|
import os |
|
import lmdb |
|
import io |
|
import re |
|
from PIL import Image |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
from torchvision import transforms |
|
import unittest |
|
from tqdm import tqdm |
|
torch.multiprocessing.set_sharing_strategy('file_system') |
|
|
|
|
|
class LMDBImageDataset(Dataset): |
|
def __init__(self, lmdb_path, transform=None, limit=None): |
|
""" |
|
Args: |
|
lmdb_path (str): Path to the LMDB directory. |
|
transform (callable, optional): Optional transform to be applied on an image. |
|
limit (int or float, optional): If a float between 0 and 1, keeps that fraction of keys. |
|
If an int, keeps that many keys. |
|
""" |
|
|
|
self.env = lmdb.open(lmdb_path, readonly=True, lock=False, readahead=False) |
|
self.transform = transform |
|
|
|
|
|
with self.env.begin() as txn: |
|
keys = [key.decode('utf-8') for key, _ in txn.cursor()] |
|
|
|
|
|
def sort_key(filename): |
|
|
|
match = re.search(r'frame_(\d+)_cow_(\d+)', filename) |
|
if match: |
|
frame = int(match.group(1)) |
|
cow = int(match.group(2)) |
|
return (frame, cow) |
|
return (float('inf'), float('inf')) |
|
|
|
|
|
keys = sorted(keys, key=sort_key) |
|
|
|
|
|
if limit is not None: |
|
if isinstance(limit, float): |
|
if 0 <= limit <= 1: |
|
cutoff = int(len(keys) * limit) |
|
keys = keys[:cutoff] |
|
else: |
|
raise ValueError("If limit is a float, it must be between 0 and 1.") |
|
elif isinstance(limit, int): |
|
keys = keys[:limit] |
|
else: |
|
raise TypeError("limit must be either a float or an integer.") |
|
|
|
self.keys = keys |
|
|
|
def __getitem__(self, index): |
|
|
|
key_str = self.keys[index] |
|
key = key_str.encode('utf-8') |
|
with self.env.begin() as txn: |
|
image_bytes = txn.get(key) |
|
|
|
|
|
image = Image.open(io.BytesIO(image_bytes)).convert('RGB') |
|
|
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
|
|
match = re.search(r'frame_(\d+)_cow_(\d+)', key_str) |
|
if match: |
|
cow_id = int(match.group(2)) |
|
else: |
|
cow_id = -1 |
|
|
|
return image, cow_id |
|
|
|
def __len__(self): |
|
return len(self.keys) |
|
|
|
|
|
class TestLMDBImageDataset(unittest.TestCase): |
|
def test_dataset_length(self): |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((256, 256)), |
|
transforms.ToTensor(), |
|
]) |
|
|
|
|
|
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16' |
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=20) |
|
self.assertEqual(len(dataset), 20) |
|
self.assertEqual(dataset.keys, ['pmfeed_4_3_16_frame_1_cow_1.jpg', 'pmfeed_4_3_16_frame_1_cow_2.jpg', 'pmfeed_4_3_16_frame_1_cow_3.jpg', 'pmfeed_4_3_16_frame_1_cow_4.jpg', 'pmfeed_4_3_16_frame_1_cow_5.jpg', 'pmfeed_4_3_16_frame_1_cow_6.jpg', 'pmfeed_4_3_16_frame_1_cow_7.jpg', 'pmfeed_4_3_16_frame_1_cow_8.jpg', 'pmfeed_4_3_16_frame_2_cow_1.jpg', 'pmfeed_4_3_16_frame_2_cow_2.jpg', 'pmfeed_4_3_16_frame_2_cow_3.jpg', 'pmfeed_4_3_16_frame_2_cow_4.jpg', 'pmfeed_4_3_16_frame_2_cow_5.jpg', 'pmfeed_4_3_16_frame_2_cow_6.jpg', 'pmfeed_4_3_16_frame_2_cow_7.jpg', 'pmfeed_4_3_16_frame_2_cow_8.jpg', 'pmfeed_4_3_16_frame_3_cow_1.jpg', 'pmfeed_4_3_16_frame_3_cow_2.jpg', 'pmfeed_4_3_16_frame_3_cow_3.jpg', 'pmfeed_4_3_16_frame_3_cow_4.jpg']) |
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=100) |
|
self.assertEqual(len(dataset), 100) |
|
self.assertEqual(dataset.keys[-10:], ['pmfeed_4_3_16_frame_12_cow_3.jpg', 'pmfeed_4_3_16_frame_12_cow_4.jpg', 'pmfeed_4_3_16_frame_12_cow_5.jpg', 'pmfeed_4_3_16_frame_12_cow_6.jpg', 'pmfeed_4_3_16_frame_12_cow_7.jpg', 'pmfeed_4_3_16_frame_12_cow_8.jpg', 'pmfeed_4_3_16_frame_13_cow_1.jpg', 'pmfeed_4_3_16_frame_13_cow_2.jpg', 'pmfeed_4_3_16_frame_13_cow_3.jpg', 'pmfeed_4_3_16_frame_13_cow_4.jpg']) |
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform) |
|
self.assertEqual(len(dataset), 537908) |
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.5) |
|
self.assertEqual(len(dataset), 268954) |
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform, limit=0.3) |
|
self.assertEqual(len(dataset), 161372) |
|
|
|
def test_data_loading(self): |
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((256, 256)), |
|
transforms.ToTensor(), |
|
]) |
|
|
|
|
|
lmdb_path = '../lmdb_all_crops_pmfeed_4_3_16' |
|
|
|
|
|
|
|
dataset = LMDBImageDataset(lmdb_path=lmdb_path, transform=transform) |
|
|
|
|
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=256, |
|
shuffle=False, |
|
num_workers=8, |
|
) |
|
|
|
|
|
ground_truths = [] |
|
for images, cow_ids in tqdm(dataloader, unit='batch'): |
|
|
|
|
|
ground_truths.append(cow_ids) |
|
|
|
ground_truths = torch.cat(ground_truths, dim=0) |
|
self.assertEqual(len(ground_truths), 537908) |
|
self.assertEqual(set(ground_truths.tolist()), {1, 2, 3, 4, 5, 6, 7, 8}) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |