instruction
stringclasses 2
values | input
stringlengths 0
1k
| output
stringclasses 2
values | metadata
dict |
---|---|---|---|
Analyze this document content | # Application Stack
AutoGen core is designed to be an unopinionated framework that can be used to build
a wide variety of multi-agent applications. It is not tied to any specific
agent abstraction or multi-agent pattern.
The following diagram shows the application stack.

At the bottom of the stack is the base messaging and routing facilities that
enable agents to communicate with each other. These are managed by the
agent runtime, and for most applications, developers only need to interact
with the high-level APIs provided by the runtime (see [Agent and Agent Runtime](../framework/agent-and-agent-runtime.ipynb)).
At the top of the stack, developers need to define the
types of the messages that agents exchange. This set of message types
forms a behavior contract that agents must adhere to, and the
implementation of the contracts determines how agents handle messages.
The behavior contract is also sometimes referred to as the message proto | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/core-concepts/application-stack.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Agent Runtime Environments
At the foundation level, the framework provides a _runtime environment_, which facilitates
communication between agents, manages their identities and lifecycles,
and enforce security and privacy boundaries.
It supports two types of runtime environment: _standalone_ and _distributed_.
Both types provide a common set of APIs for building multi-agent applications,
so you can switch between them without changing your agent implementation.
Each type can also have multiple implementations.
## Standalone Agent Runtime
Standalone runtime is suitable for single-process applications where all agents
are implemented in the same programming language and running in the same process.
In the Python API, an example of standalone runtime is the {py:class}`~autogen_core.SingleThreadedAgentRuntime`.
The following diagram shows the standalone runtime in the framework.

Here, agents communicate via messages through the ru | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/core-concepts/architecture.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Topic and Subscription
There are two ways for runtime to deliver messages,
direct messaging or broadcast. Direct messaging is one to one: the sender
must provide the recipient's agent ID. On the other hand,
broadcast is one to many and the sender does not provide recpients'
agent IDs.
Many scenarios are suitable for broadcast.
For example, in event-driven workflows, agents do not always know who
will handle their messages, and a workflow can be composed of agents
with no inter-dependencies.
This section focuses on the core concepts in broadcast: topic and subscription.
(topic_and_subscription_topic)=
## Topic
A topic defines the scope of a broadcast message.
In essence, agent runtime implements a publish-subscribe model through
its broadcast API: when publishing a message, the topic must be specified.
It is an indirection over agent IDs.
A topic consists of two components: topic type and topic source.
```{note}
Topic = (Topic Type, Topic Source)
```
Similar to [agent ID](./age | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/core-concepts/topic-and-subscription.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Intro
Agents can work together in a variety of ways to solve problems.
Research works like [AutoGen](https://aka.ms/autogen-paper),
[MetaGPT](https://arxiv.org/abs/2308.00352)
and [ChatDev](https://arxiv.org/abs/2307.07924) have shown
multi-agent systems out-performing single agent systems at complex tasks
like software development.
A multi-agent design pattern is a structure that emerges from message protocols:
it describes how agents interact with each other to solve problems.
For example, the [tool-equiped agent](../framework/tools.ipynb#tool-equipped-agent) in
the previous section employs a design pattern called ReAct,
which involves an agent interacting with tools.
You can implement any multi-agent design pattern using AutoGen agents.
In the next two sections, we will discuss two common design patterns:
group chat for task decomposition, and reflection for robustness.
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/design-patterns/intro.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Logging
AutoGen uses Python's built-in [`logging`](https://docs.python.org/3/library/logging.html) module.
There are two kinds of logging:
- **Trace logging**: This is used for debugging and is human readable messages to indicate what is going on. This is intended for a developer to understand what is happening in the code. The content and format of these logs should not be depended on by other systems.
- Name: {py:attr}`~autogen_core.TRACE_LOGGER_NAME`.
- **Structured logging**: This logger emits structured events that can be consumed by other systems. The content and format of these logs can be depended on by other systems.
- Name: {py:attr}`~autogen_core.EVENT_LOGGER_NAME`.
- See the module {py:mod}`autogen_core.logging` to see the available events.
- {py:attr}`~autogen_core.ROOT_LOGGER_NAME` can be used to enable or disable all logs.
## Enabling logging output
To enable trace logging, you can use the following code:
```python
import logging
from autogen_core import T | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/framework/logging.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Open Telemetry
AutoGen has native support for [open telemetry](https://opentelemetry.io/). This allows you to collect telemetry data from your application and send it to a telemetry backend of your choosing.
These are the components that are currently instrumented:
- Runtime (Single Threaded Agent Runtime, Worker Agent Runtime)
## Instrumenting your application
To instrument your application, you will need an sdk and an exporter. You may already have these if your application is already instrumented with open telemetry.
## Clean instrumentation
If you do not have open telemetry set up in your application, you can follow these steps to instrument your application.
```bash
pip install opentelemetry-sdk
```
Depending on your open telemetry collector, you can use grpc or http to export your telemetry.
```bash
# Pick one of the following
pip install opentelemetry-exporter-otlp-proto-http
pip install opentelemetry-exporter-otlp-proto-grpc
```
Next, we need to get a tracer provide | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/framework/telemetry.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Creating your own extension
With the new package structure in 0.4, it is easier than ever to create and publish your own extension to the AutoGen ecosystem. This page details some best practices so that your extension package integrates well with the AutoGen ecosystem.
## Best practices
### Naming
There is no requirement about naming. But prefixing the package name with `autogen-` makes it easier to find.
### Common interfaces
Whenever possible, extensions should implement the provided interfaces from the `autogen_core` package. This will allow for a more consistent experience for users.
#### Dependency on AutoGen
To ensure that the extension works with the version of AutoGen that it was designed for, it is recommended to specify the version of AutoGen the dependency section of the `pyproject.toml` with adequate constraints.
```toml
[project]
# ...
dependencies = [
"autogen-core>=0.4,<0.5"
]
```
### Usage of typing
AutoGen embraces the use of type hints to provide a b | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/extensions-user-guide/create-your-own.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Discover community projects
::::{grid} 1 2 2 2
:margin: 4 4 0 0
:gutter: 1
:::{grid-item-card} {fas}`globe;pst-color-primary` <br> Ecosystem
:link: https://github.com/topics/autogen
:class-item: api-card
:columns: 12
Find samples, services and other things that work with AutoGen
:::
:::{grid-item-card} {fas}`puzzle-piece;pst-color-primary` <br> Community Extensions
:link: https://github.com/topics/autogen-extension
:class-item: api-card
Find AutoGen extensions for 3rd party tools, components and services
:::
:::{grid-item-card} {fas}`vial;pst-color-primary` <br> Community Samples
:link: https://github.com/topics/autogen-sample
:class-item: api-card
Find community samples and examples of how to use AutoGen
:::
::::
## List of community projects
| Name | Package | Description |
|---|---|---|
| [autogen-watsonx-client](https://github.com/tsinggggg/autogen-watsonx-client) | [PyPi](https://pypi.org/project/autogen-watsonx-client/) | Model client for [IBM watsonx.ai](https:/ | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/extensions-user-guide/discover.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | ---
myst:
html_meta:
"description lang=en": |
User Guide for AutoGen Extensions, a framework for building multi-agent applications with AI agents.
---
# Extensions
```{toctree}
:maxdepth: 3
:hidden:
installation
discover
create-your-own
```
```{toctree}
:maxdepth: 3
:hidden:
:caption: Guides
azure-container-code-executor
```
AutoGen is designed to be extensible. The `autogen-ext` package contains many different component implementations maintained by the AutoGen project. However, we strongly encourage others to build their own components and publish them as part of the ecosytem.
::::{grid} 2 2 2 2
:gutter: 3
:::{grid-item-card} {fas}`magnifying-glass;pst-color-primary` Discover
:link: ./discover.html
Discover community extensions and samples
:::
:::{grid-item-card} {fas}`code;pst-color-primary` Create your own
:link: ./create-your-own.html
Create your own extension
:::
::::
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/extensions-user-guide/index.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | ---
myst:
html_meta:
"description lang=en": |
User Guide for AutoGen Extensions, a framework for building multi-agent applications with AI agents.
---
# Installation
First-part maintained extensions are available in the `autogen-ext` package.
```sh
pip install "autogen-ext==0.4.0.dev13"
```
Extras:
- `langchain` needed for {py:class}`~autogen_ext.tools.langchain.LangChainToolAdapter`
- `azure` needed for {py:class}`~autogen_ext.code_executors.azure.ACADynamicSessionsCodeExecutor`
- `docker` needed for {py:class}`~autogen_ext.code_executors.docker.DockerCommandLineCodeExecutor`
- `openai` needed for {py:class}`~autogen_ext.models.openai.OpenAIChatCompletionClient`
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/extensions-user-guide/installation.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this document content | # Samples
This directory contains sample apps that use AutoGen Core API.
See [core user guide](../docs/src/user-guide/core-user-guide/) for notebook examples.
See [Running the examples](#running-the-examples) for instructions on how to run the examples.
- [`chess_game.py`](chess_game.py): an example with two chess player agents that executes its own tools to demonstrate tool use and reflection on tool use.
- [`slow_human_in_loop.py`](slow_human_in_loop.py): an example showing human-in-the-loop which waits for human input before making the tool call.
## Running the examples
### Prerequisites
First, you need a shell with AutoGen core and required dependencies installed.
### Using Azure OpenAI API
For Azure OpenAI API, you need to set the following environment variables:
```bash
export OPENAI_API_TYPE=azure
export AZURE_OPENAI_API_ENDPOINT=your_azure_openai_endpoint
export AZURE_OPENAI_API_VERSION=your_azure_openai_api_version
```
By default, we use Azure Active Directory (AAD) | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | """This is an example of simulating a chess game with two agents
that play against each other, using tools to reason about the game state
and make moves, and using a group chat manager to orchestrate the conversation."""
import argparse
import asyncio
import logging
from typing import Annotated, Literal
from autogen_core import (
AgentId,
AgentInstantiationContext,
AgentRuntime,
DefaultSubscription,
DefaultTopicId,
SingleThreadedAgentRuntime,
)
from autogen_core.model_context import BufferedChatCompletionContext
from autogen_core.models import SystemMessage
from autogen_core.tools import FunctionTool
from chess import BLACK, SQUARE_NAMES, WHITE, Board, Move
from chess import piece_name as get_piece_name
from common.agents._chat_completion_agent import ChatCompletionAgent
from common.patterns._group_chat_manager import GroupChatManager
from common.types import TextMessage
from common.utils import get_chat_completion_client_from_envs
def validate_turn(board: B | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/chess_game.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | """
This example demonstrates an approach one can use to
implement a async human in the loop system.
The system consists of two agents:
1. An assistant agent that uses a tool call to schedule a meeting (this is a mock)
2. A user proxy that is used as a proxy for a slow human user. When this user receives
a message from the assistant, it sends out a termination request with the query for the real human.
The query to the human is sent out (as an input to the terminal here, but it could be an email or
anything else) and the state of the runtime is saved in a persistent layer. When the user responds,
the runtime is rehydrated with the state and the user input is sent back to the runtime.
This is a simple example that can be extended to more complex scenarios as well.
Whenever implementing a human in the loop system, it is important to consider that human looped
systems can be slow - Humans take time to respond, but also depending on your medium of
communication, the time taken can vary si | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/slow_human_in_loop.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | from __future__ import annotations
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Union
from autogen_core import FunctionCall, Image
from autogen_core.models import FunctionExecutionResultMessage
@dataclass(kw_only=True)
class BaseMessage:
# Name of the agent that sent this message
source: str
@dataclass
class TextMessage(BaseMessage):
content: str
@dataclass
class MultiModalMessage(BaseMessage):
content: List[Union[str, Image]]
@dataclass
class FunctionCallMessage(BaseMessage):
content: List[FunctionCall]
Message = Union[TextMessage, MultiModalMessage, FunctionCallMessage, FunctionExecutionResultMessage]
class ResponseFormat(Enum):
text = "text"
json_object = "json_object"
@dataclass
class RespondNow:
"""A message to request a response from the addressed agent. The sender
expects a response upon sening and waits for it synchronously."""
response_format: ResponseFormat = field(default=Resp | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/types.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import os
from typing import Any, List, Optional, Union
from autogen_core.models import (
AssistantMessage,
ChatCompletionClient,
FunctionExecutionResult,
FunctionExecutionResultMessage,
LLMMessage,
UserMessage,
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from typing_extensions import Literal
from .types import (
FunctionCallMessage,
Message,
MultiModalMessage,
TextMessage,
)
def convert_content_message_to_assistant_message(
message: Union[TextMessage, MultiModalMessage, FunctionCallMessage],
handle_unrepresentable: Literal["error", "ignore", "try_slice"] = "error",
) -> Optional[AssistantMessage]:
match message:
case TextMessage() | FunctionCallMessage():
return AssistantMessage(content=message.content, source=message.source)
case MultiModalMessage():
if handl | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._chat_completion_agent import ChatCompletionAgent
__all__ = [
"ChatCompletionAgent",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/agents/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import json
from typing import Any, Coroutine, Dict, List, Mapping, Sequence, Tuple
from autogen_core import (
AgentId,
CancellationToken,
DefaultTopicId,
FunctionCall,
MessageContext,
RoutedAgent,
message_handler,
)
from autogen_core.model_context import ChatCompletionContext
from autogen_core.models import (
AssistantMessage,
ChatCompletionClient,
FunctionExecutionResult,
FunctionExecutionResultMessage,
SystemMessage,
UserMessage,
)
from autogen_core.tools import Tool
from ..types import (
FunctionCallMessage,
Message,
MultiModalMessage,
PublishNow,
Reset,
RespondNow,
ResponseFormat,
TextMessage,
ToolApprovalRequest,
ToolApprovalResponse,
)
class ChatCompletionAgent(RoutedAgent):
"""An agent implementation that uses the ChatCompletion API to gnenerate
responses and execute tools.
Args:
description (str): The description of the agent.
system_messa | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/agents/_chat_completion_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._group_chat_manager import GroupChatManager
__all__ = ["GroupChatManager"]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/patterns/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
from typing import Any, Callable, List, Mapping
from autogen_core import AgentId, AgentProxy, MessageContext, RoutedAgent, message_handler
from autogen_core.model_context import ChatCompletionContext
from autogen_core.models import ChatCompletionClient, UserMessage
from ..types import (
MultiModalMessage,
PublishNow,
Reset,
TextMessage,
)
from ._group_chat_utils import select_speaker
logger = logging.getLogger("autogen_core.events")
class GroupChatManager(RoutedAgent):
"""An agent that manages a group chat through event-driven orchestration.
Args:
name (str): The name of the agent.
description (str): The description of the agent.
runtime (AgentRuntime): The runtime to register the agent.
participants (List[AgentId]): The list of participants in the group chat.
model_context (ChatCompletionContext): The context manager for storing
and retrieving ChatCompletion messages.
model_client | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/patterns/_group_chat_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | """Credit to the original authors: https://github.com/microsoft/autogen/blob/main/autogen/agentchat/groupchat.py"""
import re
from typing import Dict, List
from autogen_core import AgentProxy
from autogen_core.model_context import ChatCompletionContext
from autogen_core.models import ChatCompletionClient, SystemMessage, UserMessage
async def select_speaker(context: ChatCompletionContext, client: ChatCompletionClient, agents: List[AgentProxy]) -> int:
"""Selects the next speaker in a group chat using a ChatCompletion client."""
# TODO: Handle multi-modal messages.
# Construct formated current message history.
history_messages: List[str] = []
for msg in await context.get_messages():
assert isinstance(msg, UserMessage) and isinstance(msg.content, str)
history_messages.append(f"{msg.source}: {msg.content}")
history = "\n".join(history_messages)
# Construct agent roles.
roles = "\n".join(
[f"{(await agent.metadata)['type']}: {(aw | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/common/patterns/_group_chat_utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # Distributed Group Chat
This example runs a gRPC server using [GrpcWorkerAgentRuntimeHost](../../src/autogen_core/application/_worker_runtime_host.py) and instantiates three distributed runtimes using [GrpcWorkerAgentRuntime](../../src/autogen_core/application/_worker_runtime.py). These runtimes connect to the gRPC server as hosts and facilitate a round-robin distributed group chat. This example leverages the [Azure OpenAI Service](https://azure.microsoft.com/en-us/products/ai-services/openai-service) to implement writer and editor LLM agents. Agents are instructed to provide concise answers, as the primary goal of this example is to showcase the distributed runtime rather than the quality of agent responses.
## Setup
### Setup Python Environment
1. Create a virtual environment as instructed in [README](../../../../../../../../README.md).
2. Run `uv pip install chainlit` in the same virtual environment
### General Configuration
In the `config.yaml` file, you can configure the `c | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | import asyncio
import random
from typing import Awaitable, Callable, List
from uuid import uuid4
from _types import GroupChatMessage, MessageChunk, RequestToSpeak, UIAgentConfig
from autogen_core import DefaultTopicId, MessageContext, RoutedAgent, message_handler
from autogen_core.models import (
AssistantMessage,
ChatCompletionClient,
LLMMessage,
SystemMessage,
UserMessage,
)
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
from rich.console import Console
from rich.markdown import Markdown
class BaseGroupChatAgent(RoutedAgent):
"""A group chat participant using an LLM."""
def __init__(
self,
description: str,
group_chat_topic_type: str,
model_client: ChatCompletionClient,
system_message: str,
ui_config: UIAgentConfig,
) -> None:
super().__init__(description=description)
self._group_chat_topic_type = group_chat_topic_type
self._model_client = model_client
sel | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/_agents.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from typing import Dict
from autogen_core.models import (
LLMMessage,
)
from autogen_ext.models.openai import AzureOpenAIClientConfiguration
from pydantic import BaseModel
class GroupChatMessage(BaseModel):
"""Implements a sample message sent by an LLM agent"""
body: LLMMessage
class RequestToSpeak(BaseModel):
"""Message type for agents to speak"""
pass
@dataclass
class MessageChunk:
message_id: str
text: str
author: str
finished: bool
def __str__(self) -> str:
return f"{self.author}({self.message_id}): {self.text}"
# Define Host configuration model
class HostConfig(BaseModel):
hostname: str
port: int
@property
def address(self) -> str:
return f"{self.hostname}:{self.port}"
# Define GroupChatManager configuration model
class GroupChatManagerConfig(BaseModel):
topic_type: str
max_rounds: int
# Define WriterAgent configuration model
class ChatAgentConfig(Base | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/_types.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
import os
from typing import Any, Iterable, Type
import yaml
from _types import AppConfig
from autogen_core import MessageSerializer, try_get_known_serializers_for_type
from autogen_ext.models.openai import AzureOpenAIClientConfiguration
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
def load_config(file_path: str = os.path.join(os.path.dirname(__file__), "config.yaml")) -> AppConfig:
model_client = {}
with open(file_path, "r") as file:
config_data = yaml.safe_load(file)
model_client = config_data["client_config"]
del config_data["client_config"]
app_config = AppConfig(**config_data)
# This was required as it couldn't automatically instantiate AzureOpenAIClientConfiguration
aad_params = {}
if len(model_client.get("api_key", "")) == 0:
aad_params["azure_ad_token_provider"] = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.def | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/_utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import warnings
from _agents import BaseGroupChatAgent
from _types import AppConfig, GroupChatMessage, MessageChunk, RequestToSpeak
from _utils import get_serializers, load_config, set_all_log_levels
from autogen_core import (
TypeSubscription,
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
from rich.console import Console
from rich.markdown import Markdown
async def main(config: AppConfig):
set_all_log_levels(logging.ERROR)
editor_agent_runtime = GrpcWorkerAgentRuntime(host_address=config.host.address)
editor_agent_runtime.add_message_serializer(get_serializers([RequestToSpeak, GroupChatMessage, MessageChunk])) # type: ignore[arg-type]
await asyncio.sleep(4)
Console().print(Markdown("Starting **`Editor Agent`**"))
editor_agent_runtime.start()
editor_agent_type = await BaseGroupChatAgent.register(
editor_agent_runtime,
c | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/run_editor_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import warnings
from _agents import GroupChatManager, publish_message_to_ui, publish_message_to_ui_and_backend
from _types import AppConfig, GroupChatMessage, MessageChunk, RequestToSpeak
from _utils import get_serializers, load_config, set_all_log_levels
from autogen_core import (
TypeSubscription,
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
from rich.console import Console
from rich.markdown import Markdown
set_all_log_levels(logging.ERROR)
async def main(config: AppConfig):
set_all_log_levels(logging.ERROR)
group_chat_manager_runtime = GrpcWorkerAgentRuntime(host_address=config.host.address)
group_chat_manager_runtime.add_message_serializer(get_serializers([RequestToSpeak, GroupChatMessage, MessageChunk])) # type: ignore[arg-type]
await asyncio.sleep(1)
Console().print(Markdown("Starting **`Group Chat Manager`**"))
group_chat_manage | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/run_group_chat_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
from _types import HostConfig
from _utils import load_config
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntimeHost
from rich.console import Console
from rich.markdown import Markdown
async def main(host_config: HostConfig):
host = GrpcWorkerAgentRuntimeHost(address=host_config.address)
host.start()
console = Console()
console.print(
Markdown(f"**`Distributed Host`** is now running and listening for connection at **`{host_config.address}`**")
)
await host.stop_when_signal()
if __name__ == "__main__":
asyncio.run(main(load_config().host))
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/run_host.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import warnings
import chainlit as cl # type: ignore [reportUnknownMemberType] # This dependency is installed through instructions
from _agents import MessageChunk, UIAgent
from _types import AppConfig, GroupChatMessage, RequestToSpeak
from _utils import get_serializers, load_config, set_all_log_levels
from autogen_core import (
TypeSubscription,
)
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
from chainlit import Message # type: ignore [reportAttributeAccessIssue]
from rich.console import Console
from rich.markdown import Markdown
set_all_log_levels(logging.ERROR)
message_chunks: dict[str, Message] = {} # type: ignore [reportUnknownVariableType]
async def send_cl_stream(msg: MessageChunk) -> None:
if msg.message_id not in message_chunks:
message_chunks[msg.message_id] = Message(content="", author=msg.author)
if not msg.finished:
await message_chunks[msg.message_id].stream_token(msg.text) # type: ignore | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/run_ui.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import warnings
from _agents import BaseGroupChatAgent
from _types import AppConfig, GroupChatMessage, MessageChunk, RequestToSpeak
from _utils import get_serializers, load_config, set_all_log_levels
from autogen_core import (
TypeSubscription,
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
from rich.console import Console
from rich.markdown import Markdown
async def main(config: AppConfig) -> None:
set_all_log_levels(logging.ERROR)
writer_agent_runtime = GrpcWorkerAgentRuntime(host_address=config.host.address)
writer_agent_runtime.add_message_serializer(get_serializers([RequestToSpeak, GroupChatMessage, MessageChunk])) # type: ignore[arg-type]
await asyncio.sleep(3)
Console().print(Markdown("Starting **`Writer Agent`**"))
writer_agent_runtime.start()
writer_agent_type = await BaseGroupChatAgent.register(
writer_agent_runtime,
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/distributed-group-chat/run_writer_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | """
The :mod:`autogen_core.worker.protos` module provides Google Protobuf classes for agent-worker communication
"""
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.dirname(__file__)))
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/protos/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: agent_events.proto
# Protobuf Python Version: 4.25.1
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x12\x61gent_events.proto\x12\x06\x61gents\"2\n\x0bTextMessage\x12\x13\n\x0btextMessage\x18\x01 \x01(\t\x12\x0e\n\x06source\x18\x02 \x01(\t\"\x18\n\x05Input\x12\x0f\n\x07message\x18\x01 \x01(\t\"\x1f\n\x0eInputProcessed\x12\r\n\x05route\x18\x01 \x01(\t\"\x19\n\x06Output\x12\x0f\n\x07message\x18\x01 \x01(\t\"\x1e\n\rOutputWritten\x12\r\n\x05route\x18\x01 \x01(\t\"\x1a\n\x07IOError\x12\x0f\n\x07message\x18\x01 \x01(\t\"%\n\x12NewMessag | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/protos/agent_events_pb2.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/protos/agent_events_pb2_grpc.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # Multi Agent Orchestration, Distributed Agent Runtime Example
This repository is an example of how to run a distributed agent runtime. The system is composed of three main components:
1. The agent host runtime, which is responsible for managing the eventing engine, and the pub/sub message system.
2. The worker runtime, which is responsible for the lifecycle of the distributed agents, including the "semantic router".
3. The user proxy, which is responsible for managing the user interface and the user interactions with the agents.
## Example Scenario
In this example, we have a simple scenario where we have a set of distributed agents (an "HR", and a "Finance" agent) which an enterprise may use to manage their HR and Finance operations. Each of these agents are independent, and can be running on different machines. While many multi-agent systems are built to have the agents collaborate to solve a difficult task - the goal of this example is to show how an enterprise may manage a lar | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | import asyncio
import logging
from _semantic_router_components import FinalResult, TerminationMessage, UserProxyMessage, WorkerAgentMessage
from autogen_core import TRACE_LOGGER_NAME, DefaultTopicId, MessageContext, RoutedAgent, message_handler
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(f"{TRACE_LOGGER_NAME}.workers")
class WorkerAgent(RoutedAgent):
def __init__(self, name: str) -> None:
super().__init__("A Worker Agent")
self._name = name
@message_handler
async def my_message_handler(self, message: UserProxyMessage, ctx: MessageContext) -> None:
assert ctx.topic_id is not None
logger.debug(f"Received message from {message.source}: {message.content}")
if "END" in message.content:
await self.publish_message(
TerminationMessage(reason="user terminated conversation", content=message.content, source=self.type),
topic_id=DefaultTopicId(type="user_proxy", source=ctx.t | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/_agents.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
from _semantic_router_components import AgentRegistryBase, IntentClassifierBase, TerminationMessage, UserProxyMessage
from autogen_core import (
TRACE_LOGGER_NAME,
DefaultTopicId,
MessageContext,
RoutedAgent,
default_subscription,
message_handler,
)
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(f"{TRACE_LOGGER_NAME}.semantic_router")
logger.setLevel(logging.DEBUG)
@default_subscription
class SemanticRouterAgent(RoutedAgent):
def __init__(self, name: str, agent_registry: AgentRegistryBase, intent_classifier: IntentClassifierBase) -> None:
super().__init__("Semantic Router Agent")
self._name = name
self._registry = agent_registry
self._classifier = intent_classifier
# The User has sent a message that needs to be routed
@message_handler
async def route_to_agent(self, message: UserProxyMessage, ctx: MessageContext) -> None:
assert ctx.topic_id is not None
logg | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/_semantic_router_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from abc import ABC, abstractmethod
from dataclasses import dataclass
class IntentClassifierBase(ABC):
@abstractmethod
async def classify_intent(self, message: str) -> str:
pass
class AgentRegistryBase(ABC):
@abstractmethod
async def get_agent(self, intent: str) -> str:
pass
@dataclass(kw_only=True)
class BaseMessage:
"""A basic message that stores the source of the message."""
source: str
@dataclass
class TextMessage(BaseMessage):
content: str
def __len__(self):
return len(self.content)
@dataclass
class UserProxyMessage(TextMessage):
"""A message that is sent from the user to the system, and needs to be routed to the appropriate agent."""
pass
@dataclass
class TerminationMessage(TextMessage):
"""A message that is sent from the system to the user, indicating that the conversation has ended."""
reason: str
@dataclass
class WorkerAgentMessage(TextMessage):
"""A message that is sent from a worker | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/_semantic_router_components.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import platform
from autogen_core import TRACE_LOGGER_NAME
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntimeHost
async def run_host():
host = GrpcWorkerAgentRuntimeHost(address="localhost:50051")
host.start() # Start a host service in the background.
if platform.system() == "Windows":
try:
while True:
await asyncio.sleep(1)
except KeyboardInterrupt:
await host.stop()
else:
await host.stop_when_signal()
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(f"{TRACE_LOGGER_NAME}.host")
asyncio.run(run_host())
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/run_host.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | """
This example showcases using a Semantic Router
to dynamically route user messages to the most appropraite agent
for a conversation.
The Semantic Router Agent is responsible for receiving messages from the user,
identifying the intent of the message, and then routing the message to the
agent, by referencing an "Agent Registry". Using the
pub-sub model, messages are broadcast to the most appropriate agent.
In this example, the Agent Registry is a simple dictionary which maps
string-matched intents to agent names. In a more complex example, the
intent classifier may be more robust, and the agent registry could use a
technology such as Azure AI Search to host definitions for many agents.
For this example, there are 2 agents available, an "hr" agent and a "finance" agent.
Any requests that can not be classified as "hr" or "finance" will result in the conversation
ending with a Termination message.
"""
import asyncio
import platform
from _agents import UserProxyAgent, WorkerAgent
f | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/semantic_router/run_semantic_router.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from autogen_core import DefaultTopicId, MessageContext, RoutedAgent, default_subscription, message_handler
@dataclass
class CascadingMessage:
round: int
@dataclass
class ReceiveMessageEvent:
round: int
sender: str
recipient: str
@default_subscription
class CascadingAgent(RoutedAgent):
def __init__(self, max_rounds: int) -> None:
super().__init__("A cascading agent.")
self.max_rounds = max_rounds
@message_handler
async def on_new_message(self, message: CascadingMessage, ctx: MessageContext) -> None:
await self.publish_message(
ReceiveMessageEvent(round=message.round, sender=str(ctx.sender), recipient=str(self.id)),
topic_id=DefaultTopicId(),
)
if message.round == self.max_rounds:
return
await self.publish_message(CascadingMessage(round=message.round + 1), topic_id=DefaultTopicId())
@default_subscription
class ObserverAgent(RoutedAge | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/agents.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from agents import CascadingMessage, ObserverAgent
from autogen_core import DefaultTopicId, try_get_known_serializers_for_type
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
async def main() -> None:
runtime = GrpcWorkerAgentRuntime(host_address="localhost:50051")
runtime.add_message_serializer(try_get_known_serializers_for_type(CascadingMessage))
runtime.start()
await ObserverAgent.register(runtime, "observer_agent", lambda: ObserverAgent())
await runtime.publish_message(CascadingMessage(round=1), topic_id=DefaultTopicId())
await runtime.stop_when_signal()
if __name__ == "__main__":
# import logging
# logging.basicConfig(level=logging.DEBUG)
# logger = logging.getLogger("autogen_core")
import asyncio
asyncio.run(main())
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/run_cascading_publisher.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import uuid
from agents import CascadingAgent, ReceiveMessageEvent
from autogen_core import try_get_known_serializers_for_type
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
async def main() -> None:
runtime = GrpcWorkerAgentRuntime(host_address="localhost:50051")
runtime.add_message_serializer(try_get_known_serializers_for_type(ReceiveMessageEvent))
runtime.start()
agent_type = f"cascading_agent_{uuid.uuid4()}".replace("-", "_")
await CascadingAgent.register(runtime, agent_type, lambda: CascadingAgent(max_rounds=3))
await runtime.stop_when_signal()
if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("autogen_core")
import asyncio
asyncio.run(main())
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/run_cascading_worker.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntimeHost
async def main() -> None:
service = GrpcWorkerAgentRuntimeHost(address="localhost:50051")
service.start()
await service.stop_when_signal()
if __name__ == "__main__":
import logging
logging.basicConfig(level=logging.WARNING)
logging.getLogger("autogen_core").setLevel(logging.DEBUG)
asyncio.run(main())
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/run_host.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
from dataclasses import dataclass
from typing import Any, NoReturn
from autogen_core import (
DefaultSubscription,
DefaultTopicId,
MessageContext,
RoutedAgent,
message_handler,
try_get_known_serializers_for_type,
)
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
@dataclass
class AskToGreet:
content: str
@dataclass
class Greeting:
content: str
@dataclass
class ReturnedGreeting:
content: str
@dataclass
class Feedback:
content: str
@dataclass
class ReturnedFeedback:
content: str
class ReceiveAgent(RoutedAgent):
def __init__(self) -> None:
super().__init__("Receive Agent")
@message_handler
async def on_greet(self, message: Greeting, ctx: MessageContext) -> None:
await self.publish_message(ReturnedGreeting(f"Returned greeting: {message.content}"), topic_id=DefaultTopicId())
@message_handler
async def on_feedback(self, message: Feedback, ctx: MessageContex | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/run_worker_pub_sub.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
from dataclasses import dataclass
from autogen_core import (
AgentId,
DefaultSubscription,
DefaultTopicId,
MessageContext,
RoutedAgent,
message_handler,
)
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
@dataclass
class AskToGreet:
content: str
@dataclass
class Greeting:
content: str
@dataclass
class Feedback:
content: str
class ReceiveAgent(RoutedAgent):
def __init__(self) -> None:
super().__init__("Receive Agent")
@message_handler
async def on_greet(self, message: Greeting, ctx: MessageContext) -> Greeting:
return Greeting(content=f"Received: {message.content}")
@message_handler
async def on_feedback(self, message: Feedback, ctx: MessageContext) -> None:
print(f"Feedback received: {message.content}")
class GreeterAgent(RoutedAgent):
def __init__(self, receive_agent_type: str) -> None:
super().__init__("Greeter Agent")
self._receiv | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/worker/run_worker_rpc.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # Python and dotnet agents interoperability sample
This sample demonstrates how to create a Python agent that interacts with a .NET agent.
To run the sample, check out the autogen repository.
Then do the following:
1. Navigate to autogen/dotnet/samples/Hello/Hello.AppHost
2. Run `dotnet run` to start the .NET Aspire app host, which runs three projects:
- Backend (the .NET Agent Runtime)
- HelloAgent (the .NET Agent)
- this Python agent - hello_python_agent.py
3. The AppHost will start the Aspire dashboard on [https://localhost:15887](https://localhost:15887).
The Python agent will interact with the .NET agent by sending a message to the .NET runtime, which will relay the message to the .NET agent.
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/xlang/hello_python_agent/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | import asyncio
import logging
import os
import sys
# from protos.agents_events_pb2 import NewMessageReceived
from autogen_core import (
PROTOBUF_DATA_CONTENT_TYPE,
AgentId,
DefaultSubscription,
DefaultTopicId,
TypeSubscription,
try_get_known_serializers_for_type,
)
from autogen_ext.runtimes.grpc import GrpcWorkerAgentRuntime
# Add the local package directory to sys.path
thisdir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(thisdir, "..", ".."))
from dotenv import load_dotenv # type: ignore # noqa: E402
from protos.agent_events_pb2 import NewMessageReceived, Output # type: ignore # noqa: E402
from user_input import UserProxy # type: ignore # noqa: E402
agnext_logger = logging.getLogger("autogen_core")
async def main() -> None:
load_dotenv()
agentHost = os.getenv("AGENT_HOST") or "localhost:53072"
# grpc python bug - can only use the hostname, not prefix - if hostname has a prefix we have to remove it:
if agentHo | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/xlang/hello_python_agent/hello_python_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
from typing import Union
from autogen_core import DefaultTopicId, MessageContext, RoutedAgent, message_handler
from protos.agent_events_pb2 import ConversationClosed, Input, NewMessageReceived, Output # type: ignore
input_types = Union[ConversationClosed, Input, Output]
class UserProxy(RoutedAgent):
"""An agent that allows the user to play the role of an agent in the conversation via input."""
DEFAULT_DESCRIPTION = "A human user."
def __init__(
self,
description: str = DEFAULT_DESCRIPTION,
) -> None:
super().__init__(description)
@message_handler
async def handle_user_chat_input(self, message: input_types, ctx: MessageContext) -> None:
logger = logging.getLogger("autogen_core")
if isinstance(message, Input):
response = await self.ainput("User input ('exit' to quit): ")
response = response.strip()
logger.info(response)
await self.publish | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/samples/xlang/hello_python_agent/user_input.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import importlib.metadata
__version__ = importlib.metadata.version("autogen_core")
from ._agent import Agent
from ._agent_id import AgentId
from ._agent_instantiation import AgentInstantiationContext
from ._agent_metadata import AgentMetadata
from ._agent_proxy import AgentProxy
from ._agent_runtime import AgentRuntime
from ._agent_type import AgentType
from ._base_agent import BaseAgent
from ._cancellation_token import CancellationToken
from ._closure_agent import ClosureAgent, ClosureContext
from ._component_config import (
Component,
ComponentConfigImpl,
ComponentLoader,
ComponentModel,
ComponentType,
)
from ._constants import (
EVENT_LOGGER_NAME as EVENT_LOGGER_NAME_ALIAS,
)
from ._constants import (
ROOT_LOGGER_NAME as ROOT_LOGGER_NAME_ALIAS,
)
from ._constants import (
TRACE_LOGGER_NAME as TRACE_LOGGER_NAME_ALIAS,
)
from ._default_subscription import DefaultSubscription, default_subscription, type_subscription
from ._default_topic import DefaultT | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import Any, Mapping, Protocol, runtime_checkable
from ._agent_id import AgentId
from ._agent_metadata import AgentMetadata
from ._message_context import MessageContext
@runtime_checkable
class Agent(Protocol):
@property
def metadata(self) -> AgentMetadata:
"""Metadata of the agent."""
...
@property
def id(self) -> AgentId:
"""ID of the agent."""
...
async def on_message(self, message: Any, ctx: MessageContext) -> Any:
"""Message handler for the agent. This should only be called by the runtime, not by other agents.
Args:
message (Any): Received message. Type is one of the types in `subscriptions`.
ctx (MessageContext): Context of the message.
Returns:
Any: Response to the message. Can be None.
Raises:
asyncio.CancelledError: If the message was cancelled.
CantHandleException: If the agent cannot handle the message.
""" | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import re
from typing_extensions import Self
from ._agent_type import AgentType
def is_valid_agent_type(value: str) -> bool:
return bool(re.match(r"^[\w\-\.]+\Z", value))
class AgentId:
"""
Agent ID uniquely identifies an agent instance within an agent runtime - including distributed runtime. It is the 'address' of the agent instance for receiving messages.
See here for more information: :ref:`agentid_and_lifecycle`
"""
def __init__(self, type: str | AgentType, key: str) -> None:
if isinstance(type, AgentType):
type = type.type
if not is_valid_agent_type(type):
raise ValueError(rf"Invalid agent type: {type}. Allowed values MUST match the regex: `^[\w\-\.]+\Z`")
self._type = type
self._key = key
def __hash__(self) -> int:
return hash((self._type, self._key))
def __str__(self) -> str:
return f"{self._type}/{self._key}"
def __repr__(self) -> str:
return f'AgentI | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_id.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from contextlib import contextmanager
from contextvars import ContextVar
from typing import Any, ClassVar, Generator
from ._agent_id import AgentId
from ._agent_runtime import AgentRuntime
class AgentInstantiationContext:
def __init__(self) -> None:
raise RuntimeError(
"AgentInstantiationContext cannot be instantiated. It is a static class that provides context management for agent instantiation."
)
_AGENT_INSTANTIATION_CONTEXT_VAR: ClassVar[ContextVar[tuple[AgentRuntime, AgentId]]] = ContextVar(
"_AGENT_INSTANTIATION_CONTEXT_VAR"
)
@classmethod
@contextmanager
def populate_context(cls, ctx: tuple[AgentRuntime, AgentId]) -> Generator[None, Any, None]:
""":meta private:"""
token = AgentInstantiationContext._AGENT_INSTANTIATION_CONTEXT_VAR.set(ctx)
try:
yield
finally:
AgentInstantiationContext._AGENT_INSTANTIATION_CONTEXT_VAR.reset(token)
@classmethod
def curr | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_instantiation.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import TypedDict
class AgentMetadata(TypedDict):
type: str
key: str
description: str
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_metadata.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
from typing import TYPE_CHECKING, Any, Awaitable, Mapping
from ._agent_id import AgentId
from ._agent_metadata import AgentMetadata
from ._cancellation_token import CancellationToken
if TYPE_CHECKING:
from ._agent_runtime import AgentRuntime
class AgentProxy:
"""A helper class that allows you to use an :class:`~autogen_core.AgentId` in place of its associated :class:`~autogen_core.Agent`"""
def __init__(self, agent: AgentId, runtime: AgentRuntime):
self._agent = agent
self._runtime = runtime
@property
def id(self) -> AgentId:
"""Target agent for this proxy"""
return self._agent
@property
def metadata(self) -> Awaitable[AgentMetadata]:
"""Metadata of the agent."""
return self._runtime.agent_metadata(self._agent)
async def send_message(
self,
message: Any,
*,
sender: AgentId,
cancellation_token: CancellationToken | None = None | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_proxy.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
from collections.abc import Sequence
from typing import Any, Awaitable, Callable, Mapping, Protocol, Type, TypeVar, overload, runtime_checkable
from ._agent import Agent
from ._agent_id import AgentId
from ._agent_metadata import AgentMetadata
from ._agent_type import AgentType
from ._cancellation_token import CancellationToken
from ._serialization import MessageSerializer
from ._subscription import Subscription
from ._topic import TopicId
# Undeliverable - error
T = TypeVar("T", bound=Agent)
@runtime_checkable
class AgentRuntime(Protocol):
async def send_message(
self,
message: Any,
recipient: AgentId,
*,
sender: AgentId | None = None,
cancellation_token: CancellationToken | None = None,
message_id: str | None = None,
) -> Any:
"""Send a message to an agent and get a response.
Args:
message (Any): The message to send.
recipient (AgentId): Th | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_runtime.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
@dataclass(eq=True, frozen=True)
class AgentType:
type: str
"""String representation of this agent type."""
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_agent_type.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import inspect
import warnings
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Any, Awaitable, Callable, ClassVar, List, Mapping, Tuple, Type, TypeVar, final
from typing_extensions import Self
from ._agent import Agent
from ._agent_id import AgentId
from ._agent_instantiation import AgentInstantiationContext
from ._agent_metadata import AgentMetadata
from ._agent_runtime import AgentRuntime
from ._agent_type import AgentType
from ._cancellation_token import CancellationToken
from ._message_context import MessageContext
from ._serialization import MessageSerializer, try_get_known_serializers_for_type
from ._subscription import Subscription, UnboundSubscription
from ._subscription_context import SubscriptionInstantiationContext
from ._topic import TopicId
from ._type_prefix_subscription import TypePrefixSubscription
T = TypeVar("T", bound=Agent)
BaseAgentType = TypeVar("BaseAgentType", bound="BaseAgent")
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_base_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import threading
from asyncio import Future
from typing import Any, Callable, List
class CancellationToken:
"""A token used to cancel pending async calls"""
def __init__(self) -> None:
self._cancelled: bool = False
self._lock: threading.Lock = threading.Lock()
self._callbacks: List[Callable[[], None]] = []
def cancel(self) -> None:
"""Cancel pending async calls linked to this cancellation token."""
with self._lock:
if not self._cancelled:
self._cancelled = True
for callback in self._callbacks:
callback()
def is_cancelled(self) -> bool:
"""Check if the CancellationToken has been used"""
with self._lock:
return self._cancelled
def add_callback(self, callback: Callable[[], None]) -> None:
"""Attach a callback that will be called when cancel is invoked"""
with self._lock:
if self._cancelled:
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_cancellation_token.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import inspect
import warnings
from typing import Any, Awaitable, Callable, List, Literal, Mapping, Protocol, Sequence, TypeVar, get_type_hints
from ._agent_id import AgentId
from ._agent_instantiation import AgentInstantiationContext
from ._agent_metadata import AgentMetadata
from ._agent_runtime import AgentRuntime
from ._agent_type import AgentType
from ._base_agent import BaseAgent
from ._cancellation_token import CancellationToken
from ._message_context import MessageContext
from ._serialization import try_get_known_serializers_for_type
from ._subscription import Subscription
from ._subscription_context import SubscriptionInstantiationContext
from ._topic import TopicId
from ._type_helpers import get_types
from .exceptions import CantHandleException
T = TypeVar("T")
ClosureAgentType = TypeVar("ClosureAgentType", bound="ClosureAgent")
def get_handled_types_from_closure(
closure: Callable[[ClosureAgent, T, MessageContext], Awaitable[Any]], | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_closure_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import importlib
import warnings
from typing import Any, ClassVar, Dict, Generic, Literal, Protocol, Type, cast, overload, runtime_checkable
from pydantic import BaseModel
from typing_extensions import Self, TypeVar
ComponentType = Literal["model", "agent", "tool", "termination", "token_provider"] | str
ConfigT = TypeVar("ConfigT", bound=BaseModel)
T = TypeVar("T", bound=BaseModel, covariant=True)
class ComponentModel(BaseModel):
"""Model class for a component. Contains all information required to instantiate a component."""
provider: str
"""Describes how the component can be instantiated."""
component_type: ComponentType | None = None
"""Logical type of the component. If missing, the component assumes the default type of the provider."""
version: int | None = None
"""Version of the component specification. If missing, the component assumes whatever is the current version of the library used to load it. This is obv | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_component_config.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | ROOT_LOGGER_NAME = "autogen_core"
"""str: Logger name used for structured event logging"""
EVENT_LOGGER_NAME = "autogen_core.events"
"""str: Logger name used for structured event logging"""
TRACE_LOGGER_NAME = "autogen_core.trace"
"""str: Logger name used for developer intended trace logging. The content and format of this log should not be depended upon."""
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_constants.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import Callable, Type, TypeVar, overload
from ._agent_type import AgentType
from ._base_agent import BaseAgent, subscription_factory
from ._subscription_context import SubscriptionInstantiationContext
from ._type_subscription import TypeSubscription
from .exceptions import CantHandleException
class DefaultSubscription(TypeSubscription):
"""The default subscription is designed to be a sensible default for applications that only need global scope for agents.
This topic by default uses the "default" topic type and attempts to detect the agent type to use based on the instantiation context.
Args:
topic_type (str, optional): The topic type to subscribe to. Defaults to "default".
agent_type (str, optional): The agent type to use for the subscription. Defaults to None, in which case it will attempt to detect the agent type based on the instantiation context.
"""
def __init__(self, topic_type: str = "default", agent_type: str | AgentType | | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_default_subscription.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._message_handler_context import MessageHandlerContext
from ._topic import TopicId
class DefaultTopicId(TopicId):
"""DefaultTopicId provides a sensible default for the topic_id and source fields of a TopicId.
If created in the context of a message handler, the source will be set to the agent_id of the message handler, otherwise it will be set to "default".
Args:
type (str, optional): Topic type to publish message to. Defaults to "default".
source (str | None, optional): Topic source to publish message to. If None, the source will be set to the agent_id of the message handler if in the context of a message handler, otherwise it will be set to "default". Defaults to None.
"""
def __init__(self, type: str = "default", source: str | None = None) -> None:
if source is None:
try:
source = MessageHandlerContext.agent_id().key
# If we aren't in the context of a message handler, we use the default sour | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_default_topic.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # File based from: https://github.com/microsoft/autogen/blob/47f905267245e143562abfb41fcba503a9e1d56d/autogen/function_utils.py
# Credit to original authors
import inspect
import typing
from logging import getLogger
from typing import (
Annotated,
Any,
Callable,
Dict,
List,
Optional,
Set,
Tuple,
Type,
TypeVar,
Union,
cast,
get_args,
get_origin,
)
from pydantic import BaseModel, Field, TypeAdapter, create_model # type: ignore
from pydantic_core import PydanticUndefined
from typing_extensions import Literal
logger = getLogger(__name__)
T = TypeVar("T")
def get_typed_signature(call: Callable[..., Any]) -> inspect.Signature:
"""Get the signature of a function with type annotations.
Args:
call: The function to get the signature for
Returns:
The signature of the function with type annotations
"""
signature = inspect.signature(call)
globalns = getattr(call, "__globals__", {})
type_hint | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_function_utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import base64
import re
from io import BytesIO
from pathlib import Path
from typing import Any, cast
import aiohttp
from openai.types.chat import ChatCompletionContentPartImageParam
from PIL import Image as PILImage
from pydantic import GetCoreSchemaHandler, ValidationInfo
from pydantic_core import core_schema
from typing_extensions import Literal
class Image:
def __init__(self, image: PILImage.Image):
self.image: PILImage.Image = image.convert("RGB")
@classmethod
def from_pil(cls, pil_image: PILImage.Image) -> Image:
return cls(pil_image)
@classmethod
def from_uri(cls, uri: str) -> Image:
if not re.match(r"data:image/(?:png|jpeg);base64,", uri):
raise ValueError("Invalid URI format. It should be a base64 encoded image URI.")
# A URI. Remove the prefix and decode the base64 string.
base64_data = re.sub(r"data:image/(?:png|jpeg);base64,", "", uri)
return cls.from_bas | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_image.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import Any, Protocol, final
from ._agent_id import AgentId
__all__ = [
"DropMessage",
"InterventionHandler",
"DefaultInterventionHandler",
]
@final
class DropMessage: ...
class InterventionHandler(Protocol):
"""An intervention handler is a class that can be used to modify, log or drop messages that are being processed by the :class:`autogen_core.base.AgentRuntime`.
Note: Returning None from any of the intervention handler methods will result in a warning being issued and treated as "no change". If you intend to drop a message, you should return :class:`DropMessage` explicitly.
"""
async def on_send(self, message: Any, *, sender: AgentId | None, recipient: AgentId) -> Any | type[DropMessage]: ...
async def on_publish(self, message: Any, *, sender: AgentId | None) -> Any | type[DropMessage]: ...
async def on_response(
self, message: Any, *, sender: AgentId, recipient: AgentId | None
) -> Any | type[DropMessage]: ...
cl | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_intervention.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from ._agent_id import AgentId
from ._cancellation_token import CancellationToken
from ._topic import TopicId
@dataclass
class MessageContext:
sender: AgentId | None
topic_id: TopicId | None
is_rpc: bool
cancellation_token: CancellationToken
message_id: str
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_message_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from contextlib import contextmanager
from contextvars import ContextVar
from typing import Any, ClassVar, Generator
from ._agent_id import AgentId
class MessageHandlerContext:
def __init__(self) -> None:
raise RuntimeError(
"MessageHandlerContext cannot be instantiated. It is a static class that provides context management for message handling."
)
_MESSAGE_HANDLER_CONTEXT: ClassVar[ContextVar[AgentId]] = ContextVar("_MESSAGE_HANDLER_CONTEXT")
@classmethod
@contextmanager
def populate_context(cls, ctx: AgentId) -> Generator[None, Any, None]:
""":meta private:"""
token = MessageHandlerContext._MESSAGE_HANDLER_CONTEXT.set(ctx)
try:
yield
finally:
MessageHandlerContext._MESSAGE_HANDLER_CONTEXT.reset(token)
@classmethod
def agent_id(cls) -> AgentId:
try:
return cls._MESSAGE_HANDLER_CONTEXT.get()
except LookupError as e:
raise RuntimeE | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_message_handler_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # Copy of Asyncio queue: https://github.com/python/cpython/blob/main/Lib/asyncio/queues.py
# So that shutdown can be used in <3.13
# Modified to work outside of the asyncio package
import asyncio
import collections
import threading
from typing import Generic, TypeVar
_global_lock = threading.Lock()
class _LoopBoundMixin:
_loop = None
def _get_loop(self) -> asyncio.AbstractEventLoop:
loop = asyncio.get_running_loop()
if self._loop is None:
with _global_lock:
if self._loop is None:
self._loop = loop
if loop is not self._loop:
raise RuntimeError(f"{self!r} is bound to a different event loop")
return loop
class QueueShutDown(Exception):
"""Raised when putting on to or getting from a shut-down Queue."""
pass
T = TypeVar("T")
class Queue(_LoopBoundMixin, Generic[T]):
def __init__(self, maxsize: int = 0):
self._maxsize = maxsize
self._getters = collectio | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_queue.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
from functools import wraps
from typing import (
Any,
Callable,
Coroutine,
DefaultDict,
List,
Literal,
Protocol,
Sequence,
Tuple,
Type,
TypeVar,
cast,
get_type_hints,
overload,
runtime_checkable,
)
from ._base_agent import BaseAgent
from ._message_context import MessageContext
from ._serialization import MessageSerializer, try_get_known_serializers_for_type
from ._type_helpers import AnyType, get_types
from .exceptions import CantHandleException
logger = logging.getLogger("autogen_core")
AgentT = TypeVar("AgentT")
ReceivesT = TypeVar("ReceivesT")
ProducesT = TypeVar("ProducesT", covariant=True)
# TODO: Generic typevar bound binding U to agent type
# Can't do because python doesnt support it
# Pyright and mypy disagree on the variance of ReceivesT. Mypy thinks it should be contravariant here.
# Revisit this later to see if we can remove the ignore.
@runtime_checkable
class MessageHandler(Protocol[AgentT, Re | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_routed_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from collections import defaultdict
from typing import Awaitable, Callable, DefaultDict, List, Set
from ._agent import Agent
from ._agent_id import AgentId
from ._agent_type import AgentType
from ._subscription import Subscription
from ._topic import TopicId
async def get_impl(
*,
id_or_type: AgentId | AgentType | str,
key: str,
lazy: bool,
instance_getter: Callable[[AgentId], Awaitable[Agent]],
) -> AgentId:
if isinstance(id_or_type, AgentId):
if not lazy:
await instance_getter(id_or_type)
return id_or_type
type_str = id_or_type if isinstance(id_or_type, str) else id_or_type.type
id = AgentId(type_str, key)
if not lazy:
await instance_getter(id)
return id
class SubscriptionManager:
def __init__(self) -> None:
self._subscriptions: List[Subscription] = []
self._seen_topics: Set[TopicId] = set()
self._subscribed_recipients: DefaultDict[TopicId, List[AgentId]] = defaultdict(list | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_runtime_impl_helpers.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
from dataclasses import asdict, dataclass, fields
from typing import Any, ClassVar, Dict, List, Protocol, Sequence, TypeVar, cast, get_args, get_origin, runtime_checkable
from google.protobuf import any_pb2
from google.protobuf.message import Message
from pydantic import BaseModel
from ._type_helpers import is_union
T = TypeVar("T")
class MessageSerializer(Protocol[T]):
@property
def data_content_type(self) -> str: ...
@property
def type_name(self) -> str: ...
def deserialize(self, payload: bytes) -> T: ...
def serialize(self, message: T) -> bytes: ...
@runtime_checkable
class IsDataclass(Protocol):
# as already noted in comments, checking for this attribute is currently
# the most reliable way to ascertain that something is a dataclass
__dataclass_fields__: ClassVar[Dict[str, Any]]
def is_dataclass(cls: type[Any]) -> bool:
return hasattr(cls, "__dataclass_fields__")
def has_nested_dataclass(cls: type[IsDataclass]) -> bo | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_serialization.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import asyncio
import inspect
import logging
import sys
import uuid
import warnings
from asyncio import CancelledError, Future, Queue, Task
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any, Awaitable, Callable, Dict, List, Mapping, ParamSpec, Set, Type, TypeVar, cast
from opentelemetry.trace import TracerProvider
from .logging import (
AgentConstructionExceptionEvent,
DeliveryStage,
MessageDroppedEvent,
MessageEvent,
MessageHandlerExceptionEvent,
MessageKind,
)
if sys.version_info >= (3, 13):
from asyncio import Queue, QueueShutDown
else:
from ._queue import Queue, QueueShutDown # type: ignore
from typing_extensions import deprecated
from ._agent import Agent
from ._agent_id import AgentId
from ._agent_instantiation import AgentInstantiationContext
from ._agent_metadata import AgentMetadata
from ._agent_runtime import AgentRuntime
from ._agent_type import AgentType
fro | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_single_threaded_agent_runtime.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
from typing import Awaitable, Callable, Protocol, runtime_checkable
from ._agent_id import AgentId
from ._topic import TopicId
@runtime_checkable
class Subscription(Protocol):
"""Subscriptions define the topics that an agent is interested in."""
@property
def id(self) -> str:
"""Get the ID of the subscription.
Implementations should return a unique ID for the subscription. Usually this is a UUID.
Returns:
str: ID of the subscription.
"""
...
def __eq__(self, other: object) -> bool:
"""Check if two subscriptions are equal.
Args:
other (object): Other subscription to compare against.
Returns:
bool: True if the subscriptions are equal, False otherwise.
"""
if not isinstance(other, Subscription):
return False
return self.id == other.id
def is_match(self, topic_id: TopicId) -> bool:
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_subscription.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from contextlib import contextmanager
from contextvars import ContextVar
from typing import Any, ClassVar, Generator
from ._agent_type import AgentType
class SubscriptionInstantiationContext:
def __init__(self) -> None:
raise RuntimeError(
"SubscriptionInstantiationContext cannot be instantiated. It is a static class that provides context management for subscription instantiation."
)
_SUBSCRIPTION_CONTEXT_VAR: ClassVar[ContextVar[AgentType]] = ContextVar("_SUBSCRIPTION_CONTEXT_VAR")
@classmethod
@contextmanager
def populate_context(cls, ctx: AgentType) -> Generator[None, Any, None]:
""":meta private:"""
token = SubscriptionInstantiationContext._SUBSCRIPTION_CONTEXT_VAR.set(ctx)
try:
yield
finally:
SubscriptionInstantiationContext._SUBSCRIPTION_CONTEXT_VAR.reset(token)
@classmethod
def agent_type(cls) -> AgentType:
try:
return cls._SUBSCRIPTION_CONTEX | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_subscription_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import re
from dataclasses import dataclass
from typing_extensions import Self
def is_valid_topic_type(value: str) -> bool:
return bool(re.match(r"^[\w\-\.\:\=]+\Z", value))
@dataclass(eq=True, frozen=True)
class TopicId:
"""
TopicId defines the scope of a broadcast message. In essence, agent runtime implements a publish-subscribe model through its broadcast API: when publishing a message, the topic must be specified.
See here for more information: :ref:`topic_and_subscription_topic`
"""
type: str
"""Type of the event that this topic_id contains. Adhere's to the cloud event spec.
Must match the pattern: ^[\\w\\-\\.\\:\\=]+\\Z
Learn more here: https://github.com/cloudevents/spec/blob/main/cloudevents/spec.md#type
"""
source: str
"""Identifies the context in which an event happened. Adhere's to the cloud event spec.
Learn more here: https://github.com/cloudevents/spec/blob/main/cloudevents/spec.md#source-1
"""
def __ | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_topic.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from collections.abc import Sequence
from types import NoneType, UnionType
from typing import Any, Optional, Type, Union, get_args, get_origin
def is_union(t: object) -> bool:
origin = get_origin(t)
return origin is Union or origin is UnionType
def is_optional(t: object) -> bool:
origin = get_origin(t)
return origin is Optional
# Special type to avoid the 3.10 vs 3.11+ difference of typing._SpecialForm vs typing.Any
class AnyType:
pass
def get_types(t: object) -> Sequence[Type[Any]] | None:
if is_union(t):
return get_args(t)
elif is_optional(t):
return tuple(list(get_args(t)) + [NoneType])
elif t is Any:
return (AnyType,)
elif isinstance(t, type):
return (t,)
elif isinstance(t, NoneType):
return (NoneType,)
else:
return None
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_type_helpers.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import uuid
from ._agent_id import AgentId
from ._agent_type import AgentType
from ._subscription import Subscription
from ._topic import TopicId
from .exceptions import CantHandleException
class TypePrefixSubscription(Subscription):
"""This subscription matches on topics based on a prefix of the type and maps to agents using the source of the topic as the agent key.
This subscription causes each source to have its own agent instance.
Example:
.. code-block:: python
from autogen_core import TypePrefixSubscription
subscription = TypePrefixSubscription(topic_type_prefix="t1", agent_type="a1")
In this case:
- A topic_id with type `t1` and source `s1` will be handled by an agent of type `a1` with key `s1`
- A topic_id with type `t1` and source `s2` will be handled by an agent of type `a1` with key `s2`.
- A topic_id with type `t1SUFFIX` and source `s2` will be handled by an agent of type `a1` with key `s2 | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_type_prefix_subscription.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import uuid
from ._agent_id import AgentId
from ._agent_type import AgentType
from ._subscription import Subscription
from ._topic import TopicId
from .exceptions import CantHandleException
class TypeSubscription(Subscription):
"""This subscription matches on topics based on the type and maps to agents using the source of the topic as the agent key.
This subscription causes each source to have its own agent instance.
Example:
.. code-block:: python
from autogen_core import TypeSubscription
subscription = TypeSubscription(topic_type="t1", agent_type="a1")
In this case:
- A topic_id with type `t1` and source `s1` will be handled by an agent of type `a1` with key `s1`
- A topic_id with type `t1` and source `s2` will be handled by an agent of type `a1` with key `s2`.
Args:
topic_type (str): Topic type to match against
agent_type (str): Agent type to handle this subscription
"""
def _ | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_type_subscription.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
from dataclasses import dataclass
@dataclass
class FunctionCall:
id: str
# JSON args
arguments: str
# Function to call
name: str
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_types.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | __all__ = ["CantHandleException", "UndeliverableException", "MessageDroppedException", "NotAccessibleError"]
class CantHandleException(Exception):
"""Raised when a handler can't handle the exception."""
class UndeliverableException(Exception):
"""Raised when a message can't be delivered."""
class MessageDroppedException(Exception):
"""Raised when a message is dropped."""
class NotAccessibleError(Exception):
"""Tried to access a value that is not accessible. For example if it is remote cannot be accessed locally."""
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/exceptions.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
from enum import Enum
from typing import Any, cast
from ._agent_id import AgentId
from ._topic import TopicId
class LLMCallEvent:
def __init__(self, *, prompt_tokens: int, completion_tokens: int, **kwargs: Any) -> None:
"""To be used by model clients to log the call to the LLM.
Args:
prompt_tokens (int): Number of tokens used in the prompt.
completion_tokens (int): Number of tokens used in the completion.
Example:
.. code-block:: python
from autogen_core import EVENT_LOGGER_NAME
from autogen_core.logging import LLMCallEvent
logger = logging.getLogger(EVENT_LOGGER_NAME)
logger.info(LLMCallEvent(prompt_tokens=10, completion_tokens=20))
"""
self.kwargs = kwargs
self.kwargs["prompt_tokens"] = prompt_tokens
self.kwargs["completion_tokens"] = completion_tokens
self.kwargs["type"] = "LLMCall"
@property | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/logging.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._propagation import (
EnvelopeMetadata,
TelemetryMetadataContainer,
get_telemetry_envelope_metadata,
get_telemetry_grpc_metadata,
)
from ._tracing import TraceHelper
from ._tracing_config import MessageRuntimeTracingConfig
__all__ = [
"EnvelopeMetadata",
"get_telemetry_envelope_metadata",
"get_telemetry_grpc_metadata",
"TelemetryMetadataContainer",
"TraceHelper",
"MessageRuntimeTracingConfig",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_telemetry/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | NAMESPACE = "autogen"
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_telemetry/_constants.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from typing import Dict, Mapping, Optional
from opentelemetry.context import Context
from opentelemetry.propagate import extract
from opentelemetry.trace.propagation.tracecontext import TraceContextTextMapPropagator
@dataclass(kw_only=True)
class EnvelopeMetadata:
"""Metadata for an envelope."""
traceparent: Optional[str] = None
tracestate: Optional[str] = None
def _get_carrier_for_envelope_metadata(envelope_metadata: EnvelopeMetadata) -> Dict[str, str]:
carrier: Dict[str, str] = {}
if envelope_metadata.traceparent is not None:
carrier["traceparent"] = envelope_metadata.traceparent
if envelope_metadata.tracestate is not None:
carrier["tracestate"] = envelope_metadata.tracestate
return carrier
def get_telemetry_envelope_metadata() -> EnvelopeMetadata:
"""
Retrieves the telemetry envelope metadata.
Returns:
EnvelopeMetadata: The envelope metadata containing the traceparent and trace | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_telemetry/_propagation.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import contextlib
from typing import Dict, Generic, Iterator, Optional, Sequence
from opentelemetry.trace import Link, NoOpTracerProvider, Span, SpanKind, TracerProvider
from opentelemetry.util import types
from ._propagation import TelemetryMetadataContainer, get_telemetry_context
from ._tracing_config import Destination, ExtraAttributes, Operation, TracingConfig
class TraceHelper(Generic[Operation, Destination, ExtraAttributes]):
"""
TraceHelper is a utility class to assist with tracing operations using OpenTelemetry.
This class provides a context manager `trace_block` to create and manage spans for tracing operations,
following semantic conventions and supporting nested spans through metadata contexts.
"""
def __init__(
self,
tracer_provider: TracerProvider | None,
instrumentation_builder_config: TracingConfig[Operation, Destination, ExtraAttributes],
) -> None:
self.tracer = (tracer_provider if tracer_provider else | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_telemetry/_tracing.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
from abc import ABC, abstractmethod
from typing import Dict, Generic, List, Literal, TypedDict, TypeVar, Union
from opentelemetry.trace import SpanKind
from opentelemetry.util import types
from typing_extensions import NotRequired
from .._agent_id import AgentId
from .._topic import TopicId
from ._constants import NAMESPACE
logger = logging.getLogger("autogen_core")
event_logger = logging.getLogger("autogen_core.events")
Operation = TypeVar("Operation", bound=str)
Destination = TypeVar("Destination")
ExtraAttributes = TypeVar("ExtraAttributes")
class TracingConfig(ABC, Generic[Operation, Destination, ExtraAttributes]):
"""
A protocol that defines the configuration for instrumentation.
This protocol specifies the required properties and methods that any
instrumentation configuration class must implement. It includes a
property to get the name of the module being instrumented and a method
to build attributes for the instrumentation configurat | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/_telemetry/_tracing_config.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/base/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | from typing_extensions import deprecated
from .._intervention import DefaultInterventionHandler as DefaultInterventionHandlerAlias
from .._intervention import DropMessage as DropMessageAlias
from .._intervention import InterventionHandler as InterventionHandlerAliass
__all__ = [
"DropMessage",
"InterventionHandler",
"DefaultInterventionHandler",
]
# Final so can't inherit and deprecate
DropMessage = DropMessageAlias
@deprecated("Moved to autogen_core.InterventionHandler. Will remove this in 0.4.0.", stacklevel=2)
class InterventionHandler(InterventionHandlerAliass): ...
@deprecated("Moved to autogen_core.DefaultInterventionHandler. Will remove this in 0.4.0.", stacklevel=2)
class DefaultInterventionHandler(DefaultInterventionHandlerAlias): ...
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/base/intervention.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._base import CodeBlock, CodeExecutor, CodeResult
from ._func_with_reqs import (
Alias,
FunctionWithRequirements,
FunctionWithRequirementsStr,
Import,
ImportFromModule,
with_requirements,
)
__all__ = [
"CodeBlock",
"CodeExecutor",
"CodeResult",
"Alias",
"ImportFromModule",
"Import",
"FunctionWithRequirements",
"FunctionWithRequirementsStr",
"with_requirements",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/code_executor/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # File based from: https://github.com/microsoft/autogen/blob/main/autogen/coding/base.py
# Credit to original authors
from __future__ import annotations
from dataclasses import dataclass
from typing import List, Protocol, runtime_checkable
from .._cancellation_token import CancellationToken
@dataclass
class CodeBlock:
"""A code block extracted fromm an agent message."""
code: str
language: str
@dataclass
class CodeResult:
"""Result of a code execution."""
exit_code: int
output: str
@runtime_checkable
class CodeExecutor(Protocol):
"""Executes code blocks and returns the result."""
async def execute_code_blocks(
self, code_blocks: List[CodeBlock], cancellation_token: CancellationToken
) -> CodeResult:
"""Execute code blocks and return the result.
This method should be implemented by the code executor.
Args:
code_blocks (List[CodeBlock]): The code blocks to execute.
Returns:
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/code_executor/_base.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # File based from: https://github.com/microsoft/autogen/blob/main/autogen/coding/func_with_reqs.py
# Credit to original authors
from __future__ import annotations
import functools
import inspect
from dataclasses import dataclass, field
from importlib.abc import SourceLoader
from importlib.util import module_from_spec, spec_from_loader
from textwrap import dedent, indent
from typing import Any, Callable, Generic, List, Sequence, Set, Tuple, TypeVar, Union
from typing_extensions import ParamSpec
T = TypeVar("T")
P = ParamSpec("P")
def _to_code(func: Union[FunctionWithRequirements[T, P], Callable[P, T], FunctionWithRequirementsStr]) -> str:
if isinstance(func, FunctionWithRequirementsStr):
return func.func
if isinstance(func, FunctionWithRequirements):
code = inspect.getsource(func.func)
else:
code = inspect.getsource(func)
# Strip the decorator
if code.startswith("@"):
code = code[code.index("\n") + 1 :]
return code
@datacl | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/code_executor/_func_with_reqs.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._buffered_chat_completion_context import BufferedChatCompletionContext
from ._chat_completion_context import ChatCompletionContext, ChatCompletionContextState
from ._head_and_tail_chat_completion_context import HeadAndTailChatCompletionContext
from ._unbounded_chat_completion_context import (
UnboundedChatCompletionContext,
)
__all__ = [
"ChatCompletionContext",
"ChatCompletionContextState",
"UnboundedChatCompletionContext",
"BufferedChatCompletionContext",
"HeadAndTailChatCompletionContext",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/model_context/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import List
from ..models import FunctionExecutionResultMessage, LLMMessage
from ._chat_completion_context import ChatCompletionContext
class BufferedChatCompletionContext(ChatCompletionContext):
"""A buffered chat completion context that keeps a view of the last n messages,
where n is the buffer size. The buffer size is set at initialization.
Args:
buffer_size (int): The size of the buffer.
initial_messages (List[LLMMessage] | None): The initial messages.
"""
def __init__(self, buffer_size: int, initial_messages: List[LLMMessage] | None = None) -> None:
super().__init__(initial_messages)
if buffer_size <= 0:
raise ValueError("buffer_size must be greater than 0.")
self._buffer_size = buffer_size
async def get_messages(self) -> List[LLMMessage]:
"""Get at most `buffer_size` recent messages."""
messages = self._messages[-self._buffer_size :]
# Handle the first message is | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/model_context/_buffered_chat_completion_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from abc import ABC, abstractmethod
from typing import Any, List, Mapping
from pydantic import BaseModel, Field
from ..models import LLMMessage
class ChatCompletionContext(ABC):
"""An abstract base class for defining the interface of a chat completion context.
A chat completion context lets agents store and retrieve LLM messages.
It can be implemented with different recall strategies.
Args:
initial_messages (List[LLMMessage] | None): The initial messages.
"""
def __init__(self, initial_messages: List[LLMMessage] | None = None) -> None:
self._messages: List[LLMMessage] = initial_messages or []
async def add_message(self, message: LLMMessage) -> None:
"""Add a message to the context."""
self._messages.append(message)
@abstractmethod
async def get_messages(self) -> List[LLMMessage]: ...
async def clear(self) -> None:
"""Clear the context."""
self._messages = []
async def save_state(self) | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/model_context/_chat_completion_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import List
from .._types import FunctionCall
from ..models import AssistantMessage, FunctionExecutionResultMessage, LLMMessage, UserMessage
from ._chat_completion_context import ChatCompletionContext
class HeadAndTailChatCompletionContext(ChatCompletionContext):
"""A chat completion context that keeps a view of the first n and last m messages,
where n is the head size and m is the tail size. The head and tail sizes
are set at initialization.
Args:
head_size (int): The size of the head.
tail_size (int): The size of the tail.
initial_messages (List[LLMMessage] | None): The initial messages.
"""
def __init__(self, head_size: int, tail_size: int, initial_messages: List[LLMMessage] | None = None) -> None:
super().__init__(initial_messages)
if head_size <= 0:
raise ValueError("head_size must be greater than 0.")
if tail_size <= 0:
raise ValueError("tail_size must be greater than | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/model_context/_head_and_tail_chat_completion_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import List
from ..models import LLMMessage
from ._chat_completion_context import ChatCompletionContext
class UnboundedChatCompletionContext(ChatCompletionContext):
"""An unbounded chat completion context that keeps a view of the all the messages."""
async def get_messages(self) -> List[LLMMessage]:
"""Get at most `buffer_size` recent messages."""
return self._messages
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/model_context/_unbounded_chat_completion_context.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from ._model_client import ChatCompletionClient, ModelCapabilities, ModelFamily, ModelInfo # type: ignore
from ._types import (
AssistantMessage,
ChatCompletionTokenLogprob,
CreateResult,
FinishReasons,
FunctionExecutionResult,
FunctionExecutionResultMessage,
LLMMessage,
RequestUsage,
SystemMessage,
TopLogprob,
UserMessage,
)
__all__ = [
"ModelCapabilities",
"ChatCompletionClient",
"SystemMessage",
"UserMessage",
"AssistantMessage",
"FunctionExecutionResult",
"FunctionExecutionResultMessage",
"LLMMessage",
"RequestUsage",
"FinishReasons",
"CreateResult",
"TopLogprob",
"ChatCompletionTokenLogprob",
"ModelFamily",
"ModelInfo",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/models/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from __future__ import annotations
import warnings
from abc import ABC, abstractmethod
from typing import Literal, Mapping, Optional, Sequence, TypeAlias
from typing_extensions import Any, AsyncGenerator, Required, TypedDict, Union, deprecated
from .. import CancellationToken
from .._component_config import ComponentLoader
from ..tools import Tool, ToolSchema
from ._types import CreateResult, LLMMessage, RequestUsage
class ModelFamily:
"""A model family is a group of models that share similar characteristics from a capabilities perspective. This is different to discrete supported features such as vision, function calling, and JSON output.
This namespace class holds constants for the model families that AutoGen understands. Other families definitely exist and can be represented by a string, however, AutoGen will treat them as unknown."""
GPT_4O = "gpt-4o"
O1 = "o1"
GPT_4 = "gpt-4"
GPT_35 = "gpt-35"
UNKNOWN = "unknown"
ANY: TypeAlias = Literal["gpt | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/models/_model_client.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from typing_extensions import Annotated
from .. import FunctionCall, Image
class SystemMessage(BaseModel):
content: str
type: Literal["SystemMessage"] = "SystemMessage"
class UserMessage(BaseModel):
content: Union[str, List[Union[str, Image]]]
# Name of the agent that sent this message
source: str
type: Literal["UserMessage"] = "UserMessage"
class AssistantMessage(BaseModel):
content: Union[str, List[FunctionCall]]
# Name of the agent that sent this message
source: str
type: Literal["AssistantMessage"] = "AssistantMessage"
class FunctionExecutionResult(BaseModel):
content: str
call_id: str
class FunctionExecutionResultMessage(BaseModel):
content: List[FunctionExecutionResult]
type: Literal["FunctionExecutionResultMessage"] = "FunctionExecutionResultMessage"
LLMMessage = Annotated[
Union[S | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-core/src/autogen_core/models/_types.py",
"file_type": ".py",
"source_type": "code"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.