desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Theoretical bound of the coded length given a probability distribution.
Args:
c: The binary codes. Belong to {0, 1}.
p: The probability of: P(code==+1)
Returns:
The average code length.
Note: the average code length can be greater than 1 bit (e.g. when
encoding the least likely symbol).'
| def _Apply(self, c, p):
| entropy = ((((1.0 - c) * tf.log((1.0 - p))) + (c * tf.log(p))) / (- math.log(2)))
entropy = tf.reduce_mean(entropy)
return entropy
|
'Creates an initializer.
Args:
dims: Dimension(s) index to compute standard deviation:
1.0 / sqrt(product(shape[dims]))
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.'
| def __init__(self, dims=(0,), **kwargs):
| if isinstance(dims, (int, long)):
self._dims = [dims]
else:
self._dims = dims
self._kwargs = kwargs
|
'Creates an initializer.
Args:
dims: Dimension(s) index to compute standard deviation:
sqrt(scale / product(shape[dims]))
scale: A constant scaling for the initialization used as
sqrt(scale / product(shape[dims])).
**kwargs: Extra keyword arguments to pass to tf.truncated_normal.'
| def __init__(self, dims=(0,), scale=2.0, **kwargs):
| if isinstance(dims, (int, long)):
self._dims = [dims]
else:
self._dims = dims
self._kwargs = kwargs
self._scale = scale
|
'Always returns True.'
| @property
def initialized(self):
| return True
|
'Initializes Bias block.
|initializer| parameter have two special cases.
1. If initializer is None, then this block works as a PassThrough.
2. If initializer is a Bias class object, then tf.constant_initializer is
used with the stored value.
Args:
initializer: An initializer for the bias variable.
name: Name of this block.'
| def __init__(self, initializer=Bias(0), name=None):
| super(BiasAdd, self).__init__(name)
with self._BlockScope():
if isinstance(initializer, Bias):
self._initializer = tf.constant_initializer(value=initializer.value)
else:
self._initializer = initializer
self._bias = None
|
'Initializes NN block.
Args:
depth: The depth of the output.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias term for this NN block. See BiasAdd block.
act: Optional activation function. If None, no activation is applied.
initializer: The initialization method for the matrix weights.
linear_block_factory: A function used to create a linear block.
name: The name of this block.'
| def __init__(self, depth, bias=Bias(0), act=None, initializer=block_util.RsqrtInitializer(), linear_block_factory=(lambda d, i: Linear(d, initializer=i)), name=None):
| super(NN, self).__init__(name)
with self._BlockScope():
self._linear_block_factory = linear_block_factory
self._depth = depth
self._initializer = initializer
self._matrices = None
self._bias = (BiasAdd(bias) if bias else PassThrough())
self._act = (act if act else PassThrough())
|
'Initializes a Conv2DBase block.
Arguments:
depth: The output depth of the block (i.e. #filters); if negative, the
output depth will be set to be the same as the input depth.
filter_size: The size of the 2D filter. If it\'s specified as an integer,
it\'s going to create a square filter. Otherwise, this is a tuple
specifying the height x width of the filter.
strides: A tuple specifying the y and x stride.
padding: One of the valid padding modes allowed by tf.nn.conv2d, or
\'REFLECT\'/\'SYMMETRIC\' for mirror padding.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias in this block. See BiasAdd block.
act: Optional activation function applied to the output.
atrous_rate: optional input rate for ATrous convolution. If not None, this
will be used and the strides will be ignored.
conv: The convolution function to use (e.g. tf.nn.conv2d).
name: The name for this conv2d op.'
| def __init__(self, depth, filter_size, strides, padding, bias=None, act=None, atrous_rate=None, conv=tf.nn.conv2d, name=None):
| super(Conv2DBase, self).__init__(name)
with self._BlockScope():
self._act = (act if act else PassThrough())
self._bias = (BiasAdd(bias) if bias else PassThrough())
self._kernel_shape = np.zeros((4,), dtype=np.int32)
self._kernel_shape[:2] = filter_size
self._kernel_shape[3] = depth
self._strides = np.ones((4,), dtype=np.int32)
self._strides[1:3] = strides
self._strides = list(self._strides)
self._padding = padding
self._kernel = None
self._conv = conv
self._atrous_rate = atrous_rate
|
'Apply the self._conv op.
Arguments:
x: input tensor. It needs to be a 4D tensor of the form
[batch, height, width, channels].
Returns:
The output of the convolution of x with the current convolutional
kernel.
Raises:
ValueError: if number of channels is not defined at graph construction.'
| def _Apply(self, x):
| input_shape = x.get_shape().with_rank(4)
input_shape[3:].assert_is_fully_defined()
if (self._kernel is None):
assert (self._kernel_shape[2] == 0), self._kernel_shape
self._kernel_shape[2] = input_shape[3].value
if (self._kernel_shape[3] < 0):
self._kernel_shape[3] = self._kernel_shape[2]
self._kernel = self._CreateKernel(self._kernel_shape, x.dtype)
(x, padding) = HandleConvPaddingModes(x, self._padding, self._kernel_shape, self._strides)
if (self._atrous_rate is None):
x = self._conv(x, self._kernel, strides=self._strides, padding=padding)
else:
x = self._conv(x, self._kernel, rate=self._atrous_rate, padding=padding)
if (self._padding != 'VALID'):
height = ((1 + ((input_shape[1].value - 1) // self._strides[1])) if input_shape[1].value else None)
width = ((1 + ((input_shape[2].value - 1) // self._strides[2])) if input_shape[2].value else None)
shape = x.get_shape()
x.set_shape([shape[0], height, width, shape[3]])
return self._act(self._bias(x))
|
'Initializes a Conv2D block.
Arguments:
depth: The output depth of the block (i.e., #filters)
filter_size: The size of the 2D filter. If it\'s specified as an integer,
it\'s going to create a square filter. Otherwise, this is a tuple
specifying the height x width of the filter.
strides: A tuple specifying the y and x stride.
padding: One of the valid padding modes allowed by tf.nn.conv2d, or
\'REFLECT\'/\'SYMMETRIC\' for mirror padding.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias in this block. See BiasAdd block.
act: Optional activation function applied to the output.
initializer: Optional initializer for weights.
name: The name for this conv2d op.'
| def __init__(self, depth, filter_size, strides, padding, bias=None, act=None, initializer=None, name=None):
| super(Conv2D, self).__init__(depth, filter_size, strides, padding, bias, act, conv=tf.nn.conv2d, name=name)
with self._BlockScope():
if (initializer is None):
initializer = block_util.RsqrtInitializer(dims=(0, 1, 2))
self._initializer = initializer
|
'Initializes LSTMBase class object.
Args:
output_shape: List representing the LSTM output shape. This argument
does not include batch dimension. For example, if the LSTM output has
shape [batch, depth], then pass [depth].
name: Name of this block.'
| def __init__(self, output_shape, name):
| super(LSTMBase, self).__init__(name)
with self._BlockScope():
self._output_shape = ([None] + list(output_shape))
self._hidden = None
self._cell = None
|
'Returns the hidden units of this LSTM.'
| @property
def hidden(self):
| return self._hidden
|
'Assigns to the hidden units of this LSTM.
Args:
value: The new value for the hidden units. If None, the hidden units are
considered to be filled with zeros.'
| @hidden.setter
def hidden(self, value):
| if (value is not None):
value.get_shape().assert_is_compatible_with(self._output_shape)
self._hidden = value
|
'Returns the cell units of this LSTM.'
| @property
def cell(self):
| return self._cell
|
'Assigns to the cell units of this LSTM.
Args:
value: The new value for the cell units. If None, the cell units are
considered to be filled with zeros.'
| @cell.setter
def cell(self, value):
| if (value is not None):
value.get_shape().assert_is_compatible_with(self._output_shape)
self._cell = value
|
'Transforms the input units to (4 * depth) units.
The forget-gate, input-gate, output-gate, and cell update is computed as
f, i, j, o = T(h) + R(x)
where h is hidden units, x is input units, and T, R are transforms of
h, x, respectively.
This method implements R. Note that T is strictly linear, so if LSTM is
going to use bias, this method must include the bias to the transformation.
Subclasses must implement this method. See _Apply() for more details.'
| def _TransformInputs(self, _):
| raise NotImplementedError()
|
'Transforms the hidden units to (4 * depth) units.
The forget-gate, input-gate, output-gate, and cell update is computed as
f, i, j, o = T(h) + R(x)
where h is hidden units, x is input units, and T, R are transforms of
h, x, respectively.
This method implements T in the equation. The method must implement a
strictly linear transformation. For example, it may use MatMul or Conv2D,
but must not add bias. This is because when hidden units are zeros, then
the LSTM implementation will skip calling this method, instead of passing
zeros to this function.
Subclasses must implement this method. See _Apply() for more details.'
| def _TransformHidden(self, _):
| raise NotImplementedError()
|
'Initialization of the composition operator.
Args:
block_list: List of blocks.BlockBase that are chained to create
a new blocks.BlockBase.
name: Name of this block.'
| def __init__(self, block_list, name=None):
| super(CompositionOperator, self).__init__(name)
self._blocks = block_list
|
'Apply successively all the blocks on the given input tensor.'
| def _Apply(self, x):
| h = x
for layer in self._blocks:
h = layer(h)
return h
|
'Initialization of the parallel exec + concat (Tower).
Args:
block_list: List of blocks.BlockBase that are chained to create
a new blocks.BlockBase.
dim: the dimension on which to concat.
name: Name of this block.'
| def __init__(self, block_list, dim=3, name=None):
| super(TowerOperator, self).__init__(name)
self._blocks = block_list
self._concat_dim = dim
|
'Apply successively all the blocks on the given input tensor.'
| def _Apply(self, x):
| outputs = [layer(x) for layer in self._blocks]
return tf.concat(outputs, self._concat_dim)
|
'Computes the loss used for PTN paper (projection + volume loss).'
| def get_loss(self, inputs, outputs):
| g_loss = tf.zeros(dtype=tf.float32, shape=[])
if self._params.proj_weight:
g_loss += losses.add_volume_proj_loss(inputs, outputs, self._params.step_size, self._params.proj_weight)
if self._params.volume_weight:
g_loss += losses.add_volume_loss(inputs, outputs, 1, self._params.volume_weight)
slim.summaries.add_scalar_summary(g_loss, 'im2vox_loss', prefix='losses')
return g_loss
|
'Aggregate the metrics for voxel generation model.
Args:
inputs: Input dictionary of the voxel generation model.
outputs: Output dictionary returned by the voxel generation model.
Returns:
names_to_values: metrics->values (dict).
names_to_updates: metrics->ops (dict).'
| def get_metrics(self, inputs, outputs):
| names_to_values = dict()
names_to_updates = dict()
(tmp_values, tmp_updates) = metrics.add_volume_iou_metrics(inputs, outputs)
names_to_values.update(tmp_values)
names_to_updates.update(tmp_updates)
for (name, value) in names_to_values.iteritems():
slim.summaries.add_scalar_summary(value, name, prefix='eval', print_summary=True)
return (names_to_values, names_to_updates)
|
'Function called by TF to save the prediction periodically.'
| def write_disk_grid(self, global_step, log_dir, input_images, gt_projs, pred_projs, input_voxels=None, output_voxels=None):
| summary_freq = self._params.save_every
def write_grid(input_images, gt_projs, pred_projs, global_step, input_voxels, output_voxels):
'Native python function to call for writing images to files.'
grid = _build_image_grid(input_images, gt_projs, pred_projs, input_voxels=input_voxels, output_voxels=output_voxels)
if ((global_step % summary_freq) == 0):
img_path = os.path.join(log_dir, ('%s.jpg' % str(global_step)))
utils.save_image(grid, img_path)
return grid
save_op = tf.py_func(write_grid, [input_images, gt_projs, pred_projs, global_step, input_voxels, output_voxels], [tf.uint8], 'write_grid')[0]
slim.summaries.add_image_summary(tf.expand_dims(save_op, axis=0), name='grid_vis')
return save_op
|
'Get the 4x4 Perspective Transfromation matrix used for PTN.'
| def get_transform_matrix(self, view_out):
| num_views = self._params.num_views
focal_length = self._params.focal_length
focal_range = self._params.focal_range
phi = 30
theta_interval = (360.0 / num_views)
theta = (theta_interval * view_out)
camera_matrix = np.zeros((4, 4), dtype=np.float32)
intrinsic_matrix = np.eye(4, dtype=np.float32)
extrinsic_matrix = np.eye(4, dtype=np.float32)
sin_phi = np.sin(((float(phi) / 180.0) * np.pi))
cos_phi = np.cos(((float(phi) / 180.0) * np.pi))
sin_theta = np.sin(((float((- theta)) / 180.0) * np.pi))
cos_theta = np.cos(((float((- theta)) / 180.0) * np.pi))
rotation_azimuth = np.zeros((3, 3), dtype=np.float32)
rotation_azimuth[(0, 0)] = cos_theta
rotation_azimuth[(2, 2)] = cos_theta
rotation_azimuth[(0, 2)] = (- sin_theta)
rotation_azimuth[(2, 0)] = sin_theta
rotation_azimuth[(1, 1)] = 1.0
rotation_elevation = np.zeros((3, 3), dtype=np.float32)
rotation_elevation[(0, 0)] = cos_phi
rotation_elevation[(0, 1)] = sin_phi
rotation_elevation[(1, 0)] = (- sin_phi)
rotation_elevation[(1, 1)] = cos_phi
rotation_elevation[(2, 2)] = 1.0
rotation_matrix = np.matmul(rotation_azimuth, rotation_elevation)
displacement = np.zeros((3, 1), dtype=np.float32)
displacement[(0, 0)] = (float(focal_length) + (float(focal_range) / 2.0))
displacement = np.matmul(rotation_matrix, displacement)
extrinsic_matrix[0:3, 0:3] = rotation_matrix
extrinsic_matrix[0:3, 3:4] = (- displacement)
intrinsic_matrix[(2, 2)] = (1.0 / float(focal_length))
intrinsic_matrix[(1, 1)] = (1.0 / float(focal_length))
camera_matrix = np.matmul(extrinsic_matrix, intrinsic_matrix)
return camera_matrix
|
'Gets dictionaries from metrics to value `Tensors` & update `Tensors`.'
| @abc.abstractmethod
def get_metrics(self, inputs, outputs):
| pass
|
'Loads data for a specified dataset and split.'
| def get_inputs(self, dataset_dir, dataset_name, split_name, batch_size, image_size, vox_size, is_training=True):
| del image_size, vox_size
with tf.variable_scope(('data_loading_%s/%s' % (dataset_name, split_name))):
common_queue_min = 64
common_queue_capacity = 256
num_readers = 4
inputs = input_generator.get(dataset_dir, dataset_name, split_name, shuffle=is_training, num_readers=num_readers, common_queue_min=common_queue_min, common_queue_capacity=common_queue_capacity)
(images, voxels) = tf.train.batch([inputs['image'], inputs['voxel']], batch_size=batch_size, num_threads=8, capacity=(8 * batch_size), name=('batching_queues/%s/%s' % (dataset_name, split_name)))
outputs = dict()
outputs['images'] = images
outputs['voxels'] = voxels
outputs['num_samples'] = inputs['num_samples']
return outputs
|
'Selects the subset of viewpoints to train on.'
| def preprocess(self, raw_inputs, step_size):
| (quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2]
inputs = dict()
inputs['voxels'] = raw_inputs['voxels']
for k in xrange(step_size):
inputs[('images_%d' % (k + 1))] = []
inputs[('matrix_%d' % (k + 1))] = []
for n in xrange(quantity):
selected_views = np.random.choice(num_views, step_size, replace=False)
for k in xrange(step_size):
view_selected = selected_views[k]
inputs[('images_%d' % (k + 1))].append(raw_inputs['images'][n, view_selected, :, :, :])
tf_matrix = self.get_transform_matrix(view_selected)
inputs[('matrix_%d' % (k + 1))].append(tf_matrix)
for k in xrange(step_size):
inputs[('images_%d' % (k + 1))] = tf.stack(inputs[('images_%d' % (k + 1))])
inputs[('matrix_%d' % (k + 1))] = tf.stack(inputs[('matrix_%d' % (k + 1))])
return inputs
|
'Initialization assignment operator function used while training.'
| def get_init_fn(self, scopes):
| if (not self._params.init_model):
return None
is_trainable = (lambda x: (x in tf.trainable_variables()))
var_list = []
for scope in scopes:
var_list.extend(filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
(init_assign_op, init_feed_dict) = slim.assign_from_checkpoint(self._params.init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
|
'Train operation function for the given scope used file training.'
| def get_train_op_for_scope(self, loss, optimizer, scopes):
| is_trainable = (lambda x: (x in tf.trainable_variables()))
var_list = []
update_ops = []
for scope in scopes:
var_list.extend(filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
return slim.learning.create_train_op(loss, optimizer, update_ops=update_ops, variables_to_train=var_list, clip_gradient_norm=self._params.clip_gradient_norm)
|
'Function called by TF to save the prediction periodically.'
| def write_disk_grid(self, global_step, log_dir, input_images, gt_projs, pred_projs, pred_voxels=None):
| summary_freq = self._params.save_every
def write_grid(input_images, gt_projs, pred_projs, pred_voxels, global_step):
'Native python function to call for writing images to files.'
grid = _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels)
if ((global_step % summary_freq) == 0):
img_path = os.path.join(log_dir, ('%s.jpg' % str(global_step)))
utils.save_image(grid, img_path)
with open(os.path.join(log_dir, ('pred_voxels_%s' % str(global_step))), 'w') as fout:
np.save(fout, pred_voxels)
with open(os.path.join(log_dir, ('input_images_%s' % str(global_step))), 'w') as fout:
np.save(fout, input_images)
return grid
py_func_args = [input_images, gt_projs, pred_projs, pred_voxels, global_step]
save_grid_op = tf.py_func(write_grid, py_func_args, [tf.uint8], 'wrtie_grid')[0]
slim.summaries.add_image_summary(tf.expand_dims(save_grid_op, axis=0), name='grid_vis')
return save_grid_op
|
'Round robin the gpu device. (Reserve last gpu for expensive op).'
| def _next_device(self):
| if (self._num_gpus == 0):
return ''
dev = ('/gpu:%d' % self._cur_gpu)
if (self._num_gpus > 1):
self._cur_gpu = ((self._cur_gpu + 1) % (self._num_gpus - 1))
return dev
|
'Inputs to be fed to the graph.'
| def _add_placeholders(self):
| hps = self._hps
self._articles = tf.placeholder(tf.int32, [hps.batch_size, hps.enc_timesteps], name='articles')
self._abstracts = tf.placeholder(tf.int32, [hps.batch_size, hps.dec_timesteps], name='abstracts')
self._targets = tf.placeholder(tf.int32, [hps.batch_size, hps.dec_timesteps], name='targets')
self._article_lens = tf.placeholder(tf.int32, [hps.batch_size], name='article_lens')
self._abstract_lens = tf.placeholder(tf.int32, [hps.batch_size], name='abstract_lens')
self._loss_weights = tf.placeholder(tf.float32, [hps.batch_size, hps.dec_timesteps], name='loss_weights')
|
'Sets self._train_op, op to run for training.'
| def _add_train_op(self):
| hps = self._hps
self._lr_rate = tf.maximum(hps.min_lr, tf.train.exponential_decay(hps.lr, self.global_step, 30000, 0.98))
tvars = tf.trainable_variables()
with tf.device(self._get_gpu((self._num_gpus - 1))):
(grads, global_norm) = tf.clip_by_global_norm(tf.gradients(self._loss, tvars), hps.max_grad_norm)
tf.summary.scalar('global_norm', global_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr_rate)
tf.summary.scalar('learning rate', self._lr_rate)
self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step, name='train_step')
|
'Return the top states from encoder for decoder.
Args:
sess: tensorflow session.
enc_inputs: encoder inputs of shape [batch_size, enc_timesteps].
enc_len: encoder input length of shape [batch_size]
Returns:
enc_top_states: The top level encoder states.
dec_in_state: The decoder layer initial state.'
| def encode_top_state(self, sess, enc_inputs, enc_len):
| results = sess.run([self._enc_top_states, self._dec_in_state], feed_dict={self._articles: enc_inputs, self._article_lens: enc_len})
return (results[0], results[1][0])
|
'Return the topK results and new decoder states.'
| def decode_topk(self, sess, latest_tokens, enc_top_states, dec_init_states):
| feed = {self._enc_top_states: enc_top_states, self._dec_in_state: np.squeeze(np.array(dec_init_states)), self._abstracts: np.transpose(np.array([latest_tokens])), self._abstract_lens: np.ones([len(dec_init_states)], np.int32)}
results = sess.run([self._topk_ids, self._topk_log_probs, self._dec_out_state], feed_dict=feed)
(ids, probs, states) = (results[0], results[1], results[2])
new_states = [s for s in states]
return (ids, probs, new_states)
|
'Hypothesis constructor.
Args:
tokens: start tokens for decoding.
log_prob: log prob of the start tokens, usually 1.
state: decoder initial states.'
| def __init__(self, tokens, log_prob, state):
| self.tokens = tokens
self.log_prob = log_prob
self.state = state
|
'Extend the hypothesis with result from latest step.
Args:
token: latest token from decoding.
log_prob: log prob of the latest decoded tokens.
new_state: decoder output state. Fed to the decoder for next step.
Returns:
New Hypothesis with the results from latest step.'
| def Extend(self, token, log_prob, new_state):
| return Hypothesis((self.tokens + [token]), (self.log_prob + log_prob), new_state)
|
'Creates BeamSearch object.
Args:
model: Seq2SeqAttentionModel.
beam_size: int.
start_token: int, id of the token to start decoding with
end_token: int, id of the token that completes an hypothesis
max_steps: int, upper limit on the size of the hypothesis'
| def __init__(self, model, beam_size, start_token, end_token, max_steps):
| self._model = model
self._beam_size = beam_size
self._start_token = start_token
self._end_token = end_token
self._max_steps = max_steps
|
'Performs beam search for decoding.
Args:
sess: tf.Session, session
enc_inputs: ndarray of shape (enc_length, 1), the document ids to encode
enc_seqlen: ndarray of shape (1), the length of the sequnce
Returns:
hyps: list of Hypothesis, the best hypotheses found by beam search,
ordered by score'
| def BeamSearch(self, sess, enc_inputs, enc_seqlen):
| (enc_top_states, dec_in_state) = self._model.encode_top_state(sess, enc_inputs, enc_seqlen)
hyps = ([Hypothesis([self._start_token], 0.0, dec_in_state)] * self._beam_size)
results = []
steps = 0
while ((steps < self._max_steps) and (len(results) < self._beam_size)):
latest_tokens = [h.latest_token for h in hyps]
states = [h.state for h in hyps]
(topk_ids, topk_log_probs, new_states) = self._model.decode_topk(sess, latest_tokens, enc_top_states, states)
all_hyps = []
num_beam_source = (1 if (steps == 0) else len(hyps))
for i in xrange(num_beam_source):
(h, ns) = (hyps[i], new_states[i])
for j in xrange((self._beam_size * 2)):
all_hyps.append(h.Extend(topk_ids[(i, j)], topk_log_probs[(i, j)], ns))
hyps = []
for h in self._BestHyps(all_hyps):
if (h.latest_token == self._end_token):
results.append(h)
else:
hyps.append(h)
if ((len(hyps) == self._beam_size) or (len(results) == self._beam_size)):
break
steps += 1
if (steps == self._max_steps):
results.extend(hyps)
return self._BestHyps(results)
|
'Sort the hyps based on log probs and length.
Args:
hyps: A list of hypothesis.
Returns:
hyps: A list of sorted hypothesis in reverse log_prob order.'
| def _BestHyps(self, hyps):
| if FLAGS.normalize_by_length:
return sorted(hyps, key=(lambda h: (h.log_prob / len(h.tokens))), reverse=True)
else:
return sorted(hyps, key=(lambda h: h.log_prob), reverse=True)
|
'Batcher constructor.
Args:
data_path: tf.Example filepattern.
vocab: Vocabulary.
hps: Seq2SeqAttention model hyperparameters.
article_key: article feature key in tf.Example.
abstract_key: abstract feature key in tf.Example.
max_article_sentences: Max number of sentences used from article.
max_abstract_sentences: Max number of sentences used from abstract.
bucketing: Whether bucket articles of similar length into the same batch.
truncate_input: Whether to truncate input that is too long. Alternative is
to discard such examples.'
| def __init__(self, data_path, vocab, hps, article_key, abstract_key, max_article_sentences, max_abstract_sentences, bucketing=True, truncate_input=False):
| self._data_path = data_path
self._vocab = vocab
self._hps = hps
self._article_key = article_key
self._abstract_key = abstract_key
self._max_article_sentences = max_article_sentences
self._max_abstract_sentences = max_abstract_sentences
self._bucketing = bucketing
self._truncate_input = truncate_input
self._input_queue = Queue.Queue((QUEUE_NUM_BATCH * self._hps.batch_size))
self._bucket_input_queue = Queue.Queue(QUEUE_NUM_BATCH)
self._input_threads = []
for _ in xrange(16):
self._input_threads.append(Thread(target=self._FillInputQueue))
self._input_threads[(-1)].daemon = True
self._input_threads[(-1)].start()
self._bucketing_threads = []
for _ in xrange(4):
self._bucketing_threads.append(Thread(target=self._FillBucketInputQueue))
self._bucketing_threads[(-1)].daemon = True
self._bucketing_threads[(-1)].start()
self._watch_thread = Thread(target=self._WatchThreads)
self._watch_thread.daemon = True
self._watch_thread.start()
|
'Returns a batch of inputs for seq2seq attention model.
Returns:
enc_batch: A batch of encoder inputs [batch_size, hps.enc_timestamps].
dec_batch: A batch of decoder inputs [batch_size, hps.dec_timestamps].
target_batch: A batch of targets [batch_size, hps.dec_timestamps].
enc_input_len: encoder input lengths of the batch.
dec_input_len: decoder input lengths of the batch.
loss_weights: weights for loss function, 1 if not padded, 0 if padded.
origin_articles: original article words.
origin_abstracts: original abstract words.'
| def NextBatch(self):
| enc_batch = np.zeros((self._hps.batch_size, self._hps.enc_timesteps), dtype=np.int32)
enc_input_lens = np.zeros(self._hps.batch_size, dtype=np.int32)
dec_batch = np.zeros((self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
dec_output_lens = np.zeros(self._hps.batch_size, dtype=np.int32)
target_batch = np.zeros((self._hps.batch_size, self._hps.dec_timesteps), dtype=np.int32)
loss_weights = np.zeros((self._hps.batch_size, self._hps.dec_timesteps), dtype=np.float32)
origin_articles = (['None'] * self._hps.batch_size)
origin_abstracts = (['None'] * self._hps.batch_size)
buckets = self._bucket_input_queue.get()
for i in xrange(self._hps.batch_size):
(enc_inputs, dec_inputs, targets, enc_input_len, dec_output_len, article, abstract) = buckets[i]
origin_articles[i] = article
origin_abstracts[i] = abstract
enc_input_lens[i] = enc_input_len
dec_output_lens[i] = dec_output_len
enc_batch[i, :] = enc_inputs[:]
dec_batch[i, :] = dec_inputs[:]
target_batch[i, :] = targets[:]
for j in xrange(dec_output_len):
loss_weights[i][j] = 1
return (enc_batch, dec_batch, target_batch, enc_input_lens, dec_output_lens, loss_weights, origin_articles, origin_abstracts)
|
'Fill input queue with ModelInput.'
| def _FillInputQueue(self):
| start_id = self._vocab.WordToId(data.SENTENCE_START)
end_id = self._vocab.WordToId(data.SENTENCE_END)
pad_id = self._vocab.WordToId(data.PAD_TOKEN)
input_gen = self._TextGenerator(data.ExampleGen(self._data_path))
while True:
(article, abstract) = six.next(input_gen)
article_sentences = [sent.strip() for sent in data.ToSentences(article, include_token=False)]
abstract_sentences = [sent.strip() for sent in data.ToSentences(abstract, include_token=False)]
enc_inputs = []
dec_inputs = [start_id]
for i in xrange(min(self._max_article_sentences, len(article_sentences))):
enc_inputs += data.GetWordIds(article_sentences[i], self._vocab)
for i in xrange(min(self._max_abstract_sentences, len(abstract_sentences))):
dec_inputs += data.GetWordIds(abstract_sentences[i], self._vocab)
if ((len(enc_inputs) < self._hps.min_input_len) or (len(dec_inputs) < self._hps.min_input_len)):
tf.logging.warning('Drop an example - too short.\nenc:%d\ndec:%d', len(enc_inputs), len(dec_inputs))
continue
if (not self._truncate_input):
if ((len(enc_inputs) > self._hps.enc_timesteps) or (len(dec_inputs) > self._hps.dec_timesteps)):
tf.logging.warning('Drop an example - too long.\nenc:%d\ndec:%d', len(enc_inputs), len(dec_inputs))
continue
else:
if (len(enc_inputs) > self._hps.enc_timesteps):
enc_inputs = enc_inputs[:self._hps.enc_timesteps]
if (len(dec_inputs) > self._hps.dec_timesteps):
dec_inputs = dec_inputs[:self._hps.dec_timesteps]
targets = dec_inputs[1:]
targets.append(end_id)
enc_input_len = len(enc_inputs)
dec_output_len = len(targets)
while (len(enc_inputs) < self._hps.enc_timesteps):
enc_inputs.append(pad_id)
while (len(dec_inputs) < self._hps.dec_timesteps):
dec_inputs.append(end_id)
while (len(targets) < self._hps.dec_timesteps):
targets.append(end_id)
element = ModelInput(enc_inputs, dec_inputs, targets, enc_input_len, dec_output_len, ' '.join(article_sentences), ' '.join(abstract_sentences))
self._input_queue.put(element)
|
'Fill bucketed batches into the bucket_input_queue.'
| def _FillBucketInputQueue(self):
| while True:
inputs = []
for _ in xrange((self._hps.batch_size * BUCKET_CACHE_BATCH)):
inputs.append(self._input_queue.get())
if self._bucketing:
inputs = sorted(inputs, key=(lambda inp: inp.enc_len))
batches = []
for i in xrange(0, len(inputs), self._hps.batch_size):
batches.append(inputs[i:(i + self._hps.batch_size)])
shuffle(batches)
for b in batches:
self._bucket_input_queue.put(b)
|
'Watch the daemon input threads and restart if dead.'
| def _WatchThreads(self):
| while True:
time.sleep(60)
input_threads = []
for t in self._input_threads:
if t.is_alive():
input_threads.append(t)
else:
tf.logging.error('Found input thread dead.')
new_t = Thread(target=self._FillInputQueue)
input_threads.append(new_t)
input_threads[(-1)].daemon = True
input_threads[(-1)].start()
self._input_threads = input_threads
bucketing_threads = []
for t in self._bucketing_threads:
if t.is_alive():
bucketing_threads.append(t)
else:
tf.logging.error('Found bucketing thread dead.')
new_t = Thread(target=self._FillBucketInputQueue)
bucketing_threads.append(new_t)
bucketing_threads[(-1)].daemon = True
bucketing_threads[(-1)].start()
self._bucketing_threads = bucketing_threads
|
'Generates article and abstract text from tf.Example.'
| def _TextGenerator(self, example_gen):
| while True:
e = six.next(example_gen)
try:
article_text = self._GetExFeatureText(e, self._article_key)
abstract_text = self._GetExFeatureText(e, self._abstract_key)
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
(yield (article_text, abstract_text))
|
'Extract text for a feature from td.Example.
Args:
ex: tf.Example.
key: key of the feature to be extracted.
Returns:
feature: a feature text extracted.'
| def _GetExFeatureText(self, ex, key):
| return ex.features.feature[key].bytes_list.value[0]
|
'Writes the reference and decoded outputs to RKV files.
Args:
reference: The human (correct) result.
decode: The machine-generated result'
| def Write(self, reference, decode):
| self._ref_file.write(('output=%s\n' % reference))
self._decode_file.write(('output=%s\n' % decode))
self._cnt += 1
if ((self._cnt % DECODE_IO_FLUSH_INTERVAL) == 0):
self._ref_file.flush()
self._decode_file.flush()
|
'Resets the output files. Must be called once before Write().'
| def ResetFiles(self):
| if self._ref_file:
self._ref_file.close()
if self._decode_file:
self._decode_file.close()
timestamp = int(time.time())
self._ref_file = open(os.path.join(self._outdir, ('ref%d' % timestamp)), 'w')
self._decode_file = open(os.path.join(self._outdir, ('decode%d' % timestamp)), 'w')
|
'Beam search decoding.
Args:
model: The seq2seq attentional model.
batch_reader: The batch data reader.
hps: Hyperparamters.
vocab: Vocabulary'
| def __init__(self, model, batch_reader, hps, vocab):
| self._model = model
self._model.build_graph()
self._batch_reader = batch_reader
self._hps = hps
self._vocab = vocab
self._saver = tf.train.Saver()
self._decode_io = DecodeIO(FLAGS.decode_dir)
|
'Decoding loop for long running process.'
| def DecodeLoop(self):
| sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
step = 0
while (step < FLAGS.max_decode_steps):
time.sleep(DECODE_LOOP_DELAY_SECS)
if (not self._Decode(self._saver, sess)):
continue
step += 1
|
'Restore a checkpoint and decode it.
Args:
saver: Tensorflow checkpoint saver.
sess: Tensorflow session.
Returns:
If success, returns true, otherwise, false.'
| def _Decode(self, saver, sess):
| ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
if (not (ckpt_state and ckpt_state.model_checkpoint_path)):
tf.logging.info('No model to decode yet at %s', FLAGS.log_root)
return False
tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path)
ckpt_path = os.path.join(FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path))
tf.logging.info('renamed checkpoint path %s', ckpt_path)
saver.restore(sess, ckpt_path)
self._decode_io.ResetFiles()
for _ in xrange(FLAGS.decode_batches_per_ckpt):
(article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch()
for i in xrange(self._hps.batch_size):
bs = beam_search.BeamSearch(self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps)
article_batch_cp = article_batch.copy()
article_batch_cp[:] = article_batch[i:(i + 1)]
article_lens_cp = article_lens.copy()
article_lens_cp[:] = article_lens[i:(i + 1)]
best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0]
decode_output = [int(t) for t in best_beam.tokens[1:]]
self._DecodeBatch(origin_articles[i], origin_abstracts[i], decode_output)
return True
|
'Convert id to words and writing results.
Args:
article: The original article string.
abstract: The human (correct) abstract string.
output_ids: The abstract word ids output by machine.'
| def _DecodeBatch(self, article, abstract, output_ids):
| decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab))
end_p = decoded_output.find(data.SENTENCE_END, 0)
if (end_p != (-1)):
decoded_output = decoded_output[:end_p]
tf.logging.info('article: %s', article)
tf.logging.info('abstract: %s', abstract)
tf.logging.info('decoded: %s', decoded_output)
self._decode_io.Write(abstract, decoded_output.strip())
|
'Initialize vocabulary.
Args:
filename: Vocabulary file name.'
| def __init__(self, filename):
| self._id_to_word = []
self._word_to_id = {}
self._unk = (-1)
self._bos = (-1)
self._eos = (-1)
with tf.gfile.Open(filename) as f:
idx = 0
for line in f:
word_name = line.strip()
if (word_name == '<S>'):
self._bos = idx
elif (word_name == '</S>'):
self._eos = idx
elif (word_name == '<UNK>'):
self._unk = idx
if (word_name == '!!!MAXTERMID'):
continue
self._id_to_word.append(word_name)
self._word_to_id[word_name] = idx
idx += 1
|
'Convert a list of ids to a sentence, with space inserted.'
| def decode(self, cur_ids):
| return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])
|
'Convert a sentence to a list of ids, with special tokens added.'
| def encode(self, sentence):
| word_ids = [self.word_to_id(cur_word) for cur_word in sentence.split()]
return np.array((([self.bos] + word_ids) + [self.eos]), dtype=np.int32)
|
'Initialize LM1BDataset reader.
Args:
filepattern: Dataset file pattern.
vocab: Vocabulary.'
| def __init__(self, filepattern, vocab):
| self._vocab = vocab
self._all_shards = tf.gfile.Glob(filepattern)
tf.logging.info('Found %d shards at %s', len(self._all_shards), filepattern)
|
'Randomly select a file and read it.'
| def _load_random_shard(self):
| return self._load_shard(random.choice(self._all_shards))
|
'Read one file and convert to ids.
Args:
shard_name: file path.
Returns:
list of (id, char_id, global_word_id) tuples.'
| def _load_shard(self, shard_name):
| tf.logging.info('Loading data from: %s', shard_name)
with tf.gfile.Open(shard_name) as f:
sentences = f.readlines()
chars_ids = [self.vocab.encode_chars(sentence) for sentence in sentences]
ids = [self.vocab.encode(sentence) for sentence in sentences]
global_word_ids = []
current_idx = 0
for word_ids in ids:
current_size = (len(word_ids) - 1)
cur_ids = np.arange(current_idx, (current_idx + current_size))
global_word_ids.append(cur_ids)
current_idx += current_size
tf.logging.info('Loaded %d words.', current_idx)
tf.logging.info('Finished loading')
return zip(ids, chars_ids, global_word_ids)
|
'Writes a Markdown-formatted version of this document to file `f`.
Args:
f: The output file.'
| def write_markdown_to_file(self, f):
| raise NotImplementedError('Document.WriteToFile')
|
'Creates a new Index.
Args:
module_to_name: Dictionary mapping modules to short names.
members: Dictionary mapping member name to (fullname, member).
filename_to_library_map: A list of (filename, Library) pairs. The order
corresponds to the order in which the libraries appear in the index.
path_prefix: Prefix to add to links in the index.'
| def __init__(self, module_to_name, members, filename_to_library_map, path_prefix):
| self._module_to_name = module_to_name
self._members = members
self._filename_to_library_map = filename_to_library_map
self._path_prefix = path_prefix
|
'Writes this index to file `f`.
The output is formatted as an unordered list. Each list element
contains the title of the library, followed by a list of symbols
in that library hyperlinked to the corresponding anchor in that
library.
Args:
f: The output file.'
| def write_markdown_to_file(self, f):
| print('---', file=f)
print('---', file=f)
print('<!-- This file is machine generated: DO NOT EDIT! -->', file=f)
print('', file=f)
print('# TensorFlow Python reference documentation', file=f)
print('', file=f)
fullname_f = (lambda name: self._members[name][0])
anchor_f = (lambda name: _get_anchor(self._module_to_name, fullname_f(name)))
for (filename, library) in self._filename_to_library_map:
sorted_names = sorted(library.mentioned, key=(lambda x: (str.lower(x), x)))
member_names = [n for n in sorted_names if (n in self._members)]
full_filename = (self._path_prefix + filename)
links = [('[`%s`](%s#%s)' % (name, full_filename[:(-3)], anchor_f(name))) for name in member_names]
if links:
print(('* **[%s](%s)**:' % (library.title, full_filename[:(-3)])), file=f)
for link in links:
print((' * %s' % link), file=f)
print('', file=f)
|
'Creates a new Library.
Args:
title: A human-readable title for the library.
module: Module to pull high level docstring from (for table of contents,
list of Ops to document, etc.).
module_to_name: Dictionary mapping modules to short names.
members: Dictionary mapping member name to (fullname, member).
documented: Set of documented names to update.
exclude_symbols: A list of specific symbols to exclude.
prefix: A string to include at the beginning of the page.'
| def __init__(self, title, module, module_to_name, members, documented, exclude_symbols=(), prefix=None):
| self._title = title
self._module = module
self._module_to_name = module_to_name
self._members = dict(members)
self._exclude_symbols = frozenset(exclude_symbols)
documented.update(exclude_symbols)
self._documented = documented
self._mentioned = set()
self._prefix = (prefix or '')
|
'The human-readable title for this library.'
| @property
def title(self):
| return self._title
|
'Set of names mentioned in this library.'
| @property
def mentioned(self):
| return self._mentioned
|
'Set of excluded symbols.'
| @property
def exclude_symbols(self):
| return self._exclude_symbols
|
'Returns True if this member should be included in the document.'
| def _should_include_member(self, name, member):
| if _always_drop_symbol_re.match(name):
return False
if (name in self._exclude_symbols):
return False
return True
|
'Returns the list of modules imported from `module`.'
| def get_imported_modules(self, module):
| for (name, member) in inspect.getmembers(module):
if inspect.ismodule(member):
(yield (name, member))
|
'Returns the list of class members to document in `cls`.
This function filters the class member to ONLY return those
defined by the class. It drops the inherited ones.
Args:
cls_name: Qualified name of `cls`.
cls: An inspect object of type \'class\'.
Yields:
name, member tuples.'
| def get_class_members(self, cls_name, cls):
| for (name, member) in inspect.getmembers(cls):
is_method = (inspect.ismethod(member) or inspect.isfunction(member))
if (not (is_method or isinstance(member, property))):
continue
if ((is_method and (member.__name__ == '__init__')) or self._should_include_member(name, member)):
(yield (name, (('%s.%s' % (cls_name, name)), member)))
|
'Given a function, returns a string representing its args.'
| def _generate_signature_for_function(self, func):
| args_list = []
argspec = inspect.getargspec(func)
first_arg_with_default = (len((argspec.args or [])) - len((argspec.defaults or [])))
for arg in argspec.args[:first_arg_with_default]:
if (arg == 'self'):
continue
args_list.append(arg)
if ((argspec.varargs == 'args') and (argspec.keywords == 'kwds')):
original_func = func.__closure__[0].cell_contents
return self._generate_signature_for_function(original_func)
if argspec.defaults:
for (arg, default) in zip(argspec.args[first_arg_with_default:], argspec.defaults):
if callable(default):
args_list.append(('%s=%s' % (arg, default.__name__)))
else:
args_list.append(('%s=%r' % (arg, default)))
if argspec.varargs:
args_list.append(('*' + argspec.varargs))
if argspec.keywords:
args_list.append(('**' + argspec.keywords))
return (('(' + ', '.join(args_list)) + ')')
|
'Remove indenting.
We follow Python\'s convention and remove the minimum indent of the lines
after the first, see:
https://www.python.org/dev/peps/pep-0257/#handling-docstring-indentation
preserving relative indentation.
Args:
docstring: A docstring.
Returns:
A list of strings, one per line, with the minimum indent stripped.'
| def _remove_docstring_indent(self, docstring):
| docstring = (docstring or '')
lines = docstring.strip().split('\n')
min_indent = len(docstring)
for l in lines[1:]:
l = l.rstrip()
if l:
i = 0
while ((i < len(l)) and (l[i] == ' ')):
i += 1
if (i < min_indent):
min_indent = i
for i in range(1, len(lines)):
l = lines[i].rstrip()
if (len(l) >= min_indent):
l = l[min_indent:]
lines[i] = l
return lines
|
'Formats the given `docstring` as Markdown and prints it to `f`.'
| def _print_formatted_docstring(self, docstring, f):
| lines = self._remove_docstring_indent(docstring)
i = 0
def _at_start_of_section():
'Returns the header if lines[i] is at start of a docstring section.'
l = lines[i]
match = _section_re.match(l)
if (match and ((i + 1) < len(lines)) and lines[(i + 1)].startswith(' ')):
return match.group(1)
else:
return None
while (i < len(lines)):
l = lines[i]
section_header = _at_start_of_section()
if section_header:
if ((i == 0) or lines[(i - 1)]):
print('', file=f)
print((('##### ' + section_header) + ':'), file=f)
print('', file=f)
i += 1
outputting_list = False
while (i < len(lines)):
l = lines[i]
if _at_start_of_section():
break
match = _arg_re.match(l)
if match:
if (not outputting_list):
print('', file=f)
outputting_list = True
suffix = l[len(match.group()):].lstrip()
print(((('* <b>`' + match.group(1)) + '`</b>: ') + suffix), file=f)
else:
outputting_list &= l.startswith(' ')
print(l, file=f)
i += 1
else:
print(l, file=f)
i += 1
|
'Prints the given function to `f`.'
| def _print_function(self, f, prefix, fullname, func):
| heading = ((prefix + ' `') + fullname)
if (not isinstance(func, property)):
heading += self._generate_signature_for_function(func)
heading += ('` {#%s}' % _get_anchor(self._module_to_name, fullname))
print(heading, file=f)
print('', file=f)
self._print_formatted_docstring(inspect.getdoc(func), f)
print('', file=f)
|
'Print `member` to `f`.'
| def _write_member_markdown_to_file(self, f, prefix, name, member):
| if (inspect.isfunction(member) or inspect.ismethod(member) or isinstance(member, property)):
print('- - -', file=f)
print('', file=f)
self._print_function(f, prefix, name, member)
print('', file=f)
elif inspect.isclass(member):
print('- - -', file=f)
print('', file=f)
print(('%s `class %s` {#%s}' % (prefix, name, _get_anchor(self._module_to_name, name))), file=f)
print('', file=f)
self._write_class_markdown_to_file(f, name, member)
print('', file=f)
else:
raise RuntimeError(('Member %s has unknown type %s' % (name, type(member))))
|
'Write the class doc to `f`.
Args:
f: File to write to.
prefix: Prefix for names.
cls: class object.
name: name to use.'
| def _write_class_markdown_to_file(self, f, name, cls):
| methods = dict(self.get_class_members(name, cls))
num_methods = len(methods)
try:
self._write_docstring_markdown_to_file(f, '####', inspect.getdoc(cls), methods, {})
except ValueError as e:
raise ValueError((str(e) + (' in class `%s`' % cls.__name__)))
any_method_called_out = (len(methods) != num_methods)
if any_method_called_out:
other_methods = {n: m for (n, m) in methods.items() if (n in cls.__dict__)}
if other_methods:
print('\n#### Other Methods', file=f)
else:
other_methods = methods
for name in sorted(other_methods):
self._write_member_markdown_to_file(f, '####', *other_methods[name])
|
'Prints this library to file `f`.
Args:
f: File to write to.
Returns:
Dictionary of documented members.'
| def write_markdown_to_file(self, f):
| print('---', file=f)
print('---', file=f)
print('<!-- This file is machine generated: DO NOT EDIT! -->', file=f)
print('', file=f)
print('#', self._title, file=f)
if self._prefix:
print(self._prefix, file=f)
print('[TOC]', file=f)
print('', file=f)
if (self._module is not None):
self._write_module_markdown_to_file(f, self._module)
|
'Writes the leftover members to `f`.
Args:
f: File to write to.
catch_all: If true, document all missing symbols from any module.
Otherwise, document missing symbols from just this module.'
| def write_other_members(self, f, catch_all=False):
| if catch_all:
names = self._members.items()
else:
names = inspect.getmembers(self._module)
leftovers = []
for (name, _) in names:
if ((name in self._members) and (name not in self._documented)):
leftovers.append(name)
if leftovers:
print(('%s: undocumented members: %d' % (self._title, len(leftovers))))
print('\n## Other Functions and Classes', file=f)
for name in sorted(leftovers):
print((' %s' % name))
self._documented.add(name)
self._mentioned.add(name)
self._write_member_markdown_to_file(f, '###', *self._members[name])
|
'Generate an error if there are leftover members.'
| def assert_no_leftovers(self):
| leftovers = []
for name in self._members.keys():
if ((name in self._members) and (name not in self._documented)):
leftovers.append(name)
if leftovers:
raise RuntimeError(('%s: undocumented members: %s' % (self._title, ', '.join(leftovers))))
|
'Return a tensor that constructs adversarial examples for the given
input. Generate uses tf.py_func in order to operate over tensors.
:param x: (required) A tensor with the inputs.
:param y: (optional) A tensor with the true labels for an untargeted
attack. If None (and y_target is None) then use the
original labels the classifier assigns.
:param y_target: (optional) A tensor with the target labels for a
targeted attack.
:param nb_classes: The number of classes the model has.
:param confidence: Confidence of adversarial examples: higher produces
examples with larger l2 distortion, but more
strongly classified as adversarial.
:param batch_size: Number of attacks to run simultaneously.
:param learning_rate: The learning rate for the attack algorithm.
Smaller values produce better results but are
slower to converge.
:param binary_search_steps: The number of times we perform binary
search to find the optimal tradeoff-
constant between norm of the purturbation
and confidence of the classification.
:param max_iterations: The maximum number of iterations. Setting this
to a larger value will produce lower distortion
results. Using only a few iterations requires
a larger learning rate, and will produce larger
distortion results.
:param abort_early: If true, allows early aborts if gradient descent
is unable to make progress (i.e., gets stuck in
a local minimum).
:param initial_const: The initial tradeoff-constant to use to tune the
relative importance of size of the pururbation
and confidence of classification.
If binary_search_steps is large, the initial
constant is not important. A smaller value of
this constant gives lower distortion results.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def __init__(self, sess, model, batch_size, confidence, targeted, learning_rate, binary_search_steps, max_iterations, abort_early, initial_const, clip_min, clip_max, num_labels, shape):
| self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.batch_size = batch_size
self.clip_min = clip_min
self.clip_max = clip_max
self.model = model
self.repeat = (binary_search_steps >= 10)
self.shape = shape = tuple(([batch_size] + list(shape)))
modifier = tf.Variable(np.zeros(shape, dtype=np.float32))
self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32, name=u'timg')
self.tlab = tf.Variable(np.zeros((batch_size, num_labels)), dtype=tf.float32, name=u'tlab')
self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32, name=u'const')
self.assign_timg = tf.placeholder(tf.float32, shape, name=u'assign_timg')
self.assign_tlab = tf.placeholder(tf.float32, (batch_size, num_labels), name=u'assign_tlab')
self.assign_const = tf.placeholder(tf.float32, [batch_size], name=u'assign_const')
self.newimg = ((tf.tanh((modifier + self.timg)) + 1) / 2)
self.newimg = ((self.newimg * (clip_max - clip_min)) + clip_min)
self.output = model.get_logits(self.newimg)
self.other = ((((tf.tanh(self.timg) + 1) / 2) * (clip_max - clip_min)) + clip_min)
self.l2dist = tf.reduce_sum(tf.square((self.newimg - self.other)), list(range(1, len(shape))))
real = tf.reduce_sum((self.tlab * self.output), 1)
other = tf.reduce_max((((1 - self.tlab) * self.output) - (self.tlab * 10000)), 1)
if self.TARGETED:
loss1 = tf.maximum(0.0, ((other - real) + self.CONFIDENCE))
else:
loss1 = tf.maximum(0.0, ((real - other) + self.CONFIDENCE))
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss1 = tf.reduce_sum((self.const * loss1))
self.loss = (self.loss1 + self.loss2)
start_vars = set((x.name for x in tf.global_variables()))
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE)
self.train = optimizer.minimize(self.loss, var_list=[modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if (x.name not in start_vars)]
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))
self.init = tf.variables_initializer(var_list=([modifier] + new_vars))
|
'Perform the L_2 attack on the given images for the given targets.
If self.targeted is true, then the targets represents the target labels
If self.targeted is false, then targets are the original class labels'
| def attack(self, imgs, targets):
| r = []
for i in range(0, len(imgs), self.batch_size):
r.extend(self.attack_batch(imgs[i:(i + self.batch_size)], targets[i:(i + self.batch_size)]))
return np.array(r)
|
'Run the attack on a batch of images and labels.'
| def attack_batch(self, imgs, labs):
| def compare(x, y):
if (not isinstance(x, (float, int, np.int64))):
x = np.copy(x)
if self.TARGETED:
x[y] -= self.CONFIDENCE
else:
x[y] += self.CONFIDENCE
x = np.argmax(x)
if self.TARGETED:
return (x == y)
else:
return (x != y)
batch_size = self.batch_size
oimgs = np.clip(imgs, self.clip_min, self.clip_max)
imgs = ((imgs - self.clip_min) / (self.clip_max - self.clip_min))
imgs = np.clip(imgs, 0, 1)
imgs = ((imgs * 2) - 1)
imgs = np.arctanh((imgs * 0.999999))
lower_bound = np.zeros(batch_size)
CONST = (np.ones(batch_size) * self.initial_const)
upper_bound = (np.ones(batch_size) * 10000000000.0)
o_bestl2 = ([10000000000.0] * batch_size)
o_bestscore = ([(-1)] * batch_size)
o_bestattack = np.copy(oimgs)
for outer_step in range(self.BINARY_SEARCH_STEPS):
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]
bestl2 = ([10000000000.0] * batch_size)
bestscore = ([(-1)] * batch_size)
if (self.repeat and (outer_step == (self.BINARY_SEARCH_STEPS - 1))):
CONST = upper_bound
self.sess.run(self.setup, {self.assign_timg: batch, self.assign_tlab: batchlab, self.assign_const: CONST})
prev = 1000000.0
for iteration in range(self.MAX_ITERATIONS):
(_, l, l2s, scores, nimg) = self.sess.run([self.train, self.loss, self.l2dist, self.output, self.newimg])
if (self.ABORT_EARLY and ((iteration % (self.MAX_ITERATIONS // 10)) == 0)):
if (l > (prev * 0.9999)):
break
prev = l
for (e, (l2, sc, ii)) in enumerate(zip(l2s, scores, nimg)):
lab = np.argmax(batchlab[e])
if ((l2 < bestl2[e]) and compare(sc, lab)):
bestl2[e] = l2
bestscore[e] = np.argmax(sc)
if ((l2 < o_bestl2[e]) and compare(sc, lab)):
o_bestl2[e] = l2
o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii
for e in range(batch_size):
if (compare(bestscore[e], np.argmax(batchlab[e])) and (bestscore[e] != (-1))):
upper_bound[e] = min(upper_bound[e], CONST[e])
if (upper_bound[e] < 1000000000.0):
CONST[e] = ((lower_bound[e] + upper_bound[e]) / 2)
else:
lower_bound[e] = max(lower_bound[e], CONST[e])
if (upper_bound[e] < 1000000000.0):
CONST[e] = ((lower_bound[e] + upper_bound[e]) / 2)
else:
CONST[e] *= 10
o_bestl2 = np.array(o_bestl2)
return o_bestattack
|
':param model: An instance of the Model class.
:param back: The backend to use. Either \'tf\' (default) or \'th\'.
:param sess: The tf session to run graphs in (use None for Theano)'
| def __init__(self, model, back='tf', sess=None):
| if (not ((back == 'tf') or (back == 'th'))):
raise ValueError("Backend argument must either be 'tf' or 'th'.")
if ((back == 'th') and (sess is not None)):
raise Exception('A session should not be provided when using th.')
if (not isinstance(model, Model)):
if hasattr(model, '__call__'):
warnings.warn('CleverHans support for supplying a callable instead of an instance of the Model class is deprecated and will be dropped on 2018-01-11.')
else:
raise ValueError('The model argument should be an instance of the Model class.')
if (back == 'th'):
warnings.warn('CleverHans support for Theano is deprecated and will be dropped on 2017-11-08.')
self.model = model
self.back = back
self.sess = sess
self.graphs = {}
self.feedable_kwargs = {}
self.structural_kwargs = []
|
'Generate the attack\'s symbolic graph for adversarial examples. This
method should be overriden in any child class that implements an
attack that is expressable symbolically. Otherwise, it will wrap the
numerical implementation as a symbolic operator.
:param x: The model\'s symbolic inputs.
:param **kwargs: optional parameters used by child classes.
:return: A symbolic representation of the adversarial examples.'
| def generate(self, x, **kwargs):
| if (self.back == 'th'):
raise NotImplementedError('Theano version not implemented.')
error = 'Sub-classes must implement generate.'
raise NotImplementedError(error)
|
'Generate adversarial examples and return them as a NumPy array.
Sub-classes *should not* implement this method unless they must
perform special handling of arguments.
:param x_val: A NumPy array with the original inputs.
:param **kwargs: optional parameters used by child classes.
:return: A NumPy array holding the adversarial examples.'
| def generate_np(self, x_val, **kwargs):
| if (self.back == 'th'):
raise NotImplementedError('Theano version not implemented.')
if (self.sess is None):
raise ValueError('Cannot use `generate_np` when no `sess` was provided')
fixed = dict(((k, v) for (k, v) in kwargs.items() if (k in self.structural_kwargs)))
feedable = dict(((k, v) for (k, v) in kwargs.items() if (k in self.feedable_kwargs)))
if ((len(fixed) + len(feedable)) < len(kwargs)):
warnings.warn('Supplied extra keyword arguments that are not used in the graph computation. They have been ignored.')
if (not all((isinstance(value, collections.Hashable) for value in fixed.values()))):
hash_key = None
else:
hash_key = tuple(sorted(fixed.items()))
if (hash_key not in self.graphs):
self.construct_graph(fixed, feedable, x_val, hash_key)
(x, new_kwargs, x_adv) = self.graphs[hash_key]
feed_dict = {x: x_val}
for name in feedable:
feed_dict[new_kwargs[name]] = feedable[name]
return self.sess.run(x_adv, feed_dict)
|
'Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.
:param params: a dictionary of attack-specific parameters
:return: True when parsing was successful'
| def parse_params(self, params=None):
| return True
|
'Create a FastGradientMethod instance.'
| def __init__(self, model, back='tf', sess=None):
| super(FastGradientMethod, self).__init__(model, back, sess)
self.feedable_kwargs = {'eps': np.float32, 'y': np.float32, 'y_target': np.float32, 'clip_min': np.float32, 'clip_max': np.float32}
self.structural_kwargs = ['ord']
if (not isinstance(self.model, Model)):
self.model = CallableModelWrapper(self.model, 'probs')
|
'Generate symbolic graph for adversarial examples and return.
:param x: The model\'s symbolic inputs.
:param eps: (optional float) attack step size (input variation)
:param ord: (optional) Order of the norm (mimics NumPy).
Possible values: np.inf, 1 or 2.
:param y: (optional) A tensor with the model labels. Only provide
this parameter if you\'d like to use true labels when crafting
adversarial samples. Otherwise, model predictions are used as
labels to avoid the "label leaking" effect (explained in this
paper: https://arxiv.org/abs/1611.01236). Default is None.
Labels should be one-hot-encoded.
:param y_target: (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def generate(self, x, **kwargs):
| assert self.parse_params(**kwargs)
if (self.back == 'tf'):
from .attacks_tf import fgm
else:
from .attacks_th import fgm
if (self.y is not None):
y = self.y
else:
y = self.y_target
return fgm(x, self.model.get_probs(x), y=y, eps=self.eps, ord=self.ord, clip_min=self.clip_min, clip_max=self.clip_max, targeted=(self.y_target is not None))
|
'Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.
Attack-specific parameters:
:param eps: (optional float) attack step size (input variation)
:param ord: (optional) Order of the norm (mimics NumPy).
Possible values: np.inf, 1 or 2.
:param y: (optional) A tensor with the model labels. Only provide
this parameter if you\'d like to use true labels when crafting
adversarial samples. Otherwise, model predictions are used as
labels to avoid the "label leaking" effect (explained in this
paper: https://arxiv.org/abs/1611.01236). Default is None.
Labels should be one-hot-encoded.
:param y_target: (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def parse_params(self, eps=0.3, ord=np.inf, y=None, y_target=None, clip_min=None, clip_max=None, **kwargs):
| self.eps = eps
self.ord = ord
self.y = y
self.y_target = y_target
self.clip_min = clip_min
self.clip_max = clip_max
if ((self.y is not None) and (self.y_target is not None)):
raise ValueError('Must not set both y and y_target')
if (self.ord not in [np.inf, int(1), int(2)]):
raise ValueError('Norm order must be either np.inf, 1, or 2.')
if ((self.back == 'th') and (self.ord != np.inf)):
raise NotImplementedError('The only FastGradientMethod norm implemented for Theano is np.inf.')
return True
|
'Create a BasicIterativeMethod instance.'
| def __init__(self, model, back='tf', sess=None):
| super(BasicIterativeMethod, self).__init__(model, back, sess)
self.feedable_kwargs = {'eps': np.float32, 'eps_iter': np.float32, 'y': np.float32, 'y_target': np.float32, 'clip_min': np.float32, 'clip_max': np.float32}
self.structural_kwargs = ['ord', 'nb_iter']
if (not isinstance(self.model, Model)):
self.model = CallableModelWrapper(self.model, 'probs')
|
'Generate symbolic graph for adversarial examples and return.
:param x: The model\'s symbolic inputs.
:param eps: (required float) maximum distortion of adversarial example
compared to original input
:param eps_iter: (required float) step size for each attack iteration
:param nb_iter: (required int) Number of attack iterations.
:param y: (optional) A tensor with the model labels.
:param y_target: (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.
:param ord: (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def generate(self, x, **kwargs):
| import tensorflow as tf
assert self.parse_params(**kwargs)
eta = 0
model_preds = self.model.get_probs(x)
preds_max = tf.reduce_max(model_preds, 1, keep_dims=True)
if (self.y_target is not None):
y = self.y_target
targeted = True
elif (self.y is not None):
y = self.y
targeted = False
else:
y = tf.to_float(tf.equal(model_preds, preds_max))
targeted = False
y_kwarg = ('y_target' if targeted else 'y')
fgm_params = {'eps': self.eps_iter, y_kwarg: y, 'ord': self.ord}
for i in range(self.nb_iter):
FGM = FastGradientMethod(self.model, back=self.back, sess=self.sess)
eta = (FGM.generate((x + eta), **fgm_params) - x)
if (self.ord == np.inf):
eta = tf.clip_by_value(eta, (- self.eps), self.eps)
elif (self.ord in [1, 2]):
reduc_ind = list(xrange(1, len(eta.get_shape())))
if (self.ord == 1):
norm = tf.reduce_sum(tf.abs(eta), reduction_indices=reduc_ind, keep_dims=True)
elif (self.ord == 2):
norm = tf.sqrt(tf.reduce_sum(tf.square(eta), reduction_indices=reduc_ind, keep_dims=True))
eta = ((eta * self.eps) / norm)
adv_x = (x + eta)
if ((self.clip_min is not None) and (self.clip_max is not None)):
adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max)
return adv_x
|
'Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.
Attack-specific parameters:
:param eps: (required float) maximum distortion of adversarial example
compared to original input
:param eps_iter: (required float) step size for each attack iteration
:param nb_iter: (required int) Number of attack iterations.
:param y: (optional) A tensor with the model labels.
:param y_target: (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.
:param ord: (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def parse_params(self, eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=np.inf, clip_min=None, clip_max=None, y_target=None, **kwargs):
| self.eps = eps
self.eps_iter = eps_iter
self.nb_iter = nb_iter
self.y = y
self.y_target = y_target
self.ord = ord
self.clip_min = clip_min
self.clip_max = clip_max
if ((self.y is not None) and (self.y_target is not None)):
raise ValueError('Must not set both y and y_target')
if (self.ord not in [np.inf, 1, 2]):
raise ValueError('Norm order must be either np.inf, 1, or 2.')
if (self.back == 'th'):
error_string = 'BasicIterativeMethod is not implemented in Theano'
raise NotImplementedError(error_string)
return True
|
'Create a SaliencyMapMethod instance.'
| def __init__(self, model, back='tf', sess=None):
| super(SaliencyMapMethod, self).__init__(model, back, sess)
if (not isinstance(self.model, Model)):
self.model = CallableModelWrapper(self.model, 'probs')
if (self.back == 'th'):
error = 'Theano version of SaliencyMapMethod not implemented.'
raise NotImplementedError(error)
import tensorflow as tf
self.feedable_kwargs = {'y_target': tf.float32}
self.structural_kwargs = ['theta', 'gamma', 'nb_classes', 'clip_max', 'clip_min']
|
'Generate symbolic graph for adversarial examples and return.
:param x: The model\'s symbolic inputs.
:param theta: (optional float) Perturbation introduced to modified
components (can be positive or negative)
:param gamma: (optional float) Maximum percentage of perturbed features
:param nb_classes: (optional int) Number of model output classes
:param clip_min: (optional float) Minimum component value for clipping
:param clip_max: (optional float) Maximum component value for clipping
:param y_target: (optional) Target tensor if the attack is targeted'
| def generate(self, x, **kwargs):
| import tensorflow as tf
from .attacks_tf import jacobian_graph, jsma_batch
assert self.parse_params(**kwargs)
preds = self.model.get_probs(x)
grads = jacobian_graph(preds, x, self.nb_classes)
if (self.y_target is not None):
def jsma_wrap(x_val, y_target):
return jsma_batch(self.sess, x, preds, grads, x_val, self.theta, self.gamma, self.clip_min, self.clip_max, self.nb_classes, y_target=y_target)
wrap = tf.py_func(jsma_wrap, [x, self.y_target], tf.float32)
else:
def jsma_wrap(x_val):
return jsma_batch(self.sess, x, preds, grads, x_val, self.theta, self.gamma, self.clip_min, self.clip_max, self.nb_classes, y_target=None)
wrap = tf.py_func(jsma_wrap, [x], tf.float32)
return wrap
|
'Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.
Attack-specific parameters:
:param theta: (optional float) Perturbation introduced to modified
components (can be positive or negative)
:param gamma: (optional float) Maximum percentage of perturbed features
:param nb_classes: (optional int) Number of model output classes
:param clip_min: (optional float) Minimum component value for clipping
:param clip_max: (optional float) Maximum component value for clipping
:param y_target: (optional) Target tensor if the attack is targeted'
| def parse_params(self, theta=1.0, gamma=np.inf, nb_classes=10, clip_min=0.0, clip_max=1.0, y_target=None, **kwargs):
| self.theta = theta
self.gamma = gamma
self.nb_classes = nb_classes
self.clip_min = clip_min
self.clip_max = clip_max
self.y_target = y_target
return True
|
'Generate symbolic graph for adversarial examples and return.
:param x: The model\'s symbolic inputs.
:param eps: (optional float ) the epsilon (input variation parameter)
:param num_iterations: (optional) the number of iterations
:param xi: (optional float) the finite difference parameter
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def generate(self, x, **kwargs):
| assert self.parse_params(**kwargs)
return vatm(self.model, x, self.model.get_logits(x), eps=self.eps, num_iterations=self.num_iterations, xi=self.xi, clip_min=self.clip_min, clip_max=self.clip_max)
|
'Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.
Attack-specific parameters:
:param eps: (optional float )the epsilon (input variation parameter)
:param num_iterations: (optional) the number of iterations
:param xi: (optional float) the finite difference parameter
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def parse_params(self, eps=2.0, num_iterations=1, xi=1e-06, clip_min=None, clip_max=None, **kwargs):
| self.eps = eps
self.num_iterations = num_iterations
self.xi = xi
self.clip_min = clip_min
self.clip_max = clip_max
return True
|
'Return a tensor that constructs adversarial examples for the given
input. Generate uses tf.py_func in order to operate over tensors.
:param x: (required) A tensor with the inputs.
:param y: (optional) A tensor with the true labels for an untargeted
attack. If None (and y_target is None) then use the
original labels the classifier assigns.
:param y_target: (optional) A tensor with the target labels for a
targeted attack.
:param nb_classes: The number of classes the model has.
:param confidence: Confidence of adversarial examples: higher produces
examples with larger l2 distortion, but more
strongly classified as adversarial.
:param batch_size: Number of attacks to run simultaneously.
:param learning_rate: The learning rate for the attack algorithm.
Smaller values produce better results but are
slower to converge.
:param binary_search_steps: The number of times we perform binary
search to find the optimal tradeoff-
constant between norm of the purturbation
and confidence of the classification.
:param max_iterations: The maximum number of iterations. Setting this
to a larger value will produce lower distortion
results. Using only a few iterations requires
a larger learning rate, and will produce larger
distortion results.
:param abort_early: If true, allows early aborts if gradient descent
is unable to make progress (i.e., gets stuck in
a local minimum).
:param initial_const: The initial tradeoff-constant to use to tune the
relative importance of size of the pururbation
and confidence of classification.
If binary_search_steps is large, the initial
constant is not important. A smaller value of
this constant gives lower distortion results.
:param clip_min: (optional float) Minimum input component value
:param clip_max: (optional float) Maximum input component value'
| def generate(self, x, **kwargs):
| import tensorflow as tf
from .attacks_tf import CarliniWagnerL2 as CWL2
self.parse_params(**kwargs)
attack = CWL2(self.sess, self.model, self.batch_size, self.confidence, ('y_target' in kwargs), self.learning_rate, self.binary_search_steps, self.max_iterations, self.abort_early, self.initial_const, self.clip_min, self.clip_max, self.nb_classes, x.get_shape().as_list()[1:])
if (('y' in kwargs) and ('y_target' in kwargs)):
raise ValueError("Can not set both 'y' and 'y_target'.")
elif ('y' in kwargs):
labels = kwargs['y']
elif ('y_target' in kwargs):
labels = kwargs['y_target']
else:
preds = self.model.get_probs(x)
preds_max = tf.reduce_max(preds, 1, keep_dims=True)
original_predictions = tf.to_float(tf.equal(preds, preds_max))
labels = original_predictions
def cw_wrap(x_val, y_val):
return np.array(attack.attack(x_val, y_val), dtype=np.float32)
wrap = tf.py_func(cw_wrap, [x, labels], tf.float32)
return wrap
|
'Parameters
data : str
String with lines separated by \''
| def __init__(self, data):
| if isinstance(data, list):
self._str = data
else:
self._str = data.split('\n')
self.reset()
|
'func_name : Descriptive text
continued text
another_func_name : Descriptive text
func_name1, func_name2, func_name3'
| def _parse_see_also(self, content):
| functions = []
current_func = None
rest = []
for line in content:
if (not line.strip()):
continue
if (':' in line):
if current_func:
functions.append((current_func, rest))
r = line.split(':', 1)
current_func = r[0].strip()
r[1] = r[1].strip()
if r[1]:
rest = [r[1]]
else:
rest = []
elif (not line.startswith(' ')):
if current_func:
functions.append((current_func, rest))
current_func = None
rest = []
if (',' in line):
for func in line.split(','):
func = func.strip()
if func:
functions.append((func, []))
elif line.strip():
current_func = line.strip()
elif (current_func is not None):
rest.append(line.strip())
if current_func:
functions.append((current_func, rest))
return functions
|
'.. index: default
:refguide: something, else, and more'
| def _parse_index(self, section, content):
| def strip_each_in(lst):
return [s.strip() for s in lst]
out = {}
section = section.split('::')
if (len(section) > 1):
out['default'] = strip_each_in(section[1].split(','))[0]
for line in content:
line = line.split(':')
if (len(line) > 2):
out[line[1]] = strip_each_in(line[2].split(','))
return out
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.