Search is not available for this dataset
name
stringlengths 2
112
| description
stringlengths 29
13k
| source
int64 1
7
| difficulty
int64 0
25
| solution
stringlengths 7
983k
| language
stringclasses 4
values |
---|---|---|---|---|---|
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.StringTokenizer;
public class Main {
static class InputReader {
public BufferedReader br;
public StringTokenizer st;
// String input = "5" + "\n" + "1 1 0 0 1";
String input = "4" + "\n"
+ "RLRL" + "\n"
+ "2 4 6 10";
InputStream is = new ByteArrayInputStream( input.getBytes() );
public InputReader() {
br = new BufferedReader(new InputStreamReader(is));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws Exception {
System.out.println(contest());
}
public static int contest() throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int answer = 0;
String buffern = br.readLine();
int n = Integer.parseInt(buffern);
String direction = br.readLine();
String particles = br.readLine();
String[] directionArray = new String[n];
directionArray = direction.split("");
String[] particlesArray = new String[particles.length()];
particlesArray = particles.split(" ");
int[] particle = new int[particlesArray.length];
for(int i = 0; i<n; i++){
particle[i] = Integer.parseInt(particlesArray[i]);
}
int index = 0;
int max = 0;
for(int i =0; i<n; i++){
if(max<particle[i]){
max = particle[i];
}
}
int min = max+1;
boolean flag = false;
for(int i = 0; i<n-1; i++){
if(directionArray[i+1].equals("R") && directionArray[i+2].equals("L") ){
if(min>(particle[i+1]-particle[i])){
min = (particle[i+1]-particle[i]);
flag = true;
}
}
}
if(flag){
answer = min/2;
}
else{
answer = -1;
}
return answer;
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
public class A699 {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
int n = in.nextInt();
String str = in.next();
int[] arr = new int[n];
for (int i = 0 ; i < n ; i++){
arr[i] = in.nextInt();
}
int min = Integer.MAX_VALUE;
boolean flag = false;
for (int i = 0 ; i < n-1 ; i++){
if(str.charAt(i)=='R' && str.charAt(i+1)=='L'){
int i1 = (arr[i + 1] - arr[i]) / 2;
if ( min > i1) min = i1;
flag = true;
}
}
if (flag)System.out.println(min);
else System.out.println("-1");
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
public class LaunchOfCollider {
public static void main(String... args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
String firstLine = scanner.next();
scanner.nextLine();
String secLine = scanner.nextLine();
String[] split1 = firstLine.split("|");
String[] split2 = secLine.split(" ");
String first = split1[0];
int min = 2000000000;
for (int i = 1; i < n; i++) {
String sec = split1[i];
if (first.equals("R") && sec.equals("L")) {
min = Math.min(min, (Integer.parseInt(split2[i]) - Integer.parseInt(split2[i - 1])) / 2);
}
first = sec;
}
if (min == 2000000000)
System.out.println("-1");
else
System.out.println(min);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class test {
public static void main(String[] args) throws IOException
{
Scanner scan = new Scanner((System.in));
int n = scan.nextInt();
String s = scan.next();
int[] arr = new int[n];
for(int i=0;i<n;i++)arr[i] = scan.nextInt();
int count = 0;
int min = Integer.MAX_VALUE;
for(int i=0;i<n-1;i++){
if(s.charAt(i) == 'R' && s.charAt(i+1) == 'L'){
count++;
min = Math.min(min, Math.abs(arr[i]-arr[i+1])/2);
}
}
if(count>0)System.out.println(min);
else System.out.println(-1);
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException {
br = new BufferedReader(new FileReader(s));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public String nextLine() throws IOException {return br.readLine();}
public long nextLong() throws IOException {return Long.parseLong(next());}
public double nextDouble() throws IOException {return Double.parseDouble(next());}
public boolean ready() throws IOException {return br.ready();}
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String arg[]) throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str = br.readLine();
int n = Integer.parseInt(str);
str = br.readLine();
char ch[] = str.toCharArray();
int min = Integer.MAX_VALUE;
str = br.readLine();
String strs[] = str.trim().split(" ");
int n1=Integer.parseInt(strs[0]);
char s1=ch[0];
for(int i=1;i<n;i++)
{
int n2=Integer.parseInt(strs[i]);
char s2=ch[i];
if((s1=='R' && s2=='L'))
{
min=Math.min(min,(n2-n1)/2);
}
n1=n2;
s1=s2;
}
if(min==Integer.MAX_VALUE)
System.out.println("-1");
else
System.out.println(min);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, cou = -1;
long long int sum = 10000000000;
cin >> n;
long long int array[n];
char array1[n];
for (int i = 0; i < n; i++) cin >> array1[i];
for (int i = 0; i < n; i++) cin >> array[i];
for (int i = 0; i < n - 1; i++) {
if (array1[i] == 'R' && array1[i + 1] == 'L') {
sum = min(sum, (array[i + 1] - array[i]));
cou = 0;
}
}
if (cou == -1)
cout << cou;
else
cout << (sum / 2);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
direction = input()
array = list(map(int, input().split()))
count = direction.count('RL')
if count == 0:
print(-1)
exit(0)
else:
first = direction.index('RL')
dist = array[first + 1] - array[first]
while count > 1:
first += direction[first + 1:].index('RL') + 1
if array[first + 1] - array[first] < dist:
dist = array[first + 1] - array[first]
count -= 1
print(dist // 2) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
public class A699 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
String directions = scan.next();
int min = Integer.MAX_VALUE;
int right = -1;
boolean found = false;
for (int i = 0; i < n; i++) {
int cur = scan.nextInt();
if (directions.charAt(i) == 'L') {
if (right != -1) {
if (min > cur - right) {
min = cur - right;
found = true;
}
}
}
else {
right = cur;
}
}
System.out.print(found ? min / 2 : "-1");
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | def pro():
n = int(input())
s = input()
a = list(map(int, input().split()))
cnt = 1000000001
for i in range(n-1):
if s[i]+s[i+1] == 'RL':
cnt = min(cnt, (a[i+1] - a[i]) // 2)
if cnt == 1000000001:
print(-1)
else:
print(cnt)
pro()
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
public class main {
public static void main(String args[]){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
sc.nextLine();
String str=sc.nextLine();
int pos[]=new int[n];
for(int i=0;i<n;i++){
pos[i]=sc.nextInt();
}
int ans=Integer.MAX_VALUE;
for(int i=0;i<n-1;i++){
if(str.charAt(i)=='R' && str.charAt(i+1)=='L'){
if((pos[i+1]-pos[i])/2<ans)
ans=(pos[i+1]-pos[i])/2;
}
}
if(ans==Integer.MAX_VALUE)
ans=-1;
System.out.println(ans);
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
long long INV2 = 500000004;
long long INV6 = 166666668;
long long power(long long a, long long b, long long c) {
long long x = 1, y = a;
while (b > 0) {
if (b & 1) x = (x * y) % c;
y = (y * y) % c;
b /= 2;
}
return x % c;
}
int dx[] = {0, -1, 0, 1};
int dy[] = {-1, 0, 1, 0};
vector<long long> le, ri;
long long solve(long long val) {
long long lo = 0, hi = ri.size();
long long ans = -1;
while (lo < hi) {
long long mid = (lo + hi) / 2;
if (ri[mid] < val) {
ans = ri[mid];
lo = mid + 1;
} else {
hi = mid;
}
}
return ans;
}
int main() {
int n;
scanf("%d", &n);
string s;
cin >> s;
long long num;
for (int i = 0; i < n; ++i) {
scanf("%lld", &num);
if (s[i] == 'L')
le.push_back(num);
else
ri.push_back(num);
}
long long ans = 1e16;
for (int i = 0; i < le.size(); ++i) {
long long ele = le[i];
long long val = solve(ele);
if (val != -1) {
long long dekh = (ele - val) / 2;
ans = min(ans, 1LL * dekh);
}
}
if (ans < 1e16)
printf("%lld\n", ans);
else {
printf("-1\n");
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long h = 1e9;
string st;
cin >> st;
long long arr[n];
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
for (int j = 0; j < n - 1; j++) {
if (st[j] == 'R' && st[j + 1] == 'L') {
h = min(h, (arr[j + 1] - arr[j]) / 2);
}
}
if (h == 1e9) {
cout << "-1";
} else {
cout << h;
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(raw_input())
s = raw_input()
cc = [int(x) for x in raw_input().split()]
curc = None
curi = -1
mn = 1e10
i = 0
for c in s:
if c == 'R':
curi = i
if curi != -1 and c == 'L':
mn = min(mn, (cc[i] - cc[curi]) / 2)
i += 1
if mn == 1e10:
print -1
else:
print mn | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int tot, Link[101000];
struct node {
int v, next;
} edge[201000];
void add(int x, int y) {
tot++;
edge[tot].v = y;
edge[tot].next = Link[x];
Link[x] = tot;
}
char st[210000];
int a[210000];
int main() {
int n;
scanf("%d", &n);
scanf(" %s", st + 1);
int ans = -1;
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 2; i <= n; i++)
if (st[i] != st[i - 1])
if (st[i - 1] == 'R' && st[i] == 'L') {
if (ans < 0)
ans = (a[i] + a[i - 1]) / 2 - a[i - 1];
else
ans = min(ans, (a[i] + a[i - 1]) / 2 - a[i - 1]);
}
printf("%d\n", ans);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
dir = input()
seq = list(map(int, input().split()))
min = 1000000000
for i in range(1, n):
if dir[i-1] == "R" and dir[i] == "L":
if (seq[i] - seq[i-1])/2 < min:
min = (seq[i] - seq[i-1])/2
if min == 1000000000:
print("-1")
else:
print(int(min)) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | N = int(input())
Ds = [x for x in input()]
Cs = [int(x) for x in input().split()]
Ans = int(1e9)
for i in range(N-1):
if Ds[i] == 'R' and Ds[i+1] == 'L':
Ans = min(Ans,(Cs[i+1] - Cs[i]) // 2)
if Ans == int(1e9):
print(-1)
else:
print(Ans) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
r = input()
h = list(map(int,input().split()))
l = []
for i in range(n-1):
if r[i] == 'R' and r[i+1]=='L':
l.append(abs((h[i] - h[i+1]))/2)
if l == []:
print(-1)
else:
print(int(min(l)))
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = input()
s = raw_input().strip()
x = [int(xi) for xi in raw_input().split(" ")]
nf = True
i = 0
ans = -1
while i < (n-1):
if s[i] == 'R' and s[i+1] == 'L':
d = (x[i+1]-x[i])/2
if ans == -1:
ans = d
elif d < ans:
ans = d
nf = False
i += 1
if nf:
print -1
exit()
print ans | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int( input() )
d = str( input() )
p = input().split()
ans = -1
for i in range( 1 , n ):
if d[ i - 1 ] == 'R' and d[ i ] == 'L':
tans = ( int( p[ i ] ) - int( p[ i - 1 ] ) ) // 2
if ans == -1 or tans < ans:
ans = tans
print( ans ) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, d;
string s;
cin >> n >> s;
vector<long long int> v;
long long int a[n];
for (long long int i = 0; i < n; ++i) cin >> a[i];
for (long long int i = 0; i < n - 1; ++i) {
d = a[i + 1] - a[i];
if (s[i] == 'R' && s[i + 1] == 'L')
v.push_back(d / 2);
else if ((s[i] == 'R' && s[i + 1] == 'R') ||
(s[i] == 'L' && s[i + 1] == 'L') ||
(s[i] == 'L' && s[i + 1] == 'R'))
;
}
sort(v.begin(), v.end());
if (v.size() == 0)
cout << -1;
else
cout << v[0] << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
d = input()
x = list(map(int, input().split()))
inf = 10**10
def solve():
if n == 1:
return -1
ret = inf
for i in range(1, n):
if d[i - 1] == 'R' and d[i] == 'L':
ret = min(ret, (x[i] - x[i - 1]) // 2)
if ret == inf:
return -1
return ret
print(solve())
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author Ahmed
*/
public class Test {
/**
* @param args the command line arguments
* @throws java.io.IOException
*
*
*
*/
static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
int n = Integer.parseInt(in.readLine());
String va = in.readLine();
StringTokenizer st = new StringTokenizer(in.readLine());
int min = Integer.MAX_VALUE;
int [] array = new int [n];
for (int i = 0 ; i < n ; i++) {
array[i] = Integer.parseInt(st.nextToken());
}
for (int i = 0 ; i < n-1 ; i++) {
if(va.charAt(i) == 'R' && va.charAt(i+1) == 'L')
min = Math.min(array[i+1] - array[i] , min);
}
if (min == Integer.MAX_VALUE) {
min = -2;
}
out.write((min / 2) + "");
out.flush();
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
vector<long> R, L;
vector<long>::iterator Rit, Lit;
long a[long(2e5 + 100)];
int main() {
long n;
string s;
scanf("%ld", &n);
cin >> s;
long res = 999999999;
for (long i = 0; i < s.length(); ++i)
if (s[i] == 'R')
R.push_back(i + 1);
else
L.push_back(i + 1);
for (long i = 1; i <= n; ++i) scanf("%ld", &a[i]);
for (long i = 0; i < R.size(); ++i) {
Lit = lower_bound(L.begin(), L.end(), R[i]);
if (Lit == L.end()) continue;
long x = *Lit;
res = min(res, (a[*Lit] - a[R[i]]) / 2);
}
if (res != 999999999)
printf("%ld", res);
else
puts("-1");
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
c = list(map(int,input().split()))
flag = False
flag1 = False
r, l = 0, 0
arr = []
for i in range(n):
if s[i] == 'R':
flag = True
r = c[i]
elif s[i] == 'L' and flag:
flag1 = True
l = c[i]
arr.append(l-r)
if len(arr) == 0:
print(-1)
exit(0)
print(min(arr)//2)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n, d, x, v = int(input()), input(), list(map(int, input().split())), -1
for i in range(1, n):
if d[i - 1] == 'R' and d[i] == 'L':
c = (x[i] - x[i - 1]) // 2
if v == -1 or c < v:
v = c
print(v) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(raw_input())
str = raw_input()
dis = map(int, raw_input().split(" "))
max = 10000000000
dist = max
posL = -1
posR = -1
for i in range(n):
if str[i] == 'L':
posL = dis[i]
if posR != -1 and posL-posR<dist:
dist = posL-posR
elif str[i] == 'R':
posR = dis[i]
if dist == max:
dist = -1
else:
dist /= 2
print dist | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | hat = int(input())
moves = list(input())
pos = [int(x) for x in input().split()]
ans = []
for i in range(len(moves)):
if moves[i] == "R" and i != len(moves)-1:
if moves[i+1] == "L":
ans.append(int(abs(pos[i]-pos[i+1])/2))
if len(ans) == 0:
print(-1)
else:
print(min(ans))
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
x = list(map(int,input().split()))
ls = []
l = []
lx = []
if 'RL' in s:
for i in range(1,n):
if s[i - 1] == 'R' and s[i] == 'L':
x1 = x[i - 1]
x2 = x[i]
ls.append(x2 - x1)
l.append(x2 + x1)
lx.append(x2)
res = lx[ls.index(min(ls))] - (l[ls.index(min(ls))] / 2)
print(int(res))
else:
print(-1) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = input()
s = raw_input()
l = raw_input().split()
l1 = [x for x in range(len(s)-1) if s[x]=='R' and s[x+1]=='L']
d = [int(l[i+1])-int(l[i])for i in l1]
if len(d):print min(d)/2
else:print -1
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.*;
import java.util.*;
/**
* Created by ΠΠ»Π΅ΠΊΡΠ΅ΠΉ on 07/20/2016.
*/
public class IDontKnow {
public static void main(String [] args){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
String str = in.next();
List<Integer> arryCoord = new ArrayList<>(200000);
int answer =Integer.MAX_VALUE;
arryCoord.add(in.nextInt());
for(int i=1; i<n; i++){
arryCoord.add(i,in.nextInt());
int localAnswer;
if(str.charAt(i-1)=='R' && str.charAt(i)=='L'){
localAnswer = (arryCoord.get(i)-arryCoord.get(i-1))/2+(arryCoord.get(i)-arryCoord.get(i-1))%2;
if(localAnswer<answer){
answer = localAnswer;
}
}
}
if(answer==Integer.MAX_VALUE) {
out.println(-1);
}else{
out.println(answer);
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
File file = new File("text.txt");
public InputReader(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public InputReader(int i) {
try {
br = new BufferedReader(
new InputStreamReader(new FileInputStream(file)));
} catch (FileNotFoundException e1) {
System.out.println("File is not find");
}
st = null;
}
public String next(){
while (st==null || !st.hasMoreTokens()){
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public Double nextDouble(){
return Double.parseDouble(next());
}
public Character nextChar() {return next().charAt(0);}
public void newFile() {
try {
FileWriter write = new FileWriter(file);
write.write(1);
write.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
x = list(map(int, input().split()))
a = []
if s.count('RL') == 0:
print(-1)
else:
for i in range(n - 1):
if s[i] == 'R' and s[i + 1] == 'L':
a.append(x[i + 1] - x[i])
print(min(a) // 2)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
import java.lang.*;
public class A {
public static void main(String[] args) {
// getting the inputs
Scanner in = new Scanner(System.in);
int n = in.nextInt();
String d = in.next();
int[] p = new int[n];
for(int i = 0; i < n; i++)
p[i] = in.nextInt();
// printing the output
new Solver().solve(n, d, p);
}
}
class Solver {
public void solve(int n, String d, int[] p) {
int c = -1;
long min = 9999999999L;
for(int i = 0; i < n; i++) {
if(i == n-1) break;
if(d.charAt(i) == 'R' && d.charAt(i+1) == 'L') {
c = i;
min = Math.min(min, p[i+1]-p[i]);
}
}
if(c == -1) {
System.out.println(c);
return;
}
// while(p[c] != p[c+1]) {
// t++;
// p[c]++;
// p[c+1]--;
// }
System.out.println(min/2);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #BISMILLAH
# ITS NOT OVER WHEN YOU FAIL
# ITS OVER WHEN YOU QUIT
flag = False
mini = 1000000000+7
n = int(input())
s = input()
l = list(map(int, input().strip().split()))
for i in range(0, n-1):
if s[i] == "R" and s[i+1]=="L":
flag = True
mini = min(mini,int((l[i]+l[i+1])/2)-l[i])
if flag == False:
print(-1)
else:
print(mini)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
public class Collider
{
public static void main(String args[])
{
Scanner sc= new Scanner(System.in);
int n=sc.nextInt();
char dir[]= new char[n];
long pos[]=new long[n];
String s=sc.next();;
for(int i=0;i<n;i++)
{
dir[i]=s.charAt(i);
}
for(int i=0;i<n;i++)
{
pos[i]=sc.nextLong();
}
int flag=0,l=0,r=0;
long ans=(pos[n-1]-pos[0])/2;
for(int i=0;i<n;i++)
{
if(dir[i]=='R')
r=1;
if(dir[i]=='L'&& r==1)
l=1;
}
if(l==0)
System.out.println("-1");
if(l==1)
{
long left=-1,right=-1;
for(int i=0;i<n;i++)
{
if(dir[i]=='L')
{
if(right==-1)
continue;
else
{
left=pos[i];
long diff=(left-right)/2;
if(diff<ans)
ans=diff;
right=-1;
left=-1;
}
}
else
{
right=pos[i];
}
}
System.out.println(ans);
}
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
public class CF699A {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int flag=-1;
int min=Integer.MAX_VALUE;
int c1=0,c2=0;
sc.nextLine();
String s=sc.nextLine();
//System.out.println(s);
int i=0;
for(i=0;i<n;i++){
if(flag==1&&s.charAt(i)=='L'){
c2=sc.nextInt();
if(((c1+c2)/2)-c1<min){
min=((c1+c2)/2)-c1;
//System.out.println(c1+" " +c2+" "+flag+" "+i);}
flag=0;
}
}
else if(s.charAt(i)=='R'){
c1=sc.nextInt();
flag=1;
}
else{
sc.nextInt();
}
}
if(min==Integer.MAX_VALUE)
System.out.println("-1");
else
System.out.println(min);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=int(input())
p=list(input())
nop=list(map(int,input().split()))
ro=[]
for x in range(n-1):
if p[x]=="R":
if p[x+1]=="L":
ro.append(nop[x+1]-nop[x])
else:
pass
else:
pass
if ro==list():
print(-1)
else:
print(min(ro)//2) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,
z;
char arr[200100], tp;
int arr2[200100];
int main() {
scanf(" %d", &n);
cin >> arr;
for (i = 0; i < n; i++) {
scanf(" %d", &arr2[i]);
}
z = INT_MAX;
for (i = 0; i < n - 1; i++) {
if (arr[i] == 'R' && arr[i + 1] == 'L')
z = min(z, (arr2[i + 1] - arr2[i]) / 2);
}
printf("%d\n", (z == INT_MAX) ? -1 : z);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
int main() {
int n, i, min, x[200000];
scanf("%d", &n);
char a[200000];
scanf("%s", a);
scanf("%d", &x[0]);
min = 1000000001;
for (i = 1; i < n; i++) {
scanf("%d", &x[i]);
if (a[i] == 'L' && a[i - 1] == 'R') {
if (x[i] - x[i - 1] < min) min = x[i] - x[i - 1];
}
}
if (min == 1000000001)
printf("-1");
else
printf("%d", min / 2);
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
long long pos[200000];
int main() {
int n;
cin >> n;
string mvt;
cin >> mvt;
for (int i = 0; i < n; i++) {
cin >> pos[i];
}
long long ans = 1e10;
for (int i = 1; i < n; i++) {
if (mvt[i] == 'L' && mvt[i - 1] == 'R') {
ans = min(ans, (pos[i] - pos[i - 1]) / 2);
}
}
if (ans == 1e10)
cout << -1 << endl;
else
cout << ans << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=input()
directions=raw_input()
cordinates=[int(cord) for cord in raw_input().split()]
t=1000000001
if len(directions)==1:
print "{}".format(-1)
else:
for move in range(len(directions)-1):
if directions[move]=='R' and directions[move+1]=='L':
t=min(t,(cordinates[move+1]-cordinates[move])/2)
if t==1000000001:
print "{}".format(-1)
else:
print "{}".format(t) | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | def Collision():
n = int(raw_input())
directions = raw_input()
coords = raw_input().split()
collisions = []
for i in range(n):
collisions.append((directions[i],int(coords[i])))
#print collisions
min_dist = 0
direction = 'L'
for i in range(n):
if collisions[i][0] == 'R':
direction = 'R'
start = collisions[i][1]
elif collisions[i][0] == 'L' and direction == 'R':
dist = (collisions[i][1] + start)/2 - start
if min_dist == 0:
min_dist = dist
elif dist < min_dist:
min_dist = dist
direction = 'L'
if min_dist != 0:
return min_dist
else:
return -1
print Collision() | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.*;
import java.util.*;
public class Main {
final static long mod = (long)10e9+7;
public static void main(String[] args) {
InputReader sc = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
Random gen = new Random();
int test = 1;//sc.nextInt();
while(test-->0) {
int n = sc.nextInt();
String str = sc.nextLine();
int [] ar = sc.nextIntArray(n);
int min = Integer.MAX_VALUE;
for(int j=0;j<n-1;j++)
{
if(str.charAt(j)=='R' && str.charAt(j+1)=='L')
{
min=Math.min(min,ar[j+1]-ar[j]);
}
}
if(min==Integer.MAX_VALUE)
pw.println(-1);
else
pw.println(min/2);
}
pw.close();
}
static class Data implements Comparable<Data>{
int x, a;
public Data (int m, int n) {
x = m;
a = n;
}
@Override
public int compareTo(Data o) {
return a - o.a;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int [] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public static int[] shuffle(int[] a, Random gen)
{ for(int i = 0, n = a.length;i < n;i++)
{ int ind = gen.nextInt(n-i)+i;
int d = a[i];
a[i] = a[ind];
a[ind] = d;
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
string s;
cin >> n >> s;
long long a[n + 5], ans = 1e18;
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') ans = min(ans, (a[i + 1] - a[i]) / 2);
}
if (ans == 1e18)
cout << -1 << endl;
else
cout << ans << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
public class Main {
public static void main (String [] args){
//Scanner in = new Scanner(new BufferedReader(new FileReader("input.txt")));
Scanner in = new Scanner(System.in);
int n = Integer.parseInt((in.nextLine()));
char [] s = in.nextLine().toCharArray();
int [] x = new int [n];
int mn = Integer.MAX_VALUE;
int rPos = -1;
for (int i = 0; i < n; ++i)
x[i] = in.nextInt();
for (int i = 0; i < s.length; ++i) {
if (s[i] == 'R')
rPos = i;
else if (rPos != -1)
mn = Math.min(mn, x[i]-x[rPos]);
}
if (mn < Integer.MAX_VALUE)
System.out.println(mn/2);
else
System.out.println(-1);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=int(input())
s=input()
arr=[int(x) for x in input().split()]
m=1000000007
for i in range(n-1):
if(s[i]=='R' and s[i+1]=='L'):
m=min((arr[i+1]-arr[i])//2,m)
if(m!=1000000007):
print(m)
else:
print("-1") | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.*;
import java.util.*;
public class Fast
{
@SuppressWarnings("unused")
public static void main(String args[])throws IOException
{
Reader ob=new Reader();
Writer out=new Writer(System.out);
int n=ob.nI();
String s=ob.n();
int a[]=ob.NIA(n),ans=Integer.MAX_VALUE;
for(int i=1;i<n;i++)
{
if(s.charAt(i-1)=='R'&&s.charAt(i)=='L')
ans=min(ans,a[i]-a[i-1]);
}
out.pln(ans==Integer.MAX_VALUE?"-1":ans/2);
out.flush();
}
static void debug(Object... o) {
System.err.println(Arrays.deepToString(o));
}
static long inverse(long x, long p)
{
return pow(x, p - 2, p);
}
static boolean isPrime(long n)
{
long h=(long)Math.sqrt(n);
for(long i=2;i<=h;i++)
if(n%i==0)
return false;
return true&&n!=1;
}
static long gcd(long a,long b)
{
if(a<b)
return gcd(b,a);
else if(b==0)
return a;
else
return gcd(b,a%b);
}
static long pow(long a,long b,long mod){
if(b == 0) return 1;
long t = pow(a,b>>1,mod);
t = (t * t) % mod;
if((b & 1) == 1) t = (t * a);
if(t >= mod) t %= mod;
return t;
}
static long pow(long a,long b){
if(b == 0) return 1;
long t = pow(a,b>>1);
t = (t * t);
if((b & 1) == 1) t = (t * a);
return t;
}
static void seive(int n,int prime[])//1 for prime -1 for not prime
{
for(int i=2;i<=n;i++)
if(prime[i]==0)
{
prime[i]=1;
for(int j=2;j*i<=n;j++)
prime[j*i]=-1;
}
}
static int max(int ...a)
{
int m=a[0];
for(int i=0;i<a.length;i++)
m=Math.max(m,a[i]);
return m;
}
static long max(long ...a)
{
long m=a[0];
for(int i=0;i<a.length;i++)
m=Math.max(m,a[i]);
return m;
}
static int min(int ...a)
{
int m=a[0];
for(int i=0;i<a.length;i++)
m=Math.min(m,a[i]);
return m;
}
static long min(long ...a)
{
long m=a[0];
for(int i=0;i<a.length;i++)
m=Math.min(m,a[i]);
return m;
}
static class Pair
{
int x=0,y=0;
Pair(int xx,int yy)
{
x=xx;
y=yy;
}
}
static class Writer {
private final PrintWriter p;
Writer(OutputStream o) {
p = new PrintWriter(new BufferedWriter(new OutputStreamWriter(o)));
}
void p(Object... o1) {
for (Object o11 : o1) {
p.print(o11 + " " );
}
}
void p(String s) {
p.print(s);
}
void pln(Object... o1) {
p(o1);
p.println();
}
void flush() {
p.flush();
}
void close() {
p.close();
}
}
static class Reader {
private byte[] buf = new byte[1024];
private int curChar;
private int snumChars;
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = System.in.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nl() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String n() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public long nL() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int nI() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] NIA(int n) //nextINtArray
{
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nI();
}
return arr;
}
public long[] NLA(int n) //nextLongArray
{
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nL();
}
return arr;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
string s;
cin >> n >> s;
long long arr[200000], x = 2000000001, c = 0;
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
for (int i = 1; i < n; i++) {
if (s[i] == 'L' && s[i - 1] == 'R') {
if (x > ((arr[i] - arr[i - 1]) / 2)) x = (arr[i] - arr[i - 1]) / 2;
}
}
if (x == 2000000001) {
x = -1;
}
cout << x;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | N = int(raw_input())
direction = raw_input()
firstDirection = direction[0]
distance = 100000000000
flag = 1
distanceL = (raw_input().split())
firstObject = int(distanceL[0])
for i in range(1,N):
secondObject = int(distanceL[i])
secondDirection = direction[i]
if firstDirection=='R' and secondDirection=='L':
tempdistance = secondObject-firstObject
if tempdistance < distance:
distance = tempdistance
flag=0
firstDirection = secondDirection
firstObject = secondObject
if flag==0:
print distance/2
else:
print -1
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(raw_input())
string = raw_input()
array = map(int, raw_input().split())
ans = 99999999999
for i in xrange(1, n):
#print i, string[i-1], string[i]
if string[i-1] == 'R' and string [i] == 'L':
time = array[i] - array[i-1]
ans = min(ans, time / 2)
if ans == 99999999999:
print -1
else:
print ans
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | // "static void main" must be defined in a public class.
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
String dir = sc.next();
int[] arr =new int[n];
for(int i =0 ; i< n; i++ ) {
arr[i] = sc.nextInt();
}
int min = Integer.MAX_VALUE;
for(int i=1; i< dir.length(); i++ ) {
if(dir.charAt(i) == 'L' && dir.charAt(i-1) == 'R'){
min = Math.min((arr[i]-arr[i-1])/2,min);
}
}
System.out.println(min == Integer.MAX_VALUE ? -1 : min);
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
r = input()
s = [int(i) for i in input().split()]
c = 10**9+1
if r.count("RL"):
for i in range(n-1):
if r[i]=="R" and r[i+1]=="L":
c = min(((s[i+1]-s[i])//2),c)
print(c)
else:
print(-1)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
int n;
cin >> n;
string s;
cin >> s;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int ans = INT_MAX;
for (int i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
ans = min(ans, (a[i + 1] - a[i]) / 2);
}
}
cout << (ans == INT_MAX ? -1 : ans);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
string s;
cin >> s;
vector<int> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int ans = 1e9;
for (int i = 1; i < n; ++i) {
if (s[i - 1] == 'R' && s[i] == 'L') {
ans = min(ans, (a[i] - a[i - 1]) / 2);
}
}
if (ans == 1e9) {
cout << -1;
} else {
cout << ans;
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
int mod = (int)1e9 + 7;
using namespace std;
int main() {
int n, i;
cin >> n;
string d;
cin >> d;
vector<int> x(n);
for (i = 0; i < n; i++) cin >> x[i];
int mi = INT_MAX;
for (int i = 0; i < n - 1; i++) {
if (d[i] == 'R' && d[i + 1] == 'L') {
mi = min(mi, (x[i + 1] - x[i]) / 2);
}
}
if (mi == INT_MAX)
cout << -1 << endl;
else
cout << mi << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = input()
s = raw_input()
arr = map(int, raw_input().strip().split())
ans = float("inf")
prev = None
for i, j in enumerate(s):
if j == 'R':
prev = i
elif j == 'L' and prev != None:
time = abs(arr[prev] - arr[i]) / 2
ans = min(ans, time)
if ans != float("inf"):
print ans
else:
print -1
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
direction = input()
xi = [int(x) for x in input().split(' ')]
m = []
for i in range(n-1):
if direction[i:i+2] != 'RL': continue
m.append(xi[i+1] - xi[i])
if not m: print(-1)
else: print(int(min(m)/2)) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=int(input())
s=input()
v=[int(i) for i in input().split()]
i=0
j=0
f=0
mt=1000000001
while(i<n):
while(i<n and s[i]!='R'):
i=i+1
while(i<n and s[i]=='R'):
i=i+1
i=i-1
j=i+1
if(j>=n):
break
while(j<n and s[j]!='L'):
j=j+1
if(s[j]=='L'):
f=1
t=(v[j]+v[i])/2-v[i]
if(t<mt):
mt=t
else:
break
if(j+1<n):
i=j+1
else:
break
if(f==0):
print("-1")
else:
print(int(mt)) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 |
# coding: utf-8
# In[3]:
n = int(input())
s = input()
idxs = list(map(int, input().split()))
r_flag = -1
l_flag = -1
ans = 10**20
for idx, q in enumerate(s):
if q == 'R':
r_flag = idxs[idx]
else:
l_flag = idxs[idx]
if r_flag != -1:
ans = min(ans, (l_flag - r_flag) // 2)
print(ans if ans != 10**20 else -1)
# In[ ]:
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int n;
long long x[2000005];
int type[2000005];
char str[2000005];
int main() {
scanf("%d", &n);
scanf("%s", str);
for (int i = 0; i < n; i++) scanf("%I64d", &x[i]);
for (int i = 0; i < n; i++)
if (str[i] == 'L')
type[i] = -1;
else
type[i] = 1;
long long ans = -1;
for (int i = 0; i < n - 1; i++) {
if (type[i] == 1 && type[i + 1] == -1) {
if (ans == -1)
ans = (x[i + 1] - x[i]) / 2;
else
ans = min(ans, (x[i + 1] - x[i]) / 2);
}
}
printf("%I64d\n", ans);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
m = input()
moves = [i for i in m]
positions = list(map(int, input().split()))
if not 'RL' in m:
print(-1)
else:
mini = positions[-1] - positions[0]
for i in range(n-1):
if moves[i] == 'R' and moves[i+1] == 'L':
mini = min(mini, positions[i+1] - positions[i])
print(int(mini/2))
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
const int N = 200500;
using namespace std;
struct arr {
long long as;
} a[N];
int main() {
long long b[N];
char c[N];
int n;
cin >> n;
cin >> c;
for (int i = 0; i < n; i++) {
cin >> a[i].as;
}
int j = 0;
for (int i = 0; i < n; i++) {
if (c[i] == 'R' && c[i + 1] == 'L') {
b[j++] = (a[i + 1].as - a[i].as) / 2;
i++;
}
}
sort(b, b + j);
if (j)
cout << b[0] << endl;
else
cout << "-1" << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
string s;
cin >> s;
int arr[n];
int c, z = -1;
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
for (int i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
c = abs(arr[i + 1] - arr[i]) / 2;
if (z == -1 || c < z) {
z = c;
}
}
}
cout << z << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class a {
public static void main(String[] args) {
new a();
}
a(){
int N = nextInt();
char[] charr = nextChara();
int[] arr = new int[N];
int differenceHalf = -1;
for(int i = 0; i < N; i++){
arr[i] = nextInt();
if(i > 0){
if(charr[i-1] == 'R' && charr[i] == 'L'){
if(differenceHalf == -1 || (arr[i] - arr[i-1])/2 < differenceHalf){
differenceHalf = ((arr[i]-arr[i-1])>>1);
}
}
}
}
System.out.println(differenceHalf);
}
// stuff that really shouldn't be messed with
boolean debug = false;
int[][] arrArliToArrArr(ArrayList<Integer>[] nexts){
int[][] ret = new int[nexts.length][];
for(int i = 0; i < nexts.length; i++){
ret[i] = new int[nexts[i].size()];
for(int j = 0; j < nexts[i].size(); j++){
ret[i][j] = nexts[i].get(j);
}
}
return ret;
}
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] _line = new String[0]; int _pos = 0;
boolean exceptionEncountered = false;
void ensure(){
while(_pos >= _line.length || _line[_pos].length() == 0){
_pos++;
try{
while(_pos >= _line.length){
_line = br.readLine().split(" ");
_pos = 0;
}
}
catch(Exception e){
exceptionEncountered = true;
_line = new String[1];
_line[0] = "1";
_pos = 0;
}
}
}
char[] nextChara(){ensure();return _line[_pos++].toCharArray();}
double nextDouble(){ensure();return Double.parseDouble(_line[_pos++]);}
int nextInt(){ensure();return Integer.parseInt(_line[_pos++]);}
long nextLong(){ensure();return Long.parseLong(_line[_pos++]);}
String next(){ensure();return _line[_pos++];}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
public class Runnable {
public static void main(String[] args) {
int count;
int time = -1;
String directions = "";
String[] distances;
int rIndex = -1;
int lIndex = -1;
Scanner reader = new Scanner(System.in);
count = reader.nextInt();
reader.nextLine();
directions = reader.nextLine();
distances = reader.nextLine().split(" ");
for(int i = 0; i < count; i++) {
char dir = directions.charAt(i);
if(dir == 'R')
rIndex = i;
else if(dir == 'L') {
lIndex = i;
if(rIndex != -1) {
int ttime = (Integer.valueOf(distances[lIndex]) - Integer.valueOf(distances[rIndex]))/2;
if(time == -1 || ttime < time)
time = ttime;
}
}
}
System.out.println(time);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import math
sb= raw_input()
s= raw_input().strip()
num= raw_input().strip().split(" ")
num= map(int, num)
lens= len(s)
ans= -1
for x in xrange(lens- 1):
if s[x]== 'R' and s[x+1]== 'L':
t= abs(num[x]- num[x+1])/2
if ans== -1:
ans= t
elif ans> t:
ans= t
print ans
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, mn = INT_MAX;
string s;
cin >> n >> s;
int arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
for (int i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
mn = min((arr[i + 1] - arr[i]) / 2, mn);
}
}
if (mn == INT_MAX) {
cout << -1 << endl;
return 0;
} else
cout << mn << endl;
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
x = list(map(int, input().split()))
mn = 10000000000
for i in range(n-1):
if s[i] == 'R' and s[i+1] == 'L':
if x[i+1] - x[i] < mn:
mn = x[i+1] - x[i]
if mn == 10000000000:
print(-1)
else:
print(mn//2) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
public class main {
public static void main(String args[]) throws Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
String lr = in.next();
int i;
long g=-1;
int k=-1;
int[]a=new int[n];
for(i=0;i<n;i++){
a[i]=in.nextInt();
}
for(i=0;i<n-1;i++){
if(lr.charAt(i)=='R' && lr.charAt(i+1)=='L'){
k=Math.abs(a[i]-a[i+1])/2;
if(g<0)g=k;
else g=Math.min(g,k);
}
}
System.out.println(g);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(raw_input())
a = raw_input()
b = map(int, raw_input().split())
ans = 12345678901
for i in xrange(n-1):
if a[i] == 'R' and a[i+1] == 'L':
ans = min(ans, (b[i+1]-b[i])/2)
if ans == 12345678901:
print -1
else:
print ans | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n = 0, ans = 1e9 + 1;
string s;
cin >> n >> s;
vector<double> x(n);
for (int i = 0; i < n; i++) {
cin >> x[i];
}
for (int i = 0; i < n; i++) {
if (i < n + 1 && s[i] == 'R' && s[i + 1] == 'L' &&
(x[i + 1] - x[i]) / 2 < ans) {
ans = (x[i + 1] - x[i]) / 2;
}
}
if (ans == 1e9 + 1) {
cout << -1;
} else {
cout << ans;
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
const int N = 200005;
int n, pos[N], l[N], r[N];
char d[N];
using namespace std;
int main() {
scanf("%d", &n);
scanf("\n%s", d + 1);
d[0] = d[n + 1] = '%';
int i;
for (i = 1; i <= n; i++) scanf("%d", &pos[i]);
for (i = 1; i <= n; i++)
if (d[i - 1] == 'R')
l[i] = i - 1;
else
l[i] = l[i - 1];
for (i = n; i >= 1; i--)
if (d[i + 1] == 'L')
r[i] = i + 1;
else
r[i] = r[i + 1];
int ans = 1e9 + 1;
for (i = 1; i <= n; i++) {
if (d[i] == 'L' && l[i]) ans = min(ans, (pos[i] - pos[l[i]]) >> 1);
if (d[i] == 'R' && r[i]) ans = min(ans, (pos[r[i]] - pos[i]) >> 1);
}
if (ans == 1e9 + 1) ans = -1;
printf("%d", ans);
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | no=int(input())
balls=input()
places = list(map(int,input().split()))
if not('R' in balls and 'L' in balls) or balls.find('R') == no-1:
print(-1)
else:
tot =[]
start = balls.find('R')
expl = 0 - places[start]
need = True
for i in range(start+1,no):
if need==True:
if balls[i] == 'L':
expl += places[i]
expl /=2
tot.append(expl)
need = False
else:
expl = 0 - places[i]
else:
if balls[i] == 'R':
expl = 0 - places[i]
need = True
if tot == []:
print(-1)
else:
tot.sort()
print(int(tot[0]))
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(raw_input())
direction = raw_input()
dirs = []
for i in range(0,n):
dirs.append(direction[i])
starts = map(int, raw_input().split())
ans = 10**10
for k in range(0,n-1):
if dirs[k]=="R" and dirs[k+1]=="L":
ans = min(ans, abs(starts[k]-starts[k+1])/2)
if ans<10**10:
print ans
else:
print -1 | PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #codeforces contest n 669
#a - a launch of collider
np = int(raw_input())
mov = raw_input()
posi = map(int, raw_input().split())
colisions = []
for i in range(np - 1):
if mov[i] == "R" and mov[i + 1] == "L":
colisions.append((i, i+1))
if colisions == []: print -1
else:
k, j = colisions[0][0], colisions[0][1]
menor = (posi[j] - posi[k]) / 2
for i in range(len(colisions)):
k, j = colisions[i][0], colisions[i][1]
m = (posi[j] - posi[k]) / 2
if m < menor:
menor = m
print menor
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import sys
n = int(sys.stdin.readline().split()[0])
str = sys.stdin.readline().split()[0]
x = [int(y) for y in sys.stdin.readline().split()]
res = 1000000000
for i in range(1, n):
if str[i] == 'L' and str[i - 1] == 'R':
res = min(res, (x[i] - x[i - 1]) / 2)
if res == 1000000000:
print -1
else:
print res
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=int(input())
s=input()
p=[int(z) for z in input().split()]
if n==1:
print(-1)
else:
mi=float("Inf")
for i in range(1,n):
if s[i]=="L" and s[i-1]=="R":
mi=min(mi,(p[i]-p[i-1])//2)
if mi==float("Inf"):
print (-1)
else:
print(mi) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
int main() {
long long n, i, j, k, l = 10000000000, d = 0;
scanf("%I64d", &n);
char s[n + 1];
getchar();
scanf("%s", s);
long long a[n];
for (i = 0; i < n; i++) {
scanf("%I64d", &a[i]);
}
for (i = 0; i < n; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
d = 1;
j = (a[i + 1] - a[i]) / 2;
}
if (j < l) l = j;
}
if (d == 1)
printf("%I64d", l);
else
printf("-1");
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long n;
cin >> n;
string a;
cin >> a;
long long m[n];
for (long long &x : m) cin >> x;
long long min = INT_MAX;
long long flag = 0;
for (long long i = 0; i < a.length() - 1; i++) {
if (a[i] == 'R' && a[i + 1] == 'L') {
long long p = m[i + 1] - m[i];
p = p / 2;
if (p < min) min = p;
flag = 1;
}
}
if (flag == 0)
cout << -1 << endl;
else
cout << min << endl;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n=int(input())
d=raw_input()
s=map(int,raw_input().split())
ans=1000000000
found=False
for i in xrange(n-1) :
if d[i]=='R' and d[i+1]=='L' :
ans=min(ans,(s[i+1]-s[i])/2)
found=True
if found :
print ans
else :
print -1
| PYTHON |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | N=int(input())
a=input()
b=input()
b=b.split()
x=0-1
for i in range(N-1):
if a[i]=='R' and a[i+1]=='L':
s=(int(b[i+1])-int(b[i]))//2
if x==0-1:
x=s
else:
x=min(x, s)
print(x)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
void fast() {
std::ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
}
int main() {
fast();
long long n;
cin >> n;
string s;
cin >> s;
vector<int> v(n);
for (int i = 0; i < n; i++) {
cin >> v[i];
}
bool ok = false;
multiset<int> m;
for (int i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L' && (v[i + 1] - v[i]) % 2 == 0) {
m.insert((v[i + 1] - v[i]) / 2);
ok = true;
}
}
if (ok == false) {
cout << -1;
} else {
multiset<int>::iterator it = m.begin();
cout << *it;
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
dir = list(input())
coord = input().strip().split(' ')
coord = [int(c) for c in coord]
flag = 0
tmin = 10**9
for i in range(n-1):
if dir[i]=='R' and dir[i+1]=='L':
flag = 1
tmin = min(tmin, (coord[i+1]-coord[i])//2)
if flag:
print(tmin)
else:
print(-1)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
string s;
int i, flag = 0, n, arr[300000];
cin >> n;
cin >> s;
for (i = 0; i < n; i++) {
cin >> arr[i];
}
for (i = 0; i < s.size() - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
flag = 1;
break;
}
}
int minim = INFINITY;
if (flag == 0)
cout << "-1";
else {
for (i = 0; i < n - 1; i++) {
if (s[i] == 'R' && s[i + 1] == 'L') {
if (((arr[i + 1] - arr[i]) / 2) < minim) {
minim = (arr[i + 1] - arr[i]) / 2;
}
}
}
cout << minim;
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.Scanner;
/**
* Created by mitcc on 2016/6/15.
*/
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
String s = in.next();
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
}
System.out.println(getTime(n, s, a));
}
public static int getTime(int n, String s, int[] a) {
int result = Integer.MAX_VALUE;
for (int i = 1; i < n; ++i) {
if (s.charAt(i) == 'L' && s.charAt(i - 1) == 'R') {
result = Math.min(result, (a[i] - a[i - 1]) / 2);
}
}
return result == Integer.MAX_VALUE ? -1 : result;
}
} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, cnt = 0, flag, Min;
char a[200001];
int b[200001];
int c[200001];
while (~scanf("%d", &n)) {
flag = 0;
Min = 0x3f3f3f3f;
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
memset(c, 0, sizeof(c));
scanf("%s", a);
for (i = 0; i < n; i++) {
scanf("%d", &b[i]);
}
for (i = 0; i < n; i++) {
if (a[i] == 'L' && a[i - 1] == 'R') {
flag = 1;
Min = min(Min, abs(b[i] - b[i - 1]) / 2);
}
}
if (flag == 0) {
printf("-1\n");
continue;
} else
printf("%d\n", Min);
}
return 0;
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input().strip())
l = input().strip()
ll = list(map(int,input().split()))
ll1 = []
for i in range(n-1):
if l[i] == 'R' and l[i+1] == 'L':
ll1.append(abs(ll[i] - ll[i+1]) // 2)
print(min(ll1) if len(ll1) != 0 else -1) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
st = input()
lst = list(map(int, input().split()))
minn = float("INF")
yes = False
for i in range(n-1):
if st[i] == "R" and st[i+1] == "L":
yes = True
minn = min(minn, (lst[i+1] - lst[i])//2)
if not yes: print(-1)
else: print(minn+1+1-2)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
public class Launch_of_collider {
public static void main(String args[]){
Scanner s= new Scanner(System.in);
int n=s.nextInt();
s.nextLine();
String str=s.nextLine();
int arr[]= new int[n];
for(int i=0;i<n;i++){
if(str.charAt(i)=='L')
arr[i]=s.nextInt();
else
arr[i]=(-1*s.nextInt());
}
TreeSet<Integer> ts= new TreeSet<Integer>();
for(int i=0;i<n-1;){
if(arr[i]<=0 && arr[i+1]>=0){
if(str.charAt(i)=='R'){
int sum=arr[i]+arr[i+1];
ts.add(sum);
i=i+2;}
else
i++;
}
else
i++;
}
//System.out.println(ts);
if(ts.isEmpty())
System.out.println("-1");
else
System.out.println(ts.first()/2);
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | #include <bits/stdc++.h>
inline int max(register int a, register int b) { return a > b ? a : b; }
inline int min(register int a, register int b) { return a < b ? a : b; }
int F() {
register int aa, bb, ch;
while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-')
;
ch == '-' ? aa = bb = 0 : (aa = ch - '0', bb = 1);
while (ch = getchar(), ch >= '0' && ch <= '9') aa = aa * 10 + ch - '0';
return bb ? aa : -aa;
}
const int Maxn = 200010;
const int Maxm = 1000010;
int n, m, lst = 0, ans = 1000003647, a[Maxn], b[Maxn], ch, cnt = 0;
void Init() {
n = F();
a[0] = -1000003647;
for (int i = 1; i <= n; ++i) {
while (ch = getchar(), ch != 'R' && ch != 'L')
;
b[i] = (ch == 'R');
}
for (cnt = 1; cnt <= n; ++cnt)
if (b[cnt]) break;
for (; cnt <= n; ++cnt)
if (!b[cnt]) break;
if (cnt == n + 1) {
cnt = 2;
return;
} else
cnt = 1;
for (int i = 1; i <= n; ++i) {
a[i] = F();
if (b[i])
lst = i;
else
ans = min(ans, (a[i] - a[lst] + 1) / 2);
}
a[Maxn - 1] = 1000003647;
lst = Maxn - 1;
for (int i = n; i; --i) {
if (!b[i])
lst = i;
else
ans = min(ans, (a[lst] - a[i] + 1) / 2);
}
}
void Solve() {
if (cnt == 2) ans = -1;
}
void End() { printf("%d\n", ans); }
int main() {
Init();
Solve();
End();
}
| CPP |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
a = list(map(int, input().split()))
ans = float('inf')
test = 0
for i in range(1, n):
if s[i-1]=='R' and s[i]=='L':
test = 1
ans = min(ans, (a[i]-a[i-1])//2)
if test:
print(ans)
else:
print(-1)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
direc = input()
coord = [int(x) for x in input().split()]
prev = ""
minsf = 1e10
for i, d in enumerate(direc):
if prev == "R" and d == "L":
minsf = min(minsf, coord[i] - coord[i-1])
prev = d
print(-1 if minsf == 1e10 else minsf // 2)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.io.*;
import java.util.Map;
import java.util.StringTokenizer;
public class SolutionA {
private final static String FILENAME;
private final static String PATH;
static {
FILENAME = "";
if (!FILENAME.isEmpty()) {
PATH = System.getProperty("user.home") + "/contests/" + FILENAME;
} else {
PATH = "";
}
}
public static void main(String[] args) throws IOException {
SolutionA solution = new SolutionA();
solution.initInputReader();
solution.solve();
solution.cleanup();
}
private void solve() throws IOException {
int n = nextInt();
String dir = nextString();
int prev = nextInt();
char prevD = dir.charAt(0);
int min = Integer.MAX_VALUE;
for (int i = 1; i < n; i++) {
int coord = nextInt();
char d = dir.charAt(i);
if (prevD == 'R' && d == 'L') {
int dis = (coord - prev) / 2;
min = Math.min(min, dis);
}
prev = coord;
prevD = d;
}
if (min == Integer.MAX_VALUE) {
System.out.println(-1);
} else {
System.out.println(min);
}
}
private final static int MOD = 1000000007;
/*
* Methods for reading input
*/
private BufferedReader br;
private StringTokenizer st;
private void initInputReader() throws IOException {
if (FILENAME.isEmpty()) {
br = new BufferedReader(new InputStreamReader(System.in));
} else {
br = new BufferedReader(new FileReader(new File(PATH)));
}
st = new StringTokenizer(br.readLine());
}
private void cleanup() throws IOException {
br.close();
}
private int nextInt() throws IOException {
checkEmptyTokenizer();
return Integer.parseInt(st.nextToken());
}
private long nextLong() throws IOException {
checkEmptyTokenizer();
return Long.parseLong(st.nextToken());
}
private double nextDouble() throws IOException {
checkEmptyTokenizer();
return Double.parseDouble(st.nextToken());
}
private String nextString() throws IOException {
checkEmptyTokenizer();
return st.nextToken();
}
private void checkEmptyTokenizer() throws IOException {
if (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
}
/*
* Convenience methods
*/
// Provides a default value if map doesn't have the key
private <K, V> V getFromMap(Map<K, V> map, K key, V def) {
if (map.containsKey(key)) {
return map.get(key);
}
return def;
}
private void print(String line, Object... args) {
System.out.println(String.format(line, args));
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
s = input()
x = [int(i) for i in input().split()]
minValue = -1
for i in range(n - 1):
if s[i] == 'R' and s[i + 1] == 'L':
r = (x[i + 1] - x[i]) // 2
if minValue == -1 or r < minValue:
minValue = r
print(minValue)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | amount = int(input())
direction = input()
coord = [int(i) for i in input().split()]
modulus1 = list()
modulus2 = list()
for i in range(amount-1):
modulus1.append(coord[i+1] - coord[i])
for i in range(amount):
if direction[i] == "L":
coord[i] -= 1
else:
coord[i] += 1
for i in range(amount-1):
modulus2.append(coord[i+1] - coord[i])
min = 1000000001
for i in range(amount-1):
if modulus1[i] < min:
if modulus1[i] > modulus2[i]:
min = modulus1[i]
if min == 1000000001:
print(-1)
else:
print(int(min/2)) | PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import java.util.*;
import java.io.*;
public class Solution699A {
private static FastScanner in;
private static PrintWriter out;
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new Solution().solve();
out.close();
}
private static class Solution {
public void solve() {
int n = in.nextInt();
int minDistance = Integer.MAX_VALUE;
char[] d = in.next().toCharArray();
for (int i = 0, pre = 0; i < n; i++) {
int loc = in.nextInt();
if (i > 0 && d[i-1] == 'R' && d[i] == 'L') {
minDistance = Math.min(loc - pre, minDistance);
}
pre = loc;
}
out.println(minDistance == Integer.MAX_VALUE ? -1 : (int) Math.ceil((double)minDistance / 2.0));
}
}
private static class FastScanner {
private BufferedReader br;
private StringTokenizer st;
public FastScanner(BufferedReader br) {
this.br = br;
}
private String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = int(input())
di = [i for i in input()]
lst = list(map(int, input().split()))
i = 0
res = []
while i < n :
if di[i] == 'R':
f = i
i+=1
if i == n:
break
while di[i] == 'R':
f = i
i+=1
if i == n:
break
if i == n:
break
res.append((lst[i]-lst[f])//2)
i+=1
if len(res) == 0 or max(res)==0 :
print(-1)
else:
print(min(res))
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
FastReader read = new FastReader();
StringBuilder out = new StringBuilder();
int n = read.nextInt();
char dir[] = read.nextLine().toCharArray();
int pos[] = new int[n];
for (int i = 0; i < n; i++) {
pos[i] = read.nextInt();
}
int min = Integer.MAX_VALUE;
boolean changed = false;
for (int i = 0; i < n - 1; i++) {
if (dir[i] == 'R' && dir[i + 1] == 'L' && ((pos[i + 1] - pos[i]) % 2 == 0)) {
min = Math.min(min, (pos[i + 1] - pos[i]) / 2);
changed = true;
}
}
if (changed) {
System.out.println(min);
} else {
System.out.println("-1");
}
}
}
class Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
class Pair implements Comparable<Pair> {
int x, y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o) {
if (this.x - o.x != 0) {
return this.x - o.x;
} else {
return o.y - this.y;
}
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
| JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | import sys
n = int(input())
directions = input().strip()
a = list(map(int, sys.stdin.readline().split()))
ans = []
for i in range(n-1):
if directions[i] == 'R' and directions[i+1] == 'L':
ans.append((a[i+1]-a[i])//2)
if ans:
print(min(ans))
else:
print(-1)
| PYTHON3 |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 |
import java.util.*;
import java.io.*;
import java.math.*;
public class Mahdi{
public static void main(String[] args) throws Exception{
//Scanner in =new Scanner(System.in);
BufferedReader in =new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok = new StringTokenizer(in.readLine());
int n=nextInt(tok);
String str =in.readLine();
tok = new StringTokenizer(in.readLine());
int arr [] = new int [n];
for(int i= 0 ; i<n; i++)
arr[i]=nextInt(tok);
int min = 0;
for(int i= 0; i<n-1;i++){
if(str.charAt(i)=='R'&&str.charAt(i+1)=='L'&&arr[i]<arr[i+1]){
if(min==0)
min=(arr[i+1]-arr[i])/2;
else
min=Math.min(min,(arr[i+1]-arr[i])/2);
}
}
if(min==0)
System.out.println("-1");
else
System.out.println(min);
}
static double nextDouble(StringTokenizer tok){
return Double.parseDouble(tok.nextToken());
}
public static int nextInt( StringTokenizer s) throws Exception {
return Integer.parseInt(s.nextToken());
}
public static long nextLong(StringTokenizer bu) throws Exception {
return Long.parseLong(bu.nextToken());
}} | JAVA |
699_A. Launch of Collider | There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers.
You know the direction of each particle movement β it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time.
Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point.
Input
The first line contains the positive integer n (1 β€ n β€ 200 000) β the number of particles.
The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right.
The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 β€ xi β€ 109) β the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order.
Output
In the first line print the only integer β the first moment (in microseconds) when two particles are at the same point and there will be an explosion.
Print the only integer -1, if the collision of particles doesn't happen.
Examples
Input
4
RLRL
2 4 6 10
Output
1
Input
3
LLR
40 50 60
Output
-1
Note
In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3.
In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point. | 2 | 7 | n = input()
d = [i for i in raw_input()]
cord = [int(i) for i in raw_input().split()]
cd = [(cord[i],d[i]) for i in xrange(n)]
cd.sort()
ans = 10**19
for i in xrange(n-1):
if((cd[i][1]!=cd[i+1][1]) and (cd[i][1]=='R') and (cd[i][0]<cd[i+1][0])):
temp = abs(cd[i][0]-cd[i+1][0])/2
ans = min(ans,temp)
if(ans==10**19):
ans = -1
print ans
| PYTHON |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.