plotting both bar_chart and boxplot on same axes from ._optuna_fanova import plot_param_importances importances, importance_paras, ax = plot_param_importances(self.optuna_study()) if plot_type == "bar": if save: plt.savefig(os.path.join(self.opt_path, 'fanova_importance_bar.png'), bbox_inches="tight", dpi=300) else: plt.close('all') # because bar chart has already been drawn df = pd.DataFrame.from_dict(importance_paras) ax = df.boxplot(rot=70, return_type="axes") ax.set_ylabel("Relative Importance") if save: plt.savefig(os.path.join( self.opt_path, "fanova_importance_hist.png"), dpi=300, bbox_inches='tight') with open(os.path.join(self.opt_path, "importances.json"), 'w') as fp: json.dump(importances, fp, indent=4, sort_keys=True, cls=JsonEncoder) with open(os.path.join(self.opt_path, "fanova_importances.json"), 'w') as fp: json.dump(importance_paras, fp, indent=4, sort_keys=True, cls=JsonEncoder) if show: plt.show() return ax def optuna_study(self): """ Attempts to create an optuna Study instance so that optuna based plots can be generated. Returns None, if not possible else Study """ from optuna.study import Study from optuna.trial import TrialState if self.backend == 'optuna': return self.study class _Trial: state = TrialState.COMPLETE def __init__(self, number:int, values:Union[list, int, float], params:dict, distributions:dict): values = jsonize(values) self._number = number self._values = values if isinstance(values, list): assert len(values) == 1 self.value = values[0] elif isinstance(values, float) or isinstance(values, int): self.value = values else: try: # try to convert it to float if possible self.value = float(values) except Exception as e: raise NotImplementedError(f""" values must be convertible to list but it is {values} of type {values.__class__.__name__} Actual error message was {e}""") self.params = params self._distributions = distributions self.distributions = distributions XY_OF_ITERATIONS = self.xy_of_iterations() SPACE = self.space() BEST_PARAS = self.best_paras() class _Study(Study): trials = [] idx = 0 distributions = {sn: s.to_optuna() for sn, s in SPACE.items()} for xy in XY_OF_ITERATIONS.values(): _x, _y = xy['x'], xy['y'] assert isinstance(_x, dict), f""" params must of type dict but provided params are of type {_x.__class__.__name__}""" trials.append(_Trial(number=idx, values=_y, params=_x, distributions=distributions )) idx += 1 best_params = BEST_PARAS best_trial = None best_value = None _study_id = 0 _distributions = distributions def __init__(self): pass def _is_multi_objective(self): return False study = _Study() setattr(self, 'study', study) return study def _plot_distributions(self, save=True, show=True, figsize=None)->plt.Figure: """plot distributions of explored hyperparameters""" # name of hyperparameters h_paras = list(self.best_xy()['x'].keys()) # container with a list for each hyperparameter h_para_lists = {k: [] for k in h_paras} for xy in self.xy_of_iterations().values(): #score = xy['y'] x_iter = xy['x'] for para, val in x_iter.items(): h_para_lists[para].append(val) figsize = figsize or (6+len(h_paras), 6+len(h_paras)) fig, axes = create_subplots(naxes=len(h_paras), figsize=figsize) if not isinstance(axes, np.ndarray): axes = np.array([axes]) for ax, col in zip(axes.flat, h_paras): labels, bins = np.unique(np.array(h_para_lists[col]), return_counts=True) if isinstance(self.space()[col], Real): labels = [round(label, 3) for label in labels] bar_chart(bins, labels, orient="v", ax=ax, rotation=90, label=col, show=False) ax.set_ylabel("Number of iterations") ax.legend() if save: fname = os.path.join(self.opt_path, "distributions.png") plt.savefig(fname, bbox_inches="tight") if show: plt.show() return fig def to_kw(self, x): names = [] if isinstance(self.space(), dict): for key in self.space().keys(): names.append(key) else: raise NotImplementedError xkv = {} if names is not None: for name, val in zip(names, x): xkv[name] = val else: xkv = x return xkv def eval_with_best(self): """ Find the best parameters and evaluate the objective_fn with them. Arguments: return_model bool: If True, then then the built objective_fn will be returned """ if self.use_named_args: x = self.best_paras() else: x = self.best_paras(True) if self.use_named_args: return self.objective_fn(**x) if callable(self.objective_fn) and not self.use_named_args: if isinstance(x, list) and self.backend == 'hyperopt': # when x = [x] if len(x) == 1: x = x[0] return self.objective_fn(x) raise NotImplementedError @classmethod def from_gp_parameters(cls, fpath: str, objective_fn): """loads results saved from bayesian optimization""" opt_path = os.path.dirname(fpath) with open(fpath, 'r') as fp: gpmin_results = json.load(fp) space = gpmin_results['space'] spaces = [] for sp_name, sp_paras in space.items(): if sp_paras['type'] == 'Categorical': spaces.append(Categorical(sp_paras['categories'], name=sp_name)) elif sp_paras['type'] == 'Integer': spaces.append(Integer(low=sp_paras['low'], high=sp_paras['high'], name=sp_name, prior=sp_paras['prior'])) elif sp_paras['type'] == 'Real': spaces.append(Real(low=sp_paras['low'], high=sp_paras['high'], name=sp_name, prior=sp_paras['prior'])) else: raise NotImplementedError optimizer = cls('bayes', param_space=spaces, objective_fn=objective_fn, opt_path=opt_path, backend='skopt') optimizer.gpmin_results = gpmin_results return optimizer def pre_calculated_results(self, resutls, from_gp_parameters=True): """Loads the pre-calculated results i.e. x and y values which have been already evaluated.""" with open(resutls, 'r') as fp: results = json.load(fp) return def serialize(self): return {'fun': '', 'x': '', "best_paras": jsonize(self.best_paras()), 'space': {k: v.serialize() for k, v in self.space().items()}, 'fun_vals': self.func_vals(), # 'iters': self.xy_of_iterations(), # todo, for BayesSearchCVs, not getting ys 'algorithm': self.algorithm, 'backend': self.backend, 'opt_path': self.opt_path } def save_iterations_as_xy(self): iterations = self.xy_of_iterations() jsonized_iterations = jsonize(iterations) fname = os.path.join(self.opt_path, "iterations.json") with open(fname, "w") as fp: json.dump(jsonized_iterations, fp, sort_keys=False, indent=4, cls=JsonEncoder) fname = os.path.join(self.opt_path, "iterations_sorted.json") with open(fname, "w") as fp: json.dump(dict(sorted(jsonized_iterations.items())), fp, sort_keys=True, indent=4, cls=JsonEncoder) def add_previous_results( self, iterations: Union[dict, str] = None, x: list = None, y :list = None ): """adds results from previous iterations. If you have run the optimization priviously, you can make use of those results by appending them. Arguments: iterations: It can be either a dictionary whose keys are y values and values are x or it can be a path to a file which contains these xy values as dictioary. x: a list of lists where each sub-list is the value of hyperparameter at at one iteratio. The `x` and `y` arguments optional and will only be used if `iterations` are not provided. y: a list of float values where each value in y is the output of objective_fn with corresponding x. The length of `x` and `y` must be equal. """ assert self.algorithm in ["bayes", "bayes_rf"] if iterations is None: assert isinstance(x, list) and isinstance(y, list) assert len(x) == len(y), f"x has {len(x)} values while y has {len(y)} values. They must be equal" x0 = x y0 = y elif isinstance(iterations, str): assert os.path.exists(iterations), f"the path {iterations} does not exist" # it is a path with open(iterations, 'r') as fp: iter_dict = json.load(fp) x0, y0 = self.dict_to_xy(iter_dict) else: if not isinstance(iterations, dict): raise ValueError(f"iterations must be a dictionary but it is of type {iterations.__class__.__name__}") x0, y0 = self.dict_to_xy(iterations) # todo check for inf and nan in y0 self.gpmin_args['x0'] = x0 self.gpmin_args['y0'] = y0 return @staticmethod def dict_to_xy(iterations:dict): x0, y0 = [], [] for y, x in iterations.items(): y0.append(float(y)) x0.append(list(x.values())) return x0, y0 def load_results(self, fname:str): """loads the previously computed results. It should not be used after .fit() parameters ---------- fname : str complete path of hpo_results.bin file e.g. path/to/hpo_results.bin """ from joblib import load # some modules may not be dependent upon joblib assert len(self.results) == 0, f""" Loading results after call to .fit is not allowed. Create a new instance of HyperOpt and then call this function. """ if not os.path.exists(fname): raise FileNotFoundError(f" File {fname} does not exist") new_results = load(fname) self.gpmin_results = new_results fv = new_results.func_vals xiters = new_results.x_iters for idx, y, x in zip(range(len(fv)), fv, xiters): self.results[idx] = {'y': y, 'x': x} return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/hyperopt/_main.py
_main.py
from typing import Union from ai4water.utils.utils import jsonize from ai4water.backend import np, skopt, optuna from ai4water.backend import hp if optuna is not None: CategoricalDistribution = optuna.distributions.CategoricalDistribution UniformDistribution = optuna.distributions.UniformDistribution IntLogUniformDistribution = optuna.distributions.IntLogUniformDistribution IntUniformDistribution = optuna.distributions.IntUniformDistribution LogUniformDistribution = optuna.distributions.LogUniformDistribution else: CategoricalDistribution = None UniformDistribution = None IntLogUniformDistribution = None IntUniformDistribution = None LogUniformDistribution = None # helper class to be able to print [1, ..., 4] instead of [1, '...', 4] class _Ellipsis: def __repr__(self): return '...' if skopt is None: class Dimension(object): @property def name(self): return self._name @name.setter def name(self, value): if isinstance(value, str) or value is None: self._name = value else: raise ValueError("Dimension's name must be either string or None.") else: from skopt.space import Dimension if skopt is None: class _Real(Dimension): def __init__(self, low, high, prior="uniform", base=10, transform=None, name=None, dtype=float): if high <= low: raise ValueError("the lower bound {} has to be less than the" " upper bound {}".format(low, high)) if prior not in ["uniform", "log-uniform"]: raise ValueError("prior should be 'uniform' or 'log-uniform'" " got {}".format(prior)) self.low = low self.high = high self.prior = prior self.base = base self.log_base = np.log10(base) self.name = name self.dtype = dtype self._rvs = None self.transformer = None self.transform_ = transform class _Integer(Dimension): def __init__(self, low, high, prior="uniform", base=10, transform=None, name=None, dtype=np.int64): if high <= low: raise ValueError("the lower bound {} has to be less than the" " upper bound {}".format(low, high)) if prior not in ["uniform", "log-uniform"]: raise ValueError("prior should be 'uniform' or 'log-uniform'" " got {}".format(prior)) self.low = low self.high = high self.prior = prior self.base = base self.log_base = np.log10(base) self.name = name self.dtype = dtype self.transform_ = transform class _Categorical(Dimension): def __init__(self, categories, prior=None, transform=None, name=None): self.categories = tuple(categories) self.name = name self.prior = prior if prior is None: self.prior_ = np.tile(1. / len(self.categories), len(self.categories)) else: self.prior_ = prior else: _Real = skopt.space.Real _Integer = skopt.space.Integer _Categorical = skopt.space.Categorical class Real(_Real): """ This class is used for the parameters which have fractional values such as real values from 1.0 to 3.5. This class extends the `Real` class of Skopt so that it has an attribute grid which then can be fed to optimization algorithm to create grid space. It also adds several further methods to it. Attributes ------------ grid Methods ---------- - as_hp - to_optuna - suggest - to_optuna - serialize Example ------- >>> from ai4water.hyperopt import Real >>> lr = Real(low=0.0005, high=0.01, prior='log-uniform', name='lr') """ counter = 0 def __init__(self, low: float = None, high: float = None, num_samples: int = None, step: int = None, grid: Union[list, np.ndarray] = None, *args, **kwargs ): """ Arguments: low : lower limit of parameter high : upper limit of parameter step : used to define `grid` in conjuction with `low` and `high` This argument is only used when grid search algorithm is used. grid : array like, if given, `low`, `high`, `step` and `num_samples` will be redundant. num_samples : if given, it will be used to create grid space using the formula ``np.linspace(low, high, num_samples)`` """ if low is None: assert grid is not None assert hasattr(grid, '__len__') low = np.min(grid) high = np.max(grid) self.counter += 1 if 'name' not in kwargs: kwargs['name'] = f'real_{self.counter}' if skopt is not None: kwargs = check_prior(kwargs) self.num_samples = num_samples self.step = step super().__init__(low=low, high=high, *args, **kwargs) self.grid = grid @property def grid(self): return self._grid @grid.setter def grid(self, x): if x is None: if self.num_samples: self._grid = np.linspace(self.low, self.high, self.num_samples) elif self.step: self._grid = np.arange(self.low, self.high, self.step) else: self._grid = None else: self._grid = np.array(x) def as_hp(self, as_named_args=True): if self.prior == 'log-uniform': return hp.loguniform(self.name, low=self.low, high=self.high) else: assert self.prior in ['uniform', 'loguniform', 'normal', 'lognormal', 'quniform', 'qloguniform', 'qnormal', 'qlognormal'] if as_named_args: return getattr(hp, self.prior)(label=self.name, low=self.low, high=self.high) else: return getattr(hp, self.prior)(self.name, self.low, self.high) def suggest(self, _trial): # creates optuna trial log = False if self.prior: if self.prior == 'log': log = True return _trial.suggest_float(name=self.name, low=self.low, high=self.high, step=self.step, # default step is None log=log) def to_optuna(self): """returns an equivalent optuna space""" if self.prior != 'log': return UniformDistribution(low=self.low, high=self.high) else: return LogUniformDistribution(low=self.low, high=self.high) def serialize(self): """Serializes the `Real` object so that it can be saved in json""" _raum = {k: jsonize(v) for k, v in self.__dict__.items() if not callable(v)} _raum.update({'type': 'Real'}) return _raum def __repr__(self): return f"Real(low={self.low}, high={self.high}," \ f" prior='{self.prior}', transform='{self.transform_}' name='{self.name}')" class Integer(_Integer): """ This class is used when the parameter is integer such as integer values from 1 to 10. Extends the Real class of Skopt so that it has an attribute grid which then can be fed to optimization algorithm to create grid space. Moreover it also generates optuna and hyperopt compatible/equivalent instances. Attributes ------------ grid Methods ---------- - as_hp - to_optuna - suggest - to_optuna - serialize Example: >>> from ai4water.hyperopt import Integer >>> units = Integer(low=16, high=128, name='units') """ counter = 0 def __init__(self, low: int = None, high: int = None, num_samples: int = None, step: int = None, grid: "np.ndarray, list" = None, *args, **kwargs ): """ Arguments: low : lower limit of parameter high : upper limit of parameter grid list/array: If given, `low` and `high` should not be given as they will be calculated from this grid. step int: if given , it will be used to calculated grid using the formula np.arange(low, high, step) num_samples int: if given, it will be used to create grid space using the formula np.linspace(low, high, num_samples) """ if low is None: assert grid is not None assert hasattr(grid, '__len__') low = np.min(grid) high = np.max(grid) self.counter += 1 if 'name' not in kwargs: kwargs['name'] = f'integer_{self.counter}' self.num_samples = num_samples self.step = step if skopt is not None: kwargs = check_prior(kwargs) super().__init__(low=low, high=high, *args, **kwargs) self.grid = grid @property def grid(self): return self._grid @grid.setter def grid(self, x): if x is None: if self.num_samples: __grid = np.linspace(self.low, self.high, self.num_samples, dtype=np.int32) self._grid = [int(val) for val in __grid] elif self.step: __grid = np.arange(self.low, self.high, self.step, dtype=np.int32) self._grid = [int(val) for val in __grid] else: self._grid = None else: assert hasattr(x, '__len__'), f"unacceptable type of grid {x.__class__.__name__}" self._grid = np.array(x) def as_hp(self, as_named_args=True): if as_named_args: return hp.randint(self.name, low=self.low, high=self.high) else: return hp.randint(self.name, self.low, self.high) def suggest(self, _trial): # creates optuna trial log = False if self.prior: if self.prior == 'log': log = True return _trial.suggest_int(name=self.name, low=self.low, high=self.high, step=self.step if self.step else 1, # default step is 1 log=log) def to_optuna(self): """returns an equivalent optuna space""" if self.prior != 'log': return IntUniformDistribution(low=self.low, high=self.high) else: return IntLogUniformDistribution(low=self.low, high=self.high) def serialize(self): """Serializes the `Integer` object so that it can be saved in json""" _raum = {k: jsonize(v) for k, v in self.__dict__.items() if not callable(v)} _raum.update({'type': 'Integer'}) return _raum def __repr__(self): return f"Integer(low={self.low}, high={self.high}," \ f" prior='{self.prior}', transform='{self.transform_}' name='{self.name}')" class Categorical(_Categorical): """ This class is used when parameter has distinct group/class of values such as [1,2,3] or ['a', 'b', 'c']. This class overrides skopt's `Categorical` class. It Can be converted to optuna's distribution or hyper_opt's choice. It uses same input arguments as received by skopt's `Categorical`_ class Methods ---------- - as_hp - to_optuna - suggest - to_optuna - serialize Example ------- >>> from ai4water.hyperopt import Categorical >>> activations = Categorical(categories=['relu', 'tanh', 'sigmoid'], name='activations') .. _Categorical: https://scikit-optimize.github.io/stable/modules/generated/skopt.space.space.Categorical.html """ @property def grid(self): return self.categories def as_hp(self, as_named_args=True): categories = self.categories if isinstance(categories, tuple): categories = list(self.categories) return hp.choice(self.name, categories) def suggest(self, _trial): # creates optuna trial return _trial.suggest_categorical(name=self.name, choices=self.categories) def to_optuna(self): return CategoricalDistribution(choices=self.categories) def serialize(self): """Serializes the `Categorical object` so that it can be saved in json""" _raum = {k: jsonize(v) for k, v in self.__dict__.items() if not callable(v)} _raum.update({'type': 'Integer'}) return _raum def __repr__(self): if len(self.categories) > 7: cats = self.categories[:3] + (_Ellipsis(),) + self.categories[-3:] else: cats = self.categories if self.prior is not None and len(self.prior) > 7: prior = self.prior[:3] + [_Ellipsis()] + self.prior[-3:] else: prior = self.prior return f"Categorical(categories={cats}, prior={prior} name='{self.name}')" def check_prior(kwargs: dict): prior = kwargs.get('prior', 'uniform') if prior in ["log"] and skopt.__version__ in ["0.9.0"]: # todo see why this will give error kwargs['prior'] = "log-uniform" return kwargs
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/hyperopt/_space.py
_space.py
import json from itertools import islice from collections import OrderedDict try: from skopt.plots import plot_evaluations, plot_objective except (ModuleNotFoundError, ImportError): plot_evaluations, plot_objective = None, None from ai4water.utils.utils import jsonize, clear_weights from ai4water.backend import os, np, pd, mpl, plt, skopt, easy_mpl from ai4water.backend import hyperopt as _hyperopt from ._space import Categorical, Real, Integer, Dimension if skopt is None: pass else: Space = skopt.space.space.Space dump = skopt.utils.dump if _hyperopt is not None: space_eval = _hyperopt.space_eval hp = _hyperopt.hp miscs_to_idxs_vals = _hyperopt.base.miscs_to_idxs_vals else: space_eval, hp = None, None miscs_to_idxs_vals = None plot = easy_mpl.plot def is_choice(space): """checks if an hp.space is hp.choice or not""" if hasattr(space, 'name') and 'switch' in space.name: return True return False def x_iter_for_tpe(trials, param_space: dict, as_list=True): assert isinstance(param_space, dict) x_iters = [] # todo, remove x_iters, it is just values of iterations iterations = {} for idx, t in enumerate(trials.trials): vals = t['misc']['vals'] y = t['result']['loss'] x = get_one_tpe_x_iter(vals, param_space) iterations[idx] = {'x': x, 'y': y} x_iters.append(x) if as_list: return [list(d.values()) for d in x_iters] return iterations def get_one_tpe_x_iter(tpe_vals, param_space: dict, sort=True): x_iter = {} for para, para_val in tpe_vals.items(): if is_choice(param_space[para]): hp_assign = {para: para_val[0]} cval = space_eval(param_space[para], hp_assign) x_iter[para] = cval else: x_iter[para] = para_val[0] if sort: x_iter = sort_x_iters(x_iter, list(param_space.keys())) return x_iter def sort_x_iters(x_iter: dict, original_order: list): # the values in x_iter may not be sorted as the parameters provided in original order new_x_iter = {} for s in original_order: new_x_iter[s] = x_iter[s] return new_x_iter def skopt_space_from_hp_spaces(hp_space: dict) -> list: """given a dictionary of hp spaces where keys are names, this function converts it into skopt space.""" new_spaces = [] for k, s in hp_space.items(): new_spaces.append(skopt_space_from_hp_space(s, k)) return new_spaces def skopt_space_from_hp_space(hp_space, prior_name=None): """Converts on hp space into a corresponding skopt space.""" if is_choice(hp_space): skopt_space = to_categorical(hp_space, prior_name=prior_name) elif any([i in hp_space.__str__() for i in ['loguniform', 'quniform', 'qloguniform', 'uniform']]): skopt_space = to_real(hp_space, prior_name=prior_name) elif 'randint' in hp_space.__str__(): skopt_space = to_int(hp_space, prior_name=prior_name) elif hasattr(hp_space, 'dist') and hp_space.dist.name in ['uniform', 'loguniform', 'quniform', 'qloguniform']: skopt_space = to_real(hp_space, prior_name=prior_name) else: raise NotImplementedError return skopt_space def to_categorical(hp_space, prior_name=None): """converts an hp space into a Dimension object.""" cats = [] inferred_name = None for arg in hp_space.pos_args: if hasattr(arg, '_obj') and arg.pure: cats.append(arg._obj) elif arg.name == 'hyperopt_param' and len(arg.pos_args)>0: for a in arg.pos_args: if a.name == 'literal' and a.pure: inferred_name = a._obj prior_name = verify_name(prior_name, inferred_name) if len(cats) == 0: raise NotImplementedError return Categorical(categories=cats, name=prior_name) def verify_name(prior_name, inferred_name): """Verfies that the given/prior name matches with the inferred name. """ if prior_name is None: prior_name = inferred_name else: assert prior_name == inferred_name, f"""given name {prior_name} does not mach with inferred name {inferred_name}""" return prior_name def to_int(_space, prior_name=None): """converts an hp.randint into a Dimension object""" inferred_name = None limits = None for arg in _space.pos_args: if arg.name == 'literal' and len(arg.named_args) == 0: inferred_name = arg._obj elif len(arg.named_args) == 2 and arg.name == 'randint': limits = {} for a in arg.named_args: limits[a[0]] = a[1]._obj elif len(arg.pos_args) == 2 and arg.name == 'randint': # high and low are not named args _limits = [] for a in arg.pos_args: _limits.append(a._obj) limits = {'high': np.max(_limits), 'low': np.min(_limits)} else: raise NotImplementedError prior_name = verify_name(prior_name, inferred_name) if limits is None: raise NotImplementedError return Integer(low=limits['low'], high=limits['high'], name=prior_name) def to_real(hp_space, prior_name=None): """converts an an hp space to real. """ inferred_name = None limits = None prior = None allowed_names = ['uniform', 'loguniform', 'quniform', 'loguniform', 'qloguniform'] for arg in hp_space.pos_args: if len(arg.pos_args) > 0: for a in arg.pos_args: if a.name == 'literal' and len(arg.named_args) == 0: inferred_name = a._obj elif a.name in allowed_names and len(a.named_args) == 2: prior = a.name limits = {} for _a in a.named_args: limits[_a[0]] = _a[1]._obj elif a.name in allowed_names and len(a.pos_args) == 2: prior = a.name _limits = [] for _a in a.pos_args: _limits.append(_a._obj) limits = {'high': np.max(_limits), 'low': np.min(_limits)} prior_name = verify_name(prior_name, inferred_name) # prior must be inferred because hp spaces always have prior if limits is None or prior is None or 'high' not in limits: raise NotImplementedError return Real(low=limits['low'], high=limits['high'], prior=prior, name=prior_name) def loss_histogram(losses, # array like xlabel='objective_fn', ylabel='Frequency', save=True, fname="histogram.png"): plt.hist(losses) plt.xlabel(xlabel) plt.ylabel(ylabel) if save: plt.savefig(fname, dpi=300, bbox_inches='tight') else: plt.show() def plot_hyperparameters( trials, save=True, fontsize=10, colorize_best=None, columns=5, arrange_by_loss=False, fname='parameters_selection_plot.png' ): """Copying from hyperopt because original hyperopt does not allow saving the plot.""" idxs, vals = miscs_to_idxs_vals(trials.miscs) losses = trials.losses() finite_losses = [y for y in losses if y not in (None, float("inf"))] asrt = np.argsort(finite_losses) if colorize_best is not None: colorize_thresh = finite_losses[asrt[colorize_best + 1]] else: # -- set to lower than best (disabled) colorize_thresh = finite_losses[asrt[0]] - 1 loss_min = min(finite_losses) loss_max = max(finite_losses) print("finite loss range", loss_min, loss_max, colorize_thresh) loss_by_tid = dict(zip(trials.tids, losses)) def color_fn_bw(lossval): if lossval in (None, float("inf")): return 1, 1, 1 else: t = (lossval - loss_min) / (loss_max - loss_min + 0.0001) if lossval < colorize_thresh: return 0.0, 1.0 - t, 0.0 # -- red best black worst else: return t, t, t # -- white=worst, black=best all_labels = list(idxs.keys()) titles = all_labels order = np.argsort(titles) C = min(columns, len(all_labels)) R = int(np.ceil(len(all_labels) / float(C))) for plotnum, varnum in enumerate(order): label = all_labels[varnum] plt.subplot(R, C, plotnum + 1) # hide x ticks ticks_num, _ = plt.xticks() plt.xticks(ticks_num, [""] * len(ticks_num)) dist_name = label if arrange_by_loss: x = [loss_by_tid[ii] for ii in idxs[label]] else: x = idxs[label] if "log" in dist_name: y = np.log(vals[label]) else: y = vals[label] plt.title(titles[varnum], fontsize=fontsize) c = list(map(color_fn_bw, [loss_by_tid[ii] for ii in idxs[label]])) if len(y): plt.scatter(x, y, c=c) if "log" in dist_name: nums, _ = plt.yticks() plt.yticks(nums, ["%.2e" % np.exp(t) for t in nums]) if save: plt.savefig(fname, dpi=300, bbox_inches='tight') else: plt.show() def post_process_skopt_results(skopt_results, results, opt_path, rename=True): skopt_plots(skopt_results, pref=opt_path) clear_weights(results=results, opt_dir=opt_path, rename=rename) return def save_skopt_results(skopt_results, opt_path): fname = os.path.join(opt_path, 'gp_parameters') sr_res = SerializeSKOptResults(skopt_results) try: with open(fname + '.json', 'w') as fp: json.dump(sr_res.serialized_results, fp, sort_keys=True, indent=4) except TypeError: with open(fname + '.json', 'w') as fp: json.dump(str(sr_res.serialized_results), fp, sort_keys=True, indent=4) dump(skopt_results, os.path.join(opt_path, 'hpo_results.bin'), store_objective=False) return def _plot_objective(search_results, pref="", threshold=20): if len(search_results.x) < threshold: if search_results.space.n_dims == 1: pass else: plt.close('all') _ = plot_objective(search_results) plt.savefig(os.path.join(pref, 'objective'), dpi=400, bbox_inches='tight') return def skopt_plots(search_result, pref=os.getcwd(), threshold=20): if len(search_result.x) < threshold: # it takes forever if parameters are > 20 plt.close('all') _ = plot_evaluations(search_result) plt.savefig(os.path.join(pref, 'evaluations'), dpi=400, bbox_inches='tight') _plot_objective(search_result, pref=pref, threshold=threshold) convergence(search_result.func_vals) plt.savefig(os.path.join(pref, 'convergence'), dpi=300, bbox_inches='tight') convergence(search_result.func_vals, show_original=True) plt.savefig(os.path.join(pref, 'convergence_original'), dpi=300, bbox_inches='tight') return def convergence(func_vals, color=None, show_original=False): _, ax = plt.subplots() ax.grid() n_calls = len(func_vals) mins = [np.min(func_vals[:i]) for i in range(1, n_calls + 1)] if show_original: data = func_vals else: data = mins return plot(data, color=color, marker=".", markersize=12, lw=2, ax_kws=dict(title="Convergence plot", xlabel="Number of calls $n$", ylabel=r"$\min f(x)$ after $n$ calls"), show=False, ax=ax) class SerializeSKOptResults(object): """ This class has two functions - converts everything in skopt results into python native types so that these results can be saved in readable json files. - Store as much attributes in in serialized form that a skopt `search_result` object can be generated from it which then can be used to regenerate all hyper-parameter optimization related plots. skopt_results is a dictionary which contains following keys x: list, list of parameters being optimized fun: float, final value of objective function func_vals: numpy array, of length equal to number of iterations x_iters: list of lists, outer list is equal to number of iterations and each inner list is equal number of parameters being optimized models: list of models, where a model has following attributes - noise: str - kernel: skopt.learning.gaussian_process.kernels.Sum, it has following 2 attributes - k1: skopt.learning.gaussian_process.kernels.Product, it has following attributes -k1: skopt.learning.gaussian_process.kernels.ConstantKernel - constant_value: flaot - constant_value_bounds: tuple of floats -k2: skopt.learning.gaussian_process.kernels.Matern - length_scale: numpy ndarray - length_scale_bounds: list of floats - nu: float - k2: skopt.learning.gaussian_process.kernels.WhiteKernel - noise_level: float - noise_level_bounds: tuple of floats - alpha: float - optimizer: str - n_restarts_optimizer: int - normalize_y: bool - copy_X_train: bool - random_state: int - kernel_: skopt.learning.gaussian_process.kernels.Sum - _rng: numpy.random.mtrand.RandomState - n_features_in_: int - _y_train_mean: np.float64 - _y_train_std: np.float64 - X_train_: numpy array - y_train_: numpy array - log_marginal_likelihood_value_: numpy array - L_: numpy array - _K_inv: NoneType - alpha_: numpy array - noise_: np.float64 - K_inv_: numpy array - y_train_std_: np.float64 - y_train_mean_: np.float64 space: skopt.space.space.Space, parameter spaces random_state: numpy.random.mtrand.RandomState specs: dict, specs of each iteration. It has following keys - args: dict, which has following keys - func: function - dimensions: skopt.space.space.Space - base_estimator: skopt.learning.gaussian_process.gpr.GaussianProcessRegressor, which has following attributes - noise: str - kernel: skopt.learning.gaussian_process.kernels.Product - k1: skopt.learning.gaussian_process.kernels.ConstantKernel, which has following attributes - constant_value: flaot - constant_value_bounds: tuple of floats - k2: skopt.learning.gaussian_process.kernels.Matern, which has following attributes - length_scale: numpy ndarray - length_scale_bounds: list of floats - nu: float - alpha: float - optimizer: str - n_restarts_optimizer: int - normalize_y: bool - copy_X_train: bool - random_state: int - n_cals: int - n_random_starts: NoneType - n_initial_points: str - initial_point_generator: str - acq_func: str - acq_optimizer: str - x0: list - y0: NoneType - random_state: numpy.random.mtrand.RandomState - verbose: book - callback: NoneType - n_points: int - n_restarts_optimizer: int - xi: float - kappa: float - n_jobs: int - model_queue_size: NoneType - function: str """ def __init__(self, results: dict): self.results = results self.iters = len(results['func_vals']) self.paras = len(results['x']) self.serialized_results = {} for key in results.keys(): self.serialized_results[key] = getattr(self, key)() def x(self): return self.para_list(self.results['x']) def para_list(self, x): """Serializes list of parameters""" _x = [] for para in x: _x.append(jsonize(para)) return _x def x0(self): _x0 = [] __xo = self.results['specs']['args']['x0'] if __xo is not None: for para in __xo: if isinstance(para, list): _x0.append(self.para_list(para)) else: _x0.append(jsonize(para)) return _x0 def y0(self): __y0 = self.results['specs']['args']['y0'] if __y0 is None: return __y0 if isinstance(__y0, list): _y0 = [] for y in self.results['specs']['args']['y0']: _y0.append(jsonize(y)) return _y0 return jsonize(self.results['specs']['args']['y0']) def fun(self): return float(self.results['fun']) def func_vals(self): return [float(i) for i in self.results['func_vals']] def x_iters(self): out_x = [] for i in range(self.iters): x = [] for para in self.results['x_iters'][i]: x.append(jsonize(para)) out_x.append(x) return out_x def space(self): raum = {} for sp in self.results['space'].dimensions: if sp.__class__.__name__ == 'Categorical': _raum = {k: jsonize(v) for k, v in sp.__dict__.items() if k in ['categories', 'transform_', 'prior', '_name']} _raum.update({'type': 'Categorical'}) raum[sp.name] = _raum elif sp.__class__.__name__ == 'Integer': _raum = {k: jsonize(v) for k, v in sp.__dict__.items() if k in ['low', 'transform_', 'prior', '_name', 'high', 'base', 'dtype', 'log_base']} _raum.update({'type': 'Integer'}) raum[sp.name] = _raum elif sp.__class__.__name__ == 'Real': _raum = {k: jsonize(v) for k, v in sp.__dict__.items() if k in ['low', 'transform_', 'prior', '_name', 'high', 'base', 'dtype', 'log_base']} _raum.update({'type': 'Real'}) raum[sp.name] = _raum return raum def random_state(self): return str(self.results['random_state']) def kernel(self, k): """Serializes Kernel""" if k.__class__.__name__ == "Product": return self.prod_kernel(k) if k.__class__.__name__ == "Sum": return self.sum_kernel(k) # default scenario, just converts it to string return str(k) def prod_kernel(self, k): """Serializes product kernel""" kernel = {} for _k, v in k.__dict__.items(): kernel[_k] = self.singleton_kernel(v) return {"ProductKernel": kernel} def sum_kernel(self, k): """Serializes sum kernel""" kernel = {} for _k, v in k.__dict__.items(): if v.__class__.__name__ == "Product": kernel[_k] = self.prod_kernel(v) else: kernel[_k] = self.singleton_kernel(v) return {"SumKernel": kernel} def singleton_kernel(self, k): """Serializes Kernels such as Matern, White, Constant Kernels""" return {k: jsonize(v) for k, v in k.__dict__.items()} def specs(self): _specs = {} _specs['function'] = self.results['specs']['function'] args = {} args['func'] = str(self.results['specs']['args']['func']) args['dimensions'] = self.space() be = self.results['specs']['args']['base_estimator'] b_e = {k: jsonize(v) for k, v in be.__dict__.items() if k in ['noise', 'alpha', 'optimizer', 'n_restarts_optimizer', 'normalize_y', 'copy_X_train', 'random_state']} b_e['kernel'] = self.kernel(be.kernel) args['base_estimator'] = b_e for k,v in self.results['specs']['args'].items(): if k in ['n_cals', 'n_random_starts', 'n_initial_points', 'initial_point_generator', 'acq_func', 'acq_optimizer', 'verbose', 'callback', 'n_points', 'n_restarts_optimizer', 'xi', 'kappa', 'n_jobs', 'model_queue_size']: args[k] = jsonize(v) args['x0'] = self.x0() args['y0'] = self.y0() _specs['args'] = args return _specs def models(self): mods = [] for model in self.results['models']: mod = {k: jsonize(v) for k, v in model.__dict__.items() if k in [ 'noise','alpha', 'optimizer', 'n_restarts_optimizer', 'normalize_y', 'copy_X_train', 'random_state', '_rng', 'n_features_in', '_y_tain_mean', '_y_train_std', 'X_train', 'y_train', 'log_marginal_likelihood', 'L_', 'K_inv', 'alpha', 'noise_', 'K_inv_', 'y_train_std_', 'y_train_mean_']} mod['kernel'] = self.kernel(model.kernel) mods.append({model.__class__.__name__: mod}) return mods def to_skopt_space(x): """converts the space x into skopt compatible space""" if isinstance(x, list): if all([isinstance(s, Dimension) for s in x]): _space = Space(x) elif all([s.__class__.__name__== "Apply" for s in x]): _space = Space([skopt_space_from_hp_space(v) for v in x]) else: # x consits of one or multiple tuples assert all([isinstance(obj, tuple) for obj in x]) _space = [make_space(i) for i in x] elif isinstance(x, dict): # todo, in random, should we build Only Categorical space? space_ = [] for k, v in x.items(): if isinstance(v, list): s = space_from_list(v, k) elif isinstance(v, Dimension): # it is possible that the user has not specified the name so assign the names # because we have keys. if v.name is None or v.name.startswith('real_') or v.name.startswith('integer_'): v.name = k s = v elif v.__class__.__name__== "Apply" or 'rv_frozen' in v.__class__.__name__: s = skopt_space_from_hp_space(v, k) elif isinstance(v, tuple): s = Categorical(v, name=k) elif isinstance(v, np.ndarray): s = Categorical(v.tolist(), name=k) else: raise NotImplementedError(f"unknown type {v}, {type(v)}") space_.append(s) # todo, why converting to Space _space = Space(space_) if len(space_) > 0 else None elif 'rv_frozen' in x.__class__.__name__ or x.__class__.__name__== "Apply": _space = Space([skopt_space_from_hp_space(x)]) else: raise NotImplementedError(f"unknown type {x}, {type(x)}") return _space def scatterplot_matrix_colored(params_names: list, params_values: list, best_accs: list, blur=False, save=True, fname='scatter_plot.png' ): """Scatterplot colored according to the Z values of the points. https://github.com/guillaume-chevalier/Hyperopt-Keras-CNN-CIFAR-100/blob/Vooban/AnalyzeTestHyperoptResults.ipynb """ nb_params = len(params_values) best_accs = np.array(best_accs) norm = mpl.colors.Normalize(vmin=best_accs.min(), vmax=best_accs.max()) fig, ax = plt.subplots(nb_params, nb_params, figsize=(16, 16)) # , facecolor=bg_color, edgecolor=fg_color) for i in range(nb_params): p1 = params_values[i] for j in range(nb_params): p2 = params_values[j] axes = ax[i, j] # Subplot: if blur: axes.scatter(p2, p1, s=400, alpha=.1, c=best_accs, cmap='viridis', norm=norm) axes.scatter(p2, p1, s=200, alpha=.2, c=best_accs, cmap='viridis', norm=norm) axes.scatter(p2, p1, s=100, alpha=.3, c=best_accs, cmap='viridis', norm=norm) s = axes.scatter(p2, p1, s=15, c=best_accs, cmap='viridis', norm=norm) # Labels only on side subplots, for x and y: if j == 0: axes.set_ylabel(params_names[i], rotation=0) else: axes.set_yticks([]) if i == nb_params - 1: axes.set_xlabel(params_names[j], rotation=90) else: axes.set_xticks([]) fig.subplots_adjust(right=0.82, top=0.95) cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) fig.colorbar(s, cax=cbar_ax) plt.suptitle( 'Mmatrix of tried values in the search space over different params, colored in function of best test accuracy') plt.show() def take(n, iterable): """Return first n items of the iterable as a list https://stackoverflow.com/questions/7971618/return-first-n-keyvalue-pairs-from-dict """ return list(islice(iterable, n)) def plot_convergences(opt_dir, what='val_loss', show_whole=True, show_min=False, **kwargs): plot_dir = os.path.join(opt_dir, "plots") if not os.path.exists(plot_dir): os.makedirs(plot_dir) max_len = kwargs.get('max_len', 500) show_top = kwargs.get('show_top', 3) ylim_bottom = kwargs.get('ylim_bottom', None) ylim_top = kwargs.get('ylim_top', None) font_size = kwargs.get('font_size', 16) ylabel = kwargs.get('ylabel', 'Validation MSE') leg_pos = kwargs.get('leg_pos', 'upper right') # style = kwargs.get('style', 'ggplot') models = [] for f in os.listdir(opt_dir): if os.path.isdir(os.path.join(opt_dir, f)): models.append(f) val_loss = pd.DataFrame() default = pd.Series(np.full(max_len, 0.0)) min_val_loss = {} for mod in models: loss_fname = os.path.join(os.path.join(opt_dir, str(mod) + "\\losses.csv")) if os.path.exists(loss_fname): losses = pd.read_csv(loss_fname) vl = losses[what] vl1 = default.add(vl, fill_value=None) vl1.name = mod min_val_loss[mod] = vl1.min() val_loss = pd.concat([val_loss, vl1], axis=1) # sort min_val_loss by value min_vl_sorted = {k: v for k, v in sorted(min_val_loss.items(), key=lambda item: item[1])} top_3 = take(show_top, min_vl_sorted) colors = { 0: 'b', 1: 'g', 2: 'orange' } default = np.full(max_len, np.nan) plt.close('all') _, axis = plt.subplots() for k in min_vl_sorted.keys(): val = val_loss[k] default[np.argmin(val.values)] = val.min() if k not in top_3: if show_whole: axis.plot(val, color='silver', linewidth=0.5, label='_nolegend_') if show_min: axis.plot(default, '.', markersize=2.5, color='silver', label='_nolegend_') default = np.full(max_len, np.nan) for idx, k in enumerate(top_3): val = val_loss[k] if show_whole: axis.plot(val, color=colors[idx], linewidth=1, label=f'Rank {idx+1}') default[np.argmin(val.values)] = val.min() if show_min: axis.plot(default, 'x', markersize=5.5, color=colors[idx], label='Rank ' + str(idx)) default = np.full(max_len, np.nan) axis.legend(loc=leg_pos, fontsize=font_size) axis.set_yscale('log') axis.set_ylabel(ylabel, fontsize=font_size) axis.set_xlabel('Epochs', fontsize=font_size) if ylim_bottom is not None: axis.set_ylim(bottom=ylim_bottom) if ylim_top is not None: axis.set_ylim(top=ylim_top) _name = what _name += '_whole_loss_' if show_whole else '' _name += '_loss_points' if show_min else '' fname = os.path.join(plot_dir, _name) plt.savefig(fname, dpi=300, bbox_inches='tight') return def to_skopt_as_dict(algorithm:str, backend:str, original_space)->dict: if backend == 'hyperopt': if original_space.__class__.__name__ == "Apply": _space = skopt_space_from_hp_space(original_space) _space = {_space.name: _space} elif isinstance(original_space, dict): _space = OrderedDict() for k, v in original_space.items(): if v.__class__.__name__ == "Apply" or 'rv_frozen' in v.__class__.__name__: _space[k] = skopt_space_from_hp_space(v) elif isinstance(v, Dimension): _space[v.name] = v else: raise NotImplementedError elif isinstance(original_space, list): if all([isinstance(s, Dimension) for s in original_space]): _space = OrderedDict({s.name: s for s in original_space}) elif all([s.__class__.__name__== "Apply" for s in original_space]): d = [skopt_space_from_hp_space(v) for v in original_space] _space = OrderedDict({s.name: s for s in d}) else: raise NotImplementedError else: raise NotImplementedError elif backend == 'optuna': if isinstance(original_space, list): if all([isinstance(s, Dimension) for s in original_space]): _space = OrderedDict({s.name: s for s in original_space}) else: raise NotImplementedError else: raise NotImplementedError elif backend == 'skopt': sk_space = to_skopt_space(original_space) if isinstance(sk_space, Dimension): _space = {sk_space.name: sk_space} elif all([isinstance(s, Dimension) for s in sk_space]): _space = OrderedDict() for s in sk_space: _space[s.name] = s else: raise NotImplementedError elif backend == 'sklearn': if isinstance(original_space, list): if all([isinstance(s, Dimension) for s in original_space]): _space = OrderedDict({s.name: s for s in original_space}) else: raise NotImplementedError elif isinstance(original_space, dict): _space = OrderedDict() for k, v in original_space.items(): if isinstance(v, list): s = space_from_list(v, k) elif isinstance(v, Dimension): s = v elif isinstance(v, (tuple, list)): s = Categorical(v, name=k) elif v.__class__.__name__ in ["Apply", 'rv_continuous_frozen'] or 'rv_frozen' in v.__class__.__name__: if algorithm == 'random': s = Real(v.kwds['loc'], v.kwds['loc'] + v.kwds['scale'], name=k, prior=v.dist.name) else: s = skopt_space_from_hp_space(v) else: raise NotImplementedError(f"unknown type {v}, {type(v)}") _space[k] = s else: raise NotImplementedError else: raise NotImplementedError return _space def space_from_list(v: list, k: str): """Returns space of tyep "Dimension" """ if len(v) > 2: if isinstance(v[0], int): s = Integer(grid=v, name=k) elif isinstance(v[0], float): s = Real(grid=v, name=k) else: s = Categorical(v, name=k) else: if isinstance(v[0], int): s = Integer(low=np.min(v), high=np.max(v), name=k) elif isinstance(v[0], float): s = Real(low=np.min(v), high=np.max(v), name=k) elif isinstance(v[0], str): s = Categorical(v, name=k) else: raise NotImplementedError return s def plot_convergence(func_vals, show=False, ax=None, **kwargs): func_vals = np.array(func_vals) n_calls = len(func_vals) mins = [np.min(func_vals[:i]) for i in range(1, n_calls + 1)] if ax is None: ax = plt.gca() _kwargs = { "marker":".", "markersize": 12, "lw": 2, "show":show, "ax_kws": {"title": 'Convergence plot', "xlabel": 'Number of calls $n$', "ylabel": '$\min f(x)$ after $n$ calls', 'grid': True}, 'ax': ax, } _kwargs.update(kwargs) ax = plot(range(1, n_calls + 1), mins, **_kwargs) return ax def make_space(x): if len(x) == 2: low, high = x if 'int' in low.__class__.__name__: space = Integer(low=low, high=high) elif 'float' in low.__class__.__name__: space = Integer(low=low, high=high) else: raise NotImplementedError else: raise NotImplementedError return space
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/hyperopt/utils.py
utils.py
__all__ = ["fANOVA"] import itertools import warnings from typing import Tuple, List, Set, Union from sklearn.preprocessing import OneHotEncoder from sklearn.tree._tree import Tree from sklearn.ensemble import RandomForestRegressor from ai4water.backend import np, pd class fANOVA(object): """ Calculation of parameter importance using FANOVA (Hutter et al., 2014). Parameters ---------- X : input data of shape (n_iterations, n_parameters). For hyperparameter optimization, iterations represent number of optimization iterations and parameter represent number of hyperparameters Y : objective value corresponding to X. Its length should be same as that of ``X`` dtypes : list list of strings determining the type of hyperparameter. Allowed values are only ``categorical`` and ``numerical``. bounds : list list of tuples, where each tuple defines the upper and lower limit of corresponding parameter parameter_names : list names of features/parameters/hyperparameters cutoffs : tuple n_estimators : int number of trees max_depth : int (default=64) maximum depth of trees **rf_kws : keyword arguments to sklearn.ensemble.RandomForestRegressor Examples -------- >>> import numpy as np >>> import pandas as pd >>> from ai4water.hyperopt import fANOVA >>> x = np.arange(20).reshape(10, 2).astype(float) >>> y = np.linspace(1, 30, 10).astype(float) ... # X are hyperparameters and Y are objective function values at corresponding iterations >>> f = fANOVA(X=x, Y=y, ... bounds=[(-2, 20), (-5, 50)], ... dtypes=["numerical", "numerical"], ... random_state=313, max_depth=3) ... # calculate importance >>> imp = f.feature_importance() for categorical parameters >>> x = pd.DataFrame(['2', '2', '3', '1', '1', '2', '2', '1', '3', '3', '3'], columns=['a']) >>> x['b'] = ['3', '3', '1', '3', '1', '2', '4', '4', '3', '3', '4'] >>> y = np.linspace(-1., 1.0, len(x)) >>> f = fANOVA(X=x, Y=y, bounds=[None, None], dtypes=['categorical', 'categorical'], ... random_state=313, max_depth=3, n_estimators=1) ... # calculate importance >>> imp = f.feature_importance() for mix types >>> x = pd.DataFrame(['2', '2', '3', '1', '1', '2', '2', '1', '3', '3', '3'], columns=['a']) >>> x['b'] = np.arange(100, 100+len(x)) >>> y = np.linspace(-1., 2.0, len(x)) >>> f = fANOVA(X=x, Y=y, bounds=[None, (10, 150)], dtypes=['categorical', 'numerical'], ... random_state=313, max_depth=5, n_estimators=5) ... # calculate importance >>> imp = f.feature_importance() """ def __init__( self, X:Union[np.ndarray, pd.DataFrame], Y:np.ndarray, dtypes:List[str], bounds:List[Union[tuple, None]], parameter_names=None, cutoffs=(-np.inf, np.inf), n_estimators=64, max_depth=64, random_state=313, **rf_kws ): X_ = [] encoders = {} cols = {} _bounds = [] if isinstance(X, pd.DataFrame): if parameter_names is None: parameter_names = X.columns.tolist() X = X.values if parameter_names is None: parameter_names = [f"F{i}" for i in range(X.shape[1])] assert len(parameter_names) == len(bounds) == len(dtypes) == X.shape[1] assert len(X) == len(Y), f"X and Y should have same length" self.para_names = parameter_names if np.isnan(Y).sum()>0: warnings.warn("Removing nans encountered in Y.") df = pd.DataFrame(np.column_stack((X, Y))).dropna() X, Y = df.values[:, 0:-1], df.values[:, -1] for idx, dtype in enumerate(dtypes): if dtype.lower() == "categorical": x = X[:, idx] ohe = OneHotEncoder(sparse=False) x_ = ohe.fit_transform(x.reshape(-1,1)) X_.append(x_) encoders[idx] = ohe cols[idx] = x_.shape[1] __bounds = [(0., 1.) for _ in range(x_.shape[1])] assert bounds[idx] is None, f"Cannot set bounds for categorical column" _bounds += __bounds else: X_.append(X[:, idx]) cols[idx] = 1 assert isinstance(bounds[idx], tuple), f"for non categorical parameters bounds must be given as tuple as (min,max)" assert len(bounds[idx]), 2 assert bounds[idx][0] < bounds[idx][1] _bounds.append(bounds[idx]) self.encoded_columns = encoded_columns(cols) X_ = np.column_stack(X_) self._n_features = X_.shape[1] self._N_features = X.shape[1] self.bounds = _bounds self.rf = RandomForestRegressor( n_estimators=n_estimators, max_depth=max_depth, random_state=random_state, **rf_kws ) self.rf.fit(X_, Y) # initialize a dictionary with parameter dims self.variance_dict = dict() # all midpoints and interval sizes treewise for the whole forest self.all_midpoints = [] self.all_sizes = [] # compute midpoints and interval sizes for variables in each tree for dt in self.rf.estimators_: sizes = [] midpoints = [] tree_split_values = self._tree_split_values(dt.tree_) for i, split_vals in enumerate(tree_split_values): #if np.isnan(bounds[i][1]): # categorical parameter # pass #else: # add bounds to split values sv = np.array([_bounds[i][0]] + list(split_vals) + [_bounds[i][1]]) # compute midpoints and sizes midpoints.append((1 / 2) * (sv[1:] + sv[:-1])) sizes.append(sv[1:] - sv[:-1]) self.all_midpoints.append(midpoints) self.all_sizes.append(sizes) # capital V in the paper self.trees_total_variance = [] # dict of lists where the keys are tuples of the dimensions # and the value list contains \hat{f}_U for the individual trees # reset all the variance fractions computed self.trees_variance_fractions = {} self.V_U_total = {} self.V_U_individual = {} self.cutoffs = cutoffs self.set_cutoffs(cutoffs) def _tree_split_values(self, tree:Tree): """calculates split values for a decision tree""" split_values = [set() for _ in range(self._n_features)] for node_index in range(tree.node_count): feature = tree.feature[node_index] if feature >= 0: # Not leaf. threshold = tree.threshold[node_index] split_values[feature].add(threshold) sorted_split_values = [] for split_val in split_values: split_values_array = np.array(list(split_val), dtype=np.float64) split_values_array.sort() sorted_split_values.append(split_values_array) return sorted_split_values def set_cutoffs(self, cutoffs=(-np.inf, np.inf), quantile=None): """ Setting the cutoffs to constrain the input space To properly do things like 'improvement over default' the fANOVA now supports cutoffs on the y values. These will exclude parts of the parameters space where the prediction is not within the provided cutoffs. This is is specialization of "Generalized Functional ANOVA Diagnostics for High Dimensional Functions of Dependent Variables" by Hooker. """ # reset all the variance fractions computed self.trees_variance_fractions = {} self.V_U_total = {} self.V_U_individual = {} # recompute the trees' total variance self.trees_total_variance = self.get_trees_total_variances() return def get_trees_total_variances(self)->tuple: """get variance of all trees""" variance = [] for dt in self.rf.estimators_: variance.append(self._tree_variance(dt.tree_)) return tuple(variance) def _tree_variance(self, tree:Tree): leaf_node_indices = np.argwhere(tree.feature<0).reshape(-1,) statistics = self._tree_statistics(tree) values, weights = [], [] for node_index in leaf_node_indices: val, weight = statistics[node_index] values.append(val) weights.append(weight) avg_values = np.average(values, weights=weights) variance = np.average((np.array(values) - avg_values) ** 2, weights=weights) return variance def _tree_statistics(self, tree:Tree) -> np.ndarray: n_nodes = tree.node_count # Holds for each node, its weighted average value and the sum of weights. statistics = np.empty((n_nodes, 2), dtype=np.float64) subspaces = [None for _ in range(n_nodes)] subspaces[0] = np.array(self.bounds) # Compute marginals for leaf nodes. for node_index in range(n_nodes): subspace = subspaces[node_index] if tree.feature[node_index] < 0: value = tree.value[node_index] weight = _get_cardinality(subspace) statistics[node_index] = [value, weight] else: for child_node_index, child_subspace in zip( _get_node_children(node_index, tree), _get_node_children_subspaces(node_index, subspace, tree), ): assert subspaces[child_node_index] is None subspaces[child_node_index] = child_subspace # Compute marginals for internal nodes. for node_index in reversed(range(n_nodes)): if not tree.feature[node_index] < 0: # if not node leaf child_values = [] child_weights = [] for child_node_index in _get_node_children(node_index, tree): child_values.append(statistics[child_node_index, 0]) child_weights.append(statistics[child_node_index, 1]) value = np.average(child_values, weights=child_weights) weight = np.sum(child_weights) statistics[node_index] = [value, weight] return statistics def _compute_marginals(self, dimensions): """ Returns the marginal of selected parameters Parameters ---------- dimensions: tuple Contains the indices of ConfigSpace for the selected parameters (starts with 0) """ dimensions = tuple(dimensions) # check if values has been previously computed if dimensions in self.V_U_individual: return # otherwise make sure all lower order marginals have been # computed, if not compute them for k in range(1, len(dimensions)): for sub_dims in itertools.combinations(dimensions, k): if sub_dims not in self.V_U_total: self._compute_marginals(sub_dims) assert len(dimensions)==1 raw_dimensions = self.encoded_columns[dimensions[0]] # now all lower order terms have been computed self.V_U_individual[dimensions] = [] self.V_U_total[dimensions] = [] for tree_idx in range(len(self.all_midpoints)): # collect all the midpoints and corresponding sizes for that tree midpoints = [self.all_midpoints[tree_idx][dim] for dim in raw_dimensions] sizes = [self.all_sizes[tree_idx][dim] for dim in raw_dimensions] prod_midpoints = itertools.product(*midpoints) prod_sizes = itertools.product(*sizes) sample = np.full(self._n_features, np.nan, dtype=np.float) values: Union[List[float], np.ndarray] = [] weights: Union[List[float], np.ndarray] = [] # make prediction for all midpoints and weigh them by the corresponding size for i, (m, s) in enumerate(zip(prod_midpoints, prod_sizes)): sample[list(raw_dimensions)] = list(m) value, weight = self._tree_marginalized_statistics(sample, self.rf.estimators_[tree_idx].tree_) weight *= np.prod(s) values.append(value) weights.append(weight) weights = np.array(weights) values = np.array(values) average_values = np.average(values, weights=weights) variance = np.average((values - average_values) ** 2, weights=weights) assert variance >= 0.0, f"Non convergence of variance {variance}" # line 10 in algorithm 2 # note that V_U^2 can be computed by var(\hat a)^2 - \sum_{subU} var(f_subU)^2 # which is why, \hat{f} is never computed in the code, but # appears in the pseudocode V_U_total = np.nan V_U_individual = np.nan if weights.sum()>0: V_U_total = variance V_U_individual = variance for k in range(1, len(dimensions)): for sub_dims in itertools.combinations(dimensions, k): V_U_individual -= self.V_U_individual[sub_dims][tree_idx] V_U_individual = np.clip(V_U_individual, 0, np.inf) self.V_U_individual[dimensions].append(V_U_individual) self.V_U_total[dimensions].append(V_U_total) return def _tree_marginalized_statistics(self, feature_vector: np.ndarray, tree:Tree ) -> Tuple[float, float]: assert feature_vector.size == self._n_features statistics = self._tree_statistics(tree) marginalized_features = np.isnan(feature_vector) active_features = ~marginalized_features # Reduce search space cardinalities to 1 for non-active features. search_spaces = np.array(self.bounds.copy()) search_spaces[marginalized_features] = [0.0, 1.0] # Start from the root and traverse towards the leafs. active_nodes = [0] active_search_spaces = [search_spaces] node_indices = [] active_features_cardinalities = [] tree_active_features = self._tree_active_features(tree) while len(active_nodes) > 0: node_index = active_nodes.pop() search_spaces = active_search_spaces.pop() feature = tree.feature[node_index] if feature >= 0: # Not leaf. Avoid unnecessary call to `_is_node_leaf`. # If node splits on an active feature, push the child node that we end up in. response = feature_vector[feature] if not np.isnan(response): if response <= tree.threshold[node_index]: next_node_index = tree.children_left[node_index] next_subspace = _get_node_left_child_subspaces( node_index, search_spaces, tree ) else: next_node_index = tree.children_right[node_index] next_subspace = _get_node_right_child_subspaces( node_index, search_spaces, tree ) active_nodes.append(next_node_index) active_search_spaces.append(next_subspace) continue # If subtree starting from node splits on an active feature, push both child nodes. if (active_features & tree_active_features[node_index]).any(): for child_node_index in _get_node_children(node_index, tree): active_nodes.append(child_node_index) active_search_spaces.append(search_spaces) continue # If node is a leaf or the subtree does not split on any of the active features. node_indices.append(node_index) active_features_cardinalities.append(_get_cardinality(search_spaces)) node_indices = np.array(node_indices, dtype=np.int32) active_features_cardinalities = np.array(active_features_cardinalities) statistics = statistics[node_indices] values = statistics[:, 0] weights = statistics[:, 1] weights = weights / active_features_cardinalities value = np.average(values, weights=weights) weight = weights.sum() return value, weight def _tree_active_features(self, tree:Tree) -> List[Set[int]]: subtree_active_features = np.full((tree.node_count, self._n_features), fill_value=False) for node_index in reversed(range(tree.node_count)): feature = tree.feature[node_index] if feature >= 0: # Not leaf. Avoid unnecessary call to `_is_node_leaf`. subtree_active_features[node_index, feature] = True for child_node_index in _get_node_children(node_index, tree): subtree_active_features[node_index] |= subtree_active_features[ child_node_index ] return subtree_active_features def quantify_importance(self, dims): if type(dims[0]) == str: idx = [] for i, param in enumerate(dims): idx.append(self.get_idx_by_hyperparameter_name(param)) dimensions = tuple(idx) # make sure that all the V_U values are computed for each tree else: dimensions = dims self._compute_marginals(dimensions) importance_dict = {} for k in range(1, len(dimensions) + 1): for sub_dims in itertools.combinations(dimensions, k): if type(dims[0]) == str: dim_names = [] for j, dim in enumerate(sub_dims): dim_names.append(self.get_hyperparameter_by_idx(dim)) dim_names = tuple(dim_names) importance_dict[dim_names] = {} else: importance_dict[sub_dims] = {} # clean here to catch zero variance in a trees non_zero_idx = np.nonzero([self.trees_total_variance[t] for t in range(self.rf.n_estimators)]) if len(non_zero_idx[0]) == 0: raise RuntimeError('Encountered zero total variance in all trees.') fractions_total = np.array([self.V_U_total[sub_dims][t] / self.trees_total_variance[t] for t in non_zero_idx[0]]) fractions_individual = np.array([self.V_U_individual[sub_dims][t] / self.trees_total_variance[t] for t in non_zero_idx[0]]) if type(dims[0]) == str: importance_dict[dim_names]['individual importance'] = np.mean(fractions_individual) importance_dict[dim_names]['total importance'] = np.mean(fractions_total) importance_dict[dim_names]['individual std'] = np.std(fractions_individual) importance_dict[dim_names]['total std'] = np.std(fractions_total) else: importance_dict[sub_dims]['individual importance'] = np.mean(fractions_individual) importance_dict[sub_dims]['total importance'] = np.mean(fractions_total) importance_dict[sub_dims]['individual std'] = np.std(fractions_individual) importance_dict[sub_dims]['total std'] = np.std(fractions_total) return importance_dict def feature_importance(self, dimensions=None, interaction_level=1, return_raw:bool=False): if dimensions is None: dimensions = self.para_names if isinstance(dimensions, (int, str)): dimensions = (dimensions,) importances_mean = {} importances_std = {} for dim in dimensions: imp = self.quantify_importance((dim, )) importances_mean[dim] = imp[(dim,)]['individual importance'] importances_std[dim] = imp[(dim,)]['individual std'] if len(dimensions) == self._N_features: importances_sum = sum(importances_mean.values()) for name in importances_mean: importances_mean[name] /= importances_sum importances = {k: v for k, v in reversed(sorted(importances_mean.items(), key=lambda item: item[1]))} if return_raw: return importances_mean, importances_std return importances def get_hyperparameter_by_idx(self, idx:int)->str: return self.para_names[idx] def get_idx_by_hyperparameter_name(self, name:str)->int: return self.para_names.index(name) def _get_node_right_child_subspaces( node_index: int, search_spaces: np.ndarray, tree:Tree ) -> np.ndarray: return _get_subspaces( search_spaces, search_spaces_column=0, feature=tree.feature[node_index], threshold=tree.threshold[node_index], ) def _get_node_children(node_index: int, tree:Tree) -> Tuple[int, int]: return tree.children_left[node_index], tree.children_right[node_index] def _get_cardinality(search_spaces: np.ndarray) -> float: return np.prod(search_spaces[:, 1] - search_spaces[:, 0]).item() def _get_subspaces( search_spaces: np.ndarray, *, search_spaces_column: int, feature: int, threshold: float ) -> np.ndarray: search_spaces_subspace = np.copy(search_spaces) search_spaces_subspace[feature, search_spaces_column] = threshold return search_spaces_subspace def _get_node_children_subspaces( node_index: int, search_spaces: np.ndarray, tree ) -> Tuple[np.ndarray, np.ndarray]: return ( _get_node_left_child_subspaces(node_index, search_spaces, tree), _get_node_right_child_subspaces(node_index, search_spaces, tree), ) def _get_node_left_child_subspaces( node_index: int, search_spaces: np.ndarray, tree ) -> np.ndarray: return _get_subspaces( search_spaces, search_spaces_column=1, feature=tree.feature[node_index], threshold=tree.threshold[node_index], ) def encoded_columns(cols:dict): # c = {'a': 2, 'b': 1, 'c': 3} # -> {'a': [0,1], 'b': [2], 'c': [3,4,5]} en = 0 st = 0 columns = {} for k, v in cols.items(): en += v columns[k] = [i for i in range(st, en)] st += v return columns if __name__ == "__main__": pass
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/hyperopt/_fanova.py
_fanova.py
import warnings from collections import OrderedDict from ai4water.backend import np, plt, imageio, shapefile, os, random MSG = f""" If you installed shapely using pip, try to resintall it (after uninstalling the previous installtin obviously) by manually downloading the wheel file from https://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely and then istalling using the wheel file using following command pip install path/to/wheel.whl""" M2ToAcre = 0.0002471 # meter square to Acre COLORS = ['#CDC0B0', '#00FFFF', '#76EEC6', '#C1CDCD', '#E3CF57', '#EED5B7', '#8B7D6B', '#0000FF', '#8A2BE2', '#9C661F', '#FF4040', '#8A360F', '#98F5FF', '#FF9912', '#B23AEE', '#9BCD9B', '#8B8B00'] def get_sorted_dict(dictionary): """sorts the dictionary based on its keys and returns the new dictionary named sorted_dict""" sorted_dict = OrderedDict() for k in sorted(dictionary): sorted_dict[k] = dictionary[k] return sorted_dict def get_areas_geoms(shp_reader): """returns lists containing areas of all records in shapefile and geometries of all records in shape file and number of records in shapefile""" try: from shapely.geometry import shape except FileNotFoundError: raise FileNotFoundError(MSG) except OSError: warnings.warn(MSG, UserWarning) shape = None # so that docs can be built except ModuleNotFoundError: warnings.warn(MSG, UserWarning) shape = None # so that docs can be built shapes = shp_reader.shapes() geometries = [None] * len(shapes) # a container for geometries of shapefile areas = [None] * len(shapes) # a container for areas of shapefile if shape is None: raise ModuleNotFoundError('shapely package should be installed.') for shp in range(len(shapes)): feature = shp_reader.shapeRecords()[shp] # pyshp first = feature.shape.__geo_interface__ # pyshp geometries[shp] = shape(first) # pyshp to shapely geometry areas[shp] = shape(first).area * M2ToAcre return areas, geometries def check_shp_validity(geom_list, no_of_lus, name='landuse', verbosity=1): new_geom_list = [None] * no_of_lus # a container for geometries of landuse shapefile with corrected topology for lu in range(no_of_lus): # iterating over each landuse luf = geom_list[lu] if not luf.is_valid: n = 0 for j in range(len(luf)): # iterating over each ring of feature which is invalid if not luf[j].is_valid: # checking which ring in feature is invalid n = n + 1 # counting number of invalid rings in a feature new_geom_list[lu] = luf.buffer(0) # correcting the 'self-intersection' for the feature which is invalid else: new_geom_list[lu] = luf # checking the validity of each landuse once again to make sure that each landuse's is valid for lu in range(no_of_lus): sub_lu = new_geom_list[lu] if sub_lu.is_valid and verbosity: print('{} {} is valid now'.format(name, lu)) elif verbosity: print('{} {} is still invalid'.format(name, lu)) return new_geom_list def get_total_area(file_to_read): shape_area = 0.0 for sub_shp in file_to_read: shape_area += sub_shp.area*M2ToAcre return shape_area class GifUtil(object): def __init__(self, folder, initials=None, contains=None): self.init = initials # starting name of files self.contains = contains self.input_files = [] # container for input files self.get_all_files(initials) # get files to make gif self.dir = folder # folder containing input files and output gif def get_all_files(self, init): for file in os.listdir("./plots"): if file.endswith(".png"): if self.init: if file.startswith(init): self.input_files.append(file) if self.contains: if self.contains in file: self.input_files.append(file) def make_gif(self, duration=0.5, name=None): if name is None: if self.init: name = self.init else: name = self.contains images = [] for file in np.sort(self.input_files): filename = os.path.join(self.dir, file) images.append(imageio.imread(filename)) imageio.mimsave(os.path.join(self.dir, name + '.gif'), images, duration=duration) def remove_images(self): for img in self.input_files: path = os.path.join(self.dir, img) if os.path.exists(path): os.remove(path) def find_records(shp_file, record_name, feature_number): """find the metadata about feature given its feature number and column_name which contains the data""" assert os.path.exists(shp_file), f'{shp_file} does not exist' shp_reader = shapefile.Reader(shp_file) col_no = find_col_name(shp_reader, record_name) if col_no == -99: raise ValueError(f'no column named {record_name} found in {shp_reader.shapeName}') else: # print(col_no, 'is the col no') name = get_record_in_col(shp_reader, feature_number, col_no) return name def find_col_name(shp_reader, field_name): _col_no = 0 col_no = -99 for fields in shp_reader.fields: _col_no += 1 for field in fields: if field == field_name: col_no = _col_no break return col_no def get_record_in_col(shp_reader, i, col_no): recs = shp_reader.records() col_no = col_no - 2 # -2, 1 for index reduction, 1 for a junk column shows up in records return recs[i][col_no] def plot_shapefile(shp_files, labels=None, show_all_together=True, bbox_shp=None, recs=None, rec_idx=None, leg_kws=None, save=False, colors=None, markersize=12, save_kws=None): """ leg_kws:{'bbox_to_anchor': (1.02, -0.15), 'numpoints': 1, 'fontsize': 16, 'markerscale':2} save_kws:{'fname': 'point_plot', 'bbox_inches': 'tight'} """ if not isinstance(shp_files, list): shp_files = [shp_files] if leg_kws is None: leg_kws = {'bbox_to_anchor': (0.93, -0.15), 'numpoints': 1, 'fontsize': 16, 'markerscale': 2} if labels is None: labels = {} if save_kws is None: save_kws = {'fname': 'point_plot', 'dpi': 300, 'bbox_inches': 'tight'} records = shapefile.Reader(shp_files[0]).shapeRecords() Colors = random.choices(COLORS, k=len(records)) if len(shp_files) > 1: for i in range(1, len(shp_files)): shp_reader = shapefile.Reader(shp_files[i]) records += shp_reader.shapeRecords() Colors += random.choices(COLORS, k=len(shp_reader.shapeRecords())) plt.close('all') for feature, n in zip(records, Colors): if recs is not None: assert isinstance(rec_idx, int) rec = feature.record[rec_idx] else: rec, recs = '', '' if rec in recs: f_if = feature.shape.__geo_interface__ if f_if is None: pass else: if f_if['type'].lower() in ['point']: # it is point c = colors.get(rec, random.choice(COLORS)) plt.plot(*f_if['coordinates'], '*', label=labels.get(rec, rec), color=c, markersize=markersize) else: plot_polygon_feature(feature, n, shapefile.Reader(shp_files[0]).bbox) if bbox_shp is not None: shp_reader = shapefile.Reader(bbox_shp) records = shp_reader.shapeRecords() for feature, n in zip(records, Colors): plot_polygon_feature(feature, n, shapefile.Reader(shp_files[0]).bbox) plt.legend(**leg_kws) if not show_all_together: plt.show() if save: plt.savefig(**save_kws) # if show_all_together: plt.show() # shp_reader.close() return def plot_polygon_feature(feature, n, bbox): f_if = feature.shape.__geo_interface__ polys = len(f_if['coordinates']) def_col = n for i in range(polys): a = np.array(f_if['coordinates'][i]) if a.ndim < 2 and len(a.shape) > 0: c = a m = max([len(ci) for ci in c]) for ci in c: col = 'k' if len(ci) != m else def_col x = np.array([k[0] for k in ci]) y = np.array([k[1] for k in ci]) plt.plot(x, y, col, label="__none__", linewidth=0.5) elif len(a.shape) > 0: b = a.reshape(-1, 2) plt.plot(b[:, 0], b[:, 1], def_col) plt.ylim([bbox[1], bbox[3]]) plt.xlim([bbox[0], bbox[2]]) return
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/preprocessing/spatial_utils.py
spatial_utils.py
from typing import Union from collections import OrderedDict from .spatial_utils import find_records from .spatial_utils import plot_shapefile from .spatial_utils import get_total_area, GifUtil from .spatial_utils import get_sorted_dict, get_areas_geoms, check_shp_validity from ai4water.backend import os, np, pd, plt, mpl, shapefile, easy_mpl mdates = mpl.dates M2ToAcre = 0.0002471 # meter square to Acre COLORS = ['#CDC0B0', '#00FFFF', '#76EEC6', '#C1CDCD', '#E3CF57', '#EED5B7', '#8B7D6B', '#0000FF', '#8A2BE2', '#9C661F', '#FF4040', '#8A360F', '#98F5FF', '#FF9912', '#B23AEE', '#9BCD9B', '#8B8B00'] class MakeHRUs(object): """ Distributes a given time series data for HRUs in a catchment according to the `hru_definition`. Currently it is supposed that only land use changes with time. Example: >>> import os >>> from ai4water.preprocessing.spatial_processing import MakeHRUs >>> # shapefile_paths is the path where shapefiles are located. todo >>> SubBasin_shp = os.path.join(shapefile_paths, 'sub_basins.shp') >>> shapefile_paths = os.path.join(os.getcwd(), 'shapefiles') >>> hru_object = MakeHRUs('unique_lu_sub', ... index={2011: {'shapefile': os.path.join(shapefile_paths, 'lu2011.shp'), 'feature': 'NAME'}, ... 2012: {'shapefile': os.path.join(shapefile_paths, 'lu2012.shp'), 'feature': 'NAME'}}, ... subbasins_shape={'shapefile': SubBasin_shp, 'feature': 'id'} ... ) >>> hru_object.call() """ HRU_DEFINITIONS = [ 'unique_sub', 'unique_lu', 'unique_soil', 'unique_slope', 'unique_lu_sub', 'unique_lu_soil', 'unique_lu_slope', 'unique_soil_sub', 'unique_soil_slope', 'unique_slope_sub', 'unique_lu_soil_sub', 'unique_lu_soil_slope', ] def __init__( self, hru_definition:str, index:dict, soil_shape: Union[dict, None] = None, slope_shape: Union[dict, None]=None, subbasins_shape: Union[None, dict] = None, save:bool = False, show:bool = True, verbosity: int = 1 ): """ Parameters ---------- hru_definition : hru definition. For valid hru_definitions check `MakeHRUs.HRU_DEFINITIONS` index : dictionary defining shapefiles of landuse which change with time. For example in following a land use shapefile for two years is defined. All attributes in land use shapefiles must have the feature `NAME`. >>> {2011: {'shapefile': os.path.join(shapefile_paths, 'lu2011.shp'), 'feature': 'NAME'}, ... 2012: {'shapefile': os.path.join(shapefile_paths, 'lu2012.shp'), 'feature': 'NAME'}} soil_shape : only applicable if `soil` exists in hru_definition. All attributes in land use soil.shp must have the feature `NAME`. >>> {'shapefile': os.path.join(shapefile_paths, 'soil.shp'), 'feature': 'NAME'} slope_shape : only applicable if `slope` exists in hru_definition. All attributes in slope.shp shapefiles must have the feature `percent`. >>> {'shapefile': os.path.join(shapefile_paths, 'slope.shp'), 'feature': 'percent'} subbasins_shape : only applicable if `sub` exists in hru_definition. All attributes in land use shapefiles must have the feature `id`. >>> {'shapefile': os.path.join(shapefile_paths, 'subbasins.shp'), 'feature': 'id'} save : bool show : bool, default=False whether to save the plots or not. verbosity : Determines verbosity. """ if shapefile is None: raise ModuleNotFoundError(f"You must install pyshp package e.g. pip install pyshp") self.hru_definition = hru_definition assert hru_definition in self.HRU_DEFINITIONS, f""" invalid value for hru_definition '{hru_definition}' provided. Allowed values are {self.HRU_DEFINITIONS}""" self.combinations = hru_definition.split('_')[1:] if len(self.combinations)<2: if isinstance(index, dict): if not all([i.__class__.__name__=='NoneType' for i in index.values()]): assert all([i.__class__.__name__=='NoneType' for i in [soil_shape, slope_shape, subbasins_shape]]), f""" hru consists of only one feature i.e. {self.combinations[0]}. Thus if index is provided then not other shapefile must be given. """ self.index = index self.soil_shape = soil_shape self.slope_shape = slope_shape self.sub_shape = subbasins_shape self.hru_paras = OrderedDict() self.hru_geoms = OrderedDict() self.all_hrus = [] self.hru_names = [] self.save = save self.show = show self.verbosity = verbosity st, en = list(index.keys())[0], list(index.keys())[-1] # initiating yearly dataframes self.area = pd.DataFrame(index=pd.date_range(str(st) + '0101', str(en) + '1231', freq='12m')) self.curve_no = pd.DataFrame(index=pd.date_range(str(st) + '0101', str(en) + '1231', freq='12m')) # distance_to_outlet self.dist_to_out = pd.DataFrame(index=pd.date_range(str(st) + '0101', str(en) + '1231', freq='12m')) # area of HRU as fraction of total catchment self.area_frac_cat = pd.DataFrame(index=pd.date_range(str(st) + '0101', str(en) + '1231', freq='12m')) def call(self, plot_hrus=True): """ Makes the HRUs. Parameters ---------- plot_hrus : If true, the exact area hrus will be plotted as well. """ for _yr, shp_file in self.index.items(): _hru_paras, _hru_geoms = self.get_hrus(shp_file, _yr) self.hru_paras.update(_hru_paras) if plot_hrus: self.plot_hrus(year=_yr, _polygon_dict=self.hru_geoms, nrows=3, ncols=4, bbox=self.slope_shape, annotate=False, name=self.hru_definition) return def get_hrus(self, idx_shp, year ): """ idx_shp : shapefile whose area distribution changes with time e.g land use """ if self.verbosity > 0: print('Checking validity of landuse shapefile') hru_paras = OrderedDict() a = 0 if len(self.combinations) ==1: shp_name = self.combinations[0] if idx_shp is None: shp_file = getattr(self, f'{shp_name}_shape')['shapefile'] feature = getattr(self, f'{shp_name}_shape')['feature'] else: shp_file = idx_shp['shapefile'] feature = idx_shp['feature'] shp_reader = shapefile.Reader(shp_file) _, shp_geom_list = get_areas_geoms(shp_reader) if 'sub' not in self.hru_definition: shp_geom_list = check_shp_validity(shp_geom_list, len(shp_reader.shapes()), name=shp_name, verbosity=self.verbosity) self.tot_cat_area = get_total_area(shp_geom_list) for shp in range(len(shp_reader.shapes())): code = f'{str(year)}_{shp_name}_{find_records(shp_file, feature, shp)}' hru_paras[code] = {'yearless_key': code[4:]} intersection = shp_geom_list[shp] self.hru_geoms[code] = [intersection, shp_geom_list[shp]] self._foo(code, intersection) if len(self.combinations) == 2: first_shp_name = self.combinations[0] second_shp_name = self.combinations[1] if idx_shp is None: first_shp_file = getattr(self, f'{first_shp_name}_shape')['shapefile'] first_feature = getattr(self, f'{first_shp_name}_shape')['feature'] else: first_shp_file = idx_shp['shapefile'] first_feature = idx_shp['feature'] second_shp_file = getattr(self, f'{second_shp_name}_shape')['shapefile'] second_feature = getattr(self, f'{second_shp_name}_shape')['feature'] first_shp_reader = shapefile.Reader(first_shp_file) second_shp_reader = shapefile.Reader(second_shp_file) _, first_shp_geom_list = get_areas_geoms(first_shp_reader) _, second_shp_geom_list = get_areas_geoms(second_shp_reader) if 'sub' not in self.hru_definition: second_shp_geom_list = check_shp_validity(second_shp_geom_list, len(second_shp_reader.shapes()), name=second_shp_name, verbosity=self.verbosity) self.tot_cat_area = get_total_area(first_shp_geom_list) else: self.tot_cat_area = get_total_area(second_shp_geom_list) for j in range(len(second_shp_reader.shapes())): for lu in range(len(first_shp_reader.shapes())): a += 1 intersection = second_shp_geom_list[j].intersection(first_shp_geom_list[lu]) lu_code = find_records(first_shp_file, first_feature, lu) sub_code = find_records(second_shp_file, second_feature, j) sub_code = f'_{second_shp_name}_' + str(sub_code) code = str(year) + sub_code + f'_{first_shp_name}_' + lu_code #, lu_code self.hru_geoms[code] = [intersection, second_shp_geom_list[j], first_shp_geom_list[lu]] hru_paras[code] = {'yearless_key': code[4:]} self._foo(code, intersection) if len(self.combinations) == 3: first_shp_name = self.combinations[0] second_shp_name = self.combinations[1] third_shp_name = self.combinations[2] if idx_shp is None: first_shp_file = getattr(self, f'{first_shp_name}_shape')['shapefile'] first_feature = getattr(self, f'{first_shp_name}_shape')['feature'] else: first_shp_file = idx_shp['shapefile'] first_feature = idx_shp['feature'] second_shp_file = getattr(self, f'{second_shp_name}_shape')['shapefile'] second_feature = getattr(self, f'{second_shp_name}_shape')['feature'] third_shp_file = getattr(self, f'{third_shp_name}_shape')['shapefile'] third_feature = getattr(self, f'{third_shp_name}_shape')['feature'] first_shp_reader = shapefile.Reader(first_shp_file) second_shp_reader = shapefile.Reader(second_shp_file) third_shp_reader = shapefile.Reader(third_shp_file) _, first_shp_geom_list = get_areas_geoms(first_shp_reader) _, second_shp_geom_list = get_areas_geoms(second_shp_reader) _, third_shp_geom_list = get_areas_geoms(third_shp_reader) if 'sub' not in self.hru_definition: # todo second_shp_geom_list = check_shp_validity(second_shp_geom_list, len(second_shp_reader.shapes()), name=second_shp_name, verbosity=self.verbosity) self.tot_cat_area = get_total_area(first_shp_geom_list) else: self.tot_cat_area = get_total_area(second_shp_geom_list) for s in range(len(third_shp_reader.shapes())): for j in range(len(second_shp_reader.shapes())): for lu in range(len(first_shp_reader.shapes())): intersection = second_shp_geom_list[j].intersection(first_shp_geom_list[lu]) sub = third_shp_geom_list[s] intersection = sub.intersection(intersection) sub_code = f'_{third_shp_name}_' + str(find_records(third_shp_file, third_feature, s)) lu_code = find_records(first_shp_file, first_feature, lu) soil_code = find_records(second_shp_file, second_feature, j) code = str(year) + sub_code + f'_{second_shp_name}_' + str(soil_code) + f'_{first_shp_name}_' + lu_code self.hru_geoms[code] = [intersection, second_shp_geom_list[j], first_shp_geom_list[lu]] hru_paras[code] = {'yearless_key': code[4:]} self._foo(code, intersection) # if sum(LuAreaListAcre) > sum(SubAreaListAcre): # print('Land use area is bigger than subbasin area') # IntArea_ = [[None] * no_of_subs for _ in range(no_of_lus)] # IntLuArea = [None] * no_of_lus # for lu in range(no_of_lus): # # Int = 0 # IntArea = 0 # for sub_ind in range(no_of_subs): # Int = LuShpGeomListNew[lu].intersection(SubShpGeomList[sub_ind]) # code, lu_code = get_code(year=year, lu_feature=LuShpGeomListNew[lu], lu_feat_ind=lu, # sub_feat=SubShpGeomList[sub_ind], sub_feat_ind=sub_ind, _hru_def=_hru_def) # IntArea += Int.area * M2ToAcre # anarea = Int.area * M2ToAcre # IntArea_[lu][sub_ind] = anarea # print('area of {0} is reduced from {1:10.3f} acres to {2:10.3f}' # .format(lu_code, LuAreaListAcre[lu], IntArea)) # lu_code/j # IntLuArea[lu] = IntArea # print('New area of all landuses is {}'.format(sum(IntLuArea))) # else: # print('Land use area is equal to subbasin area') self.hru_names = list(set(self.hru_names)) return hru_paras, self.hru_geoms def _foo(self, code, intersection): hru_name = code[5:] year = code[0:4] row_index = pd.to_datetime(year + '0131', format='%Y%m%d', errors='ignore') self.hru_names.append(hru_name) self.all_hrus.append(code) anarea = intersection.area * M2ToAcre # saving value of area for currnet HRU and for for current year in dictionary self.area.loc[row_index, hru_name] = anarea self.area_frac_cat.loc[row_index, hru_name] = anarea / self.tot_cat_area return def plot_hrus(self, year, bbox, _polygon_dict, annotate=False, nrows=3, ncols=4, name='', annotate_missing_hru=False)->plt.Figure: polygon_dict = OrderedDict() for k, v in _polygon_dict.items(): if str(year) in k[0:4]: polygon_dict[k] = v # sorting dictionary based on keys so that it puts same HRU at same place for each year polygon_dict = get_sorted_dict(polygon_dict) figure, axs = plt.subplots(nrows, ncols) if isinstance(bbox, str): r = shapefile.Reader(bbox) bbox = r.bbox r.close() figure.set_figwidth(27) figure.set_figheight(12) axis_l = [item for sublist in list(axs) for item in sublist] # max_bbox = get_bbox_with_max_area(_polygon_dict) i = 0 for key, axis in zip(polygon_dict, axis_l): i += 1 ob = polygon_dict[key][0] # text0 = key.split('_')[4]+' in '+key.split('_')[1] +' '+ key.split('_')[2] if ob.type == 'MultiPolygon': anfang_x = [None] * len(ob) for s_ob in range(len(ob)): ob_ = ob[s_ob] x, y = ob_.exterior.xy axis.plot(x, y, color=np.random.rand(3, ), alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) axis.get_yaxis().set_visible(False) axis.get_xaxis().set_visible(False) if bbox is not None: axis.set_ylim([bbox[1], bbox[3]]) axis.set_xlim([bbox[0], bbox[2]]) anfang_x[s_ob] = x[0] if annotate: axis.annotate(key[3:], xy=(0.2, 0.1), xycoords='axes fraction', fontsize=18) elif ob.type == 'Polygon': x, y = polygon_dict[key][0].exterior.xy axis.plot(x, y, color=np.random.rand(3, ), alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) axis.get_yaxis().set_visible(False) axis.get_xaxis().set_visible(False) if annotate: axis.annotate(key[3:], xy=(0.2, 0.1), xycoords='axes fraction', fontsize=18) if bbox is not None: axis.set_ylim([bbox[1], bbox[3]]) axis.set_xlim([bbox[0], bbox[2]]) # axis.text(x[0], np.mean(y), text0, color='red', fontsize='12') else: # for empty cases x, y = np.arange(0, 10), np.arange(0, 10) axis.plot(x, y, color='w') text1 = 'no ' + key.split('_')[1] + ' in sub-basin ' + key.split('_')[2] if annotate_missing_hru: axis.text(x[0], np.mean(y), text1, color='red', fontsize=16) axis.get_yaxis().set_visible(False) axis.get_xaxis().set_visible(False) figure.suptitle('HRUs for year {}'.format(year), fontsize=22) # plt.title('HRUs for year {}'.format(year), fontsize=22) if self.save: name = 'hrus_{}.png'.format(year) if name is None else name + str(year) plt.savefig(name, bbox_inches="tight") if self.show: plt.show() return figure def plot_as_ts( self, marker='o', ms=8, min_xticks=None, max_xticks=None, figsize=None, **kwargs)->plt.Axes: """ parameters ---------- marker : ms : marker size as integer min_xticks : int minimum ticks on x-axis max_xticks : int maximum ticks on x-axis figsize : figure size **kwargs any keyword arguments for easy_mpl.plot hru_object.plot_as_ts()""" figsize = figsize or (12, 6) legend_kws = dict(fontsize=14, markerscale=2, bbox_to_anchor=(1.1, 0.99)) ax_kws = dict( xlabel="Time", xlabel_kws=dict(fontsize=18), ylabel="Area (Acres)", ylabel_kws=dict(fontsize=18), legend_kws=legend_kws, title = 'Variation of Area (acre) of HRUs with time' ) plt.close('all') _, axis = plt.subplots(figsize=figsize) for area in self.area: easy_mpl.plot(self.area[area], marker=marker, mfc='white', ms=ms, lw=4, label=area, ax=axis, ax_kws=ax_kws, show=False, **kwargs) axis.tick_params(color='lightgrey', labelsize=14, labelcolor='grey') axis.grid(ls='--', color='lightgrey') if min_xticks is not None: assert isinstance(min_xticks, int) assert isinstance(max_xticks, int) loc = mdates.AutoDateLocator(minticks=4, maxticks=6) axis.xaxis.set_major_locator(loc) fmt = mdates.AutoDateFormatter(loc) axis.xaxis.set_major_formatter(fmt) if self.save: plt.savefig(f'{self.hru_definition}_hru_as_ts.png', dpi=300, bbox_inches="tight") if self.show: plt.show() return axis def plot_hru_evolution(self, hru_name, make_gif=False): """ plots how the hru evolved during the years Parameters ---------- hru_name : str, name of hru to be plotted make_gif : bool if True, a gif file will be created from evolution plots Returns ------- """ for yr in self.index.keys(): y = str(yr)[2:] + '_' hru_name_year = y + hru_name # hru name with year self.plot_hru(hru_name_year, self.soil_shape) if make_gif: gif = GifUtil(folder=os.path.join(os.getcwd(), 'plots'), contains=hru_name) gif.make_gif() gif.remove_images() return def make_gif(self): gif = GifUtil(initials=self.hru_definition, folder=os.path.join(os.getcwd(), 'plots')) gif.make_gif() gif.remove_images() return def plot(self, what:str, index=None, show_all_together=True): assert what in ['landuse', 'soil', 'subbasins', 'slope'] if what == 'landuse': assert index shp_file = self.index[index] else: shp_file = getattr(self, f'{what}_shape') return plot_shapefile(shp_file, show_all_together) def plot_hru(self, hru_name, bbox=None)->plt.Figure: """ plot only one hru from `hru_geoms`. The value of each key in hru_geoms is a list with three shapes Examples -------- >>> self.plot_an_hru(self.hru_names[0], bbox=True) """ shape_list = self.hru_geoms[hru_name] figure, (axis_list) = plt.subplots(3) figure.set_figheight(14) if bbox: r = shapefile.Reader(bbox) bbox = r.bbox i = 0 leg = hru_name for axs, ob in zip(axis_list, shape_list): i +=1 if i==2: leg = hru_name.split('_')[1:2] elif i==3: leg = hru_name.split('_')[-1] if ob.type == 'MultiPolygon': for s_ob in range(len(ob)): ob_ = ob[s_ob] x, y = ob_.exterior.xy axs.plot(x, y, color=COLORS[i], alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) elif ob.type == 'Polygon': x, y = ob.exterior.xy axs.plot(x, y, color=COLORS[i], alpha=0.7, linewidth=3, solid_capstyle='round', zorder=2) axs.set_title(leg, fontsize=14) if bbox: axs.set_ylim([bbox[1], bbox[3]]) axs.set_xlim([bbox[0], bbox[2]]) if self.save: plt.savefig(hru_name + '.png') if self.show: plt.show() return figure def draw_pie( self, year:int, n_merge:int=0, shadow:bool = True, title:bool=False, **kwargs )->tuple: """ todo draw nested pie chart for all years https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.pie.html Draws a pie chart showing relative area of HRUs for a particular year. Since the hrus can change with time, selecting one year is based on supposition that area of hrus remain constant during the whole year. Parameters ---------- year : int, the year for which area of hrus will be used. n_merge : number of hrus to merge shadow : bool title : **kwargs : any keyword arguments for `easy_mpl.pie` Returns -------- tuple """ idx = str(year) + '-01-31' area_unsort = self.area.loc[idx] area = area_unsort.sort_values() merged = area[area.index[0]:area.index[n_merge-1]] rest = area[area.index[n_merge]:] if n_merge==0: assert len(merged) == len(area) merged_vals= [] merged_labels = [] else: merged_vals = [sum(merged.values)] merged_labels = ['{} HRUs'.format(n_merge)] vals = list(rest.values) + merged_vals labels = list(rest.keys()) + merged_labels explode = [0 for _ in range(len(vals))] explode[-1] = 0.1 labels_n = [] for l in labels: labels_n.append(l.replace('lu_', '')) if title: title = 'Areas of HRUs for year {}'.format(year) outs = easy_mpl.pie(fractions=vals, labels=labels_n, explode=tuple(explode), shadow=shadow, ax_kws=dict(title=title), show=False, **kwargs) name = f'{len(self.hru_names)}hrus_for_{year}_{self.hru_definition}.png' if self.save: plt.savefig(name, dpi=300, bbox_inches="tight") if self.show: plt.show() return outs
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/preprocessing/spatial_processing.py
spatial_processing.py
from typing import Union from ai4water.backend import imputations, np, pd, plt # use LGBM imputation method # https://www.kaggle.com/robikscube/handling-with-missing-data-youtube-stream#Level-4:-LightGBM-Imputer!! # plot imputation distribution class Imputation(object): """ Implements imputation of missing values using a range of methods. Imputation Methods ----------------- - pandas: Pandas library provides two methods for filling input data. `interpolate`: filling by interpolation Example of imputer_args can be {'method': 'spline': 'order': 2} For detailed args to be passed see interpolate_ `fillna`: example of imputer_args can be {'method': 'ffill'} For detailed args to be passed see fillna_ - sklearn: scikit-learn library provides 3 different imputation methods. `SimplteImputer`: For details see SimpleImputer_ `IterativeImputer`: imputer_args example: {'n_nearest_features': 2} For details see IterativeImputer_ `KNNIMputer`: All the args accepted by KNNImputer of sklearn can be passed as in imputer_args. imputer_args example: {'n_neighbors': 3}. For details KNNImputer_ - fancyimpute: knn: NuclearnNormMinimization SoftImpute Biscaler transdim: Methods -------- - :py:meth:`ai4water.preprocessing.imputation.Imputation.plot` plots the imputed values. - :py:meth:`ai4water.preprocessing.imputation.Imputation.missing_indices` indices of missing data. Examples: >>> import pandas as pd >>> import numpy as np >>> from ai4water.preprocessing import Imputation >>> df = pd.DataFrame([1,3,np.nan, np.nan, 9, np.nan, 11]) >>> imputer = Imputation(df, method='fillna', imputer_args={'method': 'ffill'}) >>> imputer() # change the imputation method >>> imputer.method = 'interpolate' >>> imputer(method='cubic') # Now try with KNN imputation >>> imputer.method = 'KNNImputer' >>> imputer(n_neighbors=3) .. _fillna: https://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.DataFrame.fillna.html .. _interpolate: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html .. _SimpleImputer: https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html#sklearn.impute.SimpleImputer .. _IterativeImputer: https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer .. _KNNImputer: https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html """ def __init__( self, data: Union[pd.DataFrame, np.ndarray, list], method: str = 'KNNImputer', features=None, imputer_args: dict = None ): """ Arguments: data: the data which contains missing values method: the method to apply for missing features: the features on which imputation is to be applied imputer_args: arguments for underlying imputer function """ self.data = self.maybe_make_df(data) self.method = method self.features = features or self.data.columns self.imputer_args = {} if imputer_args is None else imputer_args self.new_data = None @property def method(self): return self._method @method.setter def method(self, x): self._method = x def call(self, *args, **kwargs): raise NotImplementedError(f"You must ovewrite the `call` method to implement {self.method} method") def __call__(self, *args, **kwargs): """ If kwargs are provided they will overwrite self.imputer_args. This helps to use same instance of Imputantion class with different args. """ if kwargs: kwargs = kwargs else: kwargs = self.imputer_args if self.method in ['fillna', 'interpolate']: # it is a pandas based for col in self.data.columns: if col in self.features: self.data[col] = getattr(self.data[col], self.method)(**kwargs) elif self.method in imputations: imputer = imputations[self.method](**kwargs) data = self.data.copy() # making a copy so that non-imputed features remain intact _data = self.data[self.features].values data_ = imputer.fit_transform(_data) if isinstance(data_, np.ndarray): data_ = pd.DataFrame(data_, columns=self.features, index=self.data.index) data[self.features] = data_ setattr(self, 'data', data) else: return self.call() if self._dtype == 'list': self.data = self.data.values.reshape(-1,).tolist() elif self._dtype == 'ndarray': self.data = self.data.values return self.data def plot(self, cols=None, st=0, en=None): """ cols: columns to plot from data st: int en: int Example ------- >>> imputer.plot(cols=['in1', 'in2'], st=0, en=25) """ if cols is not None: if not isinstance(cols, list): assert isinstance(cols, str) and cols in self.data cols = [cols] else: cols = list(self.new_data.columns) if en is None: en = len(self.data) plt.close('all') _, axis = plt.subplots(len(cols), sharex='all') if not isinstance(axis, np.ndarray): axis = [axis] indices = self.missing_indices() for col, ax in zip(cols, axis): idx = indices[col] ax.plot(self.data[col][st:en], linestyle='-', color='k', marker='o', fillstyle='full', label="Original") ax.plot(self.new_data[col][idx][st:en], linestyle='--', marker='*', color='aqua', label="Imputed") ax.set_title(col) ax.legend() plt.show() return def missing_indices(self) -> dict: # https://github.com/scikit-learn/scikit-learn/blob/7cc3dbcbe/sklearn/impute/_base.py#L556 indices = {} for col in self.data.columns: # https://stackoverflow.com/a/42795371/5982232 indices[col] = np.isnan(self.data[col].values.astype(float)) return indices def maybe_make_df(self, data): setattr(self, '_dtype', data.__class__.__name__) data = data.copy() if isinstance(data, pd.DataFrame): data = data else: data = np.array(data) if data.ndim == 1: data = data.reshape(-1, 1) assert isinstance(data, np.ndarray) data = pd.DataFrame(data, columns=['data'+str(i) for i in range(data.shape[1])]) return data
AI4Water
/AI4Water-1.6.tar.gz/AI4Water-1.6/ai4water/preprocessing/imputation.py
imputation.py