Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.util.StringTokenizer; public class Main { static class InputReader { public BufferedReader br; public StringTokenizer st; // String input = "5" + "\n" + "1 1 0 0 1"; String input = "4" + "\n" + "RLRL" + "\n" + "2 4 6 10"; InputStream is = new ByteArrayInputStream( input.getBytes() ); public InputReader() { br = new BufferedReader(new InputStreamReader(is)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) throws Exception { System.out.println(contest()); } public static int contest() throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int answer = 0; String buffern = br.readLine(); int n = Integer.parseInt(buffern); String direction = br.readLine(); String particles = br.readLine(); String[] directionArray = new String[n]; directionArray = direction.split(""); String[] particlesArray = new String[particles.length()]; particlesArray = particles.split(" "); int[] particle = new int[particlesArray.length]; for(int i = 0; i<n; i++){ particle[i] = Integer.parseInt(particlesArray[i]); } int index = 0; int max = 0; for(int i =0; i<n; i++){ if(max<particle[i]){ max = particle[i]; } } int min = max+1; boolean flag = false; for(int i = 0; i<n-1; i++){ if(directionArray[i+1].equals("R") && directionArray[i+2].equals("L") ){ if(min>(particle[i+1]-particle[i])){ min = (particle[i+1]-particle[i]); flag = true; } } } if(flag){ answer = min/2; } else{ answer = -1; } return answer; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class A699 { public static void main(String[] args){ Scanner in = new Scanner(System.in); int n = in.nextInt(); String str = in.next(); int[] arr = new int[n]; for (int i = 0 ; i < n ; i++){ arr[i] = in.nextInt(); } int min = Integer.MAX_VALUE; boolean flag = false; for (int i = 0 ; i < n-1 ; i++){ if(str.charAt(i)=='R' && str.charAt(i+1)=='L'){ int i1 = (arr[i + 1] - arr[i]) / 2; if ( min > i1) min = i1; flag = true; } } if (flag)System.out.println(min); else System.out.println("-1"); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class LaunchOfCollider { public static void main(String... args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); String firstLine = scanner.next(); scanner.nextLine(); String secLine = scanner.nextLine(); String[] split1 = firstLine.split("|"); String[] split2 = secLine.split(" "); String first = split1[0]; int min = 2000000000; for (int i = 1; i < n; i++) { String sec = split1[i]; if (first.equals("R") && sec.equals("L")) { min = Math.min(min, (Integer.parseInt(split2[i]) - Integer.parseInt(split2[i - 1])) / 2); } first = sec; } if (min == 2000000000) System.out.println("-1"); else System.out.println(min); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; public class test { public static void main(String[] args) throws IOException { Scanner scan = new Scanner((System.in)); int n = scan.nextInt(); String s = scan.next(); int[] arr = new int[n]; for(int i=0;i<n;i++)arr[i] = scan.nextInt(); int count = 0; int min = Integer.MAX_VALUE; for(int i=0;i<n-1;i++){ if(s.charAt(i) == 'R' && s.charAt(i+1) == 'L'){ count++; min = Math.min(min, Math.abs(arr[i]-arr[i+1])/2); } } if(count>0)System.out.println(min); else System.out.println(-1); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException {return Integer.parseInt(next());} public String nextLine() throws IOException {return br.readLine();} public long nextLong() throws IOException {return Long.parseLong(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public boolean ready() throws IOException {return br.ready();} } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String arg[]) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String str = br.readLine(); int n = Integer.parseInt(str); str = br.readLine(); char ch[] = str.toCharArray(); int min = Integer.MAX_VALUE; str = br.readLine(); String strs[] = str.trim().split(" "); int n1=Integer.parseInt(strs[0]); char s1=ch[0]; for(int i=1;i<n;i++) { int n2=Integer.parseInt(strs[i]); char s2=ch[i]; if((s1=='R' && s2=='L')) { min=Math.min(min,(n2-n1)/2); } n1=n2; s1=s2; } if(min==Integer.MAX_VALUE) System.out.println("-1"); else System.out.println(min); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, cou = -1; long long int sum = 10000000000; cin >> n; long long int array[n]; char array1[n]; for (int i = 0; i < n; i++) cin >> array1[i]; for (int i = 0; i < n; i++) cin >> array[i]; for (int i = 0; i < n - 1; i++) { if (array1[i] == 'R' && array1[i + 1] == 'L') { sum = min(sum, (array[i + 1] - array[i])); cou = 0; } } if (cou == -1) cout << cou; else cout << (sum / 2); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) direction = input() array = list(map(int, input().split())) count = direction.count('RL') if count == 0: print(-1) exit(0) else: first = direction.index('RL') dist = array[first + 1] - array[first] while count > 1: first += direction[first + 1:].index('RL') + 1 if array[first + 1] - array[first] < dist: dist = array[first + 1] - array[first] count -= 1 print(dist // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class A699 { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); String directions = scan.next(); int min = Integer.MAX_VALUE; int right = -1; boolean found = false; for (int i = 0; i < n; i++) { int cur = scan.nextInt(); if (directions.charAt(i) == 'L') { if (right != -1) { if (min > cur - right) { min = cur - right; found = true; } } } else { right = cur; } } System.out.print(found ? min / 2 : "-1"); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def pro(): n = int(input()) s = input() a = list(map(int, input().split())) cnt = 1000000001 for i in range(n-1): if s[i]+s[i+1] == 'RL': cnt = min(cnt, (a[i+1] - a[i]) // 2) if cnt == 1000000001: print(-1) else: print(cnt) pro()
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class main { public static void main(String args[]){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); sc.nextLine(); String str=sc.nextLine(); int pos[]=new int[n]; for(int i=0;i<n;i++){ pos[i]=sc.nextInt(); } int ans=Integer.MAX_VALUE; for(int i=0;i<n-1;i++){ if(str.charAt(i)=='R' && str.charAt(i+1)=='L'){ if((pos[i+1]-pos[i])/2<ans) ans=(pos[i+1]-pos[i])/2; } } if(ans==Integer.MAX_VALUE) ans=-1; System.out.println(ans); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; long long INV2 = 500000004; long long INV6 = 166666668; long long power(long long a, long long b, long long c) { long long x = 1, y = a; while (b > 0) { if (b & 1) x = (x * y) % c; y = (y * y) % c; b /= 2; } return x % c; } int dx[] = {0, -1, 0, 1}; int dy[] = {-1, 0, 1, 0}; vector<long long> le, ri; long long solve(long long val) { long long lo = 0, hi = ri.size(); long long ans = -1; while (lo < hi) { long long mid = (lo + hi) / 2; if (ri[mid] < val) { ans = ri[mid]; lo = mid + 1; } else { hi = mid; } } return ans; } int main() { int n; scanf("%d", &n); string s; cin >> s; long long num; for (int i = 0; i < n; ++i) { scanf("%lld", &num); if (s[i] == 'L') le.push_back(num); else ri.push_back(num); } long long ans = 1e16; for (int i = 0; i < le.size(); ++i) { long long ele = le[i]; long long val = solve(ele); if (val != -1) { long long dekh = (ele - val) / 2; ans = min(ans, 1LL * dekh); } } if (ans < 1e16) printf("%lld\n", ans); else { printf("-1\n"); } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long h = 1e9; string st; cin >> st; long long arr[n]; for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int j = 0; j < n - 1; j++) { if (st[j] == 'R' && st[j + 1] == 'L') { h = min(h, (arr[j + 1] - arr[j]) / 2); } } if (h == 1e9) { cout << "-1"; } else { cout << h; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) s = raw_input() cc = [int(x) for x in raw_input().split()] curc = None curi = -1 mn = 1e10 i = 0 for c in s: if c == 'R': curi = i if curi != -1 and c == 'L': mn = min(mn, (cc[i] - cc[curi]) / 2) i += 1 if mn == 1e10: print -1 else: print mn
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int tot, Link[101000]; struct node { int v, next; } edge[201000]; void add(int x, int y) { tot++; edge[tot].v = y; edge[tot].next = Link[x]; Link[x] = tot; } char st[210000]; int a[210000]; int main() { int n; scanf("%d", &n); scanf(" %s", st + 1); int ans = -1; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 2; i <= n; i++) if (st[i] != st[i - 1]) if (st[i - 1] == 'R' && st[i] == 'L') { if (ans < 0) ans = (a[i] + a[i - 1]) / 2 - a[i - 1]; else ans = min(ans, (a[i] + a[i - 1]) / 2 - a[i - 1]); } printf("%d\n", ans); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) dir = input() seq = list(map(int, input().split())) min = 1000000000 for i in range(1, n): if dir[i-1] == "R" and dir[i] == "L": if (seq[i] - seq[i-1])/2 < min: min = (seq[i] - seq[i-1])/2 if min == 1000000000: print("-1") else: print(int(min))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
N = int(input()) Ds = [x for x in input()] Cs = [int(x) for x in input().split()] Ans = int(1e9) for i in range(N-1): if Ds[i] == 'R' and Ds[i+1] == 'L': Ans = min(Ans,(Cs[i+1] - Cs[i]) // 2) if Ans == int(1e9): print(-1) else: print(Ans)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) r = input() h = list(map(int,input().split())) l = [] for i in range(n-1): if r[i] == 'R' and r[i+1]=='L': l.append(abs((h[i] - h[i+1]))/2) if l == []: print(-1) else: print(int(min(l)))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() s = raw_input().strip() x = [int(xi) for xi in raw_input().split(" ")] nf = True i = 0 ans = -1 while i < (n-1): if s[i] == 'R' and s[i+1] == 'L': d = (x[i+1]-x[i])/2 if ans == -1: ans = d elif d < ans: ans = d nf = False i += 1 if nf: print -1 exit() print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int( input() ) d = str( input() ) p = input().split() ans = -1 for i in range( 1 , n ): if d[ i - 1 ] == 'R' and d[ i ] == 'L': tans = ( int( p[ i ] ) - int( p[ i - 1 ] ) ) // 2 if ans == -1 or tans < ans: ans = tans print( ans )
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { long long int n, d; string s; cin >> n >> s; vector<long long int> v; long long int a[n]; for (long long int i = 0; i < n; ++i) cin >> a[i]; for (long long int i = 0; i < n - 1; ++i) { d = a[i + 1] - a[i]; if (s[i] == 'R' && s[i + 1] == 'L') v.push_back(d / 2); else if ((s[i] == 'R' && s[i + 1] == 'R') || (s[i] == 'L' && s[i + 1] == 'L') || (s[i] == 'L' && s[i + 1] == 'R')) ; } sort(v.begin(), v.end()); if (v.size() == 0) cout << -1; else cout << v[0] << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) d = input() x = list(map(int, input().split())) inf = 10**10 def solve(): if n == 1: return -1 ret = inf for i in range(1, n): if d[i - 1] == 'R' and d[i] == 'L': ret = min(ret, (x[i] - x[i - 1]) // 2) if ret == inf: return -1 return ret print(solve())
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; /** * * @author Ahmed */ public class Test { /** * @param args the command line arguments * @throws java.io.IOException * * * */ static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) throws IOException { int n = Integer.parseInt(in.readLine()); String va = in.readLine(); StringTokenizer st = new StringTokenizer(in.readLine()); int min = Integer.MAX_VALUE; int [] array = new int [n]; for (int i = 0 ; i < n ; i++) { array[i] = Integer.parseInt(st.nextToken()); } for (int i = 0 ; i < n-1 ; i++) { if(va.charAt(i) == 'R' && va.charAt(i+1) == 'L') min = Math.min(array[i+1] - array[i] , min); } if (min == Integer.MAX_VALUE) { min = -2; } out.write((min / 2) + ""); out.flush(); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; vector<long> R, L; vector<long>::iterator Rit, Lit; long a[long(2e5 + 100)]; int main() { long n; string s; scanf("%ld", &n); cin >> s; long res = 999999999; for (long i = 0; i < s.length(); ++i) if (s[i] == 'R') R.push_back(i + 1); else L.push_back(i + 1); for (long i = 1; i <= n; ++i) scanf("%ld", &a[i]); for (long i = 0; i < R.size(); ++i) { Lit = lower_bound(L.begin(), L.end(), R[i]); if (Lit == L.end()) continue; long x = *Lit; res = min(res, (a[*Lit] - a[R[i]]) / 2); } if (res != 999999999) printf("%ld", res); else puts("-1"); }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() c = list(map(int,input().split())) flag = False flag1 = False r, l = 0, 0 arr = [] for i in range(n): if s[i] == 'R': flag = True r = c[i] elif s[i] == 'L' and flag: flag1 = True l = c[i] arr.append(l-r) if len(arr) == 0: print(-1) exit(0) print(min(arr)//2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n, d, x, v = int(input()), input(), list(map(int, input().split())), -1 for i in range(1, n): if d[i - 1] == 'R' and d[i] == 'L': c = (x[i] - x[i - 1]) // 2 if v == -1 or c < v: v = c print(v)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) str = raw_input() dis = map(int, raw_input().split(" ")) max = 10000000000 dist = max posL = -1 posR = -1 for i in range(n): if str[i] == 'L': posL = dis[i] if posR != -1 and posL-posR<dist: dist = posL-posR elif str[i] == 'R': posR = dis[i] if dist == max: dist = -1 else: dist /= 2 print dist
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
hat = int(input()) moves = list(input()) pos = [int(x) for x in input().split()] ans = [] for i in range(len(moves)): if moves[i] == "R" and i != len(moves)-1: if moves[i+1] == "L": ans.append(int(abs(pos[i]-pos[i+1])/2)) if len(ans) == 0: print(-1) else: print(min(ans))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() x = list(map(int,input().split())) ls = [] l = [] lx = [] if 'RL' in s: for i in range(1,n): if s[i - 1] == 'R' and s[i] == 'L': x1 = x[i - 1] x2 = x[i] ls.append(x2 - x1) l.append(x2 + x1) lx.append(x2) res = lx[ls.index(min(ls))] - (l[ls.index(min(ls))] / 2) print(int(res)) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() s = raw_input() l = raw_input().split() l1 = [x for x in range(len(s)-1) if s[x]=='R' and s[x+1]=='L'] d = [int(l[i+1])-int(l[i])for i in l1] if len(d):print min(d)/2 else:print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.*; /** * Created by АлСксСй on 07/20/2016. */ public class IDontKnow { public static void main(String [] args){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); String str = in.next(); List<Integer> arryCoord = new ArrayList<>(200000); int answer =Integer.MAX_VALUE; arryCoord.add(in.nextInt()); for(int i=1; i<n; i++){ arryCoord.add(i,in.nextInt()); int localAnswer; if(str.charAt(i-1)=='R' && str.charAt(i)=='L'){ localAnswer = (arryCoord.get(i)-arryCoord.get(i-1))/2+(arryCoord.get(i)-arryCoord.get(i-1))%2; if(localAnswer<answer){ answer = localAnswer; } } } if(answer==Integer.MAX_VALUE) { out.println(-1); }else{ out.println(answer); } } } static class InputReader { BufferedReader br; StringTokenizer st; File file = new File("text.txt"); public InputReader(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = null; } public InputReader(int i) { try { br = new BufferedReader( new InputStreamReader(new FileInputStream(file))); } catch (FileNotFoundException e1) { System.out.println("File is not find"); } st = null; } public String next(){ while (st==null || !st.hasMoreTokens()){ try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public Double nextDouble(){ return Double.parseDouble(next()); } public Character nextChar() {return next().charAt(0);} public void newFile() { try { FileWriter write = new FileWriter(file); write.write(1); write.close(); } catch (IOException e) { e.printStackTrace(); } } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() x = list(map(int, input().split())) a = [] if s.count('RL') == 0: print(-1) else: for i in range(n - 1): if s[i] == 'R' and s[i + 1] == 'L': a.append(x[i + 1] - x[i]) print(min(a) // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; import java.lang.*; public class A { public static void main(String[] args) { // getting the inputs Scanner in = new Scanner(System.in); int n = in.nextInt(); String d = in.next(); int[] p = new int[n]; for(int i = 0; i < n; i++) p[i] = in.nextInt(); // printing the output new Solver().solve(n, d, p); } } class Solver { public void solve(int n, String d, int[] p) { int c = -1; long min = 9999999999L; for(int i = 0; i < n; i++) { if(i == n-1) break; if(d.charAt(i) == 'R' && d.charAt(i+1) == 'L') { c = i; min = Math.min(min, p[i+1]-p[i]); } } if(c == -1) { System.out.println(c); return; } // while(p[c] != p[c+1]) { // t++; // p[c]++; // p[c+1]--; // } System.out.println(min/2); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#BISMILLAH # ITS NOT OVER WHEN YOU FAIL # ITS OVER WHEN YOU QUIT flag = False mini = 1000000000+7 n = int(input()) s = input() l = list(map(int, input().strip().split())) for i in range(0, n-1): if s[i] == "R" and s[i+1]=="L": flag = True mini = min(mini,int((l[i]+l[i+1])/2)-l[i]) if flag == False: print(-1) else: print(mini)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class Collider { public static void main(String args[]) { Scanner sc= new Scanner(System.in); int n=sc.nextInt(); char dir[]= new char[n]; long pos[]=new long[n]; String s=sc.next();; for(int i=0;i<n;i++) { dir[i]=s.charAt(i); } for(int i=0;i<n;i++) { pos[i]=sc.nextLong(); } int flag=0,l=0,r=0; long ans=(pos[n-1]-pos[0])/2; for(int i=0;i<n;i++) { if(dir[i]=='R') r=1; if(dir[i]=='L'&& r==1) l=1; } if(l==0) System.out.println("-1"); if(l==1) { long left=-1,right=-1; for(int i=0;i<n;i++) { if(dir[i]=='L') { if(right==-1) continue; else { left=pos[i]; long diff=(left-right)/2; if(diff<ans) ans=diff; right=-1; left=-1; } } else { right=pos[i]; } } System.out.println(ans); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class CF699A { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int flag=-1; int min=Integer.MAX_VALUE; int c1=0,c2=0; sc.nextLine(); String s=sc.nextLine(); //System.out.println(s); int i=0; for(i=0;i<n;i++){ if(flag==1&&s.charAt(i)=='L'){ c2=sc.nextInt(); if(((c1+c2)/2)-c1<min){ min=((c1+c2)/2)-c1; //System.out.println(c1+" " +c2+" "+flag+" "+i);} flag=0; } } else if(s.charAt(i)=='R'){ c1=sc.nextInt(); flag=1; } else{ sc.nextInt(); } } if(min==Integer.MAX_VALUE) System.out.println("-1"); else System.out.println(min); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) p=list(input()) nop=list(map(int,input().split())) ro=[] for x in range(n-1): if p[x]=="R": if p[x+1]=="L": ro.append(nop[x+1]-nop[x]) else: pass else: pass if ro==list(): print(-1) else: print(min(ro)//2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z; char arr[200100], tp; int arr2[200100]; int main() { scanf(" %d", &n); cin >> arr; for (i = 0; i < n; i++) { scanf(" %d", &arr2[i]); } z = INT_MAX; for (i = 0; i < n - 1; i++) { if (arr[i] == 'R' && arr[i + 1] == 'L') z = min(z, (arr2[i + 1] - arr2[i]) / 2); } printf("%d\n", (z == INT_MAX) ? -1 : z); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> int main() { int n, i, min, x[200000]; scanf("%d", &n); char a[200000]; scanf("%s", a); scanf("%d", &x[0]); min = 1000000001; for (i = 1; i < n; i++) { scanf("%d", &x[i]); if (a[i] == 'L' && a[i - 1] == 'R') { if (x[i] - x[i - 1] < min) min = x[i] - x[i - 1]; } } if (min == 1000000001) printf("-1"); else printf("%d", min / 2); }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; long long pos[200000]; int main() { int n; cin >> n; string mvt; cin >> mvt; for (int i = 0; i < n; i++) { cin >> pos[i]; } long long ans = 1e10; for (int i = 1; i < n; i++) { if (mvt[i] == 'L' && mvt[i - 1] == 'R') { ans = min(ans, (pos[i] - pos[i - 1]) / 2); } } if (ans == 1e10) cout << -1 << endl; else cout << ans << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=input() directions=raw_input() cordinates=[int(cord) for cord in raw_input().split()] t=1000000001 if len(directions)==1: print "{}".format(-1) else: for move in range(len(directions)-1): if directions[move]=='R' and directions[move+1]=='L': t=min(t,(cordinates[move+1]-cordinates[move])/2) if t==1000000001: print "{}".format(-1) else: print "{}".format(t)
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
def Collision(): n = int(raw_input()) directions = raw_input() coords = raw_input().split() collisions = [] for i in range(n): collisions.append((directions[i],int(coords[i]))) #print collisions min_dist = 0 direction = 'L' for i in range(n): if collisions[i][0] == 'R': direction = 'R' start = collisions[i][1] elif collisions[i][0] == 'L' and direction == 'R': dist = (collisions[i][1] + start)/2 - start if min_dist == 0: min_dist = dist elif dist < min_dist: min_dist = dist direction = 'L' if min_dist != 0: return min_dist else: return -1 print Collision()
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.*; public class Main { final static long mod = (long)10e9+7; public static void main(String[] args) { InputReader sc = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); Random gen = new Random(); int test = 1;//sc.nextInt(); while(test-->0) { int n = sc.nextInt(); String str = sc.nextLine(); int [] ar = sc.nextIntArray(n); int min = Integer.MAX_VALUE; for(int j=0;j<n-1;j++) { if(str.charAt(j)=='R' && str.charAt(j+1)=='L') { min=Math.min(min,ar[j+1]-ar[j]); } } if(min==Integer.MAX_VALUE) pw.println(-1); else pw.println(min/2); } pw.close(); } static class Data implements Comparable<Data>{ int x, a; public Data (int m, int n) { x = m; a = n; } @Override public int compareTo(Data o) { return a - o.a; } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int [] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public static int[] shuffle(int[] a, Random gen) { for(int i = 0, n = a.length;i < n;i++) { int ind = gen.nextInt(n-i)+i; int d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; string s; cin >> n >> s; long long a[n + 5], ans = 1e18; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') ans = min(ans, (a[i + 1] - a[i]) / 2); } if (ans == 1e18) cout << -1 << endl; else cout << ans << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class Main { public static void main (String [] args){ //Scanner in = new Scanner(new BufferedReader(new FileReader("input.txt"))); Scanner in = new Scanner(System.in); int n = Integer.parseInt((in.nextLine())); char [] s = in.nextLine().toCharArray(); int [] x = new int [n]; int mn = Integer.MAX_VALUE; int rPos = -1; for (int i = 0; i < n; ++i) x[i] = in.nextInt(); for (int i = 0; i < s.length; ++i) { if (s[i] == 'R') rPos = i; else if (rPos != -1) mn = Math.min(mn, x[i]-x[rPos]); } if (mn < Integer.MAX_VALUE) System.out.println(mn/2); else System.out.println(-1); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=input() arr=[int(x) for x in input().split()] m=1000000007 for i in range(n-1): if(s[i]=='R' and s[i+1]=='L'): m=min((arr[i+1]-arr[i])//2,m) if(m!=1000000007): print(m) else: print("-1")
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.*; public class Fast { @SuppressWarnings("unused") public static void main(String args[])throws IOException { Reader ob=new Reader(); Writer out=new Writer(System.out); int n=ob.nI(); String s=ob.n(); int a[]=ob.NIA(n),ans=Integer.MAX_VALUE; for(int i=1;i<n;i++) { if(s.charAt(i-1)=='R'&&s.charAt(i)=='L') ans=min(ans,a[i]-a[i-1]); } out.pln(ans==Integer.MAX_VALUE?"-1":ans/2); out.flush(); } static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } static long inverse(long x, long p) { return pow(x, p - 2, p); } static boolean isPrime(long n) { long h=(long)Math.sqrt(n); for(long i=2;i<=h;i++) if(n%i==0) return false; return true&&n!=1; } static long gcd(long a,long b) { if(a<b) return gcd(b,a); else if(b==0) return a; else return gcd(b,a%b); } static long pow(long a,long b,long mod){ if(b == 0) return 1; long t = pow(a,b>>1,mod); t = (t * t) % mod; if((b & 1) == 1) t = (t * a); if(t >= mod) t %= mod; return t; } static long pow(long a,long b){ if(b == 0) return 1; long t = pow(a,b>>1); t = (t * t); if((b & 1) == 1) t = (t * a); return t; } static void seive(int n,int prime[])//1 for prime -1 for not prime { for(int i=2;i<=n;i++) if(prime[i]==0) { prime[i]=1; for(int j=2;j*i<=n;j++) prime[j*i]=-1; } } static int max(int ...a) { int m=a[0]; for(int i=0;i<a.length;i++) m=Math.max(m,a[i]); return m; } static long max(long ...a) { long m=a[0]; for(int i=0;i<a.length;i++) m=Math.max(m,a[i]); return m; } static int min(int ...a) { int m=a[0]; for(int i=0;i<a.length;i++) m=Math.min(m,a[i]); return m; } static long min(long ...a) { long m=a[0]; for(int i=0;i<a.length;i++) m=Math.min(m,a[i]); return m; } static class Pair { int x=0,y=0; Pair(int xx,int yy) { x=xx; y=yy; } } static class Writer { private final PrintWriter p; Writer(OutputStream o) { p = new PrintWriter(new BufferedWriter(new OutputStreamWriter(o))); } void p(Object... o1) { for (Object o11 : o1) { p.print(o11 + " " ); } } void p(String s) { p.print(s); } void pln(Object... o1) { p(o1); p.println(); } void flush() { p.flush(); } void close() { p.close(); } } static class Reader { private byte[] buf = new byte[1024]; private int curChar; private int snumChars; public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = System.in.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public String nl() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String n() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nL() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nI() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] NIA(int n) //nextINtArray { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nI(); } return arr; } public long[] NLA(int n) //nextLongArray { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nL(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; string s; cin >> n >> s; long long arr[200000], x = 2000000001, c = 0; for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int i = 1; i < n; i++) { if (s[i] == 'L' && s[i - 1] == 'R') { if (x > ((arr[i] - arr[i - 1]) / 2)) x = (arr[i] - arr[i - 1]) / 2; } } if (x == 2000000001) { x = -1; } cout << x; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
N = int(raw_input()) direction = raw_input() firstDirection = direction[0] distance = 100000000000 flag = 1 distanceL = (raw_input().split()) firstObject = int(distanceL[0]) for i in range(1,N): secondObject = int(distanceL[i]) secondDirection = direction[i] if firstDirection=='R' and secondDirection=='L': tempdistance = secondObject-firstObject if tempdistance < distance: distance = tempdistance flag=0 firstDirection = secondDirection firstObject = secondObject if flag==0: print distance/2 else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) string = raw_input() array = map(int, raw_input().split()) ans = 99999999999 for i in xrange(1, n): #print i, string[i-1], string[i] if string[i-1] == 'R' and string [i] == 'L': time = array[i] - array[i-1] ans = min(ans, time / 2) if ans == 99999999999: print -1 else: print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
// "static void main" must be defined in a public class. import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); String dir = sc.next(); int[] arr =new int[n]; for(int i =0 ; i< n; i++ ) { arr[i] = sc.nextInt(); } int min = Integer.MAX_VALUE; for(int i=1; i< dir.length(); i++ ) { if(dir.charAt(i) == 'L' && dir.charAt(i-1) == 'R'){ min = Math.min((arr[i]-arr[i-1])/2,min); } } System.out.println(min == Integer.MAX_VALUE ? -1 : min); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) r = input() s = [int(i) for i in input().split()] c = 10**9+1 if r.count("RL"): for i in range(n-1): if r[i]=="R" and r[i+1]=="L": c = min(((s[i+1]-s[i])//2),c) print(c) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); int n; cin >> n; string s; cin >> s; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int ans = INT_MAX; for (int i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { ans = min(ans, (a[i + 1] - a[i]) / 2); } } cout << (ans == INT_MAX ? -1 : ans); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; string s; cin >> s; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int ans = 1e9; for (int i = 1; i < n; ++i) { if (s[i - 1] == 'R' && s[i] == 'L') { ans = min(ans, (a[i] - a[i - 1]) / 2); } } if (ans == 1e9) { cout << -1; } else { cout << ans; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> int mod = (int)1e9 + 7; using namespace std; int main() { int n, i; cin >> n; string d; cin >> d; vector<int> x(n); for (i = 0; i < n; i++) cin >> x[i]; int mi = INT_MAX; for (int i = 0; i < n - 1; i++) { if (d[i] == 'R' && d[i + 1] == 'L') { mi = min(mi, (x[i + 1] - x[i]) / 2); } } if (mi == INT_MAX) cout << -1 << endl; else cout << mi << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() s = raw_input() arr = map(int, raw_input().strip().split()) ans = float("inf") prev = None for i, j in enumerate(s): if j == 'R': prev = i elif j == 'L' and prev != None: time = abs(arr[prev] - arr[i]) / 2 ans = min(ans, time) if ans != float("inf"): print ans else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) direction = input() xi = [int(x) for x in input().split(' ')] m = [] for i in range(n-1): if direction[i:i+2] != 'RL': continue m.append(xi[i+1] - xi[i]) if not m: print(-1) else: print(int(min(m)/2))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=input() v=[int(i) for i in input().split()] i=0 j=0 f=0 mt=1000000001 while(i<n): while(i<n and s[i]!='R'): i=i+1 while(i<n and s[i]=='R'): i=i+1 i=i-1 j=i+1 if(j>=n): break while(j<n and s[j]!='L'): j=j+1 if(s[j]=='L'): f=1 t=(v[j]+v[i])/2-v[i] if(t<mt): mt=t else: break if(j+1<n): i=j+1 else: break if(f==0): print("-1") else: print(int(mt))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
# coding: utf-8 # In[3]: n = int(input()) s = input() idxs = list(map(int, input().split())) r_flag = -1 l_flag = -1 ans = 10**20 for idx, q in enumerate(s): if q == 'R': r_flag = idxs[idx] else: l_flag = idxs[idx] if r_flag != -1: ans = min(ans, (l_flag - r_flag) // 2) print(ans if ans != 10**20 else -1) # In[ ]:
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int n; long long x[2000005]; int type[2000005]; char str[2000005]; int main() { scanf("%d", &n); scanf("%s", str); for (int i = 0; i < n; i++) scanf("%I64d", &x[i]); for (int i = 0; i < n; i++) if (str[i] == 'L') type[i] = -1; else type[i] = 1; long long ans = -1; for (int i = 0; i < n - 1; i++) { if (type[i] == 1 && type[i + 1] == -1) { if (ans == -1) ans = (x[i + 1] - x[i]) / 2; else ans = min(ans, (x[i + 1] - x[i]) / 2); } } printf("%I64d\n", ans); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) m = input() moves = [i for i in m] positions = list(map(int, input().split())) if not 'RL' in m: print(-1) else: mini = positions[-1] - positions[0] for i in range(n-1): if moves[i] == 'R' and moves[i+1] == 'L': mini = min(mini, positions[i+1] - positions[i]) print(int(mini/2))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> const int N = 200500; using namespace std; struct arr { long long as; } a[N]; int main() { long long b[N]; char c[N]; int n; cin >> n; cin >> c; for (int i = 0; i < n; i++) { cin >> a[i].as; } int j = 0; for (int i = 0; i < n; i++) { if (c[i] == 'R' && c[i + 1] == 'L') { b[j++] = (a[i + 1].as - a[i].as) / 2; i++; } } sort(b, b + j); if (j) cout << b[0] << endl; else cout << "-1" << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; string s; cin >> s; int arr[n]; int c, z = -1; for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { c = abs(arr[i + 1] - arr[i]) / 2; if (z == -1 || c < z) { z = c; } } } cout << z << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; public class a { public static void main(String[] args) { new a(); } a(){ int N = nextInt(); char[] charr = nextChara(); int[] arr = new int[N]; int differenceHalf = -1; for(int i = 0; i < N; i++){ arr[i] = nextInt(); if(i > 0){ if(charr[i-1] == 'R' && charr[i] == 'L'){ if(differenceHalf == -1 || (arr[i] - arr[i-1])/2 < differenceHalf){ differenceHalf = ((arr[i]-arr[i-1])>>1); } } } } System.out.println(differenceHalf); } // stuff that really shouldn't be messed with boolean debug = false; int[][] arrArliToArrArr(ArrayList<Integer>[] nexts){ int[][] ret = new int[nexts.length][]; for(int i = 0; i < nexts.length; i++){ ret[i] = new int[nexts[i].size()]; for(int j = 0; j < nexts[i].size(); j++){ ret[i][j] = nexts[i].get(j); } } return ret; } BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] _line = new String[0]; int _pos = 0; boolean exceptionEncountered = false; void ensure(){ while(_pos >= _line.length || _line[_pos].length() == 0){ _pos++; try{ while(_pos >= _line.length){ _line = br.readLine().split(" "); _pos = 0; } } catch(Exception e){ exceptionEncountered = true; _line = new String[1]; _line[0] = "1"; _pos = 0; } } } char[] nextChara(){ensure();return _line[_pos++].toCharArray();} double nextDouble(){ensure();return Double.parseDouble(_line[_pos++]);} int nextInt(){ensure();return Integer.parseInt(_line[_pos++]);} long nextLong(){ensure();return Long.parseLong(_line[_pos++]);} String next(){ensure();return _line[_pos++];} }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; public class Runnable { public static void main(String[] args) { int count; int time = -1; String directions = ""; String[] distances; int rIndex = -1; int lIndex = -1; Scanner reader = new Scanner(System.in); count = reader.nextInt(); reader.nextLine(); directions = reader.nextLine(); distances = reader.nextLine().split(" "); for(int i = 0; i < count; i++) { char dir = directions.charAt(i); if(dir == 'R') rIndex = i; else if(dir == 'L') { lIndex = i; if(rIndex != -1) { int ttime = (Integer.valueOf(distances[lIndex]) - Integer.valueOf(distances[rIndex]))/2; if(time == -1 || ttime < time) time = ttime; } } } System.out.println(time); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import math sb= raw_input() s= raw_input().strip() num= raw_input().strip().split(" ") num= map(int, num) lens= len(s) ans= -1 for x in xrange(lens- 1): if s[x]== 'R' and s[x+1]== 'L': t= abs(num[x]- num[x+1])/2 if ans== -1: ans= t elif ans> t: ans= t print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, mn = INT_MAX; string s; cin >> n >> s; int arr[n]; for (int i = 0; i < n; i++) cin >> arr[i]; for (int i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { mn = min((arr[i + 1] - arr[i]) / 2, mn); } } if (mn == INT_MAX) { cout << -1 << endl; return 0; } else cout << mn << endl; return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() x = list(map(int, input().split())) mn = 10000000000 for i in range(n-1): if s[i] == 'R' and s[i+1] == 'L': if x[i+1] - x[i] < mn: mn = x[i+1] - x[i] if mn == 10000000000: print(-1) else: print(mn//2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class main { public static void main(String args[]) throws Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); String lr = in.next(); int i; long g=-1; int k=-1; int[]a=new int[n]; for(i=0;i<n;i++){ a[i]=in.nextInt(); } for(i=0;i<n-1;i++){ if(lr.charAt(i)=='R' && lr.charAt(i+1)=='L'){ k=Math.abs(a[i]-a[i+1])/2; if(g<0)g=k; else g=Math.min(g,k); } } System.out.println(g); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) a = raw_input() b = map(int, raw_input().split()) ans = 12345678901 for i in xrange(n-1): if a[i] == 'R' and a[i+1] == 'L': ans = min(ans, (b[i+1]-b[i])/2) if ans == 12345678901: print -1 else: print ans
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n = 0, ans = 1e9 + 1; string s; cin >> n >> s; vector<double> x(n); for (int i = 0; i < n; i++) { cin >> x[i]; } for (int i = 0; i < n; i++) { if (i < n + 1 && s[i] == 'R' && s[i + 1] == 'L' && (x[i + 1] - x[i]) / 2 < ans) { ans = (x[i + 1] - x[i]) / 2; } } if (ans == 1e9 + 1) { cout << -1; } else { cout << ans; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> const int N = 200005; int n, pos[N], l[N], r[N]; char d[N]; using namespace std; int main() { scanf("%d", &n); scanf("\n%s", d + 1); d[0] = d[n + 1] = '%'; int i; for (i = 1; i <= n; i++) scanf("%d", &pos[i]); for (i = 1; i <= n; i++) if (d[i - 1] == 'R') l[i] = i - 1; else l[i] = l[i - 1]; for (i = n; i >= 1; i--) if (d[i + 1] == 'L') r[i] = i + 1; else r[i] = r[i + 1]; int ans = 1e9 + 1; for (i = 1; i <= n; i++) { if (d[i] == 'L' && l[i]) ans = min(ans, (pos[i] - pos[l[i]]) >> 1); if (d[i] == 'R' && r[i]) ans = min(ans, (pos[r[i]] - pos[i]) >> 1); } if (ans == 1e9 + 1) ans = -1; printf("%d", ans); return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
no=int(input()) balls=input() places = list(map(int,input().split())) if not('R' in balls and 'L' in balls) or balls.find('R') == no-1: print(-1) else: tot =[] start = balls.find('R') expl = 0 - places[start] need = True for i in range(start+1,no): if need==True: if balls[i] == 'L': expl += places[i] expl /=2 tot.append(expl) need = False else: expl = 0 - places[i] else: if balls[i] == 'R': expl = 0 - places[i] need = True if tot == []: print(-1) else: tot.sort() print(int(tot[0]))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(raw_input()) direction = raw_input() dirs = [] for i in range(0,n): dirs.append(direction[i]) starts = map(int, raw_input().split()) ans = 10**10 for k in range(0,n-1): if dirs[k]=="R" and dirs[k+1]=="L": ans = min(ans, abs(starts[k]-starts[k+1])/2) if ans<10**10: print ans else: print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#codeforces contest n 669 #a - a launch of collider np = int(raw_input()) mov = raw_input() posi = map(int, raw_input().split()) colisions = [] for i in range(np - 1): if mov[i] == "R" and mov[i + 1] == "L": colisions.append((i, i+1)) if colisions == []: print -1 else: k, j = colisions[0][0], colisions[0][1] menor = (posi[j] - posi[k]) / 2 for i in range(len(colisions)): k, j = colisions[i][0], colisions[i][1] m = (posi[j] - posi[k]) / 2 if m < menor: menor = m print menor
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import sys n = int(sys.stdin.readline().split()[0]) str = sys.stdin.readline().split()[0] x = [int(y) for y in sys.stdin.readline().split()] res = 1000000000 for i in range(1, n): if str[i] == 'L' and str[i - 1] == 'R': res = min(res, (x[i] - x[i - 1]) / 2) if res == 1000000000: print -1 else: print res
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) s=input() p=[int(z) for z in input().split()] if n==1: print(-1) else: mi=float("Inf") for i in range(1,n): if s[i]=="L" and s[i-1]=="R": mi=min(mi,(p[i]-p[i-1])//2) if mi==float("Inf"): print (-1) else: print(mi)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> int main() { long long n, i, j, k, l = 10000000000, d = 0; scanf("%I64d", &n); char s[n + 1]; getchar(); scanf("%s", s); long long a[n]; for (i = 0; i < n; i++) { scanf("%I64d", &a[i]); } for (i = 0; i < n; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { d = 1; j = (a[i + 1] - a[i]) / 2; } if (j < l) l = j; } if (d == 1) printf("%I64d", l); else printf("-1"); }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; string a; cin >> a; long long m[n]; for (long long &x : m) cin >> x; long long min = INT_MAX; long long flag = 0; for (long long i = 0; i < a.length() - 1; i++) { if (a[i] == 'R' && a[i + 1] == 'L') { long long p = m[i + 1] - m[i]; p = p / 2; if (p < min) min = p; flag = 1; } } if (flag == 0) cout << -1 << endl; else cout << min << endl; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n=int(input()) d=raw_input() s=map(int,raw_input().split()) ans=1000000000 found=False for i in xrange(n-1) : if d[i]=='R' and d[i+1]=='L' : ans=min(ans,(s[i+1]-s[i])/2) found=True if found : print ans else : print -1
PYTHON
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
N=int(input()) a=input() b=input() b=b.split() x=0-1 for i in range(N-1): if a[i]=='R' and a[i+1]=='L': s=(int(b[i+1])-int(b[i]))//2 if x==0-1: x=s else: x=min(x, s) print(x)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; void fast() { std::ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); } int main() { fast(); long long n; cin >> n; string s; cin >> s; vector<int> v(n); for (int i = 0; i < n; i++) { cin >> v[i]; } bool ok = false; multiset<int> m; for (int i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L' && (v[i + 1] - v[i]) % 2 == 0) { m.insert((v[i + 1] - v[i]) / 2); ok = true; } } if (ok == false) { cout << -1; } else { multiset<int>::iterator it = m.begin(); cout << *it; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) dir = list(input()) coord = input().strip().split(' ') coord = [int(c) for c in coord] flag = 0 tmin = 10**9 for i in range(n-1): if dir[i]=='R' and dir[i+1]=='L': flag = 1 tmin = min(tmin, (coord[i+1]-coord[i])//2) if flag: print(tmin) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { string s; int i, flag = 0, n, arr[300000]; cin >> n; cin >> s; for (i = 0; i < n; i++) { cin >> arr[i]; } for (i = 0; i < s.size() - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { flag = 1; break; } } int minim = INFINITY; if (flag == 0) cout << "-1"; else { for (i = 0; i < n - 1; i++) { if (s[i] == 'R' && s[i + 1] == 'L') { if (((arr[i + 1] - arr[i]) / 2) < minim) { minim = (arr[i + 1] - arr[i]) / 2; } } } cout << minim; } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.Scanner; /** * Created by mitcc on 2016/6/15. */ public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); String s = in.next(); int[] a = new int[n]; for (int i = 0; i < n; ++i) { a[i] = in.nextInt(); } System.out.println(getTime(n, s, a)); } public static int getTime(int n, String s, int[] a) { int result = Integer.MAX_VALUE; for (int i = 1; i < n; ++i) { if (s.charAt(i) == 'L' && s.charAt(i - 1) == 'R') { result = Math.min(result, (a[i] - a[i - 1]) / 2); } } return result == Integer.MAX_VALUE ? -1 : result; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> using namespace std; int main() { int n, i, cnt = 0, flag, Min; char a[200001]; int b[200001]; int c[200001]; while (~scanf("%d", &n)) { flag = 0; Min = 0x3f3f3f3f; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); memset(c, 0, sizeof(c)); scanf("%s", a); for (i = 0; i < n; i++) { scanf("%d", &b[i]); } for (i = 0; i < n; i++) { if (a[i] == 'L' && a[i - 1] == 'R') { flag = 1; Min = min(Min, abs(b[i] - b[i - 1]) / 2); } } if (flag == 0) { printf("-1\n"); continue; } else printf("%d\n", Min); } return 0; }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input().strip()) l = input().strip() ll = list(map(int,input().split())) ll1 = [] for i in range(n-1): if l[i] == 'R' and l[i+1] == 'L': ll1.append(abs(ll[i] - ll[i+1]) // 2) print(min(ll1) if len(ll1) != 0 else -1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) st = input() lst = list(map(int, input().split())) minn = float("INF") yes = False for i in range(n-1): if st[i] == "R" and st[i+1] == "L": yes = True minn = min(minn, (lst[i+1] - lst[i])//2) if not yes: print(-1) else: print(minn+1+1-2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; public class Launch_of_collider { public static void main(String args[]){ Scanner s= new Scanner(System.in); int n=s.nextInt(); s.nextLine(); String str=s.nextLine(); int arr[]= new int[n]; for(int i=0;i<n;i++){ if(str.charAt(i)=='L') arr[i]=s.nextInt(); else arr[i]=(-1*s.nextInt()); } TreeSet<Integer> ts= new TreeSet<Integer>(); for(int i=0;i<n-1;){ if(arr[i]<=0 && arr[i+1]>=0){ if(str.charAt(i)=='R'){ int sum=arr[i]+arr[i+1]; ts.add(sum); i=i+2;} else i++; } else i++; } //System.out.println(ts); if(ts.isEmpty()) System.out.println("-1"); else System.out.println(ts.first()/2); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
#include <bits/stdc++.h> inline int max(register int a, register int b) { return a > b ? a : b; } inline int min(register int a, register int b) { return a < b ? a : b; } int F() { register int aa, bb, ch; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-') ; ch == '-' ? aa = bb = 0 : (aa = ch - '0', bb = 1); while (ch = getchar(), ch >= '0' && ch <= '9') aa = aa * 10 + ch - '0'; return bb ? aa : -aa; } const int Maxn = 200010; const int Maxm = 1000010; int n, m, lst = 0, ans = 1000003647, a[Maxn], b[Maxn], ch, cnt = 0; void Init() { n = F(); a[0] = -1000003647; for (int i = 1; i <= n; ++i) { while (ch = getchar(), ch != 'R' && ch != 'L') ; b[i] = (ch == 'R'); } for (cnt = 1; cnt <= n; ++cnt) if (b[cnt]) break; for (; cnt <= n; ++cnt) if (!b[cnt]) break; if (cnt == n + 1) { cnt = 2; return; } else cnt = 1; for (int i = 1; i <= n; ++i) { a[i] = F(); if (b[i]) lst = i; else ans = min(ans, (a[i] - a[lst] + 1) / 2); } a[Maxn - 1] = 1000003647; lst = Maxn - 1; for (int i = n; i; --i) { if (!b[i]) lst = i; else ans = min(ans, (a[lst] - a[i] + 1) / 2); } } void Solve() { if (cnt == 2) ans = -1; } void End() { printf("%d\n", ans); } int main() { Init(); Solve(); End(); }
CPP
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() a = list(map(int, input().split())) ans = float('inf') test = 0 for i in range(1, n): if s[i-1]=='R' and s[i]=='L': test = 1 ans = min(ans, (a[i]-a[i-1])//2) if test: print(ans) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) direc = input() coord = [int(x) for x in input().split()] prev = "" minsf = 1e10 for i, d in enumerate(direc): if prev == "R" and d == "L": minsf = min(minsf, coord[i] - coord[i-1]) prev = d print(-1 if minsf == 1e10 else minsf // 2)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.*; import java.util.Map; import java.util.StringTokenizer; public class SolutionA { private final static String FILENAME; private final static String PATH; static { FILENAME = ""; if (!FILENAME.isEmpty()) { PATH = System.getProperty("user.home") + "/contests/" + FILENAME; } else { PATH = ""; } } public static void main(String[] args) throws IOException { SolutionA solution = new SolutionA(); solution.initInputReader(); solution.solve(); solution.cleanup(); } private void solve() throws IOException { int n = nextInt(); String dir = nextString(); int prev = nextInt(); char prevD = dir.charAt(0); int min = Integer.MAX_VALUE; for (int i = 1; i < n; i++) { int coord = nextInt(); char d = dir.charAt(i); if (prevD == 'R' && d == 'L') { int dis = (coord - prev) / 2; min = Math.min(min, dis); } prev = coord; prevD = d; } if (min == Integer.MAX_VALUE) { System.out.println(-1); } else { System.out.println(min); } } private final static int MOD = 1000000007; /* * Methods for reading input */ private BufferedReader br; private StringTokenizer st; private void initInputReader() throws IOException { if (FILENAME.isEmpty()) { br = new BufferedReader(new InputStreamReader(System.in)); } else { br = new BufferedReader(new FileReader(new File(PATH))); } st = new StringTokenizer(br.readLine()); } private void cleanup() throws IOException { br.close(); } private int nextInt() throws IOException { checkEmptyTokenizer(); return Integer.parseInt(st.nextToken()); } private long nextLong() throws IOException { checkEmptyTokenizer(); return Long.parseLong(st.nextToken()); } private double nextDouble() throws IOException { checkEmptyTokenizer(); return Double.parseDouble(st.nextToken()); } private String nextString() throws IOException { checkEmptyTokenizer(); return st.nextToken(); } private void checkEmptyTokenizer() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } } /* * Convenience methods */ // Provides a default value if map doesn't have the key private <K, V> V getFromMap(Map<K, V> map, K key, V def) { if (map.containsKey(key)) { return map.get(key); } return def; } private void print(String line, Object... args) { System.out.println(String.format(line, args)); } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) s = input() x = [int(i) for i in input().split()] minValue = -1 for i in range(n - 1): if s[i] == 'R' and s[i + 1] == 'L': r = (x[i + 1] - x[i]) // 2 if minValue == -1 or r < minValue: minValue = r print(minValue)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
amount = int(input()) direction = input() coord = [int(i) for i in input().split()] modulus1 = list() modulus2 = list() for i in range(amount-1): modulus1.append(coord[i+1] - coord[i]) for i in range(amount): if direction[i] == "L": coord[i] -= 1 else: coord[i] += 1 for i in range(amount-1): modulus2.append(coord[i+1] - coord[i]) min = 1000000001 for i in range(amount-1): if modulus1[i] < min: if modulus1[i] > modulus2[i]: min = modulus1[i] if min == 1000000001: print(-1) else: print(int(min/2))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; import java.io.*; public class Solution699A { private static FastScanner in; private static PrintWriter out; public static void main(String[] args) { in = new FastScanner(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); new Solution().solve(); out.close(); } private static class Solution { public void solve() { int n = in.nextInt(); int minDistance = Integer.MAX_VALUE; char[] d = in.next().toCharArray(); for (int i = 0, pre = 0; i < n; i++) { int loc = in.nextInt(); if (i > 0 && d[i-1] == 'R' && d[i] == 'L') { minDistance = Math.min(loc - pre, minDistance); } pre = loc; } out.println(minDistance == Integer.MAX_VALUE ? -1 : (int) Math.ceil((double)minDistance / 2.0)); } } private static class FastScanner { private BufferedReader br; private StringTokenizer st; public FastScanner(BufferedReader br) { this.br = br; } private String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = int(input()) di = [i for i in input()] lst = list(map(int, input().split())) i = 0 res = [] while i < n : if di[i] == 'R': f = i i+=1 if i == n: break while di[i] == 'R': f = i i+=1 if i == n: break if i == n: break res.append((lst[i]-lst[f])//2) i+=1 if len(res) == 0 or max(res)==0 : print(-1) else: print(min(res))
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { FastReader read = new FastReader(); StringBuilder out = new StringBuilder(); int n = read.nextInt(); char dir[] = read.nextLine().toCharArray(); int pos[] = new int[n]; for (int i = 0; i < n; i++) { pos[i] = read.nextInt(); } int min = Integer.MAX_VALUE; boolean changed = false; for (int i = 0; i < n - 1; i++) { if (dir[i] == 'R' && dir[i + 1] == 'L' && ((pos[i + 1] - pos[i]) % 2 == 0)) { min = Math.min(min, (pos[i + 1] - pos[i]) / 2); changed = true; } } if (changed) { System.out.println(min); } else { System.out.println("-1"); } } } class Point { int x, y; public Point(int x, int y) { this.x = x; this.y = y; } } class Pair implements Comparable<Pair> { int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if (this.x - o.x != 0) { return this.x - o.x; } else { return o.y - this.y; } } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import sys n = int(input()) directions = input().strip() a = list(map(int, sys.stdin.readline().split())) ans = [] for i in range(n-1): if directions[i] == 'R' and directions[i+1] == 'L': ans.append((a[i+1]-a[i])//2) if ans: print(min(ans)) else: print(-1)
PYTHON3
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
import java.util.*; import java.io.*; import java.math.*; public class Mahdi{ public static void main(String[] args) throws Exception{ //Scanner in =new Scanner(System.in); BufferedReader in =new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok = new StringTokenizer(in.readLine()); int n=nextInt(tok); String str =in.readLine(); tok = new StringTokenizer(in.readLine()); int arr [] = new int [n]; for(int i= 0 ; i<n; i++) arr[i]=nextInt(tok); int min = 0; for(int i= 0; i<n-1;i++){ if(str.charAt(i)=='R'&&str.charAt(i+1)=='L'&&arr[i]<arr[i+1]){ if(min==0) min=(arr[i+1]-arr[i])/2; else min=Math.min(min,(arr[i+1]-arr[i])/2); } } if(min==0) System.out.println("-1"); else System.out.println(min); } static double nextDouble(StringTokenizer tok){ return Double.parseDouble(tok.nextToken()); } public static int nextInt( StringTokenizer s) throws Exception { return Integer.parseInt(s.nextToken()); } public static long nextLong(StringTokenizer bu) throws Exception { return Long.parseLong(bu.nextToken()); }}
JAVA
699_A. Launch of Collider
There will be a launch of a new, powerful and unusual collider very soon, which located along a straight line. n particles will be launched inside it. All of them are located in a straight line and there can not be two or more particles located in the same point. The coordinates of the particles coincide with the distance in meters from the center of the collider, xi is the coordinate of the i-th particle and its position in the collider at the same time. All coordinates of particle positions are even integers. You know the direction of each particle movement β€” it will move to the right or to the left after the collider's launch start. All particles begin to move simultaneously at the time of the collider's launch start. Each particle will move straight to the left or straight to the right with the constant speed of 1 meter per microsecond. The collider is big enough so particles can not leave it in the foreseeable time. Write the program which finds the moment of the first collision of any two particles of the collider. In other words, find the number of microseconds before the first moment when any two particles are at the same point. Input The first line contains the positive integer n (1 ≀ n ≀ 200 000) β€” the number of particles. The second line contains n symbols "L" and "R". If the i-th symbol equals "L", then the i-th particle will move to the left, otherwise the i-th symbol equals "R" and the i-th particle will move to the right. The third line contains the sequence of pairwise distinct even integers x1, x2, ..., xn (0 ≀ xi ≀ 109) β€” the coordinates of particles in the order from the left to the right. It is guaranteed that the coordinates of particles are given in the increasing order. Output In the first line print the only integer β€” the first moment (in microseconds) when two particles are at the same point and there will be an explosion. Print the only integer -1, if the collision of particles doesn't happen. Examples Input 4 RLRL 2 4 6 10 Output 1 Input 3 LLR 40 50 60 Output -1 Note In the first sample case the first explosion will happen in 1 microsecond because the particles number 1 and 2 will simultaneously be at the same point with the coordinate 3. In the second sample case there will be no explosion because there are no particles which will simultaneously be at the same point.
2
7
n = input() d = [i for i in raw_input()] cord = [int(i) for i in raw_input().split()] cd = [(cord[i],d[i]) for i in xrange(n)] cd.sort() ans = 10**19 for i in xrange(n-1): if((cd[i][1]!=cd[i+1][1]) and (cd[i][1]=='R') and (cd[i][0]<cd[i+1][0])): temp = abs(cd[i][0]-cd[i+1][0])/2 ans = min(ans,temp) if(ans==10**19): ans = -1 print ans
PYTHON