Tony Fang
commited on
Commit
·
900cef8
1
Parent(s):
d67ed13
added identification benchmark
Browse files- .gitignore +4 -1
- README.md +25 -7
- identification_benchmark/big_model_inference/data_loading.py +143 -0
- identification_benchmark/big_model_inference/inference_resnet.py +67 -0
- identification_benchmark/big_model_inference/inference_transformers.py +98 -0
- identification_benchmark/classification/data_loading.py +138 -0
- identification_benchmark/classification/knn_evaluation.py +75 -0
- identification_benchmark/classification/model.py +19 -0
- identification_benchmark/classification/train.py +116 -0
- identification_benchmark/construct_lmdb.py +66 -0
- identification_benchmark/crop_pmfeed_4_3_16.py +90 -0
- requirement.txt +201 -0
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
*.png
|
|
|
2 |
*.txt
|
3 |
*.out
|
4 |
*.pt
|
@@ -10,4 +11,6 @@ object_detector_benchmark/yolo_benchmark/*
|
|
10 |
object_detector_benchmark/8_calves_arrow/
|
11 |
object_detector_benchmark/8_calves_coco/
|
12 |
object_detector_benchmark/transformer_benchmark/runs
|
13 |
-
|
|
|
|
|
|
1 |
*.png
|
2 |
+
*.jpg
|
3 |
*.txt
|
4 |
*.out
|
5 |
*.pt
|
|
|
11 |
object_detector_benchmark/8_calves_arrow/
|
12 |
object_detector_benchmark/8_calves_coco/
|
13 |
object_detector_benchmark/transformer_benchmark/runs
|
14 |
+
*__pycache__
|
15 |
+
!requirement.txt
|
16 |
+
*.mdb
|
README.md
CHANGED
@@ -66,11 +66,14 @@ df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")
|
|
66 |
|
67 |
## Usage
|
68 |
### Dataset Download:
|
|
|
|
|
69 |
|
70 |
-
|
|
|
71 |
`git lfs install`
|
72 |
|
73 |
-
Step
|
74 |
`git clone [email protected]:datasets/tonyFang04/8-calves`
|
75 |
|
76 |
### Object Detection
|
@@ -86,14 +89,13 @@ Step 2:
|
|
86 |
| Test | 67,760 | Final evaluation |
|
87 |
|
88 |
### Benchmarking YOLO Models:
|
89 |
-
Step 1: install albumentations. Check out [Albumentations' website](https://www.albumentations.ai/docs/) for more information.
|
90 |
|
91 |
-
Step
|
92 |
`cd 8-calves/object_detector_benchmark`. Run
|
93 |
`./create_yolo_dataset.sh` and
|
94 |
`create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above.
|
95 |
|
96 |
-
Step
|
97 |
|
98 |
```
|
99 |
# Transforms
|
@@ -109,8 +111,8 @@ T = [
|
|
109 |
]
|
110 |
```
|
111 |
|
112 |
-
Step
|
113 |
-
run the yolo detectors following the following
|
114 |
|
115 |
```
|
116 |
cd yolo_benchmark
|
@@ -120,6 +122,22 @@ Model_Name=yolov9t
|
|
120 |
yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name
|
121 |
```
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
### Identity Classification
|
125 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
|
|
66 |
|
67 |
## Usage
|
68 |
### Dataset Download:
|
69 |
+
Step 1: install conda environment from
|
70 |
+
`requirement.txt`
|
71 |
|
72 |
+
|
73 |
+
Step 2: install git-lfs:
|
74 |
`git lfs install`
|
75 |
|
76 |
+
Step 3:
|
77 |
`git clone [email protected]:datasets/tonyFang04/8-calves`
|
78 |
|
79 |
### Object Detection
|
|
|
89 |
| Test | 67,760 | Final evaluation |
|
90 |
|
91 |
### Benchmarking YOLO Models:
|
|
|
92 |
|
93 |
+
Step 1:
|
94 |
`cd 8-calves/object_detector_benchmark`. Run
|
95 |
`./create_yolo_dataset.sh` and
|
96 |
`create_yolo_testset.py`. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above.
|
97 |
|
98 |
+
Step 2: find the `Albumentations` class in the `data/augment.py` file in ultralytics source code. And replace the default transforms to:
|
99 |
|
100 |
```
|
101 |
# Transforms
|
|
|
111 |
]
|
112 |
```
|
113 |
|
114 |
+
Step 3:
|
115 |
+
run the yolo detectors following the following commands:
|
116 |
|
117 |
```
|
118 |
cd yolo_benchmark
|
|
|
122 |
yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name
|
123 |
```
|
124 |
|
125 |
+
### Benchmark Transformer Based Models:
|
126 |
+
|
127 |
+
Step 1: run the following commands to load the data into yolo format, then into coco, then into arrow:
|
128 |
+
```
|
129 |
+
cd 8-calves/object_detector_benchmark
|
130 |
+
./create_yolo_dataset.sh
|
131 |
+
python create_yolo_testset.py
|
132 |
+
python yolo_to_coco.py
|
133 |
+
python data_wrangling.py
|
134 |
+
```
|
135 |
+
|
136 |
+
Step 2: run the following commands to train:
|
137 |
+
```
|
138 |
+
cd transformer_benchmark
|
139 |
+
python train.py --config Configs/conditional_detr.yaml
|
140 |
+
```
|
141 |
|
142 |
### Identity Classification
|
143 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
identification_benchmark/big_model_inference/data_loading.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import lmdb
|
3 |
+
import io
|
4 |
+
import re
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
from torchvision import transforms
|
9 |
+
import unittest
|
10 |
+
from tqdm import tqdm
|
11 |
+
torch.multiprocessing.set_sharing_strategy('file_system')
|
12 |
+
|
13 |
+
|
14 |
+
class LMDBImageDataset(Dataset):
|
15 |
+
def __init__(self, lmdb_path, transform=None, limit=None):
|
16 |
+
"""
|
17 |
+
Args:
|
18 |
+
lmdb_path (str): Path to the LMDB directory.
|
19 |
+
transform (callable, optional): Optional transform to be applied on an image.
|
20 |
+
limit (int or float, optional): If a float between 0 and 1, keeps that fraction of keys.
|
21 |
+
If an int, keeps that many keys.
|
22 |
+
"""
|
23 |
+
# Open the LMDB environment in read-only mode.
|
24 |
+
self.env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False)
|
25 |
+
self.transform = transform
|
26 |
+
|
27 |
+
# Retrieve all keys from the LMDB database.
|
28 |
+
with self.env.begin() as txn:
|
29 |
+
keys = [key.decode('utf-8') for key, _ in txn.cursor()]
|
30 |
+
|
31 |
+
# Define a sort key function that extracts frame number and cow id from the filename.
|
32 |
+
def sort_key(filename):
|
33 |
+
# Expected pattern: "pmfeed_4_3_16_frame_10000_cow_1.jpg"
|
34 |
+
match = re.search(r'frame_(\d+)_cow_(\d+)', filename)
|
35 |
+
if match:
|
36 |
+
frame = int(match.group(1))
|
37 |
+
cow = int(match.group(2))
|
38 |
+
return (frame, cow)
|
39 |
+
return (float('inf'), float('inf'))
|
40 |
+
|
41 |
+
# Sort the keys using the defined sort key function.
|
42 |
+
keys = sorted(keys, key=sort_key)
|
43 |
+
|
44 |
+
# Apply the limit if provided.
|
45 |
+
if limit is not None:
|
46 |
+
if isinstance(limit, float):
|
47 |
+
if 0 <= limit <= 1:
|
48 |
+
cutoff = int(len(keys) * limit)
|
49 |
+
keys = keys[:cutoff]
|
50 |
+
else:
|
51 |
+
raise ValueError("If limit is a float, it must be between 0 and 1.")
|
52 |
+
elif isinstance(limit, int):
|
53 |
+
keys = keys[:limit]
|
54 |
+
else:
|
55 |
+
raise TypeError("limit must be either a float or an integer.")
|
56 |
+
|
57 |
+
self.keys = keys
|
58 |
+
|
59 |
+
def __getitem__(self, index):
|
60 |
+
# Get the key and image data
|
61 |
+
key_str = self.keys[index]
|
62 |
+
key = key_str.encode('utf-8')
|
63 |
+
with self.env.begin() as txn:
|
64 |
+
image_bytes = txn.get(key)
|
65 |
+
|
66 |
+
# Convert binary image data to a PIL Image.
|
67 |
+
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
68 |
+
|
69 |
+
if self.transform:
|
70 |
+
image = self.transform(image)
|
71 |
+
|
72 |
+
# Extract the cow id from the filename.
|
73 |
+
match = re.search(r'frame_(\d+)_cow_(\d+)', key_str)
|
74 |
+
if match:
|
75 |
+
cow_id = int(match.group(2))
|
76 |
+
else:
|
77 |
+
cow_id = -1 # Use -1 or any default value if not found
|
78 |
+
|
79 |
+
return image, cow_id
|
80 |
+
|
81 |
+
def __len__(self):
|
82 |
+
return len(self.keys)
|
83 |
+
|
84 |
+
|
85 |
+
class TestLMDBImageDataset(unittest.TestCase):
|
86 |
+
def test_dataset_length(self):
|
87 |
+
# Example transform: resize and convert to tensor.
|
88 |
+
transform = transforms.Compose([
|
89 |
+
transforms.Resize((256, 256)),
|
90 |
+
transforms.ToTensor(),
|
91 |
+
])
|
92 |
+
|
93 |
+
# Path to your LMDB directory.
|
94 |
+
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16'
|
95 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=20)
|
96 |
+
self.assertEqual(len(dataset), 20)
|
97 |
+
self.assertEqual(dataset.keys, ['pmfeed_4_3_16_frame_1_cow_1.jpg', 'pmfeed_4_3_16_frame_1_cow_2.jpg', 'pmfeed_4_3_16_frame_1_cow_3.jpg', 'pmfeed_4_3_16_frame_1_cow_4.jpg', 'pmfeed_4_3_16_frame_1_cow_5.jpg', 'pmfeed_4_3_16_frame_1_cow_6.jpg', 'pmfeed_4_3_16_frame_1_cow_7.jpg', 'pmfeed_4_3_16_frame_1_cow_8.jpg', 'pmfeed_4_3_16_frame_2_cow_1.jpg', 'pmfeed_4_3_16_frame_2_cow_2.jpg', 'pmfeed_4_3_16_frame_2_cow_3.jpg', 'pmfeed_4_3_16_frame_2_cow_4.jpg', 'pmfeed_4_3_16_frame_2_cow_5.jpg', 'pmfeed_4_3_16_frame_2_cow_6.jpg', 'pmfeed_4_3_16_frame_2_cow_7.jpg', 'pmfeed_4_3_16_frame_2_cow_8.jpg', 'pmfeed_4_3_16_frame_3_cow_1.jpg', 'pmfeed_4_3_16_frame_3_cow_2.jpg', 'pmfeed_4_3_16_frame_3_cow_3.jpg', 'pmfeed_4_3_16_frame_3_cow_4.jpg'])
|
98 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=100)
|
99 |
+
self.assertEqual(len(dataset), 100)
|
100 |
+
self.assertEqual(dataset.keys[-10:], ['pmfeed_4_3_16_frame_12_cow_3.jpg', 'pmfeed_4_3_16_frame_12_cow_4.jpg', 'pmfeed_4_3_16_frame_12_cow_5.jpg', 'pmfeed_4_3_16_frame_12_cow_6.jpg', 'pmfeed_4_3_16_frame_12_cow_7.jpg', 'pmfeed_4_3_16_frame_12_cow_8.jpg', 'pmfeed_4_3_16_frame_13_cow_1.jpg', 'pmfeed_4_3_16_frame_13_cow_2.jpg', 'pmfeed_4_3_16_frame_13_cow_3.jpg', 'pmfeed_4_3_16_frame_13_cow_4.jpg'])
|
101 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform)
|
102 |
+
self.assertEqual(len(dataset), 537908)
|
103 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.5)
|
104 |
+
self.assertEqual(len(dataset), 268954)
|
105 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.3)
|
106 |
+
self.assertEqual(len(dataset), 161372)
|
107 |
+
|
108 |
+
def test_data_loading(self):
|
109 |
+
# Example transform: resize and convert to tensor.
|
110 |
+
transform = transforms.Compose([
|
111 |
+
transforms.Resize((256, 256)),
|
112 |
+
transforms.ToTensor(),
|
113 |
+
])
|
114 |
+
|
115 |
+
# Path to your LMDB directory.
|
116 |
+
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16'
|
117 |
+
|
118 |
+
# Create the dataset:
|
119 |
+
# For example, if you want to keep the first 20 keys:
|
120 |
+
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform)
|
121 |
+
# Or, if you want to keep the first 50% of the keys:
|
122 |
+
# Create a DataLoader.
|
123 |
+
dataloader = DataLoader(
|
124 |
+
dataset,
|
125 |
+
batch_size=256,
|
126 |
+
shuffle=False,
|
127 |
+
num_workers=8,
|
128 |
+
)
|
129 |
+
|
130 |
+
# Example: Iterate over one batch.
|
131 |
+
ground_truths = []
|
132 |
+
for images, cow_ids in tqdm(dataloader, unit='batch'):
|
133 |
+
# print(images.shape) # e.g., torch.Size([32, 3, 256, 256])
|
134 |
+
# print(cow_ids) # Tensor of cow IDs corresponding to each image.
|
135 |
+
ground_truths.append(cow_ids)
|
136 |
+
|
137 |
+
ground_truths = torch.cat(ground_truths, dim=0)
|
138 |
+
self.assertEqual(len(ground_truths), 537908)
|
139 |
+
self.assertEqual(set(ground_truths.tolist()), {1, 2, 3, 4, 5, 6, 7, 8})
|
140 |
+
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
unittest.main()
|
identification_benchmark/big_model_inference/inference_resnet.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms, models
|
3 |
+
from data_loading import LMDBImageDataset
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from tqdm import tqdm
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
torch.multiprocessing.set_sharing_strategy('file_system')
|
9 |
+
|
10 |
+
def main():
|
11 |
+
# Parse command line arguments.
|
12 |
+
parser = argparse.ArgumentParser(description="Compute ResNet embeddings")
|
13 |
+
parser.add_argument('--resnet_type', type=str, default='resnet152',
|
14 |
+
help="Type of ResNet model to use (e.g., resnet18, resnet34, resnet50, resnet101, resnet152)")
|
15 |
+
parser.add_argument('--lmdb_path', type=str, default='../lmdb_all_crops_pmfeed_4_3_16',
|
16 |
+
help="Path to the LMDB image dataset")
|
17 |
+
args = parser.parse_args()
|
18 |
+
|
19 |
+
transform = transforms.Compose([
|
20 |
+
transforms.Resize((224, 224)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
])
|
23 |
+
|
24 |
+
# Create the dataset and dataloader.
|
25 |
+
dataset = LMDBImageDataset(
|
26 |
+
lmdb_path=args.lmdb_path,
|
27 |
+
transform=transform,
|
28 |
+
limit=None
|
29 |
+
)
|
30 |
+
dataloader = DataLoader(
|
31 |
+
dataset,
|
32 |
+
batch_size=128,
|
33 |
+
shuffle=False,
|
34 |
+
num_workers=8,
|
35 |
+
)
|
36 |
+
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
|
39 |
+
# Dynamically load the specified ResNet model.
|
40 |
+
resnet_constructor = getattr(models, args.resnet_type)
|
41 |
+
model = resnet_constructor(weights='IMAGENET1K_V1')
|
42 |
+
# Remove the last fully-connected layer to obtain embeddings.
|
43 |
+
model = list(model.children())[:-1]
|
44 |
+
model = torch.nn.Sequential(*model)
|
45 |
+
model.to(device)
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
all_embeddings = []
|
49 |
+
all_cow_ids = []
|
50 |
+
|
51 |
+
# Loop through the dataset and compute embeddings.
|
52 |
+
with torch.no_grad():
|
53 |
+
for images, cow_ids in tqdm(dataloader, unit='batch'):
|
54 |
+
images = images.to(device)
|
55 |
+
image_features = model(images)
|
56 |
+
image_features = image_features.squeeze()
|
57 |
+
all_embeddings.append(image_features.cpu())
|
58 |
+
all_cow_ids.append(cow_ids)
|
59 |
+
|
60 |
+
# Concatenate and save all embeddings.
|
61 |
+
embeddings = torch.cat(all_embeddings, dim=0)
|
62 |
+
torch.save(embeddings, f"{args.resnet_type}_embeddings.pt")
|
63 |
+
all_cow_ids = torch.cat(all_cow_ids, dim=0)
|
64 |
+
torch.save(all_cow_ids, f"all_cow_ids.pt")
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
main()
|
identification_benchmark/big_model_inference/inference_transformers.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
+
from torchvision import transforms
|
6 |
+
from data_loading import LMDBImageDataset
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
import time
|
10 |
+
|
11 |
+
torch.multiprocessing.set_sharing_strategy('file_system')
|
12 |
+
|
13 |
+
def infer_image_size(model_name):
|
14 |
+
"""
|
15 |
+
Infer image size from the model name.
|
16 |
+
Looks for a trailing hyphen followed by digits (e.g., "-336").
|
17 |
+
Defaults to 224 if not found.
|
18 |
+
"""
|
19 |
+
match = re.search(r'-([0-9]+)$', model_name)
|
20 |
+
if match:
|
21 |
+
return int(match.group(1))
|
22 |
+
else:
|
23 |
+
return 224
|
24 |
+
|
25 |
+
def collate_fn(batch):
|
26 |
+
images, labels = zip(*batch)
|
27 |
+
return list(images), list(labels)
|
28 |
+
|
29 |
+
def main():
|
30 |
+
parser = argparse.ArgumentParser(description="Compute embeddings for a Hugging Face model")
|
31 |
+
parser.add_argument('--model_name', type=str, default="facebook/vit-mae-base",
|
32 |
+
help="Hugging Face model name, e.g., facebook/vit-mae-base or openai/clip-vit-base-patch14-336")
|
33 |
+
parser.add_argument('--lmdb_path', type=str, default='../lmdb_all_crops_pmfeed_4_3_16', help="Path to the LMDB image dataset")
|
34 |
+
parser.add_argument('--batch_size', type=int, default=128)
|
35 |
+
parser.add_argument('--num_workers', type=int, default=8)
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
# Infer image size from the model name
|
39 |
+
image_size = infer_image_size(args.model_name)
|
40 |
+
print(f"Inferred image size: {image_size}")
|
41 |
+
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.Resize((image_size, image_size)),
|
44 |
+
])
|
45 |
+
|
46 |
+
# Create the dataset and dataloader.
|
47 |
+
dataset = LMDBImageDataset(
|
48 |
+
lmdb_path=args.lmdb_path,
|
49 |
+
transform=transform,
|
50 |
+
limit=None
|
51 |
+
)
|
52 |
+
dataloader = DataLoader(
|
53 |
+
dataset,
|
54 |
+
batch_size=args.batch_size,
|
55 |
+
shuffle=False,
|
56 |
+
num_workers=args.num_workers,
|
57 |
+
collate_fn=collate_fn
|
58 |
+
)
|
59 |
+
|
60 |
+
# Load the model and processor.
|
61 |
+
model_name = args.model_name
|
62 |
+
processor = AutoProcessor.from_pretrained(model_name, do_normalize=False)
|
63 |
+
model = AutoModel.from_pretrained(model_name)
|
64 |
+
print(f"Using model: {model_name}")
|
65 |
+
|
66 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
67 |
+
model.to(device)
|
68 |
+
model.eval()
|
69 |
+
|
70 |
+
all_embeddings = []
|
71 |
+
all_cow_ids = []
|
72 |
+
|
73 |
+
# Loop through the dataset and compute embeddings.
|
74 |
+
with torch.no_grad():
|
75 |
+
for images, cow_ids in tqdm(dataloader, unit='batch'):
|
76 |
+
inputs = processor(images=images, return_tensors="pt")
|
77 |
+
inputs = inputs.to(device)
|
78 |
+
# Get the mean of the last hidden state as the image embedding.
|
79 |
+
if "clip-vit" in model_name:
|
80 |
+
image_features = model.get_image_features(**inputs)
|
81 |
+
elif "vit-mae" in model_name:
|
82 |
+
image_features = model(**inputs).last_hidden_state.mean(dim=1)
|
83 |
+
else:
|
84 |
+
image_features = model(**inputs).pooler_output
|
85 |
+
# image_features = model(**inputs).last_hidden_state.mean(dim=1) # mae model
|
86 |
+
# image_features = model.get_image_features(**inputs) # clip model
|
87 |
+
# image_features = model(**inputs).pooler_output # everything else
|
88 |
+
all_embeddings.append(image_features.cpu())
|
89 |
+
all_cow_ids.extend(cow_ids)
|
90 |
+
|
91 |
+
# Concatenate and save the embeddings.
|
92 |
+
embeddings = torch.cat(all_embeddings, dim=0)
|
93 |
+
output_file = f"{model_name.replace('/', '_')}_embeddings.pt"
|
94 |
+
torch.save(embeddings, output_file)
|
95 |
+
print(f"Embeddings saved to {output_file}")
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
main()
|
identification_benchmark/classification/data_loading.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import TensorDataset
|
3 |
+
import tensorflow as tf
|
4 |
+
import tensorflow_datasets as tfds
|
5 |
+
import jax.numpy as jnp
|
6 |
+
|
7 |
+
|
8 |
+
def get_datasets(
|
9 |
+
features_path='../big_model_inference/resnet18_embeddings.pt',
|
10 |
+
labels_path='../big_model_inference/all_cow_ids.pt'
|
11 |
+
):
|
12 |
+
embeddings_np = torch.load(features_path)
|
13 |
+
all_cow_ids = torch.load(labels_path) - 1
|
14 |
+
|
15 |
+
|
16 |
+
# Set the seed for reproducibility
|
17 |
+
seed = 42
|
18 |
+
torch.manual_seed(seed)
|
19 |
+
|
20 |
+
# Assume embeddings_np and all_cow_ids are already loaded as PyTorch tensors
|
21 |
+
num_samples = len(embeddings_np)
|
22 |
+
indices = torch.randperm(num_samples)
|
23 |
+
|
24 |
+
# Calculate split indices for 70/20/10 split
|
25 |
+
train_end = int(0.001 * num_samples)
|
26 |
+
val_end = int(0.2 * num_samples)
|
27 |
+
train_indices = indices[:train_end]
|
28 |
+
val_indices = indices[train_end:val_end]
|
29 |
+
test_indices = indices[val_end:]
|
30 |
+
|
31 |
+
# print(train_indices[:10])
|
32 |
+
# print(val_indices[:10])
|
33 |
+
# print(test_indices[:10])
|
34 |
+
|
35 |
+
# assert torch.equal(train_indices[:10], torch.tensor([292622, 37548, 42432, 353497, 379054, 301165, 47066, 353666, 409458,
|
36 |
+
# 454581]))
|
37 |
+
# assert torch.equal(val_indices[:10], torch.tensor([219340, 495317, 522025, 36026, 490924, 179563, 533196, 263518, 139048,
|
38 |
+
# 72363]))
|
39 |
+
# assert torch.equal(test_indices[:10], torch.tensor([192226, 477583, 210506, 265639, 82907, 246325, 335726, 395405, 497690,
|
40 |
+
# 388675]))
|
41 |
+
# Create datasets for each split
|
42 |
+
train_dataset = TensorDataset(embeddings_np[train_indices], all_cow_ids[train_indices])
|
43 |
+
val_dataset = TensorDataset(embeddings_np[val_indices], all_cow_ids[val_indices])
|
44 |
+
test_dataset = TensorDataset(embeddings_np[test_indices], all_cow_ids[test_indices])
|
45 |
+
|
46 |
+
print(f"Train set: {len(train_dataset)} samples")
|
47 |
+
print(f"Validation set: {len(val_dataset)} samples")
|
48 |
+
print(f"Test set: {len(test_dataset)} samples")
|
49 |
+
return train_dataset, val_dataset, test_dataset
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
def get_time_series(
|
54 |
+
features_path='../big_model_inference/resnet18_embeddings.pt',
|
55 |
+
labels_path='../big_model_inference/all_cow_ids.pt'
|
56 |
+
):
|
57 |
+
embeddings_np = torch.load(features_path)
|
58 |
+
all_cow_ids = torch.load(labels_path) - 1
|
59 |
+
|
60 |
+
|
61 |
+
num_samples = len(embeddings_np)
|
62 |
+
|
63 |
+
train_end = int(0.33 * num_samples)
|
64 |
+
val_end = int(0.66 * num_samples)
|
65 |
+
|
66 |
+
# Create datasets for each split
|
67 |
+
train_dataset = TensorDataset(embeddings_np[:train_end], all_cow_ids[:train_end])
|
68 |
+
val_dataset = TensorDataset(embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end])
|
69 |
+
test_dataset = TensorDataset(embeddings_np[val_end:], all_cow_ids[val_end:])
|
70 |
+
|
71 |
+
print(f"Train set: {len(train_dataset)} samples")
|
72 |
+
print(f"Validation set: {len(val_dataset)} samples")
|
73 |
+
print(f"Test set: {len(test_dataset)} samples")
|
74 |
+
return train_dataset, val_dataset, test_dataset
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def get_time_series_tf(
|
79 |
+
features_path='../big_model_inference/resnet18_embeddings.pt',
|
80 |
+
labels_path='../big_model_inference/all_cow_ids.pt'
|
81 |
+
):
|
82 |
+
embeddings_np = torch.load(features_path)
|
83 |
+
all_cow_ids = torch.load(labels_path) - 1
|
84 |
+
embeddings_np = embeddings_np.numpy()
|
85 |
+
all_cow_ids = all_cow_ids.numpy()
|
86 |
+
|
87 |
+
num_samples = len(embeddings_np)
|
88 |
+
|
89 |
+
train_end = int(0.33 * num_samples)
|
90 |
+
val_end = int(0.66 * num_samples)
|
91 |
+
|
92 |
+
# Create datasets for each split
|
93 |
+
train_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[:train_end], all_cow_ids[:train_end]))
|
94 |
+
val_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end]))
|
95 |
+
test_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[val_end:], all_cow_ids[val_end:]))
|
96 |
+
|
97 |
+
print(f"Train set: {len(train_dataset)} samples")
|
98 |
+
print(f"Validation set: {len(val_dataset)} samples")
|
99 |
+
print(f"Test set: {len(test_dataset)} samples")
|
100 |
+
|
101 |
+
batch_size = 32
|
102 |
+
|
103 |
+
train_dataset = train_dataset.shuffle(len(train_dataset)).batch(
|
104 |
+
batch_size,
|
105 |
+
num_parallel_calls=tf.data.AUTOTUNE
|
106 |
+
).prefetch(tf.data.AUTOTUNE)
|
107 |
+
|
108 |
+
val_dataset = val_dataset.batch(
|
109 |
+
batch_size,
|
110 |
+
num_parallel_calls=tf.data.AUTOTUNE
|
111 |
+
).prefetch(tf.data.AUTOTUNE)
|
112 |
+
|
113 |
+
test_dataset = test_dataset.batch(
|
114 |
+
batch_size,
|
115 |
+
num_parallel_calls=tf.data.AUTOTUNE
|
116 |
+
).prefetch(tf.data.AUTOTUNE)
|
117 |
+
|
118 |
+
train_dataset = tfds.as_numpy(train_dataset)
|
119 |
+
val_dataset = tfds.as_numpy(val_dataset)
|
120 |
+
test_dataset = tfds.as_numpy(test_dataset)
|
121 |
+
return train_dataset, val_dataset, test_dataset, len(embeddings_np[0])
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
train_dataset, val_dataset, test_dataset, in_features = get_time_series_tf(features_path='../big_model_inference/facebook_dinov2_base_embeddings.pt')
|
125 |
+
print(f"in features : {in_features}")
|
126 |
+
for batch in train_dataset:
|
127 |
+
batch = {
|
128 |
+
'feature' : jnp.array(batch[0]),
|
129 |
+
"label" : jnp.array(batch[1])
|
130 |
+
}
|
131 |
+
print(batch)
|
132 |
+
break
|
133 |
+
for batch in val_dataset:
|
134 |
+
print(batch)
|
135 |
+
break
|
136 |
+
for batch in test_dataset:
|
137 |
+
print(batch)
|
138 |
+
break
|
identification_benchmark/classification/knn_evaluation.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import os, glob
|
5 |
+
|
6 |
+
def get_results(features_path):
|
7 |
+
print(features_path)
|
8 |
+
embeddings_np = torch.load(features_path).numpy()
|
9 |
+
all_cow_ids = torch.load("../big_model_inference/all_cow_ids.pt").numpy()
|
10 |
+
|
11 |
+
|
12 |
+
mid_point = len(embeddings_np) // 2
|
13 |
+
# print(f"mid_point : {mid_point}")
|
14 |
+
embeddings_np_first_half = embeddings_np[:mid_point]
|
15 |
+
embeddings_np_second_half = embeddings_np[mid_point:]
|
16 |
+
|
17 |
+
all_cow_ids_first_half = all_cow_ids[:mid_point]
|
18 |
+
all_cow_ids_second_half = all_cow_ids[mid_point:]
|
19 |
+
|
20 |
+
# # Assuming embeddings_np is your numpy array of shape (N, 512) and dtype=np.float32
|
21 |
+
d = embeddings_np_first_half.shape[1] # Dimensionality (512)
|
22 |
+
nlist = 100 # Number of clusters (you can tune this parameter)
|
23 |
+
|
24 |
+
|
25 |
+
m = 8 # Number of subquantizers (must be a divisor of d)
|
26 |
+
nbits = 8 # Bits per subquantizer
|
27 |
+
|
28 |
+
flat_index = faiss.IndexFlatL2(d)
|
29 |
+
index_ivf = faiss.IndexIVFPQ(flat_index, d, nlist, m, nbits)
|
30 |
+
index_ivf.nprobe = 10
|
31 |
+
index_ivf.train(embeddings_np_first_half)
|
32 |
+
index_ivf.add(embeddings_np_first_half)
|
33 |
+
# flat_index.add(embeddings_np_first_half)
|
34 |
+
k = 6
|
35 |
+
distances, indices = index_ivf.search(embeddings_np_second_half, k)
|
36 |
+
|
37 |
+
|
38 |
+
# print("Nearest neighbors (indices) for the first 10 images:")
|
39 |
+
# print(indices[-10:])
|
40 |
+
# print("Corresponding distances:")
|
41 |
+
# print(distances[-10:])
|
42 |
+
|
43 |
+
|
44 |
+
# Calculate top-1 and top-5 accuracy
|
45 |
+
top1_correct = 0
|
46 |
+
top5_correct = 0
|
47 |
+
|
48 |
+
for i, indices_row in enumerate(indices):
|
49 |
+
query_id = all_cow_ids_second_half[i]
|
50 |
+
|
51 |
+
# Get cow IDs for the retrieved results
|
52 |
+
retrieved_ids = [all_cow_ids_first_half[idx] for idx in indices_row]
|
53 |
+
|
54 |
+
# Top-1: Check if the first result matches the query ID
|
55 |
+
if retrieved_ids[0] == query_id:
|
56 |
+
top1_correct += 1
|
57 |
+
|
58 |
+
# Top-5: Check if any of the first 5 results match the query ID
|
59 |
+
if query_id in retrieved_ids[:5]:
|
60 |
+
top5_correct += 1
|
61 |
+
|
62 |
+
# Calculate accuracy rates
|
63 |
+
top1_accuracy = top1_correct / len(embeddings_np_second_half)
|
64 |
+
top5_accuracy = top5_correct / len(embeddings_np_second_half)
|
65 |
+
|
66 |
+
print(f"Top-1 Accuracy: {top1_accuracy:.4f}")
|
67 |
+
print(f"Top-5 Accuracy: {top5_accuracy:.4f}")
|
68 |
+
|
69 |
+
directory = '../big_model_inference' # replace with your directory path
|
70 |
+
pattern = os.path.join(directory, '*.pt')
|
71 |
+
exclude_file = 'all_cow_ids.pt'
|
72 |
+
for features_path in glob.glob(pattern):
|
73 |
+
if os.path.basename(features_path) != exclude_file:
|
74 |
+
get_results(features_path)
|
75 |
+
# print(features_path)
|
identification_benchmark/classification/model.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flax import nnx # The Flax NNX API.
|
2 |
+
|
3 |
+
class LinearClassifier(nnx.Module):
|
4 |
+
def __init__(self, in_features, out_features, rngs: nnx.Rngs):
|
5 |
+
self.linear = nnx.Linear(in_features, out_features, rngs=rngs)
|
6 |
+
|
7 |
+
def __call__(self, x):
|
8 |
+
return self.linear(x)
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
# Instantiate the model.
|
13 |
+
model = LinearClassifier(
|
14 |
+
in_features=512,
|
15 |
+
out_features=8,
|
16 |
+
rngs=nnx.Rngs(0)
|
17 |
+
)
|
18 |
+
# Visualize it.
|
19 |
+
nnx.display(model)
|
identification_benchmark/classification/train.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
# os.environ["JAX_PLATFORMS"] = "cpu" # Must be set before importing jax
|
4 |
+
from model import LinearClassifier
|
5 |
+
from flax import nnx
|
6 |
+
import optax
|
7 |
+
from data_loading import get_time_series_tf
|
8 |
+
import jax.numpy as jnp
|
9 |
+
import numpy as np
|
10 |
+
from copy import deepcopy
|
11 |
+
|
12 |
+
|
13 |
+
def loss_fn(model: LinearClassifier, batch):
|
14 |
+
logits = model(batch['feature'])
|
15 |
+
loss = optax.softmax_cross_entropy_with_integer_labels(
|
16 |
+
logits=logits, labels=batch['label']
|
17 |
+
).mean()
|
18 |
+
return loss, logits
|
19 |
+
|
20 |
+
@nnx.jit
|
21 |
+
def train_step(model: LinearClassifier, optimizer: nnx.Optimizer, batch):
|
22 |
+
"""Train for a single step."""
|
23 |
+
grad_fn = nnx.value_and_grad(loss_fn, has_aux=True)
|
24 |
+
(loss, logits), grads = grad_fn(model, batch)
|
25 |
+
optimizer.update(grads) # In-place updates.
|
26 |
+
|
27 |
+
@nnx.jit
|
28 |
+
def eval_step(model: LinearClassifier, metrics: nnx.MultiMetric, batch):
|
29 |
+
loss, logits = loss_fn(model, batch)
|
30 |
+
metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates.
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def get_results(features_path):
|
35 |
+
print(features_path)
|
36 |
+
|
37 |
+
train_loader, val_loader, test_loader, in_features = get_time_series_tf(
|
38 |
+
features_path=features_path
|
39 |
+
)
|
40 |
+
|
41 |
+
model = LinearClassifier(
|
42 |
+
in_features=in_features,
|
43 |
+
out_features=8,
|
44 |
+
rngs=nnx.Rngs(0)
|
45 |
+
)
|
46 |
+
# nnx.display(model)
|
47 |
+
|
48 |
+
learning_rate = 0.005
|
49 |
+
optimizer = nnx.Optimizer(
|
50 |
+
model,
|
51 |
+
optax.adamw(learning_rate=learning_rate)
|
52 |
+
)
|
53 |
+
# nnx.display(optimizer)
|
54 |
+
|
55 |
+
metrics = nnx.MultiMetric(
|
56 |
+
accuracy=nnx.metrics.Accuracy(),
|
57 |
+
loss=nnx.metrics.Average('loss'),
|
58 |
+
)
|
59 |
+
|
60 |
+
epochs = 100
|
61 |
+
|
62 |
+
best_accuracy = 0.0
|
63 |
+
best_model = deepcopy(model)
|
64 |
+
patience = 0
|
65 |
+
# train and validation goes here
|
66 |
+
for epoch in range(epochs):
|
67 |
+
if patience == 10:
|
68 |
+
break
|
69 |
+
for batch in train_loader:
|
70 |
+
batch = {
|
71 |
+
'feature' : jnp.array(batch[0]),
|
72 |
+
'label' : jnp.array(batch[1])
|
73 |
+
}
|
74 |
+
train_step(model, optimizer, batch)
|
75 |
+
for batch in val_loader:
|
76 |
+
batch = {
|
77 |
+
'feature' : jnp.array(batch[0]),
|
78 |
+
'label' : jnp.array(batch[1])
|
79 |
+
}
|
80 |
+
eval_step(model, metrics, batch)
|
81 |
+
# Log the test metrics.
|
82 |
+
results = metrics.compute()
|
83 |
+
|
84 |
+
accuracy = results['accuracy'].item()
|
85 |
+
if accuracy > best_accuracy:
|
86 |
+
best_accuracy = accuracy
|
87 |
+
best_model = deepcopy(model)
|
88 |
+
patience = 0
|
89 |
+
else:
|
90 |
+
patience += 1
|
91 |
+
metrics.reset() # Reset the metrics for the next training epoch.
|
92 |
+
|
93 |
+
print(f"best eval accuracy: {best_accuracy}")
|
94 |
+
|
95 |
+
# testing goes here
|
96 |
+
for batch in test_loader:
|
97 |
+
batch = {
|
98 |
+
'feature' : jnp.array(batch[0]),
|
99 |
+
'label' : jnp.array(batch[1])
|
100 |
+
}
|
101 |
+
eval_step(best_model, metrics, batch)
|
102 |
+
# Log the test metrics.
|
103 |
+
|
104 |
+
results = metrics.compute()
|
105 |
+
accuracy = results['accuracy'].item()
|
106 |
+
print(f"test accuracy: {accuracy}")
|
107 |
+
|
108 |
+
|
109 |
+
directory = '../big_model_inference' # replace with your directory path
|
110 |
+
pattern = os.path.join(directory, '*.pt')
|
111 |
+
exclude_file = 'all_cow_ids.pt'
|
112 |
+
for features_path in glob.glob(pattern):
|
113 |
+
if os.path.basename(features_path) != exclude_file:
|
114 |
+
get_results(features_path)
|
115 |
+
|
116 |
+
# get_results('../big_model_inference/facebook_dinov2_base_embeddings.pt')
|
identification_benchmark/construct_lmdb.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import lmdb
|
3 |
+
import re
|
4 |
+
import multiprocessing
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
def sort_key(filename):
|
8 |
+
# Extract frame number and cow id from filenames like:
|
9 |
+
# "pmfeed_4_3_16_frame_10000_cow_1.jpg"
|
10 |
+
match = re.search(r'frame_(\d+)_cow_(\d+)', filename)
|
11 |
+
if match:
|
12 |
+
frame_number = int(match.group(1))
|
13 |
+
cow_id = int(match.group(2))
|
14 |
+
return (frame_number, cow_id)
|
15 |
+
return (float('inf'), float('inf'))
|
16 |
+
|
17 |
+
def read_image(args):
|
18 |
+
image_folder, image_name = args
|
19 |
+
image_path = os.path.join(image_folder, image_name)
|
20 |
+
try:
|
21 |
+
with open(image_path, 'rb') as f:
|
22 |
+
image_data = f.read()
|
23 |
+
return (image_name, image_data)
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error reading {image_name}: {e}")
|
26 |
+
return None
|
27 |
+
|
28 |
+
def main():
|
29 |
+
# Define your pathscon
|
30 |
+
image_folder = 'all_crops_pmfeed_4_3_16'
|
31 |
+
lmdb_path = 'lmdb_all_crops_pmfeed_4_3_16'
|
32 |
+
|
33 |
+
# Create LMDB directory if it doesn't exist
|
34 |
+
if not os.path.exists(lmdb_path):
|
35 |
+
os.makedirs(lmdb_path)
|
36 |
+
|
37 |
+
# List and sort JPEG files
|
38 |
+
image_files = [f for f in os.listdir(image_folder) if f.endswith('.jpg')]
|
39 |
+
sorted_files = sorted(image_files, key=sort_key)
|
40 |
+
|
41 |
+
# For sanity check, take the first 20 images
|
42 |
+
sanity_files = sorted_files
|
43 |
+
|
44 |
+
# Prepare arguments for multiprocessing
|
45 |
+
args = [(image_folder, image_name) for image_name in sanity_files]
|
46 |
+
|
47 |
+
# Use multiprocessing Pool to read images concurrently
|
48 |
+
with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:
|
49 |
+
results = list(tqdm(pool.imap(read_image, args), total=len(args), desc="Reading images"))
|
50 |
+
|
51 |
+
# Filter out any failed reads
|
52 |
+
results = [res for res in results if res is not None]
|
53 |
+
|
54 |
+
# Open LMDB environment with an appropriate map size (e.g., 10GB)
|
55 |
+
map_size = 10 * 1024 * 1024 * 1024 # 10GB in bytes
|
56 |
+
env = lmdb.open(lmdb_path, map_size=map_size)
|
57 |
+
|
58 |
+
# Write the results into LMDB using a single write transaction
|
59 |
+
with env.begin(write=True) as txn:
|
60 |
+
for key, value in tqdm(results, desc="Writing to LMDB"):
|
61 |
+
txn.put(key.encode('utf-8'), value)
|
62 |
+
|
63 |
+
print("LMDB database creation complete for all images!")
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|
identification_benchmark/crop_pmfeed_4_3_16.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Files
|
7 |
+
pickle_filename = "../pmfeed_4_3_16_bboxes_and_labels.pkl"
|
8 |
+
video_filename = "../pmfeed_4_3_16.mp4"
|
9 |
+
output_dir = "all_crops_pmfeed_4_3_16"
|
10 |
+
|
11 |
+
# Create output directory if it doesn't exist
|
12 |
+
os.makedirs(output_dir, exist_ok=True)
|
13 |
+
|
14 |
+
# Load the bounding boxes DataFrame from the pickle file
|
15 |
+
with open(pickle_filename, "rb") as f:
|
16 |
+
df = pickle.load(f)
|
17 |
+
|
18 |
+
# Open the video file
|
19 |
+
cap = cv2.VideoCapture(video_filename)
|
20 |
+
if not cap.isOpened():
|
21 |
+
raise IOError(f"Cannot open video file {video_filename}")
|
22 |
+
|
23 |
+
# Get video dimensions
|
24 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
25 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
26 |
+
print(f"Video dimensions: {frame_width}x{frame_height}")
|
27 |
+
|
28 |
+
# Initialize sliding window pointers and frame counter
|
29 |
+
num_rows = len(df)
|
30 |
+
i = 0
|
31 |
+
frames_processed = 0
|
32 |
+
# max_frames = 3 # only process first 3 frames
|
33 |
+
|
34 |
+
while i < num_rows:
|
35 |
+
# Get the current frame_id for this sliding window
|
36 |
+
current_frame_id = int(df.iloc[i]["frame_id"])
|
37 |
+
j = i
|
38 |
+
# Move j until the frame_id changes
|
39 |
+
while j < num_rows and df.iloc[j]["frame_id"] == current_frame_id:
|
40 |
+
j += 1
|
41 |
+
|
42 |
+
# Set the video to the appropriate frame (frame_id is assumed to be 1-indexed)
|
43 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, current_frame_id - 1)
|
44 |
+
ret, frame = cap.read()
|
45 |
+
if not ret:
|
46 |
+
print(f"Warning: Could not read frame {current_frame_id}")
|
47 |
+
i = j
|
48 |
+
continue
|
49 |
+
|
50 |
+
# Process all bounding boxes for this frame (from row i to j-1)
|
51 |
+
for index in range(i, j):
|
52 |
+
row = df.iloc[index]
|
53 |
+
# Assuming coordinates are normalized: (center x, center y, width, height)
|
54 |
+
x_center = row["x"]
|
55 |
+
y_center = row["y"]
|
56 |
+
bbox_width = row["w"]
|
57 |
+
bbox_height = row["h"]
|
58 |
+
|
59 |
+
# Convert normalized coordinates to absolute pixel values
|
60 |
+
left = int((x_center - bbox_width / 2) * frame_width)
|
61 |
+
top = int((y_center - bbox_height / 2) * frame_height)
|
62 |
+
right = int((x_center + bbox_width / 2) * frame_width)
|
63 |
+
bottom = int((y_center + bbox_height / 2) * frame_height)
|
64 |
+
|
65 |
+
# Clamp the coordinates to within the frame dimensions
|
66 |
+
left = max(left, 0)
|
67 |
+
top = max(top, 0)
|
68 |
+
right = min(right, frame_width)
|
69 |
+
bottom = min(bottom, frame_height)
|
70 |
+
|
71 |
+
# Skip if resulting crop dimensions are invalid
|
72 |
+
if right - left <= 0 or bottom - top <= 0:
|
73 |
+
print(f"Warning: Invalid crop dimensions for frame {current_frame_id}, tracklet {row['tracklet_id']}")
|
74 |
+
continue
|
75 |
+
|
76 |
+
# Crop the image
|
77 |
+
crop_img = frame[top:bottom, left:right]
|
78 |
+
|
79 |
+
# Save crop image with filename format: "pmfeed_4_3_16_frame_<frame_id>_cow_<tracklet_id>.jpg"
|
80 |
+
filename = f"pmfeed_4_3_16_frame_{current_frame_id}_cow_{int(row['tracklet_id'])}.jpg"
|
81 |
+
output_path = os.path.join(output_dir, filename)
|
82 |
+
cv2.imwrite(output_path, crop_img)
|
83 |
+
print(f"Saved crop: {output_path}")
|
84 |
+
|
85 |
+
frames_processed += 1
|
86 |
+
i = j
|
87 |
+
|
88 |
+
# Release video capture
|
89 |
+
cap.release()
|
90 |
+
print("Cropping all frames completed.")
|
requirement.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# packages in environment at /user/work/xf16910/.conda/envs/py310:
|
2 |
+
#
|
3 |
+
# Name Version Build Channel
|
4 |
+
_libgcc_mutex 0.1 conda_forge conda-forge
|
5 |
+
_openmp_mutex 4.5 2_gnu conda-forge
|
6 |
+
absl-py 2.2.1 pypi_0 pypi
|
7 |
+
accelerate 1.5.2 pypi_0 pypi
|
8 |
+
aiohappyeyeballs 2.6.1 pypi_0 pypi
|
9 |
+
aiohttp 3.11.15 pypi_0 pypi
|
10 |
+
aiosignal 1.3.2 pypi_0 pypi
|
11 |
+
albucore 0.0.23 pypi_0 pypi
|
12 |
+
albumentations 2.0.5 pypi_0 pypi
|
13 |
+
annotated-types 0.7.0 pypi_0 pypi
|
14 |
+
array-record 0.7.1 pypi_0 pypi
|
15 |
+
astunparse 1.6.3 pypi_0 pypi
|
16 |
+
async-timeout 5.0.1 pypi_0 pypi
|
17 |
+
attrs 25.3.0 pypi_0 pypi
|
18 |
+
bzip2 1.0.8 h4bc722e_7 conda-forge
|
19 |
+
c-ares 1.34.5 hb9d3cd8_0 conda-forge
|
20 |
+
ca-certificates 2025.1.31 hbcca054_0 conda-forge
|
21 |
+
certifi 2025.1.31 pypi_0 pypi
|
22 |
+
charset-normalizer 3.4.1 pypi_0 pypi
|
23 |
+
chex 0.1.89 pypi_0 pypi
|
24 |
+
contourpy 1.3.1 pypi_0 pypi
|
25 |
+
curl 7.88.1 hdc1c0ab_1 conda-forge
|
26 |
+
cycler 0.12.1 pypi_0 pypi
|
27 |
+
datasets 3.5.0 pypi_0 pypi
|
28 |
+
dill 0.3.8 pypi_0 pypi
|
29 |
+
dm-tree 0.1.9 pypi_0 pypi
|
30 |
+
docstring-parser 0.16 pypi_0 pypi
|
31 |
+
einops 0.8.1 pypi_0 pypi
|
32 |
+
etils 1.12.2 pypi_0 pypi
|
33 |
+
expat 2.7.0 h5888daf_0 conda-forge
|
34 |
+
faiss-gpu 1.7.2 pypi_0 pypi
|
35 |
+
filelock 3.18.0 pypi_0 pypi
|
36 |
+
flatbuffers 25.2.10 pypi_0 pypi
|
37 |
+
flax 0.10.4 pypi_0 pypi
|
38 |
+
fonttools 4.56.0 pypi_0 pypi
|
39 |
+
frozenlist 1.5.0 pypi_0 pypi
|
40 |
+
fsspec 2024.12.0 pypi_0 pypi
|
41 |
+
gast 0.6.0 pypi_0 pypi
|
42 |
+
gettext 0.23.1 h5888daf_0 conda-forge
|
43 |
+
gettext-tools 0.23.1 h5888daf_0 conda-forge
|
44 |
+
git 2.45.2 pl5340h9abc3c3_1 anaconda
|
45 |
+
git-lfs 1.6 pypi_0 pypi
|
46 |
+
google-pasta 0.2.0 pypi_0 pypi
|
47 |
+
grpcio 1.71.0 pypi_0 pypi
|
48 |
+
h5py 3.13.0 pypi_0 pypi
|
49 |
+
huggingface-hub 0.29.3 pypi_0 pypi
|
50 |
+
humanize 4.12.2 pypi_0 pypi
|
51 |
+
idna 3.10 pypi_0 pypi
|
52 |
+
immutabledict 4.2.1 pypi_0 pypi
|
53 |
+
importlib-resources 6.5.2 pypi_0 pypi
|
54 |
+
jax 0.5.3 pypi_0 pypi
|
55 |
+
jax-cuda12-pjrt 0.5.3 pypi_0 pypi
|
56 |
+
jax-cuda12-plugin 0.5.3 pypi_0 pypi
|
57 |
+
jaxlib 0.5.3 pypi_0 pypi
|
58 |
+
jinja2 3.1.6 pypi_0 pypi
|
59 |
+
joblib 1.4.2 pypi_0 pypi
|
60 |
+
keras 3.9.1 pypi_0 pypi
|
61 |
+
keyutils 1.6.1 h166bdaf_0 conda-forge
|
62 |
+
kiwisolver 1.4.8 pypi_0 pypi
|
63 |
+
krb5 1.20.1 h81ceb04_0 conda-forge
|
64 |
+
ld_impl_linux-64 2.43 h712a8e2_4 conda-forge
|
65 |
+
libasprintf 0.23.1 h8e693c7_0 conda-forge
|
66 |
+
libasprintf-devel 0.23.1 h8e693c7_0 conda-forge
|
67 |
+
libclang 18.1.1 pypi_0 pypi
|
68 |
+
libcurl 7.88.1 hdc1c0ab_1 conda-forge
|
69 |
+
libedit 3.1.20250104 pl5321h7949ede_0 conda-forge
|
70 |
+
libev 4.33 hd590300_2 conda-forge
|
71 |
+
libexpat 2.7.0 h5888daf_0 conda-forge
|
72 |
+
libffi 3.4.6 h2dba641_0 conda-forge
|
73 |
+
libgcc 14.2.0 h767d61c_2 conda-forge
|
74 |
+
libgcc-ng 14.2.0 h69a702a_2 conda-forge
|
75 |
+
libgettextpo 0.23.1 h5888daf_0 conda-forge
|
76 |
+
libgettextpo-devel 0.23.1 h5888daf_0 conda-forge
|
77 |
+
libgomp 14.2.0 h767d61c_2 conda-forge
|
78 |
+
liblzma 5.6.4 hb9d3cd8_0 conda-forge
|
79 |
+
liblzma-devel 5.6.4 hb9d3cd8_0 conda-forge
|
80 |
+
libnghttp2 1.58.0 h47da74e_1 conda-forge
|
81 |
+
libnsl 2.0.1 hd590300_0 conda-forge
|
82 |
+
libsqlite 3.46.0 hde9e2c9_0 conda-forge
|
83 |
+
libssh2 1.11.0 h0841786_0 conda-forge
|
84 |
+
libstdcxx 14.2.0 h8f9b012_2 conda-forge
|
85 |
+
libstdcxx-ng 14.2.0 h4852527_2 conda-forge
|
86 |
+
libuuid 2.38.1 h0b41bf4_0 conda-forge
|
87 |
+
libxcrypt 4.4.36 hd590300_1 conda-forge
|
88 |
+
libzlib 1.2.13 h4ab18f5_6 conda-forge
|
89 |
+
lightning-utilities 0.14.2 pypi_0 pypi
|
90 |
+
lmdb 1.6.2 pypi_0 pypi
|
91 |
+
markdown 3.7 pypi_0 pypi
|
92 |
+
markdown-it-py 3.0.0 pypi_0 pypi
|
93 |
+
markupsafe 3.0.2 pypi_0 pypi
|
94 |
+
matplotlib 3.10.1 pypi_0 pypi
|
95 |
+
mdurl 0.1.2 pypi_0 pypi
|
96 |
+
ml-dtypes 0.5.1 pypi_0 pypi
|
97 |
+
mpmath 1.3.0 pypi_0 pypi
|
98 |
+
msgpack 1.1.0 pypi_0 pypi
|
99 |
+
multidict 6.3.0 pypi_0 pypi
|
100 |
+
multiprocess 0.70.16 pypi_0 pypi
|
101 |
+
namex 0.0.8 pypi_0 pypi
|
102 |
+
ncurses 6.5 h2d0b736_3 conda-forge
|
103 |
+
nest-asyncio 1.6.0 pypi_0 pypi
|
104 |
+
networkx 3.4.2 pypi_0 pypi
|
105 |
+
numpy 1.26.4 pypi_0 pypi
|
106 |
+
nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
|
107 |
+
nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
|
108 |
+
nvidia-cuda-nvcc-cu12 12.8.93 pypi_0 pypi
|
109 |
+
nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
|
110 |
+
nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
|
111 |
+
nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
|
112 |
+
nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
|
113 |
+
nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
|
114 |
+
nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
|
115 |
+
nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
|
116 |
+
nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
|
117 |
+
nvidia-nccl-cu12 2.21.5 pypi_0 pypi
|
118 |
+
nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
|
119 |
+
nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
|
120 |
+
opencv-python 4.11.0.86 pypi_0 pypi
|
121 |
+
opencv-python-headless 4.11.0.86 pypi_0 pypi
|
122 |
+
openssl 3.5.0 h7b32b05_0 conda-forge
|
123 |
+
opt-einsum 3.4.0 pypi_0 pypi
|
124 |
+
optax 0.2.4 pypi_0 pypi
|
125 |
+
optree 0.14.1 pypi_0 pypi
|
126 |
+
orbax-checkpoint 0.11.10 pypi_0 pypi
|
127 |
+
packaging 24.2 pypi_0 pypi
|
128 |
+
pandas 2.2.3 pypi_0 pypi
|
129 |
+
pcre2 10.42 hcad00b1_0 conda-forge
|
130 |
+
perl 5.32.1 7_hd590300_perl5 conda-forge
|
131 |
+
pillow 11.1.0 pypi_0 pypi
|
132 |
+
pip 25.0.1 pyh8b19718_0 conda-forge
|
133 |
+
promise 2.3 pypi_0 pypi
|
134 |
+
propcache 0.3.1 pypi_0 pypi
|
135 |
+
protobuf 3.20.3 pypi_0 pypi
|
136 |
+
psutil 7.0.0 pypi_0 pypi
|
137 |
+
py-cpuinfo 9.0.0 pypi_0 pypi
|
138 |
+
pyarrow 19.0.1 pypi_0 pypi
|
139 |
+
pycocotools 2.0.8 pypi_0 pypi
|
140 |
+
pydantic 2.11.1 pypi_0 pypi
|
141 |
+
pydantic-core 2.33.0 pypi_0 pypi
|
142 |
+
pygments 2.19.1 pypi_0 pypi
|
143 |
+
pyparsing 3.2.3 pypi_0 pypi
|
144 |
+
python 3.10.14 hd12c33a_0_cpython conda-forge
|
145 |
+
python-dateutil 2.9.0.post0 pypi_0 pypi
|
146 |
+
pytz 2025.2 pypi_0 pypi
|
147 |
+
pyyaml 6.0.2 pypi_0 pypi
|
148 |
+
readline 8.2 h8c095d6_2 conda-forge
|
149 |
+
regex 2024.11.6 pypi_0 pypi
|
150 |
+
requests 2.32.3 pypi_0 pypi
|
151 |
+
rich 13.9.4 pypi_0 pypi
|
152 |
+
safetensors 0.5.3 pypi_0 pypi
|
153 |
+
scikit-learn 1.6.1 pypi_0 pypi
|
154 |
+
scipy 1.15.2 pypi_0 pypi
|
155 |
+
seaborn 0.13.2 pypi_0 pypi
|
156 |
+
setuptools 75.8.2 pyhff2d567_0 conda-forge
|
157 |
+
simple-parsing 0.1.7 pypi_0 pypi
|
158 |
+
simplejson 3.20.1 pypi_0 pypi
|
159 |
+
simsimd 6.2.1 pypi_0 pypi
|
160 |
+
six 1.17.0 pypi_0 pypi
|
161 |
+
stringzilla 3.12.3 pypi_0 pypi
|
162 |
+
sympy 1.13.1 pypi_0 pypi
|
163 |
+
tensorboard 2.19.0 pypi_0 pypi
|
164 |
+
tensorboard-data-server 0.7.2 pypi_0 pypi
|
165 |
+
tensorflow 2.19.0 pypi_0 pypi
|
166 |
+
tensorflow-datasets 4.9.8 pypi_0 pypi
|
167 |
+
tensorflow-io-gcs-filesystem 0.37.1 pypi_0 pypi
|
168 |
+
tensorflow-metadata 1.16.1 pypi_0 pypi
|
169 |
+
tensorstore 0.1.73 pypi_0 pypi
|
170 |
+
termcolor 2.5.0 pypi_0 pypi
|
171 |
+
tf-keras 2.19.0 pypi_0 pypi
|
172 |
+
threadpoolctl 3.6.0 pypi_0 pypi
|
173 |
+
timm 1.0.15 pypi_0 pypi
|
174 |
+
tk 8.6.14 h39e8969_0 anaconda
|
175 |
+
tokenizers 0.21.1 pypi_0 pypi
|
176 |
+
toml 0.10.2 pypi_0 pypi
|
177 |
+
toolz 1.0.0 pypi_0 pypi
|
178 |
+
torch 2.6.0 pypi_0 pypi
|
179 |
+
torchmetrics 1.7.0 pypi_0 pypi
|
180 |
+
torchvision 0.21.0 pypi_0 pypi
|
181 |
+
tqdm 4.67.1 pypi_0 pypi
|
182 |
+
transformers 4.50.3 pypi_0 pypi
|
183 |
+
treescope 0.1.9 pypi_0 pypi
|
184 |
+
triton 3.2.0 pypi_0 pypi
|
185 |
+
typing-extensions 4.13.0 pypi_0 pypi
|
186 |
+
typing-inspection 0.4.0 pypi_0 pypi
|
187 |
+
tzdata 2025.2 pypi_0 pypi
|
188 |
+
ultralytics 8.3.99 pypi_0 pypi
|
189 |
+
ultralytics-thop 2.0.14 pypi_0 pypi
|
190 |
+
urllib3 2.3.0 pypi_0 pypi
|
191 |
+
werkzeug 3.1.3 pypi_0 pypi
|
192 |
+
wheel 0.45.1 pyhd8ed1ab_1 conda-forge
|
193 |
+
wrapt 1.17.2 pypi_0 pypi
|
194 |
+
xxhash 3.5.0 pypi_0 pypi
|
195 |
+
xz 5.6.4 hbcc6ac9_0 conda-forge
|
196 |
+
xz-gpl-tools 5.6.4 hbcc6ac9_0 conda-forge
|
197 |
+
xz-tools 5.6.4 hb9d3cd8_0 conda-forge
|
198 |
+
yarl 1.18.3 pypi_0 pypi
|
199 |
+
zipp 3.21.0 pypi_0 pypi
|
200 |
+
zlib 1.2.13 h4ab18f5_6 conda-forge
|
201 |
+
zstd 1.5.6 ha6fb4c9_0 conda-forge
|