Tony Fang
added identification benchmark
900cef8
import os
import lmdb
import io
import re
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import unittest
from tqdm import tqdm
torch.multiprocessing.set_sharing_strategy('file_system')
class LMDBImageDataset(Dataset):
def __init__(self, lmdb_path, transform=None, limit=None):
"""
Args:
lmdb_path (str): Path to the LMDB directory.
transform (callable, optional): Optional transform to be applied on an image.
limit (int or float, optional): If a float between 0 and 1, keeps that fraction of keys.
If an int, keeps that many keys.
"""
# Open the LMDB environment in read-only mode.
self.env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False)
self.transform = transform
# Retrieve all keys from the LMDB database.
with self.env.begin() as txn:
keys = [key.decode('utf-8') for key, _ in txn.cursor()]
# Define a sort key function that extracts frame number and cow id from the filename.
def sort_key(filename):
# Expected pattern: "pmfeed_4_3_16_frame_10000_cow_1.jpg"
match = re.search(r'frame_(\d+)_cow_(\d+)', filename)
if match:
frame = int(match.group(1))
cow = int(match.group(2))
return (frame, cow)
return (float('inf'), float('inf'))
# Sort the keys using the defined sort key function.
keys = sorted(keys, key=sort_key)
# Apply the limit if provided.
if limit is not None:
if isinstance(limit, float):
if 0 <= limit <= 1:
cutoff = int(len(keys) * limit)
keys = keys[:cutoff]
else:
raise ValueError("If limit is a float, it must be between 0 and 1.")
elif isinstance(limit, int):
keys = keys[:limit]
else:
raise TypeError("limit must be either a float or an integer.")
self.keys = keys
def __getitem__(self, index):
# Get the key and image data
key_str = self.keys[index]
key = key_str.encode('utf-8')
with self.env.begin() as txn:
image_bytes = txn.get(key)
# Convert binary image data to a PIL Image.
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
if self.transform:
image = self.transform(image)
# Extract the cow id from the filename.
match = re.search(r'frame_(\d+)_cow_(\d+)', key_str)
if match:
cow_id = int(match.group(2))
else:
cow_id = -1 # Use -1 or any default value if not found
return image, cow_id
def __len__(self):
return len(self.keys)
class TestLMDBImageDataset(unittest.TestCase):
def test_dataset_length(self):
# Example transform: resize and convert to tensor.
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Path to your LMDB directory.
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16'
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=20)
self.assertEqual(len(dataset), 20)
self.assertEqual(dataset.keys, ['pmfeed_4_3_16_frame_1_cow_1.jpg', 'pmfeed_4_3_16_frame_1_cow_2.jpg', 'pmfeed_4_3_16_frame_1_cow_3.jpg', 'pmfeed_4_3_16_frame_1_cow_4.jpg', 'pmfeed_4_3_16_frame_1_cow_5.jpg', 'pmfeed_4_3_16_frame_1_cow_6.jpg', 'pmfeed_4_3_16_frame_1_cow_7.jpg', 'pmfeed_4_3_16_frame_1_cow_8.jpg', 'pmfeed_4_3_16_frame_2_cow_1.jpg', 'pmfeed_4_3_16_frame_2_cow_2.jpg', 'pmfeed_4_3_16_frame_2_cow_3.jpg', 'pmfeed_4_3_16_frame_2_cow_4.jpg', 'pmfeed_4_3_16_frame_2_cow_5.jpg', 'pmfeed_4_3_16_frame_2_cow_6.jpg', 'pmfeed_4_3_16_frame_2_cow_7.jpg', 'pmfeed_4_3_16_frame_2_cow_8.jpg', 'pmfeed_4_3_16_frame_3_cow_1.jpg', 'pmfeed_4_3_16_frame_3_cow_2.jpg', 'pmfeed_4_3_16_frame_3_cow_3.jpg', 'pmfeed_4_3_16_frame_3_cow_4.jpg'])
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=100)
self.assertEqual(len(dataset), 100)
self.assertEqual(dataset.keys[-10:], ['pmfeed_4_3_16_frame_12_cow_3.jpg', 'pmfeed_4_3_16_frame_12_cow_4.jpg', 'pmfeed_4_3_16_frame_12_cow_5.jpg', 'pmfeed_4_3_16_frame_12_cow_6.jpg', 'pmfeed_4_3_16_frame_12_cow_7.jpg', 'pmfeed_4_3_16_frame_12_cow_8.jpg', 'pmfeed_4_3_16_frame_13_cow_1.jpg', 'pmfeed_4_3_16_frame_13_cow_2.jpg', 'pmfeed_4_3_16_frame_13_cow_3.jpg', 'pmfeed_4_3_16_frame_13_cow_4.jpg'])
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform)
self.assertEqual(len(dataset), 537908)
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.5)
self.assertEqual(len(dataset), 268954)
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.3)
self.assertEqual(len(dataset), 161372)
def test_data_loading(self):
# Example transform: resize and convert to tensor.
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# Path to your LMDB directory.
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16'
# Create the dataset:
# For example, if you want to keep the first 20 keys:
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform)
# Or, if you want to keep the first 50% of the keys:
# Create a DataLoader.
dataloader = DataLoader(
dataset,
batch_size=256,
shuffle=False,
num_workers=8,
)
# Example: Iterate over one batch.
ground_truths = []
for images, cow_ids in tqdm(dataloader, unit='batch'):
# print(images.shape) # e.g., torch.Size([32, 3, 256, 256])
# print(cow_ids) # Tensor of cow IDs corresponding to each image.
ground_truths.append(cow_ids)
ground_truths = torch.cat(ground_truths, dim=0)
self.assertEqual(len(ground_truths), 537908)
self.assertEqual(set(ground_truths.tolist()), {1, 2, 3, 4, 5, 6, 7, 8})
if __name__ == "__main__":
unittest.main()