Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def main(): n = input() s = input() d = input() number = [] res = False maxi = float('inf') for i in d.split(" "): number.append(int(i)) for i in range(len(s) - 1): if ( s[i] == "R" and s[i + 1] == "L" ): cal = number[i+1] - number[i] if (cal < maxi): maxi = cal res = True if (res == True): maxi = int(maxi/2) print(maxi) else: print("-1") main()
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) ways=input() cordinates=list(map(int,input().split())) distances=[] for i in range (0,n-1): if ways[i]=='R' and ways[i+1]=='L': distances.append(cordinates[i+1]-cordinates[i]) if len(distances)>0: x=min(distances) print(int(x*0.5)) else:print('-1')
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; long long mx = -1e9, mn = 1e9 + 5; long long T, n, m, k, ans, a[200005], b, c, d, l, r, sum, mid, coin, cnt, pos, number, x, y, z; vector<long long> v; map<long long, long long> mp, mm; map<long long, long long>::iterator it; pair<pair<long long, long long>, string> p[1005]; queue<long long> q; priority_queue<long long> pq; void go() {} int main() { cin >> n; string s; cin >> s; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } ans = 1e9 * 2; for (int i = 1; i < s.size(); i++) { if (s[i] == 'L' && s[i - 1] == 'R') { ans = min(ans, a[i] - a[i - 1]); } } if (ans == 1e9 * 2) { cout << -1; } else cout << ans / 2; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
NONE = 10 ** 10 n = int(input()) direct = input() pos = [int(x) for x in input().split()] best = NONE for i,x in enumerate(pos): if i+1 == n: break if direct[i:i+2] != 'RL': continue best = min(best, pos[i+1] - x) if best == NONE: best = -1 else: best = best // 2 print(best)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class ALaunchOfCollider { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n=in.nextInt();int m=0; String s=in.next();boolean ex=false;int moment=0; ArrayList<Integer> momment = new ArrayList<Integer>(); char [] dir=s.toCharArray(); int [] p = new int[n]; for(int i=0;i<p.length;i++) { p[i]=in.nextInt(); } for(int i=0;i<dir.length-1;i++) { if((dir[i]=='R')&&(dir[i+1]=='L')) { ex=true; moment =(p[i+1]-p[i])/2; momment.add(moment); } } if(ex){m=Collections.min(momment);} System.out.println((ex==true)?m:"-1"); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import sys elements = input() el_d = raw_input() elem_reach = [] el_x = map(int, raw_input().split()) for i in range(0,elements-1): if el_d[i] == 'R' and el_d[i+1] == 'L': elem_reach.append(el_x[i+1]-el_x[i]) if len(elem_reach)>0: elem_reach.sort() print elem_reach[0]/2 else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n,k = int(input()),input() l = list(map(int,input().split())) h = [(l[i+1]-l[i])//2 for i in range(n-1) if k[i]=='R' and k[i+1]=='L' ] if len(h)==0:print(-1) else:print(min(h))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def take(): return raw_input().strip() def Convert(): return list(map(int,take().split())) N=int(take()) S=list(take()) arr,x=Convert(),[] for i in xrange(1,N): if S[i-1]=='R' and S[i]=='L': x.append((arr[i]-arr[i-1])/2) if len(x): print min(x) else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * * @author yanef */ public class test{ /** * @param args the command line arguments */ public static void main(String[] args) throws IOException{ BufferedReader vod=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(vod.readLine()); int[] ar=new int[n]; String s=vod.readLine(); StringTokenizer s1=new StringTokenizer(vod.readLine()); for (int i=0; i<n; i++) ar[i]=Integer.parseInt(s1.nextToken()); int ans=Integer.MAX_VALUE; for (int i=1; i<n; i++){ if (s.substring(i-1, i+1).equals("RL")&ans>ar[i]-ar[i-1]) ans=ar[i]-ar[i-1]; } if (ans==Integer.MAX_VALUE) System.out.print(-1); else System.out.print(ans/2); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
# -*- coding: utf-8 -*- """ Created on Fri Mar 27 23:49:08 2020 @author: alexi """ #http://codeforces.com/problemset/problem/699/A -- Alexis Galvan import math def particles(): total = int(input()) particles = input() particles = [i for i in particles] position = list(map(int, input().split())) output = math.inf change = False for i in range(len(particles)): if particles[i] == 'R': if i+1 < len(particles): if particles[i+1] == 'L': temp = int((position[i+1]-position[i])/2) if temp < output: output = temp change = True if not change: return -1 else: return output answer = particles() print(answer)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int a, x[200009], ans = 1e9 + 9; char b[200009]; scanf("%d", &a); scanf("%s", b); for (int i = 0; i < a; i++) { scanf("%d", &x[i]); } for (int i = 0; i < a - 1; i++) { if (b[i] == 'R' && b[i + 1] == 'L') { ans = min(ans, (x[i + 1] - x[i]) / 2); } } if (ans != 1e9 + 9) printf("%d", ans); else printf("-1"); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() a = list(map(int, input().split())) ans = -1 for i in range(n-1): if s[i:i+2]=="RL": if ((abs(a[i]-a[i+1])//2)<ans) or (ans==-1): ans = abs(a[i]-a[i+1])//2 print(ans)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ //package cf; import java.io.File; import java.io.FileNotFoundException; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.PriorityQueue; import java.util.Random; import java.util.Scanner; import java.util.TreeSet; /** * * @author Ada */ public class Cf { /** * @param args the command line arguments */ public static void main(String[] args) { Scanner lukija = new Scanner(System.in); System.out.println(a(lukija)); } public static long a(Scanner lukija) { int maara = Integer.parseInt(lukija.nextLine()); String suunnat = lukija.nextLine(); char ed = suunnat.charAt(0); String luvut = lukija.nextLine(); String[] taulukko = luvut.split(" "); long etaisyysMin = 1000000000; boolean oli = false; for (int i = 1; i < suunnat.length(); i++) { char nyk = suunnat.charAt(i); long etaisyys = 1000000000; if (ed == 'R' && nyk == 'L') { oli = true; etaisyys = Long.parseLong(taulukko[i]) - Long.parseLong(taulukko[i - 1]); } if (etaisyysMin > etaisyys) { etaisyysMin = etaisyys; } ed = nyk; } if (oli) { return etaisyysMin / 2; } return -1; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) a = input() answer = float('infinity') A = list(map(int, input().split())) for i in range(n-1): if a[i]=='R' and a[i+1] == 'L': answer = min(answer, (A[i+1] - A[i])//2) if answer != float('infinity'): print(answer) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) velocities = input() coordinates = input() speed = [0] * n time = 10**9 coordinates = list(map(int, coordinates.split())) for i in range(len(velocities) - 1): if velocities[i] == 'R' and velocities[i + 1] == 'L': time = min(time, (coordinates[i + 1] - coordinates[i]) // 2) if time == 10**9: time = -1 print(time)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) st = input() lst = list(map(int, input().split())) minn = float("INF") yes = False for i in range(n-1): if st[i] == "R" and st[i+1] == "L": yes = True minn = min(minn, (lst[i+1] - lst[i])//2) if not yes: print(-1) else: print(minn)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int min(int x, int y) { if (x > y) { return y; } else { return x; } } int main() { int n, x = INT_MAX; cin >> n; string s; cin >> s; int arr[n - 1]; cin >> arr[0]; for (int i = 1; i < n; i++) { cin >> arr[i]; if (s[i] == 'L' && s[i - 1] == 'R') { x = min(x, arr[i] - arr[i - 1]); } } if (x != INT_MAX) { cout << x / 2; } else cout << "-1"; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() s = raw_input() arr = map(int, raw_input().split()) mnL = 0 mnR = 99999999999 i = 0 while i<n: if s[i]=='L': if mnL<arr[i]: mnL = arr[i] else: if mnR>arr[i]: mnR = arr[i] i+=1 #print mnR,mnL if mnR<mnL: ans = 9999999999 i = 1 while i<n: if (s[i]=='L' and s[i-1]=='R') : k = abs(arr[i]-arr[i-1]) if ans>k: ans = k i+=1 print ans/2 else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { long long int n, x, i, j, c; cin >> n; long long int arrrr[n]; string box; vector<int> container; int vk = 0; cin >> box; for (i = 0; i < n; i++) { cin >> arrrr[i]; } for (i = 0; i < n; i++) { if (box[i] == 'R' && box[i + 1] == 'L') { c = (arrrr[i + 1] - arrrr[i]) / 2; container.push_back(c); } } if (container.size() == 0) { cout << "-1" << endl; } else { sort(container.begin(), container.end()); cout << container[0] << endl; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(raw_input()) s=raw_input() p=map(int,raw_input().split()) min_d=pow(10,10) for i in range(0,n-1,1): if(s[i]=='R' and s[i+1]=='L'): min_d=min(min_d,(p[i+1]-p[i])/2) if(min_d==pow(10,10)): print -1 else: print min_d
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; inline int in() { int res = 0; char c; int f = 1; while ((c = getchar()) < '0' || c > '9') if (c == '-') f = -1; while (c >= '0' && c <= '9') res = res * 10 + c - '0', c = getchar(); return res * f; } const int N = 100010, MOD = 1e9 + 7; int a[N]; int main() { int n = in(); string s; cin >> s; long long ans = 0x3f3f3f3f; int to_left = -1, to_right = -1; for (int i = 0; i < n; i++) { int x = in(); if (s[i] == 'L') { if (to_right != -1) { ans = min(ans, (long long)(x - to_right) / 2); } to_left = x; } else { to_right = x; } } if (ans == 0x3f3f3f3f) return 0 * puts("-1"); cout << ans << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class A699 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastReader in = new FastReader(); int n = in.nextInt(); String s = in.next(); int [] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); } int min = Integer.MAX_VALUE; for (int i = 0; i < n-1; i++) { if (s.charAt(i) == 'R' && s.charAt(i+1) == 'L') { min = Math.min(min, (arr[i+1] - arr[i]) / 2); } } if (min == Integer.MAX_VALUE) { System.out.println("-1"); }else{ System.out.println(min); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.*; public class Main { FastReader scn; PrintWriter out; String INPUT = ""; void solve() { int n = scn.nextInt(); int[] dir = new int[n]; String s = scn.next(); for (int i = 0; i < n; i++) { if(s.charAt(i) == 'L') { dir[i] = -1; } else { dir[i] = 1; } } int[] arr = scn.nextIntArray(n); int ans = -1, k = -1; for(int i = 0; i < n; i++) { if(dir[i] == 1) { k = arr[i]; } if(k != -1 && dir[i] == -1) { if(ans == -1) { ans = (arr[i] - k) / 2; } else { ans = Math.min(ans, (arr[i] - k) / 2); } } } out.println(ans); } void run() throws Exception { long time = System.currentTimeMillis(); boolean oj = System.getProperty("ONLINE_JUDGE") != null; out = new PrintWriter(System.out); scn = new FastReader(oj); solve(); out.flush(); if (!oj) { System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" })); } } public static void main(String[] args) throws Exception { new Main().run(); } class FastReader { InputStream is; public FastReader(boolean onlineJudge) { is = onlineJudge ? System.in : new ByteArrayInputStream(INPUT.getBytes()); } byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return (char) skip(); } String next() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nextLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while ((!isSpaceChar(b) || b == ' ')) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } char[] next(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } long nextLong() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } char[][] nextMatrix(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = next(m); return map; } int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[][] next2DInt(int n, int m) { int[][] arr = new int[n][]; for (int i = 0; i < n; i++) { arr[i] = nextIntArray(m); } return arr; } long[][] next2DLong(int n, int m) { long[][] arr = new long[n][]; for (int i = 0; i < n; i++) { arr[i] = nextLongArray(m); } return arr; } int[] shuffle(int[] arr) { Random r = new Random(); for (int i = 1, j; i < arr.length; i++) { j = r.nextInt(i); arr[i] = arr[i] ^ arr[j]; arr[j] = arr[i] ^ arr[j]; arr[i] = arr[i] ^ arr[j]; } return arr; } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long int n; cin >> n; string str; cin >> str; long long int arr[n]; long long int mini = INT_MAX; for (long long int i = 0; i < n; ++i) { cin >> arr[i]; if (i > 0 && str[i - 1] == 'R' && str[i] == 'L') { mini = min(mini, abs(arr[i] - arr[i - 1]) / 2); } } if (mini == INT_MAX) { cout << "-1\n"; } else { cout << mini; cout << '\n'; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
from sys import stdin,stdout,setrecursionlimit,maxint from math import ceil #setrecursionlimit(2*10**5) def listInput(): return map(long,stdin.readline().split()) def printBS(li): for i in xrange(len(li)-1): stdout.write("%d "%li[i]) stdout.write("%d\n"%li[-1]) n=input() sign=stdin.readline() li=listInput() r=0 mind=maxint l=sign.find("R") if l==-1: print -1 else: for i in xrange(l+1,len(li)): if sign[i]=="R": l=i if sign[i]=="L": mind=min(mind,li[i]-li[l]) if mind==maxint: print -1 else: print int(ceil(mind/2.0))
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, ans = 2000000000; string direction; cin >> n >> direction; vector<int> v(n); for (int i = 0; i < n; i++) cin >> v[i]; for (int i = 0; i < n; i++) { if (direction[i] == 'R' && direction[i + 1] == 'L') ans = min(ans, (v[i + 1] - v[i]) / 2); } if (ans == 2000000000) cout << -1; else cout << ans; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
count = int(raw_input()) dirs = raw_input() particles = map(int , raw_input().split()) min = -1 rl = dirs.find("RL",0) if rl == -1 : print '-1' else: min = particles[rl+1] - particles[rl] for i in range(rl+1 , count): rl = dirs.find("RL",i) if rl == -1 : break min = particles[rl+1] - particles[rl] if (min > particles[rl+1] - particles[rl]) else min print min / 2
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) d = raw_input() p = map(int, raw_input().split(' ')) MAXVAL = 100000000000 mind = MAXVAL for i in range(n-1): if d[i] == 'R' and d[i+1] == 'L': if (p[i+1]-p[i])/2 < mind: mind = (p[i+1]-p[i])/2 if mind != MAXVAL: print mind else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=input() l=[int(x) for x in input().split()] ans=[] for i in range(len(l)-1): if s[i]=='R' and s[i+1]=='L': ans.append(l[i+1]-l[i]) print(min(ans)//2 if ans else -1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n,ans = int(input()),10e12 sat = [i for i in input()] mat = list(map(int,input().split())) for i in range(n-1): if sat[i]== "R" and sat[i+1]=="L": ans = min(ans,(mat[i+1]-mat[i] + 1) // 2) print("-1" if ans==10e12 else ans)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class A { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner scan=new Scanner(System.in); int n=scan.nextInt(); String s=scan.next(); int a[]=new int[n]; int ans=Integer.MAX_VALUE; for(int i=0;i<n;i++) a[i]=scan.nextInt(); for(int ii=0;ii<n-1;ii++) { if(s.charAt(ii)=='R'&&s.charAt(ii+1)=='L') { if(ans>(a[ii+1]-a[ii])/2) ans=(a[ii+1]-a[ii])/2; } } if(ans!=Integer.MAX_VALUE) System.out.println(ans); else System.out.println(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n = 0, s = 1e9; cin >> n; char a[n]; int b[n]; cin >> a; for (int i = 0; i < n; i++) { cin >> b[i]; if (i > 0) { if (a[i - 1] == 'R' && a[i] == 'L') s = min(s, (b[i] - b[i - 1]) / 2); } } cout << ((s == 1e9) ? -1 : s); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> char s[222222]; int ans[222222]; int main() { int n, i, tmp, mark, min1; while (scanf("%d", &n) != EOF) { mark = 0; min1 = 999999999; scanf("%s", s); for (i = 0; i < n; i++) scanf("%d", &ans[i]); for (i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { mark = 1; tmp = ans[i + 1] - ans[i]; tmp /= 2; if (tmp < min1) min1 = tmp; } } if (mark == 1) printf("%d\n", min1); else printf("-1\n"); } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> char arr[290000]; int in[290000]; int main() { int a, b, c, d; scanf("%d", &a); getchar(); int i; gets(arr); int s; int len = strlen(arr); int p = 0; for (i = 0; i < a; i++) { scanf("%d", in + i); } int min = INT_MAX; for (i = 0; i < a; i++) { if (arr[i] == 'R' && arr[i + 1] == 'L') { int res = (in[i + 1] + in[i]) / 2; if (in[i + 1] - res < min) { min = in[i + 1] - res; } } } if (min == INT_MAX) { printf("-1"); } else printf("%d", min); }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n= int(input()) k = input() arr =[int(x) for x in input().split()] m=1000000001 for i in range(0,n-1): # print(len(m),len(n)) if k[i]=='R' and k[i+1]=='L': m=min(m,(arr[i+1]-arr[i])/2) # n+=k[i] # else: # m+=k[i] if m==1000000001: print(str(-1)) else: print(str(int(m)))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) moves = input() objects = input().split() objects = [int(el) for el in objects] def leftElIndex(i, n): return -1 if i - 1 < 0 else i - 1 def rightElIndex(i, n): return -1 if i + 1 >= n else i + 1 def collidesInSteps(i, j): if (j == -1 or moves[i] == moves[j] or moves[i] == "L" and moves[j] == "R"): return -1 distance = abs(objects[i] - objects[j]) return int(distance / 2) if distance % 2 == 0 else -1 collides = 0 for i in range(n): rightIndex = rightElIndex(i, n) rightCollides = collidesInSteps(i, rightIndex) if rightCollides != -1: collides = rightCollides if collides == 0 else min(rightCollides, collides) if collides == 0: print("-1") else: print(collides)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
# https://codeforces.com/contest/699/problem/A # # Author: eloyhz # Date: Sep/03/2020 # if __name__ == '__main__': n = int(input()) d = input() a = [int(x) for x in input().split()] min_t = 10 ** 10 i = 0 while i < n: i = d.find('R', i) if i == -1: break while i + 1 < n and d[i + 1] == 'R': i += 1 if i == n: break j = d.find('L', i + 1) if j == -1: break min_t = min(min_t, a[j] - a[i]) i = j + 1 if min_t == 10 ** 10: print(-1) else: print(min_t // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0)->sync_with_stdio(0); cin.exceptions(cin.failbit); long long n; cin >> n; string a; cin >> a; long long arr[n]; for (long long i = 0; i < (n); i++) cin >> arr[i]; long long ans = LLONG_MAX; bool c = true; for (long long i = 0; i < (n - 1); i++) { if (a[i] == 'R' && a[i + 1] == 'L') { ans = min(ans, (arr[i + 1] - arr[i]) / 2); c = false; } } if (c) cout << -1 << endl; else cout << ans << endl; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() x = input().split() mn = 2000000000 for i in range(len(x)): if i > 0 and s[i]=='L' and s[i-1]=='R': mn = min(mn, (int(x[i])-int(x[i-1]))/2) if mn == 2000000000: print("-1") else: print(int(mn))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
N = int(input()) directions = input() points = [int(x) for x in input().split()] answer = -1 for i in range(0, N-1): if directions[i]=='R' and directions[i+1]=='L': if answer==-1 or answer>(points[i+1]-points[i])//2: answer = (points[i+1]-points[i])//2 print (answer)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=input() a=list(map(int,input().split())) l,z=[],0 for i in range(n-1): if (s[i]=='R' and s[i+1]=='L'): l.append((a[i+1]-a[i])//2) z=-1 if z==0: print(-1) else: print(min(l))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input().split()[0]) LR = input() X = list(map(int, input().split())) if n == 1: print('-1') exit() L = [-1 for i in range(n)] for i, lr in reversed(list(enumerate(LR))): if lr == 'L': L[i] = X[i] else: L[i] = L[(i + 1) % n] mint = float('inf') for i, lr in enumerate(LR): if L[i] < 0: break if lr == 'R': t = L[i] - X[i] if mint > t: mint = t if mint == float('inf'): print('-1') else: print(mint // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; const int maxn = 200000 + 5; int main() { int n; cin >> n; string direc; cin >> direc; int pos[maxn]; for (int i = 0; i < n; i++) { cin >> pos[i]; } bool collision = false; int min_dis = INT_MAX; for (int i = 0; i < n - 1; i++) { if (direc[i] == 'R' && direc[i + 1] == 'L') { min_dis = min(min_dis, pos[i + 1] - pos[i]); collision = true; } } if (collision) { cout << min_dis / 2 << endl; } else { cout << -1 << endl; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def solve(): n = int(input()) movs = input() nums = [int(i) for i in input().split()] times = [] for i in range(len(movs)-1): if movs[i] == 'R' and movs[i+1] == 'L': times.append((nums[i+1] - nums[i])//2) if times: return min(times) return -1 print(solve())
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
_, str, list = input(), input(), input().split(' ') ans = 1234567890 for i in range(1, len(str)): if str[i] == 'L' and str[i-1] == 'R': ans = min(ans, (int(list[i]) - int(list[i-1])) / 2) if ans == 1234567890: print(-1) else: print(int(ans))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(0); int n; cin >> n; string s; cin >> s; int a, b; int result = -1; for (int i = 0; i < n; i++) { cin >> a; if (i > 0 && s[i - 1] == 'R' && s[i] == 'L') { int dist = (a - b) / 2; if (dist < result || result == -1) result = dist; } b = a; } cout << result << endl; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(raw_input()) s=raw_input() x=map(int,raw_input().split()) d=10**10 for i in range(len(s)-1) : if s[i]=='R' and s[i+1]=='L': d=min(d,(x[i+1]-x[i])/2) else: pass if d!=10**10: print d else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=str(input()) ip=list(map(int,input().split())) q=[1 for i in range(n)] op=[] for i in range(n): if s[i]=='L': q[i]=-q[i] for i in range(n-1): if q[i+1]-q[i]<0: op.append((ip[i+1]-ip[i])/abs(q[i+1]-q[i])) if len(op)==0: print(-1) else: print(int(min(op)))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class launch { public static void main(String args[]) { Scanner scan = new Scanner(System.in); int size = scan.nextInt(); String d = scan.next(); int[] nums = new int[size]; for (int i = 0; i < size; i++) { nums[i] = scan.nextInt(); } ArrayList<Integer> ind = new ArrayList<Integer>(); int counter = 0; for (int i = 0; i <= size - 2; i++) { if (d.substring(i, i + 2).equals("RL")) { ind.add(i); counter++; } } if (counter > 0) { ArrayList<Integer> vals = new ArrayList<Integer>(); for (int i = 0; i < ind.size(); i++) { vals.add(nums[ind.get(i) + 1] - nums[ind.get(i)]); } System.out.println((Collections.min(vals)) / 2); } else { System.out.println(-1); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
from sys import stdin n=int(stdin.readline().rstrip()) s=stdin.readline().rstrip() l=list(map(int,stdin.readline().split())) m=float('inf') p=0 for i in range(n-1): if s[i]=="R" and s[i+1]=="L": ans=(l[i+1]-l[i])//2 m=min(ans,m) p=1 if p==0: print(-1) else: print(m)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; //PrintWriter import java.math.*; //BigInteger, BigDecimal import java.util.*; //StringTokenizer, ArrayList public class R363_Div2_A { FastReader in; PrintWriter out; public static void main(String[] args) { new R363_Div2_A().run(); } void run() { in = new FastReader(System.in); out = new PrintWriter(System.out); solve(); out.close(); } void solve() { int n = in.nextInt(); String s = in.next(); int[] x = new int[n]; for (int i = 0; i < n; i++) x[i] = in.nextInt(); int min = Integer.MAX_VALUE; for (int i = 0; i < n-1; i++) { if (s.charAt(i) == 'R' && s.charAt(i+1) == 'L') min = Math.min(min, (x[i+1] - x[i]) / 2); } if (min == Integer.MAX_VALUE) min = -1; out.println(min); } //----------------------------------------------------- void runWithFiles() { in = new FastReader(new File("input.txt")); try { out = new PrintWriter(new File("output.txt")); } catch (FileNotFoundException e) { e.printStackTrace(); } solve(); out.close(); } class FastReader { BufferedReader br; StringTokenizer tokenizer; public FastReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public FastReader(File f) { try { br = new BufferedReader(new FileReader(f)); tokenizer = null; } catch (FileNotFoundException e) { e.printStackTrace(); } } private String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) try { tokenizer = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } return tokenizer.nextToken(); } public String nextLine() { try { return br.readLine(); } catch(Exception e) { throw(new RuntimeException()); } } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } BigInteger nextBigInteger() { return new BigInteger(next()); } BigDecimal nextBigDecimal() { return new BigDecimal(next()); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], x1, mi = 10000000000, k = 0; char c[n]; for (int i = 0; i < n; i++) cin >> c[i]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { if (c[i] == 'L' && k == 1) { if (a[i] - x1 < mi) mi = a[i] - x1; } else if (c[i] == 'R') { k = 1; x1 = a[i]; } } if (mi != 10000000000) cout << mi / 2; else cout << -1; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
from itertools import product from math import ceil, gcd, sqrt import string from decimal import Decimal def binary_table(string_with_all_characters, length_to_make): return [''.join(x) for x in product(string_with_all_characters, repeat=length_to_make)] def all_possible_substrings(string): return [int(string[i: j]) for i in range(len(string)) for j in range(i + 1, len(string) + 1)] def number_of_substrings(length): return int(length * (length + 1) / 2) def is_prime(num): for i in range(2, num): if num / i == int(num / i) and num != i: return False return True num_of_particles = int(input()) movement_directions = input() array = list(map(int, input().split())) num = 0 cond = False all_ = set() for i in range(len(movement_directions)): x = movement_directions[i: i + 2] #print(x) if x == 'RL': xd = array[i: i + 2] all_.add(int(abs(xd[0] - xd[1]) / 2)) if all_: print(min(all_)) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() arr = list(map(int, input().split())) mn = float('inf') for i in range(n-1): if s[i] == 'R' and s[i+1] == 'L': mn = min(mn, arr[i+1] - arr[i]) if mn == 2: break if mn == float('inf'): print(-1) else: print(mn // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) di = input() pos = list(map(int,input().split())) mintime = 100000000000 for i in range(n-1): if di[i]=="R" and di[i+1]=="L": time = int((pos[i+1]-pos[i])/2) if time<mintime: mintime = time if mintime==100000000000: print(-1) else: print(mintime)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(raw_input()) list1=raw_input() list2=map(int,raw_input().split(" ")) times=[] start=0 ntimes=list1.count("RL") if ntimes==0: print -1 else: for i in xrange(0,ntimes): index=list1.find("RL",start) times.append((list2[index+1]-list2[index])/2) start=index+2 print sorted(times)[0]
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import re Input=lambda:map(int,input().split()) n = int(input()) s = input() l = list(Input()) s = re.sub("RL","??",s) i = 0 MIN = float('inf') while i < n: if s[i] == '?': MIN = min(MIN,(l[i+1]-l[i])//2) i+=2 else: i+=1 print(MIN if MIN != float('inf') else -1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
h= int(input()) s2 = input() l1 = list(map(int, input().strip().split())) res = 999999999999 for i in range(0, len(s2)-1): if s2[i]=="R" and s2[i+1]=="L": res = min(res, (l1[i+1]-l1[ i])//2) if res == 999999999999: print(-1) else: print(res)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> char dir[200005]; int pos[200005]; int main() { int N; int min = 1999999999; scanf("%d", &N); scanf("%s", dir); for (int i = 0; i < N; i++) { scanf("%d", &pos[i]); } int t; for (int i = 1; i < N; i++) { if (dir[i - 1] == 'R' && dir[i] == 'L') { t = (pos[i] - pos[i - 1]) / 2; if (min > t) { min = t; } } } if (min == 1999999999) { printf("-1\n"); } else printf("%d\n", min); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; import java.io.*; public class Main{ Scanner sc; public static void main(String[] args) throws IOException{ new Main().run(); } public void run() throws IOException{ sc = new Scanner(System.in); int n = sc.nextInt(); String[] m = sc.next().split(""); int[] num = new int[n]; int ind1 = -1; int ind2 = -1; int min = Integer.MAX_VALUE; for (int i = 0; i < n; ++i){ int j = sc.nextInt(); if (m[i].equals("R") && i < n - 1){ ind1 = i; } num[i] = j; if (m[i].equals("L") && ind1 != -1){ ind2 = i; } if (ind1 != -1 && ind2 != -1 && ind1 < ind2 && (num[ind2] - num[ind1]) / 2 < min){ min = (num[ind2] - num[ind1]) / 2; } } if (ind1 == -1 || ind2 == -1){ System.out.println(-1); } else { System.out.println(min); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) d = input() c = list(map(int, input().split())) anw = 1e10 for i in range(n-1): if d[i] == 'R' and d[i+1] == 'L': anw = min(anw, (c[i+1]-c[i])//2) if anw >= 1e10: print(-1) else: print(anw)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashSet; import java.util.InputMismatchException; import java.util.LinkedList; import java.util.List; import java.util.Queue; import java.util.Set; public class simple implements Runnable { public void run() { InputReader input = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int n = input.nextInt(); String s= input.next(); int[] arr= new int[n]; for(int i=0;i<n;i++) arr[i] =input.nextInt(); int ans =-1; for(int i=0;i<n-1;i++) { if(s.charAt(i)=='R' && s.charAt(i+1)=='L') { if(ans==-1) { ans = Math.abs((arr[i]-arr[i+1]))/2; } else ans = Math.min(ans, Math.abs((arr[i]-arr[i+1]))/2); } } System.out.println(ans); } class Graph{ private final int v; private List<List<Integer>> adj; Graph(int v){ this.v = v; adj = new ArrayList<>(v); for(int i=0;i<v;i++){ adj.add(new LinkedList<>()); } } private void addEdge(int a,int b){ adj.get(a).add(b); } private boolean isCyclic() { boolean[] visited = new boolean[v]; boolean[] recStack = new boolean[v]; for (int i = 0; i < v; i++) if (isCyclicUtil(i, visited, recStack)) return true; return false; } private boolean isCyclicUtil(int i, boolean[] visited, boolean[] recStack) { if (recStack[i]) return true; if (visited[i]) return false; visited[i] = true; recStack[i] = true; List<Integer> children = adj.get(i); for (Integer c: children) if (isCyclicUtil(c, visited, recStack)) return true; recStack[i] = false; return false; } } public static void sortbyColumn(int arr[][], int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(int[] o1, int[] o2){ return(Integer.valueOf(o1[col]).compareTo(o2[col])); } }); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static class DJSet { public int[] upper; public DJSet(int n) { upper = new int[n]; Arrays.fill(upper, -1); } public int root(int x) { return upper[x] < 0 ? x : (upper[x] = root(upper[x])); } public boolean equiv(int x, int y) { return root(x) == root(y); } public boolean union(int x, int y) { x = root(x); y = root(y); if (x != y) { if (upper[y] < upper[x]) { int d = x; x = y; y = d; } upper[x] += upper[y]; upper[y] = x; } return x == y; } } public static int[] radixSort(int[] f) { int[] to = new int[f.length]; { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]&0xffff)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]&0xffff]++] = f[i]; int[] d = f; f = to;to = d; } { int[] b = new int[65537]; for(int i = 0;i < f.length;i++)b[1+(f[i]>>>16)]++; for(int i = 1;i <= 65536;i++)b[i]+=b[i-1]; for(int i = 0;i < f.length;i++)to[b[f[i]>>>16]++] = f[i]; int[] d = f; f = to;to = d; } return f; } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new simple(),"TaskA",1<<26).start(); } } class Pair { int x; int y; // Constructor public Pair(int x, int y) { this.x = x; this.y = y; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { long long n; string s; cin >> n >> s; vector<int> v; for (int i = 0; i < n; i++) { int a; cin >> a; v.push_back(a); } long long res = 19999999999; for (int i = 0; i < s.size() - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { long long r = (v[i + 1] - v[i]) / 2; if (r < res) res = r; } } if (res == 19999999999) cout << "-1" << endl; else cout << res << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; string linea; scanf("%d", &n); cin >> linea; vector<int> posicion; for (int i = 0; i < n; i++) { int x; scanf("%d", &x); posicion.push_back(x); } int distanciaMinima = 1000000001; for (int i = 1; i < n; i++) { if (linea[i] == 'L' && linea[i - 1] == 'R') { distanciaMinima = min(distanciaMinima, posicion[i] - posicion[i - 1]); } } if (distanciaMinima == 1000000001) { printf("-1\n"); return 0; } if (distanciaMinima % 2 == 0) { printf("%d\n", distanciaMinima / 2); } else { printf("%d\n", distanciaMinima / 2 + 1); } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Test { //==========================Solution============================// public static void main(String[] args) { FastScanner in = new FastScanner(); Scanner input = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = input.nextInt(); int[] arr = new int[n]; String s = input.next(); int v = 0; int b = 0; int microsecond = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { arr[i] = input.nextInt(); } if (s.length() != 2) { for (int i = 0; i < s.length() - 1; i++) { char c = s.charAt(i); char f = s.charAt(i + 1); String s1 = c + "" + f; if (s1.equals("RL")) { v++; } } } else { char c = s.charAt(0); char f = s.charAt(1); String s1 = c + "" + f; if (s1.equals("RL")) { v++; } } if (v == 0) { out.println(-1); } else if (s.length() != 2) { for (int i = 0; i < s.length() - 1; i++) { char c = s.charAt(i); char f = s.charAt(i + 1); if (c == 'R' && f == 'L') { if (microsecond > (arr[i + 1] - arr[i]) / 2) { microsecond = (arr[i + 1] - arr[i]) / 2; } } } out.println(microsecond); } else { microsecond = (arr[1] - arr[0]) / 2; out.println(microsecond); } out.close(); } //==============================================================// static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } byte nextByte() { return Byte.parseByte(next()); } short nextShort() { return Short.parseShort(next()); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return java.lang.Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def main(): n = int(raw_input()) s = raw_input().strip() res = [int(k) for k in raw_input().strip().split(' ')] m = -1 for k in range(1, n): if s[k - 1] == 'R' and s[k] == 'L': if m != -1: m = min(m, (res[k] - res[k - 1]) / 2) else: m = (res[k] - res[k - 1]) / 2 print m if __name__ == "__main__": main()
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class ProblemSolving { // minimum = Math.abs(Integer.parseInt(Character.toString(directions.charAt(i)))-Integer.parseInt(Character.toString(directions.charAt(i+1)))); public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); String directions = scan.next(); int[] coordinates = new int[n]; int minimum = -1; int flag = 0; for(int i=0;i<n;i++){ coordinates[i] = scan.nextInt(); } for(int i=0;i<n-1;i++){ if(directions.charAt(i)=='R'&&directions.charAt(i+1)=='L'){ if(flag == 0){ minimum = Math.abs(coordinates[i] - coordinates[i+1]); flag = 1; } if(minimum>Math.abs(coordinates[i] - coordinates[i+1])){ minimum = Math.abs(coordinates[i] - coordinates[i+1]); } } } if(minimum == -1){ System.out.println(minimum); }else{ System.out.println(minimum/2); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) dir = input() l = [int(i) for i in input().split()] right = [] left = [] for i in range(n): if dir[i] == "R": right.append(l[i]) else: left.append(l[i]) if right == [] or left ==[]: print(-1) else: maximum_left = max(left) minimum_right = min(right) if maximum_left < minimum_right: print(-1) else: mini = 9999999999 # if mini for i in range(len(l)-1): if dir[i] == "R" and dir[i+1] == "L": t = (l[i+1]-l[i])//2 if t< mini: mini = t print(mini)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class A{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int N = sc.nextInt(); String s = sc.next(); int ans = -1; int prev = sc.nextInt(); for(int i = 1; i < N; i++){ int next = sc.nextInt(); if(s.charAt(i)=='L' && s.charAt(i-1)=='R'){ int diff = next - prev; if(ans == -1 || ans > diff) ans = diff; } prev = next; } if(ans > 0) System.out.println(ans/2); else System.out.println(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
"""609C""" # import math def main(): n = int(input()) string = str(input()) a = list(map(int,input().split())) mx = a[n-1]+100 for i in range(len(string)-1): if string[i]=="R" and string[i+1]=="L": mx = min((a[i+1]-a[i])//2,mx) if mx == a[n-1]+100: print("-1") else: print(mx) return main() # t= int(input()) # while t: # main() # t-=1
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author tarek */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); ALaunchOfCollider solver = new ALaunchOfCollider(); solver.solve(1, in, out); out.close(); } static class ALaunchOfCollider { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); String s = in.next(); int[] a = new int[n]; for (int i = 0; i < a.length; i++) { a[i] = in.nextInt(); } int sum = Integer.MAX_VALUE; Arrays.sort(a); int point = 0; int count = 0; for (int i = 0; i < a.length - 1; i++) { if ((s.charAt(i) == 'R' && s.charAt(i + 1) == 'R') || (s.charAt(i) == 'L' && s.charAt(i + 1) == 'L') || (s.charAt(i) == 'L' && s.charAt(i + 1) == 'R')) { point = -1; } else { sum = Math.min((a[i + 1] - a[i]) / 2, sum); count++; } } if (count == 0) { out.println("-1"); } else { out.println(sum); } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void println(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return nextString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
from sys import stdin found = 0 ans= 1000000000**3 n = int(stdin.readline()) a = stdin.readline().strip() b = map(int,stdin.readline().split()) st = 0 co=0 while True: if 'RL' in a[st:]: x = a.index('RL',st) cur = b[x+1]-b[x] if cur < ans: ans = cur st = x+2 else: break ans = ans/2 if ans > 10**20: ans = -1 print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
var n=parseInt(readline()); var d=readline(); d += "E"; var pos=readline().split(' '); var mn = 1000000000; function go(el, i, a){ if(d[i] == 'R' && d[i+1] == 'L'){ mn = Math.min(mn, (a[i+1] - a[i])/2); }; }; pos.forEach(go); if(mn != 1000000000){ print(mn); } else { print(-1); };
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) s = raw_input() x = map(int, raw_input().split(' ')) ans = -1 for i in range(1, n): if s[i - 1] == 'R' and s[i] == 'L': if ans == -1: ans = (x[i] - x[i - 1]) / 2 else: ans = min(ans, (x[i] - x[i - 1]) / 2) print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, counter = 0; cin >> n; string s; int ans = INT_MAX; int flag = 0; int a[n + 1], i, j; cin >> s; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { ans = min(ans, (a[i + 1] - a[i]) / 2); flag = 1; } } if (flag == 0) cout << "-1"; else cout << ans; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() l = list(map(int, input().split())) ans = 10 ** 18 last_r = -1 for i in range(len(l)): if s[i] == 'R': last_r = i else: if last_r != -1: ans = min(ans, (l[i] - l[last_r]) // 2) if ans == 10 ** 18: print(-1) else: print(ans)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
r=lambda:map(int,raw_input().split()) n=input() s=raw_input() x=r() m=x[-1]-x[0] p=0 for i in range(s.count('RL')): c = s.index('RL', p) m = min(m,(x[c + 1] - x[c])/2) p=c+1 if not s.count('RL'): print -1 else: print m
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class LaunchCollider { public static void main(String[] args) { Scanner input = new Scanner(System.in) ; int n = input.nextInt() ; String s = input.next().trim(); long parts [] = new long[n] ; for(int i = 0 ; i < n ; i++){ parts[i] = input.nextLong(); } input.close(); int col[] = new int [n - 1] ; for(int i = 0 ; i < n - 1 ; i++){ if(s.charAt(i)=='R' && s.charAt(i + 1) == 'L'){ long temp1 = parts[i + 1] - parts[i]; temp1 /= 2 ; col[i] =(int)temp1 ; } } int big_integer = (int)Math.pow(2, 32) - 1 ; int min = big_integer; for(int i = 0 ; i < n - 1 ;i++){ if(col[i] != 0 && min > col[i]){ min = col[i] ; } } System.out.println(min == big_integer ? -1 : min); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() s = raw_input() t = map(int, raw_input().split()) ans = -1 for i in range(0, len(s)-1): if s[i:i+2] == "RL": v = (t[i+1] - t[i]) /2 ans = min(ans, v) if ans != -1 else v print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def readInt(): return int(raw_input()) def readList(): return map(int, raw_input().split(' ')) n = readInt() a = list(raw_input()) b = readList() m = -1 for i in xrange(n-1): if a[i] == 'R' and a[i+1] == 'L': j = (b[i+1] - b[i] + 1) / 2 if j < m or m == -1: m = j print m
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int n; string s; int arr[2000002]; bool ok; int ans = INT_MAX, last, cur; int main() { cin >> n; cin >> s; cin >> last; for (int i = 1; i < n; i++) { cin >> cur; if (s[i] == 'L' and s[i - 1] == 'R') { ans = min(ans, (cur - last) / 2); ok = 1; } last = cur; } if (ok) cout << ans << endl; else cout << -1 << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
from sys import stdin n =int(input()) str = stdin.readline() arr = list(map(int,stdin.readline().split())) r = neg = -1 p = 0 for i in range(n-1): if(str[i] == 'R' and str[i+1] == 'L'): r = int(( arr[i+1] - arr[i]) / 2) if(p == 0 or p > r): p = r if(r == -1): print("-1") else: print(p)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class Launch_of_Collider { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); String move = in.next(); int max = Integer.MAX_VALUE; int k = -1; int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = in.nextInt(); } int min = max(arr); for (int j = 0; j < n - 1; j++) { if (move.charAt(j) == 'R' && move.charAt(j + 1) == 'L' && arr[j] < arr[j + 1]) { k = (int) Math.ceil((arr[j + 1] - arr[j]) / 2); if (k < max) { max = k; } } } if (max < min) { System.out.println(max); System.exit(0); } System.out.println(-1); } public static int max(int[] arr) { int max = arr[0]; for (int i = 1; i < arr.length; i++) { if (arr[i] > max) { max = arr[i]; } } return max; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class RR1 { public static void main(String... xxx) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); sc.nextLine(); String str = sc.nextLine(); int[] ar = new int[n]; for (int i = 0; i < n; i++) { ar[i] = sc.nextInt(); } int min = Integer.MAX_VALUE; for (int i = 1; i < n; i++) { if (str.charAt(i-1) == 'R' && str.charAt(i) == 'L' && ar[i] - ar[i-1] < min) { min = ar[i] - ar[i-1]; } } if(min != Integer.MAX_VALUE)System.out.println(min/2); else System.out.println(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; import java.util.Arrays; import java.util.*; import java.math.*; import java.io.*; public class Main { public static void main ( String args[] ) { Scanner s = new Scanner(System.in); int n = s.nextInt(); int a[]=new int[n]; int ans=Integer.MAX_VALUE; int ansa=Integer.MAX_VALUE; String st=s.next(); for(int i=0;i<n;i++){ a[i]=s.nextInt(); } for(int i=0;i<n-1;i++){ if(st.charAt(i)=='R' && st.charAt(i+1)=='L'){ int x=(a[i+1]-a[i])/2; if(x<ans){ ans=x; } else continue; } } if(ans<ansa){ System.out.print(ans); } else System.out.print(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); char a[n]; long long b[n]; scanf("%s", a); for (int i = 0; i < n; i++) { scanf("%lld", &b[i]); } long long min = 10000000000; for (int i = 0; i < n; i++) { if (a[i] == 'R' && a[i + 1] == 'L') { int temp = b[i + 1] - b[i]; if (temp < min) { min = temp; } } } if (min == 10000000000) { printf("-1"); } else { printf("%lld", min / 2); } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import sys input = sys.stdin.readline() #input = "3" num_elements = int(input) line2 = sys.stdin.readline() # line2 = "RLR" line3 = sys.stdin.readline() #line3 = "40 50 60" line3 = line3.split(' ') distance = []; for i in range(0, len(line2)-1): if line2[i:i+2] == 'RL': distance.append((int(line3[i])+int(line3[i+1]))/2-int(line3[i])) if len(distance) == 0: print(-1) else: print(int(min(distance)))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class Seasion7 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); String str = in.next(); int[] arr = new int[n]; int ans = 0; for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); } for (int i = 0; i < n - 1; i++) { if(str.charAt(i) == 'R' && str.charAt(i+1) == 'L') { if(ans == 0) ans = ((arr[i]+arr[i+1])/2) - arr[i]; else if((((arr[i]+arr[i+1])/2) - arr[i]) < ans) ans = ((arr[i]+arr[i+1])/2) - arr[i]; } } if(ans != 0) System.out.println(ans); else System.out.println("-1"); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; inline void pisz(int n) { printf("%d\n", n); } const int fx[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; const int fxx[8][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1}}; template <typename T, typename TT> ostream& operator<<(ostream& s, pair<T, TT> t) { return s << "(" << t.first << "," << t.second << ")"; } template <typename T> ostream& operator<<(ostream& s, vector<T> t) { for (int i = 0; i < ((int)((t).size())); i++) s << t[i] << " "; return s; } vector<int> partL; vector<int> partR; vector<pair<int, int> > partAll; int main(void) { int n; cin >> n; string mov; cin >> mov; for (int i = 0; i < (int)mov.size(); i++) { int temp; cin >> temp; if (mov[i] == 'L') { partAll.push_back(make_pair(temp, 1)); } else { partAll.push_back(make_pair(temp, 2)); } } int sizeAll = (int)partAll.size(); int minDist = 0x3F3F3F3F; for (int i = 0; i < sizeAll - 1; i++) { if (partAll[i].second == 2 && partAll[i + 1].second == 1) minDist = min(minDist, partAll[i + 1].first - partAll[i].first); } if (minDist != 0x3F3F3F3F) cout << minDist / 2 << endl; else cout << -1 << endl; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Scanner; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA699 solver = new TaskA699(); solver.solve(1, in, out); out.close(); } static class TaskA699 { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); String moves = in.next(); int nums[] = CPUtils.readIntArray(n, in); if (!moves.contains("RL")) { out.print(-1); return; } int min = Integer.MAX_VALUE; for (int i = 0; i < n - 1; i++) { if (moves.substring(i, i + 2).equals("RL") && (Math.abs(nums[i] - nums[i + 1]) % 2 == 0)) { min = Math.min(min, (Math.abs(nums[i] - nums[i + 1]) / 2)); } } out.print(min); } } static class CPUtils { public static int[] readIntArray(int size, Scanner in) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = in.nextInt(); } return array; } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) symbol=input() pos=list(map(int,input().rsplit())) min=2*10**9 cn=0 for i in range(0,n-1): if(symbol[i]=="R" and symbol[i+1]=="L"): _=abs(pos[i]-pos[i+1]) cn+=1 if(_<min): min=_ if(cn==0): print(-1) else: print(int(min/2))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.*; import java.text.*; import java.math.*; import java.util.regex.*; import java.io.IOException; import java.nio.file.Files; import java.nio.file.Paths; public class Main { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[256]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String args[])throws IOException{ Scanner in = new Scanner(System.in); int n = in.nextInt(); String temp = in.nextLine(); String s = in.nextLine(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.nextInt(); int ans=Integer.MAX_VALUE; int r=-1; for(int i=0;i<n;i++){ if(s.charAt(i)=='R') r=a[i]; if(s.charAt(i)=='L' && r!=-1){ if(a[i]-r<ans) ans=a[i]-r; } } if(ans!=Integer.MAX_VALUE) System.out.println(ans/2); else System.out.println(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> const int d4x[4] = {-1, 0, 1, 0}, d4y[4] = {0, 1, 0, -1}; const int d8x[8] = {-1, -1, -1, 0, 1, 1, 1, 0}, d8y[8] = {-1, 0, 1, 1, 1, 0, -1, -1}; using namespace std; int main() { int n; string s{}; cin >> n >> s; vector<int> v{}; for (int i{}; i < n; i++) { int a; cin >> a; v.push_back(a); } int mindist = -1; for (int i{1}; i < s.length(); i++) { if (s[i] == 'L' and s[i - 1] == 'R') { if (mindist == -1 or v[i] - v[i - 1] < mindist) { mindist = v[i] - v[i - 1]; } } } if (mindist == -1) { cout << -1 << '\n'; } else { cout << mindist / 2; } }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
N=int(input()) S=list(input()) C=list(map(int,input().split())) an = None lastR = None for i,q in enumerate(S): if q == 'R': lastR = C[i] else: if lastR != None: if an == None: an = C[i] - lastR else: an = min(an, C[i] - lastR) if an != None: print(an//2) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> const int MAX_N = 10001; using namespace std; int main() { int n; int a[200001]; int b[200001]; int time[200001]; while (cin >> n) { getchar(); for (int i = 0; i < n; i++) { scanf("%c", &a[i]); } for (int i = 0; i < n; i++) { scanf("%d", &b[i]); } int t = 0; int k; if (a[0] == 'L') { for (int i = 1; i < n - 1; i++) { if (a[i] == 'R' && a[i + 1] == 'L') { t = 1; break; } } } else { for (int i = 1; i < n; i++) { if (a[i] == 'L') { t = 1; break; } } } if (t) { k = 0; for (int i = 1; i < n; i++) { if (a[i] == 'L' && a[i - 1] == 'R') time[k++] = (b[i] - b[i - 1]) / 2; } sort(time, time + k); cout << time[0] << endl; } else cout << -1 << endl; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int T, n, k, mn, p[200005]; map<int, long long int> mp1, mp2; set<int> st; string str, str1; vector<int> ot; int main() { while (cin >> n) { mn = 2000000000; cin >> str; for (int u = 0; u < n; ++u) cin >> p[u]; for (int i = 0; i < str.size() - 1; ++i) if (str[i] == 'R' && str[i + 1] == 'L') mn = min(mn, abs(p[i + 1] - p[i]) / 2); if (mn == 2000000000) cout << "-1\n"; else cout << mn << endl; } }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) dir = input() pos = list(map(int, input().split(" "))) c = 1000000000 count = 0 for i in range(n-1): if dir[i]=="R" and dir[i+1]=="L": x = (pos[i+1]-pos[i])//2 count+=1 if x<c: c=x else: pass else: pass if count>=1: print(c) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; char arr_dir[200001]; long long arr_x[200001]; int main() { std::ios_base::sync_with_stdio(0); long long n; cin >> n; for (long long i = 0; i < n; i++) { cin >> arr_dir[i]; } for (long long i = 0; i < n; i++) { cin >> arr_x[i]; } long long ans = 1000000000; for (long long i = 0; i < n - 1; i++) { if (arr_dir[i] == 'R' && arr_dir[i + 1] == 'L') { ans = min(ans, (arr_x[i + 1] - arr_x[i]) / 2); } } if (ans == 1000000000) cout << -1; else cout << ans; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
# Name : Sachdev Hitesh # College : GLSICA rg = int(input()) user = input() a = list(map(int,input().split())) ans = [];flag=False for i in range(rg-1): if user[i]=='R' and user[i+1]=='L': b = a[i+1]-a[i] ans.append(b) flag = True if flag: print(int(min(ans)/2)) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import math n = input() direc = raw_input() cord = list(map(int,raw_input().split())) minC = 9999999999 for i in range (n-1): if direc[i]=='R' and direc[i+1]=='L': col = (cord[i+1]-cord[i])/2 if col<minC: minC = col if minC == 9999999999: print -1 else: print int(minC)
PYTHON