|
import torch |
|
from torchvision import transforms, models |
|
from data_loading import LMDBImageDataset |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
import argparse |
|
|
|
torch.multiprocessing.set_sharing_strategy('file_system') |
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description="Compute ResNet embeddings") |
|
parser.add_argument('--resnet_type', type=str, default='resnet152', |
|
help="Type of ResNet model to use (e.g., resnet18, resnet34, resnet50, resnet101, resnet152)") |
|
parser.add_argument('--lmdb_path', type=str, default='../lmdb_all_crops_pmfeed_4_3_16', |
|
help="Path to the LMDB image dataset") |
|
args = parser.parse_args() |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
]) |
|
|
|
|
|
dataset = LMDBImageDataset( |
|
lmdb_path=args.lmdb_path, |
|
transform=transform, |
|
limit=None |
|
) |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=128, |
|
shuffle=False, |
|
num_workers=8, |
|
) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
resnet_constructor = getattr(models, args.resnet_type) |
|
model = resnet_constructor(weights='IMAGENET1K_V1') |
|
|
|
model = list(model.children())[:-1] |
|
model = torch.nn.Sequential(*model) |
|
model.to(device) |
|
model.eval() |
|
|
|
all_embeddings = [] |
|
all_cow_ids = [] |
|
|
|
|
|
with torch.no_grad(): |
|
for images, cow_ids in tqdm(dataloader, unit='batch'): |
|
images = images.to(device) |
|
image_features = model(images) |
|
image_features = image_features.squeeze() |
|
all_embeddings.append(image_features.cpu()) |
|
all_cow_ids.append(cow_ids) |
|
|
|
|
|
embeddings = torch.cat(all_embeddings, dim=0) |
|
torch.save(embeddings, f"{args.resnet_type}_embeddings.pt") |
|
all_cow_ids = torch.cat(all_cow_ids, dim=0) |
|
torch.save(all_cow_ids, f"all_cow_ids.pt") |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|