Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = 3e5 + 10; int ok, n, m; struct Seg { static const int maxn = 1e5 + 10; struct node { int v, lazy; } tree[maxn << 3]; void build_tree() { memset(tree, 0, sizeof(tree)); } void push_down(int now, int l, int r) { if (tree[now].lazy) { tree[(now << 1)].lazy |= tree[now].lazy; tree[(now << 1)].v |= tree[now].v; tree[((now << 1) | 1)].lazy |= tree[now].lazy; tree[((now << 1) | 1)].v |= tree[now].v; } return; } void push_up(int now) { tree[now].v = tree[(now << 1)].v & tree[((now << 1) | 1)].v; } void insert(int now, int l, int r, int ql, int qr, int tt) { if (ql <= l && r <= qr) { tree[now].v |= tt; tree[now].lazy |= tt; return; } if (tree[now].lazy) push_down(now, l, r); if (ql <= ((l + r) >> 1)) insert((now << 1), l, ((l + r) >> 1), ql, qr, tt); if (((l + r) >> 1) + 1 <= qr) insert(((now << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr, tt); push_up(now); } int query(int now, int l, int r, int ql, int qr) { if (ql <= l && r <= qr) { return tree[now].v; } if (tree[now].lazy) push_down(now, l, r); int res = (1 << 30) - 1; if (ql <= ((l + r) >> 1)) { res &= query((now << 1), l, ((l + r) >> 1), ql, qr); } if (((l + r) >> 1) + 1 <= qr) { res &= query(((now << 1) | 1), ((l + r) >> 1) + 1, r, ql, qr); } return res; } } T; int q1[N], q2[N], q3[N]; int main() { int x, y, z; while (scanf("%d%d", &n, &m) != EOF) { T.build_tree(); ok = 1; for (int i = 0; i < m; i++) { scanf("%d%d%d", &x, &y, &z); q1[i] = x; q2[i] = y; q3[i] = z; T.insert(1, 1, n, x, y, z); } int flag = 1; for (int i = 0; i < m; i++) { if (T.query(1, 1, n, q1[i], q2[i]) != q3[i]) flag = 0; } if (!flag) printf("NO\n"); else { printf("YES\n"); for (int i = 1; i <= n; i++) { printf("%d%c", T.query(1, 1, n, i, i), i == n ? '\n' : ' '); } } } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimization("O3") #pragma GCC optimization("unroll-loops") using namespace std; const int MAXN = 1e5 + 5, MAXBITS = 30, MAXBASE = 1 << 18; int n, m, base = 1, a[MAXN], t[MAXBASE * 2], q[MAXN], l[MAXN], r[MAXN], sum[MAXN]; void build() { for (int i = 1; i <= base; ++i) if (i <= n) t[base + i - 1] = a[i]; else t[base + i - 1] = (1 << 30) - 1; for (int i = base - 1; i >= 1; --i) t[i] = t[2 * i] & t[2 * i + 1]; } int query(int l, int r, int left, int right, int node) { if (left > r || right < l) return (1 << 30) - 1; if (left >= l && right <= r) return t[node]; int mid = (left + right) / 2; return query(l, r, left, mid, node * 2) & query(l, r, mid + 1, right, node * 2 + 1); } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cin >> n >> m; for (int i = 1; i <= m; ++i) cin >> l[i] >> r[i] >> q[i]; for (int bit = 0; bit <= 30; ++bit) { for (int i = 1; i <= n; ++i) sum[i] = 0; for (int i = 1; i <= m; ++i) if ((q[i] >> bit) & 1) { ++sum[l[i]]; --sum[r[i] + 1]; } for (int i = 1; i <= n; ++i) { if (i > 1) sum[i] += sum[i - 1]; if (sum[i] > 0) a[i] |= (1 << bit); } } while (base < n) base *= 2; build(); for (int i = 1; i <= m; ++i) if (query(l[i] - 1, r[i] - 1, 0, base - 1, 1) != q[i]) { cout << "NO\n"; exit(0); } cout << "YES\n"; for (int i = 1; i <= n; ++i) cout << a[i] << " "; cout << "\n"; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int ma[500000]; vector<pair<pair<int, int>, long long int> > v; long long int seg[500000]; long long int ans[500000]; long long int all = 0; long long int qry(int index, int start, int end, int qs, int qe) { if (start > end || end < qs || start > qe) { return all; } if (start >= qs && end <= qe) { return seg[index]; } long long int q1 = qry(2 * index, start, (start + end) / 2, qs, qe); long long int q2 = qry(2 * index + 1, ((start + end) / 2) + 1, end, qs, qe); return q1 & q2; } void build(int index, int start, int end) { if (start > end) return; if (start == end) { seg[index] = ans[start]; return; } build(2 * index, start, (start + end) / 2); build(2 * index + 1, ((start + end) / 2) + 1, end); seg[index] = seg[2 * index] & seg[2 * index + 1]; } int main() { all = 0; for (int i = 0; i <= 30; i++) all = all | (1 << i); int n, m; scanf("%d %d", &n, &m); for (int i = 0; i <= 4 * n; i++) seg[i] = all; for (int i = 0; i < m; i++) { int l, r; long long int va; scanf("%d %d %lld", &l, &r, &va); v.push_back(make_pair(make_pair(l, r), va)); } for (int i = 0; i <= 30; i++) { for (int k = 0; k <= n; k++) ma[k] = 0; for (int j = 0; j < m; j++) { int l = v[j].first.first; int r = v[j].first.second; long long int val = v[j].second; if (val & (1 << i)) { ma[l]++; ma[r + 1]--; } } for (int k = 1; k <= n; k++) { ma[k] += ma[k - 1]; if (ma[k] >= 1) ans[k] = ans[k] | (1 << i); } } build(1, 1, n); int f = 0; for (int i = 0; i < m; i++) { int l, r; long long int val; l = v[i].first.first; r = v[i].first.second; val = v[i].second; long long int aa = qry(1, 1, n, l, r); if (aa != val) { f = 1; break; } } if (f == 1) { cout << "NO" << endl; return 0; } else { cout << "YES" << endl; for (int i = 1; i <= n; i++) { printf("%lld ", ans[i]); } } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class Main{ final boolean isFileIO = false; BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); String delim = " "; public static void main(String[] args) throws IOException { Main m = new Main(); m.initIO(); m.solve(); m.in.close(); m.out.close(); } public void initIO() throws IOException { if(!isFileIO) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { in = new BufferedReader(new FileReader("B.txt")); out = new PrintWriter("output.txt"); } } String nextToken() throws IOException { if(!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(delim); } String readLine() throws IOException { return in.readLine(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } class Query { public int l, r, q; public Query(int l, int r, int q) { this.l = l; this.r = r; this.q = q; } } public void solve() throws IOException { int n, m; n = nextInt(); m = nextInt(); int[] a = new int[n]; Query[] queries = new Query[m]; for(int i = 0; i < m; i++) { queries[i] = new Query(nextInt() - 1, nextInt() - 1, nextInt()); } HashMap<Integer, ArrayList<Query>> open = new HashMap<Integer, ArrayList<Query>>(); HashMap<Integer, ArrayList<Query>> close = new HashMap<Integer, ArrayList<Query>>(); for(int i = 0; i < m; i++) { int l = queries[i].l; int r = queries[i].r; ArrayList<Query> listOpen = open.get(l); ArrayList<Query> listClose = close.get(r); if(listOpen == null) { listOpen = new ArrayList<Query>(); } if(listClose == null) { listClose = new ArrayList<Query>(); } listOpen.add(queries[i]); listClose.add(queries[i]); open.put(l, listOpen); close.put(r, listClose); } int[] bits = new int[31]; for(int i = 0; i < n; i++) { ArrayList<Query> listOpen = open.get(i); ArrayList<Query> listClose = close.get(i); if(listOpen != null) { for(int j = 0; j < listOpen.size(); j++) { int q = listOpen.get(j).q; for(int z = 0; z < 31; z++) { if((q & (1 << z)) > 0) { bits[z]++; } } } } for(int j = 0; j < 31; j++) { if(bits[j] > 0) { a[i] |= (1 << j); } } if(listClose != null) { for(int j = 0; j < listClose.size(); j++) { int q = listClose.get(j).q; for(int z = 0; z < 31; z++) { if((q & (1 << z)) > 0) { bits[z]--; } } } } } int[][] d = new int[n + 1][31]; for(int i = 1; i <= n; i++) { for(int j = 0; j < 31; j++) { d[i][j] = d[i - 1][j] + ((a[i - 1] & (1 << j)) > 0 ? 1 : 0); } } for(int i = 0; i < m; i++) { int l = queries[i].l; int r = queries[i].r; int q = queries[i].q; for(int j = 0; j < 31; j++) { bits[j] = d[r + 1][j] - d[l][j]; } for(int j = 0; j < 31; j++) { if((q & (1 << j)) > 0) { if(bits[j] != (r - l + 1)) { out.println("NO"); return; } } else { if(bits[j] == (r - l + 1)) { out.println("NO"); return; } } } } out.println("YES"); for(int i = 0; i < n; i++) { out.print(a[i] + " "); } out.println(); } } class Utils { public static long binpow(long a, long exp, long mod) { if(exp == 0) { return 1; } if(exp % 2 == 0) { long temp = binpow(a, exp / 2, mod); return (temp * temp) % mod; } else { return (binpow(a, exp - 1, mod) * a) % mod; } } public static long inv(long a, long mod) { return binpow(a, mod - 2, mod); } public static long addmod(long a, long b, long mod) { return (a + b + 2 * mod) % mod; } public static long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author karan173 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { int n, m; int masks[]; int f[][]; int ll[]; int rr[]; int qq[]; int cf[][]; public void solve(int testNumber, FastReader in, PrintWriter out) { n = in.ni (); m = in.ni (); f = new int[30][n + 1]; cf = new int[30][n]; ll = new int[m]; rr = new int[m]; qq = new int[m]; for (int i = 0; i < m; i++) { int l = in.ni () - 1; int r = in.ni () - 1; int q = in.ni (); add(l,r,q); ll[i] = l; rr[i] = r; qq[i] = q; } masks = new int[n]; for (int i = 0; i < 30; i++) { for (int j = 0; j < n; j++) { if (j > 0) { f[i][j] += f[i][j - 1]; cf[i][j] = cf[i][j - 1]; } if (f[i][j] > 0) { masks[j] |= (1 << i); cf[i][j]++; } } } for (int i = 0; i < m; i++) { int l = ll[i]; int r = rr[i]; int q = qq[i]; if (!test (l, r, q)) { out.println ("NO"); return; } } out.println ("YES"); for (int i = 0; i < n; i++) { out.print (masks[i] + " "); } out.println (); } private boolean test(int l, int r, int q) { int bit = 0; int ran = r - l + 1; while (bit<30) { int rightCnt = cf[bit][r]; int leftCnt = l == 0 ? 0 : cf[bit][l - 1]; int cnt = rightCnt - leftCnt; if (q % 2 == 0) { if (cnt == ran) { return false; } } else { if (cnt != ran) { return false; } } q >>= 1; bit++; } return true; } private void add(int ll, int rr, int q) { int bit = 0; while (q != 0) { if (q % 2 == 1) { f[bit][ll]++; f[bit][rr+1]--; } q >>= 1; bit++; } } } class FastReader { public InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public FastReader() { } public int read() { if (numChars == -1) { throw new InputMismatchException (); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read (buf); } catch (IOException e) { throw new InputMismatchException (); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int ni() { int c = read (); while (isSpaceChar (c)) c = read (); int sgn = 1; if (c == '-') { sgn = -1; c = read (); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException (); } res *= 10; res += c - '0'; c = read (); } while (!isSpaceChar (c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar (c); } return isWhitespace (c); } public static boolean isWhitespace(int c) { return c==' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); new Main().run(in, out); out.close(); } void run(FastScanner in, PrintWriter out) { int N = in.nextInt(); int M = in.nextInt(); int[] a = new int[N+1]; Arrays.fill(a, 0x7fffffff); int[][] queries = new int[M][3]; while (M-- > 0) { queries[M][0] = in.nextInt(); queries[M][1] = in.nextInt(); queries[M][2] = in.nextInt(); } SegmentTree st = new SegmentTree(N); for (int i = 0; i < queries.length; i++) { st.or(1, queries[i][0], queries[i][1], queries[i][2]); } boolean possible = true; for (int i = 0; i < queries.length; i++) { int x = st.and(1, queries[i][0], queries[i][1]); if (x != queries[i][2]) { possible = false; break; } } if (!possible) { out.println("NO"); return; } out.println("YES"); for (int i = 1; i <= N; i++) { out.print(st.and(1, i, i) + " "); } out.println(); } class SegmentTree { int[] lo; int[] hi; int[] st; int[] delta; SegmentTree(int N) { lo = new int[4*N+4]; hi = new int[4*N+4]; st = new int[4*N+4]; delta = new int[4*N+4]; getBounds(1, 0, N); } void getBounds(int i, int a, int b) { lo[i] = a; hi[i] = b; if (a == b) return; int m = (a+b)>>1; getBounds(2*i, a, m); getBounds(2*i+1, m+1, b); } void or(int i, int a, int b, int x) { if (b < lo[i] || a > hi[i]) return; if (a <= lo[i] && hi[i] <= b) { delta[i] |= x; st[i] |= x; return; } prop(i); or(2*i, a, b, x); or(2*i+1, a, b, x); } void prop(int i) { if (delta[i] == 0) return; delta[2*i] |= delta[i]; st[2*i] |= delta[i]; delta[2*i+1] |= delta[i]; st[2*i+1] |= delta[i]; delta[i] = 0; } int and(int i, int a, int b) { if (b < lo[i] || a > hi[i]) return 0x7fffffff; if (a <= lo[i] && hi[i] <= b) return st[i]; prop(i); return and(2*i, a, b) & and(2*i+1, a, b); } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> const int MAX = 100005, INF = (1 << 30) - 1; struct segtree { int a[MAX << 2], o[MAX << 2], ql, qr, qv; void pushDown(int x) { if (o[x]) { a[x << 1] |= o[x]; a[x << 1 | 1] |= o[x]; o[x << 1] |= o[x]; o[x << 1 | 1] |= o[x]; o[x] = 0; } } int query(int x, int l, int r) { if (l >= ql && r <= qr) return a[x]; pushDown(x); int mid = (l + r) >> 1, ret = INF; if (ql <= mid) ret &= query(x << 1, l, mid); if (qr > mid) ret &= query(x << 1 | 1, mid + 1, r); return ret; } void update(int x, int l, int r) { if (l >= ql && r <= qr) { o[x] |= qv; a[x] |= qv; return; } pushDown(x); int mid = (l + r) >> 1; if (ql <= mid) update(x << 1, l, mid); if (qr > mid) update(x << 1 | 1, mid + 1, r); a[x] = a[x << 1] & a[x << 1 | 1]; } } sgt; struct query { int l, r, v; } q[MAX]; int n, m; int main() { int i; scanf("%d%d", &n, &m); for (i = 1; i <= m; ++i) { scanf("%d%d%d", &q[i].l, &q[i].r, &q[i].v); sgt.ql = q[i].l, sgt.qr = q[i].r, sgt.qv = q[i].v; sgt.update(1, 1, n); } for (i = 1; i <= m; ++i) { sgt.ql = q[i].l, sgt.qr = q[i].r; if (sgt.query(1, 1, n) != q[i].v) { printf("NO\n"); return 0; } } printf("YES\n"); for (i = 1; i <= n; ++i) { sgt.ql = sgt.qr = i; printf("%d%c", sgt.query(1, 1, n), i == n ? '\n' : ' '); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int Set(int N, int pos) { return N = N | (1 << pos); } int reset(int N, int pos) { return N = N & ~(1 << pos); } bool check(int N, int pos) { return (bool)(N & (1 << pos)); } void CI(int &_x) { scanf("%d", &_x); } void CO(int &_x) { cout << _x; } template <typename T> void getarray(T a[], int n) { for (int i = 0; i < n; i++) cin >> a[i]; } template <typename T> void printarray(T a[], int n) { for (int i = 0; i < n - 1; i++) cout << a[i] << " "; cout << a[n - 1] << endl; } const double EPS = 1e-9; const int INF = 0x7f7f7f7f; int dr8[8] = {1, -1, 0, 0, 1, -1, -1, 1}; int dc8[8] = {0, 0, -1, 1, 1, 1, -1, -1}; int dr4[4] = {0, 0, 1, -1}; int dc4[4] = {-1, 1, 0, 0}; int kn8r[8] = {1, 2, 2, 1, -1, -2, -2, -1}; int kn8c[8] = {2, 1, -1, -2, -2, -1, 1, 2}; int ar[100005]; int l[100000 + 5], r[100000 + 5], q[100000 + 5], sum[100000 + 5]; int a[100000 + 5], tree[3 * 100000 + 5]; void init(int node, int b, int e) { if (b == e) { tree[node] = a[b - 1]; return; } int left = node * 2; int right = left + 1; int mid = (b + e) / 2; init(left, b, mid); init(right, mid + 1, e); tree[node] = tree[left] & tree[right]; } int query(int node, int b, int e, int x, int y) { if (x > e || b > y) return (1 << 30) - 1; if (b >= x && e <= y) return tree[node]; int left = node * 2; int right = left + 1; int mid = (b + e) / 2; int p1 = query(left, b, mid, x, y); int p2 = query(right, mid + 1, e, x, y); return p1 & p2; } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { int ll, rr, qq; cin >> l[i] >> r[i] >> q[i]; l[i] -= 1; } for (int pos = 0; pos <= 30; pos++) { memset(sum, 0, sizeof sum); for (int i = 0; i < m; i++) if (check(q[i], pos)) { sum[l[i]]++; sum[r[i]]--; } for (int i = 1; i < n; i++) sum[i] += sum[i - 1]; for (int i = 0; i < n; i++) if (sum[i] > 0) a[i] = Set(a[i], pos); } init(1, 1, n); for (int i = 0; i < m; i++) { int ans = query(1, 1, n, l[i] + 1, r[i]); if (ans != q[i]) { cout << "NO\n"; return 0; } } cout << "YES\n"; for (int i = 0; i < n; i++) cout << a[i] << " "; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int maxn = 100005; int sum[maxn << 2]; vector<int> v; struct node { int l, r, q; } dot[maxn]; void build(int x, int l, int r) { if (l == r) { sum[l] = 0; return; } int mid = (l + r) / 2; build(x << 1, l, mid); build(x << 1 | 1, mid + 1, r); } void update(int x, int L, int R, int l, int r, int w) { if (l <= L && r >= R) { sum[x] |= w; return; } int mid = (L + R) / 2; if (mid >= r) update(x << 1, L, mid, l, r, w); else if (l > mid) update(x << 1 | 1, mid + 1, R, l, r, w); else { update(x << 1, L, mid, l, mid, w); update(x << 1 | 1, mid + 1, R, mid + 1, r, w); } } int query(int x, int L, int R, int l, int r) { if (l <= L && R <= r) { return sum[x]; } int mid = (L + R) / 2; if (mid >= r) return query(x << 1, L, mid, l, r); else if (l > mid) return query(x << 1 | 1, mid + 1, R, l, r); else return query(x << 1, L, mid, l, mid) & query(x << 1 | 1, mid + 1, R, mid + 1, r); } void find(int x, int l, int r) { if (x != 1) sum[x] |= sum[x / 2]; if (l == r) { v.push_back(sum[x]); return; } int mid = (l + r) / 2; find(x << 1, l, mid); find(x << 1 | 1, mid + 1, r); } int main() { int n, m; scanf("%d%d", &n, &m); build(1, 1, n); for (int i = 1; i <= m; i++) { scanf("%d%d%d", &dot[i].l, &dot[i].r, &dot[i].q); update(1, 1, n, dot[i].l, dot[i].r, dot[i].q); } int flag = 0; for (int i = 1; i <= m; i++) { if (query(1, 1, n, dot[i].l, dot[i].r) != dot[i].q) { flag = 1; break; } } if (flag) printf("NO\n"); else { find(1, 1, n); printf("YES\n"); printf("%d", v[0]); for (int i = 1; i < v.size(); i++) { printf(" %d", v[i]); } printf("\n"); v.clear(); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; template <class A, class B> ostream &operator<<(ostream &out, const pair<A, B> &a) { return out << "(" << a.first << "," << a.second << ")"; } template <class A> ostream &operator<<(ostream &out, const vector<A> &a) { for (const A &it : a) out << it << " "; return out; } template <class A, class B> istream &operator>>(istream &in, pair<A, B> &a) { return in >> a.first >> a.second; } template <class A> istream &operator>>(istream &in, vector<A> &a) { for (A &i : a) in >> i; return in; } ifstream cinn("in.txt"); ofstream coutt("out.txt"); long long poww(const long long &a, long long b, const long long &m = 1000000007) { if (b == 0) return 1; long long first = poww(a, b / 2, m); first = first * first % m; if (b & 1) first = first * a % m; return first; } long long gcd(long long a, long long b) { if (a > b) swap(a, b); if (a == 0) return b; return gcd(b % a, a); } long long rint(long long l, long long r) { return rand() % (r - l + 1) + l; } const long long N = 5e5 + 5; long long st[N]; vector<long long> ans(N + 1); void build(long long n, long long l, long long r) { if (l == r) { st[n] = ans[l]; return; } long long mid = (l + r) / 2; build(n * 2, l, mid); build((n * 2) + 1, mid + 1, r); st[n] = st[n * 2] & st[(n * 2) + 1]; } long long query(long long n, long long l, long long r, long long a, long long b) { if (l > b || r < a) { return -1; } else if (l >= a && r <= b) { return st[n]; } long long mid = (l + r) / 2; long long leftQuery = query(n * 2, l, mid, a, b); long long rightQuery = query(n * 2 + 1, mid + 1, r, a, b); long long q = 0; if (rightQuery == -1) { return leftQuery; } if (leftQuery == -1) { return rightQuery; } return leftQuery & rightQuery; } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long i, j, first; long long n, m; cin >> n >> m; long long bits = 31; set<long long> st[bits]; for (i = 0; i < bits; i++) { for (j = 0; j < n + 1; j++) { st[i].insert(j); } } vector<pair<pair<long long, long long>, long long>> queries; for (i = 0; i < m; i++) { long long left, right, val; cin >> left >> right >> val; queries.push_back({{left, right}, val}); for (j = 0; j < bits; j++) { if ((val & 1 << j)) { long long cur = left; auto it = st[j].lower_bound(cur); while ((it != st[j].end()) && (*it <= right)) { ans[*it] |= (1 << j); st[j].erase(it); it = st[j].lower_bound(cur); } } } } build(1, 1, n); for (i = 0; i < m; i++) { if (query(1, 1, n, queries[i].first.first, queries[i].first.second) != queries[i].second) { cout << "NO" << '\n'; return 0; } } cout << "YES" << '\n'; for (long long i = 1; i < n + 1; i++) { cout << ans[i] << " "; } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int n, m; int t[32][100100]; int l[100001], r[100001], q[100001]; int a[100100]; int st[100001][18]; int Log2[100001]; void buildSparse() { for (int i = 0; i < n; ++i) st[i][0] = a[i]; for (int j = 1; j < 18; ++j) { for (int i = 0; i + (1 << j) - 1 < n; ++i) { st[i][j] = st[i][j - 1] & st[i + (1 << (j - 1))][j - 1]; } } } int f(int l, int r) { int logarithm = Log2[r - l + 1]; return st[l][logarithm] & st[r - (1 << logarithm) + 1][logarithm]; } bool check() { buildSparse(); for (int i = 0; i < m; ++i) { if (f(l[i] - 1, r[i] - 1) != q[i]) return false; } return true; } int main() { Log2[0] = -1; for (int i = 1; i <= 100000; ++i) Log2[i] = Log2[i >> 1] + 1; ios_base::sync_with_stdio(false); cin >> n >> m; for (int i = 0; i < m; ++i) { cin >> l[i] >> r[i] >> q[i]; for (int j = 0; j < 31; ++j) { if (q[i] >> j & 1) { ++t[j][l[i] - 1]; --t[j][r[i]]; } } } for (int id = 0; id < 31; ++id) { for (int i = 0; i < n; ++i) { if (i) t[id][i] += t[id][i - 1]; if (t[id][i]) a[i] |= 1 << id; } } if (check()) { cout << "YES\n"; for (int i = 0; i < n; ++i) cout << a[i] << " "; cout << '\n'; } else cout << "NO\n"; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class Solution { public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); public static StringTokenizer tok; public static class Interval implements Comparable<Interval> { int l; int r; int q; public Interval(int l, int r, int q) { this.l = l; this.r = r; this.q = q; } @Override public int compareTo(Interval o) { if (this.l < o.l) { return -1; } else if (this.l == o.l) { return Integer.compare(this.r, this.l); } else { return 1; } } } public static int nextInt() throws IOException { if (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return Integer.parseInt(tok.nextToken()); } public static int getBit(int a, int k) { return ((a >> k) & 1); } public static int setBit(int a, int k) { return (a | (1 << k)); } public static void main(String[] args) throws IOException { int n = nextInt(); int m = nextInt(); Interval[] intervals = new Interval[m]; for (int i = 0; i < m; i++) { intervals[i] = new Interval(nextInt() - 1, nextInt() - 1, nextInt()); } Arrays.sort(intervals); int[] result = new int[n]; for (int j = 0; j < 30; j++) { int lastR = -1; for (int i = 0; i < m; i++) { if (getBit(intervals[i].q, j) == 1 && intervals[i].r > lastR) { for (int k = Math.max(lastR, intervals[i].l); k <= intervals[i].r; k++) { result[k] = setBit(result[k], j); } lastR = intervals[i].r; } } } boolean possible = true; for (int j = 0; j < 30 && possible; j++) { int lastL = -1; int[] zerosCount = new int[n + 1]; zerosCount[0] = 0; for (int i = 0; i < n; i++) { zerosCount[i + 1] = zerosCount[i] + (getBit(result[i], j) == 0 ? 1 : 0); } for (int i = 0; i < m && possible; i++) { if (getBit(intervals[i].q, j) == 0) { possible = (zerosCount[intervals[i].r + 1] - zerosCount[intervals[i].l] > 0); } } } if (!possible) { System.out.println("NO"); } else { System.out.println("YES"); for (int i = 0; i < n; i++) { System.out.print(result[i] + " "); } } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; public class b { public static void main(String[] args) throws IOException { input.init(System.in); PrintWriter out = new PrintWriter(System.out); int n = input.nextInt(), m = input.nextInt(); int[] as = new int[m], bs = new int[m], cs = new int[m]; IT it = new IT(n); for(int i = 0; i<m; i++) { as[i] = input.nextInt()-1; bs[i] = input.nextInt()-1; cs[i] = input.nextInt(); it.add(as[i], bs[i], cs[i]); } boolean good = true; for(int i = 0; i<m; i++) { good &= it.get(as[i], bs[i]) == cs[i]; } if(good) { out.println("YES"); for(int i = 0; i<n; i++) out.print(it.get(i, i)+" "); } else out.println("NO"); out.close(); } //Minimum Interval Tree static class IT { int[] left,right, val, a, b, prop; IT(int n) { left = new int[4*n]; right = new int[4*n]; val = new int[4*n]; prop = new int[4*n]; a = new int[4*n]; b = new int[4*n]; init(0,0, n-1); } int init(int at, int l, int r) { a[at] = l; b[at] = r; if(l==r) left[at] = right [at] = -1; else { int mid = (l+r)/2; left[at] = init(2*at+1,l,mid); right[at] = init(2*at+2,mid+1,r); } return at++; } //return the min over [x,y] int get(int x, int y) { return go(x,y, 0); } void push(int at) { if(prop[at] != 0) { go3(a[left[at]], b[left[at]], prop[at], left[at]); go3(a[right[at]], b[right[at]], prop[at], right[at]); prop[at] = 0; } } int go(int x,int y, int at) { if(at==-1 || y<a[at] || x>b[at]) return (1<<30) - 1; if(x <= a[at] && y>= b[at]) return val[at]; push(at); return go(x, y, left[at]) & go(x, y, right[at]); } //add v to elements x through y void add(int x, int y, int v) { go3(x, y, v, 0); } void go3(int x, int y, int v, int at) { if(at==-1) return; if(y < a[at] || x > b[at]) return; x = Math.max(x, a[at]); y = Math.min(y, b[at]); if(y == b[at] && x == a[at]) { val[at] |= v; prop[at] |= v; return; } push(at); go3(x, y, v, left[at]); go3(x, y, v, right[at]); val[at] = val[left[at]] & val[right[at]]; } } public static class input { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; using pli = pair<ll, int>; const int INF = 0x3f3f3f3f, N = 1e5 + 5; const ll LINF = 1e18 + 5; int n, m, a[N]; struct query { int l, r, q; } Q[N]; int bit[N << 2][30]; bool tag[N << 2][30]; void pushdown(int p, int k, int l, int r) { bool &x = tag[p][k]; int mid = (l + r) >> 1; bit[p << 1][k] = mid - l + 1; bit[p << 1 | 1][k] = r - mid; tag[p << 1][k] = tag[p << 1 | 1][k] = x; x = 0; } void update(int p, int l, int r, int x, int y, int k) { if (l >= x && r <= y) { bit[p][k] = r - l + 1; tag[p][k] = 1; return; } if (tag[p][k]) pushdown(p, k, l, r); int mid = (l + r) >> 1; if (x <= mid) update(p << 1, l, mid, x, y, k); if (y > mid) update(p << 1 | 1, mid + 1, r, x, y, k); } bool query(int p, int l, int r, int x, int y, int k) { if (l >= x && r <= y) return bit[p][k] != (r - l + 1); if (tag[p][k]) pushdown(p, k, l, r); int mid = (l + r) >> 1; if (x <= mid) if (query(p << 1, l, mid, x, y, k)) return 1; if (y > mid) if (query(p << 1 | 1, mid + 1, r, x, y, k)) return 1; return 0; } void find(int p, int l, int r) { if (l == r) { for (int k = 0; k < 30; k++) a[l] |= (bit[p][k] << k); return; } for (int k = 0; k < 30; k++) if (tag[p][k]) pushdown(p, k, l, r); int mid = (l + r) >> 1; find(p << 1, l, mid); find(p << 1 | 1, mid + 1, r); } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> m; bool ok = 1; for (int i = 1; i <= m; i++) { cin >> Q[i].l >> Q[i].r >> Q[i].q; for (int j = 0; j < 30; j++) { if ((Q[i].q >> j) & 1) update(1, 1, n, Q[i].l, Q[i].r, j); } } for (int i = 1; i <= m; i++) { for (int j = 0; j < 30; j++) { if (!((Q[i].q >> j) & 1)) { ok = query(1, 1, n, Q[i].l, Q[i].r, j); if (!ok) break; } } if (!ok) break; } if (ok) { cout << "YES" << '\n'; find(1, 1, n); for (int i = 1; i <= n; i++) cout << a[i] << " \n"[i == n]; } else { cout << "NO" << '\n'; } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
//package round275; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class B { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), m = ni(); int[][] cs = new int[m][]; for(int i = 0;i < m;i++){ cs[i] = new int[]{ni()-1, ni()-1, ni()}; } int[] ret = new int[n]; for(int d = 0;d < 30;d++){ int[] imos = new int[n+1]; for(int i = 0;i < m;i++){ if(cs[i][2]<<~d<0){ imos[cs[i][0]]++; imos[cs[i][1]+1]--; } } for(int i = 1;i < n;i++){ imos[i] += imos[i-1]; } for(int i = 0;i < n;i++){ if(imos[i] > 0)imos[i] = 1; } int[] cum = new int[n+1]; for(int i = 1;i <= n;i++){ cum[i] = cum[i-1] + imos[i-1]; } for(int i = 0;i < m;i++){ if(cs[i][2]<<~d >= 0){ if(cum[cs[i][1]+1]-cum[cs[i][0]] == cs[i][1]-cs[i][0]+1){ out.println("NO"); return; } } } for(int i = 0;i < n;i++){ ret[i] |= imos[i]<<d; } } out.println("YES"); for(int i = 0;i < n;i++){ out.print(ret[i] + " "); } out.println(); // for(int i = 0;i < m;i++){ // int a = -1; // for(int j = cs[i][0];j <= cs[i][1];j++){ // a &= ret[j]; // } // if(a != cs[i][2])throw new RuntimeException(); // } } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new B().run(); } private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long getMid(long long start, long long end) { return start + (end - start) / 2; } long long getFin_helper(vector<long long> &seg_tree, long long index, long long val) { if (2 * index + 1 < seg_tree.size() && 2 * index + 2 < seg_tree.size()) { seg_tree[index] = getFin_helper(seg_tree, 2 * index + 1, val | seg_tree[index]) & getFin_helper(seg_tree, 2 * index + 2, val | seg_tree[index]); } else { seg_tree[index] |= val; } return seg_tree[index]; } void updateValue_helper(vector<long long> &seg_tree, long long segment_start, long long segment_end, long long query_start, long long query_end, long long diff, long long index) { if (query_start <= segment_start && query_end >= segment_end) { seg_tree[index] |= diff; return; } if (segment_end < query_start || segment_start > query_end) return; long long mid = getMid(segment_start, segment_end); if (query_end <= mid) { updateValue_helper(seg_tree, segment_start, mid, query_start, query_end, diff, 2 * index + 1); } else if (query_start > mid) { updateValue_helper(seg_tree, mid + 1, segment_end, query_start, query_end, diff, 2 * index + 2); } else { updateValue_helper(seg_tree, segment_start, mid, query_start, mid, diff, 2 * index + 1); updateValue_helper(seg_tree, mid + 1, segment_end, mid + 1, query_end, diff, 2 * index + 2); } } long long getAnd_helper(vector<long long> &seg_tree, long long segment_start, long long segment_end, long long query_start, long long query_end, long long index) { if (query_start <= segment_start && query_end >= segment_end) { return seg_tree[index]; } if (segment_end < query_start || segment_start > query_end) return 0; long long mid = getMid(segment_start, segment_end); if (query_end <= mid) { return getAnd_helper(seg_tree, segment_start, mid, query_start, query_end, 2 * index + 1); } else if (query_start > mid) { return getAnd_helper(seg_tree, mid + 1, segment_end, query_start, query_end, 2 * index + 2); } else { return getAnd_helper(seg_tree, segment_start, mid, query_start, mid, 2 * index + 1) & getAnd_helper(seg_tree, mid + 1, segment_end, mid + 1, query_end, 2 * index + 2); } } void updateValue(vector<long long> &seg_tree, long long query_start, long long query_end, long long diff) { long long l = seg_tree.size(); updateValue_helper(seg_tree, 0, l / 2, query_start, query_end, diff, 0); } long long getFin(vector<long long> &seg_tree) { long long l = seg_tree.size(); return getFin_helper(seg_tree, 0, 0); } long long getAnd(vector<long long> &seg_tree, long long query_start, long long query_end) { long long l = seg_tree.size(); return getAnd_helper(seg_tree, 0, l / 2, query_start, query_end, 0); } long long make_seg_tree(long long n) { long long x = (long long)(ceil(log2(n))); long long max_size = 2 * (long long)pow(2, x) - 1; return max_size; } int main() { ios_base::sync_with_stdio(false); int n; cin >> n; vector<long long> seg_tree(make_seg_tree(n)); int m; cin >> m; vector<long long> query_p; vector<long long> query_q; vector<long long> query_v; for (int i = 0; i < m; i++) { long long p, q, v; cin >> p >> q >> v; query_p.push_back(p); query_q.push_back(q); query_v.push_back(v); updateValue(seg_tree, p - 1, q - 1, v); } getFin(seg_tree); for (int i = 0; i < m; i++) { if (getAnd(seg_tree, query_p[i] - 1, query_q[i] - 1) != query_v[i]) { cout << "NO"; return 0; } } cout << "YES\n"; for (int i = 0; i < n; i++) { cout << seg_tree[seg_tree.size() / 2 + i] << " "; } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Solution { static class FastScanner{ BufferedReader s; StringTokenizer st; public FastScanner(){ st = new StringTokenizer(""); s = new BufferedReader(new InputStreamReader(System.in)); } public FastScanner(File f) throws FileNotFoundException{ st = new StringTokenizer(""); s = new BufferedReader (new FileReader(f)); } public int nextInt() throws IOException{ if(st.hasMoreTokens()) return Integer.parseInt(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextInt(); } } public double nextDouble() throws IOException{ if(st.hasMoreTokens()) return Double.parseDouble(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextDouble(); } } public long nextLong() throws IOException{ if(st.hasMoreTokens()) return Long.parseLong(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextLong(); } } public String nextString() throws IOException{ if(st.hasMoreTokens()) return st.nextToken(); else{ st = new StringTokenizer(s.readLine()); return nextString(); } } public String readLine() throws IOException{ return s.readLine(); } public void close() throws IOException{ s.close(); } } //FastScanner s = new FastScanner(new File("input.txt")); copy inside void solve //PrintWriter ww = new PrintWriter(new FileWriter("output.txt")); static FastScanner s = new FastScanner(); static PrintWriter ww = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String args[])throws IOException{ //Main ob=new Main(); Solution ob=new Solution(); ob.solve(); ww.close(); } ///////////////////////////////////////////// int tree[]; int dp[]; int arr[]; void build(int node,int l,int r){ if(l+1==r){ tree[node]=arr[l]; return; } int mid = (l+r)/2; build(node*2,l,mid); build(node*2+1,mid,r); tree[node]=tree[node*2]&tree[node*2+1]; } /* int query(int i,int j,int node,int l,int h){ if (i == l && j == h) { return tree[node]; } int mid = (l + h) >> 1; int ans = (1 << 30) - 1; if (l < mid) ans &= query(i, Math.min(j, mid),node*2, l, mid); if (mid < h) ans &= query(Math.max(i, mid),j, node*2+1, mid, h); return ans; } */ /* void build(int v, int l, int r) { if (l + 1 == r) { tree[v] = arr[l]; return; } int mid = (l + r) >> 1; build(v * 2, l, mid); build(v * 2 + 1, mid, r); tree[v] = tree[v * 2] & tree[v * 2 + 1]; } */ int query(int v, int l, int r, int L, int R) { if (l == L && r == R) { return tree[v]; } int mid = (L + R) >> 1; int ans = (1<< 30) - 1 ; if (l < mid) ans &= query(v * 2, l, Math.min(r, mid), L, mid); if (mid < r) ans &= query(v * 2 + 1, Math.max(l, mid), r, mid, R); return ans; } ///////////////////////////////////////////// void solve() throws IOException { int n = s.nextInt(); int m = s.nextInt(); int N=1000000; int l[] = new int[N]; int r[] = new int[N]; int q[] = new int[N]; for(int i = 0;i < m;i++){ l[i] = s.nextInt()-1; r[i] = s.nextInt(); q[i] = s.nextInt(); } dp = new int[N]; arr = new int[N]; int power = (int) Math.floor(Math.log(N) / Math.log(2)) + 1; power = (int) ((int) 2 * Math.pow(2, power)); tree = new int[power]; for(int bit = 0;bit <= 30;bit++){ for(int i=0;i<n;i++) dp[i]=0; for(int i=0;i<m;i++){ if (((q[i] >> bit) & 1)==1) { dp[l[i]]++; dp[r[i]]--; } } for(int i=0;i<n;i++){ if(i>0) dp[i]+= dp[i-1]; if(dp[i]>0) arr[i]|=(1<<bit); } } build(1,0,n); //for(int i=0;i<n;i++) //System.out.println(arr[i]+" "); for(int i=0;i<m;i++){ if (query(1, l[i], r[i], 0, n) != q[i]){ ww.println("NO"); return; } } ww.println("YES"); for(int i=0;i<n;i++) ww.print(arr[i]+" "); }//solve }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class D { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); public void run() { int n = in.nextInt(), m = in.nextInt(); int[][] cs = new int[m][]; for (int i = 0; i < m; i++) cs[i] = new int[]{in.nextInt() - 1, in.nextInt() - 1, in.nextInt()}; int[] ret = new int[n]; for (int d = 0; d < 30; d++) { int[] imos = new int[n+1]; for (int i = 0; i < m; i++) { if (cs[i][2]<<~d < 0) { imos[cs[i][0]]++; imos[cs[i][1]+1]--; } } for (int i = 1; i < n; i++) imos[i] += imos[i-1]; for (int i = 0; i < n; i++) if (imos[i] > 0) imos[i] = 1; int[] cum = new int[n+1]; for (int i = 1; i <= n; i++) { cum[i] = cum[i-1] + imos[i-1]; } for (int i = 0; i < m; i++) { if (cs[i][2]<<~d >= 0) { if (cum[cs[i][1]+1] - cum[cs[i][0]] == cs[i][1] - cs[i][0] + 1) { System.out.println("NO"); return; } } } for (int i = 0; i < n; i++) { ret[i] |= imos[i]<<d; } } out.println("YES"); for (int i = 0; i < n; i++) out.print(ret[i] + " "); out.println(); out.close(); } /* boolean exist = true; class SegmentTree { int N; int[] dat; public SegmentTree(int n) { N = Integer.highestOneBit(n) << 1; int size = (N << 1) - 1; dat = new int[size]; Arrays.fill(dat, -1); } int query(int k) { int res = 0; k += N - 1; while (k != 0) { if (dat[k] != -1) res |= dat[k]; k = (k - 1) / 2; } return res; } boolean isCovered(int a, int b) { while (b > 0) { if ((b & 1) == 0 && (a & 1) == 1) return false; b /= 2; a /= 2; } return true; } private void update(int bit, int a, int b, int k, int l, int r) { // System.out.println("query : " + a + " " + b + " " + k + " " + l + " " + r); if (r < a || b < l) return; if (a <= l && r <= b) { if (dat[k] == -1) { dat[k] = bit; } else if (isCovered(bit, dat[k])) { dat[k] |= bit; } else { exist = false; } } else { update(bit, a, b, k * 2 + 1, l, (l + r) / 2); update(bit, a, b, k * 2 + 2, (l + r) / 2 + 1, r); } } void updateQuery(int a, int b, int bit) { update(bit, a, b, 0, 0, N - 1); // printTree(dat); } } void printTree(int[] dat) { int n = 1; for (int i = 0, cnt = 1; i < dat.length; i++, cnt++) { System.out.print(dat[i] + " "); if (n == cnt) { System.out.println(); n *= 2; cnt = 0; } } } public void run() { int n = in.nextInt(), m = in.nextInt(); SegmentTree st = new SegmentTree(n); for (int i = 0; i < m; i++) { int l = in.nextInt(), r = in.nextInt(), q = in.nextInt(); st.updateQuery(l, r, q); } if (exist) { out.println("YES"); for (int i = 1; i <= n; i++) { out.print(st.query(i) + " "); } out.println(); } else { out.println("NO"); } out.close(); } */ public static void main(String[] args) { new D().run(); } public void mapDebug(int[][] a) { System.out.println("--------map display---------"); for (int i = 0; i < a.length; i++) { for (int j = 0; j < a[i].length; j++) { System.out.printf("%3d ", a[i][j]); } System.out.println(); } System.out.println("----------------------------"); System.out.println(); } public void debug(Object... obj) { System.out.println(Arrays.deepToString(obj)); } class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; //stream = new FileInputStream(new File("dec.in")); } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = nextInt(); return array; } long nextLong() { return Long.parseLong(next()); } long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nextLong(); return array; } double nextDouble() { return Double.parseDouble(next()); } double[] nextDoubleArray(int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nextDouble(); return array; } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String[] nextStringArray(int n) { String[] array = new String[n]; for (int i = 0; i < n; i++) array[i] = next(); return array; } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { private static final int MAXBIT = 30; private int seg[], l[], r[], q[], sum[], ans[]; public void solve(int testNumber, InputReader in, PrintWriter out) { int N = in.nextInt(); int M = in.nextInt(); l = new int[M]; r = new int[M]; q = new int[M]; sum = new int[N+1]; ans = new int[N]; seg = new int[4 * N]; for (int i = 0; i < M; i++) { l[i] = in.nextInt() - 1; r[i] = in.nextInt(); q[i] = in.nextInt(); } for (int bit = 0; bit <= MAXBIT; bit++) { for (int i = 0; i < N; i++) sum[i] = 0; for (int i = 0; i < M; i++) { if (((q[i] >> bit) & 1) == 1) { sum[l[i]]++; sum[r[i]]--; } } for (int i = 0; i < N; i++) { if (i > 0) sum[i] += sum[i - 1]; if (sum[i] > 0) { ans[i] |= (1 << bit); } } } build(1, 0, N-1); for (int i = 0; i < M; i++) { if (query(1, l[i], r[i]-1, 0, N-1) != q[i]) { out.println("NO"); return; } } out.println("YES"); for (int i = 0; i < N; i++) { out.print(ans[i] + " "); } out.println(); } private void build(int idx, int l, int r) { if (l == r) { seg[idx] = ans[l]; return; } int mid = (l + r) >> 1; build(2 * idx, l, mid); build(2 * idx + 1, mid+1, r); seg[idx] = seg[idx * 2] & seg[idx * 2 + 1]; } private int query(int idx, int l, int r, int L, int R) { if (l == L && r == R) { return seg[idx]; } int mid = (L + R) >> 1; int ans = (1 << MAXBIT) - 1; if (l <= mid) { ans &= query(idx * 2, l, Math.min(r, mid), L, mid); } if (mid+1 <= r) { ans &= query(idx * 2 + 1, Math.max(l, mid+1), r, mid+1, R); } return ans; } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; const double PI = 4 * atan(1); const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3f; const int MOD = 1e9 + 7; const int MAX_N = 2e6 + 10; int n, c; int L[MAX_N], R[MAX_N], Q[MAX_N]; ll sum[MAX_N]; ll a[MAX_N], t[4 * MAX_N]; void build(int v, int l, int r) { if (l + 1 == r) { t[v] = a[l]; return; } int mid = (l + r) >> 1; build(v * 2, l, mid); build(v * 2 + 1, mid, r); t[v] = t[2 * v] & t[2 * v + 1]; } int query(int v, int l, int r, int A, int B) { if (l == A and r == B) return t[v]; int mid = (A + B) / 2; int ans = (1LL << 30) - 1; if (l < mid) ans &= query(v * 2, l, min(r, mid), A, mid); if (mid < r) ans &= query(v * 2 + 1, max(l, mid), r, mid, B); return ans; } void solve() { for (int bit = 0; bit <= 30; ++bit) { memset(sum, 0, sizeof(sum)); for (int i = 0; i < c; ++i) { if (Q[i] >> bit & 1) { sum[L[i]]++; sum[R[i]]--; } } for (int i = 0; i < n; ++i) { if (i) sum[i] += sum[i - 1]; if (sum[i] > 0) { a[i] |= (1LL << bit); } } } build(1, 0, n); for (int i = 0; i < c; i++) { if (query(1, L[i], R[i], 0, n) != Q[i]) { cout << "NO\n"; return; } } cout << "YES\n"; for (int i = 0; i < n; ++i) { cout << a[i] << ' '; } cout << '\n'; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cin >> n >> c; for (int i = 0; i < c; ++i) { cin >> L[i] >> R[i] >> Q[i]; L[i]--; } solve(); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; struct nod { int l, r; long long int q; } nods[100000 + 10]; bool compare(nod x, nod y) { if (x.l == y.l) return x.r < y.r; return x.l < y.l; } long long int ans[100000 + 10]; int bits[35]; int last[35]; long long int p2[35]; long long int segs[5 * 100000 + 10]; void build(int nod, int b, int e) { if (b == e) { segs[nod] = ans[b]; } else { int mid = (b + e) / 2; build(2 * nod + 1, b, mid); build(2 * nod + 2, mid + 1, e); segs[nod] = segs[2 * nod + 1] & segs[2 * nod + 2]; } } long long int query(int nod, int b, int e, int l, int r) { if (b >= l && e <= r) { long long int u = segs[nod]; return u; } int mid = (b + e) / 2; if (r <= mid) { long long int u = query(2 * nod + 1, b, mid, l, r); return u; } if (l > mid) { long long int u = query(2 * nod + 2, mid + 1, e, l, r); return u; } long long int v1 = query(2 * nod + 1, b, mid, l, r); long long int v2 = query(2 * nod + 2, mid + 1, e, l, r); long long int v = v1 & v2; return v; } int main() { int i, n, m; scanf("%d %d", &n, &m); p2[0] = 1; for (i = 1; i <= 30; i++) { last[i] = 0; bits[i] = 0; p2[i] = p2[i - 1] + p2[i - 1]; } for (i = 1; i <= m; i++) scanf("%d %d %lld", &nods[i].l, &nods[i].r, &nods[i].q); sort(nods + 1, nods + m + 1, compare); int j = 1; for (i = 1; i <= n; i++) { while (j <= m && nods[j].l <= i) { long long int temp = nods[j].q; for (int k = 1; k <= 30; k++) { if (temp % 2 == 1) last[k] = max(last[k], nods[j].r); temp = temp / 2; } j++; } long long int val = 0; for (int k = 1; k <= 30; k++) { if (last[k] < i) bits[k] = 0; else bits[k] = 1; val = val + p2[k - 1] * bits[k]; } ans[i] = val; } int fl = 1; build(0, 1, n); for (int i = 1; i <= m; i++) { long long int res = query(0, 1, n, nods[i].l, nods[i].r); if (res != nods[i].q) { fl = 0; printf("NO\n"); return 0; } } printf("YES\n"); for (i = 1; i <= n; i++) { printf("%lld ", ans[i]); } printf("\n"); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const long long N = 1e5 + 10, allone = ((long long)1 << 31) - 1; long long segment[3 * N], segmentand[3 * N], n, q, l[N], r[N], k[N], a[N]; void addSEG(int L, int R, int num, int s, int f, int id) { if (R <= s || L >= f || s == f) return; if (L <= s && R >= f) { segment[id] = (segment[id] | num); return; } long long mid = (s + f) / 2; addSEG(L, R, num, s, mid, id * 2); addSEG(L, R, num, mid, f, id * 2 + 1); } void findval(int L, int R, int num, int s, int f, int id) { if (R <= s || L >= f || s == f) return; num = (num | segment[id]); if (s == f - 1) { segmentand[id] = num; a[L] = num; return; } long long mid = (s + f) / 2; findval(L, R, num, s, mid, id * 2); findval(L, R, num, mid, f, id * 2 + 1); segmentand[id] = (segmentand[id * 2] & segmentand[id * 2 + 1]); } long long findand(int L, int R, int s, int f, int id) { if (L >= f || R <= s || s == f) return allone; if (L <= s && R >= f) return segmentand[id]; int mid = (s + f) / 2; return (findand(L, R, s, mid, id * 2) & findand(L, R, mid, f, id * 2 + 1)); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> q; for (int i = 0; i < q; i++) { cin >> l[i] >> r[i] >> k[i]; addSEG(l[i] - 1, r[i], k[i], 0, n, 1); } for (int i = 0; i < n; i++) findval(i, i + 1, 0, 0, n, 1); for (int i = 0; i < q; i++) if (findand(l[i] - 1, r[i], 0, n, 1) != k[i]) return (cout << "NO"), 0; cout << "YES" << endl; for (int i = 0; i < n; i++) cout << a[i] << " "; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Collections; import java.util.HashSet; import java.util.Map; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import org.omg.CORBA.REBIND; public class solver { BufferedReader in; PrintWriter out; StringTokenizer tok; static final boolean OJ = System.getProperty("ONLINE_JUDGE") != null; void init() throws FileNotFoundException{ if (OJ){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while (tok == null || !tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()," :"); } return tok.nextToken(); } int readInt() throws NumberFormatException, IOException{ return Integer.parseInt(readString()); } double readDouble() throws NumberFormatException, IOException{ return Double.parseDouble(readString()); } long readLong() throws NumberFormatException, IOException{ return Long.parseLong(readString()); } long time; void run(){ try{ time = System.currentTimeMillis(); init(); solve(); if (!OJ) System.err.println(System.currentTimeMillis() - time); out.close(); in.close(); }catch (Exception e){ e.printStackTrace(); } } long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } class SegmentTree{ int[] a; int[] b; int[] flag; int n; int size; int stand = (1 << 31) - 1; int def = (1 << 30) - 1; SegmentTree(int n){ this.n = n; size = 4 * n; a = new int[size]; Arrays.fill(a, stand); flag = new int[size]; Arrays.fill(flag, stand); b = new int[size]; Arrays.fill(b, stand); } void push(int v){ if (v >= size) return; if (flag[v] == stand) return; if (a[v] == stand) a[v] = 0; a[v] |= flag[v]; if (v*2 < size){ if (flag[v*2] == stand) flag[v*2] = flag[v]; else flag[v*2] |= flag[v]; } if (v*2+1 < size){ if (flag[v*2+1] == stand) flag[v*2+1] = flag[v]; else flag[v*2+1] |= flag[v]; } flag[v] = stand; } void set(int v,int tl,int tr,int left,int right, int q){ push(v); if (tl == left && tr == right){ flag[v] = q; push(v); return; } int mid = (tl + tr) / 2; if (right <= mid){ set(v*2,tl,mid,left,right,q); }else{ if (left > mid){ set(v*2+1,mid+1,tr,left,right,q); }else{ set(v*2,tl,mid,left,mid,q); set(v*2+1,mid+1,tr,mid+1,right,q); } } push(v*2); push(v*2+1); a[v] = a[v*2] | a[v*2+1]; } int get(int v, int tl, int tr, int left, int right){ if (tl == left && tr == right){ return b[v]; } int mid = (tl + tr) / 2; if (right <= mid){ return get(v*2,tl,mid,left,right); }else{ if (left > mid){ return get(v*2+1, mid+1,tr,left,right); }else{ return get(v*2,tl,mid,left,mid) & get(v*2+1,mid+1,tr,mid+1,right); } } } void rebuild(int v, int tl, int tr){ push(v); if (tl == tr){ b[v] = a[v]; return; } int mid = (tl + tr) / 2; rebuild(v*2,tl,mid); rebuild(v*2+1,mid+1,tr); b[v] = b[v*2] & b[v*2+1]; } void rebuild(){ rebuild(1,1,n); } void set(int l,int r,int q){ set(1,1,n,l,r,q); } int get(int l,int r){ int res = get(1,1,n,l,r); return res == stand ? def : res; } } void solve() throws NumberFormatException, IOException{ int n = readInt(); int m = readInt(); SegmentTree st = new SegmentTree(n); int[] l = new int[m]; int[] r = new int[m]; int[] q = new int[m]; for (int i=0;i<m;i++){ l[i] = readInt(); r[i] = readInt(); q[i] = readInt(); st.set(l[i], r[i], q[i]); } st.rebuild(); boolean ok = true; for (int i=0;i<m;i++){ int p = (st.get(l[i], r[i])); if (p != q[i]) ok = false; } if (!ok){ out.println("NO"); }else{ out.println("YES"); for (int i=1;i<=n;i++){ out.print(st.get(i, i)+" "); } } } public static void main(String[] args) { new solver().run(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; public class D_483 { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(), m = sc.nextInt(); int N = 1; while(N < n) N <<= 1; int[] array = new int[N + 1]; SegmentTree tree = new SegmentTree(array); int[][] cond = new int[m][3]; for(int i = 0; i < m; i++) cond[i] = sc.nextIntArray(3); for(int i = 0; i < m; i++) tree.update_range(cond[i][0], cond[i][1], cond[i][2]); boolean flag = true; for(int i = 0; i < m; i++) if(tree.query(cond[i][0], cond[i][1]) != cond[i][2]) flag = false; if(flag) { pw.println("YES"); for(int i = 0; i < n; i++) pw.print(tree.query(i + 1, i + 1) + (i == n - 1 ? "\n" : " ")); } else { pw.println("NO"); } pw.flush(); } public static class SegmentTree { int N; int[] in, sTree, lazy; public SegmentTree(int[] array) { in = array; N = array.length - 1; sTree = new int[N<<1]; lazy = new int[N<<1]; build(1, 1, N); } public void build(int node, int b, int e) { if(b == e) { sTree[node] = in[b]; return; } int left = node<<1, right = node<<1|1; int mid = (b + e)>>1; build(left, b, mid); build(right, mid + 1, e); sTree[node] = sTree[left] & sTree[right]; } public int query(int l, int r) { return query(1, 1, N, l, r); } public int query(int node, int b, int e, int l, int r) { if(r < b || l > e) return -1; if(b >= l && e <= r) return sTree[node]; int left = node<<1, right = node<<1|1; int mid = (b + e)>>1; propagate(node, b, e, left, right, mid); int x = query(left, b, mid, l, r), y = query(right, mid + 1, e, l, r); if(x == -1) return y; if(y == -1) return x; return x & y; } public void update_range(int l, int r, int v) { update_range(1, 1, N, l, r, v); } public void update_range(int node, int b, int e, int l, int r, int v) { if(l > e || r < b) return; if(b >= l && e <= r) { sTree[node] |= v; lazy[node] |= v; return; } int left = node<<1, right = node<<1|1; int mid = (b + e)>>1; propagate(node, b, e, left, right, mid); update_range(left, b, mid, l, r, v); update_range(right, mid + 1, e, l, r, v); sTree[node] = sTree[left] & sTree[right]; } public void propagate(int node, int b, int e, int left, int right, int mid) { lazy[left] |= lazy[node]; lazy[right] |= lazy[node]; sTree[left] |= lazy[node]; sTree[right] |= lazy[node]; lazy[node] = 0; } } public static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public int[] nextIntArray(int n) throws IOException { int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = nextInt(); return array; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] array = new Integer[n]; for (int i = 0; i < n; i++) array[i] = new Integer(nextInt()); return array; } public long[] nextLongArray(int n) throws IOException { long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nextLong(); return array; } public double[] nextDoubleArray(int n) throws IOException { double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nextDouble(); return array; } public static int[] shuffle(int[] a) { int n = a.length; Random rand = new Random(); for (int i = 0; i < n; i++) { int tmpIdx = rand.nextInt(n); int tmp = a[i]; a[i] = a[tmpIdx]; a[tmpIdx] = tmp; } return a; } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.DataInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; public class Main { static class Reader { final private int BUFFER_SIZE = 1 << 17; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader(InputStream in) { din = new DataInputStream(in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public byte next() { try { return read(); } catch (Exception e) { throw new InputMismatchException(); } } public String nextString() { StringBuilder sb = new StringBuilder(""); byte c = next(); while (c <= ' ') { c = next(); } do { sb.append((char) c); c = next(); } while (c > ' '); return sb.toString(); } public int nextInt() { int ret = 0; byte c = next(); while (c <= ' ') { c = next(); } boolean neg = c == '-'; if (neg) { c = next(); } do { ret = (ret << 3) + (ret << 1) + c - '0'; c = next(); } while (c > ' '); if (neg) { return -ret; } return ret; } private void fillBuffer() { try { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); } catch (IOException e) { throw new InputMismatchException(); } if (bytesRead == -1) { buffer[0] = -1; } } private byte read() { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } } public static void main(String args[]) throws IOException{ Reader r=new Reader(System.in); PrintWriter pr=new PrintWriter(System.out,false); int n=r.nextInt(); int m=r.nextInt(); int a[]=new int[n]; int l[]=new int[m]; int R[]=new int[m]; int k[]=new int[m]; int temp[]=new int[m]; int tree[][]=new int[4*n][2]; for(int i=0;i<m;i++) { l[i]=r.nextInt()-1;R[i]=r.nextInt()-1;temp[i]=k[i]=r.nextInt(); } int max=20; for(int i=0;i<m;i++) { int count; update(tree,1,0,n-1,l[i],R[i],k[i]); } int t[]=new int[4*n]; traverse(a,tree,1,0,n-1); // construct(a,t,1,0,n-1); for(int i=0;i<m;i++) { if(query(tree,1,0,n-1,l[i],R[i])!=k[i]) { pr.println("NO"); pr.flush(); pr.close(); return; } } pr.println("YES"); for(int i=0;i<n;i++) { pr.print(a[i]+" "); } pr.println(); pr.flush(); pr.close(); } public static void traverse(int a[],int tree[][],int root,int l,int r) { if(tree[root][1]!=0) { tree[root][0]|=tree[root][1]; if(l!=r) { tree[root<<1][1]|=tree[root][1]; tree[(root<<1)+1][1]|=tree[root][1]; } tree[root][1]=0; } if(l==r) { a[l]=tree[root][0]; return; } traverse(a,tree,root<<1,l,(l+r)>>1); traverse(a,tree,(root<<1)+1,((l+r)>>1)+1,r); tree[root][0]=tree[root<<1][0]&tree[(root<<1)+1][0]; } public static void construct(int a[],int tree[], int root,int l ,int r) { if(l==r) { tree[root]=a[l]; return; } construct(a,tree,root<<1,l,(l+r)>>1); construct(a,tree,(root<<1)+1,((l+r)>>1)+1,r); tree[root]=tree[root<<1]&tree[(root<<1)+1]; } public static void update(int tree[][],int root,int l,int r,int begin,int end,int value) { if(tree[root][1]!=0) { tree[root][0]|=tree[root][1]; if(l!=r) { tree[root<<1][1]|=tree[root][1]; tree[(root<<1)+1][1]|=tree[root][1]; } tree[root][1]=0; } if(begin>r||end<l) return; if(begin<=l&&r<=end) { tree[root][0]|=value; if(l!=r) { tree[root<<1][1]|=value; tree[(root<<1)+1][1]|=value; } return; } update(tree,root<<1,l,(l+r)>>1,begin,end,value); update(tree,(root<<1)+1,((l+r)>>1)+1,r,begin,end,value); } static int query(int tree[][],int root,int l,int r,int begin,int end) { if(begin>r||end<l) return Integer.MAX_VALUE; if(begin<=l&&r<=end) { return tree[root][0]; } return query(tree,root<<1,l,(l+r)>>1,begin,end)&query(tree,(root<<1)+1,((l+r)>>1)+1,r,begin,end); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; public class Main { static long finArray[]; static long tree[]; static long ret = (1 << 31) - 1; public static void main(String [] args)throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int array[][] = new int[n + 2][31]; int start [] = new int[m]; int end [] = new int[m]; int value [] = new int[m]; for(int t = 0;t < m;t++){ st = new StringTokenizer(br.readLine()); int l = Integer.parseInt(st.nextToken()); int r = Integer.parseInt(st.nextToken()); int q = Integer.parseInt(st.nextToken()); start[t] = l; end[t] = r; value[t] = q; int cnt = -1; while(q > 0){ cnt++; if((q & 1) == 0){ q /= 2; continue; } array[l][cnt]++; array[r + 1][cnt]--; q /= 2; } } for(int i = 0;i < array[0].length;i++){ int cnt = 0; for(int j = 1;j <= n;j++){ cnt += array[j][i]; if(cnt > 0)array[j][i] = 1; else array[j][i] = 0; } } finArray = new long [n + 1]; tree = new long [4*n + 1]; int pow [] = new int [32]; pow[0] = 1; for(int i = 1;i <= 31;i++) pow[i] = pow[i - 1]*2; for(int i = 1;i <= n;i++){ long cnt = 0; for(int j = 0;j < array[0].length;j++){ cnt += pow[j]*array[i][j]; } finArray[i] = cnt; } //for(int i = 1;i <= n;i++)System.out.println(finArray[i]); buildtree(1,1,n); for(int i = 0;i < m;i++){ if(value[i] != querytree(1,1,n,start[i],end[i])){ System.out.print("NO"); return; } } StringBuilder sb = new StringBuilder(); System.out.println("YES"); for(int i = 1;i <= n;i++) sb.append(finArray[i] + " "); System.out.print(sb); } static void buildtree(int node,int start,int end){ if(start > end)return; if(start == end){ tree[node] = finArray[start]; return; } buildtree(2*node,start,(start + end)/2); buildtree(2*node + 1,(start + end)/2 + 1,end); tree[node] = (tree[2*node] & tree[2*node + 1]); } static long querytree(int node,int start,int end,int i,int j){ if(start > end || start > j || end < i)return ret; if(start >= i && end <= j)return tree[node]; long q1 = querytree(2*node,start,(start + end)/2,i,j); long q2 = querytree(2*node + 1,(start + end)/2 + 1,end,i,j); long res = (q1 & q2); return res; } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
//package codeforces; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * @author muhossain * @since 2020-02-20 */ public class B482 { public static void main(String[] args) { FastScanner fs = new FastScanner(); int n = fs.nextInt(); int m = fs.nextInt(); int[] l = new int[m + 1]; int[] r = new int[m + 1]; int[] q = new int[m + 1]; for (int i = 0; i < m; i++) { l[i] = fs.nextInt(); r[i] = fs.nextInt(); q[i] = fs.nextInt(); } int[] numbers = new int[n]; int[][] segments = new int[n + 1][32]; for (int i = 0; i < m; i++) { int cQ = q[i]; int left = l[i] - 1; int right = r[i] - 1; for (int j = 1; j <= 31; j++) { int tmp = 1 << j - 1; if ((tmp & cQ) > 0) { segments[left][j]++; segments[right + 1][j]--; } } } for (int j = 1; j <= 31; j++) { int sum = 0; for (int i = 0; i < n; i++) { sum += segments[i][j]; if (sum > 0) { int tmp = 1 << j - 1; numbers[i] |= tmp; } } } int[] segmentTree = buildSegmentTree(numbers); boolean valid = true; for (int i = 0; i < m; i++) { int result = query(l[i], r[i], numbers.length, segmentTree); if (result != q[i]) { valid = false; break; } } StringBuilder output; if (!valid) { output = new StringBuilder("NO"); } else { output = new StringBuilder("YES\n"); for (int i = 0; i < numbers.length; i++) { int item = numbers[i]; output.append(item); if (i < numbers.length - 1) { output.append(" "); } } } System.out.println(output); } private static int query(int l, int r, int dataLength, int[] segmentTree) { return queryUtil(1, l - 1, r - 1, 0, dataLength - 1, segmentTree); } private static int queryUtil(int node, int l, int r, int dataStart, int dataEnd, int[] segmentTree) { if (l == dataStart && r == dataEnd) { return segmentTree[node]; } int mid = (dataStart + dataEnd) / 2; if (l >= dataStart && r <= mid) { return queryUtil(2 * node, l, r, dataStart, mid, segmentTree); } if (l > mid && r <= dataEnd) { return queryUtil(2 * node + 1, l, r, mid + 1, dataEnd, segmentTree); } return queryUtil(2 * node, l, mid, dataStart, mid, segmentTree) & queryUtil(2 * node + 1, mid + 1, r, mid + 1, dataEnd, segmentTree); } public static int[] buildSegmentTree(int[] data) { int segmentTreeSize = (int) (2 * Math.pow(2, Math.ceil((Math.log10(data.length) / Math.log10(2))))); int[] segmentTree = new int[segmentTreeSize]; segmentTreeBuildUtil(1, 0, data.length - 1, data, segmentTree); return segmentTree; } public static void segmentTreeBuildUtil(int node, int start, int end, int[] data, int[] segmentTree) { if (start == end) { segmentTree[node] = data[start]; return; } int mid = (start + end) / 2; segmentTreeBuildUtil(2 * node, start, mid, data, segmentTree); segmentTreeBuildUtil(2 * node + 1, mid + 1, end, data, segmentTree); segmentTree[node] = segmentTree[2 * node] & segmentTree[2 * node + 1]; } private static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new FileReader("cases.in")); st = new StringTokenizer(""); } catch (Exception e) { e.printStackTrace(); } } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { String line = ""; try { line = br.readLine(); } catch (Exception e) { e.printStackTrace(); } return line; } public Integer[] nextIntegerArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public char[] nextCharArray() { return nextLine().toCharArray(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class D { class IntervalTree { int[] d; HashSet<Integer> badId; int neutral; boolean and; int cnt = 0; int n; public IntervalTree(int n, boolean and) { this.and = and; neutral = and ? Integer.MAX_VALUE : 0; d = new int[n * 4]; this.n = n; Arrays.fill(d, neutral); badId = new HashSet<Integer>(); } void add(int x) { set(x, cnt++, 0, n - 1, 0); } void remove(int id) { set(neutral, id, 0, n - 1, 0); badId.add(id); } int set(int x, int ind, int L, int R, int i) { if (L > ind || R < ind) return d[i]; if (L == R) { d[i] = badId.contains(ind) ? neutral : x; return d[i]; } int M = (R + L) / 2; int res = set(x, ind, L, M, (i * 2) + 1); if (and) res &= set(x, ind, M + 1, R, (i * 2) + 2); else res |= set(x, ind, M + 1, R, (i * 2) + 2); d[i] = res; return d[i]; } int get(int l, int r, int L, int R, int i) { if (R < l || L > r) return neutral; if (l <= L && r >= R) return d[i]; if (L == R) { if (badId.contains(L)) d[i] = neutral; return d[i]; } int M = (R + L) / 2; if (and) return get(l, r, L, M, (i * 2) + 1) & get(l, r, M + 1, R, (i * 2) + 2); else return get(l, r, L, M, (i * 2) + 1) | get(l, r, M + 1, R, (i * 2) + 2); } } class Interval { int l, r, q; Interval(int l, int r, int q) { this.l = l; this.r = r; this.q = q; } } class Event implements Comparable<Event> { int coord, q, itid; Event pair; Event(int coord, int id, boolean begin, int q) { this.coord = coord; this.id = id; this.begin = begin; this.q = q; } int id; boolean begin; @Override public int compareTo(Event o) { if (this.coord != o.coord) return this.coord - o.coord; if (!this.begin && o.begin) return 1; if (begin && !o.begin) return -1; if (this.id != o.id) return id - o.id; return 0; } } BufferedReader br; StringTokenizer in; PrintWriter out; public String nextToken() throws IOException { while (in == null || !in.hasMoreTokens()) { in = new StringTokenizer(br.readLine()); } return in.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static void main(String[] args) throws IOException { new D().run(); } public void solve() throws IOException { int n = nextInt(); int m = nextInt(); Event[] events = new Event[m << 1]; Interval[] intervals = new Interval[m]; for (int i = 0; i < m; ++i) { int l = nextInt() - 1; int r = nextInt() - 1; int q = nextInt(); intervals[i] = new Interval(l, r, q); events[i * 2] = new Event(l, i, true, q); events[(i * 2) + 1] = new Event(r, i, false, q); events[i * 2].pair = events[(i * 2) + 1]; events[(i * 2) + 1].pair = events[i * 2]; } Arrays.sort(events); int[] a = new int[n]; int cnt = 0; IntervalTree it = new IntervalTree(m, false); TreeSet<Event> ts = new TreeSet<Event>(new Comparator<Event>() { @Override public int compare(Event o1, Event o2) { if (o1.q != o2.q) return o1.q - o2.q; return o1.id - o2.id; } }); for (int i = 0; i < n; ++i) { while (cnt < (m * 2) && events[cnt].coord == i && events[cnt].begin) { it.add(events[cnt].q); ts.add(events[cnt]); events[cnt].itid = it.cnt - 1; ++cnt; } a[i] = ts.size() == 0 ? 239 : it.get(0, m - 1, 0, m - 1, 0); while (cnt < (m * 2) && events[cnt].coord == i) { it.remove(events[cnt].pair.itid); ts.remove(events[cnt].pair); ++cnt; } } IntervalTree it1 = new IntervalTree(n, true); for (int i = 0; i < n; ++i) it1.add(a[i]); for (int i = 0; i < m; ++i) if (intervals[i].q != it1.get(intervals[i].l, intervals[i].r, 0, n - 1, 0)) { out.print("NO"); return; } out.println("YES"); for (int i : a) { out.print(i + " "); } } public void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const long long base = 1331; const long long N = 1e5 + 1; template <typename T> inline void Cin(T& x) { char c = getchar(); x = 0; while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); } template <typename T, typename... Args> inline void Cin(T& a, Args&... args) { Cin(a); Cin(args...); } long long s[N][31], n, m, a[N], l[N], r[N], q[N], res, ST[4 * N]; void build(long long id, long long l, long long r) { if (l == r) { ST[id] = a[l]; return; } long long mid = (l + r) / 2; build(id * 2, l, mid); build(id * 2 + 1, mid + 1, r); ST[id] = ST[id * 2] & ST[id * 2 + 1]; } void Get(long long id, long long l, long long r, long long u, long long v) { if (l > v || r < u) return; if (l >= u && r <= v) { res = res & ST[id]; return; } long long mid = (l + r) / 2; Get(id * 2, l, mid, u, v); Get(id * 2 + 1, mid + 1, r, u, v); } void read(void) { cin >> n >> m; for (long long i = 1; i <= (long long)(m); ++i) { cin >> l[i] >> r[i] >> q[i]; for (long long j = 0; j < (long long)(31); ++j) { if (q[i] >> j & 1 == 1) { s[l[i]][j]++; s[r[i] + 1][j]--; } } } for (long long j = 0; j < (long long)(31); ++j) { for (long long i = 1; i <= (long long)(n); ++i) { s[i][j] += s[i - 1][j]; if (s[i][j] > 0) a[i] += (1 << j); } } build(1, 1, n); for (long long i = 1; i <= (long long)(m); ++i) { res = a[l[i]]; Get(1, 1, n, l[i], r[i]); if (res != q[i]) { cout << "NO"; return; } } cout << "YES" << '\n'; for (long long i = 1; i <= (long long)(n); ++i) cout << a[i] << ' '; } signed main(void) { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); read(); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 19; int a[maxn][30], ff[maxn], l[maxn], r[maxn], q[maxn]; struct Tree { static const int LOW = (1 << 30) - 1; int f(int a, int b) { return (a & b); } vector<int> s; int n; Tree(int n = 0, int def = 0) : s(2 * n, def), n(n) {} void update(int pos, int val) { for (s[pos += n] = val; pos > 1; pos /= 2) s[pos / 2] = f(s[pos & ~1], s[pos | 1]); } int query(int b, int e) { int ra = LOW, rb = LOW; for (b += n, e += n; b < e; b /= 2, e /= 2) { if (b % 2) ra = f(ra, s[b++]); if (e % 2) rb = f(s[--e], rb); } return f(ra, rb); } }; Tree tr(maxn); int main() { cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { cin >> l[i] >> r[i] >> q[i]; l[i]--; r[i]--; } for (int i = 0; i < m; i++) { for (int j = 0; j < 30; j++) { if (q[i] & (1 << j)) { a[l[i]][j]++; a[r[i] + 1][j]--; } } } for (int j = 0; j < 30; j++) { int counter = 0; int toadd = (1 << j); for (int i = 0; i < n; i++) { counter += a[i][j]; if (counter > 0) ff[i] += toadd; } } for (int i = 0; i < n; i++) { tr.update(i, ff[i]); } bool pos = true; for (int i = 0; i < m; i++) { if (tr.query(l[i], r[i] + 1) != q[i]) pos = false; } if (pos) { cout << "YES" << endl; for (int i = 0; i < n; i++) cout << ff[i] << " "; cout << endl; } else cout << "NO" << endl; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Comparator; import java.util.StringTokenizer; public class InterestingArray { static class C implements Comparator<Con> { @Override public int compare(Con arg0, Con arg1) { int a = arg0.l - arg1.l; if(a == 0) a = arg1.r - arg0.r; //big one first return a; } } static class C2 implements Comparator<Con> { @Override public int compare(Con arg0, Con arg1) { int a = arg0.r - arg1.r; if(a == 0) a = arg1.l - arg0.l; return a; } } static class Con { int l; int r; long q; boolean[] bits = new boolean[31]; public Con(int l1, int r1, long q1) { l = l1; r = r1; q = q1; long q0 = q; int bit = 0; while(q0 != 0) { bits[bit] = q0%2 == 1; bit++; if(q0 == 1)break; q0 /= 2; } } boolean includes(Con con) { return (l <= con.l && r >= con.r); } } static void checkbits(long q0) { boolean[] bits = new boolean[31]; int bit = 0; while(true) { bits[bit] = q0%2 != 0; bit++; if(q0 == 1)break; q0 /= 2; } System.out.println(Arrays.toString(bits)); } public static void main(String[] args) { FastReader sc = new FastReader(); int n = sc.nextInt(); int m = sc.nextInt(); Con[] con = new Con[m]; Con[] conend = new Con[m]; C c = new C(); C2 c2 = new C2(); for(int i = 0; i < m; i++) { int l = sc.nextInt()-1; int r = sc.nextInt()-1; long q = sc.nextLong(); con[i] = new Con(l, r, q); conend[i] = new Con(l, r, q); } Arrays.sort(con, c); Arrays.sort(conend, c2); int[] bitin = new int[31]; for(int i = 1; i < m; i++) { if(con[i-1].includes(con[i])) { for(int j = 0; j < 31; j++) { if(con[i-1].bits[j] && !con[i].bits[j]) { System.out.println("NO"); return; } } } if(con[i].includes(con[i-1])) { for(int j = 0; j < 31; j++) { if(con[i].bits[j] && !con[i-1].bits[j]) { System.out.println("NO"); return; } } } } System.out.println("YES"); StringBuilder sb = new StringBuilder(); int nexcon = 0; int nexconend = 0; for(int i = 0; i < n; i++) { while(nexcon < m && con[nexcon].l == i) { for(int k = 0; k < 31; k++) { if(con[nexcon].bits[k]) { bitin[k]++; } } nexcon++; } int cur = 0; int curadd = 1; for(int k = 0; k < 31; k++) { if(bitin[k] > 0) { cur += curadd; } curadd *= 2; } if(i > 0)sb.append(" "); sb.append(cur); while(nexconend < m && conend[nexconend].r == i) { for(int k = 0; k < 31; k++) { if(conend[nexconend].bits[k]) { bitin[k]--; } } nexconend++; } } System.out.println(sb); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); ProblemBInterestingArray solver = new ProblemBInterestingArray(); solver.solve(1, in, out); out.close(); } static class ProblemBInterestingArray { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); Query[] queries = new Query[m]; int[][] bits = new int[30][n + 1]; for (int i = 0; i < m; ++i) { int l = in.nextInt() - 1; int r = in.nextInt() - 1; int q = in.nextInt(); queries[i] = new Query(l, r, q); for (int bit = 0; bit < 30; ++bit) { if ((q & (1 << bit)) > 0) { bits[bit][l]++; bits[bit][r + 1]--; } } } int[] a = new int[n]; for (int bit = 0; bit < 30; ++bit) { for (int i = 0; i < n; ++i) { if (i > 0) bits[bit][i] += bits[bit][i - 1]; if (bits[bit][i] > 0) { a[i] |= 1 << bit; } } } ProblemBInterestingArray.RMQ rmq = new ProblemBInterestingArray.RMQ(a); boolean possible = true; for (Query q : queries) { if (!possible) break; if (rmq.query(q.l, q.r) != q.q) { possible = false; break; } } if (!possible) { out.println("NO"); return; } out.println("YES"); for (int i : a) out.print(i + " "); } class Query { int l; int r; int q; Query(int ll, int rr, int qq) { l = ll; r = rr; q = qq; } } static class RMQ { int[] vs; int[][] lift; public RMQ(int[] vs) { this.vs = vs; int n = vs.length; int maxlog = Integer.numberOfTrailingZeros(Integer.highestOneBit(n)) + 2; lift = new int[maxlog][n]; for (int i = 0; i < n; i++) lift[0][i] = vs[i]; int lastRange = 1; for (int lg = 1; lg < maxlog; lg++) { for (int i = 0; i < n; i++) { lift[lg][i] = lift[lg - 1][i] & lift[lg - 1][Math.min(i + lastRange, n - 1)]; } lastRange *= 2; } } public int query(int low, int hi) { int range = hi - low + 1; int exp = Integer.highestOneBit(range); int lg = Integer.numberOfTrailingZeros(exp); return lift[lg][low] & lift[lg][hi - exp + 1]; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5; int n, m, l, r, p, cnt; int a[maxn + 10], st[(maxn + 10) << 2], tag[(maxn + 10) << 2]; struct node { int l, r, p; node(int a = 0, int b = 0, int c = 0) : l(a), r(b), p(c) {} } cc[maxn + 10]; void pushdown(int o, int l, int r) { if (tag[o]) { int lc = o * 2, rc = o * 2 + 1; tag[lc] |= tag[o]; tag[rc] |= tag[o]; st[lc] |= tag[o]; st[rc] |= tag[o]; tag[o] = 0; } } void add(int o, int l, int r, int ll, int rr, int p) { if (l >= ll && r <= rr) { st[o] |= p; tag[o] |= p; return; } int lc = o * 2, rc = o * 2 + 1, mid = (l + r) / 2; pushdown(o, l, r); if (ll <= mid) add(lc, l, mid, ll, rr, p); if (rr > mid) add(rc, mid + 1, r, ll, rr, p); st[o] = st[lc] & st[rc]; } int query(int o, int l, int r, int ll, int rr) { if (l >= ll && r <= rr) { return st[o]; } int lc = o * 2, rc = o * 2 + 1, mid = (l + r) / 2, p1 = (1 << 30) - 1, p2 = (1 << 30) - 1; pushdown(o, l, r); if (ll <= mid) p1 = query(lc, l, mid, ll, rr); if (rr > mid) p2 = query(rc, mid + 1, r, ll, rr); pushdown(o, l, r); return p1 & p2; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= m; ++i) { scanf("%d%d%d", &l, &r, &p); add(1, 1, n, l, r, p); cc[++cnt] = node(l, r, p); } for (int i = 1; i <= cnt; ++i) { if (query(1, 1, n, cc[i].l, cc[i].r) != cc[i].p) { printf("NO\n"); return 0; } } printf("YES\n"); for (int i = 1; i <= n; ++i) { printf("%d%c", query(1, 1, n, i, i), " \n"[i == n]); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.lang.reflect.Array; import java.math.BigDecimal; import java.math.MathContext; import java.math.RoundingMode; import java.util.*; public class Main implements Runnable { private class Query { private int id; private int l; private int r; private int q; Query(int l,int r,int q,int id) { this.l=l; this.r=r; this.q=q; this.id=id; } } public static void main(String args[]) { new Main().run(); } public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } out.flush(); } private void solve() throws IOException { int n=in.nextInt(); int m=in.nextInt(); Query q[]=new Query[m]; for(int i=0;i<m;i++) q[i]=new Query(in.nextInt()-1, in.nextInt()-1, in.nextInt(), i); int arr[]=new int[n]; Arrays.fill(arr, 0); int inc[]=new int[n+1]; for(int i=0;i<30;i++) { Arrays.fill(inc, 0); for(int j=0;j<m;j++) { if(testbit(q[j].q,i)) { inc[q[j].l]++; inc[q[j].r+1]--; } } int val=0; for(int j=0;j<n;j++) { val+=inc[j]; if(val!=0) arr[j]|=(1<<i); } } int ds=getds(n); int v[]=new int[2*ds]; boolean ok=true; Arrays.fill(v, 0); for(int i=0;i<n;i++) v[i+ds]=arr[i]; for(int i=ds-1;i>0;i--) v[i]=v[2*i]&v[2*i+1]; for(int i=0;i<m;i++) ok&=(accumulate(q[i].l,q[i].r,v,ds)==q[i].q); if(ok) { out.println("YES"); for(int i:arr) { out.printf("%d ",i); } out.println(); } else out.println("NO"); } private int accumulate(int l, int r, int[] v, int ds) { l+=ds; r+=ds; int res=(1<<30)-1; while(l<=r) { if((l&1)==1) res=res&v[l++]; if((r&1)==0) res=res&v[r--]; l>>=1; r>>=1; } return res; } private int getds(int n) { n--; n|=n>>1; n|=n>>2; n|=n>>4; n|=n>>8; n|=n>>16; return n+1; } private boolean testbit(int q, int i) { return ((q>>i)&1)==1; } class Scanner { BufferedReader in; StringTokenizer token; String delim; Scanner(Reader reader) { in=new BufferedReader(reader); token=new StringTokenizer(""); this.delim=" \n"; } Scanner(Reader reader, String delimeters) { in=new BufferedReader(reader); token=new StringTokenizer(""); this.delim=delimeters; } public boolean hasNext() throws IOException { while(!token.hasMoreTokens()) { String line=in.readLine(); if(line==null) return false; token=new StringTokenizer(line,delim); } return true; } String next() throws IOException { return hasNext()?token.nextToken():null; } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } int[] nextInts(int n) throws IOException { int[] res=new int[n]; for(int i=0;i<n;i++) res[i]=nextInt(); return res; } } private Scanner in=new Scanner(new InputStreamReader(System.in),"\n\r\t "); private PrintWriter out=new PrintWriter(new BufferedWriter( new OutputStreamWriter(System.out))); }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class Main { static Scanner scanner = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); static final long INF = (long) 1e18; public static void main(String[] args) throws Exception { //============================================// //answer here: int n = scanner.nextInt(), m = scanner.nextInt(); int[] l = new int[m], r = new int[m], q = new int[m]; int N = 1; while (N < n) N <<= 1; int[] ans = new int[N + 1]; for (int i = 0; i < m; i++) { l[i] = scanner.nextInt(); r[i] = scanner.nextInt(); q[i] = scanner.nextInt(); } for (int bit = 0; bit <= 30; bit++) { int[] sum = new int[n]; for (int i = 0; i < m; i++) { if ((q[i] & (1 << bit)) > 0) { //out.println("bit is "+bit); sum[l[i] - 1]++; if (r[i] < n) sum[r[i]]--; } } for (int i = 0; i < n; i++) { if (i > 0) sum[i] += sum[i - 1]; if (sum[i] > 0) ans[i + 1] |= 1 << bit; } } boolean flag = true; SegmentTree stree = new SegmentTree(ans); for (int i = 0; i < m; i++) { flag &= (q[i] == stree.query(l[i], r[i])); } if (!flag) out.println("NO"); else { out.println("YES"); for (int i = 1; i <= n; i++) { out.print(ans[i] + " "); } } //============================================// out.close(); } } class SegmentTree { // 1-based DS, OOP int N; //the number of elements in the array as a power of 2 (i.e. after padding) int[] array, sTree, lazy; SegmentTree(int[] in) { array = in; N = in.length - 1; sTree = new int[N << 1]; //no. of nodes = 2*N - 1, we add one to cross out index zero lazy = new int[N << 1]; build(1, 1, N); } void build(int node, int b, int e) // O(n) { if (b == e) sTree[node] = array[b]; else { int mid = b + e >> 1; build(node << 1, b, mid); build(node << 1 | 1, mid + 1, e); sTree[node] = sTree[node << 1] & sTree[node << 1 | 1]; } } int query(int i, int j) { return query(1, 1, N, i, j); } int query(int node, int b, int e, int i, int j) // O(log n) { if (i > e || j < b) return ((1 << 31) - 1); if (b >= i && e <= j) return sTree[node]; int mid = b + e >> 1; int q1 = query(node << 1, b, mid, i, j); int q2 = query(node << 1 | 1, mid + 1, e, i, j); return q1 & q2; } } class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } int[] readArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } } class pair implements Comparable<pair> { int t; int c; public pair(int t, int c) { this.t = t; this.c = c; } @Override public String toString() { return t + "" + c; } @Override public int compareTo(pair o) { return o.t - t; } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.PriorityQueue; import java.util.StringTokenizer; import static java.lang.Math.*; import static java.util.Arrays.*; public class Main { public static void main(String[] args) throws IOException { new Main().run(); } BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); private void run() throws IOException { if (new File("input.txt").exists()) in = new BufferedReader(new FileReader("input.txt")); else in = new BufferedReader(new InputStreamReader(System.in)); if (new File("output.txt").exists()) out = new PrintWriter("output.txt"); else out = new PrintWriter(System.out); solve(); in.close(); out.close(); } final int maxn = 100 * 1000 + 10; final int maxLog = 31; int n, m; int d[][] = new int[maxLog][maxn]; int s[][] = new int[maxLog][maxn]; int mask[] = new int[maxn]; int l[] = new int[maxn]; int r[] = new int[maxn]; int q[] = new int[maxn]; PriorityQueue<Event> events = new PriorityQueue<>(); void print() { for (int i = 0; i < n; i++) { int a = 0; for (int j = 0; j < maxLog; j++) { a |= (d[j][i] << j); } out.print(a + " "); } out.println(); } void solve() throws IOException { n = nextInt(); m = nextInt(); for (int i = 0; i < m; i++) { l[i] = nextInt() - 1; r[i] = nextInt() - 1; q[i] = nextInt(); events.add(new Event(l[i], q[i], true)); events.add(new Event(r[i] + 1, q[i], false)); } fill(mask, 0); for (int i = 0; i < n; i++) { while (!events.isEmpty() && events.element().index == i) { final Event event = events.remove(); final int sg = event.isOpen ? 1 : -1; final int q = event.q; for (int j = 0; j < maxLog; j++) mask[j] += sg * ((q >> j) & 1); } for (int j = 0; j < maxLog; j++) d[j][i] = mask[j] > 0 ? 1 : 0; } for (int j = 0; j < maxLog; j++) s[j][0] = d[j][0]; for (int i = 1; i < n; i++) for (int j = 0; j < maxLog; j++) s[j][i] = s[j][i - 1] + d[j][i]; boolean isAns = true; for (int i = 0; i < m && isAns; i++) { for (int j = 0; j < maxLog && isAns; j++) { final int count = s[j][r[i]] - (l[i] > 0 ? s[j][l[i] - 1] : 0); if (((q[i] >> j) & 1) > 0) isAns = (count == r[i] - l[i] + 1); else isAns = (count < r[i] - l[i] + 1); } } out.println(isAns ? "YES" : "NO"); if (isAns) { print(); } } class Event implements Comparable<Event> { int index; int q; boolean isOpen; public Event(int index, int q, boolean isOpen) { super(); this.index = index; this.q = q; this.isOpen = isOpen; } @Override public int compareTo(Event o) { return Integer.compare(index, o.index); } } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } String nextToken() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String str = in.readLine(); if (str == null) return true; st = new StringTokenizer(str); } return false; } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int l[] = new int[m + 10]; int r[] = new int[m + 10]; int v[] = new int[m + 10]; for (int i = 1; i <= m; i++) { l[i] = sc.nextInt(); r[i] = sc.nextInt(); v[i] = sc.nextInt(); updaterange(1, 1, n, l[i], r[i], v[i]); } boolean f = true; for (int i = 1; i <= m; i++) { if (query(1, 1, n, l[i], r[i]) != v[i]) { f = false; break; } } if (!f) { System.out.println("NO"); } else { System.out.println("YES"); for (int i = 1; i <= n; i++) { System.out.print(query(1, 1, n, i, i) + " "); } System.out.println(); } } static int N = 100000; static long tree[] = new long[4 * N + 10]; static long lazy[] = new long[4 * N + 10]; static long query(int node, int start, int end, int left, int right) { if (left <= start && end <= right) { return tree[node]; } pushdown(node, start, end); int mid = (start + end) >> 1; long ans = (2 << 30) - 1; if (left <= mid) { ans &= query(node << 1, start, mid, left, right); } if (right > mid) { ans &= query((node << 1) | 1, mid + 1, end, left, right); } return ans; } static void updaterange(int node, int start, int end, int left, int right, int val) { if (left <= start && end <= right) { tree[node] |= val; lazy[node] |= val; return; } pushdown(node, start, end); int mid = (start + end) >> 1; if (left <= mid) { updaterange(node << 1, start, mid, left, right, val); } if (right > mid) { updaterange((node << 1) | 1, mid + 1, end, left, right, val); } tree[node] = tree[node << 1] & tree[(node << 1) | 1]; } static void pushdown(int node, int start, int end) { if (lazy[node] != 0) { tree[node << 1] |= lazy[node]; tree[(node << 1) | 1] |= lazy[node]; lazy[node << 1] |= lazy[node]; lazy[(node << 1) | 1] |= lazy[node]; lazy[node] = 0; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long int tree[4 * 100001]; vector<long long int> A; void build(long long int i, long long int l, long long int r) { if (l == r) tree[i] = A[l]; else { long long int mid = (l + r) / 2; build(2 * i, l, mid); build(2 * i + 1, mid + 1, r); tree[i] = tree[2 * i] & tree[2 * i + 1]; } } long long int query(long long int i, long long int l, long long int r, long long int ql, long long int qr) { if (ql > r || qr < l) return 1073741823; long long int mid = (l + r) / 2; if (ql <= l && qr >= r) return tree[i]; return query(2 * i, l, mid, ql, qr) & query(2 * i + 1, mid + 1, r, ql, qr); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long int n, m; cin >> n >> m; long long int q[m][3]; for (int i = 0; i < m; i++) for (auto &x : q[i]) cin >> x; vector<vector<long long int> > prefix(30, vector<long long int>(n + 1, 0)); for (int i = 0; i < m; i++) { long long int l = q[i][0]; l--; long long int r = q[i][1], val = q[i][2]; for (int j = 0; j < 30; j++) { if ((val >> j) & 1) prefix[j][l]++, prefix[j][r]--; } } for (int i = 0; i < 30; i++) { for (int j = 1; j <= n; j++) prefix[i][j] += prefix[i][j - 1]; } for (int i = 0; i < n; i++) { long long int ans = 0; long long int pow = 1; for (int j = 0; j < 30; j++) { if (prefix[j][i] > 0) ans += pow; pow *= 2; } A.push_back(ans); } bool ispos = true; build(1, 0, n - 1); for (int i = 0; i < m; i++) { if (!ispos) break; long long int l = q[i][0]; l--; long long int r = q[i][1], val = q[i][2]; r--; long long int pres = query(1, 0, n - 1, l, r); if (pres != val) ispos = false; } if (!ispos) cout << "NO"; else { cout << "YES\n"; for (auto x : A) cout << x << " "; } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Collections; import java.util.HashSet; import java.util.Map; import java.util.Random; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import org.omg.CORBA.REBIND; public class solver { BufferedReader in; PrintWriter out; StringTokenizer tok; static final boolean OJ = System.getProperty("ONLINE_JUDGE") != null; void init() throws FileNotFoundException{ if (OJ){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while (tok == null || !tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()," :"); } return tok.nextToken(); } int readInt() throws NumberFormatException, IOException{ return Integer.parseInt(readString()); } double readDouble() throws NumberFormatException, IOException{ return Double.parseDouble(readString()); } long readLong() throws NumberFormatException, IOException{ return Long.parseLong(readString()); } long time; void run(){ try{ time = System.currentTimeMillis(); init(); solve(); if (!OJ) System.err.println(System.currentTimeMillis() - time); out.close(); in.close(); }catch (Exception e){ e.printStackTrace(); } } long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } class SegmentTree{ int[] a; int[] b; int[] flag; int n; int size; int stand = (1 << 31) - 1; int def = 0; SegmentTree(int n){ this.n = n; size = 4 * n; a = new int[size]; Arrays.fill(a, stand); flag = new int[size]; Arrays.fill(flag, stand); b = new int[size]; Arrays.fill(b, stand); } void push(int v){ if (v >= size) return; if (flag[v] == stand) return; if (a[v] == stand) a[v] = 0; a[v] |= flag[v]; if (v*2 < size){ if (flag[v*2] == stand) flag[v*2] = flag[v]; else flag[v*2] |= flag[v]; } if (v*2+1 < size){ if (flag[v*2+1] == stand) flag[v*2+1] = flag[v]; else flag[v*2+1] |= flag[v]; } flag[v] = stand; } void set(int v,int tl,int tr,int left,int right, int q){ push(v); if (tl == left && tr == right){ flag[v] = q; push(v); return; } int mid = (tl + tr) / 2; if (right <= mid){ set(v*2,tl,mid,left,right,q); }else{ if (left > mid){ set(v*2+1,mid+1,tr,left,right,q); }else{ set(v*2,tl,mid,left,mid,q); set(v*2+1,mid+1,tr,mid+1,right,q); } } push(v*2); push(v*2+1); a[v] = a[v*2] | a[v*2+1]; } int get(int v, int tl, int tr, int left, int right){ if (tl == left && tr == right){ return b[v]; } int mid = (tl + tr) / 2; if (right <= mid){ return get(v*2,tl,mid,left,right); }else{ if (left > mid){ return get(v*2+1, mid+1,tr,left,right); }else{ return get(v*2,tl,mid,left,mid) & get(v*2+1,mid+1,tr,mid+1,right); } } } void rebuild(int v, int tl, int tr){ push(v); if (tl == tr){ b[v] = a[v]; return; } int mid = (tl + tr) / 2; rebuild(v*2,tl,mid); rebuild(v*2+1,mid+1,tr); b[v] = b[v*2] & b[v*2+1]; } void rebuild(){ rebuild(1,1,n); } void set(int l,int r,int q){ set(1,1,n,l,r,q); } int get(int l,int r){ int res = get(1,1,n,l,r); return res == stand ? def : res; } } void solve() throws NumberFormatException, IOException{ int n = readInt(); int m = readInt(); SegmentTree st = new SegmentTree(n); int[] l = new int[m]; int[] r = new int[m]; int[] q = new int[m]; for (int i=0;i<m;i++){ l[i] = readInt(); r[i] = readInt(); q[i] = readInt(); st.set(l[i], r[i], q[i]); } st.rebuild(); boolean ok = true; for (int i=0;i<m;i++){ int p = (st.get(l[i], r[i])); if (p != q[i]) ok = false; } if (!ok){ out.println("NO"); }else{ out.println("YES"); for (int i=1;i<=n;i++){ out.print(st.get(i, i)+" "); } } } public static void main(String[] args) { new solver().run(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { int MAXBITS = 30; int[] create(int n, int[] ls, int[] rs, int[] qs) { int[] res = new int[n]; ArrayList<Constraint> al = new ArrayList<>(); for(int i = 0; i < ls.length; i++) { int l = ls[i], r = rs[i], q = qs[i]; al.add(new Constraint(l, 1, q)); al.add(new Constraint(r + 1, -1, q)); } Collections.sort(al); int cp = 0; int[] count = new int[MAXBITS]; for(int i = 0; i < n; i++) { while(cp < al.size() && al.get(cp).index == i) { Constraint c = al.get(cp); for(int bit = 0; bit < MAXBITS; bit++) { if(((c.val >> bit) & 1) == 1) { count[bit] += c.kind; } } cp++; } for(int bit = 0; bit < MAXBITS; bit++) { if(count[bit] > 0) { res[i] |= (1 << bit); } } } return res; } boolean check(int[] res, int[] ls, int[] rs, int[] qs) { for(int bit = 0; bit < MAXBITS; bit++) { int[] count = new int[res.length + 1]; for(int i = 1; i < count.length; i++) count[i] = count[i - 1] + (((res[i - 1] >> bit) & 1) == 1 ? 1 : 0); for(int query = 0; query < ls.length; query++) { int l = ls[query], r = rs[query], q = qs[query]; int here = count[r + 1] - count[l]; if(((q >> bit) & 1) == 1) { if(here != r - l + 1) return false; } else { if(here >= r - l + 1) return false; } } } return true; } public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(), constraints = in.readInt(); int[] ls = new int[constraints], rs = new int[constraints], qs = new int[constraints]; IOUtils.readIntArrays(in, ls, rs, qs); MiscUtils.decreaseByOne(ls, rs); int[] res = create(n, ls, rs, qs); boolean ok = check(res, ls, rs, qs); if(ok) { out.printLine("YES"); out.printLine(res); } else { out.printLine("NO"); } } class Constraint implements Comparable<Constraint> { int index; int kind; int val; public Constraint(int index, int kind, int val) { this.index = index; this.kind = kind; this.val = val; } public int compareTo(Constraint o) { if(index != o.index) return Integer.compare(index, o.index); if(kind != o.kind) return -Integer.compare(kind, o.kind); return 0; } } } static class MiscUtils { public static void decreaseByOne(int[]... arrays) { for(int[] array : arrays) { for(int i = 0; i < array.length; i++) array[i]--; } } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void print(int[] array) { for(int i = 0; i < array.length; i++) { if(i != 0) writer.print(' '); writer.print(array[i]); } } public void printLine(int[] array) { print(array); writer.println(); } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintStream; import java.util.Arrays; import java.util.StringTokenizer; /** * 482B * * @author artyom */ public class InterestingArray implements Runnable { private static final int MAX_BIT = 30; private BufferedReader in; private PrintStream out; private StringTokenizer tok; private void solve() throws IOException { int n = nextInt(), m = nextInt(); int[] ary = new int[n], sum = new int[n + 1]; int[] l = new int[m], r = new int[m], q = new int[m]; for (int i = 0; i < m; i++) { l[i] = nextInt() - 1; r[i] = nextInt(); q[i] = nextInt(); } for (int bit = 0; bit <= MAX_BIT; bit++) { Arrays.fill(sum, 0); for (int i = 0; i < m; i++) { if (((q[i] >> bit) & 1) == 1) { sum[l[i]]++; sum[r[i]]--; } } for (int i = 0; i < n; i++) { if (i > 0) { sum[i] += sum[i - 1]; } if (sum[i] > 0) { ary[i] |= (1 << bit); } } } SegmentTree st = new SegmentTree(ary); for (int i = 0; i < m; i++) { if (st.evaluate(l[i], r[i] - 1) != q[i]) { out.println("NO"); return; } } out.println("YES"); StringBuilder sb = new StringBuilder(); for (int x : ary) { sb.append(x).append(' '); } out.println(sb.toString()); } //-------------------------------------------------------------- public static void main(String[] args) { new InterestingArray().run(); } @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = System.out; tok = null; solve(); in.close(); } catch (IOException e) { System.exit(0); } } private String nextToken() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } static final class SegmentTree { private final int[] arr; private final int[] st; SegmentTree(int[] arr) { this.arr = arr; st = new int[getMaxSize(arr.length)]; build(0, arr.length - 1, 0); } private static int getMaxSize(int arrSize) { int x = (int) Math.ceil(Math.log10(arrSize) / Math.log10(2)); return 2 * (int) Math.pow(2, x) - 1; } private int build(int ss, int se, int si) { if (ss == se) { return st[si] = arr[ss]; } int mid = getMid(ss, se); return st[si] = build(ss, mid, si * 2 + 1) & build(mid + 1, se, si * 2 + 2); } private static int getMid(int s, int e) { return s + (e - s) / 2; } private int evaluate(int qs, int qe) { return evaluate(0, arr.length - 1, qs, qe, 0); } private int evaluate(int ss, int se, int qs, int qe, int index) { if (qs <= ss && qe >= se) { return st[index]; } if (se < qs || ss > qe) { return Integer.MAX_VALUE; } int mid = getMid(ss, se); return evaluate(ss, mid, qs, qe, 2 * index + 1) & evaluate(mid + 1, se, qs, qe, 2 * index + 2); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class D275 { public static void main(String[] args) { MyScanner scan = new MyScanner(); PrintWriter out = new PrintWriter(System.out); int N = scan.nextInt(), M = scan.nextInt(); int[] l = new int[M], r = new int[M], q = new int[M]; ST st = new ST(N); for(int i=0;i<M;i++){ l[i] = scan.nextInt()-1; r[i] = scan.nextInt()-1; q[i] = scan.nextInt(); st.update(l[i], r[i], q[i]); } boolean valid = true; for(int i=0;i<M;i++){ if(st.query(l[i], r[i])!=q[i])valid=false; if(!valid)break; } if(!valid){out.println("NO");} else{ out.println("YES"); for(int i=0;i<N;i++){ out.print(st.query(i, i)+" "); }out.println(); } out.close(); } private static class ST { int K; int[] val, delta; public ST(int N) { K = (int)Math.ceil(Math.log(N)/Math.log(2)); val = new int[4*N]; delta = new int[4*N]; Arrays.fill(delta, -1); } public void update(int L, int R, int V){update(L,R,0,(1<<K)-1, 1, V);} public int query(int L, int R){return query(L,R,0,(1<<K)-1,1);} private int query(int L, int R, int tL, int tR, int idx) { if(tL<L&&tR<L||tL>R&&tR>R)return (1<<30)-1; if(tL>=L&&tR<=R){ return val[idx]; } prop(tL,tR,idx); int mid = (tL+tR)/2; return (query(L,R,tL,mid,idx*2))&(query(L,R,mid+1,tR,idx*2+1)); } private void update(int L, int R, int tL, int tR, int idx, int V) { if(tL<L&&tR<L||tL>R&&tR>R)return; if(tL>=L&&tR<=R){ val[idx] |= V; delta[idx] = (delta[idx]==-1)?V:delta[idx]|V; return; } prop(tL,tR,idx); int mid = (tL+tR)/2; update(L,R,tL,mid,idx*2,V); update(L,R,mid+1,tR,idx*2+1,V); } private void prop(int L, int R, int idx){ if(delta[idx] == -1)return; int mid = (L+R)/2; update(L,R,L,mid,idx*2,delta[idx]); update(L,R,mid+1,R,idx*2+1,delta[idx]); delta[idx] = -1; } } private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() {br = new BufferedReader(new InputStreamReader(System.in));} String next(){ while(st==null||!st.hasMoreElements()){ try{st = new StringTokenizer(br.readLine());} catch(IOException e){e.printStackTrace();} }return st.nextToken(); } int nextInt() {return Integer.parseInt(next());} long nextLong(){return Long.parseLong(next());} } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = 110000; struct node { int val, lazy; } tree[N * 4]; int n, m, ql, qr, qa; int ans[N], ll[N], rr[N], aa[N]; void pushup(int x) { tree[x].val = tree[x << 1].val & tree[x << 1 | 1].val; } void pushdown(int x) { int &d = tree[x].lazy; if (d) { tree[x << 1].lazy |= d; tree[x << 1 | 1].lazy |= d; tree[x << 1].val |= d; tree[x << 1 | 1].val |= d; d = 0; tree[x].val = tree[x << 1].val & tree[x << 1 | 1].val; } } void build(int x, int l, int r) { if (l == r) { tree[x].lazy = tree[x].val = 0; return; } int mid = (l + r) >> 1; tree[x].lazy = 0; build(x << 1, l, mid); build(x << 1 | 1, mid + 1, r); pushup(x); } void update(int x, int l, int r) { if (ql <= l && qr >= r) { tree[x].val |= qa; tree[x].lazy |= qa; return; } int mid = (l + r) >> 1; pushdown(x); if (ql <= mid) update(x << 1, l, mid); if (qr > mid) update(x << 1 | 1, mid + 1, r); pushup(x); } int query(int x, int l, int r) { if (ql <= l && qr >= r) { return tree[x].val; } int ans = (1 << 30) - 1, mid = (l + r) >> 1; pushdown(x); if (ql <= mid) ans &= query(x << 1, l, mid); if (qr > mid) ans &= query(x << 1 | 1, mid + 1, r); return ans; } int main() { scanf("%d%d", &n, &m); build(1, 1, n); for (int i = 1; i <= m; i++) { scanf("%d%d%d", ll + i, rr + i, aa + i); ql = ll[i]; qr = rr[i]; qa = aa[i]; update(1, 1, n); } for (int i = 1; i <= m; i++) { ql = ll[i]; qr = rr[i]; qa = aa[i]; int ans = query(1, 1, n); if (ans != qa) { puts("NO"); return 0; } } puts("YES"); for (int i = 1; i <= n; i++) { ql = qr = i; int ans = query(1, 1, n); printf("%d%c", ans, i == n ? '\n' : ' '); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int s[31][100003]; int bit[31][100003]; int countzero[31][100003]; int main() { int n, m; cin >> n >> m; int l[m], r[m], q[m]; for (int i = 0; i < m; i++) { cin >> l[i] >> r[i] >> q[i]; for (int j = 0; j < 30; j++) { if (q[i] & (1 << j)) { s[j][l[i]]++; s[j][r[i] + 1]--; } } } for (int i = 0; i < 30; i++) { int count = 0; countzero[i][0] = 0; for (int j = 1; j <= n; j++) { count += s[i][j]; if (count > 0) { bit[i][j] = 1; } else { bit[i][j] = 0; } countzero[i][j] = countzero[i][j - 1] + (bit[i][j] == 0); } } bool res = true; for (int i = 0; i < m; i++) { for (int j = 0; j < 30; j++) { if (!(q[i] & (1 << j))) { if (countzero[j][r[i]] - countzero[j][l[i] - 1] <= 0) { res = false; goto df; } } } } df: if (res) { cout << "YES\n"; for (int i = 1; i <= n; i++) { int res = 0; for (int j = 29; j >= 0; j--) { res *= 2; res += bit[j][i]; } cout << res << " "; } } else cout << "NO"; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Random; import java.util.StringTokenizer; public class Main implements Runnable { int INF = (int) 1e9 + 7; static class Pair { long a; long b; public Pair(long a, long b) { this.a = a; this.b = b; } } private void solve() throws IOException { int n = nextInt(); int m = nextInt(); int q[][] = new int[m][]; for (int i = 0; i < m; ++i) { q[i] = new int[] { nextInt() - 1, nextInt() - 1, nextInt() }; } int ans[] = new int[n]; for (int pos = 0; pos < 30; ++pos) { int pre[] = new int[n]; int cs[] = new int[n + 1]; for (int i = 0; i < m; ++i) { int l = q[i][0]; int r = q[i][1]; if ((q[i][2] >> pos & 1) == 1) { pre[l]++; if (r + 1 < n) pre[r + 1]--; } } for (int i = 0; i < n; ++i) { if (i > 0) { pre[i] += pre[i - 1]; } } for (int i = 0; i < n; ++i) { if (pre[i] > 0) pre[i] = 1; } for (int i = 1; i <= n; ++i) { cs[i] += cs[i - 1] + pre[i - 1]; } for (int i = 0; i < m; ++i) { if ((q[i][2] >> pos & 1) == 0) if (cs[q[i][1] + 1] - cs[q[i][0]] == q[i][1] - q[i][0] + 1) { pw.println("NO"); return; } } for (int i = 0; i < n; ++i) { ans[i] |= (pre[i] << pos); } } pw.println("YES"); for (int i = 0; i < n; ++i) { pw.print(ans[i] + " "); } pw.println(); } void test() throws IOException { Random rnd = new Random(); for (int i = 0; i < 5; ++i) { int n = rnd.nextInt(5) + 1; int m = rnd.nextInt(5) + 1; System.err.println(n + " " + m); for (int j = 0; j < m; ++j) { int l = rnd.nextInt(n) + 1; int r = l + rnd.nextInt(n - l + 1); int q = rnd.nextInt(10); System.err.println(l + " " + r + " " + q); } // solve(n, a); System.err.println(); } } BufferedReader br; StringTokenizer st; PrintWriter pw; public static void main(String args[]) { new Main().run(); } public void run() { try { br = new BufferedReader(new InputStreamReader(System.in), 32768); pw = new PrintWriter(System.out); st = null; solve(); pw.flush(); pw.close(); br.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; void make_unique(vector<int> &a) { sort(a.begin(), a.end()); a.erase(unique(a.begin(), a.end()), a.end()); } void printDouble(double f, int p) { cout << fixed; cout << setprecision(p) << f << endl; } int Set(int N, int cur) { return N = N | (1 << cur); } int Reset(int N, int cur) { return N = N & ~(1 << cur); } bool Check(int N, int cur) { return (bool)(N & (1 << cur)); } long long GCD(long long a, long long b) { if (b == 0) return a; return GCD(b, a % b); } long long LCM(long long a, long long b) { return a * b / GCD(a, b); } long long POW(long long a, long long p) { long long res = 1, x = a; while (p) { if (p & 1) res = (res * x); x = (x * x); p >>= 1; } return res; } struct qry { int u; int v; int q; }; int N, M; int cnt[33][100005]; qry Q[100005]; int A[100005]; int tree[100005 * 4]; void build_tree(int cur, int Start, int End) { if (Start == End) { tree[cur] = A[Start]; return; } int left = cur * 2; int right = left + 1; int mid = (Start + End) / 2; build_tree(left, Start, mid); build_tree(right, mid + 1, End); tree[cur] = (tree[left] & tree[right]); } int tree_query(int cur, int Start, int End, int u, int v) { if (End < u || Start > v) { return -1; } if (Start >= u && End <= v) { return tree[cur]; } int left = cur * 2; int right = left + 1; int mid = (Start + End) / 2; int v1 = tree_query(left, Start, mid, u, v); int v2 = tree_query(right, mid + 1, End, u, v); if (v1 == -1) return v2; if (v2 == -1) return v1; return (v1 & v2); } bool solve() { for (int pos = 0; pos < 31; pos++) { int sum = 0; for (int val = 1; val <= N; val++) { sum += cnt[pos][val]; if (sum > 0) { cnt[pos][val] = 1; } } } for (int i = 1; i <= N; i++) { int val = 0; for (int pos = 0; pos < 31; pos++) { if (cnt[pos][i] == 1) { val = Set(val, pos); } } A[i] = val; } memset(tree, 0, sizeof(tree)); build_tree(1, 1, N); for (int i = 0; i < M; i++) { int res = tree_query(1, 1, N, Q[i].u, Q[i].v); if (res != Q[i].q) return false; } return true; } int main() { memset(cnt, 0, sizeof(cnt)); scanf("%d %d", &N, &M); for (int i = 0; i < M; i++) { scanf("%d %d %d", &Q[i].u, &Q[i].v, &Q[i].q); for (int pos = 0; pos < 31; pos++) { if (Check(Q[i].q, pos) == true) { cnt[pos][Q[i].u] += 1; cnt[pos][Q[i].v + 1] -= 1; } } } bool rs = solve(); if (rs == false) { printf("NO\n"); } else { printf("YES\n"); for (int i = 1; i <= N; i++) { if (i == 1) printf("%d", A[i]); else printf(" %d", A[i]); } printf("\n"); } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.LinkedList; import java.util.Queue; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt() , m = sc.nextInt(); SegmentTree tree = new SegmentTree(n); Queue<Query> qu = new LinkedList<>(); while(m-->0) { int l = sc.nextInt() - 1, r = sc.nextInt() -1 , q = sc.nextInt(); qu.add(new Query(l, r, q)); tree.update(l, r, q); } while(!qu.isEmpty()) { Query q = qu.poll(); if(tree.query(q.l, q.r)!=q.v) { System.out.println("NO"); return; } } System.out.println("YES"); System.out.println(tree.printArray()); } static class Query{ int l,r,v; public Query(int lq,int rq,int val) {l=lq;r=rq;v=val;} } static class SegmentTree { int N,len; int[] tree ; int[] lazy; StringBuilder sb; public SegmentTree(int n) { N = 1; len = n; while(N<len)N<<=1; N<<=1; tree = new int[N]; lazy = new int[N]; sb = new StringBuilder(); } void propagate(int n,int l,int r) { if(l==r)return; lazy[n<<1] |= lazy[n]; lazy[n<<1|1] |= lazy[n]; tree[n<<1] |= lazy[n]; tree[n<<1|1] |= lazy[n]; lazy[n] = 0; } void update(int l,int r,int v) {update(1, 0, len-1, l, r, v);} void update(int n,int l,int r,int lq,int rq,int v) { if(l>rq||r<lq)return; propagate(n, l, r); if(l>=lq&&r<=rq) { lazy[n] |= v; tree[n] |= v; } else { int mid = (l+r)>>1; update(n<<1, l, mid, lq, rq, v); update(n<<1|1, mid+1, r, lq, rq, v); tree[n] = tree[n<<1] & tree[n<<1|1]; } } String printArray() { printArray(1,0,len-1); return sb.toString(); } void printArray(int n , int l,int r) { propagate(n, l, r); if(l==r) sb.append(tree[n]+" "); else { int mid = (l+r)>>1; printArray(n<<1, l, mid); printArray(n<<1|1, mid+1, r); } } int query(int l,int r) {return query(1, 0, len-1, l, r);} int query(int n,int l,int r,int lq,int rq) { if(l>rq||r<lq)return Integer.MAX_VALUE; propagate(n, l, r); if(l>=lq&&r<=rq) return tree[n]; else { int mid = (l+r)>>1; return query(n<<1, l, mid, lq, rq) & query(n<<1|1, mid+1, r, lq, rq); } } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public Scanner(String s) throws FileNotFoundException {br = new BufferedReader(new FileReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException {return Integer.parseInt(next());} public String nextLine() throws IOException {return br.readLine();} public long nextLong() throws IOException {return Long.parseLong(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public char nextChar() throws IOException{return next().charAt(0);} public boolean ready() throws IOException {return br.ready();} public int[] nextIntArr() throws IOException{ st = new StringTokenizer(br.readLine()); int[] res = new int[st.countTokens()]; for (int i = 0; i < res.length; i++) res[i] = nextInt(); return res; } public char[] nextCharArr() throws IOException{ st = new StringTokenizer(br.readLine()); char[] res = new char[st.countTokens()]; for (int i = 0; i < res.length; i++) res[i] = nextChar(); return res; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const long long mod = (long long)1e9 + 7; struct node { long long l, r, q; }; void test_case() { long long n, m; cin >> n >> m; vector<long long> arr(n); vector<node> query(m); vector<vector<long long> > bit(n + 1, vector<long long>(31)); for (long long i = 0; i < m; i++) { long long a, b, c; cin >> a >> b >> c; --a, --b; query[i] = {a, b, c}; for (long long bi = 0; bi < 31; bi++) { if (c & (1 << bi)) { bit[a][bi] += 1, bit[b + 1][bi] -= 1; } } } for (long long i = 0; i < 31; i++) { for (long long j = 0; j < n; j++) { bit[j + 1][i] += bit[j][i]; if (bit[j][i]) { arr[j] = arr[j] | (1 << i); } } } vector<long long> seg(2 * n + 5); for (long long i = 0; i < n; i++) seg[i + n] = arr[i]; for (long long i = n - 1; i > 0; i--) seg[i] = (seg[2 * i] & seg[2 * i + 1]); for (long long i = 0; i < m; i++) { long long l = query[i].l + n, r = query[i].r + n; long long val = (1 << 30) - 1; while (l <= r) { if (l & 1) val = val & seg[l++]; if (!(r & 1)) val = val & seg[r--]; l /= 2, r /= 2; } if (val != query[i].q) { cout << "NO"; return; } } cout << "YES\n"; for (long long i = 0; i < n; i++) cout << arr[i] << " "; } signed main() { long long t = 1; while (t--) test_case(); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int N, M; int lt[100005], rt[100005], q[100005]; int a[100005], lg[100005]; int s[100005][31]; int Ask(int x, int y) { int tmp = lg[y - x + 1]; return s[x][tmp] & s[y - (1 << tmp) + 1][tmp]; } void End(int x) { printf("%s\n", x ? "YES" : "NO"); if (x) for (int i = 1; i <= N; i++) printf("%d ", a[i]); exit(0); } int main() { int i, j; scanf("%d %d", &N, &M); for (i = 1; i <= M; i++) { scanf("%d %d %d", &lt[i], &rt[i], &q[i]); for (j = 0; j < 30; j++) if ((q[i] >> j) & 1) s[lt[i]][j]++, s[rt[i] + 1][j]--; } for (i = 1; i <= N; i++) for (j = 0; j < 30; j++) { s[i][j] += s[i - 1][j]; if (s[i][j]) a[i] += (1 << j); } for (i = 1; i <= N; i++) lg[i] = lg[i - 1] + (i - 1 == (1 << lg[i - 1] + 1)); for (i = 1; i <= N; i++) s[i][0] = a[i]; for (j = 1; (1 << j) <= N; j++) for (i = 1; i + (1 << j - 1) <= N; i++) s[i][j] = (s[i][j - 1] & s[i + (1 << j - 1)][j - 1]); for (i = 1; i <= M; i++) if (Ask(lt[i], rt[i]) != q[i]) End(0); End(1); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashSet; import java.util.Stack; public class Main { static final int SIZE = (int) Math.pow(2, 17); static final int MAX_VAL_LOG = 32; static int[] l = new int[SIZE]; static int[] r = new int[SIZE]; static int[] q = new int[SIZE]; static int[][] seq = new int[MAX_VAL_LOG][SIZE]; static int[] t = new int[SIZE*2]; public static void insert(int val, int index, int l, int r, int pos) { if (l == r) { t[index] = val; return; } int mid = (l+r)/2; if (mid >= pos) insert(val, index*2, l, mid, pos); else insert(val, index*2+1, mid+1, r, pos); t[index] = t[index*2] & t[index*2+1]; } public static int query(int index, int L, int R, int l, int r) { if (l==L && R==r) { return t[index]; } int mid = (l+r)/2; int result = (1<<31) - 1; if (mid >= L) result &= query(index*2, L, Math.min(mid, R), l, mid); if (R > mid) result &= query(index*2+1, Math.max(mid+1, L), R, mid+1,r); return result; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String line = br.readLine(); String[] values = line.split(" "); int n = Integer.parseInt(values[0]); int m = Integer.parseInt(values[1]); for (int i = 0; i < m; i++) { line = br.readLine(); values = line.split(" "); l[i] = Integer.parseInt(values[0]); r[i] = Integer.parseInt(values[1]); q[i] = Integer.parseInt(values[2]); for (int j = 0; j < MAX_VAL_LOG; j++) { if ((q[i] >> j & 1) == 1) { seq[j][l[i]]++; seq[j][r[i]+1]--; } } } int[] sum = new int[MAX_VAL_LOG]; for (int j = 0; j < SIZE; j++) { int val = 0; for (int i = MAX_VAL_LOG-1; i >= 0; i--) { val <<= 1; sum[i] += seq[i][j]; val += (sum[i] > 0) ? 1 : 0; } if (val > 0) insert(val, 1, 1, SIZE,j); } for (int i = 0; i < m; i++) { if (query(1, l[i], r[i], 1, SIZE) != q[i]) { System.out.println("NO"); return; } } System.out.println("YES"); int index = SIZE; for (int i = 0; i < n; i++) { System.out.print(t[index] + " "); index++; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC optimization("unroll-loops") const int N = 2e5 + 5; const long long int mod = 1e9 + 7; const long long int Mod = 998244353; const long double Pi = acos(-1); const long long int Inf = 4e18; using namespace std; vector<int> a; struct SegmentTree { vector<int> t; int n; void Initialize(int n) { this->n = 2 * n; t.resize(2 * n); for (int i = 0; i < n; i++) Update(i, 0, 0, n - 1); } void Update(int idx, int v, int tl, int tr) { if (tl == tr) { t[v] = a[idx]; } else { int tm = (tl + tr) >> 1; if (idx <= tm) Update(idx, 2 * v + 1, tl, tm); else Update(idx, 2 * v + 2, tm + 1, tr); t[v] = (t[2 * v + 1] & t[2 * v + 2]); } } int And(int v, int tl, int tr, int l, int r) { if (tl > tr) return 0; if (tl == l && tr == r) return t[v]; int tm = (tl + tr) >> 1; if (l > tm) return And(2 * v + 2, tm + 1, tr, l, r); else if (r <= tm) return And(2 * v + 1, tl, tm, l, r); else return (And(2 * v + 1, tl, tm, l, tm) & And(2 * v + 2, tm + 1, tr, tm + 1, r)); } }; void TestCase() { int n, m, k; cin >> n >> m; vector<vector<int> > g(n + 1, vector<int>(35, 0)); vector<pair<pair<int, int>, int> > c(m); bitset<32> Bit(n); int msb = 0; for (int i = 0; i < 32; i++) { if (Bit[i]) msb = max(msb, i); } if (n & (n - 1)) k = (1 << (msb + 1)); else k = n; a.assign(k, 0); for (int i = 0, l, r, q; i < m; i++) { cin >> l >> r >> q; l--; r--; c[i] = {{l, r}, q}; bitset<32> Bit(q); for (int j = 31; j >= 0; j--) { if (Bit[j]) { g[l][j]++; g[r + 1][j]--; } } } for (int i = 0; i <= n; i++) { if (i - 1 >= 0) { for (int j = 0; j < 31; j++) g[i][j] += g[i - 1][j]; } for (int j = 0; j < 31; j++) { if (g[i][j]) a[i] = (a[i] | (1 << j)); } } bool ok = true; struct SegmentTree sgmt; sgmt.Initialize(k); for (int i = 0; i < m; i++) { if (sgmt.And(0, 0, k - 1, c[i].first.first, c[i].first.second) != c[i].second) ok = false; } if (ok) { cout << "YES\n"; for (int i = 0; i < n; i++) cout << a[i] << " "; } else cout << "NO"; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); ; int T = 1; while (T--) { TestCase(); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class Problem_482B { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(), q = sc.nextInt(); SegmentTree sgt = new SegmentTree(n); Triple[] query = new Triple[q]; for (int i = 0; i < q; i++) { int l = sc.nextInt() - 1, r = sc.nextInt() - 1, v = sc.nextInt(); query[i] = new Triple(l, r, v); sgt.rangeupdate(l, r, v); } for (int i = 0; i < q; i++) { int ans = sgt.query(query[i].l, query[i].r); if (query[i].v != sgt.query(query[i].l, query[i].r)) { System.out.println("NO"); return; } } for (int i = 1; i < sgt.sgt.length / 2; i++) { sgt.propagate(i, 0); } System.out.println("YES"); for (int i = sgt.sgt.length / 2; i < sgt.sgt.length && n-- > 0; i++) System.out.print(sgt.sgt[i] + " "); pw.close(); } static class Triple { int l, r, v; public Triple(int left, int right, int val) { l = left; r = right; v = val; } } static class SegmentTree { int[] sgt; int[] a; int[] lazy; int n; int max = (1 << 30) - 1; public SegmentTree(int l) { int log = (int) (Math.ceil(Math.log(l) / Math.log(2))); n = 1 << log; sgt = new int[n << 1]; lazy = new int[n << 1]; } public int query(int l, int r) { return query(1, n, 1, l + 1, r + 1); } public int query(int s, int e, int i, int l, int r) { if (l <= s && r >= e) return sgt[i]; if (r < s || l > e) return -1; int mid = e + s >> 1; propagate(i, (e - s + 1) / 2); int left = query(s, mid, i * 2, l, r); int right = query(mid + 1, e, i * 2 + 1, l, r); return left & right; } public void rangeupdate(int l, int r, int val) { rangeupdate(l + 1, r + 1, val, 1, n, 1); } public void rangeupdate(int l, int r, int val, int s, int e, int i) { if (l <= s && r >= e) { lazy[i] |= val; sgt[i] |= val; return; } if (l > e || r < s) return; int mid = e + s >> 1; propagate(i, (e - s + 1) / 2); if (l <= mid) rangeupdate(l, r, val, s, mid, i * 2); if (r > mid) rangeupdate(l, r, val, mid + 1, e, i * 2 + 1); } public void propagate(int node, int mid) { lazy[node << 1] |= lazy[node]; lazy[node << 1 | 1] |= lazy[node]; sgt[node << 1] |= lazy[node]; sgt[node << 1 | 1] |= lazy[node]; lazy[node] = 0; } public String toString() { String s = ""; int level = 1; for (int i = 1; i < sgt.length; i++) { s += sgt[i] + " "; } return s; } } static class Scanner { BufferedReader br; StringTokenizer st; Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } boolean hasnext() throws IOException { return br.ready(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int arr[1000000]; int tree[1000000]; int lazy[1000000]; void buildtree(int node, int a, int b) { if (a > b) return; if (a == b) { tree[node] = arr[a]; return; } buildtree(2 * node, a, (a + b) / 2); buildtree(2 * node + 1, (a + b) / 2 + 1, b); tree[node] = (tree[2 * node]) & (tree[2 * node + 1]); } void update(int node, int a, int b, int i, int j, int value) { if (lazy[node] != 0) { tree[node] |= (lazy[node]); if (a != b) { lazy[2 * node] |= (lazy[node]); lazy[2 * node + 1] |= (lazy[node]); } lazy[node] = 0; } if (a > b || j < a || b < i) return; if (i <= a && b <= j) { tree[node] |= value; if (a != b) { lazy[2 * node] |= value; lazy[2 * node + 1] |= value; } return; } update(2 * node, a, (a + b) / 2, i, j, value); update(2 * node + 1, 1 + (a + b) / 2, b, i, j, value); tree[node] = (tree[2 * node]) & (tree[2 * node + 1]); } int query(int node, int a, int b, int i, int j) { if (a > b || j < a || b < i) return (((long long)1) << 32) - 1; if (lazy[node] != 0) { tree[node] |= (lazy[node]); if (a != b) { lazy[2 * node] |= (lazy[node]); lazy[2 * node + 1] |= (lazy[node]); } lazy[node] = 0; } if (i <= a && b <= j) return tree[node]; int q1 = query(2 * node, a, (a + b) / 2, i, j); int q2 = query(2 * node + 1, 1 + (a + b) / 2, b, i, j); return q1 & q2; } typedef struct $ { int l, r, q; } node; int main() { int i, j, n, m, ans; cin >> n >> m; std::vector<node> v(m); buildtree(1, 0, n - 1); for (i = 0; i < m; i++) { cin >> v[i].l >> v[i].r >> v[i].q; v[i].l--; v[i].r--; update(1, 0, n - 1, v[i].l, v[i].r, v[i].q); } for (i = 0; i < m; i++) { ans = query(1, 0, n - 1, v[i].l, v[i].r); if (ans != v[i].q) { printf("NO\n"); return 0; } } printf("YES\n"); for (i = 0; i < n; i++) { printf("%d ", query(1, 0, n - 1, i, i)); } printf("\n"); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class D { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); /* public void run() { int n = in.nextInt(), m = in.nextInt(); int[][] cs = new int[m][]; for (int i = 0; i < m; i++) cs[i] = new int[]{in.nextInt() - 1, in.nextInt() - 1, in.nextInt()}; int[] ret = new int[n]; for (int d = 0; d < 30; d++) { int[] imos = new int[n+1]; for (int i = 0; i < m; i++) { if (cs[i][2]<<~d < 0) { imos[cs[i][0]]++; imos[cs[i][1]+1]--; } } for (int i = 1; i < n; i++) imos[i] += imos[i-1]; for (int i = 0; i < n; i++) if (imos[i] > 0) imos[i] = 1; int[] cum = new int[n+1]; for (int i = 1; i <= n; i++) { cum[i] = cum[i-1] + imos[i-1]; } for (int i = 0; i < m; i++) { if (cs[i][2]<<~d >= 0) { if (cum[cs[i][1]+1] - cum[cs[i][0]] == cs[i][1] - cs[i][0] + 1) { System.out.println("NO"); return; } } } for (int i = 0; i < n; i++) { ret[i] |= imos[i]<<d; } } out.println("YES"); for (int i = 0; i < n; i++) out.print(ret[i] + " "); out.println(); out.close(); } */ class SegmentTree { int N; int[] dat; int INF = 0x7fffffff; public SegmentTree(int n) { N = Integer.highestOneBit(n) << 1; int size = (N << 1) - 1; dat = new int[size]; } int query(int k) { int res = 0; k += N - 1; while (k != 0) { if (dat[k] != -1) res |= dat[k]; k = (k - 1) / 2; } return res; } private void update(int bit, int a, int b, int k, int l, int r) { // System.out.println("query : " + a + " " + b + " " + k + " " + l + " " + r); if (r < a || b < l) return; if (a <= l && r <= b) { dat[k] |= bit; } else { update(bit, a, b, k * 2 + 1, l, (l + r) / 2); update(bit, a, b, k * 2 + 2, (l + r) / 2 + 1, r); } } int allAnd(int a, int b, int k, int l, int r) { if (r < a || b < l) return INF; if (a <= l && r <= b) { return dat[k]; } else { int res = INF; res &= allAnd(a, b, k * 2 + 1, l, (l + r) / 2); res &= allAnd(a, b, k * 2 + 2, (l + r) / 2 + 1, r); return res; } } boolean andQuery(int a, int b, int bit) { return allAnd(a, b, 0, 0, N - 1) == bit; } void updateQuery(int a, int b, int bit) { update(bit, a, b, 0, 0, N - 1); // printTree(dat); } } void printTree(int[] dat) { int n = 1; for (int i = 0, cnt = 1; i < dat.length; i++, cnt++) { System.out.print(dat[i] + " "); if (n == cnt) { System.out.println(); n *= 2; cnt = 0; } } } public void run() { int n = in.nextInt(), m = in.nextInt(); SegmentTree st = new SegmentTree(n); int[][] order = new int[m][]; for (int i = 0; i < m; i++) { order[i] = new int[]{in.nextInt(), in.nextInt(), in.nextInt()}; st.updateQuery(order[i][0], order[i][1], order[i][2]); } boolean exist = true; for (int i = 0; i < m; i++) { if (!st.andQuery(order[i][0], order[i][1], order[i][2])) exist = false; } if (exist) { out.println("YES"); for (int i = 1; i <= n; i++) { out.print(st.query(i) + " "); } out.println(); } else { out.println("NO"); } out.close(); } public static void main(String[] args) { new D().run(); } public void mapDebug(int[][] a) { System.out.println("--------map display---------"); for (int i = 0; i < a.length; i++) { for (int j = 0; j < a[i].length; j++) { System.out.printf("%3d ", a[i][j]); } System.out.println(); } System.out.println("----------------------------"); System.out.println(); } public void debug(Object... obj) { System.out.println(Arrays.deepToString(obj)); } class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; //stream = new FileInputStream(new File("dec.in")); } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = nextInt(); return array; } long nextLong() { return Long.parseLong(next()); } long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nextLong(); return array; } double nextDouble() { return Double.parseDouble(next()); } double[] nextDoubleArray(int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) array[i] = nextDouble(); return array; } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String[] nextStringArray(int n) { String[] array = new String[n]; for (int i = 0; i < n; i++) array[i] = next(); return array; } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, inf = 2e9 + 10; int seg[4 * N], flag[4 * N], l[N], r[N], q[N]; inline void relax(int ind) { int x = flag[ind]; if (!x) return; flag[ind] = 0; seg[2 * ind] |= x; flag[2 * ind] |= x; seg[2 * ind + 1] |= x; flag[2 * ind + 1] |= x; } int query(int s, int e, int ind, int l, int r) { if (s >= l && e <= r) return seg[ind]; relax(ind); int mid = (s + e) / 2; int ret = (1 << 30) - 1; if (mid > l) ret &= query(s, mid, 2 * ind, l, r); if (mid < r) ret &= query(mid, e, 2 * ind + 1, l, r); return ret; } void add(int s, int e, int ind, int l, int r, int val) { if (s >= l && e <= r) { seg[ind] |= val; flag[ind] |= val; return; } relax(ind); int mid = (s + e) / 2; if (mid > l) add(s, mid, 2 * ind, l, r, val); if (mid < r) add(mid, e, 2 * ind + 1, l, r, val); seg[ind] = seg[2 * ind] & seg[2 * ind + 1]; } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { cin >> l[i] >> r[i] >> q[i]; l[i]--; add(0, n, 1, l[i], r[i], q[i]); } for (int i = 0; i < m; i++) { if (query(0, n, 1, l[i], r[i]) != q[i]) return cout << "NO", 0; } cout << "YES\n"; for (int i = 0; i < n; i++) cout << query(0, n, 1, i, i + 1) << " "; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using std::cin; using std::cout; using std::vector; const int MAXBITS = 30; void buildTree(vector<unsigned int>* T, int n, const vector<unsigned int>& result) { for (int i = n; i < T->size(); ++i) { (*T)[i] = result[i - n]; } for (int i = n - 1; i > 0; --i) { (*T)[i] = (*T)[i << 1] & (*T)[(i << 1) | 1]; } } unsigned int query(vector<unsigned int>& T, int n, int left, int right) { unsigned int result = 0xffffffff; left += n; right += n; while (left < right) { if (left & 1) { result &= T[left]; left += 1; } if (right & 1) { right -= 1; result &= T[right]; } left >>= 1; right >>= 1; } return result; } int main() { int n, m; cin >> n >> m; vector<unsigned int> T(n * 2, 0); vector<int> L, R; vector<unsigned int> Q; vector<unsigned int> result(n, 0); vector<int> sums(n + 1, 0); for (int i = 0; i < m; ++i) { int left, right; unsigned int q; cin >> left >> right >> q; L.push_back(left - 1); R.push_back(right); Q.push_back(q); } for (int bit = 0; bit <= MAXBITS; bit += 1) { for (int i = 0; i < n; ++i) { sums[i] = 0; } for (int i = 0; i < m; ++i) { int left = L[i]; int right = R[i]; int q = Q[i]; if ((q >> bit) & 1) { sums[left] += 1; sums[right] -= 1; } } for (int pos = 0; pos < n; ++pos) { if (pos > 0) { sums[pos] += sums[pos - 1]; } if (sums[pos] > 0) { result[pos] |= (1 << bit); } } } buildTree(&T, n, result); for (int i = 0; i < m; ++i) { int left = L[i]; int right = R[i]; unsigned int q = Q[i]; unsigned int qand = query(T, n, left, right); if (qand != q) { cout << "NO"; return 0; } } cout << "YES\n"; for (int i = 0; i < result.size(); ++i) { cout << result[i] << " "; } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { public static void main(String[] args) { // TODO Auto-generated method stub InputReader in = new InputReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); new Task().go(in, out); out.close(); } } class Task { public int maxn = 100010; int[][] c = new int[33][maxn]; int n, m; int[] a = new int[maxn]; int[] l = new int[maxn], r = new int[maxn], q = new int[maxn]; int[] and = new int[maxn<<2]; public void go(InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); for(int i=0; i<m; i++) { l[i] = in.nextInt(); r[i] = in.nextInt(); q[i] = in.nextInt(); for(int j=0; j<=30; j++) if(((q[i]>>j)&1)!=0) { add(j, l[i], 1); add(j, r[i]+1, -1); } } for(int i=1; i<=n; i++) { for(int j=0; j<=30; j++) if(ask(j, i)!=0) { a[i] |= (1<<j); } } build(1, n, 1); boolean flag = true; for(int i=0; i<m; i++) { if(query(l[i], r[i], 1, n, 1) != q[i]) { flag = false; break; } } if(!flag) out.println("NO"); else { out.println("YES"); for(int i=1; i<=n; i++) out.print(a[i]+" "); out.println(); } } public void add(int p, int x, int v) { for(int i=x; i<=n; i+=(i&-i)) c[p][i] += v; } public int ask(int p, int x) { int res = 0; for(int i=x; i>0; i-=(i&-i)) res += c[p][i]; return res; } public void build(int l, int r, int rt) { if(l==r) and[rt] = a[l]; else { int m = (l + r) >> 1; build(l, m, rt<<1); build(m+1, r, rt<<1|1); push_up(rt); } } public int query(int x, int y, int l, int r, int rt) { if(x<=l && r<=y) return and[rt]; else { int m = (l+r)>>1, res = (1<<30)-1; if(x<=m) res &= query(x, y, l, m, rt<<1); if(y>m) res &= query(x, y, m+1, r, rt<<1|1); return res; } } public void push_up(int rt) { and[rt] = and[rt<<1] & and[rt<<1|1]; } } class InputReader { BufferedReader bf; StringTokenizer st; InputReader(InputStreamReader is) { bf = new BufferedReader(is); } public String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bf.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.awt.image.ReplicateScaleFilter; import java.io.*; import java.math.*; import java.util.*; import javax.swing.RepaintManager; public class Main { static long mod = (long) 1e9 + 7; public static void main(String[] args) { FasterScanner s = new FasterScanner(); PrintWriter out = new PrintWriter(System.out); int test = 1; testloop: while (test-- > 0) { int n = s.nextInt(); int m = s.nextInt(); int[][] x = new int[30][n + 1]; int[] qL = new int[m]; int[] qR = new int[m]; int[] qY = new int[m]; int j = 0; while (m-- > 0) { int l = qL[j] = s.nextInt() - 1; int r = qR[j] = s.nextInt() - 1; int y = qY[j++] = s.nextInt(); for (int i = 0; i < 30; i++) { if ((y & (1 << i)) != 0) { x[i][l]++; x[i][r + 1]--; } } } int[] ans = new int[n]; for (int i = 0; i < 30; i++) { for (j = 0; j < n; j++) { if (j > 0) x[i][j] += x[i][j - 1]; if (x[i][j] > 0) { ans[j] |= (1 << i); } } } int[] segTree = new int[2 * n]; for (int i = 0; i < n; i++) add(segTree, i, ans[i]); for (int i = 0; i < qL.length; i++) { if (max(segTree, qL[i], qR[i]) != qY[i]) { out.println("NO"); continue testloop; } } out.println("YES"); printArray(ans, out); } out.close(); } public static void add(int[] t, int i, int value) { i += t.length / 2; t[i] += value; for (; i > 1; i >>= 1) t[i >> 1] = t[i] & t[i ^ 1]; } // max[a, b] public static int max(int[] t, int a, int b) { int res = (1<<30) - 1; for (a += t.length / 2, b += t.length / 2; a <= b; a = (a + 1) >> 1, b = (b - 1) >> 1) { if ((a & 1) != 0) res = res & t[a]; if ((b & 1) == 0) res = res & t[b]; } return res; } public static class Node implements Comparable<Node> { int id, val; Node(int id1, int val1) { id = id1; val = val1; } public int compareTo(Node o) { if (this.val != o.val) return Integer.compare(this.val, o.val); return this.id - o.id; } } public static void printArray(int[] a, PrintWriter out) { for (int i = 0; i < a.length; i++) { out.print(a[i]); out.print(' '); } out.println(); } public static long pow(long x, long n, long mod) { long res = 1; for (long p = x; n > 0; n >>= 1, p = (p * p) % mod) { if ((n & 1) != 0) { res = (res * p % mod); } } return res; } static long gcd(long n1, long n2) { long r; while (n2 != 0) { r = n1 % n2; n1 = n2; n2 = r; } return n1; } static class FasterScanner { private byte[] buf = new byte[1024]; private int curChar; private int snumChars; public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = System.in.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int n, m, l, r, q; int d[2 * 131072 + 3]; int t[1000]; vector<int> st[100007], kon[100007]; pair<pair<int, int>, int> kraw[100007]; void insert(int poz, int val) { poz += 131072; d[poz] = val; poz /= 2; while (poz) { d[poz] = d[poz * 2] & d[poz * 2 + 1]; poz /= 2; } } int query(int a, int b) { a += 131072; b += 131072; int res = d[a] & d[b]; while (a / 2 != b / 2) { if (!(a & 1)) res &= d[a + 1]; if (b & 1) res &= d[b - 1]; a /= 2; b /= 2; } return res; } int main() { scanf("%d%d", &n, &m); for (int i = 0; i < (m); i++) { scanf("%d%d%d", &l, &r, &q); st[l].push_back(q); kon[r].push_back(q); kraw[i] = make_pair(make_pair(l, r), q); } int akt_wyn = 0; for (int i = 1; i <= (n); i++) { for (__typeof((st[i]).begin()) it = ((st[i]).begin()); it != (st[i]).end(); it++) { int x = *it; int poz = 0; while (x) { t[poz++] += (x & 1); x /= 2; } } akt_wyn = 0; for (int j = 29; j >= (0); j--) { akt_wyn *= 2; if (t[j]) ++akt_wyn; } insert(i, akt_wyn); for (__typeof((kon[i]).begin()) it = ((kon[i]).begin()); it != (kon[i]).end(); it++) { int x = *it; int poz = 0; while (x) { t[poz++] -= (x & 1); x /= 2; } } } for (int i = 0; i < (m); i++) { if (query(kraw[i].first.first, kraw[i].first.second) != kraw[i].second) { puts("NO"); return 0; } } puts("YES"); for (int i = 1; i <= (n); i++) printf("%d ", d[i + 131072]); puts(""); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = (int)1e5; int n, m, x[N + 10], y[N + 10], z[N + 10]; bool tag[N * 4 + 10][31], bit[N * 4 + 10][31]; inline void down(int k, int i) { if (tag[k][i]) { tag[k << 1][i] = bit[k << 1][i] = 1; tag[k << 1 | 1][i] = bit[k << 1 | 1][i] = 1; tag[k][i] = 0; } } inline void down(int k) { for (int i = 0; i <= 30; ++i) if (tag[k][i]) { tag[k << 1][i] = bit[k << 1][i] = 1; tag[k << 1 | 1][i] = bit[k << 1 | 1][i] = 1; tag[k][i] = 0; } } inline void update(int k, int i) { bit[k][i] = bit[k << 1][i] && bit[k << 1 | 1][i]; } inline void update(int k) { for (int i = 0; i <= 30; ++i) bit[k][i] = bit[k << 1][i] && bit[k << 1 | 1][i]; } void cover(int k, int lc, int rc, int l, int r, int d) { if (l == lc && r == rc) { if (bit[k][d]) return; bit[k][d] = tag[k][d] = 1; return; } down(k, d); int mid = lc + rc >> 1; if (r <= mid) cover(k << 1, lc, mid, l, r, d); else if (l > mid) cover(k << 1 | 1, mid + 1, rc, l, r, d); else cover(k << 1, lc, mid, l, mid, d), cover(k << 1 | 1, mid + 1, rc, mid + 1, r, d); update(k, d); } bool query(int k, int lc, int rc, int l, int r, int d) { if (l == lc && r == rc) return bit[k][d]; down(k, d); int mid = lc + rc >> 1; if (r <= mid) return query(k << 1, lc, mid, l, r, d); if (l > mid) return query(k << 1 | 1, mid + 1, rc, l, r, d); return query(k << 1, lc, mid, l, mid, d) && query(k << 1 | 1, mid + 1, rc, mid + 1, r, d); } int query(int k, int lc, int rc, int p) { if (lc == rc) { int t = 0; for (int i = 30; i >= 0; --i) t = t * 2 + bit[k][i]; return t; } down(k); int mid = lc + rc >> 1; if (p <= mid) return query(k << 1, lc, mid, p); else return query(k << 1 | 1, mid + 1, rc, p); } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= m; ++i) { scanf("%d%d%d", &x[i], &y[i], &z[i]); for (int j = 0, k = z[i]; k; k /= 2, ++j) if (k & 1) cover(1, 1, n, x[i], y[i], j); } for (int i = 1; i <= m; ++i) for (int j = 0; j <= 30; ++j) if ((z[i] & 1 << j) == 0 && query(1, 1, n, x[i], y[i], j)) puts("NO"), exit(0); puts("YES"); for (int i = 1; i <= n; ++i) printf("%d%c", query(1, 1, n, i), i == n ? '\n' : ' '); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long x[100005], y[100005], q[100005], N = ((long long)1 << 40) - 1; struct node { long long r, l, v, sum; } tree[400005]; void buildtree(int i, int l, int r) { tree[i].l = l; tree[i].r = r; tree[i].v = 0; if (tree[i].r == tree[i].l) { tree[i].sum = 0; return; } buildtree(i * 2, l, (r + l) / 2); buildtree(i * 2 + 1, (l + r) / 2 + 1, r); tree[i].sum = tree[i * 2].sum & tree[i * 2 + 1].sum; } void downadd(long long v) { tree[v * 2].v |= tree[v].v; tree[v * 2 + 1].v |= tree[v].v; tree[v * 2].sum |= tree[v].v; tree[v * 2 + 1].sum |= tree[v].v; tree[v].v = 0; } void update(long long i, long long l, long long r, long long k) { if (tree[i].l >= l && tree[i].r <= r) { tree[i].sum |= k; tree[i].v |= k; return; } downadd(i); long long m = (tree[i].l + tree[i].r) / 2; if (l <= m) update(i * 2, l, r, k); if (r > m) update(i * 2 + 1, l, r, k); tree[i].sum = tree[i * 2].sum & tree[i * 2 + 1].sum; } long long query(long long i, long long l, long long r) { if (tree[i].l >= l && tree[i].r <= r) { return tree[i].sum; } downadd(i); long long ans = N, m = (tree[i].r + tree[i].l) / 2; if (l <= m) ans &= query(i * 2, l, r); if (r > m) ans &= query(i * 2 + 1, l, r); return ans; } int main() { int n, m; cin >> n >> m; buildtree(1, 1, n); for (int i = 1; i <= m; i++) { cin >> x[i] >> y[i] >> q[i]; update(1, x[i], y[i], q[i]); } for (int i = 1; i <= m; i++) { long long v = query(1, x[i], y[i]); if (v != q[i]) { cout << "NO" << endl; return 0; } } cout << "YES" << endl; for (int i = 1; i <= n; i++) { cout << query(1, i, i) << " "; } cout << endl; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.math.*; import java.io.*; public class CF482B { class ST { int n, and[], lo[], hi[]; public ST(int nn, int[] a) { n = nn; and = new int[n << 2]; lo = new int[n << 2]; hi = new int[n << 2]; build(1, 0, n - 1, a); } void build(int i, int a, int b, int[] arr) { lo[i] = a; hi[i] = b; if(a == b) { and[i] = arr[a]; return; } int m = (a + b) / 2; build(2 * i, a, m, arr); build(2 * i + 1, m + 1, b, arr); and[i] = and[2 * i] & and[2 * i + 1]; } int raq(int l, int r) { return raq(1, l, r); } int raq(int i, int a, int b) { if(b < lo[i] || hi[i] < a) return 0x3FFFFFFF; if(a <= lo[i] && hi[i] <= b) return and[i]; return raq(2 * i, a, b) & raq(2 * i + 1, a, b); } } public CF482B() { FS scan = new FS(); PrintWriter out = new PrintWriter(System.out); int n = scan.nextInt(), c = scan.nextInt(); int[][] bits = new int[30][n + 1]; int[][] q = new int[3][c]; for(int i = 0 ; i < c ; i++) { int l = scan.nextInt() - 1, r = scan.nextInt() - 1, v = scan.nextInt(); q[0][i] = l; q[1][i] = r; q[2][i] = v; while(v > 0) { int bit = Integer.numberOfTrailingZeros(v & -v); v -= v & -v; bits[bit][l]++; bits[bit][r + 1]--; } } int[] res = new int[n]; for(int bit = 0 ; bit < 30 ; bit++) { int cnt = 0; for(int i = 0 ; i < n ; i++) { cnt += bits[bit][i]; if(cnt > 0) res[i] |= 1 << bit; } } boolean valid = true; ST st = new ST(n, res); for(int i = 0 ; i < c ; i++) { int raq = st.raq(q[0][i], q[1][i]); if(raq != q[2][i]) valid = false; } if(valid) { out.println("YES"); for(int i = 0 ; i < n ; i++) out.print(res[i] + " "); } else { out.println("NO"); } out.close(); } class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); public String next() { while(!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch(Exception e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] args) { new CF482B(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; import java.io.*; import java.lang.*; import java.math.*; public class D { public static int[] seg; public static int[] initial; public static int[] cum; public static int[] ans; public static boolean[] lazy; public static void buildtree(int node, int i, int j) { if(i == j) { seg[node] = ans[i]; return; } buildtree(2*node, i, (i+j)/2); buildtree(2*node+1, (i+j)/2+1, j); seg[node] = seg[2*node] & seg[2*node+1]; } /* public static void update(int node, int i, int j, int b, int e) { if(lazy[node]) { seg[node] = 1; if(i != j) { lazy[2*node] = true; lazy[2*node+1] = true; } lazy[node] = false; } if(e < i || b > j || i > j) return; if(i >= b && j <= e) { seg[node] = 1; if(i != j) { lazy[2*node] = true; lazy[2*node+1] = true; } return; } update(2*node, i, (i+j)/2, b, e); update(2*node+1, (i+j)/2+1, j, b, e); seg[node] = seg[2*node] & seg[2*node+1]; } */ public static int query(int node, int i, int j, int b, int e) { if(e < i || b > j || i > j) return -1; if(i >= b && j <= e) return seg[node]; int first = query(2*node, i, (i+j)/2, b, e); int second = query(2*node+1, (i+j)/2+1, j, b, e); if(first == -1) return second; if(second == -1) return first; return first & second; } public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(bf.readLine()); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[][] a = new int[m][3]; for(int i=0; i<m; i++) { st = new StringTokenizer(bf.readLine()); a[i][0] = Integer.parseInt(st.nextToken()); a[i][1] = Integer.parseInt(st.nextToken()); a[i][2] = Integer.parseInt(st.nextToken()); } ans = new int[n]; seg = new int[4*n]; for(int i=0; i<30; i++) { cum = new int[n]; initial = new int[n+1]; for(int j=0; j<m; j++) { if((a[j][2] & (1 << i)) != 0) { initial[a[j][0]-1]++; initial[a[j][1]]--; } } cum[0] = initial[0]; for(int j=1; j<n; j++) cum[j] = cum[j-1] + initial[j]; for(int j=0; j<n; j++) if(cum[j] > 0) cum[j] = 1; for(int j=0; j<n; j++) ans[j] += (cum[j] << i); } buildtree(1, 0, n-1); boolean possible = true; for(int j=0; j<m; j++) { if(query(1, 0, n-1, a[j][0]-1, a[j][1]-1) != a[j][2]) { //if(n == 1000) System.out.println((a[j][0] - 1) + " " + (a[j][1] - 1) + " " + " " + query(1, 0, n-1, a[j][0]-1, a[j][1]-1) + " " + (a[j][2])); possible = false; break; } } //if(n == 100000) System.out.println(i); if(!possible) { //for(int j=0; j<n; j++) System.out.print(query(1, 0, n-1, j, j) + " "); out.println("NO"); out.close(); System.exit(0); } StringBuilder sb = new StringBuilder(); sb.append("YES\n"); for(int j=0; j<n; j++) sb.append(ans[j]).append(" "); out.println(sb.toString()); out.close(); System.exit(0); } /* * * 0011 * 0110 * 1001 * 1100 * 1111 * * 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 */ }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.List; import java.io.InputStreamReader; import java.io.IOException; import java.util.Arrays; import java.util.ArrayList; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Tifuera */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public static final int BITS = 29; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int[] L = new int[m]; int[] R = new int[m]; int[] Q = new int[m]; List<Condition> conditions = new ArrayList<>(m); for (int i = 0; i < m; i++) { L[i] = in.nextInt() - 1; R[i] = in.nextInt() - 1; Q[i] = in.nextInt(); conditions.add(new Condition(L[i], R[i], Q[i])); } int[] answer = new int[n]; int[] bits = new int[n]; for (int i = 0; i <= BITS; i++) { Arrays.fill(bits, 0); constructBits(conditions, i, bits); for (int j = 0; j < n; j++) { if (bits[j] > 0) { answer[j] += (bits[j] << i); } } } if (isSolutionCorrect(conditions, answer)) { out.println("YES"); for (int a : answer) { out.print(a + " "); } } else { out.println("NO"); } } //TODO use segment tree to verify solution private boolean isSolutionCorrect(List<Condition> conditions, int[] answer) { SimpleSegmentTree segmentTree = new SimpleSegmentTree(answer); for (Condition cond : conditions) { if (segmentTree.logicalAnd(cond.l, cond.r) != cond.q) { return false; } } return true; } private void constructBits(List<Condition> conditions, int pos, int[] bits) { int[] arr = new int[bits.length + 1]; for (Condition cond : conditions) { int cur = (cond.q >> pos) & 1; if (cur == 1) { arr[cond.l]++; arr[cond.r + 1]--; } } int s = 0; for (int i = 0; i < bits.length; i++) { s += arr[i]; if (s > 0) { bits[i] = 1; } } } private static class Condition { int l; int r; int q; private Condition(int l, int r, int q) { this.l = l; this.r = r; this.q = q; } } private static class SimpleSegmentTree { private int n; private int[] tree; private int[] initialValues; private SimpleSegmentTree(int[] initialValues) { this.initialValues = initialValues; this.n = initialValues.length; tree = new int[4 * n]; init(0, n - 1, 1); } private void init(int left, int right, int v) { if (left == right) { tree[v] = initialValues[left]; } else { int mid = (left + right) / 2; init(left, mid, 2 * v); init(mid + 1, right, 2 * v + 1); tree[v] = tree[2 * v] & tree[2 * v + 1]; } } private int logicalAnd(int left, int right) { return logicalAnd(1, 0, n - 1, left, right); } private int logicalAnd(int v, int vLeft, int vRight, int left, int right) { if (left > right) { return (2 << BITS) - 1; } else { if (vLeft == left && vRight == right) { return tree[v]; } int vMid = (vLeft + vRight) / 2; int leftAns = logicalAnd(2 * v, vLeft, vMid, left, Math.min(right, vMid)); int rightAns = logicalAnd(2 * v + 1, vMid + 1, vRight, Math.max(left, vMid + 1), right); return leftAns & rightAns; } } } } class InputReader { private BufferedReader reader; private String[] currentArray; private int curPointer; public InputReader(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); } public int nextInt() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Integer.parseInt(currentArray[curPointer++]); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long int power(long long int a, long long int b) { long long int res = 1; a = a % 1000000007; while (b > 0) { if (b & 1) { res = (res * a) % 1000000007; b--; } a = (a * a) % 1000000007; b >>= 1; } return res; } long long int gcd(long long int a, long long int b) { return (b == 0) ? a : gcd(b, a % b); } vector<long long int> a(100005, 0); vector<long long int> tree(500005, 0); long long int n, m; void build(long long int l, long long int r, long long int v) { if (l == r) tree[v] = a[l]; else { long long int mid = l + (r - l) / 2; build(l, mid, 2 * v); build(mid + 1, r, 2 * v + 1); tree[v] = (tree[2 * v] & tree[2 * v + 1]); } } long long int x = 0; long long int sum(long long int tl, long long int tr, long long int l, long long int r, long long int v) { if (l > r) return x; long long int mid = tl + (tr - tl) / 2; if (tl == l && tr == r) return tree[v]; return (sum(tl, mid, l, min(mid, r), 2 * v) & sum(mid + 1, tr, max(mid + 1, l), r, 2 * v + 1)); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n >> m; for (long long int i = 0; i <= 30; i++) x += (1 << i); vector<pair<pair<long long int, long long int>, long long int>> v(m); for (long long int i = 0; i < m; i++) { cin >> v[i].first.first >> v[i].first.second >> v[i].second; } for (long long int i = 0; i <= 30; i++) { vector<long long int> sum(n + 2, 0); for (auto j : v) { if ((j.second & (1 << i)) == 0) continue; sum[j.first.first] += 1; sum[j.first.second + 1] -= 1; } for (long long int j = 1; j <= n; j++) sum[j] += sum[j - 1]; for (long long int j = 1; j <= n; j++) { if (sum[j]) a[j] |= (1 << i); } } build(1, n, 1); for (auto i : v) { if (sum(1, n, i.first.first, i.first.second, 1) != i.second) { cout << "NO\n"; return 0; } } cout << "YES\n"; for (long long int i = 1; i <= n; i++) { cout << a[i] << " "; } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long tree[3 * 100005]; bool lazy[3 * 100005]; void update(long long node, long long b, long long e, long long i, long long j, long long v) { if (i > e || j < b) { return; } if (b >= i && e <= j) { lazy[node] = true; { tree[node] = tree[node] | v; } return; } if (lazy[node]) { tree[node * 2] |= tree[node]; tree[node * 2 + 1] |= tree[node]; lazy[node * 2] = 1; lazy[node * 2 + 1] = 1; lazy[node] = 0; } update(node * 2, b, (b + e) / 2, i, j, v); update(node * 2 + 1, (b + e) / 2 + 1, e, i, j, v); tree[node] = tree[node * 2] & tree[node * 2 + 1]; } long long query(long long node, long long b, long long e, long long i, long long j) { if (i > e || j < b) { return (1LL << 33) - 1; } if (b >= i && e <= j) { return tree[node]; } if (lazy[node]) { tree[node * 2] |= tree[node]; tree[node * 2 + 1] |= tree[node]; lazy[node * 2] = 1; lazy[node * 2 + 1] = 1; lazy[node] = 0; } return query(node * 2, b, (b + e) / 2, i, j) & query(node * 2 + 1, (b + e) / 2 + 1, e, i, j); } int main() { long long n, m; cin >> n >> m; pair<long long, long long> p[m + 1]; long long a[m + 1]; memset(tree, 0, sizeof tree); memset(lazy, 0, sizeof lazy); for (long long i = 1; i <= m; i++) { long long x, y, z; cin >> x >> y >> z; update(1, 1, n, x, y, z); p[i].first = x; p[i].second = y; a[i] = z; } int f = 1; for (long long i = 1; i <= m; i++) { long long x = query(1, 1, n, p[i].first, p[i].second); if (x != a[i]) { f = 0; } } if (f == 1) { cout << "YES\n"; for (long long i = 1; i <= n; i++) { cout << query(1, 1, n, i, i) << " "; } cout << endl; } else { cout << "NO\n"; } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
from sys import stdin input=stdin.readline def funcand(a,b): return a&b class SegmentTree: def __init__(self, data, default=(1<<31)-1, func=max): """initialize the segment tree with data""" self._default = default self._func = func self._len = len(data) self._size = _size = 1 << (self._len - 1).bit_length() self.data = [default] * (2 * _size) self.data[_size:_size + self._len] = data for i in reversed(range(_size)): self.data[i] = func(self.data[i + i], self.data[i + i + 1]) def __delitem__(self, idx): self[idx] = self._default def __getitem__(self, idx): return self.data[idx + self._size] def __setitem__(self, idx, value): idx += self._size self.data[idx] = value idx >>= 1 while idx: self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1]) idx >>= 1 def __len__(self): return self._len def query(self, start, stop): """func of data[start, stop)""" start += self._size stop += self._size res_left = res_right = self._default while start < stop: if start & 1: res_left = self._func(res_left, self.data[start]) start += 1 if stop & 1: stop -= 1 res_right = self._func(self.data[stop], res_right) start >>= 1 stop >>= 1 return self._func(res_left, res_right) def f(n,q): a=[0]*(n) for bit in range(30): s=[0]*(n+1) for l,r,nm in q: if((nm>>bit)&1): s[l]+=1 s[r]-=1 for i in range(n): if i>0: s[i]+=s[i-1] # bich ke bhar raha hai if s[i]>0: a[i]|=(1<<bit) st=SegmentTree(a,func=funcand,default=(1<<31)-1) for l,r,nm in q: # print(st.query(l,r)) if st.query(l,r)!=nm: return "NO" print("YES") print(*a) return '' q=[] n,m=map(int,input().strip().split()) for _ in range(m): l,r,nm=map(int,input().strip().split()) q.append((l-1,r,nm)) print(f(n,q))
PYTHON3
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Solution { static class FastScanner{ BufferedReader s; StringTokenizer st; public FastScanner(){ st = new StringTokenizer(""); s = new BufferedReader(new InputStreamReader(System.in)); } public FastScanner(File f) throws FileNotFoundException{ st = new StringTokenizer(""); s = new BufferedReader (new FileReader(f)); } public int nextInt() throws IOException{ if(st.hasMoreTokens()) return Integer.parseInt(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextInt(); } } public double nextDouble() throws IOException{ if(st.hasMoreTokens()) return Double.parseDouble(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextDouble(); } } public long nextLong() throws IOException{ if(st.hasMoreTokens()) return Long.parseLong(st.nextToken()); else{ st = new StringTokenizer(s.readLine()); return nextLong(); } } public String nextString() throws IOException{ if(st.hasMoreTokens()) return st.nextToken(); else{ st = new StringTokenizer(s.readLine()); return nextString(); } } public String readLine() throws IOException{ return s.readLine(); } public void close() throws IOException{ s.close(); } } //FastScanner s = new FastScanner(new File("input.txt")); copy inside void solve //PrintWriter ww = new PrintWriter(new FileWriter("output.txt")); static FastScanner s = new FastScanner(); static PrintWriter ww = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String args[])throws IOException{ //Main ob=new Main(); Solution ob=new Solution(); ob.solve(); ww.close(); } ///////////////////////////////////////////// int tree[]; int dp[]; int arr[]; void build(int node,int l,int r){ if(l+1==r){ tree[node]=arr[l]; return; } int mid = (l+r)/2; build(node*2,l,mid); build(node*2+1,mid,r); tree[node]=tree[node*2]&tree[node*2+1]; } int query(int node,int l,int r,int L,int R){ if (l <= L && R <= r) { return tree[node]; } int mid = (L + R) >> 1; int ans = (1 << 30) - 1; if (l < mid) ans &= query(node*2,l, Math.min(r, mid), L, mid); if (mid < r) ans &= query(node*2+1,Math.max(l, mid),r, mid, R); return ans; } /* int query(int v, int l, int r, int L, int R) { if (l == L && r == R) { return tree[v]; } int mid = (L + R) >> 1; int ans = (1<< 30) - 1 ; if (l < mid) ans &= query(v * 2, l, Math.min(r, mid), L, mid); if (mid < r) ans &= query(v * 2 + 1, Math.max(l, mid), r, mid, R); return ans; } */ ///////////////////////////////////////////// void solve() throws IOException { int n = s.nextInt(); int m = s.nextInt(); int N=1000000; int l[] = new int[N]; int r[] = new int[N]; int q[] = new int[N]; for(int i = 0;i < m;i++){ l[i] = s.nextInt()-1; r[i] = s.nextInt(); q[i] = s.nextInt(); } dp = new int[N]; arr = new int[N]; int power = (int) Math.floor(Math.log(N) / Math.log(2)) + 1; power = (int) ((int) 2 * Math.pow(2, power)); tree = new int[power]; for(int bit = 0;bit <= 30;bit++){ for(int i=0;i<n;i++) dp[i]=0; for(int i=0;i<m;i++){ if (((q[i] >> bit) & 1)==1) { dp[l[i]]++; dp[r[i]]--; } } for(int i=0;i<n;i++){ if(i>0) dp[i]+= dp[i-1]; if(dp[i]>0) arr[i]|=(1<<bit); } } build(1,0,n); //for(int i=0;i<n;i++) //System.out.println(arr[i]+" "); for(int i=0;i<m;i++){ if (query(1, l[i], r[i], 0, n) != q[i]){ ww.println("NO"); return; } } ww.println("YES"); for(int i=0;i<n;i++) ww.print(arr[i]+" "); }//solve }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long bigmod(long long b, long long p) { if (p == 0) return 1; long long my = bigmod(b, p / 2); my *= my; my %= 1000000007; if (p & 1) my *= b, my %= 1000000007; return my; } int setb(int n, int pos) { return n = n | (1 << pos); } int resb(int n, int pos) { return n = n & ~(1 << pos); } bool checkb(int n, int pos) { return (bool)(n & (1 << pos)); } struct node { long long x, y, val; }; node ara[100005]; long long tree[4 * 100005], n, m, lol[100005]; void update(long long ind, long long b, long long e, long long i, long long j, long long val) { if (i > j) return; if (b == i && e == j) { tree[ind] |= val; return; } long long mid = (b + e) / 2, l = 2 * ind, r = l + 1; update(l, b, mid, i, min(j, mid), val); update(r, mid + 1, e, max(i, mid + 1), j, val); } long long q(long long ind, long long b, long long e, long long i, long long car) { if (b == e) { return tree[ind] | car; } long long mid = (b + e) / 2, l = 2 * ind, r = l + 1; if (i <= mid) return q(l, b, mid, i, car | tree[ind]); else return q(r, mid + 1, e, i, car | tree[ind]); } void init(long long ind, long long b, long long e) { if (b == e) { tree[ind] = lol[b]; return; } long long mid = (b + e) / 2, l = 2 * ind, r = l + 1; init(l, b, mid); init(r, mid + 1, e); tree[ind] = tree[l] & tree[r]; } long long fun(long long ind, long long b, long long e, long long i, long long j) { if (i > j) return 1073741823ll; if (b == i && e == j) return tree[ind]; long long mid = (b + e) / 2, l = 2 * ind, r = l + 1; return fun(l, b, mid, i, min(j, mid)) & fun(r, mid + 1, e, max(mid + 1, i), j); } int main() { long long i; scanf("%lld %lld", &n, &m); for (i = 1; i <= m; i++) { scanf("%lld %lld %lld", &ara[i].x, &ara[i].y, &ara[i].val); update(1, 1, n, ara[i].x, ara[i].y, ara[i].val); } for (i = 1; i <= n; i++) lol[i] = q(1, 1, n, i, 0); memset(tree, 0, sizeof(tree)); init(1, 1, n); bool flag = 1; for (i = 1; i <= m; i++) { long long my = fun(1, 1, n, ara[i].x, ara[i].y); if (my != ara[i].val) { flag = 0; break; } } if (flag == 0) puts("NO"); else { puts("YES"); for (i = 1; i <= n; i++) { if (i > 1) printf(" "); printf("%d", lol[i]); } printf("\n"); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; void update(vector<int> &BIT, int value, int index) { int n = BIT.size() - 1; while (index <= n) { BIT[index] += value; index += index & (-index); } } int query(vector<int> &BIT, int index) { int sum = 0; while (index > 0) { sum += BIT[index]; index -= index & (-index); } return sum; } int query(vector<int> &BIT, int l, int r) { return query(BIT, r) - query(BIT, l - 1); } const int N = 30; void solve() { int n, m; cin >> n >> m; vector<vector<int> > arr(n + 1, vector<int>(N, 0)); bool ok = true; int l, r, q; vector<pair<pair<int, int>, int> > ops(m); for (int i = 0; i < m; i++) { cin >> l >> r >> q; l--, r--; ops[i] = make_pair(make_pair(l, r), q); for (int j = 0; j < N; j++) { if (q >> j & 1) { arr[l][j] += 1; arr[r + 1][j] -= 1; } } } for (int i = 0; i < N; i++) { for (int j = 0; j < n; j++) { arr[j + 1][i] += arr[j][i]; arr[j][i] = !!arr[j][i]; } } vector<vector<int> > BITS(N, vector<int>(n + 1)); for (int i = 0; i < N; i++) { for (int j = 0; j < n; j++) { update(BITS[i], arr[j][i], j + 1); } } for (int i = 0; i < m; i++) { l = ops[i].first.first, r = ops[i].first.second, q = ops[i].second; for (int j = 0; j < N; j++) { if (!(q >> j & 1)) { ok &= (query(BITS[j], l + 1, r + 1) < (r - l + 1)); } } } if (!ok) cout << "NO\n"; else { cout << "YES\n"; for (int i = 0; i < n; i++) { int val = 0; for (int j = 0; j < N; j++) { if (arr[i][j]) val |= 1 << j; } cout << val << ' '; } } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int t = 1; while (t--) { solve(); } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int a[112345], l[112345], r[112345], q[112345], sum[112345], tree[4 * 112345]; int maxx = (1ll << 30) - 1; void build_tree(int node, int s, int e) { if (s == e) { tree[node] = a[s]; return; } int mid = (s + e) / 2; int c1 = 2 * node + 1; int c2 = c1 + 1; build_tree(c1, s, mid); build_tree(c2, mid + 1, e); tree[node] = (tree[c1] & tree[c2]); } int query_tree(int node, int s, int e, int p, int q) { if (q < s || p > e) return maxx; if (s >= p && e <= q) return tree[node]; int mid = (s + e) / 2; int c1 = 2 * node + 1; int c2 = c1 + 1; return (query_tree(c1, s, mid, p, q) & query_tree(c2, mid + 1, e, p, q)); } int main() { int n, m; cin >> n >> m; for (int i = 0; i < m; i++) { cin >> l[i] >> r[i] >> q[i]; l[i]--; } for (int bit = 0; bit <= 30; bit++) { for (int i = 0; i < n; i++) { sum[i] = 0; } for (int i = 0; i < m; i++) { if ((q[i] >> bit) & 1) { sum[l[i]]++; sum[r[i]]--; } } for (int i = 0; i < n; i++) { if (i > 0) sum[i] += sum[i - 1]; if (sum[i] > 0) { a[i] |= (1 << bit); } } } build_tree(0, 0, n - 1); for (int i = 0; i < m; i++) { if (query_tree(0, 0, n - 1, l[i], r[i] - 1) != q[i]) { cout << "NO\n"; return 0; } } cout << "YES\n"; for (int i = 0; i < n; i++) { cout << a[i] << " "; } cout << endl; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.List; import java.io.InputStreamReader; import java.io.IOException; import java.util.Arrays; import java.util.ArrayList; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Tifuera */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public static final int BITS = 30; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int[] L = new int[m]; int[] R = new int[m]; int[] Q = new int[m]; List<Condition> conditions = new ArrayList<>(m); for (int i = 0; i < m; i++) { L[i] = in.nextInt() - 1; R[i] = in.nextInt() - 1; Q[i] = in.nextInt(); conditions.add(new Condition(L[i], R[i], Q[i])); } int[] answer = new int[n]; int[] bits = new int[n]; for (int i = 0; i <= BITS; i++) { Arrays.fill(bits, 0); constructBits(conditions, i, bits); for (int j = 0; j < n; j++) { if (bits[j] > 0) { answer[j] += (bits[j] << i); } } } if (isSolutionCorrect(conditions, answer)) { out.println("YES"); for (int a : answer) { out.print(a + " "); } } else { out.println("NO"); } } private boolean isSolutionCorrect(List<Condition> conditions, int[] answer) { int[][] partialSums = new int[BITS + 1][answer.length + 1]; for (int i = 0; i <= BITS; i++) { for (int j = 0; j < answer.length; j++) { partialSums[i][j + 1] = partialSums[i][j] + ((answer[j] >> i) & 1); } } for (Condition cond : conditions) { for (int i = 0; i <= BITS; i++) { int numberOfOneOnSegment = partialSums[i][cond.r + 1] - partialSums[i][cond.l]; boolean isRealBitOne = ((cond.q >> i) & 1) == 1; boolean isOne = numberOfOneOnSegment == (cond.r - cond.l + 1); if (isRealBitOne != isOne) { return false; } } } return true; } private void constructBits(List<Condition> conditions, int pos, int[] bits) { int[] arr = new int[bits.length + 1]; for (Condition cond : conditions) { int cur = (cond.q >> pos) & 1; if (cur == 1) { arr[cond.l]++; arr[cond.r + 1]--; } } int s = 0; for (int i = 0; i < bits.length; i++) { s += arr[i]; if (s > 0) { bits[i] = 1; } } } private static class Condition { int l; int r; int q; private Condition(int l, int r, int q) { this.l = l; this.r = r; this.q = q; } } } class InputReader { private BufferedReader reader; private String[] currentArray; private int curPointer; public InputReader(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); } public int nextInt() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Integer.parseInt(currentArray[curPointer++]); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int n, m, cum[31][100100], a[100100], seg[4 * 100100]; pair<int, pair<int, int> > pr[100100]; void build(int p, int l, int r) { if (l == r) { seg[p] = a[l]; return; } int md = (l + r) >> 1; build(p * 2, l, md); build(p * 2 + 1, md + 1, r); seg[p] = seg[p * 2] & seg[p * 2 + 1]; } int get(int p, int l, int r, int a, int b) { if (a <= l and r <= b) return seg[p]; if (r < a or l > b) return (1 << 30) - 1; int md = (l + r) >> 1; int r1 = get(p * 2, l, md, a, b); int r2 = get(p * 2 + 1, md + 1, r, a, b); return r1 & r2; } int main() { ios_base::sync_with_stdio(false); cin >> n >> m; for (int i = 0; i < m; ++i) { cin >> pr[i].first >> pr[i].second.first >> pr[i].second.second; for (int j = 0; j < 31; ++j) { if ((pr[i].second.second & (1 << j)) != 0) { ++cum[j][pr[i].first]; --cum[j][pr[i].second.first + 1]; } } } for (int i = 1; i <= n; ++i) for (int j = 0; j < 31; ++j) cum[j][i] += cum[j][i - 1]; for (int i = 1; i <= n; ++i) for (int j = 0; j < 31; ++j) if (cum[j][i] > 0) a[i] |= (1 << j); build(1, 1, n); for (int i = 0; i < m; ++i) { if (get(1, 1, n, pr[i].first, pr[i].second.first) != pr[i].second.second) return cout << "NO\n", 0; } cout << "YES\n"; for (int i = 1; i <= n; ++i) cout << a[i] << " "; cout << endl; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedWriter; import java.util.InputMismatchException; import java.util.NoSuchElementException; import java.math.BigInteger; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.io.IOException; import java.io.InputStream; import java.io.OutputStreamWriter; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } } class TaskB { public void solve(int testNumber, InputReader in, OutputWriter out) { int n=in.readInt(), m=in.readInt(); int[] from=new int[m], to=new int[m], and=new int[m]; long[] ret=new long[n]; IOUtils.readIntArrays(in, from, to, and); MiscUtils.decreaseByOne(from, to); IntervalTree andTree=new LongIntervalTree(n) { protected long neutralDelta() { return Long.MAX_VALUE; } protected long neutralValue() { return Long.MAX_VALUE; } protected long accumulate(long value, long delta, int length) { return value&delta; } protected long joinDelta(long was, long delta) { return was&delta; } protected long joinValue(long left, long right) { return left&right; } }, orTree=new LongIntervalTree(n) { protected long neutralDelta() { return 0; } protected long neutralValue() { return 0; } protected long accumulate(long value, long delta, int length) { return value|delta; } protected long joinDelta(long was, long delta) { return was|delta; } protected long joinValue(long left, long right) { return left|right; } }; for (int i=0; i<m; i++) orTree.update(from[i], to[i], and[i]); for (int i=0; i<n; i++) andTree.update(i, i, ret[i]=orTree.query(i, i)); for (int i=0; i<m; i++) if (andTree.query(from[i], to[i])!=and[i]) { out.printLine("NO"); return; } out.printLine("YES"); out.printLine(ret); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void print(long[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) writer.print(' '); writer.print(array[i]); } } public void printLine(long[] array) { print(array); writer.println(); } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } class MiscUtils { public static void decreaseByOne(int[]...arrays) { for (int[] array : arrays) { for (int i = 0; i < array.length; i++) array[i]--; } } } abstract class IntervalTree { protected int size; public IntervalTree(int size, boolean shouldInit) { this.size = size; int nodeCount = Math.max(1, Integer.highestOneBit(size) << 2); initData(size, nodeCount); if (shouldInit) init(); } protected abstract void initData(int size, int nodeCount); protected abstract void initAfter(int root, int left, int right, int middle); protected abstract void initBefore(int root, int left, int right, int middle); protected abstract void initLeaf(int root, int index); protected abstract void updatePostProcess(int root, int left, int right, int from, int to, long delta, int middle); protected abstract void updatePreProcess(int root, int left, int right, int from, int to, long delta, int middle); protected abstract void updateFull(int root, int left, int right, int from, int to, long delta); protected abstract long queryPostProcess(int root, int left, int right, int from, int to, int middle, long leftResult, long rightResult); protected abstract void queryPreProcess(int root, int left, int right, int from, int to, int middle); protected abstract long queryFull(int root, int left, int right, int from, int to); protected abstract long emptySegmentResult(); public void init() { if (size == 0) return; init(0, 0, size - 1); } private void init(int root, int left, int right) { if (left == right) { initLeaf(root, left); } else { int middle = (left + right) >> 1; initBefore(root, left, right, middle); init(2 * root + 1, left, middle); init(2 * root + 2, middle + 1, right); initAfter(root, left, right, middle); } } public void update(int from, int to, long delta) { update(0, 0, size - 1, from, to, delta); } protected void update(int root, int left, int right, int from, int to, long delta) { if (left > to || right < from) return; if (left >= from && right <= to) { updateFull(root, left, right, from, to, delta); return; } int middle = (left + right) >> 1; updatePreProcess(root, left, right, from, to, delta, middle); update(2 * root + 1, left, middle, from, to, delta); update(2 * root + 2, middle + 1, right, from, to, delta); updatePostProcess(root, left, right, from, to, delta, middle); } public long query(int from, int to) { return query(0, 0, size - 1, from, to); } protected long query(int root, int left, int right, int from, int to) { if (left > to || right < from) return emptySegmentResult(); if (left >= from && right <= to) return queryFull(root, left, right, from, to); int middle = (left + right) >> 1; queryPreProcess(root, left, right, from, to, middle); long leftResult = query(2 * root + 1, left, middle, from, to); long rightResult = query(2 * root + 2, middle + 1, right, from, to); return queryPostProcess(root, left, right, from, to, middle, leftResult, rightResult); } } abstract class LongIntervalTree extends IntervalTree { protected long[] value; protected long[] delta; protected LongIntervalTree(int size) { this(size, true); } public LongIntervalTree(int size, boolean shouldInit) { super(size, shouldInit); } protected void initData(int size, int nodeCount) { value = new long[nodeCount]; delta = new long[nodeCount]; } protected abstract long joinValue(long left, long right); protected abstract long joinDelta(long was, long delta); protected abstract long accumulate(long value, long delta, int length); protected abstract long neutralValue(); protected abstract long neutralDelta(); protected long initValue(int index) { return neutralValue(); } protected void initAfter(int root, int left, int right, int middle) { value[root] = joinValue(value[2 * root + 1], value[2 * root + 2]); delta[root] = neutralDelta(); } protected void initBefore(int root, int left, int right, int middle) { } protected void initLeaf(int root, int index) { value[root] = initValue(index); delta[root] = neutralDelta(); } protected void updatePostProcess(int root, int left, int right, int from, int to, long delta, int middle) { value[root] = joinValue(value[2 * root + 1], value[2 * root + 2]); } protected void updatePreProcess(int root, int left, int right, int from, int to, long delta, int middle) { pushDown(root, left, middle, right); } protected void pushDown(int root, int left, int middle, int right) { value[2 * root + 1] = accumulate(value[2 * root + 1], delta[root], middle - left + 1); value[2 * root + 2] = accumulate(value[2 * root + 2], delta[root], right - middle); delta[2 * root + 1] = joinDelta(delta[2 * root + 1], delta[root]); delta[2 * root + 2] = joinDelta(delta[2 * root + 2], delta[root]); delta[root] = neutralDelta(); } protected void updateFull(int root, int left, int right, int from, int to, long delta) { value[root] = accumulate(value[root], delta, right - left + 1); this.delta[root] = joinDelta(this.delta[root], delta); } protected long queryPostProcess(int root, int left, int right, int from, int to, int middle, long leftResult, long rightResult) { return joinValue(leftResult, rightResult); } protected void queryPreProcess(int root, int left, int right, int from, int to, int middle) { pushDown(root, left, middle, right); } protected long queryFull(int root, int left, int right, int from, int to) { return value[root]; } protected long emptySegmentResult() { return neutralValue(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; struct node { int l, r, val; } q[150000]; int INF; int a[150000]; int sum[32][150000]; int now[32]; int tree[150000 * 4]; void pushup(int rt) { tree[rt] = tree[rt * 2] & tree[rt * 2 + 1]; } void build(int l, int r, int rt) { if (l == r) { tree[rt] = a[l]; return; } int m = (l + r) / 2; build(l, m, rt * 2); build(m + 1, r, rt * 2 + 1); pushup(rt); } int query(int L, int R, int l, int r, int rt) { if (l >= L && r <= R) { return tree[rt]; } pushup(rt); int m = (l + r) / 2; int ans = INF; if (L <= m) ans = (ans & (query(L, R, l, m, rt * 2))); if (R > m) ans = (ans & (query(L, R, m + 1, r, rt * 2 + 1))); pushup(rt); return ans; } int main() { int n, m; for (int i = 0; i <= 30; i++) INF += (1 << i); while (~scanf("%d%d", &n, &m)) { memset(sum, 0, sizeof(sum)); for (int i = 1; i <= m; i++) { int L, R, val; scanf("%d%d%d", &L, &R, &val); q[i].l = L; q[i].r = R, q[i].val = val; for (int j = 0; j <= 30; j++) { if ((val & ((1 << j))) > 0) { sum[j][L]++; sum[j][R + 1]--; } } } for (int i = 1; i <= n; i++) { for (int j = 0; j <= 30; j++) { now[j] += sum[j][i]; } int num = 0; for (int j = 0; j <= 30; j++) { if (now[j] > 0) num += (1 << j); } a[i] = num; } build(1, n, 1); int flag = 1; for (int i = 1; i <= m; i++) { if (query(q[i].l, q[i].r, 1, n, 1) != q[i].val) flag = 0; } if (flag == 0) printf("NO\n"); else { printf("YES\n"); for (int i = 1; i <= n; i++) { printf("%d ", a[i]); } printf("\n"); } } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = 2 * 1e5 + 10, LG = 30, Non_And = ((1 << 30)) - 1; int ps[LG][N], n; pair<pair<int, int>, int> quer[N]; void upd(int l, int r, int bit) { ps[bit][r]--; ps[bit][l]++; } void mdfy(int bit) { for (int i = 1; i <= n; i++) ps[bit][i] += ps[bit][i - 1]; for (int i = 0; i <= n; i++) ps[bit][i] = min(ps[bit][i], 1); for (int i = 1; i <= n; i++) ps[bit][i] += ps[bit][i - 1]; } int get(int l, int r, int bit) { if (l == 0) return ps[bit][r]; return ps[bit][r] - ps[bit][l - 1]; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int m; cin >> n >> m; for (int i = 0; i < m; i++) { int l, r, q; cin >> l >> r >> q; l--; for (int j = 0; j < LG; j++) { if (q & ((long long)1 << j)) { upd(l, r, j); } } quer[i].first.first = l; quer[i].first.second = r; quer[i].second = q; } for (int j = 0; j < LG; j++) mdfy(j); for (int i = 0; i < m; i++) { int l, r, k; l = quer[i].first.first; r = quer[i].first.second; k = quer[i].second; for (int j = 0; j < LG; j++) { if ((k & ((long long)1 << j)) == 0) { if (get(l, r - 1, j) == r - l) { cout << "NO\n"; return 0; } } } } cout << "YES\n"; for (int i = 0; i < n; i++) { int ansi = 0; for (int j = 0; j < LG; j++) { if (get(i, i, j)) ansi += ((long long)1 << j); } cout << ansi << " "; } cout << '\n'; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.util.*; public class InterestingArray { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int m = scan.nextInt(); int[][] pre = new int[31][n+1]; int[][] queries = new int[3][m]; for(int q = 1; q <= m; q++) { int l = scan.nextInt()-1; int r = scan.nextInt()-1; int x = scan.nextInt(); queries[0][q-1] = l; queries[1][q-1] = r; queries[2][q-1] = x; for(int i = 30; i >= 0; i--) { int j = (1 << i); if((x & j) > 0) { pre[i][l]++; pre[i][r+1]--; } } } long[] ans = new long[n]; int sum = 0; for(int j = 0; j < 31; j++) { sum = 0; for(int i = 0; i < n; i++) { sum += pre[j][i]; if(sum > 0) ans[i] |= (1 << j); } } ST seg = new ST(n, ans); for(int i = 0; i < m; i++) { int l = queries[0][i]; int r = queries[1][i]; long x = queries[2][i]; long a = seg.and(l, r); if(a != x) { System.out.println("NO"); return; } } System.out.println("YES"); for(int i = 0; i < n; i++) System.out.print(ans[i]+" "); } static class ST { // 0-based indexed queries int n, lo[], hi[]; long[] d, t; public ST(int nn, long[] a) { n = nn; d = new long[n << 2]; t = new long[n << 2]; lo = new int[n << 2]; hi = new int[n << 2]; build(a, 1, 0, n - 1); } void build(long[] arr, int i, int a, int b) { lo[i] = a; hi[i] = b; if(a == b) { t[i] = arr[a]; return; } int m = (a + b) / 2; build(arr, i << 1, a, m); build(arr, i << 1 | 1, m + 1, b); update(i); } void prop(int i) { d[i << 1] += d[i]; d[i << 1 | 1] += d[i]; d[i] = 0; } void update(int i) { t[i] = (t[i << 1] + d[i << 1]) & (t[i << 1 | 1] + d[i << 1 | 1]); } // adds value v over range [a, b] void inc(int a, int b, long v) { inc(1, a, b, v); } private void inc(int i, int a, int b, long v) { if(b < lo[i] || a > hi[i]) return; if(a <= lo[i] && b >= hi[i]) { d[i] += v; return; } prop(i); inc(i << 1, a, b, v); inc(i << 1 | 1, a, b, v); update(i); } // finds minimum value over range [a, b] long and(int a, int b) { return and(1, a, b); } private long and(int i, int a, int b) { if(b < lo[i] || hi[i] < a) return (1 << 30)-1; if(a <= lo[i] && hi[i] <= b) return t[i] + d[i]; prop(i); long res = and(i << 1, a, b) & and(i << 1 | 1, a, b); update(i); return res; } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { int[] t; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int[] l = new int[m]; int[] r = new int[m]; int[] q = new int[m]; int[][] der = new int[30][n + 1]; for (int i = 0; i < m; i++) { l[i] = in.nextInt(); r[i] = in.nextInt(); q[i] = in.nextInt(); for (int j = 0; j < 30; j++) { if (((q[i] >> j) & 1) == 1) { der[j][l[i] - 1]++; der[j][r[i]]--; } } } int[] ans = new int[n]; int[] bits = new int[30]; for (int i = 0; i < n; i++) { int cur = 0; for (int j = 0; j < 30; j++) { bits[j] += der[j][i]; if (bits[j] > 0) cur |= 1 << j; } ans[i] = cur; } t = new int[4 * n]; build(ans, 1, 0, n - 1); for (int i = 0; i < m; i++) { if (and(1, 0, n - 1, l[i] - 1, r[i] - 1) != q[i]) { out.println("NO"); return; } } out.println("YES"); for (int i = 0; i < n; i++) { out.print(ans[i] + " "); } } void build(int a[], int v, int tl, int tr) { if (tl == tr) t[v] = a[tl]; else { int tm = (tl + tr) / 2; build(a, v * 2, tl, tm); build(a, v * 2 + 1, tm + 1, tr); t[v] = t[v * 2] & t[v * 2 + 1]; } } int and(int v, int tl, int tr, int l, int r) { if (l > r) return (1 << 30) - 1; if (l == tl && r == tr) return t[v]; int tm = (tl + tr) / 2; return and(v * 2, tl, tm, l, Math.min(r, tm)) & and(v * 2 + 1, tm + 1, tr, Math.max(l, tm + 1), r); } } static class InputReader { private StringTokenizer tokenizer; private BufferedReader reader; public InputReader(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); } private void fillTokenizer() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } } public String next() { fillTokenizer(); return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& _p) { return os << "(" << _p.first << "," << _p.second << ")"; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& _V) { bool f = true; os << "["; for (auto v : _V) { os << (f ? "" : ",") << v; f = false; } return os << "]"; } template <typename T> ostream& operator<<(ostream& os, const set<T>& _S) { bool f = true; os << "("; for (auto s : _S) { os << (f ? "" : ",") << s; f = false; } return os << ")"; } template <typename T, typename U> ostream& operator<<(ostream& os, const map<T, U>& _M) { return os << set<pair<T, U>>(_M.begin(), _M.end()); } const signed long long INF = 1000000100; const long double EPS = 1e-9; struct tree { int M; int* T; tree(int n) : M(1 << (32 - __builtin_clz(n))), T(new int[2 * M]) { for (int(i) = (0); (i) < (2 * M); (i)++) T[i] = 0; } void insert(int a, int b, int t) { a += M; b += M; T[a] |= t; T[b] |= t; while (a / 2 != b / 2) { if (a % 2 == 0) T[a + 1] |= t; if (b % 2 == 1) T[b - 1] |= t; a /= 2; b /= 2; } } int query(int a) { a += M; int ret = 0; while (a != 0) { ret |= T[a]; a /= 2; } return ret; } void insert(int a, int t) { a += M; T[a] = t; a /= 2; while (a != 0) { T[a] = (T[2 * a] & T[2 * a + 1]); a /= 2; } } int query(int a, int b) { a += M; b += M; int ret = (T[a] & T[b]); while (a / 2 != b / 2) { if (a % 2 == 0) ret &= T[a + 1]; if (b % 2 == 1) ret &= T[b - 1]; a /= 2; b /= 2; } return ret; } }; const int MAXN = 300300; int N, Q; int A[MAXN]; int B[MAXN]; int first[MAXN]; void read_data() { scanf("%d %d", &N, &Q); for (int(i) = (1); (i) <= (Q); (i)++) scanf("%d %d %d", A + i, B + i, first + i); } void solve() { tree T1(N); for (int(i) = (1); (i) <= (Q); (i)++) T1.insert(A[i], B[i], first[i]); tree T2(N); for (int(i) = (1); (i) <= (N); (i)++) T2.insert(i, T1.query(i)); bool ok = true; for (int(i) = (1); (i) <= (Q); (i)++) ok &= (T2.query(A[i], B[i]) == first[i]); printf(ok ? "YES\n" : "NO\n"); if (ok) { for (int(i) = (1); (i) <= (N); (i)++) printf("%d ", T1.query(i)); printf("\n"); } } int main() { read_data(); solve(); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; import java.text.*; import java.lang.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.regex.*; public class Myclass{ // public static ArrayList adj[]=new ArrayList[300001]; static long cal=0L; static void pre() { for(int i=0;i<32;i++) { cal+=(1<<i); } } public static long arr[]=new long[1000001]; static long[] seg=new long[4000000]; static long h[]; static char s[]; static void build(int node,int start,int end) { if(start==end) { seg[node]=arr[start]; return ; } int mid=(start+end)/2; build(2*node+1,start,mid); build(2*node+2,mid+1,end); seg[node]=(seg[2*node+1]&seg[2*node+2]); } /*static void update(int node,int start,int end,int idx,double value) { if(start==end) { seg[node]=value; return ; } int mid=(start+end)/2; if(idx>=start && idx<=mid) { update(2*node+1,start,mid,idx, value); } else update(2*node+2,mid+1,end,idx,value); seg[node]=Math.max(seg[2*node+1],seg[2*node+2]); }*/ static Long query(int node,int start,int end,int l,int r) { if(r<start || end<l) return cal; if(start>=l && end<=r) return seg[node]; int mid=(start+end)/2; return (query(2*node+1,start,mid,l,r)&query(2*node+2,mid+1,end,l,r)); } static int dp[][]=new int[100005][32]; public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); pre(); int n=in.nextInt(); int q=in.nextInt(); query[]a=new query[q]; for(int i=0;i<q;i++) { a[i]=new query(in.nextInt()-1,in.nextInt()-1,in.nextLong()); for(int j=0;j<32;j++) { if(((a[i].z>>j)&1)==1) { dp[a[i].x][j]++; dp[a[i].y+1][j]--; } } } for(int i=0;i<32;i++) { for(int j=1;j<=n;j++) { dp[j][i]+=dp[j-1][i]; } } for(int i=0;i<n;i++) { for(int j=0;j<32;j++) { if(dp[i][j]>0) { arr[i]+=(1<<j); } } } build(0,0,n-1); boolean chk=true; for(int i=0;i<q;i++) { long ans=query(0,0,n-1,a[i].x,a[i].y); if(ans!=a[i].z) chk=false; } if(!chk) pw.println("NO"); else { pw.println("YES"); for(int i=0;i<n;i++) { pw.print(arr[i]+" "); } } pw.flush(); pw.close(); } private static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } static class tri implements Comparable<tri> { int p, c, l; tri(int p, int c, int l) { this.p = p; this.c = c; this.l = l; } public int compareTo(tri o) { return Integer.compare(l, o.l); } } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static long mod = 1000000007; public static int d; public static int p; public static int q; public static int[] suffle(int[] a,Random gen) { int n = a.length; for(int i=0;i<n;i++) { int ind = gen.nextInt(n-i)+i; int temp = a[ind]; a[ind] = a[i]; a[i] = temp; } return a; } public static void swap(int a, int b){ int temp = a; a = b; b = temp; } /* public static long primeFactorization(long n) { HashSet<Integer> a =new HashSet<Integer>(); long cnt=0; for(int i=2;i*i<=n;i++) { while(a%i==0) { a.add(i); a/=i; } } if(a!=1) cnt++; //a.add(n); return cnt; }*/ public static void sieve(boolean[] isPrime,int n) { for(int i=1;i<n;i++) isPrime[i] = true; isPrime[0] = false; isPrime[1] = false; for(int i=2;i*i<n;i++) { if(isPrime[i] == true) { for(int j=(2*i);j<n;j+=i) isPrime[j] = false; } } } public static int GCD(int a,int b) { if(b==0) return a; else return GCD(b,a%b); } public static long GCD(long a,long b) { if(b==0) return a; else return GCD(b,a%b); } public static void extendedEuclid(int A,int B) { if(B==0) { d = A; p = 1 ; q = 0; } else { extendedEuclid(B, A%B); int temp = p; p = q; q = temp - (A/B)*q; } } public static long LCM(long a,long b) { return (a*b)/GCD(a,b); } public static int LCM(int a,int b) { return (a*b)/GCD(a,b); } public static int binaryExponentiation(int x,int n) { int result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static long binaryExponentiation(long x,long n) { long result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static int modularExponentiation(int x,int n,int M) { int result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x%M*x)%M; n=n/2; } return result; } public static long modularExponentiation(long x,long n,long M) { long result=1; while(n>0) { if(n % 2 ==1) result=(result%M * x%M)%M; x=(x%M * x%M)%M; n=n/2; } return result; } public static long modInverse(int A,int M) { return modularExponentiation(A,M-2,M); } public static long modInverse(long A,long M) { return modularExponentiation(A,M-2,M); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) { if (n%i == 0 || n%(i+2) == 0) return false; } return true; } public static long[] shuffle(long[] a, Random gen){ for(int i = 0, n = a.length;i < n;i++){ int ind = gen.nextInt(n-i)+i; long d = a[i]; a[i] = a[ind]; a[ind] = d; } return a; } static class pair implements Comparable<pair> { Integer x; Integer y; pair(int a,int sum) { this.x=a; this.y=sum; } public int compareTo(pair o) { int result = x.compareTo(o.x); if(result==0) result = y.compareTo(o.y); return result; } public String toString() { return x+" "+y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair)o; return p.x == x && p.y == y ; } return false; } public int hashCode() { return new Long(x).hashCode()*31 + new Long(y).hashCode(); } } } class query { Integer x,y; Long z; query(int x,int y,long z){ this.x=x; this.y=y; this.z=z; } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> long double sqr(long double a) { return a * a; }; using namespace std; int n, m, l[100010], r[100010], t[4 * 100010], q[100010]; int ans[100010]; int s[35][100010]; void build(int v, int L, int R) { if (L == R) t[v] = ans[L]; else { int M = (L + R) >> 1; build(v + v, L, M); build(v + v + 1, M + 1, R); t[v] = t[v + v] & t[v + v + 1]; } } int get(int v, int L, int R, int l, int r) { if (L == l && R == r) return t[v]; int M = (L + R) >> 1; if (r <= M) return get(v + v, L, M, l, r); if (l > M) return get(v + v + 1, M + 1, R, l, r); return get(v + v, L, M, l, M) & get(v + v + 1, M + 1, R, M + 1, r); } void check() { build(1, 1, n); for (int i = 0; i < m; i++) { if (get(1, 1, n, l[i], r[i]) != q[i]) { puts("NO"); exit(0); } } } int main() { cin >> n >> m; for (int i = 0; i < m; i++) { scanf("%d %d %d", &l[i], &r[i], &q[i]); for (int j = 0; j < 30; j++) { if (q[i] & (1 << j)) { s[j][l[i] - 1] += 1; s[j][r[i]] -= 1; } } } for (int i = 0; i < 30; i++) for (int j = 0; j < n; j++) { s[i][j] += (j > 0 ? s[i][j - 1] : 0); if (s[i][j] > 0) ans[j + 1] += (1 << i); } check(); puts("YES"); for (int i = 0; i < n; i++) cout << ans[i + 1] << " "; cout << endl; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class Main { static int n, m; static long[] st, arr, l, r, q; public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); n = sc.nextInt(); m = sc.nextInt(); flage = true; arr = new long[n]; st = new long[2 * (int) (Math.pow(2, Math.ceil(Math.log(n) / Math.log(2))))]; l = new long[m]; r = new long[m]; q = new long[m]; for (int i = 0; i < m; i++) { l[i] = sc.nextLong() - 1; r[i] = sc.nextLong() - 1; q[i] = sc.nextLong(); } for (int i = 0; i < 31; i++) { long[]sum=new long[n]; for (int j = 0; j < m; j++) { if ((q[j] & (1 << i)) != 0) { sum[(int)l[j]]=Math.max(sum[(int)l[j]],(r[j]-l[j]+1)); // pw.println(maxr+" "+lessl); } } long s=0; for(int j=0;j<n;j++) { s=Math.max(s,sum[j]); if(s>0) { arr[j]|=(1<<i); s--; } } } //if(n==1916)pw.println(Arrays.toString(arr)); complete(0, n - 1, 0); for (int i = 0; i < m; i++) { if (check(0, n - 1, l[i], r[i], 0) != q[i]) { pw.println("NO"); pw.close(); return; } } pw.println("YES"); for (long i : arr) pw.print(i + " "); pw.close(); } public static long complete(int i, int j, int node) { if (i == j) { return st[node] = arr[i]; } int mid = i + j >> 1; return st[node] = complete(i, mid, 2 * node + 1) & complete(mid + 1, j, 2 * node + 2); } public static long check(int l, int r, long i, long j, int node) { if (r < i || j < l) return (1 << 31) - 1; if (l >= i && j >= r) return st[node]; int mid = l + r >> 1; return check(l, mid, i, j, 2 * node + 1) & check(mid + 1, r, i, j, 2 * node + 2); } static int max = (1 << 31) - 1; static boolean flage; public static boolean prime(int x) { int[] arr = new int[10000000]; int index = 0; int num = 3; int i = 0; arr[0] = 2; while (num <= x) { for (i = 0; i <= index; i++) { if (num % arr[i] == 0) { break; } } if (i == index + 1) { arr[++index] = num; } num++; } if (arr[index] == x) return true; return false; } public static void conquer(int[] arr, int b, int m, int e) { int len1 = m - b + 1; int len2 = e - m; int[] l = new int[len1]; int[] r = new int[len2]; for (int i = 0; i < len1; i++) { l[i] = arr[b + i]; } for (int j = 0; j < len2; j++) { r[j] = arr[m + 1 + j]; } int i = 0, j = 0, k = b; while ((i < len1) && (j < len2)) { if (r[j] >= l[i]) { arr[k] = l[i]; k++; i++; } else { arr[k] = r[j]; k++; j++; } } while (i < len1) { arr[k++] = l[i++]; } while (j < len2) { arr[k++] = r[j++]; } } static int mid; public static void sort(int[] arr, int b, int e) { if (b < e) { int mid = (e + b) / 2; sort(arr, b, mid); sort(arr, mid + 1, e); conquer(arr, b, mid, e); } } public static void Sort(int[] arr) { sort(arr, 0, arr.length - 1); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public boolean ready() throws IOException { return br.ready(); } } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int n, m, ST[1 << 18], Query[100000][3], RAQ(int, int, int, int, int); void Update(int, int, int, int, int, int); int main() { scanf("%d%d", &n, &m); for (int q = 0, l, r, x; q < m; q++) { scanf("%d%d%d", &l, &r, &x); l--, r--; Query[q][0] = l, Query[q][1] = r, Query[q][2] = x; Update(0, 0, n - 1, l, r, x); } for (int i = 0, l, r, x; i < m; i++) { l = Query[i][0], r = Query[i][1], x = Query[i][2]; if (RAQ(0, 0, n - 1, l, r) != x) { puts("NO"); return 0; } } puts("YES"); for (int i = 0; i < n; i++) printf("%d ", RAQ(0, 0, n - 1, i, i)); } void Update(int pos, int rl, int rr, int ql, int qr, int v) { if (rr < ql || qr < rl) return; if (ql <= rl && rr <= qr) { ST[pos] |= v; return; } int mid = (rl + rr) >> 1; Update((1 + (pos << 1)), rl, mid, ql, qr, v), Update((2 + (pos << 1)), mid + 1, rr, ql, qr, v); } int RAQ(int pos, int rl, int rr, int ql, int qr) { if (rr < ql || qr < rl) return INT_MAX; if (ql <= rl && rr <= qr) return ST[pos]; int mid = (rl + rr) >> 1; ST[(1 + (pos << 1))] |= ST[pos], ST[(2 + (pos << 1))] |= ST[pos]; return RAQ((1 + (pos << 1)), rl, mid, ql, qr) & RAQ((2 + (pos << 1)), mid + 1, rr, ql, qr); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> int tree[400005] = {0}, a[100005], b[100005], q[100005]; void add(int l, int r, int ll, int rr, int data, int node) { if (l <= ll && r >= rr) tree[node] |= data; else if (l > rr || r < ll) return; else { add(l, r, ll, (ll + rr) / 2, data, node * 2); add(l, r, (ll + rr) / 2 + 1, rr, data, node * 2 + 1); } } void update(int node, int ll, int rr) { if (ll != rr) { tree[node * 2] |= tree[node]; tree[node * 2 + 1] |= tree[node]; update(node * 2, ll, (ll + rr) / 2); update(node * 2 + 1, (ll + rr) / 2 + 1, rr); } } int f(int l, int r, int ll, int rr, int node) { if (l <= ll && r >= rr) return tree[node]; else if (l > rr || r < ll) return -1; else { int k1 = f(l, r, ll, (ll + rr) / 2, node * 2), k2 = f(l, r, (ll + rr) / 2 + 1, rr, node * 2 + 1); if (k1 == -1) return k2; else if (k2 == -1) return k1; else return k1 & k2; } } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 0; i < k; i++) { scanf("%d%d%d", &a[i], &b[i], &q[i]); add(a[i], b[i], 1, n, q[i], 1); } update(1, 1, n); int flag = 0; for (int i = 0; i < k; i++) if (f(a[i], b[i], 1, n, 1) != q[i]) flag = 1; if (flag) printf("NO\n"); else { printf("YES\n"); for (int i = 1; i <= n; i++) printf("%d%c", f(i, i, 1, n, 1), i == n ? '\n' : ' '); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int a[100005][31] = {0}; int L[100001]; int R[100001]; int Q[100001]; int main() { int n, m; scanf("%d %d", &n, &m); for (int z = 0; z < m; z++) { int l, r, q; scanf("%d %d %d", &l, &r, &q); L[z] = l; R[z] = r; Q[z] = q; for (int i = 0; i < 31; i++) { if (q & (1 << i)) { a[l][i]++; a[r + 1][i]--; } } } for (int i = 1; i <= n; i++) { for (int j = 0; j < 31; j++) { a[i][j] += a[i - 1][j]; } } for (int i = 0; i <= n; i++) { for (int j = 0; j < 31; j++) { if (a[i][j]) a[i][j] = 1; if (i) a[i][j] += a[i - 1][j]; } } for (int i = 0; i < m; i++) { for (int j = 0; j < 31; j++) { if ((Q[i] & (1 << j)) == 0) { if (a[R[i]][j] - a[L[i] - 1][j] == R[i] - L[i] + 1) { cout << "NO" << endl; return 0; } } } } printf("YES\n"); for (int i = 1; i <= n; i++) { int num = 0; for (int j = 0; j < 31; j++) { int val = a[i][j] - a[i - 1][j]; if (val) num |= (1 << j); } printf("%d ", num); } printf("\n"); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int ans[1000005], tree[1000005], n, l[1000005], r[1000005], x[1000005]; int an[1000005][35]; int anded(int a, int b) { a += n, b += n; int s = (1 << 30) - 1; while (a <= b) { if (a % 2 == 1) s &= tree[a++]; if (b % 2 == 0) s &= tree[b--]; a /= 2, b /= 2; } return s; } void add(int k, int x1) { k += n; tree[k] += x1; for (k /= 2; k >= 1; k /= 2) tree[k] = tree[2 * k] & tree[2 * k + 1]; } int main() { int m; scanf("%d%d", &n, &m); for (int i = 0; i < int(m); ++i) { cin >> l[i] >> r[i] >> x[i]; int j = 0, val = x[i]; while (val) { if (val % 2 == 1) an[l[i]][j]++, an[r[i] + 1][j]--; val /= 2, j++; } } for (int i = 0; i < int(30); ++i) for (int j = 0; j < int(n + 1); ++j) an[j + 1][i] += an[j][i]; for (int i = 0; i < int(n); ++i) { int t = 1; for (int j = 0; j < int(30); ++j) ans[i + 1] += min(an[i + 1][j], 1) * t, t *= 2; add(i + 1, ans[i + 1]); } for (int i = 0; i < int(m); ++i) if (anded(l[i], r[i]) != x[i]) return cout << "NO", 0; cout << "YES" << endl; for (int i = 0; i < int(n); ++i) printf("%d ", ans[i + 1]); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") MAX = 1000001 bitscount = 30 prefix_count = [[0]*(10**5+1) for i in range(30)] def findPrefixCount(arr, n): for i in range(0, bitscount): prefix_count[i][0] = ((arr[0] >> i) & 1) for j in range(1, n): prefix_count[i][j] = ((arr[j] >> i) & 1) prefix_count[i][j] += prefix_count[i][j - 1] def rangeOr(l, r): ans = 0 for i in range(bitscount): x = 0 if (l == 0): x = prefix_count[i][r] else: x = prefix_count[i][r] - prefix_count[i][l - 1] # Condition for ith bit # of answer to be set if (x == r - l + 1): ans = (ans | (1 << i)) return ans n, m = map(int, input().split()) a = [[0] * n for i in range(30)] query = [] for i in range(m): l, r, q = map(int, input().split()) query.append([l-1, r-1, q]) c = bin(q)[2:][::-1] b = [] for j in c: b.append(int(j)) j = 0 while (j < len(b)): if b[j] == 1: a[j][l - 1] += 1 if r != n: a[j][r] -= 1 j += 1 for i in range(30): j = 1 while (j < n): a[i][j] += a[i][j - 1] j += 1 j = 0 while (j < n): if a[i][j] > 0: a[i][j] = 1 j += 1 res=[] for i in range(n): s = "" j=29 while(j>=0): s += str(a[j][i]) j+=-1 res.append(int(s,2)) findPrefixCount(res, n) f=0 for j in query: if rangeOr(j[0],j[1])!=j[2]: f=1 break if f==1: print("NO") else: print("YES") print(*res)
PYTHON3
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
// practice with rainboy import java.io.*; import java.util.*; public class CF482B extends PrintWriter { CF482B() { super(System.out, true); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF482B o = new CF482B(); o.main(); o.flush(); } int[] tt; int n; void update(int l, int r, int q) { for (l += n, r += n; l <= r; l >>= 1, r >>= 1) { if ((l & 1) == 1) tt[l++] |= q; if ((r & 1) == 0) tt[r--] |= q; } } void sweep() { for (int i = 1; i < n; i++) { tt[i << 1] |= tt[i]; tt[i << 1 | 1] |= tt[i]; } for (int i = n - 1; i >= 1; i--) tt[i] = tt[i << 1] & tt[i << 1 | 1]; } int query(int l, int r) { int x = 0x7fffffff; for (l += n, r += n; l <= r; l >>= 1, r >>= 1) { if ((l & 1) == 1) x &= tt[l++]; if ((r & 1) == 0) x &= tt[r--]; } return x; } void main() { n = sc.nextInt(); int m = sc.nextInt(); tt = new int[n + n]; int[] ll = new int[m]; int[] rr = new int[m]; int[] qq = new int[m]; for (int h = 0; h < m; h++) { ll[h] = sc.nextInt() - 1; rr[h] = sc.nextInt() - 1; qq[h] = sc.nextInt(); update(ll[h], rr[h], qq[h]); } sweep(); for (int h = 0; h < m; h++) if (query(ll[h], rr[h]) != qq[h]) { println("NO"); return; } println("YES"); for (int i = n; i < n + n; i++) print(tt[i] + " "); println(); } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 100; int a[N], b[N]; struct node { int a, b, c; }; vector<node> v; int T[4 * N]; void inti(int n, int b, int e) { if (b == e) { T[n] = a[b]; return; } inti(n * 2, b, (b + e) / 2); inti(n * 2 + 1, (b + e) / 2 + 1, e); T[n] = T[n * 2] & T[n * 2 + 1]; } int query1(int n, int b, int e, int i, int j) { if (b > j || e < i) return 2147483647; if (b >= i && e <= j) return T[n]; return query1(n * 2, b, (b + e) / 2, i, j) & query1(n * 2 + 1, (b + e) / 2 + 1, e, i, j); } int main() { int n, q; cin >> n >> q; while (q--) { node nd; scanf("%d%d%d", &nd.a, &nd.b, &nd.c); v.push_back(nd); } for (int i = 0; i <= 30; i++) { memset(b, 0, sizeof b); for (int j = 0; j < v.size(); j++) { int val = v[j].c; if (val & (1 << i)) { b[v[j].a]++; b[v[j].b + 1]--; } } for (int j = 1; j <= n; j++) { b[j] += b[j - 1]; if (b[j]) a[j] |= (1 << i); } } memset(T, 0, sizeof T); inti(1, 1, n); for (int i = 0; i < v.size(); i++) { if (query1(1, 1, n, v[i].a, v[i].b) != v[i].c) { puts("NO"); return 0; } } puts("YES"); for (int i = 1; i <= n; i++) printf("%d ", a[i]); }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.*; import java.util.*; public class Main implements Runnable { private class Query { private int id; private int l; private int r; private int q; Query(int l,int r,int q,int id) { this.l=l; this.r=r; this.q=q; this.id=id; } } public static void main(String args[]) { new Main().run(); } public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } out.flush(); } private void solve() throws IOException { int n=in.nextInt(); int m=in.nextInt(); int ds=getds(n); int v[]=new int[2*ds]; // Query q[]=new Query[m]; int l[]=new int[m]; int r[]=new int[m]; int q[]=new int[m]; for(int i=0;i<m;i++) { l[i]=in.nextInt()-1; r[i]=in.nextInt()-1; q[i]=in.nextInt(); } for(int i=0;i<m;i++) inc(l[i],r[i],q[i], v, ds); push(v,ds); int arr[]=new int[n]; for(int i=0;i<n;i++) arr[i]=v[i+ds]; boolean ok=true; for(int i=ds-1;i>0;i--) v[i]=v[2*i]&v[2*i+1]; for(int i=0;i<m;i++) ok&=(accumulate(l[i],r[i],v,ds)==q[i]); if(ok) { out.println("YES"); for(int i:arr) { out.print(i); out.print(' '); } out.println(); } else out.println("NO"); } private void push(int [] v, int ds) { for(int i=1;i<ds;i++) { v[2*i]|=v[i]; v[2*i+1]|=v[i]; } } private void inc(int l, int r, int val, int[] v, int ds) { l+=ds; r+=ds; while(l<=r) { if((l&1)==1) v[l++]|=val; if((r&1)==0) v[r--]|=val; l>>=1; r>>=1; } } private int accumulate(int l, int r, int[] v, int ds) { l+=ds; r+=ds; int res=(1<<30)-1; while(l<=r) { if((l&1)==1) res=res&v[l++]; if((r&1)==0) res=res&v[r--]; l>>=1; r>>=1; } return res; } private int getds(int n) { n--; n|=n>>1; n|=n>>2; n|=n>>4; n|=n>>8; n|=n>>16; return n+1; } private boolean testbit(int q, int i) { return ((q>>i)&1)==1; } class Scanner { BufferedReader in; StringTokenizer token; String delim; Scanner(Reader reader) { in=new BufferedReader(reader); token=new StringTokenizer(""); this.delim=" \n"; } Scanner(Reader reader, String delimeters) { in=new BufferedReader(reader); token=new StringTokenizer(""); this.delim=delimeters; } public boolean hasNext() throws IOException { while(!token.hasMoreTokens()) { String line=in.readLine(); if(line==null) return false; token=new StringTokenizer(line); } return true; } String next() throws IOException { return hasNext()?token.nextToken():null; } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } int[] nextInts(int n) throws IOException { int[] res=new int[n]; for(int i=0;i<n;i++) res[i]=nextInt(); return res; } } private Scanner in=new Scanner(new InputStreamReader(System.in),"\n\r\t "); private PrintWriter out=new PrintWriter(new BufferedWriter( new OutputStreamWriter(System.out))); }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const long long N = 1e5 + 10, MOD = 1e9 + 7, INF = 1e9 + 10, SQ = 550, LOG = 25; long long n, m, x1, x2, d, z, t, y2, a[N], dp[N << 2], lazy[N << 2], mini, ptr, x, y, ptr1, ptr2, ans; pair<pair<long long, long long>, long long> pr[N]; void shift(int pos, int lch, int rch) { dp[lch] |= lazy[pos]; dp[rch] |= lazy[pos]; lazy[lch] |= lazy[pos]; lazy[rch] |= lazy[pos]; lazy[pos] = 0; } void upd(int b, int e, int pos, int l, int r, int val) { int mid = e + b >> 1, lch = pos << 1, rch = lch + 1; if (b >= r || e <= l) return; if (l <= b && e <= r) { dp[pos] |= val; lazy[pos] |= val; return; } shift(pos, lch, rch); upd(b, mid, lch, l, r, val); upd(mid, e, rch, l, r, val); } void gogo(int b, int e, int pos) { int mid = e + b >> 1, lch = pos << 1, rch = lch + 1; if (e - b == 1) { a[b] = dp[pos]; return; } shift(pos, lch, rch); gogo(b, mid, lch); gogo(mid, e, rch); } void bld(int b, int e, int pos) { int mid = e + b >> 1, lch = pos << 1, rch = lch + 1; if (e - b == 1) { dp[pos] = a[b]; return; } bld(b, mid, lch); bld(mid, e, rch); dp[pos] = dp[lch] & dp[rch]; } long long give_and(int b, int e, int pos, int l, int r) { int mid = e + b >> 1, lch = pos << 1, rch = lch + 1; if (b >= r || e <= l) return d; if (l <= b && e <= r) return dp[pos]; return give_and(b, mid, lch, l, r) & give_and(mid, e, rch, l, r); } int main() { d = (1 << 30) - 1; cin >> n >> m; for (int i = 0; i < m; i++) { cin >> pr[i].first.first >> pr[i].first.second >> pr[i].second; pr[i].first.first--; upd(0, n, 1, pr[i].first.first, pr[i].first.second, pr[i].second); } gogo(0, n, 1); memset(dp, sizeof(dp), 0); bld(0, n, 1); for (int i = 0; i < m; i++) { if (give_and(0, n, 1, pr[i].first.first, pr[i].first.second) != pr[i].second) return cout << "NO", 0; } cout << "YES\n"; for (int i = 0; i < n; i++) cout << a[i] << ' '; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
// ~/BAU/ACM-ICPC/Teams/A++/BlackBurn95 // ~/sudo apt-get Accpeted import java.io.*; import java.util.*; import java.math.*; import static java.lang.Math.*; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.Double.parseDouble; import static java.lang.String.*; public class Main { static int [] num,seg; public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // (new FileReader("input.in")); StringBuilder out = new StringBuilder(); StringTokenizer tk; tk = new StringTokenizer(in.readLine()); int n = parseInt(tk.nextToken()),m = parseInt(tk.nextToken()); num = new int[n]; seg = new int[4*n+1]; int [][] dp = new int[31][n]; int l,r,q; query [] qq = new query[m]; for(int i=0; i<m; i++) { tk = new StringTokenizer(in.readLine()); l = parseInt(tk.nextToken())-1; r = parseInt(tk.nextToken())-1; q = parseInt(tk.nextToken()); qq[i] = new query(l,r,q); for(int j=0; j<31; j++) { if((q & (1<<j))!=0) { dp[j][l]++; if(r+1 < n) dp[j][r+1]--; } } } for(int j=0; j<31; j++) for(int i=1; i<n; i++) dp[j][i] += dp[j][i-1]; for(int i=0; i<n; i++) { for(int j=0; j<31; j++) if(dp[j][i] > 0) num[i] |= (1<<j); } build(1,0,n-1); for(int i=0; i<m; i++) { if(get(1,0,n-1,qq[i].l,qq[i].r) != qq[i].q) { //System.out.println(qq[i].l+" , "+qq[i].r); //System.out.println(get(1,0,n-1,qq[i].l,qq[i].r)+" "+qq[i].q); System.out.println("NO"); return; } } out.append("YES\n").append(num[0]); for(int i=1; i<n; i++) out.append(" ").append(num[i]); System.out.println(out); } static void build(int p,int s,int e) { if(s==e) { seg[p] = num[s]; return; } build(2*p,s,(s+e)/2); build(2*p+1,(s+e)/2+1,e); seg[p] = seg[2*p] & seg[2*p+1]; } static int get(int p,int s,int e,int a,int b) { if(s>=a && e<=b) return seg[p]; if(s>b || e<a) return (int)((1l<<31l)-1); return get(2*p,s,(s+e)/2,a,b) & get(2*p+1,(s+e)/2+1,e,a,b); } } class query { int l,r,q; public query(int l,int r,int q) { this.l = l; this.r = r; this.q = q; } }
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.*; public class a { public static void main(String[] Args) throws Exception { FS sc = new FS(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = sc.nextInt(); int m = sc.nextInt(); int[] ls = new int[m]; int[] rs = new int[m]; int[] qs = new int[m]; for (int i = 0; i < m; i++){ ls[i] = sc.nextInt() - 1; rs[i] = sc.nextInt() - 1; qs[i] = sc.nextInt(); } int[] ans = new int[n]; int[] tmp = new int[n]; int[] sum = new int[n + 1]; for (int k = 0; k < 30; k++) { for (int i = 0; i < n; i++) sum[i] = 0; sum[n] = 0; for (int i = 0; i < m; i++) { if ((qs[i] & (1<<k)) != 0) { sum[ls[i]]++; sum[rs[i] + 1]--; } } int cc = sum[0]; for (int i = 0; i < n; i++) { tmp[i] = (cc == 0) ? 0 : 1; cc += sum[i + 1]; } sum[0] = 0; for (int i = 0; i < n; i++) { sum[i + 1] = sum[i] + tmp[i]; if (tmp[i] == 1) ans[i] |= (1<<k); } for (int i = 0; i < m; i++){ if ((qs[i] & (1<<k))==0 && sum[rs[i] + 1] - sum[ls[i]] == rs[i] + 1 - ls[i]) { out.println("NO"); out.close(); return; } } } out.println("YES"); for (int i = 0; i < n; i++){ out.print(ans[i] + " "); } out.close(); } public static class Pair implements Comparable<Pair> { int ind, type; Pair(int a, int b) { ind = a; type = b; } public int compareTo(Pair o) { if (ind == o.ind) return o.type - type; return ind - o.ind; } } public static class FS { BufferedReader br; StringTokenizer st; FS(InputStream in) throws Exception { br = new BufferedReader(new InputStreamReader(in)); st = new StringTokenizer(br.readLine()); } FS(File f) throws Exception { br = new BufferedReader(new FileReader(f)); st = new StringTokenizer(br.readLine()); } String next() throws Exception { if (st.hasMoreTokens()) return st.nextToken(); st = new StringTokenizer(br.readLine()); return next(); } int nextInt() throws Exception { return Integer.parseInt(next()); } long nextLong() throws Exception { return Long.parseLong(next()); } double nextDouble() throws Exception { return Double.parseDouble(next()); } } } /* * * 19 2 2 2 2 2 2 2 2 1 1 1 2 1 1 2 1 1 1 2 * * */
JAVA
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int a[200005], tree[400005]; void build(int node, int l, int r) { if (l == r) { tree[node] = a[l - 1]; return; } int mid = (l + r) >> 1; build(node * 2, l, mid); build(node * 2 + 1, mid + 1, r); tree[node] = tree[node * 2] & tree[node * 2 + 1]; } int query(int node, int l, int r, int x, int y) { if (l > y || r < x) return (1 << 30) - 1; if (l >= x && r <= y) return tree[node]; int mid = (l + r) >> 1; int left = query(node * 2, l, mid, x, y); int right = query(node * 2 + 1, mid + 1, r, x, y); return left & right; } int main() { int n, m; cin >> n >> m; int l[m], r[m], q[m], sum[n + 1]; for (int i = 0; i < m; i++) cin >> l[i] >> r[i] >> q[i]; for (int bit = 0; bit <= 30; bit++) { for (int i = 0; i < n; i++) sum[i] = 0; for (int i = 0; i < m; i++) { if ((q[i] >> bit) & 1) { sum[l[i] - 1]++; sum[r[i]]--; } } for (int i = 0; i < n; i++) { if (i > 0) sum[i] += sum[i - 1]; if (sum[i] > 0) a[i] |= 1 << bit; } } build(1, 1, n); for (int i = 0; i < m; i++) { if (query(1, 1, n, l[i], r[i]) != q[i]) { cout << "NO\n"; return 0; } } cout << "YES\n"; for (int i = 0; i < n; i++) cout << a[i] << " "; cout << endl; return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int MAX_N = 100000 + 10; struct Node { int l, r; int val; } t[MAX_N * 4]; vector<int> ans; int a[MAX_N], b[MAX_N], c[MAX_N], n, m; void build(int o, int l, int r) { t[o].l = l; t[o].r = r; t[o].val = 0; if (l == r) { return; } int mid = (l + r) >> 1; build(o << 1, l, mid); build(o << 1 | 1, mid + 1, r); } void update(int o, int l, int r, int x) { if (t[o].l == l && t[o].r == r) { t[o].val |= x; return; } int mid = (t[o].l + t[o].r) >> 1; if (r <= mid) update(o << 1, l, r, x); else if (l > mid) update(o << 1 | 1, l, r, x); else { update(o << 1, l, mid, x); update(o << 1 | 1, mid + 1, r, x); } } int query(int o, int l, int r) { if (t[o].l == l && t[o].r == r) { return t[o].val; } int mid = (t[o].l + t[o].r) >> 1; if (r <= mid) return query(o << 1, l, r); else if (l > mid) return query(o << 1 | 1, l, r); else return query(o << 1, l, mid) & query(o << 1 | 1, mid + 1, r); } void solve(int o) { if (o != 1) { t[o].val |= t[o >> 1].val; } if (t[o].l == t[o].r) { ans.push_back(t[o].val); return; } solve(o << 1); solve(o << 1 | 1); } int main() { scanf("%d%d", &n, &m); build(1, 1, n); for (int i = 0; i < m; i++) { scanf("%d%d%d", &a[i], &b[i], &c[i]); update(1, a[i], b[i], c[i]); } bool ok = true; for (int i = 0; i < m; i++) { if (query(1, a[i], b[i]) != c[i]) { ok = false; break; } } if (ok) { solve(1); printf("YES\n"); for (int i = 0; i < (int)ans.size() - 1; i++) { printf("%d ", ans[i]); } printf("%d\n", ans[(int)ans.size() - 1]); } else { printf("NO\n"); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; struct node { int l, r, val; } a[1000000 + 10]; int num[1000000 + 10], laze[1000000 + 10]; void pushup(int l, int r, int rt) { num[rt] = num[rt * 2] & num[rt * 2 + 1]; } void pushdown(int l, int r, int rt) { if (laze[rt]) { num[rt * 2] |= laze[rt]; num[rt * 2 + 1] |= laze[rt]; laze[rt * 2] |= laze[rt]; laze[rt * 2 + 1] |= laze[rt]; laze[rt] = 0; } } void build(int l, int r, int rt) { if (l == r) { return; } int mid = (l + r) / 2; build(l, mid, rt * 2); build(mid + 1, r, rt * 2 + 1); pushup(l, r, rt); } void updata(int l, int r, int ql, int qr, int val, int rt) { if (ql <= l && qr >= r) { num[rt] |= val; laze[rt] |= val; return; } pushdown(l, r, rt); int mid = (l + r) / 2; if (ql <= mid) updata(l, mid, ql, qr, val, rt * 2); if (qr > mid) updata(mid + 1, r, ql, qr, val, rt * 2 + 1); pushup(l, r, rt); } int qry(int l, int r, int ql, int qr, int rt) { if (ql <= l && qr >= r) { return num[rt]; } pushdown(l, r, rt); int mid = (l + r) / 2; if (ql <= mid && qr > mid) return qry(l, mid, ql, qr, rt * 2) & qry(mid + 1, r, ql, qr, rt * 2 + 1); else if (qr > mid) return qry(mid + 1, r, ql, qr, rt * 2 + 1); else if (ql <= mid) return qry(l, mid, ql, qr, rt * 2); pushup(l, r, rt); } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, q; cin >> n >> q; build(1, n, 1); for (int i = (0); i < (q); i++) { cin >> a[i].l >> a[i].r >> a[i].val; updata(1, n, a[i].l, a[i].r, a[i].val, 1); } int flag = 0; for (int i = (0); i < (q); i++) { if (a[i].val != qry(1, n, a[i].l, a[i].r, 1)) flag = 1; } if (flag) { cout << "NO"; } else { cout << "YES" << "\n"; for (int i = (1); i < (n + 1); i++) { cout << qry(1, n, i, i, 1) << " "; } } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; long long dp[100005][35]; long long a[100005]; long long segtree[400005]; void build(long long node, long long start, long long end) { if (start == end) { segtree[node] = a[start]; return; } long long mid = (start + end) / 2; build(2 * node + 1, start, mid); build(2 * node + 2, mid + 1, end); segtree[node] = segtree[2 * node + 1] & segtree[2 * node + 2]; } long long query(long long node, long long start, long long end, long long l, long long r) { if (start > r || end < l) return -1; if (l <= start && end <= r) { return segtree[node]; } long long mid = (start + end) / 2; long long p1 = query(2 * node + 1, start, mid, l, r); long long p2 = query(2 * node + 2, mid + 1, end, l, r); if (p1 == -1) return p2; if (p2 == -1) return p1; return p1 & p2; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long n, m; cin >> n >> m; pair<pair<long long, long long>, long long> p[m]; for (long long i = 0; i < m; i++) { cin >> p[i].first.first >> p[i].first.second >> p[i].second; p[i].first.first--; p[i].first.second--; long long temp = p[i].second; long long idx = 0; while (temp > 0) { if (temp % 2 == 1) { dp[p[i].first.first][idx] += 1; dp[p[i].first.second + 1][idx] -= 1; } temp = temp / 2; idx++; } } for (long long j = 0; j < 35; j++) { for (long long i = 1; i < n; i++) { dp[i][j] = dp[i][j] + dp[i - 1][j]; } } long long pow[35]; pow[0] = 1; for (long long i = 1; i < 35; i++) { pow[i] = 2 * pow[i - 1]; } for (long long i = 0; i < n; i++) { long long temp = 0; for (long long j = 0; j < 35; j++) { if (dp[i][j] >= 1) { temp += pow[j]; } } a[i] = temp; } build(0, 0, n - 1); for (long long i = 0; i < m; i++) { if (query(0, 0, n - 1, p[i].first.first, p[i].first.second) != p[i].second) { cout << "NO"; return 0; } } cout << "YES" << endl; for (long long i = 0; i < n; i++) { cout << a[i] << " "; } return 0; } long long choose(long long n, long long k) { if (k == 0) return 1; return (n * choose(n - 1, k - 1)) / k; } bool isprime(long long n) { for (long long i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } void setprime(bool isprime[], long long n) { for (long long i = 0; i < n; i++) isprime[i] = true; isprime[0] = false; isprime[1] = false; for (long long i = 2; i < n; i++) { for (long long j = 2; i * j < n; j++) isprime[i * j] = false; } }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int treeor[400000]; int treeand[400000]; int a[100001]; void modifyor(int v, int tl, int tr, int l, int r, int val) { if (l == tl && r == tr) treeor[v] |= val; else { int x = (tl + tr) / 2; if (l <= x) modifyor(v * 2, tl, x, l, min(x, r), val); if (r >= x + 1) modifyor(v * 2 + 1, x + 1, tr, max(l, x + 1), r, val); } } int get(int v, int tl, int tr, int num) { if (tl == tr) return treeor[v]; else { int x = (tl + tr) / 2; if (num <= x) { treeor[v * 2] |= treeor[v]; return get(v * 2, tl, x, num); } else { treeor[v * 2 + 1] |= treeor[v]; return get(v * 2 + 1, x + 1, tr, num); } } } void init(int v, int tl, int tr) { if (tl == tr) treeand[v] = a[tl]; else { int x = (tl + tr) / 2; init(v * 2, tl, x); init(v * 2 + 1, x + 1, tr); treeand[v] = treeand[v * 2] & treeand[v * 2 + 1]; } } int getand(int v, int tl, int tr, int l, int r) { if (tl == l && tr == r) return treeand[v]; else { int x = (tl + tr) / 2; if (l <= x && r >= x + 1) { int sonl, sonr; sonl = getand(v * 2, tl, x, l, x); sonr = getand(v * 2 + 1, x + 1, tr, x + 1, r); return sonl & sonr; } else if (l <= x) return getand(v * 2, tl, x, l, r); else return getand(v * 2 + 1, x + 1, tr, l, r); } } struct Query { int l, r, q; } q[100000]; int main() { int n, m; scanf("%d%d", &n, &m); memset(treeor, 0, 1600000); for (int i = 0; i < m; i++) { scanf("%d%d%d", &q[i].l, &q[i].r, &q[i].q); modifyor(1, 1, n, q[i].l, q[i].r, q[i].q); } for (int i = 1; i <= n; i++) a[i] = get(1, 1, n, i); init(1, 1, n); bool corr = 1; for (int i = 0; i < m; i++) if (getand(1, 1, n, q[i].l, q[i].r) != q[i].q) { corr = 0; break; } if (corr) { printf("YES\n"); for (int i = 1; i <= n; i++) printf("%d ", a[i]); } else printf("NO\n"); return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; int value[101000 * 4], f[101000], l[101000], r[101000], q[101000]; void insert(int p, int L, int R, int l, int r, int q) { if (L == l && R == r) { value[p] |= q; return; } int mid = (L + R) >> 1; if (r <= mid) insert(p << 1, L, mid, l, r, q); else if (l > mid) insert(p * 2 + 1, mid + 1, R, l, r, q); else { insert(p << 1, L, mid, l, mid, q); insert(p * 2 + 1, mid + 1, R, mid + 1, r, q); } } int find(int p, int L, int R, int l, int r) { if (L == l && R == r) return value[p]; int mid = (L + R) >> 1; if (r <= mid) return find(p << 1, L, mid, l, r) | value[p]; else if (l > mid) return find(p * 2 + 1, mid + 1, R, l, r) | value[p]; else return (find(p << 1, L, mid, l, mid) & find(p * 2 + 1, mid + 1, R, mid + 1, r)) | value[p]; } int get(int p, int L, int R, int l, int r) { if (L == l && R == r) return value[p]; int mid = (L + R) >> 1; if (r <= mid) return get(p << 1, L, mid, l, r) | value[p]; else return get(p * 2 + 1, mid + 1, R, l, r) | value[p]; } inline void read(int &x) { x = 0; char ch; while (ch = getchar(), ch > '9' || ch < '0') ; while (ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar(); } int main() { int n, m; read(n), read(m); for (int i = 1; i <= m; i++) { read(l[i]), read(r[i]), read(q[i]); insert(1, 1, n, l[i], r[i], q[i]); } int i; for (i = 1; i <= m; i++) if (find(1, 1, n, l[i], r[i]) != q[i]) break; if (i <= m) printf("NO\n"); else { printf("YES\n"); printf("%d", get(1, 1, n, 1, 1)); for (int i = 2; i <= n; i++) printf(" %d", get(1, 1, n, i, i)); printf("\n"); } return 0; }
CPP
482_B. Interesting Array
We'll call an array of n non-negative integers a[1], a[2], ..., a[n] interesting, if it meets m constraints. The i-th of the m constraints consists of three integers li, ri, qi (1 ≀ li ≀ ri ≀ n) meaning that value <image> should be equal to qi. Your task is to find any interesting array of n elements or state that such array doesn't exist. Expression x&y means the bitwise AND of numbers x and y. In programming languages C++, Java and Python this operation is represented as "&", in Pascal β€” as "and". Input The first line contains two integers n, m (1 ≀ n ≀ 105, 1 ≀ m ≀ 105) β€” the number of elements in the array and the number of limits. Each of the next m lines contains three integers li, ri, qi (1 ≀ li ≀ ri ≀ n, 0 ≀ qi < 230) describing the i-th limit. Output If the interesting array exists, in the first line print "YES" (without the quotes) and in the second line print n integers a[1], a[2], ..., a[n] (0 ≀ a[i] < 230) decribing the interesting array. If there are multiple answers, print any of them. If the interesting array doesn't exist, print "NO" (without the quotes) in the single line. Examples Input 3 1 1 3 3 Output YES 3 3 3 Input 3 2 1 3 3 1 3 2 Output NO
2
8
#include <bits/stdc++.h> using namespace std; const int maxn = 100005; int a[maxn << 2], n, m; int OR[maxn << 2]; struct IA { int l, r, q; } ia[maxn]; void push_up(int rt) { a[rt] = a[rt << 1] & a[rt << 1 | 1]; } void push_down(int rt) { if (OR[rt]) { a[rt << 1] |= OR[rt]; a[rt << 1 | 1] |= OR[rt]; OR[rt << 1] |= OR[rt]; OR[rt << 1 | 1] |= OR[rt]; OR[rt] = 0; } } void update(int L, int R, int C, int l, int r, int rt) { if (L <= l && r <= R) { OR[rt] |= C; a[rt] |= C; return; } push_down(rt); int m = (l + r) / 2; if (L <= m) update(L, R, C, l, m, rt << 1); if (R > m) update(L, R, C, m + 1, r, rt << 1 | 1); push_up(rt); } int query(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) { return a[rt]; } int m = (l + r) / 2; push_down(rt); int part1 = -1, part2 = -1; if (L <= m) part1 = query(L, R, l, m, rt << 1); if (R > m) part2 = query(L, R, m + 1, r, rt << 1 | 1); if (part1 == -1) return part2; if (part2 == -1) return part1; return part1 & part2; } vector<int> ans; void showit(int l, int r, int rt) { if (l == r) { ans.push_back(a[rt]); return; } int m = (l + r) / 2; push_down(rt); showit(l, m, rt << 1); showit(m + 1, r, rt << 1 | 1); } int main() { scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) { scanf("%d%d%d", &ia[i].l, &ia[i].r, &ia[i].q); update(ia[i].l, ia[i].r, ia[i].q, 1, n, 1); } bool flag = true; for (int i = 0; i < m && flag; i++) { int Q = query(ia[i].l, ia[i].r, 1, n, 1); if (Q != ia[i].q) flag = false; } if (!flag) puts("NO"); else { puts("YES"); ans.clear(); showit(1, n, 1); for (int i = 0, sz = ans.size(); i < sz; i++) printf("%d ", ans[i]); putchar(10); } return 0; }
CPP